WO2023067271A1 - Machine d'impression en 3d equipée d'une chambre secondaire transparente permettant une fabrication sous atmosphère contrôlée - Google Patents

Machine d'impression en 3d equipée d'une chambre secondaire transparente permettant une fabrication sous atmosphère contrôlée Download PDF

Info

Publication number
WO2023067271A1
WO2023067271A1 PCT/FR2022/051944 FR2022051944W WO2023067271A1 WO 2023067271 A1 WO2023067271 A1 WO 2023067271A1 FR 2022051944 W FR2022051944 W FR 2022051944W WO 2023067271 A1 WO2023067271 A1 WO 2023067271A1
Authority
WO
WIPO (PCT)
Prior art keywords
main
chamber
secondary chamber
main plate
nozzle
Prior art date
Application number
PCT/FR2022/051944
Other languages
English (en)
Inventor
Mickael Rouby
Clément NAGODE
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Priority to CN202280069928.8A priority Critical patent/CN118103196A/zh
Publication of WO2023067271A1 publication Critical patent/WO2023067271A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]

Definitions

  • the present invention relates to the general field of three-dimensional printing machines which make it possible to manufacture parts of very different shapes by depositing a malleable printing material in successive layers, by means of a nozzle.
  • Such machines are described in particular by document US Pat. No. 6,722,872, which proposes a printing machine comprising a chamber which forms an oven delimited by a wall, and inside which there is a plate intended to supporting the part being printed, as well as the nozzle making it possible to bring the constituent material of said part.
  • a drive system comprising an elevator to move the plate vertically, and crossed translation tables to horizontally drive the nozzle responsible for delivering the material constituting the part.
  • Said translation tables are equipped with bellows which seal the chamber.
  • the heating means of the oven may even be insufficient to implement certain printing materials which require a high temperature to guarantee good joining of the successive layers of the printing material in question, which then limits the industrial capacities of the machine.
  • the objects assigned to the invention therefore aim to remedy the aforementioned drawbacks and to propose a new three-dimensional printing machine which makes it possible to produce, by means of a compact and inexpensive machine, prints in a wide range temperatures, including high temperatures, while ensuring effective control of the printing process through convenient and reliable monitoring of the part being printed.
  • a three-dimensional printing machine comprising a main chamber which is delimited by a first wall and inside which there is a main plate, intended to support a part being printed, as well as a nozzle arranged to feed and deposit in successive layers a printing material in order to gradually build up said part supported by the main plate, said machine also comprising a drive system making it possible to drive a relative displacement of the main plate with respect to the nozzle so that said nozzle can draw the shape of the part, and the first wall comprising at least one main observation window which is transparent over at least part of the visible light spectrum and which allows an observer located outside the main chamber to view the main plate, said machine being characterized in that the main chamber contains a secondary chamber whose volume is strictly less than that of the main chamber and which is delimited by a second wall carried by the main plate, said second wall separating said secondary chamber from the main chamber and having on the one hand at least one insertion orifice through which the nozzle penetrates into the secondary chamber in order to be able to
  • the secondary chamber according to the invention makes it possible to confine the working area where the nozzle produces the part in a volume which is smaller than that of the main chamber, and of which it is therefore possible to precisely control the precise temperature, and this while maintaining perfect visual monitoring of the printing process, since the second wall which delimits the secondary chamber, and more particularly the second observation window integrated into said wall, advantageously screens heat transfers but not vision.
  • the reduced volume of the secondary chamber, and the partitioning provided by the second wall which delimits said secondary chamber advantageously make it possible to bring the interior of the secondary chamber to a high temperature with a less energy expenditure, without it being necessary to bring the entire main chamber, which surrounds said secondary chamber, to such a high temperature, and moreover without this thermally affecting the mechanical or electronic components of the machine, and in particular the components of the drive system, which can preferably be located outside the secondary chamber, but if necessary inside the main chamber.
  • the relative arrangement of the observation windows according to the invention advantageously preserves a wide visual field of observation of the part and therefore allows the user to exercise direct visual monitoring of the process, which is particularly economical. and reliable, without the need for a camera circuit.
  • Figure 1 shows, in a perspective view, a module intended to equip the main plate of a three-dimensional printing machine to integrate said machine into a secondary chamber according to the invention.
  • Figure 2 is a front projection view of the module of Figure 1.
  • Figure 3 is a top view of the module of Figures 1 and 2, in section in a horizontal plane.
  • Figure 4 shows, in a schematic front sectional view in a vertical plane, a machine according to the invention equipped with a module according to Figures 1 to 3.
  • Figures 5A, 5B, 5C represent, according to partial sectional views in a vertical plane, the progressive descent of the main plate of the machine of Figure 4 as the part is printed and the corresponding compensation effected by the telescopic sliding of the second wall which delimits the secondary chamber, FIG. 5A corresponding to the starting configuration, the main plate being in the high position, FIG. 5B corresponding to an intermediate configuration, the main plate having been lowered relative to its starting position, and FIG. 5C corresponding to the end-of-travel configuration, the main plate being in the low position, that is to say lowered to the maximum.
  • the present invention relates to a three-dimensional printing machine 1.
  • said machine 1 comprises a main chamber 2 which is delimited by a first wall 3.
  • the main chamber 2 thus forms a closed enclosure, inside which the printing operation of a part 4 will take place.
  • a main plate 5 Inside the main chamber 2 is a main plate 5, intended to support a part 4 being printed.
  • said main plate 5 forms a flat and horizontal surface.
  • a nozzle 6 Inside said main chamber 2 is also a nozzle 6 which is arranged to bring and deposit in successive layers a printing material 7 in order to gradually form said part 4 supported by the main plate 5.
  • Any material capable of being made sufficiently malleable to pass through the nozzle 6, to adhere to itself in superimposed layers, then to harden after having been deposited may be suitable as printing material 7.
  • the printing material 7 will be a thermoplastic material, which will be softened or even melted, for example by extrusion, to be applied by the nozzle 6.
  • the printing material 7 will be deposited in the form of a continuous bead emitted by the nozzle 6.
  • the main chamber 2, and if necessary the nozzle 6 and/or the main plate 5, will include heating means (not shown) making it possible to increase the temperature of the main chamber 2, and if necessary of the nozzle 6 and/or of the main plate 5 in order to guarantee the malleability of the printing material 7 and, above all, the good adhesion between the different layers of said printing material 7 which are successively deposited to form the part 4.
  • the machine 1 also includes a drive system 10 which controls a relative movement of the main plate 5 relative to the nozzle 6 so that said nozzle 6 can draw the shape of room 4.
  • the displacement system 10 will preferably be arranged to offer at least three degrees of freedom to the main plate 5 with respect to the nozzle 6, namely one degree of freedom in vertical translation, and two degrees of freedom in horizontal translation, according to two horizontal axes X5, Y5 perpendicular to each other, so that You can move the nozzle 6 relative to the main plate 5 (and vice versa) in the three directions of space.
  • the drive system 10 may thus be arranged to be able to move the nozzle 6 exclusively according to the three degrees of freedom with respect to a main plate 5 which would be fixed with respect to the frame of the machine 1 and therefore with respect to the main chamber 2, or on the contrary to be able to move the main plate 5 exclusively according to the three degrees of freedom with respect to a nozzle 6 which would be fixed with respect to the frame and to the main chamber 2, or even to distribute the degrees of freedom between the nozzle 6 on the one hand and the main plate 5 on the other hand, for example by providing to provide the main plate 5 with only one degree of freedom in vertical translation with respect to the frame and to the main chamber 2 while the nozzle 6 is movable in the two horizontal directions with respect to this same frame and to the main chamber 2, or vice versa, to provide the nozzle 6 with a single degree of freedom in vertical translation while the main plate 5 is movable exclusively in the two horizontal degrees of freedom.
  • the degrees of freedom in translation can be ensured by any appropriate motorized guide means.
  • an elevator comprising for example a gantry provided with screws which extend vertically and which cooperate with ball bearings fixed to the member to be guided. concerned, here for example the main plate 5.
  • the degrees of freedom in horizontal translation may in particular be achieved by means of crossed translation tables comprising carriages guided by horizontal rails, and driven for example by a ball screw system driven by a motor.
  • the motorization of the drive system 10, and more particularly of each translation axis, will preferably be provided by electric motors, preferably controlled by an electronic control unit.
  • the first wall 3, which delimits the main chamber 2 comprises at least one main observation window 11 which is transparent over at least part of the visible light spectrum, more preferably over the entire visible spectrum, and which allows an observer located outside the main chamber 5 to view the main plate 5, and therefore, if necessary, the part 4 being printed which is located on said main plate 5.
  • visible spectrum is meant, by convention, the range of wavelengths which extends from 380 nm, the limit of ultraviolet radiation, to 780 nm, the limit of infrared radiation.
  • the transmittance is 1 and the optical density DO is zero.
  • the transparency of the main observation window 11 will advantageously be sufficient to allow the observer to clearly distinguish, through said main observation window 11, the contours of the observed object, here the main plate 5 and /or part 4 carried by said main plate 5.
  • the main observation window 11 may preferably be formed by a transparent panel integrated into a door which is made in the first wall 3 to, when said door is open, give access to the main chamber 2 and to the main plate. 5 and, when said door is closed, keep the main chamber 2 closed.
  • the main observation window 11 may for example be made of glass, acrylic, polycarbonate or PMMA (“Plexiglas”), with a thickness of between 3 mm and 10 mm.
  • the constituent material of the main observation window 11 will also preferably be colorless.
  • the main chamber 2 contains a secondary chamber 20 whose volume is strictly less than the volume of the main chamber 2 and which is delimited by a second wall 21 carried by the main plate 5.
  • the overall internal volume of the secondary chamber 20, such as said volume is delimited by the envelope materialized by the second wall 21, is preferably between 200 cm3 and 600 cm3.
  • the second wall 21 separates said secondary chamber 20 from the main chamber 2 and has on the one hand at least one insertion orifice 22 through which the nozzle 6 enters the secondary chamber 20 in order to be able to deposit the material of impression 7 in said secondary chamber 20 and thus generate part 4 within said secondary chamber 20, and on the other hand at least one secondary observation window 23, which is transparent over at least part of the visible light spectrum, of preferably over the entire visible light spectrum, and placed opposite the main observation window 11, so that an observer 25 standing outside the main chamber 2 can visualize by direct ocular observation, according to a optical path 24 which successively crosses the main observation window 11 then the secondary observation window 23, the interior of the secondary chamber 20 and the part 4 which is being printed in said secondary chamber 20.
  • the second wall 21 advantageously makes it possible to separate the secondary chamber 20 from the atmosphere which reigns in the main chamber 2 and which therefore surrounds the second wall 21 outside the secondary chamber 20.
  • the volume of the secondary chamber 20 is preferably entirely contained inside the main chamber 2 which encloses said secondary chamber 20, said secondary chamber 20 thus being strictly included inside the main chamber 2.
  • the second wall 21 is set back from the first wall 3, towards the inside of the main chamber 2.
  • the use of the secondary chamber 20 according to the invention makes it possible to reduce and confine the working area, in which the nozzle 6 operates when it shapes the part 4, at the interior of a closed volume which is strictly smaller than the total volume which is available in the main chamber 2, and therefore has a fraction of said total volume which is available in the main chamber 2, in order to better control the conditions of printing of said part 4, in particular the temperature.
  • the arrangement of the observation windows 11, 23 according to the invention allows direct monitoring, without a camera, with the naked eye, of the interior of the chamber. secondary chamber 20, and therefore of the printing process which takes place inside said secondary chamber 20.
  • the addition of the secondary chamber 20 according to the invention will not have the effect of masking the work area from the observer, nor of degrading the quality of process monitoring.
  • the main observation window 11 and the secondary observation window 23 will preferably be located in direct alignment with each other, in order to make the interior of the secondary chamber 20 visible from the exterior of the main chamber 2, and therefore from the exterior of the machine 1 along a rectilinear optical path, without mirror return.
  • Such a structure will indeed be particularly simple and will allow very intuitive visual monitoring.
  • the secondary observation window 23 will preferably present, over at least part and preferably over the entire visible light spectrum, a transmittance T equal to or greater than 25% , preferably between 50% and 95%.
  • the secondary observation window 23 which will preferably be particularly resistant to heat, may for example be made of glass, tempered glass, or borosilicate glass (“Pyrex”), with a thickness of between 3 mm and 10mm.
  • the constituent material of the secondary observation window 23 will also preferably be colorless.
  • the second wall 21 comprises: i) a base 30 which rests vertically on the main plate 5 and which has a horizontal reception face 30A intended to support the part 4 being printed, ii) a sleeve 31 which forms a side wall which extends vertically from the reception face 30A of the base, according to a closed contour around a central axis Z31 vertical normal to said reception face 3OA, and of which at least a portion forms the secondary observation window 23, and iii) a cover 32 which caps the jacket 31, at a vertical distance from the horizontal reception face 30A of the base 30, so as to close the secondary chamber 20, and which has the insertion orifice 22 which allows the nozzle 6 to be engaged inside said secondary chamber 20.
  • Such a structure has in particular the advantage of great simplicity of implementation at lower cost, and provides good visibility of the work area, that is to say of the closed space of the room.
  • secondary 20 which extends between the base 30, the cover 32, and the sleeve 31 which vertically connects said base 30 to said cover 32 and which forms the radial limit of said secondary chamber 20 with respect to the central axis Z31.
  • the jacket 31 will advantageously cooperate with the base 30 and with the cover 32 in a sealed manner, in order to separate the atmosphere which reigns in the secondary chamber 20 from the surrounding atmosphere which reigns in the main chamber 2, and in which bathes the secondary chamber 20.
  • the cover 32 will also preferably be at least partly, or even entirely, transparent, in order to form a portion of the secondary observation window 23, in addition to the secondary observation window portion 23 formed by the sleeve 31.
  • the cover may include a transparent disc 33, here arranged horizontally and placed on the upper edge of the sleeve 31.
  • the material used and the degree of transparency of the cover 32, and more particularly of the transparent disc 33, may be identical to those already specified above with reference to the sleeve 31.
  • a transparent cover 32 will further improve the visibility of the interior space of the secondary chamber 20 and consequently of the contents of said secondary chamber, under different viewing angles from the outside of master bedroom 2.
  • the insertion orifice 22 may be pierced through the cover 32, and more particularly through the transparent disc 33, preferably substantially according to the direction of the central axis Z31 as can be seen in FIGS. 1 and 4, so that the nozzle 6 points into the secondary chamber 20 from above, in the direction of the base 30, and more particularly in the direction of the face of reception 30A of said base 30, which will receive the successive layers of printing material 7 deposited by the nozzle 6.
  • a clamping mechanism 34 will fix the nozzle 6 on the cover 32.
  • the sleeve 31 forms a ring, a ring which is transparent over at least 180 degrees, preferably at least 270 degrees, and more preferably over 360 degrees around of the central axis Z31 vertical.
  • said ring will have a circular base, and even more preferably will form a right cylinder with a circular base.
  • the sleeve 31 will be formed in one piece in a transparent material.
  • the secondary observation window 23 thus offering a very wide visual field.
  • the drive system 10 makes it possible to move the main plate 5, and consequently the base 30, in translation along the central axis Z31 vertical with respect to the cover 32.
  • the drive system 10 may include an elevator to move the main plate 5 vertically.
  • This elevator may be placed in the main chamber 2, between the main plate 5 and the first wall 3.
  • the sleeve 31 can then form with the base 30, as is clearly visible in Figures 4, 5A, 5B and 5C, a telescopic structure 35, and be prestressed by one or more springs 36 in the direction of said cover 32, so that said sleeve 31 can slide relative to base 30 along vertical central axis Z31 and remain pressed abutting against cover 32, and therefore more particularly in sealed contact with said cover 32, while main plate 5 , and therefore the base 30, moves relative to the cover 32, and in particular moves away from the cover, in translation along said vertical central axis Z31.
  • this simple telescopic structure 35 makes it possible to retain the confinement of the secondary chamber 20 by adapting in real time the height of the side wall of the secondary chamber by a differential translation movement of the sleeve 31 relative to the base 30 , regardless of the vertical distance between the base 30 and the cover 32.
  • the sleeve 31 fits coaxially and slidingly with a shaft 30B of the base 30, of cylindrical shape matching that of the radially internal face 31 in of the sleeve 31, and which guides the vertical translation of said sleeve 31 relative to base 30.
  • the sleeve 31 is formed by a rigid ring which advantageously retains its shape, without deformation, during the vertical movements of the main plate 5 and of the base 30, since the lowering of the main plate 5 and of the base 30 is compensated by a corresponding elevation, in vertical translation, of the sleeve 31 which moves in one block with respect to the base 30. This avoids any wear of the sleeve 31, and more generally of the second wall 21 and of the secondary observation window 23, by deformation.
  • a slight radial play will be provided between the radially outer face 30B_out of the shaft 30B and the radially inner face 3 l in of the sleeve 31, in order to allow the relative sliding of the sleeve 31 on the shaft 30B, and in order to avoid abrasion phenomena likely to scratch the sleeve 31, and therefore the secondary observation window 23.
  • seals for example O-rings or lip seals
  • the drive system 10 is designed to be able to generate a relative movement of the main plate 5, and therefore of the base 30, relative to the cover 32 along a first horizontal axis X5 and along a second horizontal axis Y5 perpendicular to the first horizontal axis X5.
  • cross translation tables can be used for this purpose, as mentioned above, which can be located in the main chamber 2 or even outside of said main chamber 2.
  • cover 32 which carries nozzle 6, cooperates with sleeve 31 in horizontal plane contact, so that said cover 32 can slide relative to said sleeve 31 in a horizontal plane P32 parallel to each of the first and second horizontal axes X5, Y5, while remaining in contact with said sleeve 31 and thus keeping the secondary chamber 20 closed, during the relative horizontal movements of the main plate 5 with respect to the cover 32 and the nozzle 6.
  • the diameter of the cover 32, and more particularly of the transparent disc 33, will of course be adapted to cover not only the overall diameter of the sleeve 31, but also extend beyond the radially outer wall of the sleeve 31 of a value which is at least equal to the maximum possible horizontal stroke of the main plate 5 along the horizontal axes X5, Y5.
  • the seal between the upper edge of the sleeve 31 and the underside of the cover 32 placed flat on said sleeve 31 can be ensured, for example, either by simple smooth solid contact between the cover 32 and the sleeve 31, any leaks then being negligible, or by the addition of an O-ring housed in an annular groove dug in the edge of the sleeve 31.
  • the nozzle 6 and the cover 32 are fixed with respect to the first wall 3, and more generally with respect to the frame of the machine 1, and this is the main plate 5 which ensures all the movements necessary for shaping the part 4, namely on the one hand the two movements, separate or combined, according to the two horizontal axes X5, Y5 and on the other hand the third movement according to the vertical axis (likened for convenience to the central axis Z31), relative to the fixed nozzle 6.
  • the machine 1 comprises an atmosphere control circuit 40 which makes it possible to place the secondary chamber 20 under a controlled atmosphere whose composition and/or temperature differ from those of the primary atmosphere which prevails in the main chamber 2, the second wall 21 providing for this purpose a tight separation (to the gases making up said atmospheres) between the secondary chamber 20 and the main chamber 2.
  • an atmosphere control circuit 40 which makes it possible to place the secondary chamber 20 under a controlled atmosphere whose composition and/or temperature differ from those of the primary atmosphere which prevails in the main chamber 2, the second wall 21 providing for this purpose a tight separation (to the gases making up said atmospheres) between the secondary chamber 20 and the main chamber 2.
  • an inert gas such as dinitrogen, or any other suitable gas or gas mixture, which will be carried by the circuit 40 at the desired temperature, pressure and flow rate conditions, may be used in the secondary chamber.
  • the atmosphere control circuit 40 forms a recirculation loop 41 in a closed circuit, at least part of which is located outside the secondary chamber 20.
  • the same gaseous mixture can thus be successively injected into the secondary chamber 20, to condition the atmosphere, then extracted from the secondary chamber 20, then reprocessed, and in particular heated and/or filtered, to then be reinjected into the secondary chamber 20, and so on.
  • the fact of deporting part of the circuit 40, in particular the recirculation loop 41, outside the secondary chamber 20, for example by placing said part of the circuit in the main chamber 2 or even outside the main chamber 2 makes it possible to maximize the useful volume available within the secondary chamber 20.
  • the atmosphere control circuit 40 comprises a heater 42 to raise the temperature prevailing inside the secondary chamber 20.
  • said heater 42 is specific to circuit 40, and in particular separate from any heating means for main chamber 2 or nozzle 6, in order to act specifically on the temperature of secondary chamber 20.
  • said heating device 42 could be in the secondary chamber 20.
  • said heating device 42 will preferably be located on the portion of the recirculation loop 41 which is outside the secondary chamber 20.
  • the heating device 42 may be formed by a heating tube, such as a ceramic tube provided with electric heating resistors, through which circulates the gas flow which is captive to the recirculation loop 41 and the secondary chamber. 20.
  • the atmosphere control circuit 40 comprises a distributor member 43, which is interposed vertically between the main plate 5 and the receiving face 30A of the base 30, and which has on the one hand a supply distributor 44, which injects into the secondary chamber 20 a gaseous flow constituting the controlled atmosphere, and on the other hand an evacuation manifold 45 which evacuates said gaseous flow from said secondary chamber 20.
  • the distributor member 43 is preferably housed inside the hollow shaft 30B of the base 30, and communicates with the secondary chamber 20 by means of holes 46, 47 dedicated respectively to the admission and to the evacuation of the gas flow.
  • said holes 46, 47 are advantageously arranged in the peripheral zone of the receiving face 30A of the base 30, typically at a distance from central axis Z31 which is equal to or greater than 75 % of the internal radius of the sleeve 31 (or in a substantially equivalent manner, equal to or greater than 75% of the external radius of the barrel 30B and of the reception face 30A), so as not to significantly encroach on said reception face 30A, and in particular in order to clear the central portion of said receiving face 30A which receives part 4.
  • An intake pipe 48 connects the recirculation loop 41 to the intake manifold 44, in order to inject the gaseous mixture therein, here coming from the heating device 42.
  • An evacuation pipe 49 connects the evacuation manifold 45 to said recirculation loop 41, here intended for the heating device 42.
  • the machine 1 may be convertible, in that it may be selectively configured either according to a first configuration, in which said machine comprises a secondary chamber 20 as described above, in order to produce part 4 inside said secondary chamber 20, or according to a second configuration, in which said machine has no secondary chamber 20, in order to produce part 4 directly in main chamber 2, directly on main plate 5, and this in particular in order to be able to produce parts which would be too bulky to fit in the secondary chamber 20 and/or whose production would not require placing the enclosure in a particular atmosphere or at a particularly high temperature.
  • the secondary chamber 20 may be removable and extractable from the machine 1, so that the main plate 5 can alternatively be either equipped with a secondary chamber 20, to be placed in the first configuration, or rid of said secondary chamber 20, to appear bare, in accordance with the second configuration.
  • the invention may relate as such to a module 50 intended to equip a three-dimensional printing machine 1 comprising a main chamber 2 delimited by a first wall 3 provided with a main observation window 11 , which is transparent over at least part of the visible light spectrum, main chamber 2 inside which there is a main plate 5, intended to support a part 4 being printed, as well as a nozzle 6 arranged to feed and deposit in successive layers a printing material 7 in order to gradually form said part 4 supported by main plate 5, said module 50 comprising a base 51 which allows said module 50 to be fixed on main plate 5 of machine 1, and which carries a secondary chamber 20 delimited by a second wall 21 provided on the one hand with an orifice insertion 22 allowing the nozzle 6 to penetrate into the secondary chamber 20 in order to be able to generate the part 4 within said secondary chamber 20, and on the other hand a secondary observation window 23, transparent on at least part of the visible light spectrum and arranged to be placed opposite the main observation window 11 of the machine 1.
  • the secondary chamber 20 of said module 50 may of course have any characteristic described above, and in particular have a telescopic arrangement comprising a base 30, fixed to the base 51, a sliding sleeve 31 and a cover 32.
  • the module 50 will be removable, using for this reversible fixing means, such as screws, to couple the base 51 to the main plate 5 and then to uncouple said base 51 from the main plate 5, so that the module 50 can be removed and replaced by a smooth plate element in order to reconstitute the bare main plate 5, and vice versa.
  • this reversible fixing means such as screws
  • kits may of course be provided comprising on the one hand the module 50, and on the other hand the smooth plate element, which are interchangeable to pass from the first configuration to the second configuration and vice versa. .
  • the invention also relates to a method for using a machine 1 according to the invention, and to a method for reconfiguring a three-dimensional printing machine 1 during which the configuration of printing chosen from the first and second configurations mentioned above, and the machine is converted accordingly by placing therein, and more particularly by placing on the main plate 5 of said machine 1, either the module 50 or respectively the plate element smooth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

L'invention concerne une machine (1) d'impression tridimensionnelle comprenant une chambre principale (2) qui est délimitée par une première paroi (3) et à l'intérieur de laquelle se trouvent un plateau principal (5), destiné à soutenir une pièce (4) en cours d'impression, ainsi qu'une buse (6) agencée pour amener et déposer en couches successives un matériau d'impression (7), la première paroi (3) comportant au moins une fenêtre d'observation principale (11) transparente, la chambre principale (2) contenant une chambre secondaire (20) qui est délimitée par une seconde paroi (21) télescopique pourvue d'un orifice d'insertion (22) par lequel la buse (6) pénètre dans la chambre secondaire (20) et d'une fenêtre d'observation secondaire (23) transparente permettant à un observateur (25) se tenant hors de l'enceinte principale (2) de visualiser la pièce qui est en cours d'impression dans la chambre secondaire (20).

Description

Machine d’impression en 3D équipée d’une chambre secondaire transparente permettant une fabrication sous atmosphère contrôlée
[0001] La présente invention concerne le domaine général des machines d’impression tridimensionnelle qui permettent de fabriquer des pièces de formes très diverses en déposant un matériau d’impression malléable en couches successives, au moyen d’une buse.
[0002] De telles machines sont notamment décrites par le document US-6 722 872, qui propose une machine d’impression comprenant une chambre qui forme un four délimité par une paroi, et à l’intérieur de laquelle se trouve un plateau destiné à soutenir la pièce en cours d’impression, ainsi que la buse permettant d’amener le matériau constitutif de ladite pièce. Pour pouvoir générer la forme de la pièce, il est prévu un système d’entraînement comprenant un ascenseur pour déplacer le plateau verticalement, et des tables de translation croisées pour piloter horizontalement la buse chargée de délivrer le matériau constitutif de la pièce. Lesdites tables de translation sont équipées de soufflets qui assurent l’étanchéité de la chambre.
[0003] Si de telles machines donnent globalement satisfaction, elles présentent toutefois une certaine complexité, liée notamment aux organes du système d’entraînement et aux organes d’étanchéité correspondants.
[0004] En outre, de telles machines présentent une certaine inertie thermique, de sorte que la montée en température du four, puis le maintien en température dudit four pendant l’opération d’impression, peuvent être fortement consommateurs d’énergie.
[0005] Dans certains cas, les moyens de chauffage du four peuvent même être insuffisants pour mettre en œuvre certains matériaux d’impression qui requièrent une température élevée pour garantir une bonne mise en joint des couches successives du matériau d’impression considéré, ce qui limite alors les capacités industrielles de la machine.
[0006] Par ailleurs, il est parfois malaisé d’assurer une surveillance efficace et fiable de la pièce et du bon déroulement du processus d’impression. En particulier, l’intégration d’une caméra dans le four est potentiellement problématique en raison de l’encombrement de la caméra et, surtout, de la sensibilité de l’optique et de l’électronique de ladite caméra à la chaleur, ce qui, ici encore, limite le niveau de température accessible à la machine.
[0007] Les objets assignés à l’invention visent par conséquent à remédier aux inconvénients susmentionnés et proposer une nouvelle machine d’impression tridimensionnelle qui permette de réaliser, au moyen d’une machine peu encombrante et peu onéreuse, des impressions dans une vaste gamme de températures, incluant des températures élevées, tout en garantissant un contrôle efficace du processus d’impression grâce à une surveillance commode et fiable de la pièce en cours d’impression.
[0008] Les objets assignés à l’invention sont atteints au moyen d’une machine d’impression tridimensionnelle comprenant une chambre principale qui est délimitée par une première paroi et à l’intérieur de laquelle se trouvent un plateau principal, destiné à soutenir une pièce en cours d’impression, ainsi qu’une buse agencée pour amener et déposer en couches successives un matériau d’impression afin de constituer progressivement ladite pièce soutenue par le plateau principal, ladite machine comprenant également un système d’entraînement permettant de piloter un déplacement relatif du plateau principal par rapport à la buse afin que ladite buse puisse dessiner la forme de la pièce, et la première paroi comportant au moins une fenêtre d’observation principale qui est transparente sur au moins une partie du spectre lumineux visible et qui permet à un observateur situé à l’extérieur de la chambre principale de visualiser le plateau principal, ladite machine étant caractérisée en ce que la chambre principale contient une chambre secondaire dont le volume est strictement inférieur à celui de la chambre principale et qui est délimitée par une seconde paroi portée par le plateau principal, ladite seconde paroi séparant ladite chambre secondaire de la chambre principale et présentant d’une part au moins un orifice d’insertion par lequel la buse pénètre dans la chambre secondaire afin de pouvoir y déposer le matériau d’impression et ainsi générer ladite pièce au sein de ladite chambre secondaire, et d’autre part au moins une fenêtre d’observation secondaire, qui est transparente sur au moins une partie du spectre lumineux visible et placée en vis-à-vis de la fenêtre d’observation principale, de sorte qu’un observateur se tenant hors de l’enceinte principale puisse visualiser par observation oculaire directe, selon un chemin optique qui traverse successivement la fenêtre d’observation principale puis la fenêtre d’observation secondaire, l’intérieur de la chambre secondaire et la pièce qui est en cours d’impression dans ladite chambre secondaire. [0009] Avantageusement, la chambre secondaire selon l’invention permet de confiner la zone de travail où la buse élabore la pièce dans un volume qui est plus restreint que celui de la chambre principale, et dont on peut par conséquent plus facilement contrôler précisément la température, et ce tout en conservant une parfaite surveillance visuelle du processus d’impression, puisque la seconde paroi qui délimite la chambre secondaire, et plus particulièrement la seconde fenêtre d’observation intégrée à ladite paroi, fait avantageusement écran aux transferts thermiques mais pas à la vision.
[0010] D’un point de vue thermique, le volume réduit de la chambre secondaire, et le cloisonnement procuré par la seconde paroi qui délimite ladite chambre secondaire, permettent avantageusement de porter l’intérieur de la chambre secondaire à une température élevée avec une moindre dépense d’énergie, sans qu’il soit nécessaire de porter la totalité de la chambre principale, qui entoure ladite chambre secondaire, à une température aussi élevée, et de surcroît sans que cela n’affecte thermiquement les organes mécaniques ou électroniques de la machine, et notamment les organes du système d’entraînement, qui peuvent se trouver de préférence à l’extérieur de la chambre secondaire, mais le cas échéant à l’intérieur de la chambre principale.
[0011] En outre, l’agencement relatif des fenêtres d’observation selon l’invention préserve avantageusement un large champ visuel d’observation de la pièce et permet donc à l’utilisateur d’exercer une surveillance visuelle directe du processus, particulièrement économe et fiable, sans qu’il soit nécessaire de recourir à un circuit de caméra.
[0012] D’autres objets, caractéristiques et avantages de l’invention apparaîtront plus en détail à la lecture de la description qui suit, ainsi qu’à l’aide des dessins annexés, fournis à titre purement illustratif et non limitatif, parmi lesquels :
[0013] La figure 1 représente, selon une vue en perspective, un module destiné à équiper le plateau principal d’une machine d’impression tridimensionnelle pour intégrer à ladite machine une chambre secondaire selon l’invention.
[0014] La figure 2 est une vue en projection de face du module de la figure 1.
[0015] La figure 3 est une vue du dessus du module des figures 1 et 2, en coupe dans un plan horizontal. [0016] La figure 4 représente, selon une vue schématique en coupe de face dans un plan vertical, une machine selon l’invention équipée d’un module selon les figures 1 à 3.
[0017] Les figures 5A, 5B, 5C représentent, selon des vues partielles en coupe dans un plan vertical, la descente progressive du plateau principal de la machine de la figure 4 au fur et à mesure de l’impression de la pièce et la compensation correspondante effectuée par le coulissement télescopique de la seconde paroi qui délimite la chambre secondaire, la figure 5A correspondant à la configuration de départ, le plateau principal étant en position haute, la figure 5B correspondant à une configuration intermédiaire, le plateau principal ayant été abaissé par rapport à sa position de départ, et la figure 5C correspondant à la configuration de fin de course, le plateau principal se trouvant en position basse, c’est-à-dire abaissé au maximum.
[0018] La présente invention concerne une machine 1 d’impression tridimensionnelle.
[0019] Tel que cela est visible sur la figure 4, ladite machine 1 comprend une chambre principale 2 qui est délimitée par une première paroi 3.
[0020] La chambre principale 2 forme ainsi une enceinte fermée, à l’intérieur de laquelle prendra place l’opération d’impression d’une pièce 4.
[0021] A l’intérieur de la chambre principale 2 se trouve un plateau principal 5, destiné à soutenir une pièce 4 en cours d’impression.
[0022] De façon préférentielle et connue en soi, ledit plateau principal 5 forme une surface plane et horizontale.
[0023] A l’intérieur de ladite chambre principale 2 se trouve également une buse 6 qui est agencée pour amener et déposer en couches successives un matériau d’impression 7 afin de constituer progressivement ladite pièce 4 soutenue par le plateau principal 5.
[0024] Tout matériau apte à être rendu suffisamment malléable pour passer dans la buse 6, à adhérer sur lui-même en couches superposées, puis à durcir après avoir été déposé pourra convenir en tant que matériau d’impression 7.
[0025] De préférence, le matériau d’impression 7 sera un matériau thermoplastique, qui sera ramolli voire fondu, par exemple par extrusion, pour être appliqué par la buse 6. [0026] De préférence, le matériau d’impression 7 sera déposé sous forme d’un cordon continu émis par la buse 6.
[0027] La chambre principale 2, et le cas échéant la buse 6 et/ou le plateau principal 5, comprendront des moyens de chauffage (non représentés) permettant d’augmenter la température de la chambre principale 2, et le cas échéant de la buse 6 et/ou du plateau principal 5 afin de garantir la malléabilité du matériau d’impression 7 et, surtout, la bonne adhésion entre les différentes couches dudit matériau d’impression 7 qui sont successivement déposées pour former la pièce 4.
[0028] Tel que cela est visible sur la figure 4, la machine 1 comprend également un système d’entraînement 10 qui permet de piloter un déplacement relatif du plateau principal 5 par rapport à la buse 6 afin que ladite buse 6 puisse dessiner la forme de la pièce 4.
[0029] Le système déplacement 10 sera de préférence agencé pour offrir au moins trois degrés de liberté au plateau principal 5 par rapport à la buse 6, à savoir un degré de liberté en translation verticale, et deux degrés de liberté en translation horizontale, selon deux axes horizontaux X5, Y5 perpendiculaires l’un à l’autre, de sorte que Ton puisse déplacer la buse 6 relativement au plateau principal 5 (et réciproquement) dans les trois directions de l’espace.
[0030] Le système d’entraînement 10 pourra être ainsi agencé pour pouvoir déplacer exclusivement la buse 6 selon les trois degrés de liberté par rapport à un plateau principal 5 qui serait fixe par rapport au bâti de la machine 1 et donc par rapport à la chambre principale 2, ou bien au contraire pour pouvoir déplacer exclusivement le plateau principal 5 selon les trois degrés de liberté par rapport à une buse 6 qui serait fixe par rapport au bâti et à la chambre principale 2, ou bien encore pour répartir les degrés de liberté entre la buse 6 d’une part et le plateau principal 5 d’autre part, par exemple en prévoyant de doter le plateau principal 5 du seul degré de liberté en translation verticale par rapport au bâti et à la chambre principale 2 tandis que la buse 6 est mobile selon les deux directions horizontales par rapport à ce même bâti et à la chambre principale 2, ou inversement, de doter la buse 6 du seul degré de liberté en translation verticale tandis que le plateau principal 5 est mobile exclusivement selon les deux degrés de liberté horizontaux. [0031] Quelle que soit la configuration retenue, les degrés de liberté en translation pourront être assurés par tout moyen de guidage motorisé approprié.
[0032] Ainsi, le degré de liberté en translation verticale pourra être réalisé au moyen d’un ascenseur, comprenant par exemple un portique pourvu de vis qui s’étendent verticalement et qui coopèrent avec des douilles à billes fixées à l’organe à guider concerné, ici par exemple le plateau principal 5.
[0033] Les degrés de liberté en translation horizontale pourront notamment être réalisés au moyen de tables de translation croisées comprenant des chariots guidés par des rails horizontaux, et mus par exemple par un système de vis à billes entraîné par un moteur.
[0034] La motorisation du système d’entraînement 10, et plus particulièrement de chaque axe de translation, sera de préférence assurée par des moteurs électriques, de préférence pilotés par une unité de commande électronique.
[0035] Par ailleurs, la première paroi 3, qui délimite la chambre principale 2, comporte au moins une fenêtre d’observation principale 11 qui est transparente sur au moins une partie du spectre lumineux visible, plus préférentiellement sur la totalité du spectre visible, et qui permet à un observateur situé à l’extérieur de la chambre principale 5 de visualiser le plateau principal 5, et donc, le cas échéant, la pièce 4 en cours d’impression qui se trouve sur ledit plateau principal 5.
[0036] Par « spectre visible », on désigne, par convention, la plage de longueurs d’onde qui s’étend de 380 nm, limite du rayonnement ultra-violet, à 780 nm, limite du rayonnement infra-rouge.
[0037] Par « transparente », on désigne par convention une fenêtre d’observation 11, ou plus globalement un corps quel qu’il soit, qui, pour la ou les longueurs d’onde considérées, présente une transmittance T, c’est-à-dire un rapport entre, au dénominateur, l’intensité lumineuse 10 d’un faisceau incident qui atteint ce corps et, au numérateur, l’intensité I du faisceau lumineux transmis correspondant, qui ressort de ce corps par transmission, qui est égale ou supérieure à 25%, c’est-à-dire : T = 1/10 > 25%, et par exemple comprise entre 50% et 95%. [0038] De manière équivalente, on pourra considérer comme « transparente » une fenêtre d’observation dont la densité optique DO, qui est égale à l’opposé du logarithme décimal de l’inverse de la transmittance T : DO = - logio (T) = - logio (1/10), est inférieure ou égale à 0,6, et par exemple comprise entre 0,02 et 0,3.
[0039] A titre de référence, dans le cas d’un corps parfaitement transparent, pour lequel l’intensité du faisceau lumineux transmis est égale à l’intensité du faisceau lumineux incident, la transmittance est de 1 et la densité optique DO est nulle.
[0040] A l’inverse, un corps parfaitement opaque présentera une transmittance nulle et une densité optique infinie.
[0041] La transparence de la fenêtre d’observation principale 11 sera avantageusement suffisante pour permettre à l’observateur de distinguer nettement, à travers ladite fenêtre d’observation principale 11, les contours de l’objet observé, ici le plateau principal 5 et/ou la pièce 4 portée par ledit plateau principal 5.
[0042] La fenêtre d’observation principale 11 pourra de préférence être formée par un panneau transparent intégré à une porte qui est ménagée dans la première paroi 3 pour, lorsque ladite porte est ouverte, donner accès à la chambre principale 2 et au plateau principal 5 et, lorsque ladite porte est fermée, maintenir la chambre principale 2 fermée.
[0043] La fenêtre d’observation principale 11 pourra être par exemple réalisée en verre, en acrylique, en polycarbonate ou en PMMA (« Plexiglas »), d’épaisseur comprise entre 3 mm et 10 mm.
[0044] Le matériau constitutif de la fenêtre d’observation principale 11 sera en outre préférentiellement incolore.
[0045] Selon l’invention, la chambre principale 2 contient une chambre secondaire 20 dont le volume est strictement inférieur au volume de la chambre principale 2 et qui est délimitée par une seconde paroi 21 portée par le plateau principal 5.
[0046] A titre indicatif, le volume interne hors-tout de la chambre secondaire 20, tel que ledit volume est délimité par l’enveloppe que matérialise la seconde paroi 21, est de préférence compris entre 200 cm3 et 600 cm3. [0047] La seconde paroi 21 sépare ladite chambre secondaire 20 de la chambre principale 2 et présente d’une part au moins un orifice d’insertion 22 par lequel la buse 6 pénètre dans la chambre secondaire 20 afin de pouvoir déposer le matériau d’impression 7 dans ladite chambre secondaire 20 et ainsi générer la pièce 4 au sein de ladite chambre secondaire 20, et d’autre part au moins une fenêtre d’observation secondaire 23, qui est transparente sur au moins une partie du spectre lumineux visible, de préférence sur la totalité du spectre lumineux visible, et placée en vis-à-vis de la fenêtre d’observation principale 11, de sorte qu’un observateur 25 se tenant hors de la chambre principale 2 puisse visualiser par observation oculaire directe, selon un chemin optique 24 qui traverse successivement la fenêtre d’observation principale 11 puis la fenêtre d’observation secondaire 23, l’intérieur de la chambre secondaire 20 et la pièce 4 qui est en cours d’impression dans ladite chambre secondaire 20.
[0048] La seconde paroi 21 permet avantageusement de séparer la chambre secondaire 20 de l’atmosphère qui règne dans la chambre principale 2 et qui entoure donc la seconde paroi 21 à l’extérieur de la chambre secondaire 20.
[0049] Le volume de la chambre secondaire 20 est de préférence entièrement contenu à l’intérieur de la chambre principale 2 qui renferme ladite chambre secondaire 20, ladite chambre secondaire 20 se trouvant ainsi strictement incluse à l’intérieur de la chambre principale 2.
[0050] A ce titre, au moins une portion, voire la totalité, de la seconde paroi 21 se trouve en retrait de la première paroi 3, vers l’intérieur de la chambre principale 2.
[0051] Avantageusement, comme indiqué plus haut, l’utilisation de la chambre secondaire 20 selon l’invention permet de réduire et de confiner la zone de travail, dans laquelle la buse 6 opère lorsqu’elle façonne la pièce 4, à l’intérieur d’un volume fermé qui est strictement plus petit que le volume total qui est disponible dans la chambre principale 2, et présente donc une fraction dudit volume total qui est disponible dans la chambre principale 2, et ce afin de mieux contrôler les conditions d’impression de ladite pièce 4, notamment la température.
[0052] Avantageusement, l’agencement des fenêtres d’observation 11 , 23 selon l’invention permet une surveillance directe, sans caméra, à l’œil nu, de l’intérieur de la chambre secondaire 20, et donc du processus d’impression qui se déroule à l’intérieur de ladite chambre secondaire 20.
[0053] Ainsi, l’adjonction de la chambre secondaire 20 selon l’invention n’aura pas pour effet de masquer la zone de travail à l’observateur, ni de dégrader la qualité de la surveillance du processus.
[0054] Il n’est pas exclu, dans l’absolu, de placer un miroir sur le chemin optique 24, par exemple dans la portion dudit chemin optique 24 qui est comprise entre la fenêtre d’observation principale 11 et la fenêtre d’observation secondaire 23.
[0055] Toutefois, la fenêtre d’observation principale 11 et la fenêtre d’observation secondaire 23 seront de préférence situées dans l’alignement direct Tune de l’autre, afin de rendre visible l’intérieur de la chambre secondaire 20 depuis l’extérieur de la chambre principale 2, et donc depuis l’extérieur de la machine 1 selon un chemin otique rectiligne, sans renvoi de miroir. Une telle structure sera en effet particulièrement simple et permettra une surveillance visuelle très intuitive.
[0056] De même que la fenêtre d’observation principale 11, la fenêtre d’observation secondaire 23 présentera de préférence, sur au moins une partie et de préférence sur la totalité du spectre lumineux visible, une transmittance T égale ou supérieure à 25%, préférentiellement comprise entre 50% et 95%.
[0057] La fenêtre d’observation secondaire 23, qui sera de préférence particulièrement résistante à la chaleur, pourra être par exemple réalisée en verre, en verre trempé, ou en verre borosilicate (« Pyrex »), d’épaisseur comprise entre 3 mm et 10 mm.
[0058] Le matériau constitutif de la fenêtre d’observation secondaire 23 sera en outre de préférence incolore.
[0059] De préférence, et tel que cela est illustré sur les figures 1, 3, 4, 5 A, 5B et 5C, la seconde paroi 21 comprend : i) un socle 30 qui prend appui verticalement sur le plateau principal 5 et qui présente une face de réception 30A horizontale destinée à soutenir la pièce 4 en cours d’impression, ii) une chemise 31 qui forme une paroi latérale qui s’étend verticalement à partir de la face de réception 30A du socle, selon un contour fermé autour d’un axe central Z31 vertical normal à ladite face de réception 3 OA, et dont au moins une portion forme la fenêtre d’observation secondaire 23, et iii) un couvercle 32 qui coiffe la chemise 31, à distance verticalement de la face de réception 30A horizontale du socle 30, de manière à fermer la chambre secondaire 20, et qui présente l’orifice d’insertion 22 qui permet à la buse 6 d’être engagée à l’intérieur de ladite chambre secondaire 20.
[0060] Une telle structure présente notamment l’avantage d’une grande simplicité de mise en œuvre à moindre coût, et procure une bonne visibilité de la zone de travail, c’est-à-dire de l’espace fermé de la chambre secondaire 20 qui s’étend entre le socle 30, le couvercle 32, et la chemise 31 qui relie verticalement ledit socle 30 audit couvercle 32 et qui forme la limite radiale de ladite chambre secondaire 20 par rapport à l’axe central Z31.
[0061] La chemise 31 coopérera avantageusement avec le socle 30 et avec le couvercle 32 de manière étanche, afin de séparer l’atmosphère qui règne dans la chambre secondaire 20 de l’atmosphère environnante qui règne dans la chambre principale 2, et dans laquelle baigne la chambre secondaire 20.
[0062] On notera que le couvercle 32 sera lui aussi de préférence au moins en partie, voire en totalité, transparent, afin de former une portion de la fenêtre d’observation secondaire 23, en complément de la portion de fenêtre d’observation secondaire 23 formée par la chemise 31. A ce titre, le couvercle pourra comprendre un disque transparent 33, ici disposé horizontalement et posé sur le chant supérieur de la chemise 31.
[0063] Le matériau utilisé et le degré de transparence du couvercle 32, et plus particulièrement du disque transparent 33, pourront être identiques à ceux déjà spécifiés plus haut en référence à la chemise 31.
[0064] Avantageusement, la mise en œuvre d’un couvercle 32 transparent améliorera encore la visibilité de l’espace intérieur de la chambre secondaire 20 et par conséquent du contenu de ladite chambre secondaire, sous différents angles d’observation depuis l’extérieur de la chambre principale 2.
[0065] L’orifice d’insertion 22 pourra être percé à travers le couvercle 32, et plus particulièrement à travers le disque transparent 33, de préférence sensiblement selon la direction de 1’axe central Z31 tel que cela est visible sur les figures 1 et 4, de sorte que la buse 6 pointe dans la chambre secondaire 20 par le dessus, en direction du socle 30, et plus particulièrement en direction de la face de réception 30A dudit socle 30, qui recevra les couches successives du matériau d’impression 7 déposées par la buse 6.
[0066] Un mécanisme de bridage 34 permettra de fixer la buse 6 sur le couvercle 32.
[0067] De préférence, tel que cela est bien visible sur les figures 1 et 3, la chemise 31 forme un anneau, anneau qui est transparent sur au moins 180 degrés, de préférence au moins 270 degrés, et plus préférentiellement sur 360 degrés autour de l’axe central Z31 vertical.
[0068] De préférence, ledit anneau sera de base circulaire, et encore plus préférentiellement formera un cylindre droit de base circulaire.
[0069] Selon une variante préférée de réalisation, la chemise 31 sera formée d’un seul tenant dans un matériau transparent.
[0070] En utilisant une chemise 31 qui est transparente sur une large majorité voire sur la totalité de son pourtour, on obtiendra avantageusement une visibilité optimale, la fenêtre d’observation secondaire 23 offrant en effet ainsi un champ visuel très large.
[0071] De préférence, le système d’entraînement 10 permet de déplacer le plateau principal 5, et par conséquent le socle 30, en translation selon l’axe central Z31 vertical par rapport au couvercle 32.
[0072] Ceci permet notamment d’abaisser le plateau principal 5, et donc la face de réception 30A du socle porté par ledit plateau principal 5, par rapport à la buse 6, et donc d’éloigner la face de réception 30A de la buse 6, au fur et à mesure de l’empilement des couches de matériau d’impression 7 déposé par la buse 6 sur ladite face de réception 30A et donc au fur et à mesure de l’augmentation de hauteur de la pièce 4 en cours d’impression.
[0073] Comme indiqué plus haut, le système d’entraînement 10 pourra comprendre un ascenseur pour déplacer verticalement le plateau principal 5. Cet ascenseur pourra être placé dans la chambre principale 2, entre le plateau principal 5 et la première paroi 3.
[0074] Selon une caractéristique préférentielle qui peut constituer une invention à part entière, indépendamment notamment de la présence ou non de fenêtres d’observation 11, 23 transparentes, et donc indépendamment du caractère transparent ou non de la chemise 31 ou du couvercle 32, la chemise 31 peut alors former avec le socle 30, tel que cela est bien visible sur les figures 4, 5A, 5B et 5C, une structure télescopique 35, et être précontrainte par un ou des ressorts 36 en direction dudit couvercle 32, de sorte que ladite chemise 31 peut coulisser par rapport au socle 30 selon l’axe central Z31 vertical et rester plaquée en butée contre le couvercle 32, et donc plus particulièrement en contact étanche avec ledit couvercle 32, tandis que le plateau principal 5, et donc le socle 30, se déplace par rapport au couvercle 32, et notamment s’éloigne du couvercle, en translation le long dudit axe central Z31 vertical.
[0075] Avantageusement, cette structure télescopique 35 simple permet de conserver le confinement de la chambre secondaire 20 en adaptant en temps réel la hauteur de la paroi latérale de la chambre secondaire par un mouvement de translation différentielle de la chemise 31 par rapport au socle 30, et ce quelle que soit la distance verticale qui sépare le socle 30 du couvercle 32.
[0076] Avantageusement, la chemise 31 s’emboîte de façon coaxiale et coulissante avec un fût 30B du socle 30, de forme cylindrique conjuguée à celle de la face radialement interne 31 in de la chemise 31, et qui guide la translation verticale de ladite chemise 31 relativement au socle 30.
[0077] La chemise 31 est formée par un anneau rigide qui conserve avantageusement sa forme, sans déformation, lors des mouvements verticaux du plateau principal 5 et du socle 30, puisque l’abaissement du plateau principal 5 et du socle 30 est compensé par une élévation correspondante, en translation verticale, de la chemise 31 qui se déplace d’un bloc par rapport au socle 30. On évite ainsi toute usure de la chemise 31, et plus globalement de la seconde paroi 21 et de la fenêtre d’observation secondaire 23, par déformation.
[0078] Un léger jeu radial sera prévu entre la face radialement externe 30B_out du fût 30B et la face radialement interne 3 l in de la chemise 31 , afin de permettre le coulissement relatif de la chemise 31 sur le fût 30B, et afin d’éviter des phénomènes d’abrasion susceptibles de rayer la chemise 31, et donc la fenêtre d’observation secondaire 23.
[0079] Pour assurer l’étanchéité de la liaison entre le fut 30 et la chemise 31, on pourra par exemple soit prévoir simplement que le jeu radial entre ces éléments soit particulièrement étroit, soit ajouter un ou des joints, par exemples des joints toriques ou des joints à lèvres, qui seront interposés entre la face radialement externe 30B_out du fut 30B et la face radialement interne 31_in de la chemise.
[0080] De préférence, le système d’entraînement 10 est conçu pour pouvoir générer un déplacement relatif du plateau principal 5, et par conséquent du socle 30, par rapport au couvercle 32 selon un premier axe horizontal X5 et selon un second axe horizontal Y5 perpendiculaire au premier axe horizontal X5.
[0081] On pourra utiliser par exemple à cet effet des tables de translation croisées, tel que cela a été mentionné plus haut, qui pourront être situées dans la chambre principale 2 ou même à l’extérieur de ladite chambre principale 2.
[0082] De préférence le couvercle 32, qui porte la buse 6, coopère avec la chemise 31 selon un contact plan horizontal, de sorte que ledit couvercle 32 peut glisser par rapport à ladite chemise 31 dans un plan horizontal P32 parallèle à chacun des premier et second axes horizontaux X5, Y5, tout en restant au contact de ladite chemise 31 et en maintenant ainsi la chambre secondaire 20 fermée, pendant les déplacements relatifs horizontaux du plateau principal 5 par rapport au couvercle 32 et à la buse 6.
[0083] Avantageusement, on pourra ainsi assurer la continuité du confinement, et de l’étanchéité de la chambre secondaire 20, au moyen d’une structure robuste et simple.
[0084] Le diamètre du couvercle 32, et plus particulièrement du disque 33 transparent, sera bien entendu adapté pour couvrir non seulement le diamètre hors-tout de la chemise 31 , mais également déborder au-delà de la paroi radialement externe de la chemise 31 d’une valeur qui est au moins égale à la course horizontale maximale possible du plateau principal 5 le long des axes horizontaux X5, Y5.
[0085] L’étanchéité entre le chant supérieur de la chemise 31 et le dessous du couvercle 32 posé à plat sur ladite chemise 31 pourra être assuré par exemple soit par le simple contact solide lisse entre le couvercle 32 et la chemise 31, les éventuelles fuites étant alors négligeables, soit par l’ajout d’un joint torique logé dans une rainure annulaire creusée dans le chant de la chemise 31.
[0086] De façon particulièrement préférentielle, la buse 6 et le couvercle 32 sont fixes par rapport à la première paroi 3, et plus globalement par rapport au bâti de la machine 1, et c’est le plateau principal 5 qui assure l’ensemble des mouvements nécessaires au façonnage de la pièce 4, à savoir d’une part les deux mouvements, séparés ou combinés, selon les deux axes horizontaux X5, Y5 et d’autre part le troisième mouvement selon l’axe vertical (assimilé par commodité à l’axe central Z31), par rapport à la buse 6 fixe.
[0087] De préférence, la machine 1 comprend un circuit 40 de contrôle d’atmosphère qui permet de placer la chambre secondaire 20 sous une atmosphère contrôlée dont la composition et/ou la température diffèrent de celles de l’atmosphère primaire qui règne dans la chambre principale 2, la seconde paroi 21 assurant à cet effet une séparation étanche (aux gaz composant lesdites atmosphères) entre la chambre secondaire 20 et la chambre principale 2.
[0088] On pourra notamment utiliser dans la chambre secondaire un gaz inerte, tel que le diazote, ou tout autre gaz ou mélange gazeux approprié, qui sera porté par le circuit 40 aux conditions souhaitées de température, de pression, et de débit.
[0089] De préférence, le circuit 40 de contrôle d’atmosphère forme une boucle de recirculation 41 en circuit fermé dont au moins une partie est située hors de la chambre secondaire 20.
[0090] Le même mélange gazeux peut ainsi être successivement injecté dans la chambre secondaire 20, pour en conditionner l’atmosphère, puis extrait de la chambre secondaire 20, puis retraité, et notamment réchauffé et/ou filtré, pour être ensuite réinjecté dans la chambre secondaire 20, et ainsi de suite.
[0091] On réalise ainsi, avec une moindre dépense d’énergie, un contrôle précis et efficace des conditions dans lesquelles la pièce 4 est générée.
[0092] Avantageusement, le fait de déporter hors de la chambre secondaire 20 une partie du circuit 40, notamment la boucle de recirculation 41, par exemple en plaçant ladite partie de circuit dans la chambre principale 2 voire à l’extérieur de la chambre principale 2 permet de maximiser le volume utile disponible au sein de la chambre secondaire 20.
[0093] De préférence, le circuit 40 de contrôle d’atmosphère comprend un appareil chauffant 42 pour élever la température régnant à l’intérieur de la chambre secondaire 20. [0094] De préférence, ledit appareil chauffant 42 est propre au circuit 40, et notamment distinct des éventuels moyens de chauffage de la chambre principale 2 ou de la buse 6, afin d’agir spécifiquement sur la température de la chambre secondaire 20.
[0095] Dans l’absolu, ledit appareil chauffant 42 pourrait se trouver dans la chambre secondaire 20.
[0096] Toutefois, par commodité de montage et pour préserver le volume utile de la chambre secondaire 20, ledit appareil chauffant 42 sera de préférence situé sur la portion de la boucle de recirculation 41 qui se trouve hors de la chambre secondaire 20.
[0097] L’appareil chauffant 42 pourra être formé par un tube chauffant, tel qu’un tube en céramique pourvu de résistances électriques chauffantes, à travers lequel circule le flux gazeux qui est captif de la boucle de recirculation 41 et de la chambre secondaire 20.
[0098] Selon une caractéristique préférentielle qui peut constituer une invention à part entière, le circuit 40 de contrôle d’atmosphère comprend un organe répartiteur 43, qui est interposé verticalement entre le plateau principal 5 et la face de réception 30A du socle 30, et qui présente d’une part un distributeur d’alimentation 44, qui injecte dans la chambre secondaire 20 un flux gazeux constituant l’atmosphère contrôlée, et d’autre part un collecteur d’évacuation 45 qui évacue ledit flux gazeux hors de ladite chambre secondaire 20.
[0099] L’organe répartiteur 43 est de préférence logé à l’intérieur du fut 30B, creux, du socle 30, et communique avec la chambre secondaire 20 au moyen de trous 46, 47 dédiés respectivement à l’admission et à l’évacuation du flux gazeux.
[00100] Tel que cela est visible sur la figure 3, lesdits trous 46, 47 sont avantageusement disposés dans la zone périphérique de la face de réception 30A du socle 30, typiquement à une distance de Taxe central Z31 qui est égale ou supérieure à 75% du rayon interne de la chemise 31 (ou de manière sensiblement équivalente, égale ou supérieure à 75% du rayon externe du fût 30B et de la face de réception 30A), afin de ne pas empiéter significativement sur ladite face de réception 30A, et en particulier afin de dégager la portion centrale de ladite face de réception 30A qui reçoit la pièce 4. [00101] Une tubulure d’admission 48 relie la boucle de recirculation 41 au distributeur d’admission 44, afin d’y injecter le mélange gazeux, ici en provenance de l’appareil chauffant 42.
[00102] Une tubulure d’évacuation 49 relie le collecteur d’évacuation 45 à ladite boucle de recirculation 41, ici à destination de l’appareil chauffant 42.
[00103] De façon particulièrement préférentielle, la machine 1 pourra être convertible, en ceci qu’elle pourra être sélectivement configurée soit selon une première configuration, dans laquelle ladite machine comporte une chambre secondaire 20 telle que décrite dans ce qui précède, afin de réaliser la pièce 4 à l’intérieur de ladite chambre secondaire 20, soit selon une seconde configuration, dans laquelle ladite machine est dépourvue de chambre secondaire 20, afin de réaliser la pièce 4 directement dans la chambre principale 2, directement sur le plateau principal 5, et ce notamment afin de pouvoir réaliser des pièces qui seraient trop volumineuses pour tenir dans la chambre secondaire 20 et/ou dont la réalisation ne nécessiterait pas de placer l’enceinte sous une atmosphère particulière ou à une température particulièrement élevée.
[00104] A cet effet, on pourra avantageusement prévoir que la chambre secondaire 20 soit amovible et extractible de la machine 1, de sorte que le plateau principal 5 puisse alternativement être soit équipé d’une chambre secondaire 20, pour se placer dans la première configuration, soit débarrassé de ladite chambre secondaire 20, pour se présenter nu, conformément à la seconde configuration.
[00105] Bien entendu, l’invention pourra porter en tant que telle sur un module 50 destiné à équiper une machine 1 d’impression tridimensionnelle comprenant une chambre principale 2 délimitée par une première paroi 3 pourvue d’une fenêtre d’observation principale 11, qui est transparente sur au moins une partie du spectre lumineux visible, chambre principale 2 à l’intérieur de laquelle se trouvent un plateau principal 5, destiné à soutenir une pièce 4 en cours d’impression, ainsi qu’une buse 6 agencée pour amener et déposer en couches successives un matériau d’impression 7 afin de constituer progressivement ladite pièce 4 soutenue par le plateau principal 5, ledit module 50 comprenant une embase 51 qui permet la fixation dudit module 50 sur le plateau principal 5 de la machine 1, et qui porte une chambre secondaire 20 délimitée par une seconde paroi 21 pourvue d’une part d’un orifice d’insertion 22 permettant à la buse 6 de pénétrer dans la chambre secondaire 20 afin de pouvoir générer la pièce 4 au sein de ladite chambre secondaire 20, et d’autre part d’une fenêtre d’observation secondaire 23, transparente sur au moins une partie du spectre lumineux visible et agencée pour venir se placer en vis-à-vis de la fenêtre d’observation principale 11 de la machine 1.
[00106] La chambre secondaire 20 dudit module 50 pourra bien entendu présenter toute caractéristique décrite dans ce qui précède, et en particulier présenter un agencement télescopique comprenant un socle 30, fixé à l’embase 51, une chemise 31 coulissante et un couvercle 32.
[00107] De préférence, le module 50 sera amovible, utilisant pour cela des moyens de fixation réversibles, tels que des vis, pour coupler l’embase 51 au plateau principal 5 puis désaccoupler ladite embase 51 du plateau principal 5, de sorte que le module 50 puisse être retiré et remplacé par un élément de plateau lisse afin de reconstituer le plateau principal 5 nu, et inversement.
[00108] A cet effet, on pourra bien entendu prévoir un kit comprenant d’une part le module 50, et d’autre part l’élément de plateau lisse, qui sont interchangeables pour passer de la première configuration à la seconde configuration et réciproquement.
[00109] Bien entendu, l’invention porte également sur un procédé d’utilisation d’une machine 1 selon l’invention, et sur un procédé de reconfiguration d’une machine 1 d’impression tridimensionnelle au cours duquel on sélectionne la configuration d’impression choisie parmi les première et seconde configurations susmentionnées, et l’on convertit la machine en conséquence en y plaçant, et plus particulièrement en plaçant sur la plateau principal 5 de ladite machine 1, soit le module 50 soit respectivement l’élément de plateau lisse.
[00110] Bien entendu, l’invention n’est nullement limitée aux seules variantes de réalisation exposées dans ce qui précède, l’homme du métier étant notamment à même d’isoler ou de combiner librement entre elles l’une ou l’autre des caractéristiques susmentionnées, ou de leur substituer des équivalents.

Claims

Revendications
1. Machine (1) d’impression tridimensionnelle comprenant une chambre principale (2) qui est délimitée par une première paroi (3) et à l’intérieur de laquelle se trouvent un plateau principal (5), destiné à soutenir une pièce (4) en cours d’impression, ainsi qu’une buse (6) agencée pour amener et déposer en couches successives un matériau d’impression (7) afin de constituer progressivement ladite pièce (4) soutenue par le plateau principal (5), ladite machine (1) comprenant également un système d’entraînement (10) permettant de piloter un déplacement relatif du plateau principal (5) par rapport à la buse (6) afin que ladite buse puisse dessiner la forme de la pièce (4), et la première paroi (3) comportant au moins une fenêtre d’observation principale (11) qui est transparente sur au moins une partie du spectre lumineux visible et qui permet à un observateur situé à l’extérieur de la chambre principale (2) de visualiser le plateau principal (5), ladite machine étant caractérisée en ce que la chambre principale (2) contient une chambre secondaire (20) dont le volume est strictement inférieur à celui de la chambre principale (2) et qui est délimitée par une seconde paroi (21) portée par le plateau principal (5), ladite seconde paroi (21) séparant ladite chambre secondaire (20) de la chambre principale (2) et présentant d’une part au moins un orifice d’insertion (22) par lequel la buse (6) pénètre dans la chambre secondaire (20) afin de pouvoir y déposer le matériau d’impression (7) et ainsi générer la pièce (4) au sein de ladite chambre secondaire (20), et d’autre part au moins une fenêtre d’observation secondaire (23), qui est transparente sur au moins une partie du spectre lumineux visible et placée en vis-à- vis de la fenêtre d’observation principale (11), de sorte qu’un observateur se tenant hors de la chambre principale (2) puisse visualiser par observation oculaire directe, selon un chemin optique (24) qui traverse successivement la fenêtre d’observation principale (11) puis la fenêtre d’observation secondaire (23), l’intérieur de la chambre secondaire (20) et la pièce (4) qui est en cours d’impression dans ladite chambre secondaire (20).
2. Machine selon la revendication 1 caractérisée en ce que la seconde paroi comprend i) un socle (30) qui prend appui verticalement sur le plateau principal (5) et qui présente une face de réception (30A) horizontale destinée à soutenir la pièce (4) en cours d’impression, ii) une chemise (31) qui forme une paroi latérale qui s’étend verticalement à partir de la face de réception (30A) du socle, selon un contour fermé autour d’un axe central (Z31) vertical normal à ladite face de réception (3 OA), et dont au moins une portion forme la fenêtre d’observation secondaire (23), et iii) un couvercle (32) qui coiffe la chemise (31), à distance verticalement de la face de réception (30A) horizontale du socle, de manière à fermer la chambre secondaire (20), et qui présente l’orifice d’insertion (22) qui permet à la buse (6) d’être engagée à l’intérieur de ladite chambre secondaire (20).
3. Machine selon la revendication 2 caractérisée en ce que la chemise (31) forme un anneau, de préférence de base circulaire, qui est transparent sur au moins 180 degrés, de préférence au moins 270 degrés, et plus préférentiellement sur 360 degrés autour de l’axe central vertical (Z31).
4. Machine selon la revendication 2 ou 3 caractérisée en ce que le système d’entraînement (10) permet de déplacer le plateau principal (5), et par conséquent le socle (30), en translation selon l’axe central (Z31) vertical par rapport au couvercle (32), et en ce que la chemise (31) forme avec le socle (30) une structure télescopique (35) et est précontrainte par un ou des ressorts (36) en direction dudit couvercle (32), de sorte que ladite chemise (31) peut coulisser par rapport au socle (30) selon ledit axe central (Z31) vertical et rester plaquée en butée contre le couvercle (32) tandis que le plateau principal (5) se déplace par rapport au couvercle (32), en translation le long dudit axe central (Z31) vertical.
5. Machine selon l’une des revendications 2 à 4 caractérisée en ce que le système d’entraînement (10) est conçu pour pouvoir générer un déplacement relatif du plateau principal (5), et par conséquent du socle (30), par rapport au couvercle (32) selon un premier axe horizontal (X5) et selon un second axe horizontal (Y5) perpendiculaire au premier axe horizontal (X5), et en ce que le couvercle (32), qui porte la buse (6), coopère avec la chemise (31) selon un contact plan horizontal, de sorte que ledit couvercle (32) peut glisser par rapport à ladite chemise (31) dans un plan horizontal (P32) parallèle à chacun des premier et second axes horizontaux (X5, Y5), tout en restant au contact de ladite chemise (31) et en maintenant ainsi la chambre secondaire (20) fermée, pendant les déplacements relatifs horizontaux du plateau principal (5) par rapport au couvercle (32) et à la buse (6).
6. Machine selon l’une des revendications précédentes caractérisée en ce qu’elle comprend un circuit (40) de contrôle d’atmosphère qui permet de placer la chambre secondaire (20) sous une atmosphère contrôlée dont la composition et/ou la température diffèrent de celles de l’atmosphère primaire qui règne dans la chambre principale (2), la seconde paroi (21) assurant à cet effet une séparation étanche entre la chambre secondaire (20) et la chambre principale (2).
7. Machine selon la revendication 6 caractérisée en ce que le circuit (40) de contrôle d’atmosphère forme une boucle de recirculation (41) en circuit fermé dont au moins une partie est située hors de la chambre secondaire (20).
8. Machine selon la revendication 6 ou 7 caractérisée en ce que le circuit (40) de contrôle d’atmosphère comprend un appareil chauffant (42) pour élever la température régnant à l’intérieur de la chambre secondaire (20).
9. Machine selon l’une des revendications 6 à 8 et l’une des revendications 2 à 5 caractérisée en ce que le circuit (40) de contrôle d’atmosphère comprend un organe répartiteur (43), interposé verticalement entre le plateau principal (5) et la face de réception (30A) du socle (30), et qui présente d’une part un distributeur d’alimentation (44), qui injecte dans la chambre secondaire (20) un flux gazeux constituant l’atmosphère contrôlée, et d’autre part un collecteur d’évacuation (45) qui évacue ledit flux gazeux hors de ladite chambre secondaire (20).
10. Module (50) destiné à équiper une machine (1) d’impression tridimensionnelle comprenant une chambre principale (2) délimitée par une première paroi (3) pourvue d’une fenêtre d’observation principale (11), qui est transparente sur au moins une partie du spectre lumineux visible, chambre principale (2) à l’intérieur de laquelle se trouvent un plateau principal (5), destiné à soutenir une pièce (4) en cours d’impression, ainsi qu’une buse (6) agencée pour amener et déposer en couches successives un matériau d’impression (7) afin de constituer progressivement ladite pièce soutenue par le plateau principal, ledit module comprenant une embase (51) qui permet la fixation dudit module (50) sur le plateau principal (5) de la machine (1), et qui porte une chambre secondaire (20) délimitée par une seconde paroi (21) pourvue d’une part d’un orifice d’insertion (22) permettant à la buse de pénétrer dans la chambre secondaire afin de pouvoir générer la pièce au sein de ladite chambre secondaire, et d’autre part d’une fenêtre d’observation secondaire (23), transparente sur au moins une partie du spectre lumineux visible et agencée pour venir se placer en vis- à-vis de la fenêtre d’observation principale (11) de la machine (1).
PCT/FR2022/051944 2021-10-21 2022-10-14 Machine d'impression en 3d equipée d'une chambre secondaire transparente permettant une fabrication sous atmosphère contrôlée WO2023067271A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280069928.8A CN118103196A (zh) 2021-10-21 2022-10-14 配备有允许在受控气氛中制造的透明次腔室的3d打印机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2111177 2021-10-21
FR2111177A FR3128397B1 (fr) 2021-10-21 2021-10-21 Machine d’impression en 3d équipée d’une chambre secondaire transparente permettant une fabrication sous atmosphère contrôlée

Publications (1)

Publication Number Publication Date
WO2023067271A1 true WO2023067271A1 (fr) 2023-04-27

Family

ID=79018887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/051944 WO2023067271A1 (fr) 2021-10-21 2022-10-14 Machine d'impression en 3d equipée d'une chambre secondaire transparente permettant une fabrication sous atmosphère contrôlée

Country Status (3)

Country Link
CN (1) CN118103196A (fr)
FR (1) FR3128397B1 (fr)
WO (1) WO2023067271A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6722872B1 (en) 1999-06-23 2004-04-20 Stratasys, Inc. High temperature modeling apparatus
KR101843323B1 (ko) * 2017-10-11 2018-03-28 이수연 3d 프린터
EP3339002A1 (fr) * 2016-12-21 2018-06-27 The Boeing Company Machine d'impression par dépôt de fil fondu
EP3650201A1 (fr) * 2018-11-12 2020-05-13 XYZprinting, Inc. Dispositif d'impression 3d
CN112026171A (zh) * 2020-08-07 2020-12-04 东莞理工学院 一种多喷头3d打印装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6722872B1 (en) 1999-06-23 2004-04-20 Stratasys, Inc. High temperature modeling apparatus
EP3339002A1 (fr) * 2016-12-21 2018-06-27 The Boeing Company Machine d'impression par dépôt de fil fondu
KR101843323B1 (ko) * 2017-10-11 2018-03-28 이수연 3d 프린터
EP3650201A1 (fr) * 2018-11-12 2020-05-13 XYZprinting, Inc. Dispositif d'impression 3d
CN112026171A (zh) * 2020-08-07 2020-12-04 东莞理工学院 一种多喷头3d打印装置

Also Published As

Publication number Publication date
FR3128397B1 (fr) 2023-11-24
FR3128397A1 (fr) 2023-04-28
CN118103196A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
EP0370912B1 (fr) Machine à microfaisceau laser d'intervention sur des objets à couche mince, en particulier pour la gravure ou le dépôt de matière par voie chimique en présence d'un gaz réactif
CA2265233A1 (fr) Masque de protection pour le soudage a vision dans l'infrarouge et utilisation d'un tel masque
EP0014609A1 (fr) Dispositif de visualisation sur grand écran
WO1987005054A1 (fr) Appareil pour traitements thermiques de pieces minces, telles que des plaquettes de silicium
BE897641A (fr) Appareil pour usinage au laser
EP0655221A1 (fr) Tête de mesure colorimétrique, et procédé pour déterminer la couleur interne d'un matériau non opaque
FR2948223A1 (fr) Instrument, cellule chaude comportant cet instrument et procede de maintenance de cet instrument
WO2023067271A1 (fr) Machine d'impression en 3d equipée d'une chambre secondaire transparente permettant une fabrication sous atmosphère contrôlée
FR3031181A1 (fr) Dispositif pour la realisation d'essais de vieillissement accelere d'un revetement par plusieurs types de sollicitations
EP1617208B1 (fr) Machine pour détecter des défauts d'un objet transparent ou translucide
EP3063586A1 (fr) Dispositif optique donnant un aspect de relief à une image qui recouvre partiellement un capteur d'énergie lumineuse
FR2703159A1 (fr) Machine d'inspection du fond d'un récipient en verre.
EP0000450B1 (fr) Appareils de reproduction photographique de documents transparents, notamment du type agrandisseur photographique
EP0445033A1 (fr) Enceinte mobile d'intervention permettant d'accéder à une installation placée dans une cellule active
CN108385060B (zh) 眼镜片制作方法及制作装置
EP0997722A1 (fr) Procédé et instrument de contrôle de la liaison de l'âme alvéolée d'un nid d'abeilles sur une peau
FR2659047A1 (fr) Equipement de moulage par rotation d'une matiere plastique.
WO2007132116A1 (fr) Realisation d'un element optique transparent comprenant une substance contenue dans des cellules
FR2703153A1 (fr) Spectrophotocolorimètre pour l'analyse spectrophotocolorimétrique d'un échantillon et procédé de mesure spectrophotocolorimétrique.
FR2818442A1 (fr) Dispositif photovoltaique formant vitrage
US9230771B2 (en) Method of manufacturing an electrodeless lamp envelope
WO2003001110A1 (fr) Dispositif optique, notamment imageur a cristaux liquides, et miroir associe
EP3167279B1 (fr) Unité d'analyse de grains non completement opaques
EP0375528A1 (fr) Dispositif de manipulation d'un miroir réfléchissant la lumière
FR2662822A1 (fr) Episcope multi-fonction, a faible encombrement.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22801846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022801846

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022801846

Country of ref document: EP

Effective date: 20240521