WO2023066400A1 - 二氧化碳吸收液以及从燃料气中捕集二氧化碳的方法 - Google Patents

二氧化碳吸收液以及从燃料气中捕集二氧化碳的方法 Download PDF

Info

Publication number
WO2023066400A1
WO2023066400A1 PCT/CN2022/127150 CN2022127150W WO2023066400A1 WO 2023066400 A1 WO2023066400 A1 WO 2023066400A1 CN 2022127150 W CN2022127150 W CN 2022127150W WO 2023066400 A1 WO2023066400 A1 WO 2023066400A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
activator
weight
fuel gas
parts
Prior art date
Application number
PCT/CN2022/127150
Other languages
English (en)
French (fr)
Inventor
黄汉根
毛松柏
陈曦
汪东
郭本帅
叶宁
季燕
杨继
黄钟斌
赵静妍
Original Assignee
中国石油化工股份有限公司
中石化南京化工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中石化南京化工研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2023066400A1 publication Critical patent/WO2023066400A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to the technical field of carbon dioxide gas separation, in particular to a carbon dioxide absorbing liquid and a method for capturing carbon dioxide from fuel gas.
  • CO2 capture methods mainly include chemical absorption method, adsorption method, membrane separation method, membrane absorption method and cryogenic distillation method, etc., and the most widely used method is chemical absorption method.
  • the chemical absorption method generally has the disadvantages of small carbon dioxide adsorption capacity, high energy consumption for absorption liquid regeneration, poor capture effect on highly acidic feed gas, and difficulty in separating high-purity carbon dioxide.
  • the purpose of the present invention is to overcome the technical problems of the chemical absorption method, such as small carbon dioxide adsorption capacity, high energy consumption for absorption liquid regeneration, poor capture effect on highly acidic raw material gas, and difficulty in separating high-purity carbon dioxide, to provide a carbon dioxide absorption liquids and methods for capturing carbon dioxide from fuel gases.
  • the first aspect of the present invention provides a carbon dioxide absorbing liquid, wherein the carbon dioxide absorbing liquid contains 100 parts by weight of solvent, 10-55 parts by weight of amino acid, 20-65 parts by weight of organic amine, 5 -15 parts by weight of activator and 2-12 parts by weight of accelerator;
  • the activator includes activator I and activator II, and the activator I is selected from at least one of alkyl quaternary ammonium ionic liquids, alkyl quaternary phosphonium ionic liquids, and pyridine ionic liquids;
  • Activator II is selected from bisamino quaternary phosphonium ionic liquids, amino functionalized imidazole ionic liquids, diamine functional ionic liquids, amino acid ionic liquids, tetramethylguanidine succinate ionic liquids, tetramethyl At least one of guanidine dodecane dicarboxylate ionic liquid and tetramethylguanidine polyethylene glycol dicarboxylate ionic liquid.
  • a second aspect of the present invention provides a method of capturing carbon dioxide from fuel gas, said method comprising the steps of:
  • step (3) Returning the regenerated lean solution to step (1) as a lean solution.
  • the carbon dioxide absorbing liquid provided in the present invention through the synergistic effect between amino acids, organic amines, activators and accelerators, can not only increase the carbon dioxide absorbing capacity of the carbon dioxide absorbing liquid, but also reduce the regeneration energy consumption of the carbon dioxide absorbing liquid , to obtain high-purity carbon dioxide;
  • the carbon dioxide absorbing liquid provided in the present invention when containing activator I and activator II, increases the amount of amino acid, and cooperates with a specific amount of organic amine to further increase the carbon dioxide removal rate and reduce regeneration energy consumption, Obtain high-purity regeneration gas;
  • the carbon dioxide absorbing liquid provided in the present invention can further improve the carbon dioxide capture effect of the decarburization solvent, reduce regeneration energy consumption, and obtain high-purity carbon dioxide by rationally adjusting the mass ratio of activator I and activator II;
  • the method for trapping carbon dioxide from fuel gas provided in the present invention can improve the trapping effect of carbon dioxide through the joint action of porous membrane and specific lean liquid, and obtain purified fuel gas with carbon dioxide dry basis content lower than 3v%.
  • Fig. 1 is a schematic diagram of a device for capturing carbon dioxide from fuel gas in the present invention.
  • the first aspect of the present invention provides a carbon dioxide absorbing liquid, wherein, the carbon dioxide absorbing liquid contains 100 parts by weight of solvent, 10-55 parts by weight of amino acid, 20-65 parts by weight of organic amine, 5-15 parts by weight An activator and an accelerator of 2-12 parts by weight;
  • the activator includes activator I and activator II, and the activator I is selected from at least one of alkyl quaternary ammonium ionic liquids, alkyl quaternary phosphonium ionic liquids, and pyridine ionic liquids;
  • the activator II is selected from bisamino quaternary phosphonium ionic liquids, amino functionalized imidazole ionic liquids, diamine functionalized ionic liquids, amino acid ionic liquids, tetramethylguanidine succinate ionic liquids, tetramethylguanidine succinate ionic liquids, At least one of methylguanidine dodecane dicarboxylate ionic liquid and tetramethylguanidine polyethylene glycol dicarboxylate ionic liquid.
  • the carbon dioxide absorbing liquid contains 100 parts by weight of solvent, 15-35 parts by weight, preferably 30-35 parts by weight of amino acid, 25-50 parts by weight, preferably 45-50 parts by weight of organic Amine, 6-10 parts by weight, preferably 5-10 parts by weight of activator and 3-5 parts by weight, preferably 4-5 parts by weight of accelerator.
  • the carbon dioxide capture liquid when the amount of amino acid, organic amine, activator, accelerator and solvent is limited within the above range, the carbon dioxide capture liquid has a better carbon dioxide capture effect.
  • the mass ratio of the amino acid to the organic amine is 0.5-1:1, preferably 0.6-0.8:1.
  • the amino acid is selected from glycine, sarcosine, lysine, alanine, glutamic acid, serine, glycine, proline, arginine, histidine at least One, preferably one of glycine, sarcosine, lysine and alanine.
  • the organic amine is selected from N-methyl monoethanolamine (MMEA), 2-amino-2-methyl-1-propanol (AMP), N-methyldiethanolamine (MDEA) , monoethanolamine (MEA), diethanolamine (DEA), diisopropanolamine (DIPA), isopropylaminoethanol (IPAE), hydroxyethylpiperazine (HEPZ), morpholine (MOR), diazabicyclo (DBU) and at least one of its derivatives, preferably at least one of N-methylmonoethanolamine, 2-amino-2-methyl-1-propanol, and N-methyldiethanolamine.
  • MMEA N-methyl monoethanolamine
  • AMP 2-amino-2-methyl-1-propanol
  • MDEA N-methyldiethanolamine
  • MEA monoethanolamine
  • DEA diethanolamine
  • DIPA diisopropanolamine
  • IPAE isopropylaminoethanol
  • HEPZ hydroxyethylpiperazine
  • the mass ratio of the activator I to the activator II is 1:1-8.5, preferably 1:2.5-5.
  • the carbon dioxide capture effect of the decarburization solvent can be further improved, the regeneration energy consumption can be reduced, and high-purity carbon dioxide can be obtained.
  • the present invention does not specifically limit alkyl quaternary ammonium ionic liquids, alkyl quaternary phosphonium ionic liquids, and pyridine ionic liquids.
  • alkyl quaternary ammonium ionic liquids alkyl Both quaternary phosphonium-based ionic liquids and pyridine-based ionic liquids can be used in the present invention.
  • the activator I is selected from alkylphosphine tetrafluoroborate ([PR x H 4-x ] + [BF 4 ] - ), alkylamine hexafluorophosphate ([NR x H 4-x ] + [PF 6 ] - ), alkyl pyridinium aluminum chloride salt ([RPy] + [AlCl 4 ] - ).
  • x is an integer of 1-4
  • R is an alkyl group with 1-20 carbon atoms, preferably an alkyl group with 6-16 carbon atoms
  • x R can be the same or different, each independently can be hexyl, heptyl, etc.
  • the activator I is selected from one of trihexyltetradecylphosphorus tetrafluoroborate, cetyltrimethylammonium hexafluorophosphate, and cetylpyridinium chloride.
  • the activator II is selected from 3-propylamino-tributylphosphonium glycinate ([aP 4443 ][Gly]), 3-propylamino-tributylphosphonium alanine ( [aP 4443 ][Ala]), tetraethylammonium glycinate ([N 2222 ][Gly]), tetrabutylammonium glycinate ([N 4444 ][Gly]), tetrabutylphosphonium glycinate [P 4444 ][Gly ], 1-aminopropyl-3-methylimidazolium glycinate ([APmim][Gly]), 3-propylamino-tributylphosphonium-2-hydroxypyridine ([aP 4443 ][2-Op]) More preferably, the activator II is selected from one of [P 4444 ][Gly], [aP 4443 ][2-Op
  • the accelerator is selected from sodium chloride and/or potassium chloride, preferably sodium chloride.
  • the solvent in the absorption liquid is selected from water.
  • a second aspect of the present invention provides a method of capturing carbon dioxide from fuel gas, said method comprising the steps of:
  • step (3) Returning the regenerated lean solution to step (1) as a lean solution.
  • step (1)
  • the fuel gas is selected from highly acidic fuel gas; wherein, the dry basis content of carbon dioxide in the highly acidic fuel gas is 15-60v%, preferably 25-50v%.
  • the highly acidic fuel gas is selected from at least one of oilfield associated gas, PSA regeneration gas, biogas, and biocracking gas.
  • the PSA regeneration gas is the pressure swing adsorption regeneration gas in the art.
  • the method for capturing carbon dioxide from fuel gas provided in the present invention is not particularly limited to fuel gas, and can be especially used to treat highly acidic fuel gas with carbon dioxide dry basis content above 15v%.
  • the flow ratio of the fuel gas to the absorption liquid is 1Nm 3 /h:10-80L/h, preferably 1Nm 3 /h:20-50L/h.
  • the porous membrane is selected from pressure-resistant porous membranes, preferably hollow fiber membranes; wherein, the inner diameter of the membrane filaments of the hollow fiber membranes is 40-60mm, preferably 45-55mm; The diameter is 0.5-1.2 mm, preferably 0.8-0.9 mm.
  • the operating conditions of the indirect contact mass transfer include: the mass transfer temperature is 25-80° C., preferably 35-50° C.; the mass transfer pressure is 1.0-20.0 MPa, preferably 4.0-16.0 MPa.
  • the dry content of carbon dioxide in the purified fuel gas is ⁇ 3v%, preferably 1.5-2.5v%.
  • the method for capturing carbon dioxide from fuel gas provided by the present invention can further improve the capture effect of carbon dioxide through the joint action of porous membrane and specific lean liquid, and obtain purified fuel gas with dry basis content of carbon dioxide lower than 3v%, and purify fuel Gas can reach the industrial production index.
  • step (2)
  • the regeneration of the rich solution is not particularly limited in the present invention, and can be performed according to conventional operations in the field.
  • the rich liquid is sent to a regeneration tower for regeneration.
  • the dry basis content of carbon dioxide in the regeneration gas is ⁇ 95v%, preferably ⁇ 98v%, more preferably ⁇ 99.5v%.
  • the regeneration gas obtained after regeneration contains a small amount of water in addition to carbon dioxide.
  • the regeneration gas can be dewatered.
  • the water removal method of the regenerated gas there is no special limitation on the water removal method of the regenerated gas, and it can be carried out according to conventional operations in the field.
  • the regeneration gas can be condensed to remove water.
  • the regeneration energy consumption in the regeneration is 1.8-2.9 ⁇ 10 3 kcal/Nm 3 CO 2 , preferably 1.8-2.1 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • step (3)
  • the regenerated lean liquid is heat-exchanged with the rich liquid and then returned to step (1).
  • the regeneration after heat exchange can be The lean solution is cooled again.
  • the present invention will be described in detail below by way of examples.
  • the following examples and comparative examples are carried out in the device shown in Figure 1, including a membrane absorber 1, a heat exchanger 2, a regeneration tower 3, a lean liquid cooler 4, a lean liquid pump 5 and a fuel gas storage tank 6; wherein, The rich liquid outlet of the membrane absorber 1 is connected with the heat exchanger 2 and the top of the regeneration tower 3 in sequence, and the bottom of the regeneration tower 3 is connected with the heat exchanger 2, the lean liquid pump 5, the lean liquid cooler 4 and the membrane absorber in sequence The lean liquid inlet of 1 is connected, and the fuel gas storage tank 6 is connected with the membrane absorber 1.
  • the membrane absorber 1 is a membrane absorber containing a hollow fiber membrane, which comes from Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
  • the dry basis content of CO 2 in the purified fuel gas is 1.8v%
  • the purity of CO 2 in the obtained regenerated gas is ⁇ 99.5% (dry basis)
  • the regeneration energy consumption is 2.1 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 2 Same as Example 1, the difference is that the lean solution is different, and the composition of the lean solution in Example 2 is shown in Table 1.
  • the dry basis content of CO 2 in the purified fuel gas is 1.5v%
  • the purity of CO 2 in the obtained regeneration gas is ⁇ 99.5% (dry basis)
  • the regeneration energy consumption is 1.8 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 3 Same as Example 1, the difference is that the lean solution is different, and the composition of the lean solution in Example 3 is shown in Table 1.
  • the dry basis content of CO 2 in the purified fuel gas is 2.0v%
  • the purity of CO 2 in the obtained regenerated gas is ⁇ 99.5% (dry basis)
  • the regeneration energy consumption is 2.3 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 4 Same as Example 1, the difference is that the simulated highly acidic fuel gas and indirect contact mass transfer operating conditions are different, the dry basis content of carbon dioxide in the simulated highly acidic fuel gas in Example 4 is 50v%, and the N content is 50v%; Indirect contact mass transfer was performed through hollow fiber membranes at 40 °C and 16.0 MPa.
  • the dry basis content of CO 2 in the obtained purified fuel gas is 2.3v%
  • the purity of CO 2 in the obtained regenerated gas is ⁇ 99.5% (dry basis)
  • the regeneration energy consumption is 2.6 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 4 Same as Example 4, the difference is that the lean solution is different, and the composition of the lean solution in Example 5 is shown in Table 1.
  • the dry basis content of CO 2 in the obtained purified fuel gas is 2.1v%
  • the purity of CO 2 in the obtained regenerated gas is ⁇ 99.5% (dry basis)
  • the regeneration energy consumption is 2.3 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 6 Same as Example 4, except that the lean solution is different.
  • the composition of the lean solution in Example 6 is shown in Table 1.
  • the dry basis content of CO 2 in the purified fuel gas is 2.5v%
  • the purity of CO 2 in the obtained regenerated gas is ⁇ 99.5% (dry basis)
  • the regeneration energy consumption is 2.5 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 7 Same as Example 4, the difference is that the lean solution is different, and the composition of the lean solution in Example 7 is shown in Table 1.
  • the dry basis content of CO 2 in the purified fuel gas is 3.0v%
  • the purity of CO 2 in the obtained regeneration gas is ⁇ 99.5% (dry basis)
  • the regeneration energy consumption is 2.7 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 8 Same as Example 4, except that the lean solution is different.
  • the composition of the lean solution in Example 8 is shown in Table 1.
  • the dry basis content of CO 2 in the purified fuel gas is 2.8v%
  • the purity of CO 2 in the obtained regeneration gas is ⁇ 99.5% (dry basis)
  • the regeneration energy consumption is 2.9 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 1 Same as Example 1, except that the lean solution is different.
  • the composition of the lean solution in Comparative Example 1 is shown in Table 1.
  • the dry basis content of CO 2 in the purified fuel gas is 2.9v%
  • the purity of CO 2 in the obtained regenerated gas is 90% (dry basis)
  • the regeneration energy consumption is 3.2 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 2 Same as Example 4, except that the lean solution is different.
  • the composition of the lean solution in Comparative Example 2 is shown in Table 1.
  • the dry basis content of CO 2 in the purified fuel gas is 3.0v%
  • the purity of CO 2 in the obtained regenerated gas is 88% (dry basis)
  • the regeneration energy consumption is 3.7 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 4 Same as Example 4, the difference is that the lean solution is different, and the composition of the lean solution in Comparative Example 3 is shown in Table 1.
  • the dry basis content of CO 2 in the purified fuel gas is 3.1v%
  • the purity of CO 2 in the obtained regeneration gas is 85% (dry basis)
  • the regeneration energy consumption is 3.6 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 4 Same as Example 4, except that the lean solution is different.
  • the composition of the lean solution in Comparative Example 4 is shown in Table 1.
  • the dry basis content of CO 2 in the purified fuel gas is 3.0v%
  • the purity of CO 2 in the obtained regeneration gas is 90% (dry basis)
  • the regeneration energy consumption is 3.9 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 4 Comparative Example 3 and Comparative Example 4, it can be seen that the amount of amino acid and organic amine used is too much or too little, which is not conducive to improving the absorption capacity of carbon dioxide and reducing regeneration energy consumption.
  • Example 4 Same as Example 4, the difference is that the lean solution is different, and the composition of the lean solution in Comparative Example 5 is as shown in Table 1.
  • the dry basis content of CO 2 in the purified fuel gas is 3.2v%
  • the purity of CO 2 in the obtained regenerated gas is 99% (dry basis)
  • the regeneration energy consumption is 3.7 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 4 By comparing Example 4 and Comparative Example 5, it can be seen that when amino acid salts are used to replace amino acids, it is not conducive to reducing regeneration energy consumption and improving the absorption effect of carbon dioxide.
  • Example 6 Same as Example 4, except that the lean solution is different.
  • the composition of the lean solution in Comparative Example 6 is shown in Table 1.
  • the dry basis content of CO 2 in the purified fuel gas is 2.3v%
  • the purity of CO 2 in the obtained regenerated gas is 99% (dry basis)
  • the regeneration energy consumption is 3.1 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 4 By comparing Example 4 and Comparative Example 6, it can be seen that the synergistic effect of activator I and activator II can improve the absorption effect of carbon dioxide, reduce the regeneration energy consumption of the carbon dioxide absorption liquid, and obtain high-purity carbon dioxide. With only activator I and no activator II, the regeneration energy consumption of carbon dioxide increased significantly, indicating that the desorption performance of the absorption liquid was worse.
  • Example 7 Same as Example 4, except that the lean solution is different.
  • the composition of the lean solution in Comparative Example 7 is shown in Table 1.
  • the dry basis content of CO 2 in the purified fuel gas is 3.2v%
  • the purity of CO 2 in the obtained regenerated gas is 99% (dry basis)
  • the regeneration energy consumption is 2.6 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 4 By comparing Example 4 and Comparative Example 7, it can be known that only the activator II and no activator I, the absorption capacity of the carbon dioxide absorbing liquid for carbon dioxide decreases, and the content of carbon dioxide in the purified fuel gas is relatively large.
  • Example 4 Same as Example 4, the difference is that the barren solution is different.
  • the composition of the barren solution in Comparative Example 8 is shown in Table 1, and the activator II is 1-butyl-3-methylimidazole sodium phosphate.
  • the dry basis content of CO 2 in the purified fuel gas is 3.3v%
  • the purity of CO 2 in the obtained regenerated gas is 86% (dry basis)
  • the regeneration energy consumption is 2.8 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 4 By comparing Example 4 and Comparative Example 8, it can be seen that when 1-butyl-3-methylimidazolium sodium phosphate and trihexyltetradecylphosphorus tetrafluoroborate are co-activated, the adsorption and separation of carbon dioxide is not effective.
  • Example 9 Same as Example 4, except that the lean solution is different.
  • the composition of the lean solution in Comparative Example 9 is shown in Table 1.
  • the dry basis content of CO 2 in the obtained purified fuel gas is 3.4v%
  • the purity of CO 2 in the obtained regeneration gas is 98.5% (dry basis)
  • the regeneration energy consumption is 2.7 ⁇ 10 3 kcal/Nm 3 CO 2 .
  • Example 4 By comparing Example 4 and Comparative Example 9, it can be known that the adsorption and separation effect of carbon dioxide can be improved by adding a promoter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明涉及二氧化碳气体分离技术领域,公开了一种二氧化碳吸收液以及从燃料气中捕集二氧化碳的方法和装置。其中,所述二氧化碳吸收液含有100重量份的溶剂、10-55重量份的氨基酸、20-65重量份的有机胺、5-15重量份的活化剂和2-12重量份的促进剂。本发明中提供的二氧化碳吸收液,通过氨基酸、有机胺、活化剂和促进剂之间的协同作用,不仅可以提高二氧化碳吸收液对二氧化碳的吸收容量,还能够降低二氧化碳吸收液的再生能耗,得到高纯度的二氧化碳。

Description

二氧化碳吸收液以及从燃料气中捕集二氧化碳的方法
相关申请的交叉引用
本申请要求2021年10月22日提交的中国专利申请202111237906.1的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及二氧化碳气体分离技术领域,具体涉及一种二氧化碳吸收液以及从燃料气中捕集二氧化碳的方法。
背景技术
随着国内、国际环境问题的日益加剧,温室气体的排放控制已成为国际社会关注的焦点,控制CO 2排放、减少温室效应已显得尤为重要和迫切。
在油田伴生气、PSA再生气、生物沼气和生物裂解气等燃料气的生产过程中,会伴有大量的二氧化碳,脱除此类气体中的二氧化碳,对于减少温室气体排放,提升能源品位及后续化工利用起到关键作用。
目前CO 2的捕集方法主要有化学吸收法、吸附法、膜分离法、膜吸收法和低温蒸馏法等,应用最广泛的是化学吸收法。但是,化学吸收法一般存在二氧化碳吸附容量小,吸收液再生能耗大,对高酸性原料气捕集效果差,且难以分离出高纯度二氧化碳的缺陷。
因此,亟待提供一种二氧化碳吸附容量大,再生能耗小,可用于处理高酸性原料气,能够得到高纯度二氧化碳的二氧化碳吸收液。
发明内容
本发明的目的是为了克服化学吸收法存在的二氧化碳吸附容量小,吸收液再生能耗大,对高酸性原料气捕集效果差,且难以分离出 高纯度二氧化碳的技术问题,提供一种二氧化碳吸收液以及从燃料气中捕集二氧化碳的方法。
为了实现上述目的,本发明的第一方面提供一种二氧化碳吸收液,其中,所述二氧化碳吸收液含有100重量份的溶剂、10-55重量份的氨基酸、20-65重量份的有机胺、5-15重量份的活化剂和2-12重量份的促进剂;
其中,所述活化剂包括活化剂I和活化剂II,所述活化剂I选自烷基季铵类离子液体、烷基季鏻类离子液体、吡啶类离子液体中的至少一种;所述活化剂II选自双氨基季鏻类离子液体、胺基功能化咪唑类离子液体、双胺基功能化离子液体、氨基酸类离子液体、四甲基胍丁二酸盐类离子液体、四甲基胍十二烷二羧酸盐离子液体、四甲基胍聚乙二醇二羧酸盐离子液体中的至少一种。
本发明的第二方面提供了一种从燃料气中捕集二氧化碳的方法,所述方法包括以下步骤:
(1)将燃料气与贫液通过多孔膜进行间接接触传质,得到富液和净化燃料气;其中,所述贫液选自本发明第一方面所述的二氧化碳吸收液;
(2)将所述富液进行再生,得到再生贫液和再生气;
(3)将所述再生贫液作为贫液返回步骤(1)。
通过上述技术方案,本发明所取得的有益技术效果如下:
1)本发明中提供的二氧化碳吸收液,通过氨基酸、有机胺、活化剂和促进剂之间的协同作用,不仅可以提高二氧化碳吸收液对二氧化碳的吸收容量,还能够降低二氧化碳吸收液的再生能耗,得到高纯度的二氧化碳;
2)本发明中提供的二氧化碳吸收液,在含有活化剂I和活化剂 II时,增大氨基酸的用量,与特定用量的有机胺协同作用,可以进一步提高二氧化碳脱除率,降低再生能耗,得到高纯度再生气;
3)本发明中提供的二氧化碳吸收液,通过合理调节活化剂I和活化剂II的质量比,可以进一步改善脱碳溶剂的二氧化碳捕集效果,降低再生能耗,得到高纯度的二氧化碳;
4)本发明中提供的从燃料气中捕集二氧化碳的方法,通过多孔膜和特定贫液的共同作用,可以提高二氧化碳的捕集效果,得到二氧化碳干基含量低于3v%的净化燃料气。
附图说明
图1是本发明中的一种从燃料气中捕集二氧化碳的装置示意图。
附图标记说明
1,膜吸收器         2,换热器          3,再生塔
4,贫液冷却器       5,贫液泵          6,燃料气储气罐
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明的第一方面提供了一种二氧化碳吸收液,其中,所述二氧化碳吸收液含有100重量份的溶剂、10-55重量份的氨基酸、20-65重量份的有机胺、5-15重量份的活化剂和2-12重量份的促进剂;
其中,所述活化剂包括活化剂I和活化剂II,所述活化剂I选自 烷基季铵类离子液体、烷基季鏻类离子液体、吡啶类离子液体中的至少一种;
所述活化剂II选自双氨基季鏻类离子液体、胺基功能化咪唑类离子液体、双胺基功能化离子液体、氨基酸类离子液体、四甲基胍丁二酸盐类离子液体、四甲基胍十二烷二羧酸盐离子液体、四甲基胍聚乙二醇二羧酸盐离子液体中的至少一种。
在一个优选的实施方式中,所述二氧化碳吸收液含有100重量份的溶剂、15-35重量份,优选30-35重量份的氨基酸,25-50重量份,优选为45-50重量份的有机胺,6-10重量份,优选为5-10重量份的活化剂和3-5重量份,优选为4-5重量份的促进剂。
其中,在本发明中,当氨基酸、有机胺、活化剂、促进剂和溶剂的用量限定在上述范围之内时,二氧化碳吸收液的二氧化碳捕集效果更佳。
在一个优选的实施方式中,所述氨基酸和有机胺质量比为0.5-1∶1,优选选为0.6-0.8∶1。
二氧化碳捕集领域常用的吸收剂是有机胺或氨基酸盐,或者在有机胺中添加少量的氨基酸。但是,在本发明中,本发明的发明人经过研究发现,通过同时使用氨基酸、有机胺、活化剂和促进剂且活化剂为活化剂I和活化剂II时,增大氨基酸的用量,使特定用量的氨基酸和有机胺协同作用,可以进一步提高二氧化碳脱除率,降低再生能耗,得到高纯度再生气。
在一个优选的实施方式中,所述氨基酸选自甘氨酸、肌氨酸、赖氨酸、丙氨酸、谷氨酸、丝氨酸、氨基乙酸、脯氨酸、精氨酸、组氨酸中的至少一种,优选为甘氨酸、肌氨酸、赖氨酸、丙氨酸中的一种。
在一个优选的实施方式中,所述有机胺选自N-甲基一乙醇胺 (MMEA)、2-氨基-2-甲基-1-丙醇(AMP)、N-甲基二乙醇胺(MDEA)、一乙醇胺(MEA)、二乙醇胺(DEA)、二异丙醇胺(DIPA)、异丙胺基乙醇(IPAE)、羟乙基哌嗪(HEPZ)、吗啉(MOR)、二氮杂二环(DBU)及其衍生物中的至少一种,优选为N-甲基一乙醇胺、2-氨基-2-甲基-1-丙醇、N-甲基二乙醇胺中的至少一种。
在一个优选的实施方式中,所述活化剂I和活化剂II的质量比为1∶1-8.5,优选为1∶2.5-5。
其中,在本发明中,通过合理调节活化剂I和活化剂II的质量比,可以进一步改善脱碳溶剂的二氧化碳捕集效果,降低再生能耗,得到高纯度的二氧化碳。
在一个优选的实施方式中,本发明对烷基季铵类离子液体、烷基季鏻类离子液体、吡啶类离子液体不做特殊限定,本领域常用的烷基季铵类离子液体、烷基季鏻类离子液体、吡啶类离子液体均可用在本发明中。
在一个优选的实施方式中,所述活化剂I选自烷基膦四氟硼酸盐([PR xH 4-x] +[BF 4] -)、烷基胺六氟磷酸盐([NR xH 4-x] +[PF 6] -)、烷基吡啶氯化铝盐([RPy] +[AlCl 4] -)中的一种。其中x为1-4的整数,R为碳原子数为1-20的烷基优选碳原子数为6-16的烷基,x个R可以相同或不同,各自独立的例如可以为己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十四烷基、十六烷基。进一步优选地,所述活化剂I选自三己基十四烷基四氟硼酸磷、十六烷基三甲基六氟磷酸铵、十六烷基氯化吡啶中的一种。
在一个优选的实施方式中,所述活化剂II选自3-丙胺基-三丁基鳞甘氨酸盐([aP 4443][Gly])、3-丙胺基-三丁基鏻丙氨酸盐([aP 4443][Ala])、甘氨酸四乙基铵([N 2222][Gly])、甘氨酸四丁基铵 ([N 4444][Gly])、甘氨酸四丁基磷[P 4444][Gly]、1-氨丙基-3-甲基咪唑甘氨酸盐([APmim][Gly])、3-丙胺基-三丁基鏻-2-羟基吡啶([aP 4443][2-Op])中的至少一种;进一步优选地,所述活化剂II选自[P 4444][Gly]、[aP 4443][2-Op]、[aP 4443][Gly]中的一种。
在一个优选的实施方式中,所述促进剂选自氯化钠和/或氯化钾,优选为氯化钠。
在一个优选的实施方式中,所述吸收液中的溶剂选自水。
本发明的第二方面提供了一种从燃料气中捕集二氧化碳的方法,所述方法包括以下步骤:
(1)将燃料气与贫液通过多孔膜进行间接接触传质,得到富液和净化燃料气;其中,所述贫液选自本发明第一方面所述二氧化碳吸收液;
(2)将所述富液进行再生,得到再生贫液和再生气;
(3)将所述再生贫液作为贫液返回步骤(1)。
在步骤(1)中:
在一个优选的实施方式中,所述燃料气选自高酸性燃料气;其中,所述高酸性燃料气中二氧化碳的干基含量为15-60v%,优选为25-50v%。
在一个优选的实施方式中,所述高酸性燃料气选自油田伴生气、PSA再生气、生物沼气、生物裂解气中的至少一种。
其中,PSA再生气为本领域中的变压吸附再生气。本发明中提供的从燃料气中捕集二氧化碳的方法,对燃料气不做特殊限定,尤其可以用于处理二氧化碳干基含量在15v%以上的高酸性燃料气。
在一个优选的实施方式中,所述燃料气与所述吸收液的流量比为1Nm 3/h∶10-80L/h,优选为1Nm 3/h∶20-50L/h。
在一个优选的实施方式中,所述多孔膜选自耐压多孔膜,优选为中空纤维膜;其中,所述中空纤维膜的膜丝内径为40-60mm,优选为45-55mm;膜丝外径为0.5-1.2mm,优选为0.8-0.9mm。
在一个优选的实施方式中,所述间接接触传质的操作条件包括:传质温度为25-80℃,优选为35-50℃;传质压力为1.0-20.0MPa,优选4.0-16.0MPa。
在一个优选的实施方式中,所述净化燃料气中二氧化碳干基含量<3v%,优选为1.5-2.5v%。
本发明提供的从燃料气中捕集二氧化碳的方法,通过多孔膜和特定贫液的共同作用,可以进一步提高二氧化碳的捕集效果,得到二氧化碳干基含量低于3v%的净化燃料气,净化燃料气能够达到工业生产指标。
在步骤(2)中:
在一个优选的实施方式中,本发明对富液的再生不做特殊限定,可以按照本领域的常规操作进行。例如,将所述富液送至再生塔进行再生。
在一个优选的实施方式中,所述再生气中二氧化碳的干基含量≥95v%,优选≥98v%,进一步优选≥99.5v%。
其中,在本发明中,再生后得到的再生气中,除了二氧化碳之外,还含有少量的水,为了得到高纯度的再生气,可以对再生气进行除水操作。本发明对再生气除水方式不做特殊限定,按照本领域常规操作进行即可。例如,可以对再生气进行冷凝除水。
在一个优选的实施方式中,所述再生中的再生能耗为1.8-2.9×10 3kcal/Nm 3CO 2,优选为1.8-2.1×10 3kcal/Nm 3CO 2
在步骤(3)中:
在一个优选的实施方式中,将所述再生贫液与所述富液进行热交换后返回步骤(1)。
其中,在本发明中,如果将所述再生贫液与所述富液进行热交换后再生贫液的温度仍然比较高,难以满足间接接触传质的操作条件,则可以对换热后的再生贫液再次进行降温操作。
以下将通过实施例对本发明进行详细描述。以下实施例和对比例在图1所示的装置中进行,包括膜吸收器1、换热器2、再生塔3、贫液冷却器4、贫液泵5和燃料气储罐6;其中,膜吸收器1的富液出口依次与换热器2、再生塔3的塔顶相连,再生塔3的塔底依次与换热器2、贫液泵5、贫液冷却器4和膜吸收器1的贫液入口相连,燃料气储罐6与膜吸收器1相连。
其中,膜吸收器1为含有中空纤维膜的膜吸收器,来自中科院大连化学物理研究所。CO 2干基含量采用烟气分析仪进行测量,再生能耗=再生加热量/CO 2的产量,其中,再生加热量,kcal,CO 2的产量Nm 3
实施例1
(1)将来自燃料气储罐6的2.0Nm 3/h的模拟高酸性燃料气(CO 2的干基含量为40v%,平衡气为N 2)与40L/h的贫液(组成如表1所示)引入膜吸收器1,模拟高酸性燃料气和贫液分别在中空纤维膜的两侧流动,在40℃,8.0MPa的条件下通过中空纤维膜进行间接接触传质,得到富液和净化燃料气;
(2)将上述富液引入再生塔3进行再生,从再生塔塔底得到再生贫液,从再生塔3塔顶得到再生气;
(3)将上述再生贫液先与来自膜吸收器1的富液在换热器2中 进行热交换,之后通过贫液泵5再在贫液冷却器4中进行冷却后作为贫液返回膜吸收器1。
其中,得到的净化燃料气中CO 2干基含量1.8v%,得到的再生气中CO 2纯度≥99.5%(干基),再生能耗为2.1×10 3kcal/Nm 3CO 2
实施例2
与实施例1相同,区别在于贫液不同,实施例2中的贫液组成如表1所示。
其中,得到的净化燃料气中CO 2干基含量1.5v%,得到的再生气中CO 2纯度≥99.5%(干基),再生能耗为1.8×10 3kcal/Nm 3CO 2
实施例3
与实施例1相同,区别在于贫液不同,实施例3中的贫液组成如表1所示。
其中,得到的净化燃料气中CO 2干基含量2.0v%,得到的再生气中CO 2纯度≥99.5%(干基),再生能耗为2.3×10 3kcal/Nm 3CO 2
实施例4
与实施例1相同,区别在于,模拟高酸性燃料气和间接接触传质操作条件不同,实施例4中的模拟高酸性燃料气中二氧化碳的干基含量为50v%,N 2含量为50v%;在40℃,16.0MPa下通过中空纤维膜进行间接接触传质。
其中,得到的净化燃料气中CO 2干基含量2.3v%,得到的再生气中CO 2纯度≥99.5%(干基),再生能耗为2.6×10 3kcal/Nm 3CO 2
实施例5
与实施例4相同,区别在于贫液不同,实施例5中的贫液组成如表1所示。
其中,得到的净化燃料气中CO 2干基含量2.1v%,得到的再生气中CO 2纯度≥99.5%(干基),再生能耗为2.3×10 3kcal/Nm 3CO 2
实施例6
与实施例4相同,区别在于贫液不同,实施例6中的贫液组成如表1所示。
其中,得到的净化燃料气中CO 2干基含量2.5v%,得到的再生气中CO 2纯度≥99.5%(干基),再生能耗为2.5×10 3kcal/Nm 3CO 2
实施例7
与实施例4相同,区别在于贫液不同,实施例7中的贫液组成如表1所示。
其中,得到的净化燃料气中CO 2干基含量为3.0v%,得到的再生气中CO 2纯度≥99.5%(干基),再生能耗为2.7×10 3kcal/Nm 3CO 2
实施例8
与实施例4相同,区别在于贫液不同,实施例8中的贫液组成如表1所示。
其中,得到的净化燃料气中CO 2干基含量为2.8v%,得到的再生气中CO 2纯度≥99.5%(干基),再生能耗为2.9×10 3kcal/Nm 3CO 2
对比例1
与实施例1相同,区别在于贫液不同,对比例1中的贫液组成如表1所示。
其中,得到的净化燃料气中CO 2干基含量2.9v%,得到的再生气中CO 2纯度为90%(干基),再生能耗为3.2×10 3kcal/Nm 3CO 2
对比例2
与实施例4相同,区别在于贫液不同,对比例2中的贫液组成如表1所示。
其中,得到的净化燃料气中CO 2干基含量3.0v%,得到的再生气中CO 2纯度为88%(干基),再生能耗为3.7×10 3kcal/Nm 3CO 2
对比例3
与实施例4相同,区别在于贫液不同,对比例3中的贫液组成如表1所示。
其中,得到的净化燃料气中CO 2干基含量3.1v%,得到的再生气中CO 2纯度为85%(干基),再生能耗为3.6×10 3kcal/Nm 3CO 2
对比例4
与实施例4相同,区别在于贫液不同,对比例4中的贫液组成如表1所示。
其中,得到的净化燃料气中CO 2干基含量3.0v%,得到的再生气中CO 2纯度为90%(干基),再生能耗为3.9×10 3kcal/Nm 3CO 2
通过对比实施例4、对比例3和对比例4可知,氨基酸和有机胺的用量过多或过少,均不利于提高二氧化碳的吸收容量,降低再生能耗。
对比例5
与实施例4相同,区别在于贫液不同,对比例5中的贫液组成如 表1所示。
其中,得到的净化燃料气中CO 2干基含量3.2v%,得到的再生气中CO 2纯度为99%(干基),再生能耗为3.7×10 3kcal/Nm 3CO 2
通过对比实施例4和对比例5可知,当用氨基酸盐替换氨基酸时,不利于降低再生能耗,改善二氧化碳的吸收效果。
对比例6
与实施例4相同,区别在于贫液不同,对比例6中的贫液组成如表1所示。
其中,得到的净化燃料气中CO 2干基含量2.3v%,得到的再生气中CO 2纯度为99%(干基),再生能耗为3.1×10 3kcal/Nm 3CO 2
通过对比实施例4和对比例6可知,活化剂I和活化剂II协同作用,可提高二氧化碳的吸收效果,降低二氧化碳吸收液的再生能耗,得到高纯度二氧化碳。只有活化剂I,没有活化剂II时,二氧化碳的再生能耗显著增加,说明吸收液的脱附性能更差。
对比例7
与实施例4相同,区别在于贫液不同,对比例7中的贫液组成如表1所示。
其中,得到的净化燃料气中CO 2干基含量3.2v%,得到的再生气中CO 2纯度为99%(干基),再生能耗为2.6×10 3kcal/Nm 3CO 2
通过对比实施例4和对比例7可知,只有活化剂II,没有活化剂I时,二氧化碳吸收液对二氧化碳的吸收容量下降,净化燃料气中二氧化碳的含量偏大。
对比例8
与实施例4相同,区别在于贫液不同,对比例8中的贫液组成如表1所示,活化剂II为1-丁基-3-甲基咪唑磷酸钠。
其中,得到的净化燃料气中CO 2干基含量3.3v%,得到的再生气中CO 2纯度为86%(干基),再生能耗为2.8×10 3kcal/Nm 3CO 2
通过对比实施例4和对比例8可知,当采用1-丁基-3-甲基咪唑磷酸钠与三己基十四烷基四氟硼酸磷共同活化剂时,二氧化碳的吸附分离效果不佳。
对比例9
与实施例4相同,区别在于贫液不同,对比例9中的贫液组成如表1所示。
其中,得到的净化燃料气中CO 2干基含量3.4v%,得到的再生气中CO 2纯度为98.5%(干基),再生能耗为2.7×10 3kcal/Nm 3CO 2
通过对比实施例4和对比例9可知,通过添加促进剂,可提高二氧化碳的吸附分离效果。
表1
Figure PCTCN2022127150-appb-000001
Figure PCTCN2022127150-appb-000002
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些 简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (23)

  1. 一种二氧化碳吸收液,其中,所述二氧化碳吸收液含有100重量份的溶剂、10-55重量份的氨基酸、20-65重量份的有机胺、5-15重量份的活化剂和2-12重量份的促进剂;
    其中,所述活化剂包括活化剂I和活化剂II,所述活化剂I选自烷基季铵类离子液体、烷基季鏻类离子液体、吡啶类离子液体中的至少一种;
    所述活化剂II选自双氨基季鏻类离子液体、胺基功能化咪唑类离子液体、双胺基功能化离子液体、氨基酸类离子液体、四甲基胍丁二酸盐类离子液体、四甲基胍十二烷二羧酸盐离子液体、四甲基胍聚乙二醇二羧酸盐离子液体中的至少一种。
  2. 根据权利要求1所述二氧化碳吸收液,其中,所述二氧化碳吸收液含有100重量份的溶剂、15-35重量份的氨基酸,25-50重量份的45-50重量份的有机胺,6-10重量份的活化剂和3-5重量份的促进剂。
  3. 根据权利要求2所述的二氧化碳吸收液,其中,所述二氧化碳吸收液含有100重量份的溶剂、30-35重量份的氨基酸,45-50重量份的有机胺,5-10重量份的活化剂和4-5重量份的促进剂。
  4. 根据权利要求1-3中任意一项所述的二氧化碳吸收液,其中,所述氨基酸选自甘氨酸、肌氨酸、赖氨酸、丙氨酸、谷氨酸、丝氨酸、氨基乙酸、脯氨酸、精氨酸、组氨酸中的至少一种。
  5. 根据权利要求4所述的二氧化碳吸收液,其中,所述氨基酸为甘氨酸、肌氨酸、赖氨酸、丙氨酸中的一种。
  6. 根据权利要求1-5中任意一项所述的二氧化碳吸收液,其中,所述有机胺选自N-甲基一乙醇胺、2-氨基-2-甲基-1-丙醇、N-甲基二乙醇胺、一乙醇胺、二乙醇胺、二异丙醇胺、异丙胺基乙醇、羟乙基 哌嗪、吗啉、二氮杂二环及其衍生物中的至少一种。
  7. 根据权利要求6所述的二氧化碳吸收液,其中,所述有机胺选自选自N-甲基一乙醇胺、2-氨基-2-甲基-1-丙醇、N-甲基二乙醇胺中的至少一种。
  8. 根据权利要求1-7中任意一项所述的二氧化碳吸收液,其中,所述氨基酸和有机胺质量比为0.5-1:1。
  9. 根据权利要求8所述的二氧化碳吸收液,其中,所述氨基酸和有机胺质量比为0.6-0.8:1。
  10. 根据权利要求1-9中任意一项所述的二氧化碳吸收液,其中,所述活化剂I和活化剂II的质量比为1:1-8.5。
  11. 根据权利要求10所述的二氧化碳吸收液,其中,所述活化剂I和活化剂II的质量比为1:2.5-5。
  12. 根据权利要求1-11中任意一项所述的二氧化碳吸收液,其中,所述活化剂I选自烷基膦四氟硼酸盐、烷基胺六氟磷酸盐、烷基吡啶氯化铝盐中的一种;
    优选地,所述活化剂I选自三己基十四烷基四氟硼酸磷、四氟硼酸四烷基铵、十六烷基氯化吡啶中的一种。
  13. 根据权利要求1-12中任意一项所述的二氧化碳吸收液,其中,所述活化剂II选自3-丙胺基-三丁基鳞甘氨酸盐、3-丙胺基-三丁基鏻丙氨酸盐、甘氨酸四乙基铵、甘氨酸四丁基铵、甘氨酸四丁基磷、1-氨丙基-3-甲基咪唑甘氨酸盐、3-丙胺基-三丁基鏻-2-羟基吡啶中的至少一种。
  14. 根据权利要求1-13中任意一项所述的二氧化碳吸收液,其中,所述促进剂选自氯化钠和/或氯化钾,所述溶剂选自水。
  15. 一种从燃料气中捕集二氧化碳的方法,其特征在于,所述方 法包括以下步骤:
    (1)将燃料气与贫液通过多孔膜进行间接接触传质,得到富液和净化燃料气;其中,所述贫液选自权利要求1-14中任意一项所述二氧化碳吸收液;
    (2)将所述富液进行再生,得到再生贫液和再生气;
    (3)将所述再生贫液作为贫液返回步骤(1)。
  16. 根据权利要求15所述的方法,其中,所述燃料气选自高酸性燃料气;其中,所述高酸性燃料气中二氧化碳的干基含量为15-60v%。
  17. 根据权利要求16所述的方法,其中,所述高酸性燃料气中二氧化碳的干基含量为25-50v%。
  18. 根据权利要求16或17所述的方法,其中,所述高酸性燃料气选自油田伴生气、PSA再生气、生物沼气、生物裂解气中的至少一种。
  19. 根据权利要求15-18中任意一项所述的方法,其中,所述燃料气与所述吸收液的流量比为1Nm 3/h:10-80L/h。
  20. 根据权利要求19所述的方法,其中,所述燃料气与所述吸收液的流量比为1Nm 3/h:20-50L/h。
  21. 根据权利要求15-20中任意一项所述的方法,其中,所述多孔膜为中空纤维膜。
  22. 根据权利要求21所述的方法,其中,所述中空纤维膜的膜丝内径为40-60mm,膜丝外径为0.5-1.2mm;优选地,所述中空纤维膜的膜丝内径为45-55mm,膜丝外径为0.8-0.9mm。
  23. 根据权利要求15-22中任意一项所述的方法,其中,所述间接接触传质的操作条件包括:传质温度为25-80℃,传质压力为 1-20MPa;优选地,传质温度为35-50℃;传质压力为4-16MPa。
PCT/CN2022/127150 2021-10-22 2022-10-24 二氧化碳吸收液以及从燃料气中捕集二氧化碳的方法 WO2023066400A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111237906.1A CN115999321A (zh) 2021-10-22 2021-10-22 二氧化碳吸收液以及从燃料气中捕集二氧化碳的方法和装置
CN202111237906.1 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023066400A1 true WO2023066400A1 (zh) 2023-04-27

Family

ID=86036103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127150 WO2023066400A1 (zh) 2021-10-22 2022-10-24 二氧化碳吸收液以及从燃料气中捕集二氧化碳的方法

Country Status (2)

Country Link
CN (1) CN115999321A (zh)
WO (1) WO2023066400A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101700454A (zh) * 2009-11-25 2010-05-05 南京大学 一种绿色二氧化碳吸收剂
US20110014100A1 (en) * 2008-05-21 2011-01-20 Bara Jason E Carbon Sequestration Using Ionic Liquids
US20110214566A1 (en) * 2010-03-02 2011-09-08 Hyundai Motor Company Carbon dioxide absorbents
CN102228772A (zh) * 2011-07-11 2011-11-02 中国石油化工集团公司 一种胺溶液膜吸收法捕集烟气中二氧化碳的工艺方法
WO2011147033A2 (en) * 2010-05-27 2011-12-01 Saint Mary's University Compositions and methods for capturing carbon dioxide
CN102527192A (zh) * 2011-12-23 2012-07-04 中国石油化工股份有限公司 含有离子液体的二氧化碳吸收剂
CN102553396A (zh) * 2011-12-23 2012-07-11 武汉凯迪工程技术研究总院有限公司 一种高效低能耗捕集电站烟气中二氧化碳的方法及其设备
CN104415642A (zh) * 2013-08-20 2015-03-18 中国石油化工股份有限公司 用于二氧化碳捕集的双氨基离子液体-mdea复合吸收剂
US20150125372A1 (en) * 2011-05-13 2015-05-07 Ion Engineering Compositions and methods for gas capture processes
CN105561757A (zh) * 2014-10-14 2016-05-11 中国石油化工股份有限公司 一种离子液体活化的燃烧后二氧化碳捕集溶剂

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110014100A1 (en) * 2008-05-21 2011-01-20 Bara Jason E Carbon Sequestration Using Ionic Liquids
CN101700454A (zh) * 2009-11-25 2010-05-05 南京大学 一种绿色二氧化碳吸收剂
US20110214566A1 (en) * 2010-03-02 2011-09-08 Hyundai Motor Company Carbon dioxide absorbents
WO2011147033A2 (en) * 2010-05-27 2011-12-01 Saint Mary's University Compositions and methods for capturing carbon dioxide
US20150125372A1 (en) * 2011-05-13 2015-05-07 Ion Engineering Compositions and methods for gas capture processes
CN102228772A (zh) * 2011-07-11 2011-11-02 中国石油化工集团公司 一种胺溶液膜吸收法捕集烟气中二氧化碳的工艺方法
CN102527192A (zh) * 2011-12-23 2012-07-04 中国石油化工股份有限公司 含有离子液体的二氧化碳吸收剂
CN102553396A (zh) * 2011-12-23 2012-07-11 武汉凯迪工程技术研究总院有限公司 一种高效低能耗捕集电站烟气中二氧化碳的方法及其设备
CN104415642A (zh) * 2013-08-20 2015-03-18 中国石油化工股份有限公司 用于二氧化碳捕集的双氨基离子液体-mdea复合吸收剂
CN105561757A (zh) * 2014-10-14 2016-05-11 中国石油化工股份有限公司 一种离子液体活化的燃烧后二氧化碳捕集溶剂

Also Published As

Publication number Publication date
CN115999321A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
US20220379258A1 (en) Low energy consumption anhydrous co2 phase change absorption agent, and regeneration method and application thereof
US20160206993A1 (en) Closed cycle continuous membrane ionic liquids absorption/desorption process for co2 capture
WO2011121633A1 (ja) 酸性ガス吸収剤、酸性ガス除去装置および酸性ガス除去方法
CN101612509A (zh) 捕集混合气体中二氧化碳的复合脱碳溶液
CN103505994B (zh) 酸性气体吸收剂、酸性气体去除方法以及酸性气体去除装置
CN108993125B (zh) 一种脱除空气和烟道气中二氧化碳的低共熔溶剂
AU2012203051A1 (en) Acid gas absorbent, acid gas removal method, and acid gas removal device
BRPI0613800A2 (pt) método e equipamento para redução de energia em processos de captura de gás ácido
CN112107966B (zh) 一种用于二氧化碳捕集的非水液-液相变吸收剂及其应用
CN102527192A (zh) 含有离子液体的二氧化碳吸收剂
CN104492226A (zh) 一种用于捕集混合气体中二氧化碳的非水脱碳溶液及其应用
CN103463955A (zh) 一种从工业尾气中分离回收二氧化碳的工艺
CN105396447A (zh) 脱出烟气中co2的双相吸收体系
CN101279181A (zh) 从气体混合物或液化气中捕集或分离二氧化碳的吸收溶剂
CN101185831A (zh) 一种可再生吸收剂及其应用
CN102794095B (zh) 三(2-氨乙基)胺作为二氧化碳吸收剂方面的应用
CN101637689B (zh) 一种捕集或分离二氧化碳的吸收溶剂
CN105983310A (zh) 一种选择性吸收二氧化硫的吸收剂及其应用
WO2023066400A1 (zh) 二氧化碳吸收液以及从燃料气中捕集二氧化碳的方法
CN105498449B (zh) 一种co2吸收溶液
CN104772021B (zh) 多元醇‑乙二胺水溶液捕集工业气中co2的方法
KR20190057586A (ko) 이온성 액체 기반 산가스 흡수제 및 산가스 분리방법
CN116870664A (zh) 一种用于烟气二氧化碳捕集离子液体复合吸收液
CN108722116A (zh) 一种无机盐型二氧化碳吸收剂
CN115945033A (zh) 一种吸收co2的低粘液-固相变功能离子型溶剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883004

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022883004

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022883004

Country of ref document: EP

Effective date: 20240510

ENP Entry into the national phase

Ref document number: 20247016968

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE