WO2023066378A1 - 一种抬头显示玻璃及其抬头显示系统 - Google Patents

一种抬头显示玻璃及其抬头显示系统 Download PDF

Info

Publication number
WO2023066378A1
WO2023066378A1 PCT/CN2022/126733 CN2022126733W WO2023066378A1 WO 2023066378 A1 WO2023066378 A1 WO 2023066378A1 CN 2022126733 W CN2022126733 W CN 2022126733W WO 2023066378 A1 WO2023066378 A1 WO 2023066378A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
display area
refractive index
display
head
Prior art date
Application number
PCT/CN2022/126733
Other languages
English (en)
French (fr)
Inventor
曹晖
陈国富
卢国水
林高强
何立山
福原康太
Original Assignee
福耀玻璃工业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福耀玻璃工业集团股份有限公司 filed Critical 福耀玻璃工业集团股份有限公司
Publication of WO2023066378A1 publication Critical patent/WO2023066378A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering

Definitions

  • the present application relates to the technical field of head-up display, in particular to a head-up display glass and a head-up display system.
  • Head-up display (HUD, Head Up Display) is more and more widely used in cars.
  • the vehicle-mounted head-up display system uses the principle of optical reflection to reflect important driving information on the front windshield.
  • a polyvinyl butyral (PVB) layer with a wedge-shaped structure is often used as the middle layer of the windshield.
  • PVB polyvinyl butyral
  • the preparation process of the PVB layer with a wedge-shaped structure is complicated and expensive. High, and poor applicability, for different models need to use different specifications of the PVB layer. Therefore, it is necessary to provide a novel head-up display glass to solve the problems of high cost and poor applicability of the existing head-up display glass.
  • the present application provides a head-up display glass.
  • the head-up display glass is not only low in cost, but also has clear images on the head-up display and less visual interference of the glass, thereby ensuring driving safety and comfort during driving.
  • the first aspect of the present application provides a head-up display glass, including laminated glass, the laminated glass includes a first surface and a second surface opposite to each other, and the second surface includes a display area and a non-display area;
  • the display area is provided with a first nano-film, and the first nano-film includes at least one first high-refractive index layer and at least one first low-refractive-index layer that are sequentially stacked outward from the second surface.
  • the refractive index of the first high refractive index layer is 1.9-2.7, and the refractive index of the first low refractive index layer is 1.3-1.8;
  • the reflectivity of the display area for P-polarized light incident at 55° to 75° is greater than or equal to 10%, and the reflectivity of the non-display area for visible light incident at 0° to 10° is lower than that of the display area for 0° to 10°. Reflectance of visible light incident at 10°.
  • the head-up display glass of the present application is provided with a nano-film in the display area, so that the display area has a higher reflectivity for P-polarized light, thereby ensuring that the display area can present a clear image.
  • the reflectivity of the non-display area to the incident visible light from 0° to 10° is smaller than that of the display area to the incident visible light from 0° to 10°. This design can weaken the mirror effect of the non-display area and reduce the visual interference of the reflection of the non-display area , to ensure the safety and comfort of the driving process.
  • the difference between the reflectance of the display area for visible light incident at 0°-10° and the reflectance of the non-display area for visible light incident at 0°-10° is greater than or equal to 2%.
  • the display region has a reflectivity of 10% to 30% for visible light incident at 0° to 10°.
  • the non-display region has a reflectivity of 1%-15% for visible light incident at 0°-10°.
  • the reflectance of the non-display area for P-polarized light incident at 55°-75° is smaller than the reflectance of the display area for P-polarized light incident at 55°-75°.
  • the second surface further includes a transition area, the transition area is located between the display area and the non-display area; the reflectance of the transition area for visible light incident at 0°-10° is greater than that of the non-display area.
  • the reflectance of the display area to visible light incident at 0°-10° is smaller than the reflectance of the display area to visible light incident at 0°-10°.
  • the non-display area is bare laminated glass.
  • the non-display area is provided with a second nano-film
  • the second nano-film includes at least one second high-refractive-index layer and at least one second low-refractive-index layer sequentially arranged outward from the second surface.
  • the refractive index of the second high refractive index layer is 1.9 to 2.7
  • the refractive index of the second low refractive index layer is 1.3 to 1.8
  • the thickness of the second nano film is smaller than that of the first nano film thickness.
  • the thickness of the second high refractive index layer is smaller than the thickness of the first high refractive index layer.
  • the thickness of the second low refractive index layer is smaller than the thickness of the first low refractive index layer.
  • the first low-refractive index layer includes at least two first low-refractive-index sub-layers
  • the second low-refractive-index layer includes at least two second low-refractive-index sub-layers
  • the first low-refractive index The thickness of the first low-refractive index sub-layer farthest from the laminated glass in the index layer is greater than the thickness of the second low-refractive-index sub-layer farthest from the laminated glass in the second low-refractive index layer.
  • the first high-refractive index layer includes at least two first high-refractive-index sub-layers
  • the second high-refractive-index layer includes at least two second high-refractive-index sub-layers
  • the first high-refractive index The thickness of the first high refractive index sublayer closest to the laminated glass in the index layer is greater than the thickness of the second high refractive index sublayer closest to the laminated glass in the second high refractive index layer.
  • a value is less than or equal to 2
  • b value is less than or equal to 2.
  • the absolute value of the difference between the a value of the color of the display area and the a value of the color of the non-display area is less than or equal to 2;
  • the absolute value of the difference between the b-values of the colors is less than or equal to 2.
  • the head-up display glass further includes one or more of an anti-fingerprint film, a thermal insulation film, an electric heating film, an anti-ultraviolet film, and an anti-fog film.
  • the non-display area is provided with a second nano-film
  • the second nano-film includes at least one second high-refractive-index layer and at least one second low-refractive-index layer sequentially arranged outward from the second surface.
  • the refractive index of the second high refractive index layer is 1.9-2.7
  • the refractive index of the second low refractive index layer is 1.3-1.8
  • the second nano film is different from the first nano film.
  • the second nanofilm is different from the first nanofilm in at least one of material, layer arrangement and layer thickness.
  • each layer of the second nano-membrane are the same as those of the first nano-membrane, and each layer has at least one difference in thickness.
  • the first nano-film or the second nano-film is prepared by a film removal method or a non-uniform coating method, and the film removal method includes one or more of a dry etching method, a wet method, and a masking method. kind.
  • the first nano-film is prepared by first forming a second nano-film in the display area and the non-display area, and then removing the second nano-film in the display area by a film-removing method; or, the first nano-film
  • the second nano film is prepared by first forming the first nano film in the display area and the non-display area, and then removing the first nano film in the non-display area by a film removal method.
  • the present application provides a head-up display system, including a projection unit and the head-up display glass as described in the first aspect; the projection unit is used to generate P-polarized light, and the P-polarized light is incident on the display district.
  • the head-up display system provided by the second aspect of the present application adopts the head-up display glass of the present application, so the imaging is clear, the visual interference is less, and it has high safety and comfort.
  • FIG. 1 is a schematic structural diagram of a head-up display glass provided in an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a laminated glass provided in an embodiment of the present application.
  • Figure 3 is a schematic structural view of a nanomembrane provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural view of a nanomembrane provided by another embodiment of the present application.
  • Figure 5 is a schematic structural view of a nanomembrane provided by another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a head-up display glass provided in another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a head-up display glass provided in another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a nanomembrane structure provided by an embodiment of the present application.
  • Fig. 9 is a schematic diagram of a nanomembrane structure provided by another embodiment of the present application.
  • Fig. 10 is a schematic diagram of a nanomembrane structure provided by another embodiment of the present application.
  • Fig. 11 is a schematic diagram of the partition of the second surface of the laminated glass provided in an embodiment of the present application.
  • Fig. 12 is a schematic diagram of the partition of the second surface of the laminated glass provided in another embodiment of the present application.
  • Fig. 13 is a schematic diagram of the partition of the second surface of the laminated glass provided in another embodiment of the present application.
  • Fig. 14 is a schematic diagram of the partition of the second surface of the laminated glass provided in another embodiment of the present application.
  • Fig. 15 is a schematic diagram of the partition of the second surface of the laminated glass provided in another embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a head-up display glass provided in another embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a head-up display system provided by an embodiment of the present application.
  • Refractive index refers to the refractive index of a material when the wavelength of transmitted light is 550 nm.
  • the visible light reflectance refers to the visible light reflectance when the incident angle is 0° to 10° (ie, at normal incidence).
  • Outward from the second surface refers to a direction away from the laminated glass body from the second surface of the laminated glass.
  • FIG. 1 is a schematic structural diagram of a head-up display glass provided in an embodiment of the present application.
  • the head-up display glass includes a laminated glass 10, and the laminated glass 10 includes a first surface 10-1 and a second surface 10-2 opposite to each other. , the second surface 10 - 2 of the laminated glass 10 is provided with a nano film 20 .
  • Fig. 2 is a structural schematic view of a laminated glass provided in an embodiment of the present application.
  • the outer glass plate 11 has a first surface 11-1 and a second surface 11-2, wherein the first surface 11-1 of the outer glass plate is the first surface 10-1 of the laminated glass;
  • the inner glass plate 13 has The first surface 13-1 and the second surface 13-2, wherein the first surface 13-1 of the inner glass plate is the second surface 10-2 of the laminated glass; and the second surface 11-2 of the outer glass plate 11 and The second surface 13 - 2 of the inner glass plate 13 is adhesively fixed to the two surfaces of the middle layer 12 respectively.
  • the first surface 13-1 of the inner glass plate 13 is located inside the window (inside the car), that is, the second surface 10-2 of the laminated glass 10 is located inside the window; the outer glass plate
  • the first surface 11-1 of the laminated glass 11 is located outside the window (outside of the vehicle), that is, the first surface 10-1 of the laminated glass 10 is located outside the window.
  • the nano film 20 is disposed on the first surface 13 - 1 of the inner glass plate 13 .
  • the nanomembrane includes at least one high-refractive index layer and at least one low-refractive-index layer alternately stacked, wherein the refractive index of the high-refractive index layer is greater than or equal to 1.9, and the refractive index of the low-refractive index layer is less than or equal to Equal to 1.8.
  • FIG. 3 is a schematic structural diagram of a nanomembrane provided by an embodiment of the present application.
  • the nano-film 20 includes a high-refractive-index layer 21 and a low-refractive-index layer 22 that are sequentially stacked along the external direction, wherein the external direction is the direction outward from the second surface of the laminated glass.
  • the nano film with the above structure can effectively improve the reflectivity of the head-up display glass to P polarized light while satisfying the good light transmittance of the head-up display glass, and improve the definition of images.
  • the high refractive index layer includes a high refractive index material, wherein the refractive index of the high refractive index material is greater than or equal to 1.9, and the specific refractive index of the high refractive index material can be but not limited to 1.9, 2.0, 2.1, 2.2 , 2.3, 2.4, 2.5, 2.6, 2.7 or higher.
  • the nano-film can have excellent mechanical, chemical and thermal stability, and ensure that the nano-film has a long service life.
  • the nano-film can further improve the P Reflectivity of polarized light and optimization of other optical indicators.
  • the refractive index of the high refractive index material is 1.9-2.7.
  • the high-refractive-index layer includes multiple high-refractive-index sub-layers, and the high-refractive-index sub-layers may be, but not limited to, 2, 3, 4 or 5 layers.
  • Fig. 4 is the structural schematic diagram of the nano-membrane that another embodiment of the present application provides, in Fig.
  • nano-membrane 20 comprises high refractive index layer 21 and low refractive index layer 22, wherein, high refractive index layer 21 comprises The high refractive index sub-layer 21 a and the high refractive index sub-layer 21 b, the high refractive index sub-layer 21 a is closer to the second surface 10 - 2 of the laminated glass 10 .
  • the refractive index of the high refractive index sub-layer 21a is 1.9-2.2
  • the refractive index of the high refractive index sub-layer 21b is greater than or equal to 2.3.
  • the high-refractive-index layer includes two or more high-refractive-index sub-layers, wherein the refractive index of any high-refractive-index sub-layer is closer to the second surface 10-2 of the laminated glass 10 than the other
  • the refractive index of the high-refractive-index sub-layer is larger, for example, the high-refractive-index layer includes three high-refractive-index sub-layers, and the three high-refractive-index sub-layers are respectively High refractive index sublayer a, high refractive index sublayer b and high refractive index sublayer c, wherein, high refractive index sublayer a is close to the inner glass plate, high refractive index sublayer c is close to the low refractive index layer, then the high refractive index The refractive index of the sub-layer b is greater than that of the high-refractive-index sub-layer a, and the refractive index of the high-refractive-index
  • the high refractive index material includes oxides of at least one element among Zn, Sn, Ti, Nb, Zr, Ni, In, Al, Ce, W, Mo, Sb, and Bi. In some embodiments of the present application, the high refractive index material includes nitride or oxynitride of at least one element among Si, Al, Zr, Y, Ce, and La. In some embodiments of the present application, the high refractive index material has a refractive index greater than or equal to 2.35, wherein the high refractive index material can be selected from one or more of TiOx , TiOxNy or doped TiOx .
  • the refractive index of the high refractive index material is greater than or equal to 1.9 and less than or equal to 2.35, wherein the high refractive index material can be selected from ZnSnO x , Si 3 N 4 , ZnO or AZO (aluminum-doped zinc oxide) one or more of.
  • the low refractive index layer includes a low refractive index material, wherein the refractive index of the low refractive index material is less than or equal to 1.8, and the refractive index of the low refractive index material can be but not limited to 1.8, 1.7, 1.6, 1.55 , 1.4, 1.3 or lower.
  • the nano-membrane can have excellent mechanical, chemical and thermal stability, and ensure that the nano-membrane has a long service life. Reflectivity of P polarized light and optimization of other optical indicators.
  • the low refractive index material has a refractive index of 1.3-1.8.
  • the low-refractive-index layer includes multiple low-refractive-index sub-layers, and the low-refractive-index sub-layers may be, but not limited to, 2, 3, 4 or 5 layers.
  • the low refractive index material has a refractive index less than or equal to 1.55, wherein the low refractive index material may be selected from one or more of SiO 2 , Al 2 O 3 or MgF 2 .
  • the low refractive index material includes a material with an anti-reflection function, and the material with an anti-reflection function may be porous SiO 2 or porous Al 2 O 3 .
  • the low refractive index layer is a film layer with a graded refractive index, such as a moth-eye film or a graded film.
  • Fig. 5 is a schematic structural diagram of a nanofilm provided in another embodiment of the present application, wherein the nanofilm includes two high-refractive-index layers and two low-refractive-index layers, and the high-refractive-index layer and the low-refractive-index layer
  • the layers are stacked in sequence, that is, the high refractive index layer 21, the low refractive index layer 22, the high refractive index layer 23, and the low refractive index layer 24 are stacked in sequence.
  • the head-up display glass In the process of driving, in order to ensure safe driving, the head-up display glass should have a clear imaging effect, so that the driver can obtain driving information, and at the same time, the head-up display glass should be able to clearly see the situation outside the car.
  • the nano - film of the present application has a higher reflectivity Rp to P-polarized light, so as to realize clear imaging in the display area. It has a high reflectivity, so when the head-up display glass is used as the front windshield of the car, the inner surface of the front windshield will produce a mirror effect, so that objects in the car will be reflected on the inner surface of the front windshield, and then Affect the driver's visual comfort and even affect driving safety.
  • the inventors of the present application improved the head-up display glass, so as to ensure that the head-up display glass can not only realize clear imaging but also have better visual effects.
  • the second surface of the laminated glass includes a display area (HUD area) and a non-display area (LR area), wherein the display area refers to the area where the projection unit projects P-polarized light, that is, displays driving information area; the non-display area is the area in the head-up display glass that does not need to display travel information.
  • the reflectance of the non-display area to visible light is smaller than the reflectance of the display area to visible light.
  • the display area on the second surface of the laminated glass is provided with a nano film, which can increase the reflectivity of the display area to P-polarized light, thereby presenting a clear head-up display image in front of the laminated glass.
  • the reflectivity of the display area to P-polarized light is greater than or equal to 10%, wherein the incident angle of P-polarized light is 55°-75°, and the incident angle of P-polarized light can be but not limited to 55° , 60°, 65°, 70° or 75°.
  • the reflectivity of the display area for P-polarized light may be, but not limited to, 10%, 13%, 15%, 20% or 25%.
  • the reflectance of the non-display area to the P-polarized light incident at 55°-75° is smaller than the reflectance of the display area to the P-polarized light incident at 55°-75°.
  • the visible light transmittance of the head-up display glass in the display area is greater than 70%, so as to ensure driving safety as much as possible.
  • the transmittance of the head-up display glass to visible light in the display area can be 50% to 70%, so that driving safety can be taken into account while improving the picture clarity in the display area.
  • the visible light transmittance of the head-up display glass in the non-display area is greater than or equal to 70%.
  • the reflectance of the display area to visible light is greater than or equal to 10%.
  • the reflectance R H of the display area to visible light is 10% to 30%. It can be, but not limited to, 10%, 15%, 20%, 25% or 30%.
  • the visible light reflectance of the non-display area is 1% ⁇ 15%.
  • the reflectance of visible light in the non-display area is 1% to 5%, and the reflectance of visible light in the non-display area may be, but not limited to, 1%, 2%, 3%, 4% or 5%;
  • the visible light reflectance of the non-display area is 6% to 8%, and the visible light reflectance of the non-display area can be but not limited to 6%, 7% or 8%; in some embodiments of the application, the non-display area
  • the visible light reflectance of the display area is 9%-15%, and the visible light reflectance of the non-display area can be but not limited to 9%, 10%, 11%, 12%, 13%, 14% or 15%.
  • the difference between the reflectance of visible light in the display area and the reflectance of visible light in the non-display area is greater than or equal to 2%.
  • the difference between the visible light reflectance of the display area and the visible light reflectance of the non-display area may be, but not limited to, 2%, 5%, 7%, 10% or 15%.
  • the greater the difference in visible light reflectance between the display area and the non-display area the higher the comfort of the head-up display glass and the clearer the image of the head-up display.
  • the non-display area of the second surface of the laminated glass is not provided with a nano-film, and the non-display area is bare laminated glass, that is, the second surface of the laminated glass is only provided with a nano-film in the display area, and the nano-film only covers the second surface of the laminated glass.
  • this structure can avoid the interference of the mirror image effect of the nano-film on the vision.
  • FIG. 6 is a structural schematic diagram of a head-up display glass provided in another embodiment of the present application. In FIG. The area of the two surfaces is 10-2.
  • the reflectance RL of the non-display area to visible light is the reflectance of the second surface of the laminated glass to visible light.
  • the reflectance of the second surface of the laminated glass to visible light is 6%-8%.
  • the reflectivity of the second surface of the laminated glass to visible light may be, but not limited to, 6%, 6.5%, 7% or 8%.
  • the non-display area is also provided with a nano-film.
  • the nano-film of the non-display area is different from the nano-film of the display area.
  • the nano-film has a certain reflective color, and the nano-film in the non-display area may destroy the consistency of the overall appearance and color of the glass, and also affect the visual effect of the head-up display glass.
  • the absolute value of the difference between the a-value of the color of the display area and the a-value of the color of the non-display area is less than or equal to 2, for example, when When the a value of the color of the display area is -3, the color of the non-display area is (-5) ⁇ (-1).
  • the absolute value of the difference between the b value of the color of the display area and the b value of the color of the non-display area is less than or equal to 2, for example, when the b value of the color of the display area is -8, the non-display The b value of the area color is (-10) to (-6).
  • the Lab value is based on the Lab color model, and the L value, a value, and b value correspond to L, a, and b in the Lab value (or Lab color value), L is the brightness channel, and a, b are two color channels .
  • the a value of the color of the display area and the a value of the color of the non-display area are less than or equal to 2, preferably, the a value of the color of the display area and the a value of the color of the non-display area (- 8) ⁇ 0; the b value of the color of the display area and the b value of the color of the non-display area are less than or equal to 2, preferably, the b value of the color of the display area and the b value of the color of the non-display area (-12) ⁇ 0.
  • the nano film in the range of ab value above presents a neutral color, which can make the head-up display glass have a better visual effect.
  • the nano-film in the display area is the first nano-film
  • the nano-film in the non-display area is the second nano-film
  • the second nano-film and the materials of each layer of the first nano-film , the arrangement of each layer, and the thickness of each layer have at least one difference.
  • the material and arrangement of each layer of the second nanofilm and the first nanofilm are the same, and that each layer thickness has at least one difference.
  • FIG. 7 is a schematic structural diagram of a head-up display glass provided in another embodiment of the present application.
  • nano film 20 comprises first nano film 20-1 and second nano film 20-2, and first nano film 20-1 is arranged on the display area of laminated glass second surface 10-2, and second nano film 20 -2 is arranged on the non-display area of the second surface 10-2 of the laminated glass.
  • the difference between the reflectivity of the first nanofilm to visible light and the reflectivity of the second nanofilm to visible light is greater than or equal to 2%. It can be understood that since the first nanofilm is arranged in the display area, the second nanofilm The two-nanometer film is arranged in the non-display area, so the difference between the reflectance R H of the display area for visible light and the reflectance R L of the non-display area for visible light is greater than or equal to 2%. The greater the difference between R H and RL , the better the visual effect of the head-up display glass.
  • the display area can clearly display driving information, and the non-display area can clearly see the situation outside the car.
  • the difference between the reflectance R H of the display area for visible light and the reflectance R L of the non-display area for visible light may be, but not limited to, 2%, 3%, 4%, 5%, 6% or higher.
  • the visible light reflectance of the display area is 16%
  • the visible light reflectance of the non-display area is 14%
  • the reflectance R H of the display area to visible light and the reflectance R L of the non-display area The difference is 2%.
  • the thickness of the second nano-film is smaller than the thickness of the first nano-film.
  • the first nano-film includes a first high-refractive index layer and a first low-refractive-index layer arranged in sequence from the second surface of the laminated glass
  • the second nano-film includes A second high-refractive index layer and a second low-refractive-index layer arranged in sequence, wherein the thickness of the second high-refractive-index layer is smaller than the thickness of the first high-refractive-index layer.
  • the thickness of the second low refractive index layer is smaller than the thickness of the first low refractive index layer.
  • FIG. 8 is a schematic diagram of a nanomembrane structure provided by an embodiment of the present application, wherein the nanomembrane includes a first nanomembrane 20-1 and a second nanomembrane 20-2, and the first nanomembrane 20-1 includes a second nanomembrane 20-1.
  • the second nano film 20-2 includes the second high refractive index layer 21-2 and the second low refractive index layer 22-2, wherein, the first The thickness of the second high refractive index layer 21-2 is smaller than that of the first high refractive index layer 21-1, and the thickness of the second low refractive index layer 22-2 is smaller than that of the first low refractive index layer 22-1.
  • the above-mentioned structural setting can effectively reduce the visible light reflectance of the second nanofilm, so that the visible light reflectance of the second nanofilm is lower than that of the first nanofilm, and the color difference between the first nanofilm and the second nanofilm is relatively small. Small.
  • the thickness of the first high refractive index layer refers to the sum of the thicknesses of the first high refractive index sublayers.
  • the thickness of the first low-refractive index layer refers to the sum of the thicknesses of the first low-refractive-index sub-layers.
  • the first low-refractive index layer includes at least two first low-refractive-index sub-layers
  • the second low-refractive-index layer includes at least two second low-refractive-index sub-layers
  • the first low-refractive index layer includes The thickness of the first low-refractive index sub-layer farthest from the laminated glass is greater than the thickness of the second low-refractive-index sub-layer farthest from the laminated glass in the second low-refractive index layer. Please refer to FIG. 9. FIG.
  • FIG. 9 is a schematic diagram of a nanomembrane structure provided in another embodiment of the present application, wherein the nanomembrane includes a first nanomembrane 20-1 and a second nanomembrane 20-2, and the first nanomembrane 20-1 includes The first high refractive index layer 21-1 and the first low refractive index layer 22-1, the first low refractive index layer 22-1 includes a first low refractive index sublayer 22a-1 and a first low refractive index sublayer 22b- 1.
  • the first low refractive index sublayer 22b-1 is far away from the laminated glass;
  • the second nanofilm 20-2 includes a second high refractive index layer 21-2 and a second low refractive index layer 22-2, and the second low refractive index layer 22-2 includes a second low refractive index sublayer 22a-2 and a second low refractive index sublayer 22b-2, the second low refractive index sublayer 22b-2 is far away from the laminated glass, and the second low refractive index sublayer 22b-2
  • the thickness is smaller than the thickness of the first low refractive index sub-layer 22b-1.
  • the first high-refractive index layer includes at least two first high-refractive-index sub-layers
  • the second high-refractive-index layer includes at least two second high-refractive-index sub-layers
  • the first high-refractive index layer The thickness of the first high refractive index sublayer closest to the laminated glass is greater than the thickness of the second high refractive index sublayer closest to the laminated glass in the second high refractive index layer. Please refer to FIG. 10. FIG.
  • FIG. 10 is a schematic diagram of a nanomembrane structure provided by another embodiment of the present application, wherein the nanomembrane includes a first nanomembrane 20-1 and a second nanomembrane 20-2, and the first nanomembrane 20-1 includes The first high refractive index layer 21-1 and the first low refractive index layer 22-1, the first high refractive index layer 21-1 includes a first high refractive index sublayer 21a-1 and a first high refractive index sublayer 21b- 1.
  • the first high-refractive-index sub-layer 21a-1 is close to the laminated glass;
  • the second nanofilm 20-2 includes a second high-refractive-index layer 21-2 and a second low-refractive-index layer 22-2, and the second high-refractive-index layer 21-2 includes a second high refractive index sublayer 21a-2 and a second high refractive index sublayer 21b-2, the second high refractive index sublayer 21a-2 is close to the laminated glass, and the second high refractive index sublayer 21a-2
  • the thickness is smaller than the thickness of the first high refractive index sub-layer 21a-1.
  • the visible light reflectance of the second nano-film can be lower than the visible light reflectance of the first nano-film, thereby realizing the head-up display
  • the combination of glass projection and low reflection improves driving safety and comfort.
  • the second surface of the laminated glass further includes a transition area, the transition area is located between the display area and the non-display area, and the reflectance of the transition area to visible light is greater than that of the non-display area to visible light and smaller than that of the display area. Reflectance of visible light. Setting a transition area between the display area and the non-display area can make the colors of the display area and the non-display area have a certain gradient, so that the head-up display glass has a good appearance coordination.
  • the reflectance of visible light in the transition zone may change regularly, for example, in the direction from the display area to the non-display area, the reflectance of visible light in the transition zone tends to decrease; the reflectance of visible light in the transition zone It can also vary irregularly.
  • the head-up display glass further includes one or more of an anti-fingerprint film, a heat insulation film, an electric heating film, an anti-ultraviolet film, and an anti-fog film.
  • the anti-fingerprint film is arranged on the second surface 10-2 of the laminated glass and covers at least the display area.
  • the anti-fingerprint film covers the display area and the non-display area to prevent fingerprints from contaminating the display area, thereby Ensure that the display area can achieve higher quality head-up display.
  • the heat insulating film may be arranged on the second surface of the outer glass plate of the laminated glass, the second surface of the inner glass plate of the laminated glass, or between the second surface of the outer glass plate and the second surface of the inner glass plate,
  • the heat insulation film can be single silver heat insulation film, double silver heat insulation film, triple silver heat insulation film, four silver heat insulation film, heat insulation/heat absorption PVB, heat insulation based on NiCr, TiN and other metal materials or non-metal materials
  • the heat insulation film can make the interior of the vehicle have better ride comfort.
  • the single silver heat insulation film, double silver heat insulation film, triple silver heat insulation film and four silver heat insulation film can be directly set on the interlayer through the magnetron sputtering deposition process
  • the second surface of the outer glass plate of the glass or the second surface of the inner glass plate of the laminated glass can also be arranged on the surface of the intermediate layer, the intermediate layer can be polyethylene terephthalate (PET), and then a single silver
  • PET polyethylene terephthalate
  • the middle layer of heat insulation film, double silver heat insulation film, triple silver heat insulation film, and quadruple silver heat insulation film is arranged between the second surface of the outer glass plate of the laminated glass and the second surface of the inner glass plate of the laminated glass.
  • the electric heating film is arranged on the second surface of the outer glass plate of the laminated glass, the second surface of the inner glass plate of the laminated glass, or the second surface of the outer glass plate and the second surface of the inner glass plate, and the electric heating The film can be any one of single silver electric heating film, double silver electric heating film, three silver electric heating film, four silver electric heating film, five silver electric heating film, through the second surface of the outer glass plate and the inner glass plate
  • At least two busbars are arranged between the second surface of the second surface, and the current of the power supply can be input into the electric heating film, so that the electric heating film heats up to heat the laminated glass to achieve defrosting, defogging and even deicing and snow removal.
  • single-silver electric heating film double-silver electric heating film, three-silver electric heating film, four-silver electric heating film, and five-silver electric heating film respectively refer to one silver layer, two silver layers, three silver layers, four A silver layer, a transparent nano-conductive film with five silver layers, in addition to the silver layer, the transparent nano-conductive film also includes at least two dielectric layers.
  • the heat-insulating/absorbing PVB and the anti-ultraviolet film can be arranged between the second surface of the outer glass plate and the second surface of the inner glass plate, and the heat-insulating/absorbing PVB and the anti-ultraviolet film can pass through the It is obtained by adding infrared-reflecting components, infrared-absorbing components and/or ultraviolet-absorbing components to standard PVB.
  • the anti-fog film is arranged on the second surface 10-2 of the laminated glass and covers at least the display area.
  • the anti-fog film covers the display area and the non-display area, and the anti-fog film can prevent interference such as water mist.
  • the display area realizes the head-up display function, and the anti-fog film can further reduce the influence of water mist on the sensor signals installed on the laminated glass, ensuring the recognition accuracy of cameras, laser radar and other sensors.
  • FIG. 11 is a schematic diagram of the partition of the second surface of the laminated glass provided in an embodiment of the present application.
  • the second surface of the laminated glass includes a display area 31 and a non-display area 32. of the middle.
  • Fig. 12 is a schematic diagram of the partition of the second surface of the laminated glass according to another embodiment of the present application. Display area 32 .
  • FIG. 14 is a schematic diagram of the division of the second surface of the laminated glass according to another embodiment of the present application.
  • the second surface includes a display area 31, a non-display area 32, and an The transition zone 33 between. Please refer to Fig. 15, Fig.
  • FIG. 15 is a schematic diagram of the division of the second surface of the laminated glass according to another embodiment of the present application.
  • the second surface includes two display areas 31 and three non-display areas 32, and the display area is located on the second surface middle area of .
  • the area of the display area is smaller than the area of the second surface of the inner glass plate, and the area of the display area can be adjusted according to requirements.
  • the area of the display area is greater than or equal to 25 mm 2 , and the area of the display area Specifically, it can be but not limited to 50mm 2 , 100mm 2 , 200mm 2 , 500mm 2 , 1000mm 2 , 5000mm 2 or 10000mm 2 , etc. If the area of the display area is less than 25mm 2 , the projected image will be smaller and the driving information that can be projected is less , causing inconvenience to use.
  • the area of the display area is greater than or equal to 500 mm 2 , and the area of the display area may be, for example, 120000 mm 2 .
  • the head-up display glass provided by the present application can present a clear image in the display area, while the non-display area has low reflectivity to visible light, thereby weakening the mirror effect, reducing reflections in the car, and realizing safe driving.
  • the head-up display glass of the present application can be prepared in a variety of ways.
  • the head-up display glass is prepared by thin film patterning method (film removal method). Remove the film, thereby reducing the thickness of a certain film layer, or directly remove a certain film layer.
  • the first nano-film can be prepared on the second surface of the laminated glass, the first nano-film is formed in the display area and the non-display area, and then the first nano-film in the non-display area is removed to make it conform to the non-display area. Requirements, and then prepare the second nano film in the non-display area.
  • the second nano-film can be prepared on the second surface of the laminated glass first, the second nano-film can be formed in the display area and the non-display area, and then the second nano-film in the display area can be removed and prepared to obtain The first nano film makes it meet the requirements of the display area.
  • the film removal method includes one or more of dry etching methods (such as laser, etc.), wet methods (such as etching paste, acid etching, etc.), masking methods (such as peelable glue, cover plates, etc.) kind.
  • dry etching methods such as laser, etc.
  • wet methods such as etching paste, acid etching, etc.
  • masking methods such as peelable glue, cover plates, etc.
  • the structure of the first nano film is ZnSnO x (38nm)/TiO 2 (52nm)/SiO 2 (115nm) ( ZnSnO x (38nm) is the side close to the glass), using the mask method to prepare head-up display glass, specifically including: using a cover plate to cover the non-display area, preparing the first nano-film in the display area, and removing the cover plate to obtain the head-up display Glass.
  • the second nanofilm is a film system of ZnSnO x (18nm)/SiO 2 (28nm)/ZnSnO x (102nm)/SiO 2 (90nm), and the second nanofilm is prepared simultaneously in the display area and the non-display area.
  • the laser is used to remove the film layer of the display area to obtain a display area without the second nano-film coverage, and then cover the non-display area with a cover plate to prepare the first nano-film in the display area.
  • the first nano-film The structure is: ZnSnO x (38nm)/TiO 2 (52nm)/SiO 2 (115nm), and the head-up display glass is obtained.
  • the first nanometer film is ZnSnO x (14.4nm)/TiO 2 (58.6nm)/SiO 2 (112.4nm) (ZnSnO x (14.4nm) is the side close to the glass), the second nanometer The film is ZnSnO x (14.4nm)/SiO 2 (112.4nm).
  • the preparation of the head-up display glass can be to deposit ZnSnO x film and TiO 2 film on the second surface of the laminated glass first, and then carry out the TiO 2 film on the non-display area. Partially remove the film, so that there is no TiO 2 film in the non-display area, and then deposit SiO 2 film in the display area and non-display area at the same time, and then obtain the head-up display glass.
  • the first nanofilm is ZnSnO x (38nm)/TiO 2 (52nm)/SiO 2 (115nm)
  • the second nanofilm is ZnSnO x (47nm)/TiO 2 (52nm)/SiO 2 ( 115nm)
  • the head-up display glass can be prepared by depositing 47nm ZnSnO x on the second surface of the laminated glass, using laser dry etching and other film removal methods to remove 9nm of ZnSnO x in the display area, and then TiO 2 (52nm) and SiO 2 (115nm), so that the first nano film is obtained in the display area, and the second nano film is obtained in the non-display area.
  • the head-up display glass can be prepared by first preparing the first nano-film on the second surface of the laminated glass, using etching paste or laser etching to remove 5nm-thick SiO2 in the non-display area to obtain the second nano-film .
  • a non-uniform coating method is used to prepare the head-up display glass. Since the area of the front windshield of a car is generally larger than 1.2m 2 , a larger coating chamber is required when vacuum coating methods such as sputtering are used, and the gas flowing into the coating chamber is distributed in a certain proportion, so it can be passed Change the ratio of air distribution to adjust the deposition thickness of the film layer, and then form different film layers on the surface of the laminated glass.
  • the first nanofilm is ZnSnO x (38nm)/TiO 2 (52nm)/SiO 2 (115nm)
  • the second nanofilm is ZnSnO x (38nm)/TiO 2 (52nm)/SiO 2 ( 105nm)
  • ZnSnO x (38nm) is the side close to the laminated glass
  • the preparation of the head-up display glass can be prepared by first preparing ZnSnO x (38nm) and TiO 2 (52nm) on the second surface of the laminated glass, and then preparing SiO 2
  • the display area is ventilated normally, and a SiO 2 film with a thickness of 115nm is formed on the surface of ZnSnO x (38nm)/TiO 2 (52nm), and the flow rate of oxygen is increased for the non-display area.
  • FIG. 16 is a schematic structural diagram of a head-up display glass provided in another embodiment of the present application, wherein the second nano-film 20-2 is located in the middle of the second surface 10-2 of the laminated glass 10, and the first nano-film 20-1 is located at the edge of the second surface 10-2 of the laminated glass 10.
  • the head-up display glass of this structure can be prepared by the non-uniform coating method. Since the gas in the middle of the coating cavity is distributed in a certain proportion, the second nanometer The thickness of the film has a certain transition, which is conducive to improving the consistency of the appearance of the head-up display glass.
  • the present application also provides a head-up display system, including a projection unit and the head-up display glass of the present application, the projection unit is used to generate P-polarized light, and the P-polarized light is incident to the display area.
  • FIG. 17 is a schematic structural diagram of a head-up display system provided in an embodiment of the present application.
  • the head-up display system includes a projection unit 200 and a head-up display glass 100 provided in this application.
  • the head-up display glass 100 includes a laminated glass 10 and a nano film 20.
  • the projection unit 200 is used to project relevant text and image information during driving, such as speed, engine revolutions, fuel consumption, tire pressure, dynamic navigation, night vision, real-scene map, etc., onto the head-up display glass, so that the eyes of the observed person 300 Received, specifically, the projection unit 200 can generate P polarized light, and the P polarized light A is incident on the nano film 20, and the nano film 20 can directly reflect part of the polarized light to form reflected light A1, which can be directly viewed by the observer's eyes 300 Receive, so that the observer can obtain the projected information; at the same time, because the non-display area of the application has a low reflectivity of visible light, the mirror effect is weak, so the non-display area can clearly see the situation outside the car, ensuring the safety of the driving process sex and comfort.
  • relevant text and image information such as speed, engine revolutions, fuel consumption, tire pressure, dynamic navigation, night vision, real-scene map, etc.
  • the incident angle of P polarized light incident on the nanofilm 20 is 55°-75°, and the reflectivity of the nanofilm 20 to P polarized light is greater than or equal to 10%, so as to realize the head-up display (HUD), and even enhance the Reality Heads Up Display (AR-HUD).
  • the position of the projection unit 200 and the incident angle of the P-polarized light can be adjusted according to the position and height of the observer.
  • the proportion of P-polarized light generated by the projection unit 200 is greater than or equal to 80%, more preferably greater than or equal to 90%, or even 100% is P-polarized light.
  • a method for preparing head-up display glass comprising:
  • the first glass plate transport the first glass plate into the coating production line, deposit 38nm thick ZnSnOx film, 52nm thick TiO2 film, 115nm thick SiO2 film on the surface of the first glass plate in sequence to form the first nanometer film ;
  • the first nano film in the non-display area is etched by laser to remove the film, so that the non-display area retains a 10nm thick ZnSnO x film to obtain the second nano film;
  • the structure of the first nano film in the display area is: ZnSnO x (38nm)/TiO 2 (52nm)/SiO 2 (115nm);
  • the structure of the second nano film in the non-display area is: ZnSnO x (10nm);
  • the first glass plate is used as the inner glass plate of the laminated glass, and Fuyao Group’s SG glass with a thickness of 2.1 mm is used as the outer glass plate, and the outer glass plate is made according to the high-temperature molding process of automobile glass And the inner glass plate is bent and formed, and the colorless PVB film with a thickness of 0.76 mm is prepared for preliminary lamination with the bent outer glass plate and the inner glass plate.
  • the nano-film of the first glass plate is far away from the PVB film, and then passed through the autoclave. High-pressure bonding to obtain head-up display glass.
  • a method for preparing head-up display glass comprising:
  • the first glass plate transport the first glass plate into the coating production line, deposit 38nm thick ZnSnOx film, 52nm thick TiO2 film, 115nm thick SiO2 film on the surface of the first glass plate in sequence to form the first nanometer film ;
  • the structure of the first nano film in the display area is: ZnSnO x (38nm)/TiO 2 (52nm)/SiO 2 (115nm);
  • Non-display area bare glass surface
  • the first glass plate is used as the inner glass plate of the laminated glass, and the Fuyao Group’s SG glass with a thickness of 2.1 mm is used as the outer glass plate.
  • the outer glass plate and the inner glass plate are bent and formed according to the high-temperature molding process of automobile glass, and the thickness is 0.76 mm.
  • the thickness of the colorless PVB film is preliminarily laminated with the bent outer glass plate and the inner glass plate.
  • the nano-film of the first glass plate is far away from the PVB film, and then the head-up display glass is obtained after high-pressure lamination in an autoclave.
  • a method for preparing head-up display glass comprising:
  • the first glass plate transport the first glass plate into the coating production line, deposit a 14.4nm thick ZnSnO x film on the surface of the first glass plate, use the cover plate to cover the non-display area, and deposit 58.6nm thick TiO on the display area 2 film, after removing the cover plate, deposit a 112.4nm thick SiO2 film on the display area and non-display area to form the first nano film and the second nano film;
  • the structure of the first nano film in the display area is: ZnSnO x (14.4nm)/TiO 2 (58.6nm)/SiO 2 (112.4nm);
  • the structure of the second nano film in the non-display area is: ZnSnO x (14.4nm)/SiO 2 (112.4nm);
  • the first glass plate is used as the inner glass plate of the laminated glass, and the Fuyao Group’s SG glass with a thickness of 2.1 mm is used as the outer glass plate.
  • the outer glass plate and the inner glass plate are bent and formed according to the high-temperature molding process of automobile glass, and the thickness is 0.76 mm.
  • the thickness of the colorless PVB film is preliminarily laminated with the bent outer glass plate and the inner glass plate.
  • the nano-film of the first glass plate is far away from the PVB film, and then the head-up display glass is obtained after high-pressure lamination in an autoclave.
  • a method for preparing head-up display glass comprising:
  • the TiO 2 film is prepared by the non-uniform coating method, and the distribution ratio of oxygen in the coating chamber is adjusted by controlling the oxygen flow rate, and TiO 2 films with different thicknesses are deposited on the surface of the ZnSnO x /SiO 2 film, and the thickness of the TiO 2 film in the display area is 60nm , the thickness of the TiO 2 film in the non-display area is 70nm, and the thickness of the TiO 2 film in the transition area is greater than 60nm and less than 70nm.
  • the structure of the first nano film in the display area is:
  • the structure of the nanomembrane in the transition zone is:
  • the structure of the second nano film in the non-display area is:
  • the first glass plate is used as the inner glass plate of the laminated glass, and the Fuyao Group’s SG glass with a thickness of 2.1 mm is used as the outer glass plate.
  • the outer glass plate and the inner glass plate are bent and formed according to the high-temperature molding process of automobile glass, and the thickness is 0.76 mm.
  • the thickness of the colorless PVB film is preliminarily laminated with the bent outer glass plate and the inner glass plate.
  • the nano-film of the first glass plate is far away from the PVB film, and then the head-up display glass is obtained after high-pressure lamination in an autoclave.
  • a method for preparing head-up display glass comprising:
  • the first glass plate transport the first glass plate into the coating production line, deposit 10nm thick TiO 2 film, 45nm thick SiO 2 film and 20nm thick TiO 2 film on the surface of the first glass plate in sequence, and use a cover plate to cover In the non-display area, a 150nm-thick SiO2 film, a 46.5nm-thick TiO2 film and a 110nm-thick SiO2 film are sequentially deposited in the display area, and the cover plate is removed to obtain the first nano-film and the second nano-film;
  • the structure of the first nano film in the display area is: TiO 2 (10nm)/SiO 2 (45nm)/TiO 2 (20nm)/SiO 2 (150nm)/TiO 2 (46.5nm)/SiO 2 (110nm);
  • the structure of the second nano film in the non-display area is: TiO 2 (10nm)/SiO 2 (45nm)/TiO 2 (20nm);
  • the first glass plate is used as the inner glass plate of the laminated glass, and the green glass of Fuyao Group with a thickness of 2.1 mm is used as the outer glass plate.
  • the outer glass plate and the inner glass plate are bent and formed according to the high-temperature molding process of automobile glass, and the thickness is 0.76 mm.
  • the thickness of the colorless PVB film is preliminarily laminated with the bent outer glass plate and the inner glass plate.
  • the nano-film of the first glass plate is far away from the PVB film, and then the head-up display glass is obtained after high-pressure lamination in an autoclave.
  • a method for preparing head-up display glass comprising:
  • the first glass plate transport the first glass plate into the coating production line, cover the non-display area with peelable glue, deposit 30nm-thick ZnSnOx and 30nm-thick TiO2 film in sequence, and use porous SiO2 sol Rafa prepares a porous SiO2 layer in the display area (using a mask method to cover the unpartitioned side surface of the first glass plate to ensure that the porous SiO2 layer is only formed in the display area), and removes the peelable adhesive.
  • the structure of the first nano film in the display area is: ZnSnO x (30nm)/TiO 2 (30nm)/porous SiO 2 (110nm);
  • the non-display area is: bare glass surface
  • the second glass plate is provided, and the second glass plate is colorless glass with a thickness of 2.1mm.
  • a double-silver heat-insulating film is deposited on the second glass plate.
  • the structure of the double-silver heat-insulating film is: ZnSnO x (23nm)/AZO( 10nm)/Ag(9.7nm)/AZO(15nm)/ ZnSnOx (67nm)/AZO(10nm)/Ag(9.0nm)/AZO(10nm)/ ZnSnOx (28.5nm).
  • the first glass plate is used as the inner glass plate of the laminated glass
  • the second glass plate is used as the outer glass plate.
  • the outer glass plate and the inner glass plate are bent and formed according to the high-temperature molding process of automobile glass, and a colorless PVB film with a thickness of 0.76 mm is prepared.
  • the outer glass plate and the inner glass plate after bending and forming are preliminarily combined.
  • the nano-film of the first glass plate is far away from the PVB film, and the double-silver heat-insulating film of the second glass plate is close to the PVB film, and then after high-pressure bonding in an autoclave , to obtain the head-up display glass, in which the refractive index of the porous SiO 2 layer is 1.383 after high-temperature molding.
  • the present application also provides effect examples.
  • the projection unit is a TFT-LCD projector with LED backlight, which can generate P polarized light, and adjust the position of the projection unit and the angle of incident light direction of the outgoing light
  • the display image that the observer can observe is the clearest.
  • the P-polarized light is kept incident, and the P-polarized light is incident at an incident angle of 60°, and the reflectance of the head-up display glass to P-polarized light is measured, and the reflectance of the head-up display glass to visible light is measured.
  • the chromaticity [Lab (CIE)] of the display area and the non-display area of the head-up display glass of Examples 1-6 was tested by a chromaticity tester, wherein, a represents the red-green magenta index, and b represents the yellow-blue magenta index.
  • CIE chromaticity tester
  • the method for preparing the head-up display glass provided by the present application can obtain a display area with a higher reflectance of P polarized light and a non-display area with a lower reflectance of visible light on the surface of the laminated glass. Therefore, while ensuring clear imaging in the display area, the mirror effect of the non-display area is weakened, visual interference is reduced, and driving safety and comfort are improved.
  • the head-up display glass provided by this application can also be combined with functions such as heat insulation.
  • adding double silver films to the laminated glass can not only improve the heat insulation performance of the head-up display glass, but also not affect the head-up display image in the display area. Excellent display quality, ensuring that the head-up display glass also has a good head-up display function.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Instrument Panels (AREA)
  • Optical Filters (AREA)

Abstract

一种抬头显示玻璃,包括夹层玻璃(10),夹层玻璃(10)包括相背的第一表面(10-1)和第二表面(10-2),第二表面(10-2)包括显示区(31)和非显示区(32),显示区(31)设有第一纳米膜(20-1),第一纳米膜(20-1)包括自第二表面(10-2)向外依次层叠设置的至少一个第一高折射率层(21-1)和至少一个第一低折射率层(22-1),第一高折射率层(21-1)的折射率为1.9~2.7,第一低折射率层(22-1)的折射率为1.3~1.8。显示区(31)对55°~75°入射的P偏振光的反射率大于或等于10%,非显示区(32)对0°~10°入射的可见光的反射率小于显示区(31)对0°~10°入射的可见光的反射率。这种抬头显示玻璃不仅成本低并且抬头显示的图像清晰、玻璃的视觉干扰少,从而保证行车过程中驾驶的安全性和舒适性。还提供了一种抬头显示系统。

Description

一种抬头显示玻璃及其抬头显示系统
本申请要求2021年10月21日递交的发明名称为“一种抬头显示玻璃及其抬头显示系统”的申请号202111230958.6的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请涉及抬头显示技术领域,具体涉及一种抬头显示玻璃及其抬头显示系统。
背景技术
抬头显示(HUD,Head Up Display)在汽车上应用越来越广泛,车载抬头显示系统是利用光学反射的原理将重要的行车信息反映到前挡风玻璃上。现有的前挡风玻璃中,为实现抬头显示的功能多采用楔形结构的聚乙烯醇缩丁醛酯(PVB)层作为挡风玻璃的中间层,然而楔形结构的PVB层制备工艺复杂、造价高,并且适用性差,对于不同的车型需采用不同规格的PVB层。因此,有必要提供一种新型抬头显示玻璃,以解决现有抬头显示玻璃成本高、适用性差的问题。
发明内容
有鉴于此,本申请提供了一种抬头显示玻璃,该抬头显示玻璃不仅成本低并且抬头显示的图像清晰、玻璃的视觉干扰少,从而保证行车过程中驾驶的安全性和舒适性。
本申请第一方面提供了一种抬头显示玻璃,包括夹层玻璃,所述夹层玻璃包括相背的第一表面和第二表面,所述第二表面包括显示区和非显示区;
所述显示区设有第一纳米膜,所述第一纳米膜包括自所述第二表面向外依次层叠设置的至少一个第一高折射率层和至少一个第一低折射率层,所述第一高折射率层的折射率为1.9~2.7,所述第一低折射率层的折射率为1.3~1.8;
所述显示区对55°~75°入射的P偏振光的反射率大于或等于10%,所述非显示区对0°~10°入射的可见光的反射率小于所述显示区对0°~10°入射的可见光的反射率。
本申请的抬头显示玻璃在显示区设置纳米膜,使显示区对P偏振光具有较高的反射率,从而保证显示区能够呈现清晰的成像。非显示区对0°~10°入射的可见光的反射率小于显示区对0°~10°入射的可见光的反射率,该设计可以削弱非显示区的镜面效果,降低非显示区倒影的视觉干扰,保证驾驶过程的安全性和舒适性。
可选的,所述显示区对0°~10°入射的可见光的反射率与所述非显示区对0°~10°入射的可见光的反射率的差值大于或等于2%。
可选的,所述显示区对0°~10°入射的可见光的反射率为10%~30%。
可选的,所述非显示区对0°~10°入射的可见光的反射率为1%~15%。
可选的,所述非显示区对55°~75°入射的P偏振光的反射率小于所述显示区对55°~75°入射的P偏振光的反射率。
可选的,所述第二表面还包括过渡区,所述过渡区位于所述显示区和所述非显示区之间; 所述过渡区对0°~10°入射的可见光的反射率大于非显示区对0°~10°入射的可见光的反射率且小于显示区对0°~10°入射的可见光的反射率。
可选的,所述非显示区为裸露的夹层玻璃。
可选的,所述非显示区设有第二纳米膜,所述第二纳米膜包括自所述第二表面向外依次设置的至少一个第二高折射率层和至少一个第二低折射率层,所述第二高折射率层的折射率为1.9~2.7,所述第二低折射率层的折射率为1.3~1.8;所述第二纳米膜的厚度小于所述第一纳米膜的厚度。
可选的,所述第二高折射率层的厚度小于所述第一高折射率层的厚度。
可选的,所述第二低折射率层的厚度小于所述第一低折射率层的厚度。
可选的,所述第一低折射率层包括至少两个第一低折射率子层,所述第二低折射率层包括至少两个第二低折射率子层,所述第一低折射率层中最远离所述夹层玻璃的第一低折射率子层的厚度大于所述第二低折射率层中最远离所述夹层玻璃的第二低折射率子层的厚度。
可选的,所述第一高折射率层包括至少两个第一高折射率子层,所述第二高折射率层包括至少两个第二高折射率子层,所述第一高折射率层中最靠近所述夹层玻璃的第一高折射率子层的厚度大于所述第二高折射率层中最靠近所述夹层玻璃的第二高折射率子层的厚度。
可选的,所述显示区和所述非显示区的颜色的Lab值中:a值小于或等于2,b值小于或等于2。
可选的,所述显示区的颜色的a值与所述非显示区的颜色的a值的差值的绝对值小于或等于2;所述显示区的颜色的b值与所述非显示区的颜色的b值的差值的绝对值小于或等于2。
可选的,所述抬头显示玻璃还包括抗指纹膜、隔热膜、电加热膜、抗紫外线膜、防雾膜中的一种或多种。
可选的,所述非显示区设有第二纳米膜,所述第二纳米膜包括自所述第二表面向外依次设置的至少一个第二高折射率层和至少一个第二低折射率层,所述第二高折射率层的折射率为1.9~2.7,所述第二低折射率层的折射率为1.3~1.8;所述第二纳米膜与所述第一纳米膜不相同。
可选的,所述第二纳米膜与所述第一纳米膜的各层材料、各层排布、各层厚度具有至少一个不同。
可选的,所述第二纳米膜与所述第一纳米膜的各层材料和各层排布相同,且各层厚度具有至少一个不同。
可选的,所述第一纳米膜或所述第二纳米膜采用除膜法或非均匀镀膜法制备,所述除膜法包括干刻法、湿法、掩模法中的一种或多种。
可选的,所述第一纳米膜通过先在显示区和非显示区形成第二纳米膜、再对显示区的第二纳米膜采用除膜法进行除膜并制备得到;或者,所述第二纳米膜通过先在显示区和非显示区形成第一纳米膜、再对非显示区的第一纳米膜采用除膜法进行除膜并制备得到。
第二方面,本申请提供了一种抬头显示系统,包括投影单元和如第一方面所述的抬头显示玻璃;所述投影单元用于产生P偏振光,所述P偏振光入射至所述显示区。
本申请第二方面提供的抬头显示系统由于采用本申请的抬头显示玻璃故成像清晰,并且视觉干扰少,具有较高的安全性和舒适性。
附图说明
图1为本申请一实施方式提供的抬头显示玻璃的结构示意图;
图2为本申请一实施方式提供的夹层玻璃的结构示意图;
图3为本申请一实施方式提供的纳米膜的结构示意图;
图4为本申请另一实施方式提供的纳米膜的结构示意图;
图5为本申请另一实施方式提供的纳米膜的结构示意图;
图6为本申请另一实施方式提供的抬头显示玻璃的结构示意图;
图7为本申请另一实施方式提供的抬头显示玻璃的结构示意图;
图8为本申请一实施方式提供的纳米膜结构示意图;
图9为本申请另一实施方式提供的纳米膜结构示意图;
图10为本申请另一实施方式提供的纳米膜结构示意图;
图11为本申请一实施方式提供的夹层玻璃第二表面分区示意图;
图12为本申请另一实施方式提供的夹层玻璃第二表面分区示意图;
图13为本申请另一实施方式提供的夹层玻璃第二表面分区示意图;
图14为本申请另一实施方式提供的夹层玻璃第二表面分区示意图;
图15为本申请另一实施方式提供的夹层玻璃第二表面分区示意图;
图16为本申请另一实施方式提供的抬头显示玻璃的结构示意图;
图17为本申请一实施方式提供的抬头显示系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为便于理解,关于本申请的一些名词解释如下:折射率指的是透射光波长为550nm时材料的折射率。可见光反射率指的是入射角为0°~10°时(即垂直入射时)的可见光反射率。自第二表面向外指的是由夹层玻璃的第二表面向远离夹层玻璃本体的方向。
请参阅图1,图1为本申请一实施方式提供的抬头显示玻璃的结构示意图,抬头显示玻璃包括夹层玻璃10,夹层玻璃10包括相背的第一表面10-1和第二表面10-2,夹层玻璃10的第二表面10-2设有纳米膜20。请参阅图2,图2为本申请一实施方式提供的夹层玻璃的结构示意图,夹层玻璃10包括外玻璃板11、内玻璃板13、以及设置在外玻璃板11和内玻璃板13之间的中间层12,外玻璃板11具有第一表面11-1和第二表面11-2,其中外玻璃板的第一表面11-1即为夹层玻璃的第一表面10-1;内玻璃板13具有第一表面13-1和第二表面13-2,其中内玻璃板的第一表面13-1即为夹层玻璃的第二表面10-2;并且外玻璃板11的第二表面11-2和内玻璃板13的第二表面13-2分别粘接固定在中间层12的两个表面。本申请的抬头显示玻璃在应用时,内玻璃板13的第一表面13-1位于车窗内侧(汽车车内),即夹层玻璃10的第二表面10-2位于车窗内侧;外玻璃板11的第一表面11-1位于车窗外侧(汽车外),即夹层玻璃10的第一表面10-1位于车窗外侧。本申请实施方式中,纳米膜20设置在内玻璃板13的第一表面13-1上。
本申请实施方式中,纳米膜包括交替层叠设置的至少一个高折射率层和至少一个低折射率层,其中,高折射率层的折射率大于或等于1.9,低折射率层的折射率小于或等于1.8。请参阅图3,图3为本申请一实施方式提供的纳米膜的结构示意图。在抬头显示玻璃中,纳米膜20包括沿外部方向依次层叠设置的高折射率层21和低折射率层22,其中,外部方向即为自夹层 玻璃的第二表面向外的方向。采用上述结构的纳米膜能够在满足抬头显示玻璃良好的透光性的同时,有效地提高抬头显示玻璃对P偏振光的反射率,提高图像的清晰度。
本申请实施方式中,高折射率层包括高折射率材料,其中,高折射率材料的折射率大于或等于1.9,高折射率材料的折射率具体可以但不限于为1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7或更高。通过合理地设计高折射率层的材料和厚度能够使纳米膜具有优秀的机械、化学和热稳定性,保证纳米膜具有较长的使用寿命,除此之外,还可以进一步提升纳米膜对P偏振光的反射率以及优化其他光学指标。本申请一些实施方式中,高折射率材料的折射率为1.9~2.7。本申请一些实施方式中,高折射率层包括多个高折射率子层,高折射率子层具体可以但不限于为2层、3层、4层或5层。请参阅图4,图4为本申请另一实施方式提供的纳米膜的结构示意图,图4中,纳米膜20包括高折射率层21和低折射率层22,其中,高折射率层21包括高折射率子层21a和高折射率子层21b,高折射率子层21a更靠近夹层玻璃10的第二表面10-2。本申请一些实施方式中,高折射率子层21a的折射率为1.9~2.2,高折射率子层21b的折射率大于或等于2.3。本申请一些实施方式中,高折射率层包括两个及两个以上的高折射率子层,其中任一高折射率子层的折射率比其他更靠近夹层玻璃10的第二表面10-2的高折射率子层的折射率更大,例如高折射率层包括三个高折射率子层,三个高折射率子层沿远离夹层玻璃10的第二表面10-2的方向上分别为高折射率子层a、高折射率子层b和高折射率子层c,其中,高折射率子层a靠近内玻璃板,高折射率子层c靠近低折射率层,则高折射率子层b的折射率大于高折射率子层a的折射率,且高折射率子层c的折射率大于高折射率子层b的折射率。
本申请一些实施方式中,高折射率材料包括Zn、Sn、Ti、Nb、Zr、Ni、In、Al、Ce、W、Mo、Sb、Bi中的至少一种元素的氧化物。本申请一些实施方式中,高折射率材料包括Si、Al、Zr、Y、Ce、La中的至少一种元素的氮化物或氮氧化物。本申请一些实施方式中,高折射率材料的折射率大于或等于2.35,其中,高折射率材料可以选自TiO x,TiO xN y或掺杂的TiO x中的一种或多种。本申请一些实施方式中,高折射率材料的折射率大于或等于1.9且小于或等于2.35,其中,高折射率材料可以选自ZnSnO x、Si 3N 4、ZnO或AZO(掺铝氧化锌)中的一种或多种。
本申请实施方式中,低折射率层包括低折射率材料,其中,低折射率材料的折射率小于或等于1.8,低折射率材料的折射率具体可以但不限于为1.8、1.7、1.6、1.55、1.4、1.3或更低。通过合理地设计低折射率层的材料和厚度,能够使纳米膜具有优秀的机械、化学和热稳定性,保证纳米膜具有较长的使用寿命,除此之外,还可以进一步提升纳米膜对P偏振光的反射率以及优化其他光学指标。本申请一些实施方式中,低折射率材料的折射率为1.3~1.8。本申请一些实施方式中,低折射率层包括多个低折射率子层,低折射率子层具体可以但不限于为2层、3层、4层或5层。本申请一些实施方式中,低折射率材料的折射率小于或等于1.55,其中,低折射率材料可以选自SiO 2、Al 2O 3或MgF 2中的一种或多种。本申请一些实施方式中,低折射率材料包括具有减反功能的材料,具有减反功能的材料可以是多孔SiO 2或多孔Al 2O 3。本申请一些实施方式中,低折射率层为具有渐变折射率的膜层,如蛾眼膜、渐变膜。
本申请一些实施方式中,高折射率层和低折射率层的数量均为多个,即纳米膜包括至少两个高折射率层和至少两个低折射率层。请参阅图5,图5为本申请另一实施方式提供的纳米膜的结构示意图,其中,纳米膜包括两个高折射率层和两个低折射率层,并且高折射率层和低折射率层依次层叠,即高折射率层21、低折射率层22、高折射率层23、低折射率层24依次层叠。
在行车过程中,为保证安全驾驶,抬头显示玻璃应具有清晰的成像效果,以便于驾驶员获取行车信息,同时抬头显示玻璃应能够清晰的看到车外的情况。本申请的纳米膜对P偏振光具有较高的反射率R p,从而能够实现在显示区清晰的成像,然而当纳米膜具有较高的P偏振光反射率R p时,纳米膜对可见光也具有较高的反射率,因此将抬头显示玻璃作为汽车的前挡风玻璃时,前挡风玻璃的内表面会产生镜面效果,使得车内物体在前挡风玻璃的内表面上产生倒影,进而影响驾驶员的视觉舒适性甚至影响驾驶安全性。为解决上述问题,本申请发明人对抬头显示玻璃进行改进,从而保证抬头显示玻璃既能实现清晰成像又具有较好的视觉效果。本申请的抬头显示玻璃中,夹层玻璃的第二表面包括显示区(HUD区)和非显示区(LR区),其中,显示区指的是投影单元投射P偏振光的区域,即显示行车信息的区域;非显示区即为抬头显示玻璃中无需显示行程信息的区域。本申请实施方式中,非显示区对可见光的反射率小于显示区对可见光的反射率。
本申请实施方式中,夹层玻璃的第二表面的显示区设有纳米膜,该纳米膜能够提高显示区对P偏振光的反射率,进而在夹层玻璃的前方呈现清晰的抬头显示图像。本申请实施方式中,显示区对P偏振光的反射率大于或等于10%,其中,P偏振光的入射角为55°~75°,P偏振光的入射角具体可以但不限于为55°、60°、65°、70°或75°。本申请中,显示区对P偏振光的反射率具体可以但不限于为10%、13%、15%、20%或25%。本申请实施方式中,非显示区对55°~75°入射的P偏振光的反射率小于显示区对55°~75°入射的P偏振光的反射率。
本申请一些实施方式中,抬头显示玻璃在显示区对可见光的透过率大于70%,这样可以尽可能保证驾驶安全性。本申请一些实施方式中,考虑到显示区只占据抬头显示玻璃的部分区域,故即使显示区具有较高的可见光反射率和较低的可见光透射率,其对整个抬头显示玻璃的视觉影响较小,抬头显示玻璃在显示区对可见光的透过率可以是50%~70%,这样可以在提高显示区画面清晰度的同时兼顾驾驶安全性。本申请实施方式中,抬头显示玻璃在非显示区对可见光的透过率大于或等于70%。
本申请实施方式中,显示区对可见光的反射率大于或等于10%,本申请一些实施方式中,显示区对可见光的反射率R H为10%~30%,显示区对可见光的反射率具体可以但不限于为10%、15%、20%、25%或30%。本申请实施方式中,非显示区的可见光反射率为1%~15%。本申请一些实施方式中,非显示区的可见光反射率为1%~5%,非显示区的可见光反射率具体可以但不限于为1%、2%、3%、4%或5%;本申请一些实施方式中,非显示区的可见光反射率为6%~8%,非显示区的可见光反射率具体可以但不限于为6%、7%或8%;本申请一些实施方式中,非显示区的可见光反射率为9%~15%,非显示区的可见光反射率具体可以但不限于为9%、10%、11%、12%、13%、14%或15%。
本申请中,显示区的可见光的反射率与非显示区的可见光的反射率的差值大于或等于2%。显示区的可见光的反射率与非显示区的可见光的反射率的差值具体可以但不限于为2%、5%、7%、10%或15%。显示区与非显示区的可见光反射率差值越大,则抬头显示玻璃的舒适度越高且抬头显示的成像越清晰。
本申请一些实施方式中,夹层玻璃第二表面的非显示区不设置纳米膜,非显示区为裸露的夹层玻璃,即夹层玻璃的第二表面仅在显示区设置纳米膜,纳米膜只覆盖第二表面的局部区域,该结构可避免纳米膜镜像效果对视觉的干扰。请参阅图6,图6为本申请另一实施方式提供的抬头显示玻璃的结构示意图,图6中,夹层玻璃10的第二表面10-2设有纳米膜20,纳米膜20的面积小于第二表面10-2的面积。当非显示区为裸露的夹层玻璃时,非显示区的对可见光的反射率RL即为夹层玻璃的第二表面对可见光的反射率。本申请实施方式中, 夹层玻璃的第二表面对可见光的反射率为6%~8%。夹层玻璃的第二表面对可见光的反射率具体可以但不限于为6%、6.5%、7%或8%。
本申请一些实施方式中,非显示区也设有纳米膜,为了保证非显示区的可见光反射率小于显示区的可见光反射率,非显示区的纳米膜与显示区的纳米膜并不相同,由于纳米膜具有一定反射颜色,非显示区的纳米膜可能会破坏玻璃整体外观颜色的一致性,也会影响抬头显示玻璃的视觉效果。为消除显示区和非显示区之间的色差,本申请一些实施方式中,显示区的颜色的a值与非显示区的颜色的a值的差值的绝对值小于或等于2,例如,当显示区颜色的a值为-3时,非显示区的颜色为(-5)~(-1)。本申请一些实施方式中,显示区的颜色的b值与非显示区的颜色的b值的差值的绝对值小于或等于2,例如,当显示区颜色的b值为-8时,非显示区颜色的b值为(-10)~(-6)。显示区与非显示区颜色的a值的差值绝对值以及显示区与非显示区颜色的b值的差值绝对值越小,则显示区与非显示区的色差越小,抬头显示玻璃的外观一致性较好。其中,Lab值是基于Lab颜色模型,L值、a值和b值分别对应Lab值(或称Lab颜色值)中的L、a和b,L为亮度通道,a、b为两个颜色通道。本申请一些实施方式中,显示区的颜色的a值和非显示区的颜色的a值小于或等于2,优选的,显示区的颜色的a值和非显示区的颜色的a值为(-8)~0;显示区的颜色的b值和非显示区的颜色的b值小于或等于2,优选的,显示区的颜色的b值和非显示区的颜色的b值为(-12)~0。上述ab值范围的纳米膜呈现出中性色,可以使抬头显示玻璃具有较好的视觉效果。
本申请中,当非显示区设有纳米膜时,显示区的纳米膜为第一纳米膜,非显示区的纳米膜为第二纳米膜;第二纳米膜与第一纳米膜的各层材料、各层排布、各层厚度具有至少一个不同,为了便于生产制造,优选第二纳米膜与第一纳米膜的各层材料和各层排布相同,且各层厚度具有至少一个不同。本申请实施方式中,第一纳米膜对可见光的反射率大于第二纳米膜对可见光的反射率,第一纳米膜对P偏振光的反射率大于第二纳米膜对P偏振光的反射率。请参阅图7,图7为本申请另一实施方式提供的抬头显示玻璃的结构示意图。图7中,纳米膜20包括第一纳米膜20-1和第二纳米膜20-2,第一纳米膜20-1设置在夹层玻璃第二表面10-2的显示区,第二纳米膜20-2设置在夹层玻璃第二表面10-2的非显示区。第二纳米膜对可见光的反射率越低越有助于提高汽车行驶的安全性和舒适性。本申请一些实施方式中,第一纳米膜对可见光的反射率与第二纳米膜对可见光的反射率的差值大于或等于2%,可以理解的,由于第一纳米膜设置在显示区,第二纳米膜设置在非显示区,故显示区对可见光的反射率R H与非显示区对可见光的反射率R L的差值大于或等于2%。R H与R L的差值越大则抬头显示玻璃的视觉效果越好,显示区可以清晰地显示行车信息,非显示区可以清楚地看到车外的情况。显示区对可见光的反射率R H与非显示区对可见光的反射率R L的差值具体可以但不限于为2%、3%、4%、5%、6%或更高。本申请一些实施例中,显示区的可见光反射率为16%,非显示区的可见光反射率为14%,则显示区对可见光的反射率R H与非显示区对可见光的反射率R L的差值为2%。
本申请一些实施方式中,第二纳米膜的厚度小于第一纳米膜的厚度。第二纳米膜具有较薄的厚度时,第二纳米膜对可见光的反射率会降低。本申请一些实施方式中,第一纳米膜包括自夹层玻璃第二表面向外依次设置的第一高折射率层和第一低折射率层,第二纳米膜包括自夹层玻璃第二表面向外依次设置的第二高折射率层和第二低折射率层,其中,第二高折射率层的厚度小于第一高折射率层的厚度。本申请一些实施方式中,第二低折射率层的厚度小于第一低折射率层的厚度。请参阅图8,图8为本申请一实施方式提供的纳米膜结构示意图,其中,纳米膜包括第一纳米膜20-1和第二纳米膜20-2,第一纳米膜20-1包括第一高折 射率层21-1和第一低折射率层22-1,第二纳米膜20-2包括第二高折射率层21-2和第二低折射率层22-2,其中,第二高折射率层21-2的厚度小于第一高折射率层21-1的厚度,且第二低折射率层22-2的厚度小于第一低折射率层22-1的厚度。上述结构设置可以有效地减小第二纳米膜的可见光反射率,使第二纳米膜的可见光反射率低于第一纳米膜的可见光反射率,并且第一纳米膜与第二纳米膜的色差较小。
本申请中,当第一高折射率层含有多个第一高折射率子层时,第一高折射率层的厚度指的是第一高折射率子层的厚度之和,同样的,当第一低折射率层含有多个第一低折射率子层时,第一低折射率层的厚度指的是第一低折射率子层的厚度之和。本申请一些实施方式中,第一低折射率层包括至少两个第一低折射率子层,第二低折射率层包括至少两个第二低折射率子层,第一低折射率层中最远离夹层玻璃的第一低折射率子层的厚度大于第二低折射率层中最远离夹层玻璃的第二低折射率子层的厚度。请参阅图9,图9为本申请另一实施方式提供的纳米膜结构示意图,其中,纳米膜包括第一纳米膜20-1和第二纳米膜20-2,第一纳米膜20-1包括第一高折射率层21-1和第一低折射率层22-1,第一低折射率层22-1包括第一低折射率子层22a-1和第一低折射率子层22b-1,第一低折射率子层22b-1远离夹层玻璃;第二纳米膜20-2包括第二高折射率层21-2和第二低折射率层22-2,第二低折射率层22-2包括第二低折射率子层22a-2和第二低折射率子层22b-2,第二低折射率子层22b-2远离夹层玻璃,第二低折射率子层22b-2的厚度小于第一低折射率子层22b-1的厚度。
本申请一些实施方式中,第一高折射率层包括至少两个第一高折射率子层,第二高折射率层包括至少两个第二高折射率子层,第一高折射率层中最靠近夹层玻璃的第一高折射率子层的厚度大于第二高折射率层中最靠近夹层玻璃的第二高折射率子层的厚度。请参阅图10,图10为本申请另一实施方式提供的纳米膜结构示意图,其中,纳米膜包括第一纳米膜20-1和第二纳米膜20-2,第一纳米膜20-1包括第一高折射率层21-1和第一低折射率层22-1,第一高折射率层21-1包括第一高折射率子层21a-1和第一高折射率子层21b-1,第一高折射率子层21a-1靠近夹层玻璃;第二纳米膜20-2包括第二高折射率层21-2和第二低折射率层22-2,第二高折射率层21-2包括第二高折射率子层21a-2和第二高折射率子层21b-2,第二高折射率子层21a-2靠近夹层玻璃,第二高折射率子层21a-2的厚度小于第一高折射率子层21a-1的厚度。
本申请通过对第一纳米膜和第二纳米膜中高折射率层和低折射率层的厚度调整可以使第二纳米膜的可见光反射率低于第一纳米膜的可见光反射率,从而实现抬头显示玻璃投影和低反兼顾的效果,提高驾驶的安全性和舒适性。
本申请一些实施方式中,夹层玻璃的第二表面还包括过渡区,过渡区位于显示区和非显示区之间,过渡区对可见光的反射率大于非显示区对可见光的反射率且小于显示区对可见光的反射率。在显示区和非显示区之间设置过渡区可以使显示区和非显示区的颜色具有一定的渐变,从而使抬头显示玻璃具有良好的外观协调性。本申请实施方式中,过渡区的可见光的反射率可以是有规律的变化,如由显示区至非显示区的方向上,过渡区的可见光反射率为递减的趋势;过渡区中可见光的反射率也可以是无规律的变化。
本申请一些实施方式中,抬头显示玻璃还包括抗指纹膜、隔热膜、电加热膜、抗紫外线膜、防雾膜中的一种或多种。本申请一些实施方式中,抗指纹膜设置在夹层玻璃的第二表面10-2上且至少覆盖显示区,优选的,抗指纹膜覆盖显示区和非显示区以防止指纹等污染显示区,从而保证显示区能够更高质量地实现抬头显示。本申请实施方式中,隔热膜可以设置在夹层玻璃外玻璃板的第二表面、夹层玻璃内玻璃板的第二表面或外玻璃板的第二表面和 内玻璃板的第二表面之间,隔热膜可以是单银隔热膜、双银隔热膜、三银隔热膜、四银隔热膜、隔热/吸热PVB、基于NiCr、TiN等金属材料或非金属材料的隔热膜中的一种或多种,其中,单银隔热膜、双银隔热膜、三银隔热膜、四银隔热膜分别指具有一个银层、两个银层、三个银层、四个银层的透明纳米隔热膜,除了银层外,透明纳米隔热膜还包含至少两个介质层。隔热膜可以使车辆内部具有更好的乘坐舒适性,单银隔热膜、双银隔热膜、三银隔热膜、四银隔热膜可以通过磁控溅射沉积工艺直接设置在夹层玻璃外玻璃板的第二表面或夹层玻璃内玻璃板的第二表面,也可以设置在中间层表面,中间层可以是聚对苯二甲酸乙二醇酯(PET),再将设置有单银隔热膜、双银隔热膜、三银隔热膜、四银隔热膜的中间层设置在夹层玻璃外玻璃板的第二表面和夹层玻璃内玻璃板的第二表面之间。
本申请一些实施方式中,电加热膜设置在夹层玻璃外玻璃板的第二表面、夹层玻璃内玻璃板的第二表面或外玻璃板的第二表面和内玻璃板的第二表面,电加热膜可以是单银电加热膜、双银电加热膜、三银电加热膜、四银电加热膜、五银电加热膜中的任意一种,通过在外玻璃板的第二表面和内玻璃板的第二表面之间设置至少两个汇流母线,可以将供电电源的电流输入到电加热膜内,以使电加热膜发热从而对夹层玻璃进行加热以实现除霜、除雾甚至除冰除雪的功能,进一步提高驾驶安全性,并防止显示区受到环境干扰而无法实现抬头显示。其中,单银电加热膜、双银电加热膜、三银电加热膜、四银电加热膜、五银电加热膜分别指具有一个银层、两个银层、三个银层、四个银层、五个银层的透明纳米导电膜,除了银层外,透明纳米导电膜还包含至少两个介质层。
本申请一些实施方式中,隔热/吸热PVB和抗紫外线膜可以设置在外玻璃板的第二表面和内玻璃板的第二表面之间,隔热/吸热PVB和抗紫外线膜可以通过在标准PVB中添加反射红外线成分、吸收红外线成分和/或吸收紫外线成分得到。
本申请一些实施方式中,防雾膜设置在夹层玻璃的第二表面10-2且至少覆盖显示区,优选的,防雾膜覆盖显示区和非显示区,防雾膜能够防止水雾等干扰显示区实现抬头显示功能,防雾膜还可以进一步降低水雾对安装在夹层玻璃上的传感器信号的影响,保证相机、激光雷达等传感器的识别精度。
本申请中,显示区和非显示区的位置和大小可根据需求进行调整。请参阅图11,图11为本申请一实施方式提供的夹层玻璃第二表面分区示意图,图11中,夹层玻璃的第二表面包括显示区31和非显示区32,显示区31位于抬头显示玻璃的中部。请参阅图12,图12为本申请另一实施方式提供的夹层玻璃第二表面分区示意图,图12中,夹层玻璃的第二表面包括两个显示区31,显示区31以外的区域即为非显示区32。由于纳米膜对近处的物体镜面效果更明显,即靠近抬头显示玻璃内表面的物体产生的倒影更清楚,因此抬头显示玻璃底部设为非显示区,请参阅图13,图13为本申请另一实施方式提供的夹层玻璃第二表面分区示意图,图13中非显示区32设置在第二表面的底部。请参阅图14,图14为本申请另一实施方式提供的夹层玻璃第二表面分区示意图,图14中第二表面包括显示区31、非显示区32和位于显示区31和非显示区32之间的过渡区33。请参阅图15,图15为本申请另一实施方式提供的夹层玻璃第二表面分区示意图,图15中第二表面包括两个显示区31和三个非显示区32,显示区位于第二表面的中间区域。
本申请中,显示区的面积小于内玻璃板的第二表面的面积,显示区的面积可根据需求进行调整,本申请一些实施方式中,显示区的面积大于或等于25mm 2,显示区的面积具体可以但不限于为50mm 2、100mm 2、200mm 2、500mm 2、1000mm 2、5000mm 2或10000mm 2等,若显示区的面积小于25mm 2会导致投影图像较小,可投影的行车信息较少,造成使用不便。 本申请一些实施方式中,为实现增强现实抬头显示(AR-HUD),显示区的面积大于或等于500mm 2,显示区的面积例如可以是120000mm 2
本申请提供的抬头显示玻璃在显示区可以呈现出清晰的成像,而非显示区对可见光的反射率小,从而削弱镜面效果,减少车内倒影,实现安全的驾驶。
本申请的抬头显示玻璃可以有多种制备方法,本申请一些实施方式中,采用薄膜图案化法(除膜法)制备抬头显示玻璃,除膜法指的是对已制好的膜层进行局部除膜,从而减小某一膜层的厚度,或直接去除某一膜层。比如,可以先在夹层玻璃的第二表面制备第一纳米膜,在显示区和非显示区形成第一纳米膜,再对非显示区的第一纳米膜进行除膜使其符合非显示区的要求,然后再在非显示区制备第二纳米膜。本申请一些实施方式中,可以先在夹层玻璃的第二表面制备第二纳米膜,在显示区和非显示区形成第二纳米膜,再对显示区的第二纳米膜进行除膜并制备得到第一纳米膜,使其符合显示区的要求。
本申请实施方式中,除膜法包括干刻法(如激光等)、湿法(如蚀刻膏、酸刻等)、掩模法(如可剥胶、盖板等)中的一种或多种。在具体制备过程中,可根据膜的材料采用不同的除膜工艺,本申请一些实施方式中,第一纳米膜的结构为ZnSnO x(38nm)/TiO 2(52nm)/SiO 2(115nm)(ZnSnO x(38nm)为靠近玻璃的一侧),采用掩模法制备抬头显示玻璃,具体包括:采用盖板覆盖住非显示区,在显示区制备第一纳米膜,撤去盖板即得到抬头显示玻璃。本申请一些实施方式中,第二纳米膜为ZnSnO x(18nm)/SiO 2(28nm)/ZnSnO x(102nm)/SiO 2(90nm)的膜系,在显示区和非显示区同时制备第二纳米膜后采用激光对显示区的膜层进行除膜,得到没有第二纳米膜覆盖的显示区,然后用盖板覆盖住非显示区,在显示区制备第一纳米膜,第一纳米膜的结构为:ZnSnO x(38nm)/TiO 2(52nm)/SiO 2(115nm),得到抬头显示玻璃。
本申请一些实施方式中,第一纳米膜为ZnSnO x(14.4nm)/TiO 2(58.6nm)/SiO 2(112.4nm)(ZnSnO x(14.4nm)为靠近玻璃的一侧),第二纳米膜为ZnSnO x(14.4nm)/SiO 2(112.4nm),抬头显示玻璃的制备可以是先在夹层玻璃的第二表面沉积ZnSnO x膜和TiO 2膜,然后对非显示区的TiO 2膜进行局部除膜,使非显示区没有TiO 2膜,然后在显示区和非显示区同时沉积SiO 2膜,进而得到抬头显示玻璃。
本申请一些实施方式中,第一纳米膜为ZnSnO x(38nm)/TiO 2(52nm)/SiO 2(115nm),第二纳米膜为ZnSnO x(47nm)/TiO 2(52nm)/SiO 2(115nm),抬头显示玻璃的制备可以是先在夹层玻璃的第二表面沉积47nm的ZnSnO x,采用激光干刻等除膜方法,把显示区的ZnSnO x除去9nm,然后再进行TiO 2(52nm)和SiO 2(115nm)的制备,从而在显示区得到第一纳米膜,在非显示区得到第二纳米膜。
本申请一些实施方式中,第一纳米膜为ZnSnO x(38nm)/TiO 2(52nm)/SiO 2(115nm),第二纳米膜为ZnSnO x(38nm)/TiO 2(52nm)/SiO 2(110nm),抬头显示玻璃的制备可以是先在夹层玻璃的第二表面制备第一纳米膜,采用刻蚀膏或激光刻蚀的方法对非显示区除去5nm厚的SiO 2,得到第二纳米膜。
本申请一些实施方式中,采用非均匀镀膜法制备抬头显示玻璃。由于汽车的前挡风玻璃面积一般大于1.2m 2,如采用溅射等真空镀膜的方法时需要较大的镀膜腔体,而通入镀膜腔体的气体是按照一定比例分布的,因此可以通过改变布气的比例从而调节膜层的沉积厚度,进而在夹层玻璃的表面形成不同的膜层。本申请一些实施方式中,第一纳米膜为ZnSnO x(38nm)/TiO 2(52nm)/SiO 2(115nm),第二纳米膜为ZnSnO x(38nm)/TiO 2(52nm)/SiO 2(105nm),其中,ZnSnO x(38nm)为靠近夹层玻璃的一侧,抬头 显示玻璃的制备可以是先在夹层玻璃的第二表面制备ZnSnO x(38nm)和TiO 2(52nm),在制备SiO 2膜时,对显示区正常通气,在ZnSnO x(38nm)/TiO 2(52nm)表面形成厚度为115nm的SiO 2膜,对非显示区则增加氧气的流量,在结束镀膜时,非显示区的SiO 2膜厚度小于显示区SiO 2膜的厚度,非显示区的SiO 2膜厚度为105nm。请参阅图16,图16为本申请另一实施方式提供的抬头显示玻璃的结构示意图,其中,第二纳米膜20-2位于夹层玻璃10第二表面10-2的中部位置,第一纳米膜20-1位于夹层玻璃10第二表面10-2的边部位置,该结构的抬头显示玻璃即可通过非均匀镀膜法制备,由于镀膜腔体中部的气体是按一定比例分布,故第二纳米膜的厚度具有一定的过渡,有利于提高抬头显示玻璃外观的一致性。
本申请还提供了一种抬头显示系统,包括投影单元和本申请的抬头显示玻璃,投影单元用于产生P偏振光,P偏振光入射至显示区。请参阅图17,图17为本申请一实施方式提供的抬头显示系统的结构示意图,抬头显示系统包括投影单元200和本申请提供的抬头显示玻璃100,抬头显示玻璃100包括夹层玻璃10和纳米膜20。投影单元200用于将行车过程中的相关文字和图像信息例如速度、发动机转数、油耗、胎压、动态导航、夜视、实景地图等投影到抬头显示玻璃上,从而被观察者的眼睛300所接收,具体地,投影单元200可产生P偏振光,P偏振光A入射到纳米膜20,纳米膜20可以直接反射部分偏振光形成反射光A1,反射光A1能够直接被观察者的眼睛300接收,从而使观察者获取投影的信息;同时由于本申请非显示区具有较低的可见光反射率,镜面效果较弱,故非显示区可以清晰地看到车外的情况,保证驾驶过程的安全性和舒适性。
本申请实施方式中,P偏振光入射到纳米膜20的入射角为55°~75°,纳米膜20对P偏振光的反射率大于或等于10%,从而实现抬头显示(HUD),甚至增强现实抬头显示(AR-HUD)。本申请实施方式中,投影单元200的位置和P偏振光的入射角可根据观察者的位置和高度进行调整。在本申请中,投影单元200产生的P偏振光的占比大于或等于80%,更优选大于或等于90%,甚至100%为P偏振光。
下面分多个实施例对本申请技术方案进行进一步的说明。
实施例1
一种抬头显示玻璃的制备方法,包括:
提供第一玻璃板,将第一玻璃板传输进镀膜生产线,在第一玻璃板表面依次沉积38nm厚的ZnSnO x膜、52nm厚的TiO 2膜、115nm厚的SiO 2膜,形成第一纳米膜;对非显示区的第一纳米膜采用激光进行刻蚀以除膜,使非显示区保留10nm厚的ZnSnO x膜,得到第二纳米膜;
显示区的第一纳米膜的结构为:ZnSnO x(38nm)/TiO 2(52nm)/SiO 2(115nm);
非显示区的第二纳米膜的结构为:ZnSnO x(10nm);
在第一玻璃板形成纳米膜后,以第一玻璃板作为夹层玻璃的内玻璃板,以福耀集团的厚度为2.1毫米的SG玻璃为外玻璃板,按照汽车玻璃高温成型工艺使外玻璃板和内玻璃板弯曲成型,准备0.76毫米厚度的无色PVB胶片与弯曲成型后的外玻璃板和内玻璃板进行初步合片,第一玻璃板的纳米膜远离PVB胶片,然后经过在高压釜中高压合片,得到抬头显示玻璃。
实施例2
一种抬头显示玻璃的制备方法,包括:
提供第一玻璃板,将第一玻璃板传输进镀膜生产线,在第一玻璃板表面依次沉积38nm厚的ZnSnO x膜、52nm厚的TiO 2膜、115nm厚的SiO 2膜,形成第一纳米膜;
采用默克蚀刻膏对非显示区的第一纳米膜进行刻蚀,除去非显示区的第一纳米膜,即非显示区为裸露的玻璃表面;
显示区的第一纳米膜的结构为:ZnSnO x(38nm)/TiO 2(52nm)/SiO 2(115nm);
非显示区:裸露的玻璃表面;
以第一玻璃板作为夹层玻璃的内玻璃板,以福耀集团的厚度为2.1毫米的SG玻璃为外玻璃板,按照汽车玻璃高温成型工艺使外玻璃板和内玻璃板弯曲成型,准备0.76毫米厚度的无色PVB胶片与弯曲成型后的外玻璃板和内玻璃板进行初步合片,第一玻璃板的纳米膜远离PVB胶片,然后经过在高压釜中高压合片,得到抬头显示玻璃。
实施例3
一种抬头显示玻璃的制备方法,包括:
提供第一玻璃板,将第一玻璃板传输进镀膜生产线,在第一玻璃板表面先沉积14.4nm厚的ZnSnO x膜,利用盖板遮挡住非显示区,在显示区沉积58.6nm厚的TiO 2膜,去掉盖板后在显示区和非显示区沉积112.4nm厚的SiO 2膜,形成第一纳米膜和第二纳米膜;
显示区的第一纳米膜的结构为:ZnSnO x(14.4nm)/TiO 2(58.6nm)/SiO 2(112.4nm);
非显示区的第二纳米膜的结构为:ZnSnO x(14.4nm)/SiO 2(112.4nm);
以第一玻璃板作为夹层玻璃的内玻璃板,以福耀集团的厚度为2.1毫米的SG玻璃为外玻璃板,按照汽车玻璃高温成型工艺使外玻璃板和内玻璃板弯曲成型,准备0.76毫米厚度的无色PVB胶片与弯曲成型后的外玻璃板和内玻璃板进行初步合片,第一玻璃板的纳米膜远离PVB胶片,然后经过在高压釜中高压合片,得到抬头显示玻璃。
实施例4
一种抬头显示玻璃的制备方法,包括:
提供第一玻璃板,将第一玻璃板传输进镀膜生产线,在第一玻璃板表面依次沉积25nm厚的ZnSnO x膜、10nm厚的SiO 2、70nm厚的TiO 2膜和110nm厚的SiO 2,采用非均匀镀膜法制备TiO 2膜,通过控制氧气流量调整镀膜腔体中氧气的分布比例,在ZnSnO x/SiO 2膜表面沉积不同厚度的TiO 2膜,其中显示区的TiO 2膜厚度为60nm,非显示区的TiO 2膜厚度为70nm,过渡区的TiO 2膜的厚度大于60nm且小于70nm。
显示区的第一纳米膜的结构为:
ZnSnO x(25nm)/SiO 2(10nm)/TiO 2(60nm)/SiO 2(110nm);
过渡区的纳米膜的结构为:
ZnSnO x(25nm)/SiO 2(10nm)/TiO 2(60-70nm)/SiO 2(110nm);
非显示区的第二纳米膜的结构为:
ZnSnO x(25nm)/SiO 2(10nm)/TiO 2(70nm)/SiO 2(110nm);
以第一玻璃板作为夹层玻璃的内玻璃板,以福耀集团的厚度为2.1毫米的SG玻璃为外玻璃板,按照汽车玻璃高温成型工艺使外玻璃板和内玻璃板弯曲成型,准备0.76毫米厚度的无色PVB胶片与弯曲成型后的外玻璃板和内玻璃板进行初步合片,第一玻璃板的纳米膜远离PVB胶片,然后经过在高压釜中高压合片,得到抬头显示玻璃。
实施例5
一种抬头显示玻璃的制备方法,包括:
提供第一玻璃板,将第一玻璃板传输进镀膜生产线,在第一玻璃板表面依次沉积10nm厚的TiO 2膜、45nm厚的SiO 2膜和20nm厚的TiO 2膜,采用盖板遮住非显示区,在显示区依次沉积150nm厚的SiO 2膜、46.5nm厚的TiO 2膜和110nm厚的SiO 2膜,去除盖板,得到第一纳米膜和第 二纳米膜;
显示区的第一纳米膜的结构为:TiO 2(10nm)/SiO 2(45nm)/TiO 2(20nm)/SiO 2(150nm)/TiO 2(46.5nm)/SiO 2(110nm);
非显示区的第二纳米膜的结构为:TiO 2(10nm)/SiO 2(45nm)/TiO 2(20nm);
以第一玻璃板作为夹层玻璃的内玻璃板,以福耀集团的厚度为2.1毫米的绿玻为外玻璃板,按照汽车玻璃高温成型工艺使外玻璃板和内玻璃板弯曲成型,准备0.76毫米厚度的无色PVB胶片与弯曲成型后的外玻璃板和内玻璃板进行初步合片,第一玻璃板的纳米膜远离PVB胶片,然后经过在高压釜中高压合片,得到抬头显示玻璃。
实施例6
一种抬头显示玻璃的制备方法,包括:
提供第一玻璃板,将第一玻璃板传输进镀膜生产线,用可剥胶遮挡非显示区,在显示区依次沉积30nm厚的ZnSnO x、30nm厚的TiO 2膜,采用多孔SiO 2溶胶通过提拉法在显示区制备多孔SiO 2层(利用掩模法遮盖第一玻璃板未分区的一侧表面,保证多孔SiO 2层只形成在显示区),去除可剥胶。
显示区的第一纳米膜的结构为:ZnSnO x(30nm)/TiO 2(30nm)/多孔SiO 2(110nm);
非显示区为:裸露的玻璃表面;
提供第二玻璃板,第二玻璃板是厚度为2.1mm的无色玻璃,在第二玻璃板上沉积双银隔热膜,双银隔热膜的结构为:ZnSnO x(23nm)/AZO(10nm)/Ag(9.7nm)/AZO(15nm)/ZnSnO x(67nm)/AZO(10nm)/Ag(9.0nm)/AZO(10nm)/ZnSnO x(28.5nm)。
以第一玻璃板作为夹层玻璃的内玻璃板,以第二玻璃板为外玻璃板,按照汽车玻璃高温成型工艺使外玻璃板和内玻璃板弯曲成型,准备0.76毫米厚度的无色PVB胶片与弯曲成型后的外玻璃板和内玻璃板进行初步合片,第一玻璃板的纳米膜远离PVB胶片,第二玻璃板的双银隔热膜靠近PVB胶片,然后经过在高压釜中高压合片,得到抬头显示玻璃,其中,多孔SiO 2层经高温成型后折射率为1.383。
效果实施例
为验证本申请制得的抬头显示玻璃的性能,本申请还提供了效果实施例。
1)将实施例1-6的抬头显示玻璃与投影单元组装为抬头显示系统,投影单元为LED背光的TFT-LCD投影机,可产生P偏振光,调节投影单元位置和出射光的角度入射方向使观察者能够观察到的显示图像达到最清晰。实施例1-6中保持P偏振光入射,P偏振光以60°的入射角入射,测量抬头显示玻璃对P偏振光的反射率,并测量抬头显示玻璃对可见光的反射率。采用色度测试仪对实施例1-6抬头显示玻璃显示区和非显示区的色度[Lab(CIE)]进行测试,其中,a表示红绿色品指数,b表示黄蓝色品指数。实施例1-6抬头显示玻璃的性质参数在表1中示出。
表1实施例1-6抬头显示玻璃的性质参数表
Figure PCTCN2022126733-appb-000001
Figure PCTCN2022126733-appb-000002
由表1可以看出,本申请的提供的抬头显示玻璃的制备方法可以在夹层玻璃表面得到具有较高P偏振光反射率的显示区和可见光反射率较低的非显示区。从而在保证显示区清晰成像同时,削弱非显示区的镜面效果,减少视觉干扰,提高驾驶的安全性和舒适性。同时,本申请提供的抬头显示玻璃还可以复合隔热等功能,如实施例6,在夹层玻璃中添加双银膜不仅可以提高抬头显示玻璃的隔热性能,而且不影响显示区的抬头显示图像的显示质量,保证抬头显示玻璃还具有良好的抬头显示功能。
本申请以上所列举的实施例均为描述抬头显示玻璃的结构组成,而如具体的膜层沉积工艺、参数以及抬头显示玻璃的具体制作工艺和参数均未描述,可以理解的是上述内容皆为本领域普通技术人员所熟知,故未描述的部分不影响本申请所要保护的范围。除此之外,本申请说明书的内容是本申请的优选实施方式,但并不能因此而理解为对本申请范围的限制。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种抬头显示玻璃,其特征在于,包括夹层玻璃,所述夹层玻璃包括相背的第一表面和第二表面,所述第二表面包括显示区和非显示区;
    所述显示区设有第一纳米膜,所述第一纳米膜包括自所述第二表面向外依次层叠设置的至少一个第一高折射率层和至少一个第一低折射率层,所述第一高折射率层的折射率为1.9~2.7,所述第一低折射率层的折射率为1.3~1.8;
    所述显示区对55°~75°入射的P偏振光的反射率大于或等于10%,所述非显示区对0°~10°入射的可见光的反射率小于所述显示区对0°~10°入射的可见光的反射率。
  2. 如权利要求1所述的抬头显示玻璃,其特征在于,所述显示区对0°~10°入射的可见光的反射率与所述非显示区对0°~10°入射的可见光的反射率的差值大于或等于2%。
  3. 如权利要求1所述的抬头显示玻璃,其特征在于,所述显示区对0°~10°入射的可见光的反射率为10%~30%,所述非显示区对0°~10°入射的可见光的反射率为1%~15%。
  4. 如权利要求1-3任一项所述的抬头显示玻璃,其特征在于,所述非显示区对55°~75°入射的P偏振光的反射率小于所述显示区对55°~75°入射的P偏振光的反射率。
  5. 如权利要求1-4任一项所述的抬头显示玻璃,其特征在于,所述第二表面还包括过渡区,所述过渡区位于所述显示区和所述非显示区之间;所述过渡区对0°~10°入射的可见光的反射率大于非显示区对0°~10°入射的可见光的反射率且小于显示区对0°~10°入射的可见光的反射率。
  6. 如权利要求1-5任一项所述的抬头显示玻璃,其特征在于,所述非显示区为裸露的夹层玻璃。
  7. 如权利要求1-5任一项所述的抬头显示玻璃,其特征在于,所述非显示区设有第二纳米膜,所述第二纳米膜包括自所述第二表面向外依次设置的至少一个第二高折射率层和至少一个第二低折射率层,所述第二高折射率层的折射率为1.9~2.7,所述第二低折射率层的折射率为1.3~1.8;所述第二纳米膜的厚度小于所述第一纳米膜的厚度。
  8. 如权利要求7所述的抬头显示玻璃,其特征在于,所述第二高折射率层的厚度小于所述第一高折射率层的厚度。
  9. 如权利要求7所述的抬头显示玻璃,其特征在于,所述第二低折射率层的厚度小于所述第一低折射率层的厚度。
  10. 如权利要求7-9任一项所述的抬头显示玻璃,其特征在于,所述第一低折射率层包括至少两个第一低折射率子层,所述第二低折射率层包括至少两个第二低折射率子层,所述第一低折射率层中最远离所述夹层玻璃的第一低折射率子层的厚度大于所述第二低折射率层中最远离所述夹层玻璃的第二低折射率子层的厚度。
  11. 如权利要求7-10任一项所述的抬头显示玻璃,其特征在于,所述第一高折射率层包括至少两个第一高折射率子层,所述第二高折射率层包括至少两个第二高折射率子层,所述第一高折射率层中最靠近所述夹层玻璃的第一高折射率子层的厚度大于所述第二高折射率层中最靠近所述夹层玻璃的第二高折射率子层的厚度。
  12. 如权利要求1-11任一项所述的抬头显示玻璃,其特征在于,所述显示区和所述非显示区的颜色的Lab值中:a值小于或等于2,b值小于或等于2。
  13. 如权利要求1-12任一项所述的抬头显示玻璃,其特征在于,所述显示区的颜色的a 值与所述非显示区的颜色的a值的差值的绝对值小于或等于2;所述显示区的颜色的b值与所述非显示区的颜色的b值的差值的绝对值小于或等于2。
  14. 如权利要求1-13任一项所述的抬头显示玻璃,其特征在于,所述抬头显示玻璃还包括抗指纹膜、隔热膜、电加热膜、抗紫外线膜、防雾膜中的一种或多种。
  15. 如权利要求1-5任一项所述的抬头显示玻璃,其特征在于,所述非显示区设有第二纳米膜,所述第二纳米膜包括自所述第二表面向外依次设置的至少一个第二高折射率层和至少一个第二低折射率层,所述第二高折射率层的折射率为1.9~2.7,所述第二低折射率层的折射率为1.3~1.8;所述第二纳米膜与所述第一纳米膜不相同。
  16. 如权利要求15所述的抬头显示玻璃,其特征在于,所述第二纳米膜与所述第一纳米膜的各层材料、各层排布、各层厚度具有至少一个不同。
  17. 如权利要求15所述的抬头显示玻璃,其特征在于,所述第二纳米膜与所述第一纳米膜的各层材料和各层排布相同,且各层厚度具有至少一个不同。
  18. 如权利要求15所述的抬头显示玻璃,其特征在于,所述第一纳米膜或所述第二纳米膜采用除膜法或非均匀镀膜法制备,所述除膜法包括干刻法、湿法、掩模法中的一种或多种。
  19. 如权利要求15所述的抬头显示玻璃,其特征在于,所述第一纳米膜通过先在显示区和非显示区形成第二纳米膜、再对显示区的第二纳米膜采用除膜法进行除膜并制备得到;或者,所述第二纳米膜通过先在显示区和非显示区形成第一纳米膜、再对非显示区的第一纳米膜采用除膜法进行除膜并制备得到。
  20. 一种抬头显示系统,其特征在于,包括投影单元和如权利要求1-19任一项所述的抬头显示玻璃;所述投影单元用于产生P偏振光,所述P偏振光入射至所述显示区。
PCT/CN2022/126733 2021-10-21 2022-10-21 一种抬头显示玻璃及其抬头显示系统 WO2023066378A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111230958.6 2021-10-21
CN202111230958.6A CN114035322B (zh) 2021-10-21 2021-10-21 一种抬头显示玻璃及其抬头显示系统

Publications (1)

Publication Number Publication Date
WO2023066378A1 true WO2023066378A1 (zh) 2023-04-27

Family

ID=80135174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126733 WO2023066378A1 (zh) 2021-10-21 2022-10-21 一种抬头显示玻璃及其抬头显示系统

Country Status (2)

Country Link
CN (1) CN114035322B (zh)
WO (1) WO2023066378A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114035322B (zh) * 2021-10-21 2023-11-03 福耀玻璃工业集团股份有限公司 一种抬头显示玻璃及其抬头显示系统
CN114815250A (zh) * 2022-03-22 2022-07-29 福建省万达汽车玻璃工业有限公司 抬头显示玻璃和抬头显示系统
JP2024516472A (ja) * 2022-05-19 2024-04-16 フーイャォ グラス インダストリー グループ カンパニー リミテッド ヘッドアップディスプレイ用ガラス及びヘッドアップディスプレイシステム
CN117460620A (zh) 2022-05-25 2024-01-26 法国圣戈班玻璃厂 具有反射元件的复合玻璃板
CN115343880B (zh) * 2022-07-29 2024-04-12 厦门天马微电子有限公司 一种显示模组和显示装置
CN115519981B (zh) * 2022-10-14 2023-11-24 福耀玻璃工业集团股份有限公司 车窗玻璃及其制备方法、车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267498A (zh) * 2014-10-14 2015-01-07 福耀玻璃工业集团股份有限公司 一种抬头显示系统
CN104267499A (zh) * 2014-10-14 2015-01-07 福耀玻璃工业集团股份有限公司 一种抬头显示系统
CN108973608A (zh) * 2017-06-02 2018-12-11 Agc株式会社 夹层玻璃
CN113071165A (zh) * 2021-04-16 2021-07-06 福耀玻璃工业集团股份有限公司 抬头显示玻璃和抬头显示系统
WO2021145387A1 (ja) * 2020-01-15 2021-07-22 Agc株式会社 ヘッドアップディスプレイシステム
CN114035322A (zh) * 2021-10-21 2022-02-11 福耀玻璃工业集团股份有限公司 一种抬头显示玻璃及其抬头显示系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245829U (zh) * 1988-09-27 1990-03-29
CN209368167U (zh) * 2018-11-07 2019-09-10 康得新光学膜材料(上海)有限公司 一种低反射率窗膜
CN113031276B (zh) * 2021-03-29 2022-05-10 福耀玻璃工业集团股份有限公司 一种抬头显示系统
CN113238377B (zh) * 2021-04-14 2022-10-28 福耀玻璃工业集团股份有限公司 一种抬头显示系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267498A (zh) * 2014-10-14 2015-01-07 福耀玻璃工业集团股份有限公司 一种抬头显示系统
CN104267499A (zh) * 2014-10-14 2015-01-07 福耀玻璃工业集团股份有限公司 一种抬头显示系统
CN108973608A (zh) * 2017-06-02 2018-12-11 Agc株式会社 夹层玻璃
WO2021145387A1 (ja) * 2020-01-15 2021-07-22 Agc株式会社 ヘッドアップディスプレイシステム
CN113071165A (zh) * 2021-04-16 2021-07-06 福耀玻璃工业集团股份有限公司 抬头显示玻璃和抬头显示系统
CN114035322A (zh) * 2021-10-21 2022-02-11 福耀玻璃工业集团股份有限公司 一种抬头显示玻璃及其抬头显示系统

Also Published As

Publication number Publication date
CN114035322A (zh) 2022-02-11
CN114035322B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
WO2023066378A1 (zh) 一种抬头显示玻璃及其抬头显示系统
JP7486602B2 (ja) ヘッドアップディスプレイ(hud)用プロジェクションアセンブリ
CN110520295B (zh) 具有导电涂层和抗反射涂层的用于平视显示器的复合玻璃板
JP7303873B2 (ja) p-偏光放射を用いるヘッドアップディスプレイ(HUD)のための投影設備
CN110520782B (zh) 具有p偏振辐射分量的平视显示器(HUD)的投影装置
JP7174847B2 (ja) p-偏光放射を用いるヘッドアップディスプレイ(HUD)のための投影設備
WO2022205916A1 (zh) 一种抬头显示系统
CN112513716A (zh) 用于平视显示器(HUD)的具有p偏振辐射的投影装置
WO2023116878A1 (zh) 一种镀膜玻璃及夹层玻璃
CN113238378B (zh) 一种抬头显示系统
CN111356949A (zh) 用于车辆的投影装置,包含侧玻璃
WO2024002332A1 (zh) 抬头显示玻璃及抬头显示系统
CN115519853B (zh) 车窗玻璃及其制备方法、车辆
WO2023134775A1 (zh) 夹层玻璃及抬头显示系统
WO2024078606A1 (zh) 车窗玻璃及其制备方法、车辆
JPH10139491A (ja) 低反射濃色グレ−ガラス
WO2023155316A1 (zh) 抬头显示玻璃及抬头显示系统
CN218805124U (zh) 挡风窗、显示装置和交通设备
JP7493092B2 (ja) p偏光放射線を用いるヘッドアップディスプレイ(HUD)のための投影設備
US20230415571A1 (en) Projection assembly for a head-up display (hud) with p-polarized radiation
WO2023130214A1 (zh) 挡风玻璃及挡风玻璃总成
WO2024066880A1 (zh) S偏振光透反膜、挡风窗、显示装置和交通设备
JP2023536238A (ja) p偏光放射線を用いるヘッドアップディスプレイ(HUD)のための投影設備
CN117289468A (zh) 抬头显示玻璃及抬头显示系统
JP2005263517A (ja) Hud用コンバイナー付き車両用ガラス板、およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022882983

Country of ref document: EP

Effective date: 20240304