WO2023066088A1 - 用于检测水套冷却储冰室中冰位的传感器组件 - Google Patents

用于检测水套冷却储冰室中冰位的传感器组件 Download PDF

Info

Publication number
WO2023066088A1
WO2023066088A1 PCT/CN2022/124664 CN2022124664W WO2023066088A1 WO 2023066088 A1 WO2023066088 A1 WO 2023066088A1 CN 2022124664 W CN2022124664 W CN 2022124664W WO 2023066088 A1 WO2023066088 A1 WO 2023066088A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
sleeve
conductive plug
storage compartment
ice storage
Prior art date
Application number
PCT/CN2022/124664
Other languages
English (en)
French (fr)
Inventor
阿贝干纳瓦登那·丹尼斯特
荣格·布伦特·阿尔登
韦梅尔·乔丹·安德鲁
卡尔·格雷戈里·斯科特
杰克逊·蒂莫西·雷
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to EP22882698.8A priority Critical patent/EP4421416A1/en
Priority to CN202280064180.2A priority patent/CN117999446A/zh
Publication of WO2023066088A1 publication Critical patent/WO2023066088A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice
    • F25C5/182Ice bins therefor
    • F25C5/187Ice bins therefor with ice level sensing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • G01F23/246Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid thermal devices
    • G01F23/247Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid thermal devices for discrete levels
    • G01F23/248Constructional details; Mounting of probes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/04Control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2700/00Sensing or detecting of parameters; Sensors therefor

Definitions

  • the present invention relates generally to ice making appliances, and more particularly to sensors for determining the level of ice within ice making appliances.
  • Ice-making appliances are appliances that are capable of forming and storing ice cubes for a variety of consumer uses. Some ice-making appliances are stand-alone or countertop appliances. These ice making appliances can be used individually to produce ice or ice cubes of various styles and/or sizes. Further, some independent ice-making appliances also include water dispensers or beverage dispensers. These appliances are capable of delivering water from a municipal water source or from a storage tank within the appliance to the consumer. Water (or liquid) can be cooled by stored ice cubes before being dispensed. For example, liquid may first flow through a water jacket around an ice storage container within the appliance.
  • the appliance also includes a method or means for determining when the ice storage container is full of ice. For example, when an auto ice program is in effect and ice is made automatically, a trigger needs to be triggered to alert the ice maker to stop making ice when the container is full, avoiding overfilling and potentially damaging the appliance.
  • the sensor is incorporated into the wall of an ice storage container, for example.
  • existing detection methods suffer from certain disadvantages. For example, in the presence of a water jacket, the temperature detector may be affected by the water in the water jacket and give false readings. Furthermore, maintenance of the temperature detector within the vessel wall (and thus possibly through the water jacket) is difficult and prone to leaks and damage.
  • a temperature sensing assembly having one or more features for accurately sensing the ice level within the ice bucket would be useful.
  • an ice making appliance may include: a cabinet defining an ice storage compartment; an ice maker disposed above the ice storage compartment and configured to form ice cubes; a water jacket at least partially surrounding the ice storage compartment; and a sensor assembly at least in part Arranged in the ice storage room.
  • the sensor assembly may include: a sleeve passing over the water jacket, the sleeve defining a first portion and a second portion, the first portion being disposed within the ice storage chamber; and a temperature sensor inserted into the second portion of the sleeve, wherein the temperature The sensor is configured to detect a temperature change inside the ice storage compartment.
  • a temperature sensing assembly for an ice storage compartment.
  • the temperature sensing assembly may include: a sleeve defining a first portion and a second portion; a conductive plug inserted into the first portion of the sleeve; and a thermistor inserted into the second portion of the sleeve, wherein the thermal The resistor contacts the conductive plug at the junction of the first part and the second part, and the conductive plug transfers heat between the interior of the ice storage compartment and the thermistor.
  • Figure 1 provides a perspective view of a stand-alone beverage appliance according to an exemplary embodiment of the present invention.
  • Figure 2 provides a perspective cross-sectional view of a stand-alone beverage appliance according to an exemplary embodiment of the present invention.
  • Figure 3 provides a perspective view of a beverage dispenser according to an exemplary embodiment of the present invention.
  • Figure 4 provides a side cross-sectional view of the stand-alone beverage appliance of Figure 1 showing the sensor assembly.
  • FIG. 5 provides a perspective view of the sensor assembly of FIG. 4 .
  • FIG. 6 provides a side cross-sectional view of the sensor assembly of FIG. 4 .
  • FIG. 7 provides a perspective cut-away view of the sensor assembly of FIG. 4 .
  • the appliance 10 includes a housing 12 that generally at least partially houses various other components of the appliance 10 therein.
  • Container 14 is also illustrated.
  • the container 14 defines a first storage space 16 for receiving and storing ice 18 therein. Therefore, the first storage space 16 may be called an ice storage container or an ice storage room.
  • a user of appliance 10 may access ice 18 within container 14 for consumption or other use.
  • the container 14 may include one or more side walls 20 and a bottom wall 22 (see FIG. 2 ), which together may define the first storage space 16 .
  • At least one side wall 20 may be formed from a transparent, see-through (ie, transparent or translucent) material, such as clear glass or plastic, such that a user can see into the first storage space 16 and thereby Observe the ice 18 in it.
  • container 14 is detachable by a user, such as from housing 12 . This facilitates easy access by the user to ice within the container 14 and may also provide access to the water tank 24 of the appliance 10 (see FIG. 2 ), for example.
  • the appliance 10 may be a stand-alone appliance and thus may not be connected to a refrigerator or other appliance. Additionally or alternatively, in an exemplary embodiment, such an appliance may or may not be connected to plumbing or another water source external to appliance 10, such as a refrigerator water supply. In some exemplary embodiments, water may be manually supplied to appliance 10 by a user, such as by pouring water into tank 24 .
  • the appliance 10 as described herein may include various features that allow the appliance 10 to be affordable and desirable to typical consumers.
  • a self-contained feature may reduce costs associated with appliance 10 and allow a consumer to place appliance 10 in any suitable desired location.
  • the only requirement to operate ice making appliance 10 may be access to a power source.
  • the container 14 may be fixed to or detachable from the appliance 10 to allow easy access to the ice and to allow the container 14 to be moved to a different location than the rest of the appliance 10 for the purpose of using the ice.
  • appliance 10 is configured to make ice cubes (as described herein), which are becoming increasingly popular with consumers.
  • appliance 10 may include water tank 24, as described above.
  • the water tank 24 may define a second storage space 26 for receiving and containing water.
  • the tank 24 may include one or more side walls 28 and a bottom wall 30 which together may define the second storage space 26 .
  • the water tank 24 may be disposed below the container 14 along a vertical V defined for the appliance 10, as shown.
  • water tank 24 may receive and store melt water from ice 18 that has melted in container 14 .
  • the water tank 24 (or second storage space 26 ) may be disposed at least partially around the container 14 (eg, as a water jacket).
  • appliance 10 may also include a pump 32 .
  • a pump 32 may be in fluid communication with the second storage space 26 .
  • water may flow from the second storage space 26 through an opening 31 defined in the tank 24 , such as in its side wall 28 , and may flow through piping to and through the pump 32 .
  • the pump 32 may actively flow water from the second storage volume 26 through the pump and out of the pump 32 .
  • Water actively flowing from the pump 32 may flow (eg, through suitable piping) to a storage container.
  • the storage container may define a third storage volume, which may be defined by one or more side walls and a bottom wall.
  • the third storage space may, for example, be in fluid communication with the pump 32 and thereby may receive water actively flowing from the tank 24 , such as by the pump 32 .
  • water may flow into the third storage space through an opening defined in the storage container.
  • the storage container and its third storage space may receive and contain water to be supplied to the ice maker 50 for ice making. Accordingly, the third storage space may be in fluid communication with the ice maker 50 . For example, water may flow from the third storage space to ice maker 50, such as through an opening and suitable piping.
  • a filter may be provided in fluid communication with the third storage space and the ice maker 50 . The filter may filter water when the water flows from the third storage space to the ice maker 50 .
  • Ice maker 50 typically receives water, such as from a storage container, and freezes the water to form ice 18 . While any suitable style of ice maker is within the scope and spirit of the invention, in the exemplary embodiment, ice maker 50 is a nugget ice maker, particularly a screw feeder ice maker. As shown, the ice maker 50 may include a case 52 into which water from the third storage space flows. Thus, the shell 52 is in fluid communication with the third storage space.
  • the housing 52 may include one or more side walls 54 defining an interior space 56 , and openings may be defined in the side walls 54 . Water can flow from the third storage space into the interior space 56 through an opening, such as via a suitable conduit.
  • the screw feeder 60 may be disposed at least partially within the housing 52 .
  • the screw feeder 60 may rotate.
  • Water within shell 52 may at least partially freeze due to heat exchange, such as with a refrigeration system as described herein.
  • the at least partially frozen water can be lifted out of the shell 52 by the screw feeder 60 .
  • at least partially frozen water may be directed by screw feeder 60 to and through extruder 62 .
  • Extruder 62 may extrude at least partially frozen water to form ice, such as ice cubes 18 .
  • the formed ice 18 may be provided to the container 14 by the ice maker 50 and may be received in the first storage space 16 .
  • ice 18 formed by screw feeder 60 and/or extruder 62 may be provided to container 14 .
  • the appliance 10 may include a chute 70 for guiding the ice 18 generated by the ice maker 50 to the first storage space 16 .
  • the chute 70 is disposed generally along the vertical V above the container 14 as shown. As a result, ice can slide down the chute 70 and fall into the storage space 16 of the container 14 .
  • the chute 70 may extend between the ice maker 50 and the container 14 and may include a body 72 defining a passage 74 therethrough.
  • Ice 18 may be directed from ice maker 50 , such as from screw feeder 60 and/or extruder 62 , to container 14 through channel 74 .
  • a sweeper 64 which may, for example, be connected to and rotates with the screw feeder, may contact ice emerging from the screw feeder 60 through the extruder 62 and direct the ice to the container 14 through the channel 74 .
  • ice maker 50 may include a sealed refrigeration system 80 .
  • a sealed refrigeration system 80 may be in thermal communication with the shell 52 to remove heat from the shell 52 and its interior space 56 to facilitate the freezing of water therein to form ice.
  • Hermetic refrigeration system 80 may include, for example, a compressor, a condenser, a throttling device, and an evaporator 88 .
  • Evaporator 88 may, for example, be in thermal communication with shell 52 to remove heat from interior space 56 and the water therein during operation of seal system 80 .
  • evaporator 88 may at least partially surround shell 52 .
  • evaporator 88 may be a tube that coils and contacts shell 52 , such as its side walls 54 .
  • refrigerant exits the evaporator 88 as a fluid in the form of superheated vapor and/or a vapor mixture.
  • the refrigerant Upon leaving the evaporator 88, the refrigerant enters the compressor where the pressure and temperature of the refrigerant increase such that the refrigerant becomes a superheated vapor.
  • the superheated steam from the compressor enters the condenser, where energy is transferred therefrom and condenses into a saturated liquid and/or a liquid-vapor mixture.
  • a throttling device which is used to regulate the flow rate of refrigerant therethrough.
  • the restrictive device may be a capillary.
  • the containment system 80 may additionally include a fan to facilitate heat transfer between the condenser and evaporator 88 . .
  • ice 18 may be ice cubes. Ice pellets are ice that is held or stored (ie, in the first storage space 16 of the container 14 ) at a temperature greater than the melting point of water, or greater than about thirty-two degrees Fahrenheit.
  • the ambient temperature of the environment surrounding container 14 may be a temperature greater than the melting point of water or greater than about thirty-two degrees Fahrenheit. In some embodiments, this temperature may be greater than forty degrees Fahrenheit.
  • the ice 18 held in the first storage space 16 may gradually melt. As the holding/storage temperature increases, the melting rate of the pellets increases. Accordingly, it may be advantageous to provide drainage features in the container to drain such melt water. Additionally and advantageously, in the exemplary embodiment, meltwater may be reused by appliance 10 to make ice.
  • FIG. 4 illustrates an example of a beverage dispenser 1 incorporating an ice-making appliance (eg, a stand-alone ice-making appliance 10) and a beverage cooling system 11 described below.
  • Beverage dispenser 1 may include an ice making appliance (eg, stand-alone ice making appliance 10 ), dispenser nozzle 2 , beverage container compartment 3 , ice container 4 (eg, container 14 ), and beverage cooling system 11 .
  • the beverage container compartment 3 may be configured to accommodate a container (such as a bottle or a can) containing a beverage (such as water or fruit juice) that the user wishes to cool and dispense through the dispenser nozzle 2 .
  • the beverage container compartment 3 may be located below the ice container 4 , such as container 14 , and may include a door 6 through which a user may enter the beverage container compartment 3 .
  • the ice container 4 may include a door 5 which may be opened and closed to allow access to the ice container 4 .
  • a single unit can be used to make ice, store ice, rapidly cool beverages, and dispense beverages to users.
  • the sensor assembly 200 will be described in detail with specific reference to FIGS. 4 to 7 .
  • the sensor assembly 200 may be used to detect the ice level within the ice storage compartment 16, for example.
  • the sensor assembly 200 may detect temperature changes within the ice storage compartment 16 as the ice level in the ice storage compartment 16 rises and thus reaches the sensor assembly 200 .
  • the sensor assembly 200 may be disposed at or near the ice storage compartment 16 and may communicate with the controller 100 disposed within the appliance 10 .
  • sensor assembly 200 may avoid false readings presented by additional attributes of appliance 10 .
  • temperature sensor or equivalent means any suitable type of temperature measurement system or device disposed at any suitable location for measuring a desired temperature.
  • temperature sensor 218 may be any suitable type of temperature sensor, such as a thermistor, thermocouple, resistance temperature detector, semiconductor-based integrated circuit temperature sensor, or the like. Additionally, the temperature sensor 218 may be located at any suitable location and may output a signal, such as a voltage, to the controller that is proportional to and/or indicative of the measured temperature.
  • a signal such as a voltage
  • appliance 10 may include any other suitable number, type, and location of temperature, humidity, and/or other sensors according to alternative embodiments.
  • Appliance 10 may include a water jacket 102 .
  • Water jacket 102 may at least partially surround ice storage compartment 16 .
  • Water jacket 102 may be a channel or pocket configured to store water or liquid therein.
  • the appliance 10 may include a beverage dispensing system and an ice maker 50 .
  • the beverage dispensing system may dispense water or liquid stored within the water jacket 102 .
  • the water jacket 102 may transfer heat between the water or liquid stored therein and the ice storage compartment 16 (or ice 18 stored therein).
  • the ice storage compartment 16 may include a first box (or inner box) 104 and a second box (or outer box) 106 . Ice 18 may be stored within first box 104 .
  • the first box 104 can be nested within the second box 106 .
  • the space between the first cartridge 104 and the second cartridge 106 may be referred to as a water jacket 102 .
  • water or liquid may completely fill the water jacket 102 .
  • the serpentine ductwork extends through the space between the first cassette 104 and the second cassette 106 .
  • one or more forms of thermal insulation may be present within the water jacket 102 (eg, around the serpentine piping).
  • sensor assembly 200 may be disposed at least partially above water jacket 102 (eg, along vertical V).
  • the sensor assembly 200 may include a sleeve 202 .
  • Sleeve 202 may be made of plastic, for example, and may optionally hold a temperature sensor (described below) to detect the temperature within ice storage compartment 16 .
  • sleeve 202 may be made of any suitable material.
  • sleeve 202 includes insulating material therein. Accordingly, the sleeve 202 can limit inadvertent temperature readings from undesired sources (eg, the water jacket 102).
  • sleeve 202 may be tubular (ie, sleeve 202 may have a circular cross-section). However, sleeve 202 may have any suitable cross-section such that a temperature sensor may be accommodated therein.
  • Sleeve 202 may include a first portion 204 and a second portion 206 .
  • first portion 204 and second portion 206 are perpendicular to each other.
  • the junction between the first portion 204 and the second portion 206 may form a right angle.
  • first portion 204 may be oriented vertically.
  • the first portion 204 may extend along the vertical direction V (eg, when the sleeve is in the installed position within the appliance 10 ).
  • the second portion 206 may be oriented horizontally.
  • the second portion 206 may extend along the transverse direction T (or lateral direction L).
  • sleeve 202 may have an "L" shape. It should be understood that the sleeve 202 may have any suitable shape, including any varying angles between the first portion 204 and the second portion 206 .
  • the sleeve 202 may also include a flange 208 .
  • the flange 208 may be disposed around the second portion 206 (eg, circumferentially around the second portion 206 ).
  • the flange 208 may be disposed near the junction between the first portion 204 and the second portion 206 .
  • a gap may be formed between the flange 208 and the first portion 204 .
  • sensor assembly 200 (and sleeve 202 ) may be installed within appliance 10 to detect the temperature within ice storage compartment 16 and send the detected temperature to controller 100 , wherein controller 100 determines that the ice storage compartment 16 is The amount of ice in chamber 16. Accordingly, the sleeve 202 is insertable from the interior of the appliance 10 into a receiving aperture in a wall (eg, an inner wall adjacent to the ice storage compartment 16 ). When the sleeve is fully inserted, the flange 208 may abut against the inner mounting wall.
  • a wall eg, an inner wall adjacent to the ice storage compartment 16
  • sensor assembly 200 may be disposed at least partially above water jacket 102 as briefly described above. However, at least a portion of flange 208 may contact ice storage compartment 16 (eg, first bin 104 ).
  • the sleeve 202 may include a tab 209 protruding from the flange 208 parallel to the second portion 206 . As best shown in FIG. 5 , tab 209 may project from flange 208 in transverse direction T (or axially relative to second portion 206 ). Additionally or alternatively, the tab 209 may protrude downwardly in the vertical direction V from the second portion 206 . The bottom surface of the tab 209 may be flat (eg, parallel to the top surface of the first cartridge 104). Thus, when the sleeve 202 is installed within the appliance 10 , the tab 209 can engage the top surface of the first case 104 to prevent rotation of the sleeve 202 , for example about the axis of the second portion 206 .
  • the sensor assembly 200 may include a conductive plug 210 .
  • the conductive plug 210 may be inserted into the first portion 204 of the sleeve 202 .
  • conductive plug 210 may be secured within first portion 204 .
  • the conductive plug 210 may be made of a conductive material having high thermal conductivity.
  • conductive plug 210 is a copper plug. Accordingly, the conductive plug 210 can easily and quickly transfer temperature changes (eg, from the ice storage compartment 16 to a temperature sensor).
  • the conductive plug 210 may define a first end 212 and a second end 214 opposite the first end 212 .
  • First end 212 may be located within sleeve 202 .
  • the first end 212 may be located at or near the junction between the first portion 204 and the second portion 206 of the sleeve 202 .
  • the first end 212 may be in contact (eg, physical contact, thermal contact) with the temperature sensor.
  • the second end 214 may protrude from the distal end of the first portion 204 . As shown in FIG. 5 , the second end may protrude downwardly from the first portion 204 along the vertical direction V. As shown in FIG.
  • the second end 214 may extend a predetermined distance into the ice storage compartment 16 .
  • the second end 214 can exchange heat with the contents of the ice storage compartment 16 (eg, ice cubes). The heat exchange effect can then be transferred to the temperature sensor.
  • the first end 212 of the conductive plug 210 may include a notch 216 formed therein. As best shown in FIGS. 6 and 7 , notch 216 may be a cutout cut from first end 212 of conductive plug 210 .
  • the notch 216 may face the second portion 206 of the sleeve 202 , eg, the junction between the first portion 204 and the second portion 206 .
  • the notch 216 may form a flat face axially facing the second portion 206 .
  • a temperature sensor 218 may be disposed within the second portion 206 of the sleeve 202 .
  • the temperature sensor may be a thermistor 218 .
  • Thermistor 218 is described herein as one potential example, and as noted above, those of ordinary skill in the art will appreciate that any suitable temperature sensor may be incorporated.
  • Thermistor 218 may be removably inserted into second portion 206 .
  • thermistor 218 may be inserted through the distal end of second portion 206 (eg, opposite the junction of first portion 204 and second portion 206 ). Accordingly, the thermistor 218 can be easily removed for maintenance or replacement without having to disassemble the sensor assembly 200 .
  • Thermistor 218 may include a first end 220 and a second end 222 opposite first end 220 .
  • First end 220 may contact conductive plug 210 (eg, when thermistor 218 is in a fully inserted position, as shown in FIGS. 6 and 7 ).
  • the first end 220 may have a flat or relatively flat surface.
  • the planar surface of the first end 220 may make planar contact with the notch 216 of the conductive plug 210 .
  • heat exchange between conductive plug 210 and thermistor 218 may be increased.
  • Thermistor 218 may have a lead 224 extending from a second end 222 .
  • the wire 224 may extend out of the distal end of the second portion 206 .
  • wires 224 may be operably coupled to controller 100 .
  • the sleeve 202 may have a pin hole 226 formed therein. As best seen in FIG. 6 , a pin hole 226 may be defined through first portion 204 of sleeve 202 . In detail, a pin hole 226 may be defined through a cylindrical or circumferential side of the first portion 204 and extend into the second portion 206 . Pin holes 226 may also be defined through conductive plug 210 . Thus, a user may insert a pin or other elongated object through pin hole 226 to contact and push thermistor 218 toward the distal end of second portion 206 .
  • Sensor assembly 200 may include spacer 228 .
  • Spacer 228 may be removably inserted into second portion 206 , eg, behind thermistor 218 .
  • spacer 228 may press thermistor 218 upwardly against conductive plug 210 (eg, notch 216 ).
  • the spacer 228 may be formed as a hollow tube such that the wire 224 can pass through the spacer 228 (eg, along the axial direction of the spacer 228 ).
  • the spacer 228 may have axially formed slits such that the cross-section of the spacer 228 forms a "C" shape.
  • spacer 228 may be resilient.
  • spacer 228 may be a torsion spring. Accordingly, the spacer 228 may engage the inner peripheral surface of the second portion 206 to maintain the thermistor 218 in contact with the conductive plug 210 .
  • the sensor assembly can provide an accurate reading of the ice level within the ice storage compartment while avoiding undue influence from other features of the ice maker.
  • the ice maker may include a water jacket surrounding the ice storage compartment.
  • the water jacket may include coils carrying water or liquid to be cooled by ice stored in the ice storage compartment. Additionally or alternatively, the water jacket may simply store a volume of liquid therein. Accordingly, liquid within the water jacket may have undesired effects on the temperature sensor or thermistor disposed within the sensor assembly. Thereby, the sensor assembly may be at least partially disposed above the water jacket.
  • the sensor assembly may include a sleeve having an "L" shape having a first portion vertically disposed within the ice storage chamber and a second portion horizontally disposed above the water jacket. Therefore, the thermistor can avoid damage due to water leakage from the water jacket. Also, a thermistor determines the exact temperature inside the ice storage chamber independent of the temperature of the water jacket.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种制冰电器包括储冰室和至少部分地围绕该储冰室的水套。一种传感器组件包括套筒、插入套筒的第一部分中的传导插头以及插入套筒的第二部分中的温度传感器。套筒的第一部分和传导插头至少部分地布置在储冰室内。

Description

用于检测水套冷却储冰室中冰位的传感器组件 技术领域
本发明总体涉及制冰电器,更具体地涉及用于确定制冰电器内的冰位的传感器。
背景技术
制冰电器是能够形成和储存冰块以用于各种消费者用途的电器。某些制冰电器是独立的电器或工作台面电器。这些制冰电器可单独用于生产各种样式和/或尺寸的冰或冰块。进一步地,一些独立的制冰电器还包括有水分配器或饮料分配器。这些电器能够将水从市政水源或从电器内的储存箱输送至消费者。水(或液体)在被分配之前可由储存的冰块冷却。例如,液体可以首先流过电器内的储冰容器周围的水套。
这种电器还包括有用于确定储冰容器何时充满冰的方法或装置。例如,当自动制冰程序生效并自动制冰时,在容器充满时需要触发来向制冰机报警以停止制冰,从而避免过量填充并可能损坏电器。在一些示例中,传感器被并入到例如储冰容器的壁中。然而,现有的检测方法存在某些缺点。例如,在存在水套的情况下,温度检测器可能会受到水套内水的影响而出现错误读数。而且,温度检测器在容器壁内(并且因此有可能穿过水套)的维护是困难的并且容易漏水和损坏。
因此,消除一个或多个上述缺点的制冰电器将是有益的。特别地,具有用于准确感测冰桶内的冰位的一个或多个特征的温度感测组件将是有用的。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在本发明的一个示例性方面,提供了一种制冰电器。该制冰电器可包括:箱体,限定储冰室;制冰机,设置在储冰室上方并被构造为形成冰块;水套,至少部分地围绕储冰室;以及传感器组件,至少一部分布置在储冰室内。传感器组件可包括:套筒,在水套上方穿过,套筒限定第一部分和第二部分,第一部分布置在储冰室内;以及温度传感器,插入到套筒的第二部分中,其中,温度传感器被配置为检 测储冰室的内部的温度变化。
在本发明的另一示例性方面,提供了一种用于储冰室的温度感测组件。该温度感测组件可以包括:套筒,限定第一部分和第二部分;传导插头,插入到套筒的第一部分中;以及热敏电阻,插入到套筒的第二部分中,其中,热敏电阻在第一部分和第二部分的接合处接触传导插头,传导插头在储冰室的内部与热敏电阻之间传递热量。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1提供了根据本发明的示例性实施方式的独立饮料电器的立体图。
图2提供了根据本发明的示例性实施方式的独立饮料电器的立体剖视图。
图3提供了根据本发明的示例性实施方式的饮料分配器的立体图。
图4提供了图1的独立饮料电器的侧面剖视图,示出了传感器组件。
图5提供了图4的传感器组件的立体图。
图6提供了图4的传感器组件的侧面剖视图。
图7提供了图4的传感器组件的立体截断图。
附图标记在本说明书和附图中的重复使用旨在表示本发明的相同或相似的特征或元件。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
现在参见图1,示例了根据本发明的独立制冰电器10的一个实施方式。如图所 示,电器10包括外壳12,该外壳通常至少部分地将电器10的各种其它部件容纳在其中。还示例了容器14。容器14限定了用于在其中接收和储存冰18的第一储存空间16。因此,第一储存空间16可被称为储冰容器或储冰室。电器10的用户可以获取容器14内的冰18,以用于消费或其它用途。容器14可包括一个或多个侧壁20和底壁22(参见图2),它们可一起限定第一储存空间16。在示例性实施方式中,至少一个侧壁20可由透明的、透视的(即透明或半透明的)材料形成,诸如透明玻璃或塑料,使得用户可看到第一储存空间16内,并由此观察其中的冰18。进一步地,在示例性实施方式中,容器14可由用户拆卸,诸如从外壳12拆卸。这便于用户容易地获取容器14内的冰,并且例如还可提供到达电器10的水箱24(参见图2)的途径。
根据本发明的电器10可以是独立电器,由此可以不连接到冰箱或其他电器。另外或可选地,在示例性实施方式中,这种电器可以连接也可以不连接到管道系统或在电器10外部的另一水源,诸如冰箱水源。在一些示例性实施方式中,水可由用户手动地供应到电器10,例如通过将水倒入水箱24中。
值得注意的是,如本文所述的电器10可以包括各种特征,这些特征允许电器10对于典型消费者来说是负担得起的和期望的。例如,独立特征可以降低与电器10相关的成本,并且允许消费者将电器10放置在任意合适的期望位置。在一些实施方式中,操作制冰电器10的唯一要求可能是接近电源。容器14可固定到电器10或可从电器10上拆卸,以便可以容易地获取冰,并允许容器14移动到与电器10的其余部分不同的位置,以达到使用冰的目的。另外,在如本文所述的示例性实施方式中,电器10被配置为制造圆块冰(如本文所述),这种冰正变得越来越受消费者欢迎。
参见图2,示例了根据本发明的电器10的各种其他部件。例如,如上所述,电器10可包括水箱24。水箱24可限定用于接收和容纳水的第二储存空间26。水箱24可包括一个或多个侧壁28和底壁30,它们可一起限定第二储存空间26。在示例性实施方式中,水箱24可沿着针对电器10限定的竖向V布置在容器14下方,如图所示。在一些示例性实施方式中,水箱24可以接收和储存在容器14中融化的冰18的融水。如将在下面更详细地描述的,水箱24(或第二储存空间26)可以至少部分地围绕容器14设置(例如,作为水套)。
如所述,在示例性实施方式中,可将水提供到水箱24以用于制冰。因此,电器10还可以包括泵32。泵32可与第二储存空间26流体连通。例如,水可从第二储存空间26流过限定在水箱24中(诸如其侧壁28中)的开口31,并且可流过管道到达 并通过泵32。当被启动时,泵32可以使水主动地从第二储存空间26流过泵并从泵32流出。
从泵32主动流出的水可以流到(例如通过合适的管道)储存容器。例如,储存容器可以限定第三储存空间,该第三储存空间可以由一个或多个侧壁和底壁限定。第三储存空间可以例如与泵32流体连通,由此,可以接收诸如通过泵32主动从水箱24流出的水。例如,水可以通过限定在储存容器中的开口流入第三储存空间中。
储存容器及其第三储存空间可接收和容纳将被提供给制冰机50以用于制冰的水。因此,第三储存空间可与制冰机50流体连通。例如,水可从第三储存空间诸如通过开口和合适的管道流到制冰机50。过滤器可设置成与第三储存空间和制冰机50流体连通。过滤器可在水从第三储存空间流到制冰机50时对水进行过滤。
制冰机50通常诸如从储存容器接收水,并将该水冻结以形成冰18。虽然任意合适样式的制冰机都在本发明的范围和精神内,但在示例性实施方式中,制冰机50是圆块冰制冰机,特别是螺旋送料器式制冰机。如图所示,制冰机50可包括壳52,来自第三储存空间的水流入该壳中。由此,壳52与第三储存空间流体连通。例如,壳52可以包括限定内部空间56的一个或多个侧壁54,并且开口可以限定在侧壁54中。水可以从第三储存空间通过开口(诸如经由合适的管道)流入内部空间56中。
如图示例,螺旋送料器60可至少部分地布置在壳52内。在操作期间,螺旋送料器60可旋转。壳52内的水可能由于诸如与如本文所述的制冷系统的热交换而至少部分地冻结。该至少部分冻结的水可由螺旋送料器60从壳52提升出来。进一步地,在示例性实施方式中,至少部分冻结的水可由螺旋送料器60引导至并通过挤出机62。挤出机62可挤出至少部分冻结的水,以形成冰,诸如圆冰块18。
所形成的冰18可由制冰机50提供给容器14,并可被接收在第一储存空间16中。例如,由螺旋送料器60和/或挤出机62形成的冰18可被提供给容器14。在示例性实施方式中,电器10可包括用于将由制冰机50产生的冰18引向第一储存空间16的斜槽70。例如,如图所示,斜槽70通常沿着竖向V设置在容器14上方。由此,冰可从斜槽70滑落并落入容器14的储存空间16中。如图所示,斜槽70可在制冰机50与容器14之间延伸,并可包括限定穿过其中的通道74的主体72。冰18可从制冰机50(诸如从螺旋送料器60和/或挤出机62)通过通道74被引导到容器14。在一些实施方式中,例如,可例如连接到螺旋送料器并与其一起旋转的清扫器64可接触从螺旋送料器60通过挤出机62出现的冰,并通过通道74将冰引导到容器14。
如所述,由于热交换,例如与制冷系统的热交换,外壳52内的水可以至少部分冻结。。在示例性实施方式中,制冰机50可包括密封制冷系统80。密封制冷系统80可与壳52热连通,以从壳52及其内部空间56中去除热量,从而促进其中的水冻结以形成冰。密封制冷系统80可以例如包括压缩机、冷凝器、节流装置和蒸发器88。蒸发器88可以例如与壳52热连通,以便在密封系统80的运行期间从内部空间56和其中的水去除热量。例如,蒸发器88可以至少部分地围绕壳52。特别地,蒸发器88可以是盘绕并接触壳52(诸如其侧壁54)的管道。在密封系统80的运行期间,制冷剂作为过热蒸汽和/或蒸汽混合物形式的流体离开蒸发器88。在离开蒸发器88时,制冷剂进入压缩机,其中,制冷剂的压力和温度增加,使得制冷剂变成过热蒸汽。来自压缩机的过热蒸汽进入冷凝器,其中,能量从其传递并冷凝成饱和液体和/或液体蒸汽混合物。该流体离开冷凝器并通过节流装置,该节流装置用于调节通过其中的制冷剂的流速。在离开节流装置时,制冷剂的压力和温度下降,此时,制冷剂进入蒸发器88并且循环往复。在某些实施方式中,节流装置可以是毛细管。值得注意的是,在一些实施方式中,密封系统80可另外包括风扇,以促进冷凝器和蒸发器88之间的热传递。。
如所述,在示例性实施方式中,冰18可以是圆块冰。圆块冰是在大于水的熔点或大于大约三十二华氏度的温度下保持或储存(即,在容器14的第一储存空间16中)的冰。因此,容器14周围环境的环境温度可以是大于水的熔点或大于约三十二华氏度的温度。在一些实施方式中,这种温度可大于四十华氏度。
保持在第一储存空间16内的冰18可能逐渐融化。由于保持/储存温度的升高,圆块冰的融化速度增加。因此,可有利地在容器中提供排水特征,以排出这种融水。另外且有利地,在示例性实施方式中,融水可以由电器10重新使用以制冰。
图4示例了饮料分配器1的示例,该饮料分配器并入有制冰电器(例如,独立的制冰电器10)和下文描述的饮料冷却系统11。饮料分配器1可包括制冰电器(例如,独立的制冰电器10)、分配器喷嘴2、饮料容器间室3、冰容器4(例如,容器14)和饮料冷却系统11。饮料容器间室3可被构造为容纳容器(例如瓶或小罐),该容器容纳用户希望冷却并通过分配器喷嘴2分配的饮料(例如水或果汁)。饮料容器间室3可位于冰容器4(例如容器14)下方,并可包括门6,用户可通过该门进入饮料容器间室3。冰容器4可包括门5,该门可被打开和关闭,以允许进入冰容器4。因此,可以使用单个单元来制冰、储冰、快速冷却饮料以及将饮料分配给用户。
将具体参见图4至图7详细描述传感器组件200。传感器组件200可用于检测例如储冰室16内的冰位。传感器组件200可以随着储冰室16中的冰位升高因此到达传感器组件200而检测储冰室内的温度变化。由此,传感器组件200可设置在储冰室16处或附近,并且可与设置在电器10内的控制器100通信。如将进一步描述的,传感器组件200可以避免由电器10的额外属性呈现的错误读数。
如本文所用的,“温度传感器”或等同物意指设置在任何合适位置处用于测量期望温度的任何合适类型的温度测量系统或装置。由此,例如,温度传感器218(下面描述)可以是任何合适类型的温度传感器,诸如热敏电阻、热电偶、电阻温度检测器、基于半导体的集成电路温度传感器等。另外,温度传感器218可以设置在任何合适的位置处,并且可以向控制器输出与所测量的温度成比例和/或指示该温度的信号,诸如电压。尽管本文描述了温度传感器的示例性设置,但是应当理解,根据可选实施方式,电器10可以包括任何其他合适数量、类型和位置的温度、湿度和/或其他传感器。
电器10可以包括水套102。水套102可以至少部分地围绕储冰室16。水套102可以是被构造为在其中储存水或液体的通道或袋状部。详细地,电器10可包括饮料分配系统以及制冰机50。饮料分配系统可以分配储存在水套102内的水或液体。由此,水套102可以在储存在其中的水或液体与储冰室16(或储存在其中的冰18)之间传递热量。
如图4和图5所示,储冰室16可包括第一盒(或内盒)104和第二盒(或外盒)106。冰18可以储存在第一盒104内。由此,第一盒104可以嵌套在第二盒106内。第一盒104与第二盒106之间的空间可以被称为水套102。详细地,水或液体可以完全地充满水套102。然而,在其它实施方式中,蛇形管道系统延伸穿过第一盒104与第二盒106之间的空间。另外或可选地,一种或多种形式的隔热材料可存在于水套102内(例如,围绕蛇形管道系统)。
由于水套102至少部分地围绕储冰室16(例如,第一盒104),所以储存在水套102内的水或液体可能无意中向传感器组件200提供错误的温度读数。由此,传感器组件200的位置和设计对于确保准确读数可能是必要的。如图4中看到的,传感器组件200可至少部分地设置在水套102上方(例如,沿着竖向V)。
详细地,传感器组件200可包括套筒202。套筒202可例如由塑料制成,并且可选择性地保持温度传感器(下文描述)以检测储冰室16内的温度。应当理解,套筒202可以由任何合适的材料制成。在一些实施方式中,套筒202中包括隔热材料。因 此,套筒202可以限制来自不期望的源(例如,水套102)的无意的温度读数。进一步地,套筒202可以是管状的(即,套筒202可以具有圆形横截面)。然而,套筒202可具有任何合适的横截面,使得温度传感器可容纳在其中。
套筒202可包括第一部分204和第二部分206。根据至少一些实施方式,第一部分204和第二部分206彼此垂直。例如,第一部分204与第二部分206之间的接合处可以形成直角。因此,第一部分204可以竖直定向。详细地,第一部分204可沿着竖向V延伸(例如,当套筒处于电器10内的安装位置时)。第二部分206可以水平定向。详细地,第二部分206可沿着横向T(或侧向L)延伸。由此,套筒202可以具有“L”形。应当理解,套筒202可具有任何适当的形状,该形状包括第一部分204与第二部分206之间的任何变化的角度。
套筒202还可包括凸缘208。凸缘208可围绕第二部分206(例如,周向地围绕第二部分206)设置。凸缘208可设置在第一部分204与第二部分206之间的接合处附近。如图7中看到的,在凸缘208与第一部分204之间可形成间隙。因此,当套筒202安装在电器10内时,凸缘208可确保套筒202的适当定位和放置。如上所述,传感器组件200(以及套筒202)可安装在电器10内,以检测储冰室16内的温度,并将检测到的温度发送至控制器100,其中,控制器100确定储冰室16内的冰量。因此,套筒202可从电器10的内部插入到壁(例如,与储冰室16相邻的内壁)内的接收孔中。当套筒完全插入时,凸缘208可以抵靠内部安装壁。
另外或可选地,如上文简要描述,传感器组件200可至少部分地设置在水套102上方。然而,凸缘208的至少一部分可接触储冰室16(例如,第一盒104)。套筒202可包括从凸缘208平行于第二部分206突出的突片209。如图5中最佳示出的,突片209可从凸缘208沿着横向T(或相对于第二部分206的轴向)突出。另外或可选地,突片209可从第二部分206沿着竖向V向下突出。突片209的底面可以是平坦的(例如,平行于第一盒104的顶面)。因此,当套筒202安装在电器10内时,突片209可与第一盒104的顶面接合,以防止套筒202例如围绕第二部分206的轴线旋转。
传感器组件200可包括传导插头210。传导插头210可以插入到套筒202的第一部分204内。例如,传导插头210可以固定在第一部分204内。由此,当第一部分204沿着竖向V定向时,传导插头210可被固定在套筒202内。传导插头210可由具有高热传导能力的传导材料制成。在至少一些示例中,传导插头210是铜插头。因此,传导插头210可容易且快速地传递温度变化(例如,从储冰室16至温度传感 器)。
传导插头210可以限定第一端212和与第一端212相对的第二端214。第一端212可以位于套筒202内。详细地,第一端212可以位于套筒202的第一部分204与第二部分206之间的接合处或附近。由此,如将在下面进一步详细描述的,第一端212可以与温度传感器接触(例如,物理接触、热接触)。第二端214可从第一部分204的远端突出。如图5所示,第二端可从第一部分204沿着竖向V向下突出。由此,当第一部分204设置在储冰室16上方时,第二端214可延伸预定距离进入储冰室16。因此,第二端214可与储冰室16的内容物(例如,冰块)交换热量。然后,热交换效应可以被传递到温度传感器。
传导插头210的第一端212可以包括形成在其中的槽口216。如图6和图7中最佳示出的,槽口216可以是从传导插头210的第一端212切出的切口。槽口216可面向套筒202的第二部分206,例如,在第一部分204与第二部分206之间的接合处。槽口216可形成轴向面向第二部分206的平坦面。
温度传感器218可以设置在套筒202的第二部分206内。例如,温度传感器可以是热敏电阻218。热敏电阻218在本文中作为一个潜在的示例描述,并且如上所述,本领域普通技术人员将理解,可以并入任何合适的温度传感器。热敏电阻218可以可拆卸地插入第二部分206内。例如,热敏电阻218可以插入通过第二部分206的远端(例如,与第一部分204和第二部分206的接合处相对)。因此,热敏电阻218可以容易地拆卸以进行维护或更换,而不必拆卸传感器组件200。
热敏电阻218可以包括第一端220和与第一端220相对的第二端222。第一端220可以接触传导插头210(例如,当热敏电阻218处于完全插入位置时,如图6和图7所示)。详细地,第一端220可具有平坦或相对平坦的表面。第一端220的平坦面可以与传导插头210的槽口216平面接触。有利地,可以增加传导插头210与热敏电阻218之间的热交换。热敏电阻218可以具有从第二端222延伸的导线224。例如,导线224可延伸出第二部分206的远端。例如,导线224可以可操作地联接到控制器100。
套筒202可具有形成在其中的销孔226。如图6中最佳看到的,销孔226可被限定为穿过套筒202的第一部分204。详细地,销孔226可被限定为穿过第一部分204的圆柱形或周向侧并延伸到第二部分206中。销孔226也可以被限定为穿过传导插头210。由此,用户可以将销或其它细长物体插入穿过销孔226,以接触热敏电阻218并将其推向第二部分206的远端。
传感器组件200可包括间隔件228。间隔件228可以可拆卸地插入第二部分206内,例如在热敏电阻218之后。如图6中最佳示出的,间隔件228可以将热敏电阻218向上压靠在传导插头210(例如,槽口216)上。间隔件228可以形成为中空管,使得导线224能够穿过间隔件228(例如,沿着间隔件228的轴向)。另外或可选地,间隔件228可具有轴向形成的狭缝,使得间隔件228的横截面形成“C”形。由此,间隔件228可以是弹性的。例如,间隔件228可以是扭簧。因此,间隔件228可以与第二部分206的内周面接合,以保持热敏电阻218与传导插头210接触。
如本文所述,传感器组件能够提供储冰室内的冰位的准确读数,同时避免来自制冰机的其它特征的不适当影响。制冰机可包括围绕储冰室的水套。水套可以包括承载将由储存在储冰室中的冰冷却的水或液体的蛇形管。另外或可选地,水套可简单地在其中储存一定量的液体。因此,水套内的液体可能对设置在传感器组件内的温度传感器或热敏电阻产生不期望的影响。由此,传感器组件可以至少部分地设置在水套上方。传感器组件可包括具有“L”形的套筒,该套筒具有竖直地设置在储冰室内的第一部分和水平地设置在水套上方的第二部分。因此,热敏电阻可以避免由于从水套漏水而造成的损坏。而且,热敏电阻可确定储冰室内不受水套温度影响的准确温度。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任意装置或系统并且执行所包含的任意方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (20)

  1. 一种限定竖向、侧向以及横向的制冰电器,其特征在于,所述制冰电器包括:
    箱体,限定储冰室;
    制冰机,设置在所述储冰室上方并被构造为形成冰块;
    水套,至少部分地围绕所述储冰室;以及
    传感器组件,至少一部分布置在所述储冰室内,所述传感器组件包括:
    套筒,在水套上方穿过,所述套筒限定第一部分和第二部分,第一部分布置在所述储冰室内;以及
    温度传感器,插入到所述套筒的第二部分中,其中,所述温度传感器被配置为检测储冰室的内部的温度变化。
  2. 根据权利要求1所述的制冰电器,其特征在于,还包括:
    传导插头,插入到所述套筒的第一部分中,其中,所述温度传感器在第一部分与第二部分的接合处与所述传导插头热接触,所述传导插头在储冰室的内部与温度传感器之间传递热量。
  3. 根据权利要求1所述的制冰电器,其特征在于,所述套筒的第一部分和套筒的第二部分彼此垂直,所述第一部分沿着竖向延伸,所述第二部分沿着横向延伸。
  4. 根据权利要求1所述的制冰电器,其特征在于,所述套筒的第一部分从套筒的第二部分的远端沿着竖向延伸预定距离进入储冰室。
  5. 根据权利要求2所述的制冰电器,其特征在于,所述传导插头永久地固定在所述套筒的第一部分内。
  6. 根据权利要求2所述的制冰电器,其特征在于,所述传导插头由铜制成。
  7. 根据权利要求2所述的制冰电器,其特征在于,还包括:
    间隔件,可拆卸地插入所述套筒的第二部分内,其中,所述温度传感器限定第一端和与第一端相对的第二端,所述第一端接触传导插头,并且所述第二端接触间隔件。
  8. 根据权利要求7所述的制冰电器,其特征在于,所述间隔件是中空管,以允许来自所述温度传感器的导线从中穿过。
  9. 根据权利要求2所述的制冰电器,其特征在于,还包括:
    孔口,沿着所述横向穿过套筒的第一部分形成,其中,所述孔口延伸到套筒的 第二部分中。
  10. 根据权利要求9所述的制冰电器,其特征在于,所述孔口穿过传导插头形成,以允许通过所述套筒的第一部分和传导插头接近套筒的第二部分。
  11. 根据权利要求10所述的制冰电器,其特征在于,所述温度传感器是可拆卸地插入所述套筒的第二部分内的热敏电阻,所述热敏电阻可操作地联接到制冰电器内的控制器。
  12. 一种用于储冰室的温度感测组件,其特征在于,所述储冰室限定竖向、侧向以及横向,所述温度感测组件包括:
    套筒,限定第一部分和第二部分;
    传导插头,插入到所述套筒的第一部分中;以及
    热敏电阻,插入到所述套筒的第二部分中,其中,所述热敏电阻在第一部分与第二部分的接合处接触传导插头,所述传导插头在储冰室的内部与热敏电阻之间传递热量。
  13. 根据权利要求12所述的温度感测组件,其特征在于,所述套筒的第一部分和套筒的第二部分彼此垂直,所述第一部分沿着竖向延伸,所述第二部分沿着横向延伸。
  14. 根据权利要求13所述的温度感测组件,其特征在于,所述套筒的第一部分从套筒的第二部分的远端沿着竖向延伸预定距离进入储冰室。
  15. 根据权利要求12所述的温度感测组件,其特征在于,所述传导插头永久地固定在套筒的第一部分内。
  16. 根据权利要求12所述的温度感测组件,其特征在于,所述传导插头由铜制成。
  17. 根据权利要求12所述的温度感测组件,其特征在于,还包括:
    间隔件,可拆卸地插入所述套筒的第二部分内,其中,所述热敏电阻限定第一端和与第一端相对的第二端,所述第一端接触传导插头,并且所述第二端接触间隔件。
  18. 根据权利要求17所述的温度感测组件,其特征在于,所述间隔件是中空管,以允许来自所述热敏电阻的导线从中穿过。
  19. 根据权利要求12所述的温度感测组件,其特征在于,还包括:
    孔口,沿着所述横向穿过所述套筒的所述第一部分形成,其中,所述孔口延伸到套筒的第二部分中。
  20. 根据权利要求19所述的温度感测组件,其特征在于,所述热敏电阻可拆卸地插入所述套筒的第二部分内,所述孔口穿过传导插头形成,以允许通过所述套筒的第一部分和传导插头接近套筒的第二部分。
PCT/CN2022/124664 2021-10-20 2022-10-11 用于检测水套冷却储冰室中冰位的传感器组件 WO2023066088A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22882698.8A EP4421416A1 (en) 2021-10-20 2022-10-11 Sensor assembly for measuring level of ice in ice storage compartment cooled by water jacket
CN202280064180.2A CN117999446A (zh) 2021-10-20 2022-10-11 用于检测水套冷却储冰室中冰位的传感器组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/505,702 US11920848B2 (en) 2021-10-20 2021-10-20 Sensor assembly for detecting ice level in a water jacket cooled ice storage chamber
US17/505,702 2021-10-20

Publications (1)

Publication Number Publication Date
WO2023066088A1 true WO2023066088A1 (zh) 2023-04-27

Family

ID=85981694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124664 WO2023066088A1 (zh) 2021-10-20 2022-10-11 用于检测水套冷却储冰室中冰位的传感器组件

Country Status (4)

Country Link
US (1) US11920848B2 (zh)
EP (1) EP4421416A1 (zh)
CN (1) CN117999446A (zh)
WO (1) WO2023066088A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020443A (en) * 1975-04-18 1977-04-26 Canada Wire And Cable Limited Variable temperature sensor
CA1150529A (en) * 1981-05-01 1983-07-26 Essex Group, Inc. Temperature probe for air conditioning device
CN1155063A (zh) * 1995-12-22 1997-07-23 三星电子株式会社 制冰器的温度传感器
US20070175266A1 (en) * 2006-01-31 2007-08-02 Colin Harcourt Temperature sensor
CN102494805A (zh) * 2011-12-31 2012-06-13 孙景文 一种测试外墙砖体内不同厚度温度变化的探测棒
CN205939866U (zh) * 2016-06-22 2017-02-08 东莞市森亓电子有限公司 一种冰箱冷冻传感器
CN106642859A (zh) * 2016-12-21 2017-05-10 合肥华凌股份有限公司 一种制冰组件及制冰腔体的温度控制方法
CN108344219A (zh) * 2018-02-24 2018-07-31 青岛海尔股份有限公司 制冰组件及具有其的冰箱
CN208075392U (zh) * 2018-03-30 2018-11-09 日本电产三协(浙江)有限公司 制冰装置
CN109780776A (zh) * 2018-11-20 2019-05-21 青岛海尔股份有限公司 冰箱及其控制方法
CN111912148A (zh) * 2019-05-09 2020-11-10 青岛海尔电冰箱有限公司 具有制冰机的冰箱

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2672493A (en) * 1951-01-17 1954-03-16 Republic Steel Corp Immersion thermocouple construction
US2799144A (en) * 1953-09-30 1957-07-16 Servel Inc Automatic ice maker
DE3418448A1 (de) * 1984-05-18 1985-11-21 Braunschweiger Hüttenwerk GmbH, 3300 Braunschweig Gleitlager mit einrichtungen zur oertlichen bestimmung der in der gleitschicht herrschenden temperatur
SU1463210A1 (ru) 1987-06-30 1989-03-07 Всесоюзный Научно-Исследовательский И Экспериментально-Конструкторский Институт Торгового Машиностроения Устройство дл получени мороженого
JPH0464070U (zh) 1990-10-09 1992-06-01
US6006531A (en) * 1998-08-05 1999-12-28 Maytag Corporation Refrigerator temperature control system incorporating freezer compartment temperature sensor
JP4073242B2 (ja) 2002-04-30 2008-04-09 ホシザキ電機株式会社 貯氷検知装置
JP2006177600A (ja) * 2004-12-22 2006-07-06 Sharp Corp 製氷装置
US20080092567A1 (en) * 2006-10-20 2008-04-24 Doberstein Andrew J Ice maker with ice bin level control
US9127871B2 (en) * 2011-06-22 2015-09-08 Whirlpool Corporation Ice making, transferring, storing and dispensing system for a refrigerator
KR101452383B1 (ko) * 2012-02-07 2014-10-21 주식회사 교원 만빙 센서를 포함한 얼음 정수기
JP6200257B2 (ja) 2013-09-27 2017-09-20 ホシザキ株式会社 貯氷庫

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020443A (en) * 1975-04-18 1977-04-26 Canada Wire And Cable Limited Variable temperature sensor
CA1150529A (en) * 1981-05-01 1983-07-26 Essex Group, Inc. Temperature probe for air conditioning device
CN1155063A (zh) * 1995-12-22 1997-07-23 三星电子株式会社 制冰器的温度传感器
US20070175266A1 (en) * 2006-01-31 2007-08-02 Colin Harcourt Temperature sensor
CN102494805A (zh) * 2011-12-31 2012-06-13 孙景文 一种测试外墙砖体内不同厚度温度变化的探测棒
CN205939866U (zh) * 2016-06-22 2017-02-08 东莞市森亓电子有限公司 一种冰箱冷冻传感器
CN106642859A (zh) * 2016-12-21 2017-05-10 合肥华凌股份有限公司 一种制冰组件及制冰腔体的温度控制方法
CN108344219A (zh) * 2018-02-24 2018-07-31 青岛海尔股份有限公司 制冰组件及具有其的冰箱
CN208075392U (zh) * 2018-03-30 2018-11-09 日本电产三协(浙江)有限公司 制冰装置
CN109780776A (zh) * 2018-11-20 2019-05-21 青岛海尔股份有限公司 冰箱及其控制方法
CN111912148A (zh) * 2019-05-09 2020-11-10 青岛海尔电冰箱有限公司 具有制冰机的冰箱

Also Published As

Publication number Publication date
EP4421416A1 (en) 2024-08-28
US20230123955A1 (en) 2023-04-20
CN117999446A (zh) 2024-05-07
US11920848B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
US2912142A (en) Combined hot and cold fluid dispensing apparatus
BRPI0709330A2 (pt) dispositivo de refrigeração e dosagem de lìquidos
US10578346B2 (en) Stand-alone ice making appliance
WO1994020784A1 (en) Dispenser for hot and cold water
CN107843038B (zh) 独立制冰器具及用于控制独立制冰器具的方法
WO2023066088A1 (zh) 用于检测水套冷却储冰室中冰位的传感器组件
US20170248357A1 (en) Stand-Alone Ice Making Appliances
US20170146280A1 (en) Stand-Alone Ice Making Appliances
US10139145B2 (en) Filters for stand-alone ice making appliances
TWI749211B (zh) 冰浴器、測量冰浴器內所累積的冰之方法以及冰浴器之使用
WO2022017343A1 (zh) 独立的饮料分配器和冷却系统
KR102445207B1 (ko) 정수기 및 그의 제어 방법
US20170146279A1 (en) Stand-Alone Ice Making Appliances
JP3689312B2 (ja) 飲料ディスペンサにおける貯液タンクのガイド部材
JP3942350B2 (ja) 飲料ディスペンサにおける貯液タンクの液位表示方法
KR20240040421A (ko) 냉수 생성 장치, 이를 포함하는 정수기 및 이를 제어하는 방법
KR100766107B1 (ko) 냉장고의 물탱크 온도감지장치
JP2004042996A (ja) 冷飲料供給装置
KR20230149061A (ko) 얼음 정수기
JP2001343272A (ja) 貯液タンクの液位検知方法および装置
JPS6129008Y2 (zh)
RU2021135993A (ru) Станция выдачи воды
JP2001341799A (ja) 貯液タンクの接続構造
AU6255094A (en) Dispenser for hot and cold water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882698

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280064180.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022882698

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022882698

Country of ref document: EP

Effective date: 20240521