WO2022017343A1 - 独立的饮料分配器和冷却系统 - Google Patents

独立的饮料分配器和冷却系统 Download PDF

Info

Publication number
WO2022017343A1
WO2022017343A1 PCT/CN2021/107232 CN2021107232W WO2022017343A1 WO 2022017343 A1 WO2022017343 A1 WO 2022017343A1 CN 2021107232 W CN2021107232 W CN 2021107232W WO 2022017343 A1 WO2022017343 A1 WO 2022017343A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling system
bucket
tub
beverage
beverage cooling
Prior art date
Application number
PCT/CN2021/107232
Other languages
English (en)
French (fr)
Inventor
罗斯·丹尼尔
荣格布伦特·阿尔登
德沃斯·理查德
卡尔格雷戈里·斯科特
阿贝干纳瓦·登那丹尼斯特
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to CN202180048614.5A priority Critical patent/CN115867508A/zh
Publication of WO2022017343A1 publication Critical patent/WO2022017343A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice
    • F25C5/182Ice bins therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/0801Details of beverage containers, e.g. casks, kegs
    • B67D1/0804Shape or materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/0857Cooling arrangements
    • B67D1/0858Cooling arrangements using compression systems
    • B67D1/0861Cooling arrangements using compression systems the evaporator acting through an intermediate heat transfer means
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D13/00Stationary devices, e.g. cold-rooms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/002Liquid coolers, e.g. beverage cooler
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/10Location of water treatment or water treatment device as part of a potable water dispenser, e.g. for use in homes or offices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays

Definitions

  • the present invention relates generally to beverage dispensers, and more particularly to a self-contained beverage dispenser for cooling and dispensing beverages.
  • Beverage dispensers are commonly used with various consumer and commercial appliances, for example, to dispense various beverages, such as cold water, to consumers. These beverage dispensers typically receive a source consumable beverage from a source such as a municipal water supply or a beverage bottle, cool the beverage, and dispense the beverage through the outlet of the dispenser for final use.
  • a source such as a municipal water supply or a beverage bottle
  • a beverage dispenser including a stand-alone water cooler/dispenser receives room temperature water for consumption and cools the water to a desired temperature prior to dispensing and consumption.
  • beverage dispensers typically use sealed refrigeration systems to cool small volumes of liquid to be dispensed (eg, between eight and sixteen ounces) for various beverages.
  • some beverage dispensers include a removable reservoir that holds enough water to dispense four to eight single-serve beverages and uses a refrigeration system to maintain storage The liquid container is cold.
  • hermetic refrigeration systems include multiple components, increasing cost and increasing the likelihood of system/component failure.
  • care must be taken to maintain the refrigeration cycle in order to prevent the stored beverages from freezing.
  • the refrigeration cycle must be run frequently to maintain the stored beverage at the desired temperature, which consumes large amounts of electricity and energy.
  • the reservoir is depleted, it may take a significant amount of time to refill and recool the water tank.
  • a self-contained beverage dispenser that eliminates one or more of the aforementioned deficiencies.
  • a beverage dispenser that provides a large supply of cold water on demand would be desirable.
  • a beverage cooling system may include: a first barrel; a second barrel nested within the first barrel to define a first space therebetween for receiving heat transfer material; and a tube extending through the first barrel space.
  • the tube may be in thermal communication with the heat transfer material and may be used to receive a beverage.
  • a beverage cooling system may include: a first bucket; a second bucket nested within the first bucket to define a first space between the first bucket and the second bucket, the second bucket configured to store ice to cool a beverage; a beverage disposed in the first space; and a recirculation system in fluid communication with the second barrel.
  • the recirculation system may include: a recirculation conduit having a first end fluidly connected to the outlet aperture of the second tub and a second end fluidly connected to the ice maker; a filter connected to the recirculation conduit and a recirculation pump in fluid communication with the recirculation conduit, the recirculation pump configured to pump meltwater from the second bucket to the ice maker.
  • FIG. 1 provides a perspective view of a stand-alone beverage appliance according to an exemplary embodiment of the present invention.
  • FIG. 2 provides a perspective cross-sectional view of a stand-alone beverage appliance according to an exemplary embodiment of the present invention.
  • Figure 3 provides a rear perspective view (with the housing removed) of a stand-alone beverage appliance according to an exemplary embodiment of the present invention.
  • Figure 4 provides a perspective view of a beverage dispenser according to an exemplary embodiment of the present invention.
  • FIG. 5 provides a perspective view of a bucket assembly according to an exemplary embodiment of the present invention.
  • FIG. 6 provides a perspective exploded view of the exemplary bucket assembly of FIG. 5 in accordance with an exemplary embodiment of the present invention.
  • FIG. 7 provides an exploded perspective view of a barrel assembly including a beverage tube according to an exemplary embodiment of the present invention.
  • FIG. 8 provides a perspective view of the exemplary beverage tube of FIG. 7 in accordance with an exemplary embodiment of the present invention.
  • FIG. 9 provides an exploded view of the first bucket and the second bucket of the example bucket assembly of FIG. 5 in accordance with an exemplary embodiment of the present invention.
  • FIG. 10 provides a cross-sectional side view of a bucket assembly including a valve in accordance with an exemplary embodiment of the present invention.
  • FIG. 11 provides a schematic diagram of a recirculation system according to an exemplary embodiment of the present invention.
  • the appliance 10 includes a housing 12 that generally at least partially accommodates various other components of the appliance 10 therein.
  • a container 14 is also illustrated.
  • the container 14 defines a first storage volume 16 for containing and storing ice 18 therein.
  • a user of appliance 10 may access ice 18 within container 14 for consumption or other purposes.
  • the container 14 may include one or more side walls 20 and a bottom wall 22 (see FIG. 2 ), which together may define the first storage volume 16 .
  • At least one sidewall 20 may be formed from a transparent, see-through (ie, transparent or translucent) material, such as clear glass or plastic, to allow a user to see into the first storage volume 16 and thereby Observe the ice 18 in it.
  • container 14 is removable by a user, such as from housing 12 . This facilitates easy access by the user to the ice within the container 14, and may also provide access to the water tank 24 (see Figure 2) of the appliance 10, for example.
  • the appliance 10 may be a stand-alone appliance and thus may not be connected to a refrigerator or other appliances. Additionally or alternatively, in an exemplary embodiment, such an appliance may or may not be connected to a plumbing system or to another source of water external to appliance 10, such as a chilled water source. In some exemplary embodiments, water may be supplied to appliance 10 manually by a user, such as by pouring water into water tank 24 .
  • the appliance 10 discussed herein may include various features that allow the appliance 10 to be affordable and desirable to a typical consumer.
  • the stand-alone feature may reduce the cost associated with the appliance 10 and allow the consumer to place the appliance 10 in any suitable desired location.
  • the only requirement for ice making appliance 10 to operate may be access to a power source.
  • the container 14, which is fixable to or removable from the appliance 10, allows easy access to the ice and allows the container 14 to be moved to a different location than the rest of the appliance 10 for ice usage purposes.
  • appliance 10 is configured to make ice cubes (as discussed herein) that are becoming increasingly popular with consumers.
  • the appliance 10 may include the water tank 24 .
  • the water tank 24 may define a second storage volume 26 for containing and retaining water.
  • the tank 24 may include one or more side walls 28 and a base wall 30 , which together may define the second storage volume 26 .
  • the water tank 24 may be arranged below the container 14 along a vertical direction V defined for the appliance 10, as shown.
  • water tank 24 may receive and store meltwater from ice 18 that has melted in container 14 .
  • water may be provided to tank 24 for ice formation.
  • the appliance 10 may also include the pump 32 .
  • the pump 32 may be in fluid communication with the second storage volume 26 .
  • water may flow from the second storage volume 26 through an opening 31 defined in the water tank 24 (such as in the side wall 28 thereof), and may flow through piping to and through the pump 32 .
  • the pump 32 may actively flow water from the second storage volume 26 through the pump and out of the pump 32 .
  • Water actively flowing from the pump 32 may flow (eg, through suitable piping) to the water storage container 34 .
  • the water storage container 34 may define a third storage volume, which may be defined by one or more side walls and a base wall.
  • the third storage volume may, for example, be in fluid communication with the pump 32 , whereby it may receive water actively flowing from the tank 24 , such as by the pump 32 .
  • water may flow into the third storage volume through an opening 42 defined in the water storage container 34 .
  • the water storage container 34 and its third storage volume may receive and contain water to be provided to the ice maker 50 for ice making. Accordingly, the third storage volume may be in fluid communication with the ice maker 50 .
  • water may flow from the third storage volume 36 to the ice maker 50, such as through the opening 44 and suitable conduits.
  • a filter 194 ( FIG. 11 ) may be placed in fluid communication with the third storage volume and the ice maker 50 . Filter 194 may filter water as it flows from the third storage volume to ice maker 50 .
  • Ice maker 50 typically receives water, such as from water storage container 34 , and freezes the water to form ice 18 . While any suitable style of ice maker is within the scope and spirit of the present invention, in the exemplary embodiment, ice maker 50 is an ice cube ice maker, particularly an auger type ice maker. As shown, the ice maker 50 may include a housing 52 into which water from the third storage volume flows. Thereby, the shell 52 is in fluid communication with the third storage volume.
  • the housing 52 may include one or more sidewalls 54 that may define an interior volume 56 , and an opening 58 may be defined in the sidewalls 54 . Water may flow from the third storage volume into the interior volume 56 through the opening 58, such as via a suitable conduit.
  • the auger 60 may be disposed at least partially within the housing 52 .
  • the auger 60 may rotate.
  • Water within shell 52 may at least partially freeze due to heat exchange, such as with a refrigeration system as described herein.
  • the at least partially frozen water may be lifted from the housing 52 by the auger 60 .
  • the at least partially frozen water may be directed by screw feeder 60 to and through extruder 62 .
  • Extruder 62 may extrude the at least partially frozen water to form ice, such as ice cubes 18 .
  • the formed ice 18 may be supplied to the container 14 by the ice maker 50 and may be contained in the first storage volume 16 thereof.
  • ice 18 formed by auger 60 and/or extruder 62 may be provided to container 14 .
  • appliance 10 may include a chute 70 for directing ice 18 produced by ice maker 50 to first storage volume 16.
  • the chute 70 is generally disposed in the vertical direction V above the container 14 . Thereby, ice can slide off the chute 70 and into the storage volume 16 of the container 14 .
  • the chute 70 may extend between the ice maker 50 and the container 14 and may include a body 72 defining a channel 74 therethrough.
  • Ice 18 may be directed to container 14 from ice maker 50 (such as from auger 60 and/or extruder 62 ) through passage 74 .
  • ejector 64 which may eg be connected to and rotate with the auger, may contact ice emerging from auger 60 through extruder 62 and direct the ice to container 14 through channel 74 .
  • ice maker 50 may include a hermetic refrigeration system 80 .
  • the sealed refrigeration system 80 may be thermally connected to the shell 52 to remove heat from the shell 52 and its interior volume 56, thereby facilitating freezing of the water therein to form ice.
  • the hermetic refrigeration system 80 may include, for example, a compressor 82 , a condenser 84 , a throttling device 86 and an evaporator 88 .
  • Evaporator 88 may, for example, be in thermally conductive connection with shell 52 to remove heat from interior volume 56 and the water therein during operation of sealing system 80 .
  • the evaporator 88 may at least partially surround the shell 52 .
  • the evaporator 88 may be a conduit coiled around and in contact with the shell 52 (such as the sidewall 54 thereof).
  • the refrigerant exits the evaporator 88 as a fluid in the form of superheated vapor and/or a vapor mixture.
  • the refrigerant enters the compressor 82, where the pressure and temperature of the refrigerant increase, causing the refrigerant to become superheated vapor.
  • Superheated vapor from compressor 82 enters condenser 84 where energy is transferred therefrom and condensed into a saturated liquid and/or liquid vapor mixture.
  • the fluid leaves the condenser 84 and travels through a throttling device 86 that is configured to regulate the flow rate of refrigerant therethrough.
  • a throttling device 86 that is configured to regulate the flow rate of refrigerant therethrough.
  • the pressure and temperature of the refrigerant drop, at which point the refrigerant enters the evaporator 88 and repeats its own cycle.
  • the throttling device 86 may be a capillary tube.
  • sealing system 80 may additionally include fans (not shown) for facilitating heat transfer to/from condenser 84 and evaporator 88 .
  • ice 18 may be ice cubes. Ice cubes are ice held or stored (ie, in the first storage volume 16 of the container 14) at a temperature greater than the melting point of water or greater than about thirty-two degrees Fahrenheit. Thus, the ambient temperature of the environment surrounding container 14 may be a temperature greater than the melting point of water or greater than about thirty-two degrees Fahrenheit. In some embodiments, this temperature may be greater than forty degrees Fahrenheit.
  • Ice 18 held within first storage volume 16 may gradually melt.
  • the melting rate of ice cubes increases due to elevated maintenance/storage temperatures. Accordingly, a drain feature may advantageously be provided in the container for draining this meltwater. Additionally and advantageously, in the exemplary embodiment, meltwater may be reused by appliance 10 to form ice.
  • FIG 4 shows an example of a beverage dispenser 1 that includes an ice making appliance (eg, a stand-alone ice making appliance 10) and a beverage cooling system 11 described below.
  • the beverage dispenser 1 may include an ice making appliance (eg, a stand-alone ice making appliance 10), a dispenser nozzle 2, a beverage container compartment 3, an ice container 4 (eg, a container 14), and a beverage cooling system 11 (see below with reference to Figures 1). 5 to Figure 10).
  • the beverage container compartment 3 may be configured to accommodate a container (eg, a bottle or canister) for a beverage (eg, water or juice) that the user wishes to cool and dispense through the dispenser nozzle 2 .
  • a container eg, a bottle or canister
  • a beverage eg, water or juice
  • the beverage container compartment 3 may be located below the ice container 4 (eg container 14 ) and may include a door 6 through which a user may enter the beverage container compartment 3 .
  • the ice container 4 may include a door 5 that can be opened and closed to allow access to the ice container 4 .
  • a single unit can be used to make ice, store ice, quickly cool beverages, and dispense beverages to users.
  • a description of the beverage cooling system 11 will be made.
  • FIGS. 5-10 illustrate a beverage cooling system 11 according to an exemplary embodiment of the appliance 10 .
  • the beverage cooling system 11 described below may be used in conjunction with or separately from the ice making appliance 10 and/or beverage dispenser 1 described above. In other words, ice may be supplied to the beverage cooling system 11 alone without using the ice making appliance 10 .
  • the beverage cooling system 11 may include a first bucket 142 and a second bucket 144 .
  • the first bucket 142 and the second bucket 144 may collectively define the container 14 .
  • the second bucket 144 may be nested within the first bucket 142 .
  • the second tub 144 may be defined by a front panel 1442 , a rear panel 1444 , a first side panel 1446 , a second side panel 1448 and a bottom panel 1440 .
  • Bottom panel 1440 may be substantially perpendicular to front panel 1442 , rear panel 1444 , first side panel 1446 and second side panel 1448 .
  • the bottom panel 1440 may be angled relative to the horizontal.
  • the bottom panel 1440 may form an acute angle (eg, less than 90°) with the rear panel 1444 (first angle ⁇ 1 , FIG. 10 ).
  • the bottom panel 1440 may form an acute angle (eg, less than 90°) with the first side panel 1446 (second angle ⁇ 2, FIG. 5 ).
  • the first angle ⁇ 1 may be between about 75° to about 85°.
  • the second angle ⁇ 2 may be between about 75° and about 85°. Therefore, the bottom panel 1440 may be inclined toward the rear of the second tub 144 and the first side of the second tub 144 . When the ice stored in the second tub 144 melts, due to the angled nature of the bottom panel 1440, drainage can naturally flow to the first corner defined by the rear panel 1444, the first side panel 1446 and the bottom panel 1440.
  • a first space 146 may be defined between the second tub 144 and the first tub 142 .
  • the first tub 142 may be defined by a front panel 1422 , a rear panel 1424 , a first side panel 1426 , a second side panel 1428 and a bottom panel 1420 .
  • front panel 1422 is spaced from front panel 1442 to define a first portion
  • rear panel 1424 is spaced from rear panel 1444 to define a second portion
  • first side panel 1426 is spaced from first side panel 1446
  • second side panel 1428 is spaced from the second side panel 1448 to define the fourth portion
  • the bottom panel 1420 is spaced from the bottom panel 1440 to define the fifth portion. Therefore, the first space 146 may be defined between the first tub 142 and the second tub 144 by the first portion, the second portion, the third portion, the fourth portion, and the fifth portion.
  • the first barrel 142 and the second barrel 144 are made of stainless steel. In some embodiments, the first barrel 142 and the second barrel 144 are made of plastic (eg, polyvinyl chloride or PVC, high density polyethylene or HDPE, or polystyrene). In some embodiments, the first bucket 142 is made of a first material and the second bucket 144 is made of a second material different from the first material. It should be understood that the first bucket 142 and the second bucket 144 can be made of any suitable material, and that the first bucket 142 and the second bucket 144 can be made of the same material or different materials, depending on the needs of the application.
  • plastic eg, polyvinyl chloride or PVC, high density polyethylene or HDPE, or polystyrene
  • the first bucket 142 is made of a first material and the second bucket 144 is made of a second material different from the first material. It should be understood that the first bucket 142 and the second bucket 144 can be made of any suitable material, and that the first bucket
  • Each of the front panel 1422 of the first tub 142 and the front panel 1442 of the second tub may include a window.
  • the front panel 1422 may be made of a transparent material (eg, glass, transparent plastic) such that the front panel 1422 defines the first window 1423 .
  • the front panel 1442 may be made of a transparent material (eg, glass, clear plastic) such that the front panel 1442 defines the second window 1443 . Therefore, the user can see the inside of the second tub 144 through the first window 1423 , the second window 1443 and the first part to check the level of ice in the second tub 144 .
  • the first space 146 may accommodate the heat transfer material 148 .
  • the heat transfer material 148 may be a material with high thermal conductivity.
  • the heat transfer material 148 may have a higher thermal conductivity than that of air.
  • Heat transfer material 148 may be a liquid, but any suitable material may be used.
  • the heat transfer material 148 is a food safe antifreeze.
  • the heat transfer material 148 is water.
  • the beverage cooling system 11 may also include a tube 150 that passes through the first space 146 and is thermally connected to the heat transfer material 148 .
  • Tube 150 may be used to receive beverages.
  • the tube 150 may include an inlet 152 and an outlet 154 .
  • the inlet 152 may be provided at the upper portion of the first tub 142 .
  • the inlet 152 may be provided at or near the top of the second side panel 1428 of the first tub 142 .
  • the inlet 152 may be provided at or near the top of the first side panel 1426 or the rear panel 1424 of the first tub 142 .
  • the outlet 154 may be provided at the lower portion of the first tub 142 .
  • the outlet 154 may be provided at or near the bottom of the first side panel 1426 of the first tub 142 . In some embodiments, the outlet 154 may be provided at or near the bottom of the second side panel 1428 or the rear panel 1424 of the first tub 142 .
  • the tubes 150 may be disposed within the first space 146 in a zigzag (or serpentine path). Specifically, the tube 150 may have a plurality of straight portions 156 and a plurality of curved portions 158 that connect adjacent straight portions 156 (or, collectively, serpentines) to each other to form a meandering shape. For example, it may be desirable to increase thermal contact between the tubes 150 and the heat transfer material 148 in order to increase heat transfer.
  • a plurality of straight portions 156 may be provided in the second portion, the third portion, the fourth portion, and the fifth portion.
  • the plurality of straight sections 156 may be provided in any suitable combination of the first, second, third, fourth and fifth sections, as desired by the application.
  • the tube 150 may zigzag around the second tub 144 along the first side panel 1446 , the second side panel 1448 , the rear panel 1444 and the bottom panel 1440 of the second tub 144 .
  • the plurality of straight portions 156 may not be disposed in the first portion when the front panel 1422 and the front panel 1442 are transparent.
  • Tube 150 may be used to receive beverages (eg, water, soda, juice, etc.). Beverage may be introduced into tube 150 at inlet 152 . Beverages may be served individually by the user (eg, in the case of soda or juice), or may be served directly from a source (eg, a municipal water source). Thus, as the beverage flows through the tube 150 (eg, the straight portion 156 and the curved portion 158 ), heat may be removed from the beverage via the heat transfer material 148 and the ice in the second bucket 144 .
  • beverage cooling system 11 is described herein as cooling a beverage, certain applications may also utilize system 11 to heat a beverage (eg, by filling second bucket 144 with heated liquid or substance). Depending on such an application, heat may be transferred to the beverage circulating through the tube 150 to produce a heated beverage (eg, for coffee or tea).
  • the beverage cooling system 11 may also include a valve 160 on (ie, in fluid communication with) the tube 150 .
  • Valve 160 may be configured to selectively open and close tube 150 to selectively dispense beverages to a user.
  • Valve 160 may be any suitable valve capable of opening and closing tube 150, such as a solenoid valve, manual valve, ball valve, push button valve, and the like.
  • a valve 160 may be provided at the outlet 154 of the tube 150 . Accordingly, the valve 160 may be located at or near the bottom of the first tub 142 .
  • valve 160 may be provided at inlet 152 of tube 150 .
  • the valve 160 may be manually controlled by the user, or may be in electrical communication with the controller to automatically open the tube 150 for dispensing the beverage according to a preset program.
  • valve 160 may be in fluid communication with dispenser nozzle 3 to allow selective flow of beverage to dispenser nozzle 3 .
  • the beverage cooling system 11 may also include an insulating layer 170 at least partially surrounding the first tub 142 .
  • the insulating layer 170 may cover the first side panel 1426 , the second side panel 1428 , the bottom panel 1420 and the rear panel 1424 of the first tub 142 .
  • the top of the first tub 142 can be opened to allow ice to enter the second tub 144 .
  • the heat insulating layer 170 may not be provided on the front panel 1422 so as not to hinder the user from viewing the inside of the second tub 144 .
  • the insulating layer 170 may be any suitable insulating material that limits heat transfer between the first tub 142 and the ambient atmosphere.
  • the insulating layer 170 may be a foam insulating material, however, the present invention is not limited thereto.
  • the second tub 144 may include a first flange 172 that protrudes from the outer surface of the second tub 144 in a normal direction and extends at least partially around the outer surface of the second tub 144 .
  • the first flange 172 may protrude from the first side panel 1446 , the rear panel 1444 and the second side panel 1448 of the second tub 144 .
  • the front panel 1442 of the second tub is a window, the first flange 172 is not provided on the front panel 1442.
  • the first flange 172 may be positioned a predetermined distance from the top of the second tub 144 downward in the vertical direction V.
  • the first flange 172 may be located approximately 40% of the way down the first side panel 1446 of the second tub 144 at the junction between the first side panel 1446 and the front panel 1442 of the second tub 144 place.
  • the first flange 172 may be perpendicular to the vertical V.
  • the first flange 172 may include an inlet hole 174 in fluid communication with the first space 146 between the first tub 142 and the second tub 144 .
  • the inlet hole 174 may be a pipe protruding in the vertical direction V from the top surface of the first flange 172 .
  • the inlet hole 174 may be located at any suitable location on the first flange 172 that allows fluid communication with the first space 146 .
  • the inlet aperture 174 is adjacent to the junction between the first side panel 1446 and the rear panel 1444 of the second tub 144 . According to one embodiment, a user can add heat transfer material 148 into first space 146 via inlet hole 174 .
  • the first tub 142 may include a second flange 176 .
  • the second flange 176 may correspond to the first flange 172 .
  • the second flange 176 may protrude in the normal direction from the outer surface of the first tub 142 .
  • the second flange 176 protrudes from the first side panel 1426 , the rear panel 1424 and the second side panel 1428 of the first tub 142 .
  • the front panel 1422 of the first tub 142 is a window
  • the second flange 176 may not be provided on the front panel 1422 so as not to obstruct the user from viewing the inside of the second tub 144 .
  • the first flange 172 may be in planar contact with the second flange 176 when the second barrel 144 is nested within the first barrel 142 .
  • the bottom panel 1440 of the second tub 144 may include the first outlet hole 180 .
  • the first outlet hole 180 may be provided at the first corner of the second tub 144 (ie, where the rear panel 1444, the first side panel 1446 and the bottom panel 1440 meet). Melt water from ice stored in the second tub 144 may flow out of the second tub 144 through the first outlet hole 180 .
  • the first barrel 142 may include a second outlet orifice 182 .
  • the second outlet hole 182 may correspond to the first outlet hole 180 .
  • the first outlet hole 180 may be a tube extending downward in the vertical direction V from the bottom panel 1440 of the second tub 144 .
  • This tube can then be received by a second outlet hole 182 in the first tub 142 to allow melt water to easily flow out of the second tub 144 . Additionally or alternatively, the tube may assist in positioning the second barrel 144 within the first barrel 142 during assembly, which ensures a proper fit.
  • the first tub 142 may also include a drain 184 .
  • the drain 184 may be separate from the second outlet hole 182 and may be in fluid communication with the first space 146 .
  • the fluid provided in the first space 146 may be discharged from the first space 146 via the drain port 184 .
  • FIG 11 provides a schematic diagram of the recirculation system.
  • the appliance 10 may also include a recirculation system 190 for recirculating meltwater from the second tub 144 to the ice maker 50 .
  • the recirculation system 190 may include a recirculation conduit 192 having a first end fluidly connected to the first outlet orifice 180 of the second tub 144 .
  • one of the first end of the recirculation pipe 192 and the first outlet hole 180 of the second tub 144 may pass through the second outlet hole 182 of the first tub 142 .
  • the melt water from the second tub 144 can flow directly into the recirculation pipe 192 without mixing with the first space 146 .
  • the recirculation system 190 may also include a filter 194 that may be in fluid communication with the recirculation conduit 192 . Melt water from the second bucket 144 may pass through a filter 194 to filter out impurities before being circulated back to the ice maker 50 .
  • filter 194 may be any suitable filter capable of providing clean drinking water, such as a carbon-based filter. The present invention does not limit the number and type of filters, and it should be understood that any suitable combination may be used.
  • the recirculation system 190 may also include a pump 196 for pumping meltwater through the filter 194 and into the ice maker 50 . Pump 196 may be in fluid communication with recirculation conduit 192 .
  • Pump 196 may be any suitable pump capable of pumping melt water from first outlet port 180 to ice maker 50 .
  • recirculation system 190 may circulate meltwater from second tub 144 up to water storage container 34 (FIG. 3).
  • tube 150 may be omitted.
  • the second tub 144 may be nested within the first tub 142 to form the first space 146 .
  • the tube 150 may not be disposed within the first space 146 .
  • the first space 146 may be configured to store beverages to be dispensed directly to the user. In this way, the beverage will exchange heat with the second bucket 144 and the ice stored in the second bucket 144 to cool to the desired temperature.
  • valve 160 may be in fluid communication with drain 184 to selectively open and close drain 184 to release beverage from first space 146 .
  • the inlet hole 174 in the first flange 172 of the second bucket may allow beverage to be introduced into the first space 146 .
  • the inlet hole 174 may be a tube extending vertically V upward from the first flange 172 and may be directly connected to a beverage source (eg, a municipal water source).
  • the tube may be open to the ambient atmosphere to allow beverages to be introduced into the first space 146 by the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Devices For Dispensing Beverages (AREA)

Abstract

一种饮料冷却系统包括:第一桶;和第二桶,该第二桶嵌套在第一桶内,以在其间限定用于接收传热材料的第一空间。管穿过第一空间,与传热材料导热连接,并且用于接收饮料。在操作中,第二桶可填充有冰或另一冷却材料,使得经过与传热材料和冰导热连接的管的饮料可在被分配至用户之前被冷却。

Description

独立的饮料分配器和冷却系统 技术领域
本发明总体涉及饮料分配器,更具体地涉及一种用于冷却和分配饮料的独立的饮料分配器。
背景技术
饮料分配器通常与各种消费者和商业电器一起使用,例如以将诸如冷水的各种饮料分配给消费者。这些饮料分配器通常从诸如市政供水或饮料瓶的来源接收源可消耗饮料,冷却饮料,并通过分配器的出口分配饮料,以供最终使用。
例如,包括独立水冷却器/分配器的饮料分配器接收室温的水以便消耗,并且在分配和消耗之前将水冷却至期望的温度。为了提供冷却的饮料,饮料分配器通常使用密封制冷系统针对各种饮料冷却要分配的小体积的液体(例如,在八盎司至十六盎司之间)。为了允许连续制备饮料并减少制备时间,某些饮料分配器包括可移除的储液容器,该储水器保持足够的水,以分配四份至八份单杯式饮料并使用制冷系统保持储液容器处于冷却状态。
然而,存在某些缺点。例如,密封制冷系统包括多个部件,增加了成本,并且增加了系统/部件故障的可能性。另外,当饮料储存在用于冷藏的储液容器中时,必须小心地维持制冷循环,以便防止所储存的饮料冻结。另外或可选地,制冷循环必须频繁地运行,以将所储存的饮料维持在期望的温度,这消耗大量的电力和能量。进一步地,当储液容器耗尽时,可能需要大量时间来再填充和再冷却水箱。
因此,将期望一种消除一个或多个上述缺陷的独立饮料分配器。比如,将期望一种按需提供大量冷水供应的饮料分配器。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在本发明的一个示例性方面,提供了一种饮料冷却系统。饮料冷却系统可以包括:第一桶;第二桶,该第二桶嵌套在第一桶内,以在其间限定用于接收传热材料的第一空间;以及管,该管穿过第一空间。该管可以与传热材料热连通并且可以用于接收饮料。
在本发明的另一个示例性方面,提供了一种饮料冷却系统。饮料冷却系统可以包括:第一桶;第二桶,该第二桶嵌套在第一桶内,以在第一桶与第二桶之间限定第一空间,第二桶被构造成储存冰以冷却饮料;饮料,该饮料设置在第一空间中;以及再循环系统,该再循环系统与第二桶流体连通。再循环系统可包括:再循环管道,该再循环管道具有流体连接到第二桶的出口孔的第一端和流体连接到制冰机的第二端;过滤器,该过滤器与再循环管道流体连通;以及再循环泵,该再循环泵与再循环管道流体连通,再循环泵被构造成将融水从第二桶泵送到制冰机。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1提供了根据本发明的示例性实施方式的独立饮料电器的立体图。
图2提供了根据本发明的示例性实施方式的独立饮料电器的立体剖视图。
图3提供了根据本发明的示例性实施方式的独立饮料电器的后立体图(壳被移除)。
图4提供了根据本发明的示例性实施方式的饮料分配器的立体图。
图5提供了根据本发明的示例性实施方式的桶组件的立体图。
图6提供了根据本发明的示例性实施方式的图5的示例性桶组件的立体分解图。
图7提供了根据本发明的示例性实施方式的包括饮料管的桶组件的立体分解图。
图8提供了根据本发明的示例性实施方式的图7的示例性饮料管的立体图。
图9提供了根据本发明的示例性实施方式的图5的示例性桶组件的第一桶和第二桶的分解图。
图10提供了根据本发明的示例性实施方式的包括阀的桶组件的截面侧视图。
图11提供了根据本发明的示例性实施方式的再循环系统的示意图。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
现在参照图1,示例了根据本发明的独立制冰电器10的一个实施方式。如图所示,电器10包括外壳12,该外壳通常至少部分地将电器10的各种其它部件容纳在其中。还示例了容器14。容器14限定了用于在其中容纳和储存冰18的第一储存容积16。电器10的用户可以接近容器14内的冰18,以用于消耗或其它用途。容器14可包括一个或多个侧壁20和底壁22(参见图2),它们可一起限定第一储存容积16。在示例性实施方式中,至少一个侧壁20可由透明的、透视的(即透明或半透明的)材料形成,诸如透明玻璃或塑料,使得用户可看到第一储存容积16内,并由此观察其中的冰18。进一步地,在示例性实施方式中,容器14可由用户移除,诸如从外壳12移除。这便于用户容易地获取容器14内的冰,并且例如还可提供到电器10的水箱24(参见图2)的通道。
根据本发明的电器10可以是独立电器,由此可以不连接到冰箱或其他电器。另外或可选地,在示例性实施方式中,这种电器可以或可以不连接到管道系统或在电器10外部的另一水源,诸如制冷水源。在一些示例性实施方式中,水可由用户手动地供应到电器10,例如通过将水倒入水箱24中。
值得注意的是,本文所讨论的电器10可以包括各种特征,这些特征允许电器10对于典型消费者来说是负担得起的和期望的。例如,独立特征可以降低与电器10相关联的成本,并且允许消费者将电器10设置在任意合适的期望位置。在一些实施方式中,制冰电器10操作的唯一要求可以是接近电源。可固定到电器10或可从其移除的容器14允许容易地获取冰,并允许容器14移动到与电器10的其余部分不同的位置,以用于冰的使用目的。另外,在如本文讨论的示例性实施方式中,电器10被构造成制造正变得越来越受消费者欢迎的冰块(如本文讨论的)。
参照图2和图3,示例了根据本发明的电器10的各种其他部件。例如,如上所述,电器10可包括水箱24。水箱24可限定用于容纳和保持水的第二储存容积26。水箱24可包括一个或多个侧壁28和基壁30,它们可一起限定第二储存容积26。在示例性实施方式中,水箱24可沿着针对电器10限定的竖向V布置在容器14下方, 如图所示。在一些示例性实施方式中,水箱24可以接收和储存来自容器14中已经融化的冰18的融水。
如所讨论的,在示例性实施方式中,可将水提供到水箱24以用于形成冰。因此,电器10还可以包括泵32。泵32可与第二储存容积26流体连通。例如,水可从第二储存容积26流过限定在水箱24中(诸如其侧壁28中)的开口31,并且可流过管道到达并通过泵32。当启动时,泵32可以主动地使水从第二储存容积26流过泵并从泵32流出。
从泵32主动流出的水可以流到(例如通过合适的管道)储水容器34。例如,储水容器34可以限定第三存储容积,该第三储存容积可以由一个或多个侧壁和基壁限定。第三储存容积可以例如与泵32流体连通,由此,可以接收诸如通过泵32主动从水箱24流出的水。例如,水可以通过限定在储水容器34中的开口42流入第三储存容积中。
储水容器34及其第三储存容积可接收和容纳将被提供给制冰机50以用于制冰的水。因此,第三储存容积可与制冰机50流体连通。例如,水可从第三储存容积36诸如通过开口44和合适的管道流到制冰机50。过滤器194(图11)可设置成与第三储存容积和制冰机50流体连通。过滤器194可在水从第三储存容积流到制冰机50时对水进行过滤。
制冰机50通常诸如从储水容器34接收水,并将该水冻结以形成冰18。虽然任意合适样式的制冰机都在本发明的范围和精神内,但在示例性实施方式中,制冰机50是冰块制冰机,特别是螺旋送料器式制冰机。如图所示,制冰机50可包括壳52,来自第三储存容积的水流入该壳中。由此,壳52与第三储存容积流体连通。例如,壳52可以包括可以限定内部容积56的一个或多个侧壁54,并且开口58可以限定在侧壁54中。水可以从第三储存容积通过开口58(诸如经由合适的管道)流入内部容积56中。
如图例示,螺旋送料器60可至少部分地布置在壳52内。在操作期间,螺旋送料器60可旋转。壳52内的水可能由于诸如与如本文所述的制冷系统的热交换而至少部分地冻结。该至少部分冻结的水可由螺旋送料器60从壳52提升。进一步地,在示例性实施方式中,至少部分冻结的水可由螺旋送料器60引导到并通过挤出机62。挤出机62可挤出至少部分冻结的水,以形成冰,诸如冰块18。
所形成的冰18可由制冰机50提供给容器14,并可被容纳在其第一储存容积16中。例如,由螺旋送料器60和/或挤出机62形成的冰18可被提供给容器14。在示 例性实施方式中,电器10可包括用于将由制冰机50产生的冰18引向第一储存容积16的斜槽70。例如,如图所示,斜槽70通常沿着竖向V设置在容器14上方。由此,冰可从斜槽70滑落并落入容器14的储存容积16中。如图所示,斜槽70可在制冰机50与容器14之间延伸,并可包括限定穿过其中的通道74的主体72。冰18可从制冰机50(诸如从螺旋送料器60和/或挤出机62)通过通道74被引导到容器14。在一些实施方式中,例如,可例如连接到螺旋送料器并与其一起旋转的排出器64可接触从螺旋送料器60通过挤出机62出现的冰,并通过通道74将冰引导到容器14。
如所述,壳52内的水可能由于诸如与制冷系统的热交换而至少部分地冻结。在示例性实施方式中,制冰机50可包括密封制冷系统80。密封制冷系统80可与壳52导热连接,以从壳52及其内部容积56中带走热量,由此便于其中的水冻结以形成冰。密封制冷系统80可以例如包括压缩机82、冷凝器84、节流装置86和蒸发器88。蒸发器88可以例如与壳52导热连接,以便在密封系统80的操作期间从内部容积56和其中的水带走热量。例如,蒸发器88可以至少部分地围绕壳52。特别地,蒸发器88可以是盘绕并接触壳52(诸如其侧壁54)的管道。在密封系统80的操作期间,制冷剂作为过热蒸汽和/或蒸汽混合物形式的流体离开蒸发器88。在离开蒸发器88时,制冷剂进入压缩机82,其中,制冷剂的压力和温度增加,使得制冷剂变成过热蒸汽。来自压缩机82的过热蒸汽进入冷凝器84,其中,能量从其传递并冷凝成饱和液体和/或液体蒸汽混合物。该流体离开冷凝器84并行进通过节流装置86,该节流装置被构造成调节通过其中的制冷剂的流速。在离开节流装置86时,制冷剂的压力和温度下降,此时,制冷剂进入蒸发器88并且重复自身的循环。在某些实施方式中,节流装置86可以是毛细管。值得注意的是,在一些实施方式中,密封系统80可另外包括风扇(未示出),这些风扇用于便于热量传递至冷凝器84和蒸发器88/从其传递。
如所述,在示例性实施方式中,冰18可以是冰块。冰块是在大于水的熔点或大于大约三十二华氏度的温度下保持或储存(即,在容器14的第一储存容积16中)的冰。因此,容器14周围环境的环境温度可以是大于水的熔点或大于约三十二华氏度的温度。在一些实施方式中,这种温度可大于四十华氏度。
保持在第一储存容积16内的冰18可能逐渐融化。由于升高的维护/储存温度,冰块的融化速度增加。因此,可有利地在容器中提供排放特征,以用于排放这种融水。另外且有利地,在示例性实施方式中,融水可以由电器10重新使用以形成冰。
图4示出了饮料分配器1的示例,该饮料分配器包含制冰电器(例如,独立的制冰电器10)和下文描述的饮料冷却系统11。饮料分配器1可包括制冰电器(例如,独立的制冰电器10)、分配器喷嘴2、饮料容器间室3、冰容器4(例如,容器14)和饮料冷却系统11(以下将参照图5至图10进行描述)。饮料容器间室3可被构造成容纳容器(例如瓶或小罐),该容器容纳用户希望冷却并通过分配器喷嘴2分配的饮料(例如水或果汁)。饮料容器间室3可位于冰容器4(例如容器14)下方,并可包括门6,用户可通过该门进入饮料容器间室3。冰容器4可包括门5,该门可被打开和关闭,以允许进入冰容器4。因此,可以使用单个单元来制冰、储冰、快速冷却饮料以及将饮料分配给用户。在下文中,将进行饮料冷却系统11的描述。
图5至图10示出了根据电器10的示例性实施方式的饮料冷却系统11。应当注意,下文中描述的饮料冷却系统11可以与上述的制冰电器10和/或饮料分配器1结合使用或分开使用。换言之,冰可以在不使用制冰电器10的情况下单独地提供给饮料冷却系统11。在一些实施方式中,饮料冷却系统11可以包括第一桶142和第二桶144。在一些实施方式中,第一桶142和第二桶144可共同限定容器14。第二桶144可嵌套在第一桶142内。详细地,第二桶144可由前面板1442、后面板1444、第一侧面板1446、第二侧面板1448和底部面板1440限定。底部面板1440可大致垂直于前面板1442、后面板1444、第一侧面板1446和第二侧面板1448。在一些实施方式中,底部面板1440可相对于水平方向成角度。例如,底部面板1440可与后面板1444形成锐角(例如,小于90°)(第一角θ1,图10)。另外或可选地,底部面板1440可与第一侧面板1446形成锐角(例如,小于90°)(第二角θ2,图5)。
详细地,第一角θ1可以在大约75°至大约85°之间。类似地,第二角θ2可以在大约75°至大约85°之间。因此,底部面板1440可朝向第二桶144的后部和第二桶144的第一侧倾斜。当储存在第二桶144中的冰融化时,由于底部面板1440的成角度性质,排水可自然地流向由后面板1444、第一侧面板1446和底部面板1440限定的第一角落。
当第二桶144嵌套在第一桶142内时,可在第二桶144与第一桶142之间限定第一空间146。比如,第一桶142可由前面板1422、后面板1424、第一侧面板1426、第二侧面板1428和底部面板1420限定。当嵌套时,前面板1422与前面板1442隔开,以限定第一部分,后面板1424与后面板1444隔开,以限定第二部分,第一侧面板1426与第一侧面板1446隔开,以限定第三部分,第二侧面板1428与第二侧面板1448隔开,以限定第四部分,并且底部面板1420与底部面板1440隔开, 以限定第五部分。因此,第一空间146可由第一部分、第二部分、第三部分、第四部分和第五部分限定在第一桶142与第二桶144之间。
在一些实施方式中,第一桶142和第二桶144由不锈钢制成。在一些实施方式中,第一桶142和第二桶144由塑料(例如,聚氯乙烯或PVC、高密度聚乙烯或HDPE、或聚苯乙烯)制成。在一些实施方式中,第一桶142由第一材料制成,第二桶144由不同于第一材料的第二材料制成。应当理解,第一桶142和第二桶144可由任意合适的材料制成,并且根据应用的需要,第一桶142和第二桶144可由相同材料或不同材料制成。
第一桶142的前面板1422和第二桶的前面板1442中的每一个都可包括窗口。比如,前面板1422可以由透明材料(例如,玻璃、透明塑料)制成,使得前面板1422限定第一窗口1423。类似地,前面板1442可以由透明材料(例如,玻璃、透明塑料)制成,使得前面板1442限定第二窗口1443。因此,用户能够通过第一窗口1423、第二窗口1443和第一部分看到第二桶144的内部,以检查第二桶144内的冰的料位。
第一空间146可以容纳传热材料148。传热材料148可以是具有高热导率的材料。比如,传热材料148可具有比空气的热导率更高的热导率。传热材料148可以是液体,但是可以使用任意合适的材料。在一个实施方式中,传热材料148是食品安全的防冻剂。在可选实施方式中,传热材料148是水。
饮料冷却系统11还可包括穿过第一空间146并与传热材料148导热连接的管150。管150可用于接收饮料。详细地,管150可以包括入口152和出口154。入口152可设置在第一桶142的上部。例如,入口152可设置在第一桶142的第二侧面板1428的顶部处或附近。在一些实施方式中,入口152可设置在第一桶142的第一侧面板1426或后面板1424的顶部处或附近。出口154可以设置在第一桶142的下部。例如,出口154可设置在第一桶142的第一侧面板1426的底部处或附近。在一些实施方式中,出口154可设置在第一桶142的第二侧面板1428或后面板1424的底部处或附近。
管150可以以之字形(或蛇形路径)设置在第一空间146内。具体地,管150可具有多个笔直部分156和多个弯曲部分158,该多个弯曲部分将相邻的笔直部分156(或,统称为蛇形管)连接到彼此,以形成曲折形状。例如,可能期望增加管150与传热材料148之间的热接触,以便增加传热。多个笔直部分156可以设置在第二部分、第三部分、第四部分和第五部分中。根据应用的需要,多个笔直部分156可 以设置在第一、第二、第三、第四和第五部分的任意合适的组合中。换言之,管150可沿着第二桶144的第一侧面板1446、第二侧面板1448、后面板1444和底部面板1440围绕第二桶144成之字形。具体地,在一些实施方式中,当前面板1422和前面板1442透明时,多个笔直部分156可以不设置在第一部分中。
管150可用于接收饮料(例如,水、苏打汽水、果汁等)。饮料可在入口152处被引入管150中。饮料可以由用户单独供应(比如,在苏打汽水或果汁的情况下),或者可以直接从源(比如,市政水源)供应。因此,当饮料流经管150(例如,笔直部分156和弯曲部分158)时,热量可经由传热材料148和第二桶144中的冰从饮料中带走。尽管饮料冷却系统11在本文中被描述为冷却饮料,但是某些应用也可以利用系统11来加热饮料(例如,通过用加热的液体或物质填充第二桶144)。根据这样的应用,热量可以被传递到通过管150循环的饮料,以便产生加热的饮料(例如,用于咖啡或茶)。
饮料冷却系统11还可包括处于管150上(即,与管150流体连通)的阀160。阀160可被构造成选择性地打开和关闭管150,以选择性地将饮料分配给用户。阀160可以是能够打开和关闭管150的任意合适的阀,诸如电磁阀、手动阀、球阀、按钮阀等。阀160可以设置在管150的出口154处。因此,阀160可位于第一桶142的底部处或附近。在一些实施方式中,阀160可设置在管150的入口152处。阀160可由用户手动控制,或者可与控制器电通信以自动打开管150,以便根据预设程序分配饮料。在一些实施方式中,阀160可以与分配器喷嘴3流体连通,以允许饮料选择性地流到分配器喷嘴3。
饮料冷却系统11还可包括至少部分地围绕第一桶142的隔热层170。隔热层170可覆盖第一桶142的第一侧面板1426、第二侧面板1428、底部面板1420和后面板1424。换言之,第一桶142的顶部可以打开,以使冰进入第二桶144。进一步地,当前面板1422为窗口时,可不在前面板1422上设置隔热层170,以便不妨碍用户观察第二桶144的内部。隔热层170可以是限制第一桶142与环境大气之间的热传递的任意合适的隔热材料。例如,隔热层170可以是泡沫隔热材料,然而,本发明不限于此。
第二桶144可包括第一凸缘172,该凸缘从第二桶144的外表面沿法线方向突出,并至少部分地围绕第二桶144的外表面延伸。第一凸缘172可从第二桶144的第一侧面板1446、后面板1444和第二侧面板1448突出。详细地,当第二桶的前面板1442是窗口时,在前面板1442上不设置第一凸缘172。第一凸缘172可定位为沿 竖向V向下距第二桶144的顶部预定距离。在一些实施方式中,第一凸缘172可位于第二桶144的第一侧面板1446向下途中大约40%的位置,在第二桶的第一侧面板1446与前面板1442之间的接合处。例如,第一凸缘172可垂直于竖向V。
第一凸缘172可包括和第一桶142与第二桶144之间的第一空间146流体连通的进口孔174。进口孔174可以是从第一凸缘172的顶面沿竖向V突出的管。进口孔174可以位于第一凸缘172上允许与第一空间146流体连通的任意合适的位置。在一些实施方式中,进口孔174与第二桶144的第一侧面板1446与后面板1444之间的接合处相邻。根据一个实施方式,用户能够经由进口孔174将传热材料148添加到第一空间146中。
在一些实施方式中,第一桶142可包括第二凸缘176。第二凸缘176可对应于第一凸缘172。换言之,第二凸缘176可从第一桶142的外表面沿法线方向突出。在一些实施方式中,第二凸缘176从第一桶142的第一侧面板1426、后面板1424和第二侧面板1428突出。当第一桶142的前面板1422是窗口时,可以不在前面板1422上设置第二凸缘176,以便不妨碍用户观察第二桶144内部。由此可见,在一些实施方式中,当第二桶144嵌套在第一桶142内时,第一凸缘172可与第二凸缘176平面接触。
第二桶144的底部面板1440可包括第一出口孔180。第一出口孔180可设置在第二桶144的第一角落(即,后面板1444、第一侧面板1446和底部面板1440的接合处)。来自储存在第二桶144中的冰的融水可通过第一出口孔180流出第二桶144。类似地,第一桶142可包括第二出口孔182。第二出口孔182可以对应于第一出口孔180。在一些实施方式中,第一出口孔180可以是从第二桶144的底部面板1440沿竖向V向下延伸的管。然后,该管可以由第一桶142中的第二出口孔182接收,以允许融水容易地流出第二桶144。另外或可选地,管可在组装期间辅助将第二桶144定位在第一桶142内,这确保适当的配合。
第一桶142还可包括排水口184。排水口184可与第二出口孔182分离,并且可与第一空间146流体连通。设置在第一空间146中的流体可以经由排水口184从第一空间146排放。
图11提供了再循环系统的示意图。电器10还可包括再循环系统190,用于将融水从第二桶144再循环到制冰机50。再循环系统190可包括再循环管道192,该再循环管道具有流体地连接到第二桶144的第一出口孔180的第一端。详细地,再循环管道192的第一端和第二桶144的第一出口孔180中的一个可穿过第一桶142的 第二出口孔182。由此,来自第二桶144的融水可以直接流入再循环管道192而不与第一空间146混合。再循环系统190还可包括可与再循环管道192流体连通的过滤器194。来自第二桶144的融水可在循环回到制冰机50之前通过过滤器194以滤除杂质。例如,过滤器194可以是能够提供清洁的饮用水的任意合适的过滤器,诸如碳基过滤器。本发明不限制过滤器的数量和类型,并且应当理解,可以使用任意适当的组合。再循环系统190还可包括泵196,用于将融水泵送通过过滤器194并进入制冰机50中。泵196可与再循环管道192流体连通。泵196可以是能够将融水从第一出口孔180泵送至制冰机50的任意合适的泵。在一些实施方式中,例如当饮料冷却系统11与制冰电器10组合时,再循环系统190可将融水从第二桶144向上循环至储水容器34(图3)。
在下文中,将讨论本系统11的可选实施方式。同样的附图标记指代同样的特征,并且为了简洁将省略相同特征的详细描述。在本发明的可选实施方式中,可省略管150。具体地,第二桶144可嵌套在第一桶142内,以形成第一空间146。然而,可以不在第一空间146内设置管150。相反,第一空间146可以被构造成储存要直接分配给用户的饮料。这样,饮料将与第二桶144和储存在第二桶144内的冰进行热交换,以冷却到期望的温度。
根据该实施方式,阀160可与排水口184流体连通,以选择性地打开和关闭排水口184,以从第一空间146释放饮料。进一步地,第二桶的第一凸缘172中的进口孔174可允许饮料被引入第一空间146中。进口孔174可以是从第一凸缘172沿竖向V向上延伸的管,并且可以直接连接到饮料源(例如,市政水源)。可选地,管可以向环境大气开放,以允许饮料由用户引入第一空间146。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任意装置或系统并且执行所包含的任意方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (20)

  1. 一种饮料冷却系统,其特征在于,包括:
    第一桶;
    第二桶,该第二桶嵌套在所述第一桶内,以在其间限定用于接收传热材料的第一空间;以及
    管,该管穿过所述第一空间,并且与所述传热材料导热连接,其中,所述管用于接收饮料。
  2. 根据权利要求1所述的饮料冷却系统,其特征在于,所述管的入口设置在所述第一桶的上部处,并且所述管的出口设置在所述第一桶的下部处,并且其中,所述管沿着所述第二桶的第一侧、第二侧、后侧和底部围绕所述第二桶呈之字形。
  3. 根据权利要求2所述的饮料冷却系统,其特征在于,还包括分配器阀,该分配器阀与所述管流体连接,用于选择性地打开和关闭所述管,其中,所述分配器阀设置在所述管的所述出口处。
  4. 根据权利要求1所述的饮料冷却系统,其特征在于,所述第二桶由不锈钢制成并且用于储存冰。
  5. 根据权利要求1所述的饮料冷却系统,其特征在于,还包括至少部分地围绕所述第一桶的隔热层。
  6. 根据权利要求1所述的饮料冷却系统,其特征在于,所述第二桶包括凸缘,该凸缘从所述第二桶的外表面沿法线方向突出,并且至少部分地围绕所述第二桶的所述外表面延伸。
  7. 根据权利要求6所述的饮料冷却系统,其特征在于,所述凸缘包括和所述第一桶与所述第二桶之间的所述第一空间流体连通的进口孔。
  8. 根据权利要求1所述的饮料冷却系统,其特征在于,所述第二桶的底部面板相对于水平面从所述第二桶的后边缘向所述第二桶的前边缘倾斜,使得所述后边缘低于所述前边缘,并且其中,所述底部面板包括设置在所述底部面板的后边缘处的出口孔。
  9. 根据权利要求8所述的饮料冷却系统,其特征在于,所述第二桶的所述底部面板相对于所述水平面从所述第二桶的第一侧边缘向所述第二桶的第二侧边缘倾斜,使得所述第一侧边缘低于所述第二侧边缘,并且其中,所述出口孔设置在所述底部面板的所述第一侧边缘与所述后边缘的接合处。
  10. 根据权利要求9所述的饮料冷却系统,其特征在于,还包括与所述第二桶相邻的制冰机,所述制冰机产生要被传送到所述第二桶以便储存的冰。
  11. 根据权利要求10所述的饮料冷却系统,其特征在于,还包括再循环系统,所述再循环系统包括:
    再循环管道,该再循环管道具有流体连接到所述第二桶的所述出口孔的第一端和流体连接到所述制冰机的第二端;
    过滤器,该过滤器与所述再循环管道流体连通;以及
    再循环泵,该再循环泵与所述再循环管道流体连通,所述再循环泵被构造成将融水从所述第二桶泵送至所述制冰机。
  12. 根据权利要求1所述的饮料冷却系统,其特征在于,所述传热材料是水。
  13. 根据权利要求1所述的饮料冷却系统,其特征在于,所述传热材料是防冻剂。
  14. 根据权利要求1所述的饮料冷却系统,其特征在于,所述饮料是饮用水。
  15. 根据权利要求1所述的饮料冷却系统,其特征在于,所述第一桶包括第一窗口,并且所述第二桶包括第二窗口,并且其中,所述第一窗口和所述第二窗口重叠,使得所述第二桶的内部从所述第一桶的外部是可见的。
  16. 一种饮料冷却系统,其特征在于,包括:
    第一桶;
    第二桶,该第二桶嵌套在所述第一桶内,以在所述第一桶与所述第二桶之间限定第一空间;
    制冰机,该制冰机用于形成冰并将所述冰提供到所述第二桶中;以及
    再循环系统,该再循环系统与所述第二桶流体连通,所述再循环系统包括:
    再循环管道,该再循环管道具有流体连接到所述第二桶的出口孔的第一端和流体连接到所述制冰机的第二端;
    过滤器,该过滤器与所述再循环管道流体连通;以及
    再循环泵,该再循环泵与所述再循环管道流体连通,所述再循环泵被构造成将融水从所述第二桶泵送至所述制冰机。
  17. 根据权利要求16所述的饮料冷却系统,其特征在于,所述饮料冷却系统还包括:
    传热材料,该传热材料设置在所述第一空间中;和
    管,该管穿过所述第一空间,并且与所述传热材料导热连接,其中,所述管用 于接收饮料。
  18. 根据权利要求16所述的饮料冷却系统,其特征在于,所述第一空间用于接收饮料。
  19. 根据权利要求18所述的饮料冷却系统,其特征在于,所述第一桶包括设置在所述第一桶的底部面板中的出口孔,所述出口孔与所述第一空间流体连通。
  20. 根据权利要求19所述的饮料冷却系统,其特征在于,还包括设置在所述出口孔处的阀,所述阀被构造成选择性地打开和关闭所述出口孔,以从所述第一空间分配所述饮料。
PCT/CN2021/107232 2020-07-21 2021-07-20 独立的饮料分配器和冷却系统 WO2022017343A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180048614.5A CN115867508A (zh) 2020-07-21 2021-07-20 独立的饮料分配器和冷却系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/934,124 2020-07-21
US16/934,124 US20220026143A1 (en) 2020-07-21 2020-07-21 Stand-alone beverage dispenser and cooling system

Publications (1)

Publication Number Publication Date
WO2022017343A1 true WO2022017343A1 (zh) 2022-01-27

Family

ID=79688056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107232 WO2022017343A1 (zh) 2020-07-21 2021-07-20 独立的饮料分配器和冷却系统

Country Status (3)

Country Link
US (1) US20220026143A1 (zh)
CN (1) CN115867508A (zh)
WO (1) WO2022017343A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193813A (zh) * 2005-06-01 2008-06-04 Mds环球控股有限公司 碳酸化流体的分配系统
US20170284721A1 (en) * 2016-03-30 2017-10-05 General Electric Company Filters for Stand-Alone Ice Making Appliances
US20180001239A1 (en) * 2016-06-30 2018-01-04 Haier Us Appliance Solutions, Inc. Filters for Non-Plumbed Appliances
US20180008915A1 (en) * 2016-07-08 2018-01-11 Haier Us Appliance Solutions, Inc. Filters for Appliances
CN107843038A (zh) * 2016-09-20 2018-03-27 海尔美国电器解决方案有限公司 用于独立制冰器具的关机时间检测器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2339082A (en) * 1939-11-18 1944-01-11 Wallace R Kromer Beverage handling and dispensing apparatus
US6708741B1 (en) * 2000-08-24 2004-03-23 Ocean Spray Cranberries, Inc. Beverage dispenser
US20030010054A1 (en) * 2001-07-13 2003-01-16 Esch Willy Van Ice maker cooler
CA2400064A1 (en) * 2002-08-29 2004-02-29 Donald A. Kett Beverage cooler
CA2489487A1 (en) * 2004-12-09 2006-06-09 Icefloe Technologies Inc. Portable apparatus for chilling draught beverages

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193813A (zh) * 2005-06-01 2008-06-04 Mds环球控股有限公司 碳酸化流体的分配系统
US20170284721A1 (en) * 2016-03-30 2017-10-05 General Electric Company Filters for Stand-Alone Ice Making Appliances
US20180001239A1 (en) * 2016-06-30 2018-01-04 Haier Us Appliance Solutions, Inc. Filters for Non-Plumbed Appliances
US20180008915A1 (en) * 2016-07-08 2018-01-11 Haier Us Appliance Solutions, Inc. Filters for Appliances
CN107843038A (zh) * 2016-09-20 2018-03-27 海尔美国电器解决方案有限公司 用于独立制冰器具的关机时间检测器

Also Published As

Publication number Publication date
CN115867508A (zh) 2023-03-28
US20220026143A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
US8516849B2 (en) Cooler and method for cooling beverage containers such as bottles and cans
US20110308260A1 (en) Beverage cooler, a refrigerator comprising such a beverage cooler and a method for cooling beverage
KR101208550B1 (ko) 제빙 장치
JPH08167074A (ja) ポスト・ミックス型飲料水自動販売機
WO2022148481A1 (zh) 独立式冰块或饮料分配电器
US20150191685A1 (en) Temperature-Controlled Liquid Infusing Device
KR100853445B1 (ko) 제빙기능을 구비한 냉온수기
US11297976B2 (en) Method of forming frozen beverage blocks
TWI401053B (zh) 飲品裝置及其容器
US11326825B2 (en) Stand-alone ice and beverage appliance
WO2022017343A1 (zh) 独立的饮料分配器和冷却系统
US20170146280A1 (en) Stand-Alone Ice Making Appliances
CN205351937U (zh) 流体制冷用冷箱结构、流体制冷装置、速热即冷式饮水机
CA2887837A1 (en) A temperature-controlled liquid infusing device
KR20110124858A (ko) 음료 냉각장치
KR102101729B1 (ko) 냉장고
KR101346963B1 (ko) 와인 냉각장치
WO2019192158A1 (zh) 净饮机
CN200998167Y (zh) 快速制冷饮水机
JP2810436B2 (ja) 飲料供給機
CN111829257A (zh) 制冰机和冰箱
US20230108527A1 (en) Beverage-dispensing appliance having a chilled carbonator
WO2023083219A1 (zh) 包括用于冰模具外部的副供水系统的自动制冰机
US20090000320A1 (en) Chilled Liquid Dispensers
WO2023147774A1 (zh) 具有冷却储存容器的制冰组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845399

Country of ref document: EP

Kind code of ref document: A1