WO2023065857A1 - 驱动控制电路及方法、驱动模组、摄像头模组和电子设备 - Google Patents

驱动控制电路及方法、驱动模组、摄像头模组和电子设备 Download PDF

Info

Publication number
WO2023065857A1
WO2023065857A1 PCT/CN2022/116939 CN2022116939W WO2023065857A1 WO 2023065857 A1 WO2023065857 A1 WO 2023065857A1 CN 2022116939 W CN2022116939 W CN 2022116939W WO 2023065857 A1 WO2023065857 A1 WO 2023065857A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
piezoelectric motor
driving
unit
Prior art date
Application number
PCT/CN2022/116939
Other languages
English (en)
French (fr)
Inventor
李飞
靳浩楠
何雨航
高翔宇
夏颂
辛本坚
任凯乐
徐卓
陈伟
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023065857A1 publication Critical patent/WO2023065857A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/04Single phase motors, e.g. capacitor motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present application relates to the technical field of electromechanical control, in particular to a driving control circuit and method, a driving module, a camera module, electronic equipment and a storage medium.
  • Piezoelectric motor is a new type of driving motor. It uses the inverse piezoelectric effect of piezoelectric materials to convert electrical energy into vibration mechanical energy, and then relies on friction to drive piezoelectric motors to rotate or linearly move. Compared with electromagnetic motors, piezoelectric motors have a unique excitation and motion transmission mechanism, so piezoelectric motors do not generate magnetic fields, and are not affected by magnetic fields. They have strong self-locking ability, fast response, high efficiency, and high motion accuracy. , miniaturization and other characteristics that traditional electromagnetic motors cannot match. For this reason, the research on piezoelectric motors and their drive control circuits has become one of the research hotspots in the field of micromechanics and electrical engineering.
  • the piezoelectric motor drive control technology will use an open-loop drive control circuit or a closed-loop drive control circuit, but the closed-loop drive control circuit in the related art is mostly used for the frequency and phase control of the piezoelectric motor, and the voltage adjustment is realized by frequency modulation and phase modulation.
  • the closed-loop control circuit is relatively complicated.
  • a driving control circuit and method a driving module, a camera module, an electronic device, and a storage medium are provided.
  • an embodiment of the present application provides a drive control circuit, including:
  • a signal generating module configured to be connected to the piezoelectric motor, the generating module is configured to generate a drive signal to drive the piezoelectric motor to work;
  • the frequency tracking module is connected to the signal generating module and is also used to connect to the piezoelectric motor, the frequency tracking module is used to detect the working electrical signal of the piezoelectric motor, and output an adjustment signal to the piezoelectric motor according to the working electrical signal.
  • the signal generation module so that the signal generation module generates a drive signal according to the received adjustment signal to drive the piezoelectric motor to work at a mechanical resonance frequency, wherein the frequency of the drive signal generated according to the adjustment signal is the same as
  • the adjustment signal is related; wherein, if the frequency tracking module outputs an adjustment signal corresponding to the maximum working electrical signal, the signal generation module generates a target driving signal, and the target driving signal is used to drive the piezoelectric motor to work at the mechanical resonance frequency.
  • the drive control circuit above includes a signal generating module and a frequency tracking module, wherein the signal generating module and the frequency tracking module can be connected to the piezoelectric motor respectively, the signal generating module can generate a driving signal to drive the piezoelectric motor to work, and the frequency tracking module can detect The piezoelectric motor responds to the working electrical signal when the current driving signal works, and outputs an adjustment signal to the signal generation module according to the working electrical signal, so that the signal generation module adjusts the frequency of the current driving signal according to the received adjustment signal to generate a new driving signal. Signal.
  • the frequency tracking module outputs an adjustment signal corresponding to the maximum working electrical signal
  • the signal generating module generates a target driving signal with a target frequency to drive the piezoelectric motor to work at a mechanical resonance frequency.
  • the drive control circuit can perform closed-loop control on the piezoelectric motor, realize the frequency tracking of the piezoelectric motor, track the mechanical resonance frequency point of the piezoelectric motor at all times, and control the piezoelectric motor to work at the optimal operating frequency, that is, Keep at the maximum speed point, thereby ensuring the stability of the piezoelectric motor performance.
  • the drive control circuit provided by the embodiment of the present application has a simple circuit structure and low cost.
  • embodiments of the present application provide a drive control method, including:
  • the control signal generation module generates a driving signal to drive the piezoelectric motor to work
  • the working electrical signal of the piezoelectric motor and output an adjustment signal to the signal generating module according to the working electrical signal until a target adjustment signal is output; wherein, the target adjustment signal is an adjustment signal corresponding to the maximum working electrical signal, and the frequency of the driving signal is related to the conditioning signal;
  • the signal generating module is controlled to generate a target driving signal with a target frequency according to the target adjustment signal, so as to drive the piezoelectric motor to work at a mechanical resonance frequency.
  • the driving control method provided in the present application can control the signal generating module to generate a driving signal to drive the piezoelectric motor to work; obtain the working electrical signal of the piezoelectric motor, and output an adjustment signal to the signal generating module according to the working electrical signal, until outputting a target adjustment signal; controlling the signal generating module to output a target driving signal with a target frequency according to the target adjustment signal, so as to drive the piezoelectric motor to work at a mechanical resonance frequency.
  • the driving control method can realize the frequency tracking of the piezoelectric motor, and can track the mechanical resonance frequency point of the piezoelectric motor at all times, so that the frequency tracking is more reliable and stable.
  • a drive module including:
  • the aforementioned drive control circuit is connected to the piezoelectric motor and is used to drive the piezoelectric motor to work at a mechanical resonance frequency.
  • a camera module including:
  • the mirror base is a hollow cavity structure
  • a lens including a lens barrel and a lens mounted on the lens barrel;
  • the aforesaid driving module is connected with the mirror base and used to drive the lens barrel to move along the optical axis of the lens.
  • an embodiment of the present application provides an electronic device, including a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • the control signal generating module generates a driving signal to drive the piezoelectric motor to work
  • the working electrical signal of the piezoelectric motor and output an adjustment signal to the signal generating module according to the working electrical signal until a target adjustment signal is output;
  • the target adjustment signal is an adjustment signal corresponding to the maximum working electrical signal;
  • the signal generation module is controlled to output a target driving signal with a target frequency according to the target adjustment signal, so as to drive the piezoelectric motor to work at a mechanical resonance frequency.
  • the embodiments of the present application provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the control signal generating module generates a driving signal to drive the piezoelectric motor to work
  • the working electrical signal of the piezoelectric motor and output an adjustment signal to the signal generating module according to the working electrical signal until a target adjustment signal is output;
  • the target adjustment signal is an adjustment signal corresponding to the maximum working electrical signal;
  • the signal generation module is controlled to output a target driving signal with a target frequency according to the target adjustment signal, so as to drive the piezoelectric motor to work at a mechanical resonance frequency.
  • Fig. 1 is one of the structural representations of the convolution operation circuit in an embodiment
  • Fig. 2 is the second structural diagram of the convolution operation circuit in an embodiment
  • Fig. 3 is a schematic diagram of segmentation in which the original convolution kernel is switched to a sub-convolution kernel in one embodiment
  • Fig. 4 is a schematic diagram of an input feature map and a plurality of sub-convolution kernel convolution operations in one embodiment
  • Fig. 5 is the third structural diagram of the convolution operation circuit in an embodiment
  • FIG. 6 is a schematic diagram of a convolution operation of a convolution operation circuit in an embodiment
  • FIG. 7 is the fourth schematic diagram of the structure of the convolution operation circuit in an embodiment
  • Fig. 8 is the fifth structural diagram of the convolution operation circuit in an embodiment
  • FIG. 9 is a schematic flowchart of a convolution operation method in an embodiment
  • Fig. 10 is an example of controlling the multiply-accumulate array to respond to the configuration information of the register in one embodiment, and perform multiply-accumulate processing on the non-zero weights in each of the weight planes in the sub-convolution kernel and the data to be convolved Schematic diagram of the process;
  • Fig. 11 is a schematic flowchart of a convolution operation method in another embodiment
  • Fig. 12 is a structural block diagram of a neural network accelerator in an embodiment
  • Fig. 13 is a structural block diagram of an electronic device in one embodiment.
  • first and second used in this application are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • the terms “first”, “second”, etc. may be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish one element from another element.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • severeal means at least one, such as one, two, etc., unless otherwise specifically defined.
  • connection in the following embodiments should be understood as “electrical connection”, “communication connection” and the like if there is transmission of electrical signals or data between the connected objects.
  • Piezoelectric motor can be regarded as a complex time-varying system with multiple variables and strong coupling, which exhibits special dynamic phenomena and strong nonlinearity, making modeling difficult. Factors such as the load, the pressure between the stator and the rotor, the operating temperature, the speed and the change in direction of rotation will all affect the actual performance of the piezoelectric motor. Therefore, the inventors have found that it is difficult to control a piezoelectric motor as it is to control a conventional electromagnetic motor.
  • Piezoelectric motors can be used in camera modules including mirror mounts and lenses. Wherein, the mirror base is a hollow cavity structure; the lens includes a lens barrel and a lens installed in the lens barrel. The piezoelectric motor is connected with the lens mount and used to drive the lens barrel to move along the optical axis of the lens.
  • the piezoelectric motor drive technology adopts relatively mature open-loop drive control circuits. It mainly consists of three modules: frequency generation module, phase splitting and frequency division module, and power amplifier matching module.
  • the frequency generation module can send a simple harmonic drive signal of a certain frequency; the frequency division and phase separation module divides the excitation drive signal into multi-phase signals and there should be a certain phase difference between different signals; the power amplifier matching module further processes the signal to make the excitation
  • the power of the signal is capable of driving the piezoelectric motor.
  • the output of the open-loop drive control circuit is a fixed drive frequency, because the loss caused by the long-term operation of the piezoelectric motor changes its mechanical characteristics to a certain extent, resulting in a shift in the optimal frequency point (mechanical resonance frequency point) , when the optimal frequency point shifts, the output of the piezoelectric motor will become smaller and smaller (including driving force, driving speed, etc.).
  • a relatively closed-loop drive control circuit is used for the frequency, speed and phase control of the piezoelectric motor.
  • the closed-loop control circuit of the piezoelectric motor in the related art is mostly used for frequency and phase control of the piezoelectric motor, and the speed control of the piezoelectric motor is realized through frequency modulation and phase modulation.
  • the drive control circuit mostly adopts a bridge-type push-pull circuit controlled by Pulse width modulation (PWM), and the cycle control mostly uses an isolated voltage cycle and a phase-locked loop (Phase lock loop, PLL). to achieve frequency cycling.
  • PWM Pulse width modulation
  • PLL phase-locked loop
  • L1B2 piezoelectric motor for piezoelectric motors in which the piezoelectric material is a coupled mode of first-order elongation and second-order bending (referred to as L1B2 piezoelectric motor), it has been working at the maximum speed point, and there is no need for speed regulation, so for related technologies
  • L1B2 piezoelectric motor For the closed-loop isolated voltage and phase-locked loop loop control in the closed-loop control circuit, the complexity of the closed-loop control circuit is high, the speed is relatively slow, and the cost is high.
  • the present invention provides a drive control circuit, which can realize the closed-loop control of the piezoelectric motor and realize the frequency tracking of the piezoelectric motor. Track the mechanical resonance frequency point of the piezoelectric motor at all times, and control the piezoelectric motor to work at the optimal operating frequency, that is, maintain the maximum speed point.
  • the driving control circuit provided by the embodiment of the present application has a simple circuit structure, fast driving speed and low cost.
  • the embodiment of the present application provides a driving control circuit for driving a piezoelectric motor 200 .
  • the drive control circuit 100 includes a signal generating module 110 and a frequency tracking module 120 .
  • the signal generating module 110 is connected with the piezoelectric motor 200 , and the signal generating module 110 is used for generating a driving signal and outputting the driving signal to the piezoelectric motor 200 to drive the piezoelectric motor 200 to work.
  • the driving signal may be a high-frequency sinusoidal voltage signal. When the high-frequency sinusoidal voltage signal acts on the piezoelectric stator of the piezoelectric motor 200 , the piezoelectric stator is driven to produce an elliptical motion, and then the piezoelectric motor 200 is driven.
  • the frequency tracking module 120 is respectively connected with the signal generation module 110 and the piezoelectric motor 200.
  • the frequency tracking module 120 is used to detect the working electrical signal of the piezoelectric motor 200, and output an adjustment signal to the signal generating module 110 according to the working electrical signal, so that the signal
  • the generation module 110 generates a driving signal according to the received adjustment signal.
  • the frequency of the driving signal generated according to the adjustment signal is related to the adjustment signal.
  • the frequency of the driving signal generated by the signal generation module 110 before receiving the adjustment signal is different from that of the driving signal generated according to the received adjustment signal.
  • the frequency tracking module 120 can collect the working electrical signal of the piezoelectric motor 200, and then output an adjustment signal to the The signal generation module 110 enables the signal generation module 110 to adjust the frequency of the first driving signal according to the received adjustment signal to generate a second driving signal, and drive the piezoelectric motor 200 based on the second driving signal. With such cyclic operation, the signal generation module 110 can continuously generate new driving signals to drive the piezoelectric motor 200 according to the adjustment signal. If the frequency tracking module 120 outputs an adjustment signal corresponding to the maximum working electrical signal, the signal generation module 110 generates a target driving signal with a target frequency.
  • the target frequency of the target drive signal is the same as the mechanical resonance frequency of the piezoelectric motor 200 . That is, the target driving signal generated by the signal generating module 110 can drive the piezoelectric motor 200 to work at the mechanical resonance frequency.
  • the driving control circuit 100 includes a signal generating module 110 and a frequency tracking module 120, wherein the signal generating module 110 and the frequency tracking module 120 can be respectively connected to the piezoelectric motor 200, and the signal generating module 110 can generate a driving The signal is used to drive the piezoelectric motor 200 to work, and the frequency tracking module 120 can detect the working electrical signal when the piezoelectric motor 200 is working in response to the current driving signal, and output an adjustment signal to the signal generating module 110 according to the working electrical signal, so that the signal can be generated Module 110 generates a new drive signal based on the received conditioning signal.
  • the signal generation module 110 If the frequency tracking module 120 outputs an adjustment signal corresponding to the maximum working electrical signal, the signal generation module 110 generates a target driving signal with a target frequency to drive the piezoelectric motor to work at a mechanical resonance frequency.
  • the drive control circuit 100 realizes the closed-loop control of the piezoelectric motor 200 through the signal generation module 110 and the frequency tracking module 120, realizes the frequency tracking of the piezoelectric motor 200, and can always track the mechanical resonance frequency point of the piezoelectric motor 200 , and control the piezoelectric motor 200 to work at the optimal operating frequency, that is, to maintain the maximum speed point, thereby ensuring the stability of the performance of the piezoelectric motor 200 .
  • the drive control circuit 100 provided by the embodiment of the present application has a simple circuit structure and low cost.
  • the frequency tracking module 120 includes a detection unit 121 , a conversion unit 122 and a processing unit 123 which are electrically connected in sequence.
  • the detection unit 121 is used for connecting with the piezoelectric motor 200
  • the detection unit 121 is used for detecting the working electrical signal of the piezoelectric motor 200 and outputting a voltage signal corresponding to the working electrical signal.
  • the detection unit 121 can be used to detect the working electrical signal of the piezoelectric motor 200 in response to the driving signal.
  • the working electrical signal may be a current signal or a voltage signal.
  • the detection unit 121 may include a current detection unit, which can be used to detect the current signal of the piezoelectric motor 200 .
  • the current detection unit may include a current Hall detector, and may also include a sampling resistor.
  • the current detection unit is taken as an example of a sampling resistor for description.
  • a sampling resistor (a resistance of about several hundred ohms) can be used to collect the current signal of the piezoelectric stator in the piezoelectric motor 200, and convert the current signal into a voltage signal and output it to the conversion unit 122 for conversion processing .
  • the current signal of the piezoelectric stator is an AC current signal
  • the converted voltage signal is also an AC voltage signal.
  • the working electrical signal of the piezoelectric motor is the working electrical signal of the piezoelectric stator as an example for illustration.
  • a sampling resistor with a small resistance value is used to collect the current signal, which can improve the collection accuracy of the current signal and further improve the accuracy of the target driving signal .
  • the detection unit 121 may also be a voltage detection unit, configured to detect the voltage signal of the piezoelectric motor 200 .
  • the voltage detection unit may be a voltage Hall detector, which is used to detect the AC voltage signal of the piezoelectric stator in the piezoelectric motor 200, and output the detected AC voltage signal to the conversion unit 122 for conversion processing.
  • the conversion unit 122 is connected with the detection unit 121 and used for receiving the voltage signal and converting the voltage signal into a digital signal.
  • the converting unit 122 may include an analog-to-digital converter (Analog digital converter, ADC) 1222 for converting an analog signal corresponding to the voltage signal into a digital signal, so as to output the digital signal to the processing unit 123.
  • ADC analog-to-digital converter
  • the analog-to-digital converter 1222 may be a high-speed ADC sampling circuit.
  • the conversion unit 122 also includes an effective value (Root mean square, RMS) converter 1221, wherein the input end of the effective value converter 1221 is connected to the detection unit 121, and the output end of the effective value converter 1221 is connected to the analog-to-digital converter. 1222 connection.
  • the effective value converter 1221 can be used to calculate the effective value RMS of the received AC voltage signal to obtain the effective value voltage. It can be understood that the RMS converter 1221 can convert the AC voltage signal into a DC voltage signal, that is, the RMS converter 1221 can convert the high-frequency sinusoidal AC voltage signal into an RMS voltage signal.
  • the effective value converter 1221 can transmit its effective value voltage signal to the analog-to-digital converter 1222 to convert the effective value voltage signal into a digital signal, so as to output the digital signal to the processing unit 123 .
  • the RMS converter 1221 may include, but is not limited to, an RMS-to-DC converter.
  • the processing unit 123 can track the frequency of the piezoelectric motor 200 according to the data signal, thereby realizing real-time tracking of the resonance frequency of the piezoelectric motor 200 .
  • the processing unit 123 is respectively connected with the conversion unit 122 and the signal generation module 110 for receiving digital signals and outputting adjustment signals according to the digital signals to control the signal generation module 110 to generate driving signals according to the received adjustment signals.
  • the adjustment signal corresponding to the maximum current signal of the piezoelectric motor 200 is the target adjustment signal
  • the signal generation module 110 can generate a target driving signal with a frequency at the mechanical resonance frequency according to the received target adjustment signal.
  • the current signal is a current signal
  • the maximum current signal can be interpreted as a maximum current value.
  • the processing unit 123 is also configured to output the target adjustment signal to the signal generation module 110, so that the signal generation module 110 generates a target drive signal with a target frequency, that is, a high-frequency sinusoidal voltage signal, and then drives and controls the piezoelectric motor 200, So as to achieve the purpose of frequency tracking.
  • a target frequency that is, a high-frequency sinusoidal voltage signal
  • the processing unit 123 can be a single-chip microcomputer (Single-Chip Microcomputer, SCM), a field programmable logic gate array (Field Programmable Gate Array, FPGA), a central processing unit (Central Processing Unit, CPU), etc., which can be used to process digital signals Control processing device for analysis processing.
  • the processing unit 123 may also include a register, the register of which is connected to the analog-to-digital converter 1222 for receiving the digital signal, and the processing unit 123 may output an adjustment signal based on the digital signal received by the register, so as to control the signal generation module 110 to adjust The frequency of the driving signal until the current value of the current signal of the piezoelectric motor 200 reaches a maximum.
  • the register in the processing unit 123 can store the mapping relationship between the digital signal of the effective value voltage signal and the current signal, and the processor can jointly output the adjustment signal based on the mapping relationship and the digital signal.
  • the processing unit 123 can perform the following cyclic operation: the processing unit 123 can drive the piezoelectric motor 200 to work according to the current driving signal, and generate an adjustment signal according to the current signal of the piezoelectric motor 200, and output it to the signal generation module 110, so that the signal generation module 110 can adjust the frequency of the current driving signal according to the received adjustment signal to generate a new driving signal, and obtain a current signal of the piezoelectric motor 200 in response to the new driving signal.
  • the current signal of the piezoelectric motor can be obtained based on the mapping relationship stored in advance by the processing unit and the received digital signal.
  • the adjustment signal corresponding to the second current signal is used as the target adjustment signal.
  • the operating current of the piezoelectric stator has a unique maximum value (or maximum value).
  • the current value of the second circuit signal I(i) corresponding to the current moment with the current value of the first current signal I(i-1) corresponding to the previous moment (or last moment), if the second circuit The current value of the signal I(i) has a downward trend relative to the current value of the first current signal I(i-1), then the current value of the first current signal I(i-1) can be used as the work of the piezoelectric stator
  • the current has a unique maximum value, and the adjustment signal corresponding to the first current signal I(i-1) is used as the target adjustment signal.
  • the processing unit 123 will output the target adjustment signal to the signal generation module 110, so that the signal generation module 110 generates a drive signal with a target frequency according to the target adjustment signal, so that the piezoelectric motor 200 works at the mechanical resonance frequency, thereby achieving frequency tracking. Purpose.
  • the processing unit 123 if the current value of the second circuit signal I(i) has a rising trend relative to the current value of the first current signal I(i-1), it means that the first current signal I( The current value of i-1) did not reach the maximum value.
  • the processing unit 123 generates a corresponding adjustment signal according to the second circuit signal I(i), so that the signal generation module 110 adjusts the frequency of the driving signal according to a preset frequency sweep strategy.
  • the processing unit 123 may output a corresponding adjustment signal, so that the signal generation module 110 performs frequency sweep adjustment on the frequency of the driving signal according to the received adjustment signal in one of the following ways:
  • Method 1 Starting from the first initial frequency, gradually increase the first preset frequency sweep amount
  • Method 2 Starting from the second initial frequency, gradually reduce the second preset frequency sweep amount
  • Method 3 Starting from the first initial frequency, gradually increase the third preset frequency sweep amount until the target frequency sweep interval is determined, and within the target frequency sweep interval, perform frequency sweep with the fourth preset frequency sweep amount, wherein the second The initial frequency is greater than the first initial frequency, and the fourth preset frequency sweep amount is lower than the third preset frequency sweep amount; wherein, the target frequency sweep area includes the target frequency.
  • the first preset frequency sweep amount, the second preset frequency sweep amount, and the third preset frequency sweep amount may be the same or different.
  • the preset frequency sweep amount can be set according to the working properties of the piezoelectric motor 200 .
  • the frequency tracking module 120 can cyclically detect the second operating current of the piezoelectric motor 200 at the current moment and the corresponding first operating current at the previous moment until If the operating current with the maximum value is determined, then the optimal resonant frequency f_r of the piezoelectric motor 200 is determined, and this frequency is the mechanical resonant frequency of the piezoelectric motor 200 . After determining the resonant frequency of the piezoelectric stator, send it to the drive signal generating circuit to output a high-frequency sinusoidal AC signal of the corresponding frequency, so as to achieve the purpose of frequency tracking.
  • the frequency tracking module 120 by setting the frequency tracking module 120, the working current of the piezoelectric motor 200 can be monitored in real time, and the resonant frequency of the piezoelectric motor 200 can be corrected to make it work at the mechanical resonant frequency point, the stability of the performance output of the piezoelectric motor 200 and the stability under long-term work are improved.
  • the signal generation module 110 includes a control unit 111 and a generation unit 112 .
  • the control unit 111 is connected with the frequency tracking module 120 and configured to generate an adjustment instruction according to the received adjustment signal.
  • the control unit 111 is the control core unit of the drive control circuit 100, and can perform operations such as program logic operation control and high-speed A/D conversion.
  • the control unit 111 may output the driving instruction, or may receive the target adjustment signal output by the processing unit 123 of the frequency tracking module 120, and generate the target adjustment instruction according to the target adjustment signal.
  • the driving instruction is used to instruct the generating unit 112 to generate a driving signal
  • the target adjustment instruction is used to instruct the generating unit 112 to generate a target driving signal.
  • the driving instruction may be generated autonomously by the control unit 111, or may receive driving instructions output by other modules. In the embodiment of the present application, it should be noted that there is no further limitation on the specific manner of generating the driving instruction.
  • the generation unit 112 is connected to the control unit 111 and the piezoelectric motor 200 respectively.
  • the generating unit 112 is used for generating a driving signal to drive the piezoelectric motor 200 to work according to a driving instruction.
  • the generating unit 112 may generate a driving signal under the control of the driving instruction of the control unit 111, and the frequency of the driving signal may be a high frequency whose frequency is approximately the resonance frequency of the piezoelectric motor 200 sinusoidal voltage signal.
  • the generating unit 112 can also adjust the frequency of the driving signal according to the adjustment instruction to generate a new driving signal.
  • the generation unit 112 can also adjust the frequency of the driving signal according to the adjustment instruction, so that the adjusted frequency can be closer to the mechanical resonance frequency of the piezoelectric motor 200 .
  • the generation unit 112 can also adjust the frequency of the driving signal to the mechanical resonance frequency according to the received target adjustment instruction, so that the driving frequency of the driving signal is equal to the mechanical resonance frequency, so as to achieve the purpose of frequency tracking, and can also increase the voltage.
  • the driving accuracy of the electric motor 200 can also adjust the frequency of the driving signal according to the adjustment instruction to generate a new driving signal.
  • the generation unit 112 can also adjust the frequency of the driving signal according to the adjustment instruction, so that the adjusted frequency can be closer to the mechanical resonance frequency of the piezoelectric motor 200 .
  • the generation unit 112 can also adjust the frequency of the driving signal to the mechanical resonance frequency according to the received target adjustment instruction, so that the driving frequency of the driving signal is equal to
  • the generating unit 112 includes a direct digital synthesis (Direct Digital Synthesis, DDS) signal generator, and the DDS signal generator is used to generate a high-frequency sinusoidal voltage signal, and adjust the frequency of the high-frequency sinusoidal voltage signal according to the adjustment instruction.
  • DDS signal generator adopts direct digital frequency synthesis technology, which improves the frequency stability and accuracy of the signal generator to the same level as the reference frequency, and can perform fine frequency adjustment in a wide frequency range.
  • the DDS signal generator can carry out serial and parallel input modes, the control is simple, and the frequency and amplitude of the generated signal are stable.
  • a DDS signal generator by using a DDS signal generator, it can generate a driving signal of a high-frequency sinusoidal voltage signal, so that the stability of the output driving signal is extremely high, thereby improving the driving stability of the piezoelectric motor 200 .
  • the signal generating module 110 further includes: an input unit 113 connected to the control unit 111 .
  • the input unit 113 is configured to generate driving instructions in response to external operations.
  • the driving command can be output to the control unit 111 , and the control unit 111 controls the generating unit 112 to generate a high-frequency sinusoidal signal whose frequency is approximately the mechanical resonance frequency of the piezoelectric motor 200 according to the received driving command.
  • the input unit 113 may optionally include a touch screen, keys, data ports and the like.
  • the user may input a driving command to the control unit 111 via the input unit 113 .
  • the user can determine the generation time of the driving instruction, so as to realize the flexible driving of the piezoelectric motor 200 .
  • the signal generating module 110 further includes: a first filtering unit 114 and a first amplifying unit 115 .
  • the first filtering unit 114 is connected to the generating unit 112 and configured to perform low-pass filtering processing on the driving signal output by the generating unit 112 .
  • the first filtering unit 114 may include one or more cascaded low-pass filters, which may filter out part of high-frequency interference signals in the driving signal.
  • the input end of the first amplifying unit 115 is connected to the output end of the first filtering unit 114, and the output end of the first amplifying unit 115 is connected to the piezoelectric motor 200 for amplifying the driving signal output by the first filtering unit 114, output to the piezoelectric motor 200 to realize the driving of the piezoelectric motor 200 .
  • the first amplifying unit 115 may be a high-frequency high-speed operational amplifier chip, which amplifies the voltage of the driving signal from mV level to 1V, thereby increasing the voltage value of the driving signal. It should be noted that, the order of processing the driving signal by the first filtering unit 114 and the first amplifying unit 115 may also be interchanged.
  • the input end of the first amplifying unit 115 is connected to the generating unit 112
  • the output end of the first amplifying unit 115 is connected to the input end of the first filtering unit 114
  • the output end of the first filtering unit 114 is connected to the piezoelectric motor 200 .
  • the first filtering unit 114 is designed to filter the driving signal, and filter out some high-frequency interference signals in the driving signal, and amplify the filtered driving signal to amplify the voltage value of the driving signal , can output a non-interference, high-amplitude driving signal to the piezoelectric motor, can reduce the influence of the interference signal in the driving signal on the piezoelectric motor 200, and then can realize precise tracking and precise driving of the frequency of the piezoelectric motor 200.
  • the signal generation module 110 further includes a clock unit 116 connected to the control unit 111 and the generation unit 112 respectively.
  • the clock unit 116 can provide clock signals for the control unit 111 and the generation unit 112 respectively, so as to keep the clocks of the generation unit 112 and the control unit 111 synchronized.
  • the clock unit 116 may be any one of a global clock unit, a gated clock unit, a multi-level logic clock unit, and a fluctuating clock unit. It should be noted that, in the embodiment of the present application, the type of the clock unit is not limited to the above example, and may also be other types of clock units.
  • a clock signal that is, a reference clock
  • the drive control circuit 100 can ensure that the clocks of the control unit 111 and the generation unit 112 are synchronized, so that the drive control circuit can 100 for control operations, improving the timeliness of frequency tracking.
  • the drive control circuit 100 further includes a signal amplification module 130 connected to the signal generation module 110 and the piezoelectric motor 200 respectively.
  • the signal amplification module 130 can amplify and filter the driving signal output by the signal generation module 110 .
  • the signal amplifying module 130 may include a second filtering unit 131 and a second amplifying unit 132 .
  • the second filtering unit 131 is connected with the signal generating module 110 and used for filtering the driving signal output by the signal generating module 110 .
  • the second filter unit 131 may be the same as the first filter unit 114 , both of which are low-pass filters to filter out spurious high-frequency signals of the driving signal.
  • the input end of the second amplifying unit 132 is connected to the second filtering unit 131, and the input end of the second amplifying unit 132 is connected to the piezoelectric motor 200 for amplifying the driving signal filtered by the second filtering unit 131, and The amplified drive signal is output to the piezoelectric motor 200 .
  • the second amplifying unit 132 can amplify the voltage of the driving signal from mV level to over 100V.
  • the second amplifying unit 132 may also be the same as the first amplifying unit 115 , and may be a high-frequency and high-speed operational amplifier chip.
  • the amplification factor (or gain coefficient, bandwidth, and amplitude of the second amplification unit 132 can be determined and adapted according to the operating parameters of the piezoelectric motor 200 to be driven (for example, the simulation results when the piezoelectric stator of the piezoelectric motor 200 is working) Design.
  • the second filtering unit 131 and the second amplifying unit 132 can also exchange the processing order of the driving signal.
  • the input end of the second amplifying unit 132 is connected with the signal generation module 110, and the second amplifying unit The output terminal of 132 is connected with the input terminal of the second filter unit 131 , and the output terminal of the second filter unit 131 is connected with the piezoelectric motor 200 .
  • the driving control circuit 100 includes the first filtering unit 114, the first amplifying unit 115, the second filtering unit 131 and the second amplifying unit 132, the driving signal output by the signal generating module 110 can be double- secondary filtering and secondary amplification processing, so that the driving signal after secondary filtering and secondary amplification can better act on the piezoelectric stator of the piezoelectric motor 200, and drive the piezoelectric stator to generate an elliptical motion, thereby driving the piezoelectric motor 200 .
  • a driving control method is provided.
  • the driving control method can be applied to the driving control circuit in any of the foregoing embodiments.
  • the driving control method includes step 902 to step 906 .
  • Step 902 the control signal generating module generates a driving signal to drive the piezoelectric motor to work.
  • the signal generating module is connected with the piezoelectric motor, which can generate a driving signal under the control of the driving control circuit, and output the driving signal to the piezoelectric motor to drive the piezoelectric motor to work.
  • the driving signal may be a high-frequency sinusoidal voltage signal.
  • Step 904 obtain the working electrical signal of the piezoelectric motor, output the adjustment signal to the signal generating module according to the working electrical signal, until the target adjustment signal is output; wherein, the frequency of the driving signal is related to the adjustment signal, and the target adjustment signal corresponds to the maximum working electrical signal adjustment signal.
  • the drive control circuit can detect the operating electrical signal of the piezoelectric motor based on the detection unit, and output an adjustment signal to the signal generating module according to the operating electrical signal, so that the signal generating module can adjust the frequency of the driving signal according to the feedback of the adjusting signal to generate a new driving signal , until the drive control circuit outputs the target adjustment signal.
  • the driving control circuit can collect the working electrical signal of the piezoelectric motor, and then output an adjustment signal according to the collected working electrical signal, to the signal generation module, so that the signal generation module adjusts the frequency of the first driving signal according to the received adjustment signal to generate a second driving signal, and drives the piezoelectric motor based on the second driving signal.
  • the signal generation module can continuously generate new driving signals according to the adjustment signal to drive the piezoelectric motor until the drive control circuit determines the target adjustment signal according to the working electrical signal of the piezoelectric motor.
  • Step 906 the control signal generation module generates a target driving signal with a target frequency according to the target adjustment signal, so as to drive the piezoelectric motor to work at the mechanical resonance frequency.
  • the drive control circuit can transmit the determined target adjustment signal to the signal generation module, and the signal generation module can output a target drive signal with a target frequency according to the target adjustment signal, so as to drive the piezoelectric motor to work at the mechanical resonance frequency.
  • the target frequency of the driving signal is the same as the mechanical resonance frequency of the piezoelectric motor.
  • the driving control method provided in the embodiment of the present application can control the signal generation module to generate a driving signal to drive the piezoelectric motor to work; obtain the working electrical signal of the piezoelectric motor, and output the adjustment signal to the signal generating module according to the working electrical signal until the output target adjustment signal; the control signal generating module outputs a target driving signal with a target frequency according to the target adjustment signal, so as to drive the piezoelectric motor to work at a mechanical resonance frequency.
  • the driving control method can realize the frequency tracking of the piezoelectric motor, and can track the mechanical resonance frequency point of the piezoelectric motor at all times, so that the frequency tracking is more reliable and stable.
  • the operation electrical signal of the piezoelectric motor is detected, and an adjustment signal is output to the signal generating module according to the operation electrical signal until a target adjustment signal is output, including steps 1002 to 1008 .
  • Step 1002 generating an adjustment signal according to the working electrical signal of the piezoelectric motor.
  • the driving control circuit can detect the alternating current signal of the piezoelectric stator in the piezoelectric motor, and generate an adjustment signal according to the detected alternating current signal.
  • the adjustment signal can be used to adjust the frequency of the drive signal.
  • Step 1004 control the signal generating module to adjust the frequency of the driving signal according to the adjustment signal, and detect the current signal of the piezoelectric motor in response to the adjusted driving signal.
  • the drive control circuit can control the signal generation module to adjust the frequency of the drive signal according to the adjustment signal.
  • the signal generation module can output a target drive signal with a frequency at the mechanical resonance frequency according to the target adjustment signal, that is, a high-frequency sinusoidal voltage signal, and then drive and control the piezoelectric motor, so as to achieve the purpose of frequency tracking.
  • the drive control circuit can generate an adjustment signal according to the current signal of the piezoelectric motor at the current moment, and output it to the signal generation module, so that the signal generation module can adjust the frequency of the drive signal according to the adjustment signal, and obtain the response of the piezoelectric motor after adjustment.
  • the current signal of the drive signal can generate an adjustment signal according to the current signal of the piezoelectric motor at the current moment, and output it to the signal generation module, so that the signal generation module can adjust the frequency of the drive signal according to the adjustment signal, and obtain the response of the piezoelectric motor after adjustment.
  • Step 1006 judging whether the difference between the second current signal corresponding to the current moment of the piezoelectric motor and the first current signal corresponding to the previous moment of the piezoelectric motor is smaller than a preset value.
  • the operating current of the piezoelectric stator has a unique maximum value (or maximum value). For any two adjacent moments, determine the difference between the current value of the second current signal I(i) corresponding to the current moment of the piezoelectric motor and the current value of the first current signal I(i-1) corresponding to the previous moment of the piezoelectric motor Whether the difference is less than the preset value.
  • the preset value is a value greater than or equal to 0.
  • Step 1008 if the difference is smaller than the preset value, then use the adjustment signal corresponding to the second current signal as the target adjustment signal.
  • the first current signal I(i) can be The current value of -1) has a unique maximum value as the working current of the piezoelectric stator, and the adjustment signal corresponding to the first current signal I(i-1) is used as the target adjustment signal.
  • the drive control circuit will output the target adjustment signal to the signal generation module, so that the signal generation module can adjust the frequency of the drive signal to the target frequency according to the target adjustment signal, so as to achieve the purpose of frequency tracking.
  • the drive control method further includes: if the difference is greater than or equal to a preset value, then perform step 1112 to feedback adjust the frequency of the drive signal according to a preset frequency sweep strategy.
  • the drive control circuit If the difference is greater than or equal to the preset value, it can indicate that the current value of the second circuit signal I(i) has a rising trend relative to the current value of the first current signal I(i-1), which means that the piezoelectric stator The current value of the first current signal I(i-1) does not reach the maximum value.
  • the drive control circuit generates a corresponding adjustment signal according to the second circuit signal I(i), so that the signal generation module adjusts the frequency of the drive signal according to a preset frequency sweep strategy.
  • the drive control circuit can output a corresponding adjustment signal so that the signal generation module performs frequency sweep adjustment on the frequency of the drive signal according to the adjustment signal in one of the following ways:
  • Method 1 Starting from the first initial frequency, gradually increase the first preset frequency sweep amount.
  • the first initial frequency can be reasonably designed according to the resonance frequency f_r' of the piezoelectric stator measured by the impedance spectrum analyzer.
  • the signal generation module can gradually increase the first preset frequency sweep amount ⁇ f1 from the initial frequency based on the received adjustment signal to adjust the frequency of the driving signal.
  • the frequency of the driving signal can be adjusted in this order, f(0), f(0)+ ⁇ f1, f(0)+2* ⁇ f1, f(0)+3* ⁇ f1, ..., f(0 )+n* ⁇ f1.
  • Method 2 Starting from the second initial frequency, gradually reduce the second preset frequency sweep amount.
  • the signal generation module can gradually reduce the second preset frequency sweep amount ⁇ f2 from the initial frequency based on the received adjustment signal to adjust the frequency of the driving signal.
  • the frequency of the driving signal can be adjusted in this order, f(0), f(0)- ⁇ f2, f(0)-2* ⁇ f2, f(0)-3* ⁇ f2, ..., f(0 )-n* ⁇ f2.
  • the second initial frequency is greater than the first initial frequency
  • Method 3 Starting from the first initial frequency, gradually increase or decrease the third preset frequency sweep amount until the target frequency sweep interval is determined, and perform frequency sweep with the fourth preset frequency sweep amount within the target frequency sweep interval.
  • the method of method 1 or method 2 can be referred to to determine the target frequency sweep interval first, and then within the target frequency sweep interval, the method of method 1 or method 2 is used to perform frequency scanning with the fourth preset frequency sweep amount until the target frequency point is determined.
  • the fourth preset frequency sweep amount is lower than the third preset frequency sweep amount; wherein, the target frequency sweep area includes the target frequency.
  • the first preset frequency sweep amount, the second preset frequency sweep amount, and the third preset frequency sweep amount may be the same or different.
  • the preset frequency sweep amount can be set according to the working properties of the piezoelectric motor.
  • step 1102 corresponds to step 1002 in the foregoing embodiment
  • steps 1104 to 1106 correspond to steps 1004 in the foregoing embodiment
  • step 1108 corresponds to step 1006 in the foregoing embodiment
  • the drive control circuit when the drive control circuit controls the signal generation module to perform frequency sweep adjustment on the frequency of the drive signal in any of the above-mentioned ways, the drive control circuit can cyclically detect the second working current of the piezoelectric motor at the current moment and the previous The first operating current corresponding to a moment until the operating current with the maximum value is determined, then the optimal resonance frequency f_r of the piezoelectric motor is determined, and this frequency is the mechanical resonance frequency of the piezoelectric motor. After determining the resonant frequency of the piezoelectric stator, it is given to the drive signal generating circuit to output a high-frequency sinusoidal AC signal of the corresponding frequency, so as to achieve the purpose of frequency tracking.
  • the driving control method further includes step 1100 , initializing the driving signal of the piezoelectric motor.
  • the driving signal may include a signal input to the piezoelectric stator, including a voltage amplitude v_in, an initial frequency f(0) and an initial current I(0), wherein the voltage amplitude v_in is based on the second amplifying unit in the driving control circuit Reasonably set the magnification. According to the required performance parameters, an actual driving voltage can be obtained by simulation, and then the amplification factor of the overall circuit can be confirmed according to the output voltage of the signal generating module.
  • the accuracy of the tracking frequency can be further improved by initializing the initial driving signal.
  • the working electrical signal includes a current signal
  • the adjustment signal is generated according to the working electrical signal of the piezoelectric motor, including steps 1202 to 1208 .
  • Step 1202 outputting a voltage signal corresponding to the working electrical signal according to the working electrical signal.
  • a sampling resistor (a resistance of about several hundred ohms) can be used to collect the current signal of the piezoelectric stator in the piezoelectric motor, and convert the current signal into a voltage signal for output.
  • Step 1204 converting the voltage signal into an effective value voltage.
  • the effective value RMS calculation is performed on the received AC voltage signal to obtain the effective value voltage.
  • the RMS converter can convert an AC voltage signal into a DC voltage signal, that is, the RMS converter can convert a high-frequency sinusoidal AC voltage signal into an RMS voltage signal.
  • Step 1206 converting the analog signal of the RMS voltage into a digital signal.
  • the received rms voltage signal is converted into a digital signal based on an analog-to-digital converter.
  • Step 1208 generating an adjustment signal according to the current signal corresponding to the digital signal.
  • the drive control circuit may pre-store the mapping relationship between the digital signal of the effective value voltage signal and the current signal, and then jointly output the adjustment signal based on the mapping relationship and the digital signal.
  • the drive control circuit can generate the aforementioned adjustment signal according to the received digital signal, so as to realize the frequency tracking of the piezoelectric motor.
  • the driving control circuit in the embodiment of the present application can be applied to the processing unit (such as a single-chip microcomputer) of the frequency tracking module in the driving control circuit, which can improve the efficiency of frequency tracking, and at the same time, can also make the frequency tracking more reliable and stable.
  • FIGS. 9-12 may include multiple steps or stages. These steps or stages are not necessarily performed at the same time, but may be performed at different times. These steps or stages The order of execution is not necessarily performed sequentially, but may be performed alternately or alternately with other steps or at least a part of steps or stages in other steps.
  • the embodiment of the present application further provides a driving module, which is characterized in that it includes a piezoelectric motor 200 and the driving control circuit 100 in any of the foregoing embodiments.
  • the drive control circuit 100 can realize the frequency tracking of the piezoelectric motor 200, and then realize the precise driving of the piezoelectric motor 200, so that the piezoelectric motor 200 can always work at the optimal operating frequency, that is, maintain the maximum speed point, Thus, the stability of the performance of the piezoelectric motor is ensured.
  • the driving module provided by the embodiment of the present application has a simple circuit structure and low cost.
  • the embodiment of the present application further provides a camera module.
  • the camera module includes: a lens mount, a lens, and the aforementioned drive module.
  • the mirror base is a hollow cavity structure;
  • the lens includes a lens barrel and a lens installed in the lens barrel.
  • the driving module is connected with the mirror base and used to drive the lens barrel to move along the optical axis of the lens.
  • the mechanical resonance frequency point of the piezoelectric motor can be tracked at all times, and the piezoelectric motor can be controlled to work at the optimal operating frequency , that is, keep at the maximum speed point, thereby ensuring the stability of the performance of the piezoelectric motor, and thus making the camera module better adaptable to extreme conditions such as falling and bumping.
  • an electronic device including a memory and a processor, where a computer program is stored in the memory, and when the processor executes the computer program, the drive control method in any of the preceding embodiments is implemented.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the drive control method in any one of the foregoing embodiments is implemented.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory or optical memory, etc.
  • Volatile memory can include Random Access Memory (RAM) or external cache memory.
  • RAM can take many forms, such as Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

一种驱动控制电路(100),包括:信号产生模块(110),用于与压电马达(200)连接,信号产生模块(110)用于产生驱动信号,以驱动压电马达(200)工作;频率跟踪模块(120),与信号产生模块(110)连接,还用于与压电马达(200)连接,频率跟踪模块(120)用于检测压电马达(200)的工作电信号,根据工作电信号输出调节信号至信号产生模块(110),以使信号产生模块(110)根据接收的调节信号生成驱动信号,若频率跟踪模块(120)输出最大工作电信号对应的调节信号,则信号产生模块生(110)成具有目标频率的目标驱动信号,以驱动压电马达(200)以机械谐振频率工作。

Description

驱动控制电路及方法、驱动模组、摄像头模组和电子设备
相关申请的交叉引用
本申请要求于2021年10月18日提交中国专利局、申请号为2021112082394发明名称为“驱动控制电路及方法、驱动模组、摄像头模组和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及机电控制技术领域,特别是涉及一种驱动控制电路及方法、驱动模组、摄像头模组、电子设备和存储介质。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
压电马达是一种新型的驱动电机,它利用压电材料的逆压电效应,将电能转换为振动机械能,再依靠摩擦力驱动压电动子作旋转或直线运动。相比于电磁式马达,压电马达具有独特的激振与运动传递机理,因此压电马达具有不产生磁场,同时也不受磁场影响、自锁能力强、响应快、效率高、运动精度高、小型化等传统电磁式马达所无法比拟的特性。正因如此,压电马达及其驱动控制电路的研究已经成为微型机械和电机工程领域的研究热点之一。
一般,压电马达驱动控制技术会采用开环驱动控制电路或闭环驱动控制电路,但是相关技术中的闭环驱动控制电路,多用于压电马达的频率和相位控制,通过调频调相来实现对压电马达的速度控制,其闭环控制电路较为复杂。
发明内容
根据本申请的各种实施例,提供一种驱动控制电路及方法、驱动模组、摄像头模组、电子设备和存储介质。
第一方面,本申请的实施例提供一种驱动控制电路,包括:
信号产生模块,用于与压电马达连接,所述生成模块用于生成驱动信号,以驱动所述压电马达工作;
频率跟踪模块,与所述信号产生模块连接,还用于与压电马达连接,所述频率跟踪模块用于检测所述压电马达的工作电信号,根据所述工作电信号输出调节信号至所述信号产生模块,以使所述信号产生模块根据接收的所述调节信号生成驱动信号,以驱动所述压电马达以机械谐振频率工作,其中,根据所述调节信号生成的驱动信号的频率与调节信号相关;其中,若所述频率跟踪模块输出最大工作电信号对应的调节信号,则所述信号产生模块生成目标驱动信号,所述目标驱动信号用于驱动压电马达以机械谐振频率工作。
上述驱动控制电路,包括信号产生模块和频率跟踪模块,其中,信号产生模块和频率跟踪模块可分别与压电马达连接,信号产生模块可产生驱动信号以驱动压电马达工作,频率跟踪模块可以检测压电马达响应于当前驱动信号工作时的工作电信号,并根据该工作电信号输出调节信号至信号产生模块,以使信号产生模块根据接收的调节信号调节当前驱动信号的频率以生成新的驱动信号。若频率跟踪模块输出最大工作电信号对应的调节信号,则信号产生模块生成具有目标频率的目标驱动信号,以驱动压电马达以机械谐振频率工作。该驱动控制电路可对压电马达进行闭环控制,实现了对压电马达的频率跟踪,可时刻跟踪到压电马达的机械谐振频率点,并控制压电马达工作在最佳工作频率,也即保持在最大速度点,进而保证压电马达性能的稳定。同时,该驱动控制电路相比于相关技术中的孤 极电压反馈和锁相环路,本申请实施例提供的驱动控制电路的电路结构简单、成本低。
第二方面,本申请的实施例提供一种驱动控制方法,包括:
控制信号产生模块生成驱动信号,以驱动压电马达工作;
获取压电马达的工作电信号,根据所述工作电信号输出调节信号至所述信号产生模块,直到输出目标调节信号;其中,所述目标调节信号为最大工作电信号对应的调节信号,所述驱动信号的频率与所述调节信号相关;
控制所述信号产生模块根据所述目标调节信号生成具有目标频率的目标驱动信号,以驱动所述压电马达以机械谐振频率工作。
本申请提供的驱动控制方法,可以控制信号产生模块产生驱动信号,以驱动压电马达工作;获取压电马达的工作电信号,并根据所述工作电信号输出调节信号至所述信号产生模块,直到输出目标调节信号;控制所述信号产生模块根据所述目标调节信号输出具有目标频率的目标驱动信号,以驱动所述压电马达以机械谐振频率工作。该驱动控制方法可以实现对压电马达的频率跟踪,可以时刻跟踪到压电马达的机械谐振频率点,使得频率跟踪更加可靠稳定。
第三方面,本申请的实施例提供一种驱动模组,包括:
压电马达,
前述的驱动控制电路,与所述压电马达连接,用于驱动所述压电马达以机械谐振频率工作。
第四方面,本申请的实施例提供一种摄像头模组,包括:
镜座,为中空的腔体结构;
镜头,包括镜筒以及安装于所述镜筒的镜片;
前述的驱动模组,与所述镜座连接并用于驱使所述镜筒沿所述镜头的光轴移动。
第五方面,本申请的实施例提供一种电子设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
控制信号产生模块产生驱动信号,以驱动压电马达工作;
获取压电马达的工作电信号,并根据所述工作电信号输出调节信号至所述信号产生模块,直到输出目标调节信号;所述目标调节信号为最大工作电信号对应的调节信号;
控制所述信号产生模块根据所述目标调节信号输出具有目标频率的目标驱动信号,以驱动所述压电马达以机械谐振频率工作。
第六方面,本申请的实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
控制信号产生模块产生驱动信号,以驱动压电马达工作;
获取压电马达的工作电信号,并根据所述工作电信号输出调节信号至所述信号产生模块,直到输出目标调节信号;所述目标调节信号为最大工作电信号对应的调节信号;
控制所述信号产生模块根据所述目标调节信号输出具有目标频率的目标驱动信号,以驱动所述压电马达以机械谐振频率工作。
可以理解,上述提供的第三方面所述的驱动模组、第四方面所述的摄像头模组所能达到的有益效果,可以参考上述如第一方面所述的驱动控制电路及其中任意一种实施例中的有益效果,在此不予赘述。
可以理解,上述提供的第五方面所述的电子设备以及第六方面所述的计算机可读存储介质所能达到的有益效果,可以参考上述如第二方面所述的驱动控制方法及其中任意一种实施例中的有益效果,在此不予赘述。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中卷积运算电路的结构示意图之一;
图2为一个实施例中卷积运算电路的结构示意图之二;
图3为一个实施例中原始卷积核切换成子卷积核的切分示意图;
图4为一个实施例中输入特征图与多个子卷积核卷积运算示意图;
图5为一个实施例中卷积运算电路的结构示意图之三;
图6为一个实施例中卷积运算电路的卷积运算示意图;
图7为一个实施例中卷积运算电路的结构示意图之四;
图8为一个实施例中卷积运算电路的结构示意图之五;
图9为一个实施例中卷积运算方法的流程示意图;
图10为一个实施例中控制乘累加阵列响应于所述寄存器的所述配置信息,对所述子卷积核中各所述权重平面中的非零权重与待卷积数据进行乘累加处理的流程示意图;
图11为另一个实施例中卷积运算方法的流程示意图;
图12为一个实施例中神经网络加速器的结构框图;
图13为一个实施例中电子设备的结构框图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以用许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
可以理解,本申请所使用的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。此外,在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
需要说明的是,当一个元件被认为是“连接”另一个元件时,它可以是直接连接到另一个元件,或者通过居中元件连接另一个元件。此外,以下实施例中的“连接”,如果被连接的对象之间具有电信号或数据的传递,则应理解为“电连接”、“通信连接”等。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。同时,在本说明书中使用的术语“和/或”包括相关所列项目的任何及所有组合。
压电马达可以看作一个多变量、强耦合的复杂时变系统,表现出特殊的动力学现象及强非线性,建模困难。负载大小、定转子间压力大小、工作温度、转速及转向变化等因素都会影响压电马达的实际性能。因而,发明人发现,很难像控制传统电磁电机那样去控制 压电马达。压电马达可应用在包括镜座、镜头的摄像头模组中。其中,镜座,为中空的腔体结构;镜头,包括镜筒以及安装于镜筒的镜片。压电马达与镜座连接并用于驱使镜筒沿镜头的光轴移动。
相关技术中,压电马达驱动技术会采用较为成熟的多为开环驱动控制电路。它主要有频率发生模块、分相分频模块、功放匹配模块三个模块组成。频率发生模块可以发出一定频率的简谐驱动信号;分频分相模块将激励驱动信号分成多相信号并且不同的信号之间应具有一定的相位差;功放匹配模块将信号进行进一步处理,使得激励信号的功率能够驱动压电马达。一般来说,开环驱动控制电路输出的是固定驱动频率,因为压电马达长期工作造成的损耗使得其机械特性发生一定的改变,从而导致最佳频率点(机械谐振频率点)发生了偏移,当最佳频率点发生偏移后,会导致压电马达的输出变得越来越小(包括驱动力,驱动速度等)。
相关技术中,针对压电马达的频率以及速度相位控制,会采用较为闭环驱动控制电路。相关技术中的压电马达的闭环控制电路多用于压电马达的频率和相位控制,通过调频调相来实现对压电马达的速度控制。在闭环控制电路设计中,驱动控制电路大多采用脉宽调制(Pulse width modulation,PWM)控制的桥式推挽电路,循环控制多采用孤极电压循环与锁相环路(Phase lock loop,PLL)来实现频率循环。但是,对于压电材料为一阶伸长和二阶弯曲的耦合模态的压电马达(简称L1B2压电马达),其一直工作于最大速度点,并没有调速的需求,所以对于相关技术中的闭环孤极电压和锁相环路循环控制来说,闭环控制电路的复杂程度高,相对速度慢,且成本较高。
基于上述分析,经发明人研究发现,针对L1B2压电马达的驱动控制,本发明提供了一种驱动控制电路,可以实现对压电马达的闭环控制,实现了对压电马达的频率跟踪,可时刻跟踪到压电马达的机械谐振频率点,并控制压电马达工作在最佳工作频率,也即保持在最大速度点。同时,该驱动控制电路相比于相关技术中的孤极电压反馈和锁相环路,本申请实施例提供的驱动控制电路的电路结构简单、驱动速度快、成本低。
在一个实施例中,如图1所示,本申请实施例提供了一种驱动控制电路,用于实现对压电马达200的驱动。驱动控制电路100包括信号产生模块110和频率跟踪模块120。其中,信号产生模块110与压电马达200连接,信号产生模块110用于产生驱动信号,并将该驱动信号输出至压电马达200,以驱动压电马达200工作。其中,驱动信号可以为高频正弦电压信号,当高频正弦电压信号作用于压电马达200的压电定子,驱动压电定子产生椭圆运动,进而驱动压电马达200。
频率跟踪模块120分别与信号产生模块110、压电马达200连接,频率跟踪模块120用于检测压电马达200的工作电信号,并根据工作电信号输出调节信号至信号产生模块110,以使信号产生模块110根据接收的调节信号生成驱动信号。其中,根据调节信号生成的驱动信号的频率与调节信号相关。信号产生模块110在接收调节信号前生成的驱动信号与根据接收到的该调节信号生成的驱动信号的频率不同。当压电马达200在驱动信号(例如,第一驱动信号)的作用下开始工作时,频率跟踪模块120可以采集压电马达200的工作电信号,进而可根据采集的工作电信号输出调节信号至信号产生模块110,使信号产生模块110根据接收的调节信号对第一驱动信号的频率进行调节以生成第二驱动信号,基于第二驱动信号来驱动压电马达200。如此循环操作,信号产生模块110可以不断的根据调节信号生成新的驱动信号来驱动压电马达200。若频率跟踪模块120输出最大工作电信号对应的调节信号,则信号产生模块110生成具有目标频率的目标驱动信号。目标驱动信号的目标频率与压电马达200的机械谐振频率相同。也即,信号产生模块110生成的目标驱动信号可驱动压电马达200以机械谐振频率工作。
本申请实施例中提供的驱动控制电路100,包括信号产生模块110和频率跟踪模块120,其中,信号产生模块110和频率跟踪模块120可分别与压电马达200连接,信号产 生模块110可产生驱动信号以驱动压电马达200工作,频率跟踪模块120可以检测压电马达200响应于当前驱动信号工作时的工作电信号,并根据该工作电信号输出调节信号至信号产生模块110,以使信号产生模块110根据接收的调节信号生成新的驱动信号。若频率跟踪模块120输出最大工作电信号对应的调节信号,则信号产生模块110生成具有目标频率的目标驱动信号,以驱动压电马达以机械谐振频率工作。该驱动控制电路100通过信号产生模块110和频率跟踪模块120来实现对压电马达200的闭环控制,实现了对压电马达200的频率跟踪,可时刻跟踪到压电马达200的机械谐振频率点,并控制压电马达200工作在最佳工作频率,也即保持在最大速度点,进而保证压电马达200性能的稳定。同时,该驱动控制电路100相比于相关技术中的孤极电压反馈和锁相环路,本申请实施例提供的驱动控制电路100的电路结构简单、成本低。
在一个实施例中,如图2所示,频率跟踪模块120包括依次电连接的检测单元121、转换单元122和处理单元123。其中,检测单元121,用于与压电马达200连接,检测单元121用于检测压电马达200的工作电信号,并输出与工作电信号对应的电压信号。其中,检测单元121可以用来检测压电马达200响应于驱动信号的工作电信号。其中,工作电信号可以为电流信号,也可以为电压信号。
其中,检测单元121可以包括电流检测单元,可用于检测压电马达200的电流信号。电流检测单元可以包括电流霍尔检测器,也可以包括采样电阻。为了便于说明,以电流检测单元为采样电阻为例进行说明。在本申请实施例中,可以采用采样电阻(大约几百欧姆的电阻)来采集压电马达200中压电定子的电流信号,并将该电流信号转变成电压信号输出给转换单元122进行转换处理。其中,压电定子的电流信号为交流电流信号,其转换后的电压信号也为交流电压信号。在本申请实施例中,以压电马达的工作电信号为压电定子的工作电信号为例进行说明。
在本申请实施例中,由于压电定子的电流信号很微弱,采用阻值较小的采样电阻,对电流信号进行采集,可以提高电流信号的采集精准度,进而可以提高目标驱动信号的精准度。
可选的,检测单元121也可以为电压检测单元,用于检测压电马达200的电压信号。其中,电压检测单元可以为电压霍尔检测器,用于检测压电马达200中压电定子的交流电压信号,并将检测得到的交流电压信号出给转换单元122进行转换处理。
转换单元122,与检测单元121连接,用于接收电压信号,并将电压信号转换为数字信号。如图3所示,转换单元122可包括模数转换器(Analog digital converter,ADC)1222,用于将电压信号对应的模拟信号转换为数字信号,以输出该数字信号至处理单元123。其中,模数转换器1222可以为高速ADC采样电路。
进一步的,转换单元122还包括有效值(Root mean square,RMS)转换器1221,其中,有效值转换器1221的输入端与检测单元121连接,有效值转换器1221的输出端与模数转换器1222连接。其中,有效值转换器1221可用于将接收的交流电压信号进行有效值RMS计算,得到有效值电压。可以理解为,有效值转换器1221能够将交流电压信号转换为直流电压信号,也即有效值转换器1221可以将高频正弦交流电压信号转化为有效值电压信号。同时,有效值转换器1221可以将其有效值电压信号传输给模数转换器1222,以将有效值电压信号转换为数字信号,以输出该数字信号至处理单元123。有效值转换器1221可以包括但不限于有效值-直流电转换器。
处理单元123可根据该数据信号对压电马达200的频率进行跟踪,进而可实现压电马达200谐振频率的实时跟踪。处理单元123分别与转换单元122、信号产生模块110连接,用于接收数字信号,并根据数字信号输出调节信号,以控制信号产生模块110根据接收到调节信号生成驱动信号。其中,压电马达200的最大电流信号对应的调节信号为目标调节信号,信号产生模块110可根据接收的目标调节信号生成频率在机械谐振频率处的目标驱 动信号。示例性的,若电流信号为电流信号,则最大电流信号可以理解为最大电流值。处理单元123还用于将目标调节信号输出至信号产生模块110,以使信号产生模块110生成具有目标频率的目标驱动信号,也即高频正弦电压信号,进而对压电马达200进行驱动控制,从而达到频率跟踪的目的。
其中,处理单元123可以为单片机(Single-Chip Microcomputer,SCM)、现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)等能够用于对数字信号进行分析处理的控制处理器件。进一步的,处理单元123中还可以包括寄存器,其寄存器与模数转换器1222连接,用于接收该数字信号,处理单元123可基于寄存器接收的数字信号输出调节信号,以控制信号产生模块110调节驱动信号的频率,直到压电马达200的电流信号的电流值达到最大。进一步的,其处理单元123中的寄存器中可以对应存储其有效值电压信号的数字信号与电流信号之间的映射关系,处理器可基于该映射关系以及数字信号来共同输出其调节信号。
处理单元123可以执行如下循环操作:处理单元123可以根据当前驱动信号驱动压电马达200工作,并根据压电马达200的电流信号生成调节信号,并输出至信号产生模块110,以使信号产生模块110能够根据接收的调节信号调节当前驱动信号的频率以生成新的驱动信号,并获取压电马达200响应于新的驱动信号的电流信号。其中,在此过程中,压电马达的电流信号可以基于处理单元预先存储的映射关系以及接收的数字信号来获取。
对于任两个相邻时刻,判断压电马达200当前时刻对应的第二电流信号与压电马达200前一时刻对应的第一电流信号的差值是否小于预设值。若差值小于预设值,则将第二电流信号对应的调节信号作为目标调节信号。根据压电定子的阻抗谱分析特性,在一定频率范围内,压电定子的工作电流存在唯一最大值(或极大值)。因此,将当前时刻对应的第二电路信号I(i)的电流值与前一时刻(或上一时刻)对应的第一电流信号I(i-1)的电流值进行比较,若第二电路信号I(i)的电流值相对于第一电流信号I(i-1)的电流值具有下降的趋势,则可以将第一电流信号I(i-1)的电流值作为压电定子的工作电流存在唯一最大值,并将该第一电流信号I(i-1)对应调节信号作为目标调节信号。处理单元123将输出该目标调节信号至信号产生模块110,以使信号产生模块110根据目标调节信号生成具有目标频率的驱动信号,以使压电马达200以机械谐振频率工作,从而达到频率跟踪的目的。
在一个实施例中,若第二电路信号I(i)的电流值相对于第一电流信号I(i-1)的电流值具有上升的趋势,则说明压电定子的第一电流信号I(i-1)的电流值未达到极大值。此时,处理单元123根据第二电路信号I(i)生成对应的调节信号,以使信号产生模块110按照预设扫频策略对驱动信号的频率进行调节。例如,处理单元123可以输出相应的调节信号,以使信号产生模块110根据接收的调节信号对驱动信号的频率按如下方式之一进行扫频调节:
方式一:从第一初始频率开始,逐渐增加第一预设扫频量;
方式二:从第二初始频率开始,逐渐减小第二预设扫频量;
方式三:从第一初始频率开始,逐渐增加第三预设扫频量,直到确定目标扫频区间,在目标扫频区间内,以第四预设扫频量进行扫频,其中,第二初始频率大于第一初始频率,第四预设扫频量低于第三预设扫频量;其中,目标扫频区包括目标频率。
第一预设扫频量、第二预设扫频量、第三预设扫频量可以相同,也可以不同。预设扫频量可以根据压电马达200的工作属性来设定。第一初始频率可根据压电定子在阻抗谱分析仪测得的谐振频率f_r’进行合理设计,例如,可以设置初始频率f(0)=f_r’-100kHz。
信号产生模块110根据调节信号对驱动信号的频率进行扫频调节时,频率跟踪模块120可以循环检测压电马达200的在当前时刻的第二工作电流以及前一时刻对应的第一工作电流,直到确定出具有最大值的工作电流,则确定压电马达200的最佳谐振频率f_r,此频率即为压电马达200的机械谐振频率。再确定好压电定子谐振频率后,将其给到驱动信 号发生电路输出相对应频率的高频正弦交流信号,从而达到频率跟踪的目的。
在本申请实施例中,通过设置频率跟踪模块120,可以对实现对压电马达200的工作电流进行实时监控,还可以实现对压电马达200的谐振频率的校正,使其工作在机械谐振频率点,提升了压电马达200性能输出的稳定性与长期工作下的稳定性。
在一个实施例中,如图4所示,信号产生模块110包括控制单元111和生成单元112。其中,控制单元111,与频率跟踪模块120连接,用于根据接收的调节信号生成调节指令。其中,控制单元111为该驱动控制电路100的控制核心单元,可以进行程序逻辑运算控制,高速A/D转换等操作。当然,控制单元111可以输出驱动指令,也可以接收到频率跟踪模块120的处理单元123输出的目标调节信号,并根据该目标调节信号生成目标调节指令。驱动指令用于指示生成单元112生成驱动信号,该目标调节指令用于指示生成单元112生成目标驱动信号。其中,驱动指令可以由控制单元111自主生成,也可以接收其他模块输出的驱动指令。在本申请实施例中,需要说明的是,对驱动指令的具体生成方式不做进一步的限定。
生成单元112,分别与控制单元111、压电马达200连接。生成单元112用于根据驱动指令生成驱动信号以驱动压电马达200工作。其中,在驱动压电马达200的初始阶段,生成单元112可在控制单元111驱动指令的控制下,生成驱动信号,该驱动信号的频率可以为一个频率近似为压电马达200谐振频率的高频正弦电压信号。
进一步的,生成单元112还可以根据调节指令调节驱动信号的频率以生成新的驱动信号。生成单元112还可以根据调节指令对驱动信号的频率进行调节,使得调节后的频率能够更接近压电马达200的机械谐振频率。另外,生成单元112还可以根据接收的目标调节指令,可以将驱动信号的频率调节至于机械谐振频率,以使驱动信号的驱动频率与机械谐振频率相等,从而达到频率跟踪的目的,还可以提高压电马达200的驱动精准度。
在一个实施例中,生成单元112包括直接数字合成(Direct Digital Synthesis,DDS)信号发生器,DDS信号发生器用于生成高频正弦电压信号,并根据调节指令调节高频正弦电压信号的频率。DDS信号发生器采用直接数字频率合成技术,把信号发生器的频率稳定度、准确度提高到与基准频率相同的水平,并且可以在很宽的频率范围内进行精细的频率调节。另外,该DDS信号发生器可以进行串行和并行两种输入方式,控制简单,且产生信号频率、幅值稳定。
本申请实施例中,通过采用DDS信号发生器,其可以产生高频正弦电压信号的驱动信号,使得输出的驱动信号的稳定性极高,进而可以提高对压电马达200的驱动稳定性。
在一个实施例中,如图5所示,信号产生模块110还包括:与控制单元111连接的输入单元113。其中,输入单元113,用于响应于外部操作,生成驱动指令。其中,驱动指令可输出至控制单元111,控制单元111根据接收的驱动指令控制生成单元112生成一个频率近似为压电马达200机械谐振频率的高频正弦信号。其中,输入单元113可以任选地包括触摸屏、按键、数据端口等。示例性的,用户可以通过经由输入单元113将驱动指令输入至控制单元111。
本实施例中,通过设置输入单元113,可以由用户决定驱动指令的生成时刻,以实现对压电马达200的灵活驱动。
在一个实施例中,如图6,信号产生模块110还包括:第一滤波单元114和第一放大单元115。其中,第一滤波单元114,与生成单元112连接,用于对生成单元112输出的驱动信号进行低通滤波处理。第一滤波单元114可包括一个或多个级联的低通滤波器,可以滤除驱动信号中的部分高频干扰信号。第一放大单元115的输入端与第一滤波单元114的输出端连接,第一放大单元115的输出端与压电马达200连接,用于对第一滤波单元114输出的驱动信号进行放大处理,以输出至压电马达200,进而实现对压电马达200的驱动。第一放大单元115可以为高频高速运算放大器芯片,其以将驱动信号的电压由mV 级别放大到1V,进而可以提高驱动信号的电压值。需要说明的是,第一滤波单元114和第一放大单元115对驱动信号的处理顺序还可以互换。例如,第一放大单元115的输入端与生成单元112连接,第一放大单元115的输出端与第一滤波单元114的输入端连接,第一滤波单元114的输出端与压电马达200连接。
本实施例中,通过设计第一滤波单元114对驱动信号进行滤波处理,并滤除驱动信号中的部分高频干扰信号,并对滤波处理后驱动信号进行放大处理,以放大驱动信号的电压值,可以输出无干扰、幅值高驱动信号至压电马达,可以降低其驱动信号中干扰信号对压电马达200的影响,进而可以实现对压电马达200频率的精准跟踪以及精准驱动。
在一个实施例中,如图6,信号产生模块110还包括分别与控制单元111、生成单元112连接的时钟单元116。其中,时钟单元116能够分别为控制单元111、生成单元112提供时钟信号,以使生成单元112与控制单元111的时钟保持同步。时钟单元116可以全局时钟单元、门控时钟单元、多级逻辑时钟单元和波动式时钟单元中的任意一种。需要说明的是,在本申请实施例中,时钟单元的类型不限于上述举例说明,还可以为其他类型的时钟单元。
在本申请实施例中,通过设置时钟单元116,可以为驱动控制电路100提供一个时钟信号,也即,参考时钟,可以保证控制单元111和生成单元112的时钟保持同步,以便可以对驱动控制电路100进行控制操作,提高频率跟踪的时效性。
在一个实施例中,如图7和图8所示,在前述任一实施例的基础上,驱动控制电路100还包括分别与信号产生模块110和压电马达200分别连接的信号放大模块130。其中,信号放大模块130可以对信号产生模块110输出的驱动信号进行放大、滤波处理。信号放大模块130可包第二滤波单元131和第二放大单元132。其中,第二滤波单元131与信号产生模块110连接,用于对信号产生模块110输出的驱动信号进行滤波处理。其中,第二滤波单元131可以与第一滤波单元114相同,均为低通滤波器,以滤除驱动信号的杂散高频信号。
第二放大单元132的输入端与第二滤波单元131连接,第二放大单元132的输入端与压电马达200连接,用于对第二滤波单元131滤波处理后的驱动信号进行放大处理,并将放大处理后的驱动信号输出至压电马达200。其第二放大单元132可以将驱动信号的电压由mV级别放大至100V以上。第二放大单元132也可以与第一放大单元115相同,可以为高频高速运算放大器芯片。其中,第二放大单元132的放大倍数(或增益系数、带宽以及幅值可以根据待驱动的压电马达200的工作参数(例如,压电马达200压电定子工作时仿真结果)确定进行适配设计。需要说明的是,第二滤波单元131和第二放大单元132对驱动信号的处理顺序也可以互换。例如,第二放大单元132的输入端与信号产生模块110连接,第二放大单元132的输出端与第二滤波单元131的输入端连接,第二滤波单元131的输出端与压电马达200连接。
在本实施例中,若驱动控制电路100同时包括第一滤波单元114、第一放大单元115、第二滤波单元131和第二放大单元132,则可以对信号产生模块110输出的驱动信号进行二次滤波和二次放大处理,使得该二次滤波和二次放大后的驱动信号能够更好的作用于压电马达200的压电定子,驱动压电定子产生椭圆运动,进而驱动压电马达200。
在一个实施例中,如图9所示,提供了一种驱动控制方法。驱动控制方法可应用于前述任一实施例中的驱动控制电路。该驱动控制方法包括步骤902至步骤906。
步骤902,控制信号产生模块生成驱动信号,以驱动压电马达工作。
其中,信号产生模块与压电马达连接,其能够在驱动控制电路的控制下,生成驱动信号,并将该驱动信号输出至压电马达,以驱动压电马达工作。其中,驱动信号可以为高频正弦电压信号,当高频正弦电压信号作用于压电马达的压电定子,驱动压电定子产生椭圆运动,进而驱动压电马达。
步骤904,获取压电马达的工作电信号,根据工作电信号输出调节信号至信号产生模块,直到输出目标调节信号;其中,驱动信号的频率与调节信号相关,目标调节信号为最大工作电信号对应的调节信号。
驱动控制电路可基于检测单元来检测压电马达的工作电信号,并根据工作电信号输出调节信号至信号产生模块,以使信号产生模块根据调节信号反馈调节驱动信号的频率以生成新的驱动信号,直到驱动控制电路输出目标调节信号。也即,当压电马达在驱动信号(例如,第一驱动信号)的作用下开始工作时,驱动控制电路可以采集压电马达的工作电信号,进而可根据采集的工作电信号输出调节信号,至信号产生模块,以使信号产生模块根据接收的调节信号对第一驱动信号的频率进行调节以生成第二驱动信号,基于第二驱动信号来驱动压电马达。如此循环操作,信号产生模块可以不断的根据调节信号生成新的驱动信号来驱动压电马达,直到驱动控制电路根据压电马达的工作电信号确定目标调节信号。
步骤906,控制信号产生模块根据目标调节信号生成具有目标频率的目标驱动信号,以驱动压电马达以机械谐振频率工作。
驱动控制电路可将确定的目标调节信号传输至信号产生模块,信号产生模块可根据目标调节信号输出具有目标频率的目标驱动信号,以驱动压电马达以机械谐振频率工作。其中,驱动信号的目标频率与压电马达的机械谐振频率相同。
本申请实施例提供的驱动控制方法,可以控制信号产生模块产生驱动信号,以驱动压电马达工作;获取压电马达的工作电信号,并根据工作电信号输出调节信号至信号产生模块,直到输出目标调节信号;控制信号产生模块根据目标调节信号输出具有目标频率的目标驱动信号,以驱动压电马达以机械谐振频率工作。该驱动控制方法可以实现对压电马达的频率跟踪,可以时刻跟踪到压电马达的机械谐振频率点,使得频率跟踪更加可靠稳定。
在一个实施例中,如图10所示,检测压电马达的工作电信号,并根据工作电信号输出调节信号至信号产生模块,直到输出目标调节信号,包括步骤1002至步骤1008。
步骤1002,根据压电马达的工作电信号生成调节信号。
在本申请实施例中,以工作电信号为电流信号为例进行说明。驱动控制电路可以检测压电马达中压电定子的交流电流信号,并根据检测得到的交流电流信号生成调节信号。调节信号可以用于调节驱动信号的频率。
步骤1004,根据调节信号控制信号产生模块调节驱动信号的频率,检测压电马达响应于调节后的驱动信号的电流信号。
驱动控制电路可控制信号产生模块根据调节信号调节驱动信号的频率。其中,信号产生模块可以根据目标调节信号输出频率在机械谐振频率处的目标驱动信号,也即高频正弦电压信号,进而对压电马达进行驱动控制,从而达到频率跟踪的目的。驱动控制电路可以根据当前时刻压电马达的电流信号生成用于调节信号,并输出至信号产生模块,以使信号产生模块能够根据调节信号调节驱动信号的频率,并获取压电马达响应于调节后的驱动信号的电流信号。
步骤1006,判断压电马达当前时刻对应的第二电流信号与压电马达前一时刻对应的第一电流信号的差值是否小于预设值。
根据压电定子的阻抗谱分析特性,在一定频率范围内,压电定子的工作电流存在唯一最大值(或极大值)。对于任两个相邻时刻,判断压电马达当前时刻对应的第二电流信号I(i)的电流值与压电马达前一时刻对应的第一电流信号I(i-1)的电流值的差值是否小于预设值。其中,该预设值为大于或等于0的数值。
步骤1008,若差值小于预设值,则将第二电流信号对应的调节信号作为目标调节信号。
若差值小于预设值,若第二电路信号I(i)的电流值相对于第一电流信号I(i-1)的电流值具有下降的趋势,则可以将第一电流信号I(i-1)的电流值作为压电定子的工作电流存在唯一最大值,并将该第一电流信号I(i-1)对应调节信号作为目标调节信号。驱动控制电路将 输出该目标调节信号至信号产生模块,以使信号产生模块根据目标调节信号将驱动信号的频率调节至目标频率,从而达到频率跟踪的目的。
在一个实施例中,如图11所示,驱动控制方法还包括:若差值大于或等于预设值,则执行步骤1112,按照预设扫频策略反馈调节驱动信号的频率。
若差值大于或等于预设值,则可以表明第二电路信号I(i)的电流值相对于第一电流信号I(i-1)的电流值具有上升的趋势,则说明压电定子的第一电流信号I(i-1)的电流值未达到极大值。此时,驱动控制电路根据第二电路信号I(i)生成对应的调节信号,以使信号产生模块按照预设扫频策略对驱动信号的频率进行调节。例如,驱动控制电路可以输出相应的调节信号以使信号产生模块根据调节信号对驱动信号的频率按如下方式之一进行扫频调节:
方式一:从第一初始频率开始,逐渐增加第一预设扫频量。
第一初始频率可根据压电定子在阻抗谱分析仪测得的谐振频率f_r’进行合理设计。例如,可以设置第一初始频率为初始频率,其中,初始频率f(0)=f_r’-100kHz。按照方式一,信号产生模块可基于接收到的调节信号,从初始频率开始,逐渐增加第一预设扫频量δf1,以调节驱动信号的频率。示例性的,可以按照如此顺序来调节驱动信号的频率,f(0),f(0)+δf1,f(0)+2*δf1,f(0)+3*δf1,…,f(0)+n*δf1。
方式二:从第二初始频率开始,逐渐减小第二预设扫频量。
可以设置第二初始频率为初始频率,其中,初始频率f(0)=f_r’+100kHz。按照方式二,信号产生模块可基于接收到的调节信号,从初始频率开始,逐渐减少第二预设扫频量δf2,以调节驱动信号的频率。示例性的,可以按照如此顺序来调节驱动信号的频率,f(0),f(0)-δf2,f(0)-2*δf2,f(0)-3*δf2,…,f(0)-n*δf2。其中,第二初始频率大于第一初始频率,
方式三:从第一初始频率开始,逐渐增加或减少第三预设扫频量,直到确定目标扫频区间,在目标扫频区间内,以第四预设扫频量进行扫频。
可以参考方式一或方式二的方法先确定目标扫频区间,然后在目标扫频区间内再以方式一或方式二的方法以第四预设扫频量进行扫频,直到确定目标频率点。第四预设扫频量低于第三预设扫频量;其中,目标扫频区包括目标频率。第一预设扫频量、第二预设扫频量、第三预设扫频量可以相同,也可以不同。预设扫频量可以根据压电马达的工作属性来设定。
需要说明的是,在本实施例中,步骤1102与前述实施例中的步骤1002对应,步骤1104-步骤1106的步骤与前述实施例中1004的步骤对应,步骤1108与前述实施例中的步骤1006对应,在此,不再赘述。
在本申请实施例中,驱动控制电路控制信号产生模块对驱动信号的频率按照上述任一方式进行扫频调节时,驱动控制电路可以循环检测压电马达的在当前时刻的第二工作电流以及前一时刻对应的第一工作电流,直到确定出具有最大值的工作电流,则确定压电马达的最佳谐振频率f_r,此频率即为压电马达的机械谐振频率。再确定好压电定子谐振频率后,将其给到驱动信号发生电路输出相对应频率的高频正弦交流信号,从而达到频率跟踪的目的。当采用方式三,可以先粗略扫频,以快速定位出目标扫频区域,然后在以洗扫频的方式在目标扫频区间内定位出目标频率点,可以提高目标频率点的扫频效率和扫频精准度。
在一个实施例中,请继续参考图11,驱动控制方法还包括步骤1100,对压电马达的驱动信号进行初始化处理。其中,驱动信号可包括输入至压电定子的信号,包括电压幅值v_in、初始频率f(0)和初始电流I(0),其中电压幅值v_in根据驱动控制电路中的第二放大单元的放大倍数进行合理设置。可根据需要的性能参数可以仿真获得一个实际驱动电压,然后再根据信号发生模块的输出电压确认整体电路的放大倍数。初始频率f(0)根据压电定子在阻抗谱分析仪测得的谐振频率f_r’进行合理设计(如设置f(0)=f_r’-100kHz),初 试电流I(0)设置为零。
在本申请实施例中,通过对初始驱动信号进行初始化设置,可以进一步提高跟踪频率的准确度。
在一个实施例中,如图12所示,工作电信号包括电流信号,根据压电马达的工作电信号生成调节信号,包括步骤1202至步骤1208。
步骤1202,根据工作电信号,并输出与工作电信号对应的电压信号。
当工作电信号为电流信号时,可以采用采样电阻(大约几百欧姆的电阻)来采集压电马达中压电定子的电流信号,并将该电流信号转变成电压信号输出。
步骤1204,将电压信号转换为有效值电压。
基于有效值转换器将接收的交流电压信号进行有效值RMS计算,得到有效值电压。可以理解为,有效值转换器能够将交流电压信号转换为直流电压信号,也即有效值转换器可以将高频正弦交流电压信号转化为有效值电压信号。
步骤1206,将有效值电压的模拟信号转换为数字信号。
基于模数转换器将接收的有效值电压信号转换为数字信号。
步骤1208,根据数字信号对应的电流信号生成调节信号。
驱动控制电路可以对应预先存储其有效值电压信号的数字信号与电流信号之间的映射关系,然后,基于该映射关系以及数字信号来共同输出其调节信号。
在本实施例中,驱动控制电路可以根据所接收的数字信号来生成前述的调节信号,进而实现对压电马达的频率跟踪。本申请实施例中的驱动控制电路可应用在驱动控制电路中频率跟踪模块的处理单元(例如单片机),可以提高对频率跟踪的效率,同时,还可以使得频率跟踪更加可靠稳定。
应该理解的是,虽然图9-图12的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以用其它的顺序执行。而且,图9-图12中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在其中一实施例中,如图13所示,本申请实施例还提供一种驱动模组,其特征在于,包括压电马达200和前述任一实施例中的驱动控制电路100。其中驱动控制电路100可实现对压电马达200的频率跟踪,进而实现对压电马达200的精准驱动,以使压电马达200可以一直工作在最佳工作频率,也即保持在最大速度点,进而保证压电马达性能的稳定。该驱动模组相比于相关技术中的孤极电压反馈和锁相环路,本申请实施例提供的驱动模组的电路结构简单、成本低。
在其中一实施例中,本申请实施例还提供一种摄像头模组。摄像头模组包括:镜座、镜头以及前述的驱动模组。其中,镜座,为中空的腔体结构;镜头,包括镜筒以及安装于镜筒的镜片。驱动模组,与镜座连接并用于驱使镜筒沿镜头的光轴移动。
在本申请实施例中,通过设置用于驱动镜筒沿镜头的光轴移动的驱动模组时,可以时刻跟踪到压电马达的机械谐振频率点,并控制压电马达工作在最佳工作频率,也即保持在最大速度点,进而保证压电马达性能的稳定,进而使得该摄像头模组对摔落、磕碰等极端条件有更好的适应能力。
在一个实施例中,提供了一种电子设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现前述任一实施例中的驱动控制方法。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现前述任一实施例中的驱动控制方法。
一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行前述任一实施例中的驱动控制方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种驱动控制电路,包括:
    信号产生模块,用于与压电马达连接,所述信号产生模块用于生成驱动信号,以驱动所述压电马达工作;
    频率跟踪模块,与所述信号产生模块连接,还用于与压电马达连接,所述频率跟踪模块用于检测所述压电马达的工作电信号,根据所述工作电信号输出调节信号至所述信号产生模块,以使所述信号产生模块根据接收的所述调节信号生成驱动信号,其中,根据所述调节信号生成的驱动信号的频率与所述调节信号相关;若所述频率跟踪模块输出最大工作电信号对应的调节信号,则所述信号产生模块生成具有目标频率的目标驱动信号,所述目标驱动信号用于驱动压电马达以机械谐振频率工作。
  2. 根据权利要求1所述的驱动控制电路,其中,所述频率跟踪模块包括:
    检测单元,与压电马达连接,用于检测所述压电马达的所述工作电信号,并输出与所述工作电信号对应的电压信号;
    转换单元,与所述检测单元连接,用于接收所述电压信号,并将所述电压信号转换为数字信号;
    处理单元,与所述转换单元连接,用于接收所述数字信号,并根据所述数字信号输出所述调节信号,以使所述信号产生模块根据接收的调节信号生成驱动信号,其中,所述压电马达的最大电流信号对应的调节信号为目标调节信号,所述信号产生模块根据接收的所述目标调节信号生成所述目标驱动信号。
  3. 根据权利要求2所述的驱动控制电路,其中,所述检测单元为电流检测单元,用于检测所述压电马达的电流信号,并将所述电流信号转变成电压信号输出给所述转换单元。
  4. 根据权利要求2所述的驱动控制电路,其中,所述检测单元为电压检测单元,用于检测所述压电马达的电压信号,并将所述电压信号输出给所述转换单元。
  5. 根据权利要求2所述的驱动控制电路,其中,所述转换单元包括:
    有效值转换器,与所述检测单元连接,用于将所述工作电信号的电压信号转换为有效值电压;
    模数转换器,与所述有效值转换器连接,用于将所述有效值电压的模拟信号转换为数字信号。
  6. 根据权利要求2所述的驱动控制电路,其中,所述信号产生模块包括:
    控制单元,与所述频率跟踪模块连接,用于根据接收的所述调节信号生成调节指令;
    生成单元,分别与所述控制单元和所述压电马达连接,用于生成所述驱动信号,并根据所述调节指令调节所述驱动信号的频率。
  7. 根据权利要求6所述的驱动控制电路,其中,所述信号产生模块还包括:
    输入单元,用于响应于外部操作,生成驱动指令;
    所述控制单元,与所述输入单元连接,还用于接收所述驱动指令,并根据所述驱动指令控制所述信号生成单元生成所述驱动信号。
  8. 根据权利要求6所述的驱动控制电路,其中,所述信号产生模块还包括:
    第一滤波单元,与所述生成单元连接,用于对所述生成单元输出的所述驱动信号进行滤波处理;
    第一放大单元,与所述第一滤波单元连接,用于对所述第一滤波单元输出的所述驱动信号进行放大处理。
  9. 根据权利要求6所述的驱动控制电路,其中,所述信号产生模块还包括:
    时钟单元,分别与所述控制单元、所述生成单元连接,用于分别为控制单元、所述生成单元提供时钟信号,以使所述生成单元与所述控制单元的时钟保持同步。
  10. 根据权利要求6所述的驱动控制电路,其中,所述生成单元包括直接数字合成芯片, 所述直接数字合成芯片用于生成高频正弦信号,并根据所述调节指令调节所述高频正弦信号的频率。
  11. 根据权利要求1-10任一项所述的驱动控制电路,其中,所述驱动控制电路还包括:
    第二滤波单元,与所述信号产生模块连接,用于对所述信号产生模块输出的驱动信号进行滤波处理;
    第二放大单元,与所述第二滤波单元连接,用于对所述第二滤波单元输出的驱动信号进行放大处理,并将放大处理后的所述驱动信号输出至所述压电马达。
  12. 一种驱动控制方法,其中,包括:
    控制信号产生模块生成驱动信号,以驱动压电马达工作;
    获取压电马达的工作电信号,根据所述工作电信号输出调节信号至所述信号产生模块,直到输出目标调节信号;其中,所述目标调节信号为最大工作电信号对应的调节信号,所述驱动信号的频率与调节信号相关;
    控制所述信号产生模块根据所述目标调节信号生成具有目标频率的目标驱动信号,以驱动所述压电马达以机械谐振频率工作。
  13. 根据权利要求12所述的驱动控制方法,其中,所述根据所述工作电信号输出调节信号至所述信号产生模块,直到输出目标调节信号,包括:
    根据所述压电马达的电流信号生成所述调节信号;
    根据所述调节信号控制所述信号产生模块调节所述驱动信号的频率,检测所述压电马达响应于调节后的所述驱动信号的电流信号;
    判断所述压电马达当前时刻对应的第二电流信号与所述压电马达前一时刻对应的第一电流信号的差值是否小于预设值;
    若所述差值小于所述预设值,则将所述第二电流信号对应的调节信号作为所述目标调节信号。
  14. 根据权利要求13所述的驱动控制方法,其中,所述根据所述调节信号控制所述信号产生模块调节所述驱动信号的频率,包括:
    若所述差值大于或等于所述预设值,按照预设扫频策略反馈调节所述驱动信号的频率。
  15. 根据权利要求14所述的驱动控制方法,其中,所述预设扫频策略至少包括如下策略之一:
    从第一初始频率开始,逐渐增加第一预设扫频量;
    从第二初始频率开始,逐渐减少第二预设扫频量;
    从第一初始频率开始,逐渐增加第三预设扫频量,直到确定目标扫频区间,在目标扫频区间内,以第四预设扫频量进行扫频,
    其中,第二初始频率大于所述第一初始频率,所述第四预设扫频量低于所述第三预设扫频量;其中,所述目标扫频区包括目标频率。
  16. 根据权利要求13所述的驱动控制方法,其中,所述工作电信号包括电流信号,所述根据所述压电马达的工作电信号生成所述调节信号,包括:
    根据所述工作电信号,并输出与所述工作电信号对应的电压信号;
    将所述电压信号转换为有效值电压;
    将所述有效值电压的模拟信号转换为数字信号;
    根据所述数字信号对应的所述电流信号生成所述调节信号。
  17. 一种驱动模组,包括:
    压电马达,
    如权利要求1-11任一项所述的驱动控制电路,与所述压电马达连接,用于驱动所述压电马达以机械谐振频率工作。
  18. 一种摄像头模组,包括:
    镜座,为中空的腔体结构;
    镜头,包括镜筒以及安装于所述镜筒的镜片;
    如权利要求17所示的驱动模组,与所述镜座连接并用于驱使所述镜筒沿所述镜头的光轴移动。
  19. 一种电子设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现权利要求12至16中任意一项所述的方法的步骤。
  20. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求12至16中任意一项所述的方法的步骤。
PCT/CN2022/116939 2021-10-18 2022-09-05 驱动控制电路及方法、驱动模组、摄像头模组和电子设备 WO2023065857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111208239.4A CN115996306A (zh) 2021-10-18 2021-10-18 驱动控制电路及方法、驱动模组、摄像头模组和电子设备
CN202111208239.4 2021-10-18

Publications (1)

Publication Number Publication Date
WO2023065857A1 true WO2023065857A1 (zh) 2023-04-27

Family

ID=85993962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116939 WO2023065857A1 (zh) 2021-10-18 2022-09-05 驱动控制电路及方法、驱动模组、摄像头模组和电子设备

Country Status (2)

Country Link
CN (1) CN115996306A (zh)
WO (1) WO2023065857A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126357A (ja) * 1994-10-19 1996-05-17 Alps Electric Co Ltd 圧電モーター駆動回路
CN102891648A (zh) * 2011-07-19 2013-01-23 株式会社东芝 马达驱动电路以及马达驱动系统
CN204595517U (zh) * 2015-04-01 2015-08-26 江苏紫金东方超声电机有限公司 一种超声电机谐振频率自跟踪驱动系统
CN106849781A (zh) * 2017-03-31 2017-06-13 珠海市魅族科技有限公司 一种马达驱动电路、方法及电子设备
CN207442726U (zh) * 2017-10-26 2018-06-01 浙江理工大学 直线振荡电机的机械谐振频率跟踪控制器
CN111211726A (zh) * 2020-01-16 2020-05-29 司宏伟 用于生成马达驱动信号的系统
JP2021158804A (ja) * 2020-03-27 2021-10-07 セイコーエプソン株式会社 圧電駆動装置の制御方法、圧電駆動装置、圧電モーターおよびロボット

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150098B2 (ja) * 2004-02-23 2013-02-20 日本電気株式会社 圧電ポンプ用駆動回路およびこれを用いた冷却システム
JP4848853B2 (ja) * 2006-06-16 2011-12-28 セイコーエプソン株式会社 圧電アクチュエータの駆動方法、圧電アクチュエータの駆動装置、電子機器
KR100891828B1 (ko) * 2007-07-24 2009-04-07 삼성전기주식회사 압전 모터 구동 방법 및 이를 이용한 오토 포커싱 방법
JP5351590B2 (ja) * 2009-04-01 2013-11-27 キヤノン株式会社 圧電素子駆動ユニット及び異物除去装置
CN205620737U (zh) * 2016-04-22 2016-10-05 广东顺威精密塑料股份有限公司 基于单片机控制的超声电源自动频率跟踪系统
CN110702971B (zh) * 2019-09-10 2021-11-26 天津大学 自动跟踪换能器串联谐振频率的超声驱动电源
CN111525239B (zh) * 2020-05-21 2021-09-14 Oppo(重庆)智能科技有限公司 可变电容控制电路、天线模组及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126357A (ja) * 1994-10-19 1996-05-17 Alps Electric Co Ltd 圧電モーター駆動回路
CN102891648A (zh) * 2011-07-19 2013-01-23 株式会社东芝 马达驱动电路以及马达驱动系统
CN204595517U (zh) * 2015-04-01 2015-08-26 江苏紫金东方超声电机有限公司 一种超声电机谐振频率自跟踪驱动系统
CN106849781A (zh) * 2017-03-31 2017-06-13 珠海市魅族科技有限公司 一种马达驱动电路、方法及电子设备
CN207442726U (zh) * 2017-10-26 2018-06-01 浙江理工大学 直线振荡电机的机械谐振频率跟踪控制器
CN111211726A (zh) * 2020-01-16 2020-05-29 司宏伟 用于生成马达驱动信号的系统
JP2021158804A (ja) * 2020-03-27 2021-10-07 セイコーエプソン株式会社 圧電駆動装置の制御方法、圧電駆動装置、圧電モーターおよびロボット

Also Published As

Publication number Publication date
CN115996306A (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
CN108054976B (zh) 一种直线压缩机的谐振频率跟踪控制方法
CN102314190B (zh) 独立光伏发电系统用的最大功率点快速跟踪方法
CN101106339B (zh) 超声波电机闭环控制电路
CN110149056A (zh) 基于模糊pi控制技术的超声波电源输出信号频率跟踪系统
US11121662B2 (en) Closed loop resonance tracking using phase matching
CN104037800B (zh) 一种光伏并网逆变器电流控制方法
CN116455357B (zh) 一种基于Boost电路的有源阻抗匹配箱及其调节方法
CN101937198B (zh) 一种振动状态控制装置及其控制方法
CN112600450A (zh) 一种单相并网逆变器控制方法、系统、设备及介质
US11374522B2 (en) Adaptive model feedback for haptic controllers
CN108322116B (zh) 一种开关磁阻电机系统效率优化控制方法
Izuno et al. Speed tracking servo control system incorporating traveling-wave-type ultrasonic motor and feasible evaluations
WO2023065857A1 (zh) 驱动控制电路及方法、驱动模组、摄像头模组和电子设备
Vijayalakshmi et al. Time domain based digital controller for buck-boost converter
CN110829920A (zh) 一种调制装置及系统
Izumi et al. New inverter-fed power ultrasonic motor for speed tracking servo application and its feasible evaluations
CN110165954B (zh) 一种双馈风力发电系统机侧变流器模型预测控制方法
CN112671291A (zh) 一种基于改进粒子群的电机串级自抗扰控制参数优化方法
CN114765441A (zh) 一种计及矢量筛选的永磁同步电机多矢量模型预测控制方法
CN106787940B (zh) 一种改进的超声波电机反步自适应伺服控制方法
CN114301361B (zh) 一种基于母线电流控制的无电解电容永磁同步电机驱动系统控制方法
CN112994110B (zh) 一种lc滤波型并网逆变器无参数预测电容电压控制方法
CN110995110B (zh) 一种单相永磁直线压缩机抗扰动控制系统及方法
CN109245149A (zh) 一种并网逆变器的控制方法及系统
Zhang et al. Speed Control of Ultrasonic Motor Based on Muller Iteration