WO2023065844A1 - 升压保护电路、功率放大器及相关芯片 - Google Patents

升压保护电路、功率放大器及相关芯片 Download PDF

Info

Publication number
WO2023065844A1
WO2023065844A1 PCT/CN2022/116492 CN2022116492W WO2023065844A1 WO 2023065844 A1 WO2023065844 A1 WO 2023065844A1 CN 2022116492 W CN2022116492 W CN 2022116492W WO 2023065844 A1 WO2023065844 A1 WO 2023065844A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
resistor
voltage
module
base
Prior art date
Application number
PCT/CN2022/116492
Other languages
English (en)
French (fr)
Inventor
石昊云
张莽
史哲
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2023065844A1 publication Critical patent/WO2023065844A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only

Definitions

  • the utility model relates to the field of amplifier circuits, in particular to a boost protection circuit, a power amplifier and a chip.
  • the radio frequency power amplifier is one of the important components.
  • the power amplifier amplifies the power of the signal. After obtaining sufficient radio frequency power, the signal can be fed to the antenna for radiation.
  • the amplification gain, output power and operating current of the power amplifier are directly related to the power supply voltage.
  • various performance indicators can be achieved; when the power supply voltage rises due to factors such as harsh circuit working environment, severe adaptation, and long-term high-power operation, the power supply current of the power amplifier will suddenly increase. Increase, resulting in a lot of heat, for the circuit with poor heat dissipation, the temperature rise also leads to a further increase in the power supply current, and forms a positive feedback, which eventually leads to damage to the power amplifier. Therefore, a boost protection circuit is added to the power amplifier circuit.
  • the boost protection circuit reduces the bias current of the bias circuit by controlling, thereby reducing the operating current of the power amplifier and further reducing The gain and output power of the power amplifier, thereby reducing the heat generation of the power amplifier, thus ensuring the normal operation of the power amplifier under the condition of high power supply voltage.
  • the boost protection circuit in the related art includes a voltage detection circuit, an overvoltage protection module and a controlled bias circuit module.
  • the boost protection circuit shown in FIG. 1 is a commonly used boost protection circuit in the related art.
  • the voltage detection circuit includes a resistor R1', a resistor R2', a resistor R3', a resistor R4', a resistor R5', a transistor H1', a transistor H2', and a transistor H3'.
  • the overvoltage protection module includes a resistor R6', a resistor R7', a transistor H4' and a transistor H5'.
  • the bias circuit module includes a resistor R8', a resistor R9', a transistor H6', a diode D2' and a diode D3'.
  • the detection circuit is connected with the power supply voltage VCC, and the transistor is driven by voltage division through a resistor.
  • the voltage divider network composed of the resistor R3' and the resistor R4' cannot provide the voltage to turn on the transistor H2', so no current flows through the transistor H2', the transistor H3' and the transistor H4', so too much
  • the voltage protection module stops working, and the entire boost protection circuit has no influence on the bias circuit.
  • the voltage divider network composed of resistor R3' and resistor R4' provides a higher voltage, and turns on transistor H2', causing current to flow through transistor H2', transistor H3' and transistor H4 '.
  • the transistor H4' and the transistor H5' constitute the current mirror circuit structure of the overvoltage protection module. Due to the principle of the current mirror, the transistor H5' flows into a downward current of the same magnitude as the transistor H4', so the current flowing into the bias circuit The current reduction of transistor H6' causes the voltage across the resistor R9' to decrease, so the bias voltage of the power amplifier decreases, thereby reducing the operating current and output power of the RF amplifier tube Q1'.
  • This circuit structure ensures that the power amplifier operates at a high power supply voltage. work normally.
  • the boost protection circuit of the related art has the problem of excessive leakage current when the voltage detection module is not working; when the voltage detection module is working, the method of reducing the bias voltage to reduce the power supply current has the problem of slow response, and the temperature When it is too high, the RF amplifier tube Q1' is affected by temperature drift, and part of the AC signal will increase the bias point voltage after being rectified by the RF amplifier tube Q1' itself, so there is a problem that the bias voltage cannot be effectively reduced.
  • the utility model proposes a boost protection circuit, a power amplifier and a chip that make the leakage current of the boost protection circuit less when it is not working, and make the power amplifier work normally under the condition of high power supply voltage .
  • the embodiment of the utility model provides a boost protection circuit, which is used for boost protection of the radio frequency amplifier transistor of the power amplifier.
  • the boost protection circuit includes a voltage detection module connected in sequence, Overvoltage protection module and bias circuit module;
  • the voltage detection module is used to detect the first power supply voltage and generate a detection result, so as to realize the control of the first power supply current corresponding to the first power supply voltage;
  • the voltage detection module includes a first resistor, a second resistor , a third resistor, a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor and a sixth transistor;
  • the first end of the first resistor is connected to the first power supply voltage; the second end of the first resistor is respectively connected to the collector of the first transistor and the base of the first transistor;
  • the emitter of the first transistor is respectively connected to the base of the third transistor, the base of the fourth transistor and the collector of the fifth transistor;
  • the collector of the second transistor is respectively connected to the base of the second transistor and the bias voltage; the emitter of the second transistor is respectively connected to the collector of the third transistor and the fourth transistor collector;
  • the emitter of the third transistor is connected to the base of the fifth transistor
  • the emitter of the fifth transistor is connected to ground after being connected in series with the second resistor;
  • the emitter of the fourth transistor is connected to the collector of the sixth transistor
  • the base of the sixth transistor is connected to the first end of the third resistor, and the second end of the third resistor is connected to a bias voltage; the emitter of the sixth transistor is used as the voltage detection module output terminal;
  • the overvoltage protection module is used to output the detection result through a mirror circuit to mirror current; the input terminal of the overvoltage protection module is connected to the output terminal of the voltage detection module, and the output terminal of the overvoltage protection module is connected to to the input terminal of the bias circuit module;
  • the bias circuit module is used to adjust the received mirror current to control the base voltage of the radio frequency amplifier transistor;
  • the bias circuit module includes a fifth resistor, a sixth resistor, a seventh resistor, a Nine transistors, tenth transistors and eleventh transistors;
  • the first end of the fifth resistor is respectively connected to the base of the ninth transistor, the base of the tenth transistor, and the collector of the eleventh transistor, and serves as the input of the bias circuit module terminal; the second terminal of the fifth resistor is connected to the bias voltage;
  • the collector of the ninth transistor is respectively connected to the collector of the tenth transistor and the second power supply voltage; the emitter of the ninth transistor is connected to the base of the eleventh transistor;
  • the emitter of the eleventh transistor is connected to ground after being connected in series with the sixth resistor;
  • the emitter of the tenth transistor is connected to the first end of the seventh resistor
  • the second terminal of the seventh resistor serves as the output terminal of the bias circuit module.
  • the overvoltage protection module includes a fourth resistor, a seventh transistor, and an eighth transistor;
  • the collector of the seventh transistor is respectively connected to the base of the seventh transistor and the base of the eighth transistor, and serves as an input terminal of the overvoltage protection module;
  • Both the emitter of the seventh transistor and the emitter of the eighth transistor are connected to ground;
  • the collector of the eighth transistor is connected to the first end of the fourth resistor
  • the second terminal of the fourth resistor serves as the output terminal of the overvoltage protection module.
  • the parameters of the first resistor, the second resistor, the third resistor, the fifth resistor, the sixth resistor and the seventh resistor are all adjustable.
  • the fourth resistor is an adjustable parameter.
  • the voltage value of the first power supply voltage is greater than the voltage value of the bias voltage, and the voltage value of the bias voltage is greater than or equal to the voltage value of the second power supply voltage.
  • Embodiments of the present utility model also provide a power amplifier, which includes a radio frequency amplifier transistor and the boost protection circuit described in any one of the above, the output terminal of the bias circuit module is connected to the radio frequency amplifier transistor base.
  • the power amplifier further includes a first capacitor, a first inductor and an output matching circuit module;
  • the positive terminal of the first capacitor serves as the input terminal of the power amplifier
  • the negative terminal of the first capacitor is respectively connected to the output terminal of the bias circuit module and the base of the radio frequency amplifier transistor;
  • the emitter of the RF amplifier transistor is connected to ground;
  • the collector of the RF amplifier transistor is respectively connected to the second end of the first inductor and the input end of the output matching circuit module;
  • the first end of the first inductor is connected to the first power supply voltage
  • the output terminal of the output matching circuit module is used as the output terminal of the power amplifier.
  • the embodiment of the present utility model also provides a chip, and the chip includes the boost protection circuit described in any one of the above.
  • the embodiment of the present utility model also provides a chip, and the chip includes the power amplifier described in any one of the above.
  • the boost protection circuit of the present invention is provided with the voltage detection module and the bias circuit module.
  • the voltage detection module forms a voltage dividing network through the first resistor and the second resistor, and forms a voltage stabilizing network through the first transistor, the third transistor and the fifth transistor, and prevents the reverse current from being connected to burn out the device at the same time; when the first When the power supply voltage VCC exceeds the rated value, the base voltage of the fourth transistor increases correspondingly, causing the fourth transistor to be turned on, and the current flows from the second transistor through the fourth transistor, the sixth transistor, and the seventh transistor to ground in sequence.
  • the voltage detection module realizes the control of the first power supply current corresponding to the first power supply voltage.
  • the bias circuit module forms a voltage dividing network through the fifth resistor and the sixth resistor, and has a certain voltage stabilizing effect on the base voltage of the tenth transistor through the ninth transistor and the eleventh transistor, and the tenth transistor has a certain effect on the inflow power
  • the base current of the RF amplifying transistor of the amplifier has a compensating effect; when the power supply voltage VCC exceeds the rated value, there is a conduction current in the eighth transistor, which causes a sudden drop in the current flowing into the base of the tenth transistor, causing the current to flow out of the tenth transistor, The current flowing into the radio frequency amplifying transistor also drops suddenly, so as to realize the control of the first power supply current corresponding to the first power supply voltage. Therefore, the leakage current of the boost protection circuit, the power amplifier and the chip is reduced when the boost protection circuit is not working, and the power amplifier can work normally under the condition of high power supply voltage.
  • FIG. 1 is an application circuit schematic diagram of a boost protection circuit in the related art
  • Fig. 2 is the circuit structural diagram of the boost protection circuit of the utility model embodiment
  • Fig. 3 is the circuit structure diagram of the voltage detection module of the utility model embodiment
  • Fig. 4 is the circuit structural diagram of the bias circuit module of the utility model embodiment
  • Fig. 5 is a circuit structure diagram of an overvoltage protection module according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an application circuit of a boost protection circuit according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the relationship curve between the first power supply current and the first power supply voltage when the boost protection circuit of the present invention is turned off to on;
  • Fig. 8 is a schematic diagram of the relationship curve between the leakage current and the first power supply voltage when the boost protection circuit of the present invention is turned on from off.
  • the utility model provides a boost protection circuit 100 .
  • the boost protection circuit 100 is used for boost protection of the radio frequency amplifier transistor Q1 of the power amplifier.
  • the boost protection circuit 100 is connected to the base of the RF amplifier transistor Q1 of the power amplifier.
  • FIG. 2 is a circuit structure diagram of a boost protection circuit according to an embodiment of the present invention.
  • the boost protection circuit 100 includes a voltage detection module 1 , an overvoltage protection module 3 and a bias circuit module 2 connected in sequence.
  • the voltage detection module 1 is used to detect the first power supply voltage VCC and generate a detection result, so as to realize the control of the first power supply current ICC corresponding to the first power supply voltage VCC.
  • the voltage detection module 1 includes a first resistor R1, a second resistor R2, a third resistor R3, a first transistor H1, a second transistor H2, a third transistor H3, a fourth transistor H4, a fifth transistor H5 and a sixth transistor H6.
  • FIG. 3 is a circuit structure diagram of the voltage detection module 1 according to an embodiment of the present invention.
  • the specific circuit structure of the voltage detection module 1 is as follows:
  • a first end of the first resistor R1 is connected to a first power supply voltage VCC, and the first power supply voltage VCC is used to provide voltage to the radio frequency amplifier transistor Q1.
  • the second end of the first resistor R1 is connected to the collector of the first transistor H1 and the base of the first transistor H1 respectively.
  • the emitter of the first transistor H1 is respectively connected to the base of the third transistor H3, the base of the fourth transistor H4 and the collector of the fifth transistor H5.
  • the collector of the second transistor H2 is respectively connected to the base of the second transistor H2 and the bias voltage Vbias.
  • the emitter of the second transistor H2 is connected to the collector of the third transistor H3 and the collector of the fourth transistor H4 respectively.
  • the emitter of the third transistor H3 is connected to the base of the fifth transistor H5.
  • the emitter of the fifth transistor H5 is connected to ground after being connected in series with the second resistor R2.
  • the emitter of the fourth transistor H4 is connected to the collector of the sixth transistor H6.
  • the base of the sixth transistor H6 is connected to the first terminal of the third resistor R3.
  • a second end of the third resistor R3 is connected to a bias voltage Vbias.
  • the emitter of the sixth transistor H6 serves as the output terminal of the voltage detection module 1 .
  • the voltage value of the first power supply voltage VCC is greater than the voltage value of the bias voltage Vbias.
  • the first power supply voltage VCC passes voltage to the entire circuit of the voltage detection module 1, and at the same time provides voltage to the relevant circuit of the radio frequency amplifier transistor Q1 of the power amplifier.
  • the bias circuit module 2 is used to adjust the received mirror current to control the base voltage of the RF amplifier transistor Q1.
  • the bias circuit module 2 includes a fifth resistor R5 , a sixth resistor R6 , a seventh resistor R7 , a ninth transistor H9 , a tenth transistor H10 and an eleventh transistor H11 .
  • FIG. 4 is a circuit structure diagram of the bias circuit module 2 of the embodiment of the present invention.
  • the specific circuit structure of the bias circuit module 2 is as follows:
  • the first end of the fifth resistor R5 is respectively connected to the base of the ninth transistor H9, the base of the tenth transistor H10, and the collector of the eleventh transistor H11, and serves as the bias Input terminal of circuit module 2.
  • a second end of the fifth resistor R5 is connected to the bias voltage Vbias.
  • the collector of the ninth transistor H9 is respectively connected to the collector of the tenth transistor H10 and the second power supply voltage Vbat.
  • the emitter of the ninth transistor H9 is connected to the base of the eleventh transistor H11.
  • the emitter of the eleventh transistor H11 is connected to the ground after being connected in series with the sixth resistor R6.
  • the emitter of the tenth transistor H10 is connected to the first end of the seventh resistor R7.
  • the second terminal of the seventh resistor R7 is used as the output terminal of the bias circuit module 2 and is used to be connected to the base of the radio frequency amplifier transistor Q1.
  • the voltage value of the bias voltage Vbias is greater than or equal to the voltage value of the second power supply voltage Vbat. This setting is beneficial to realize voltage stabilization of the base of the tenth transistor H10 by the ninth transistor H9 and the eleventh transistor H11; The polar current is supplemented.
  • the overvoltage protection module 3 is used for outputting the mirror current through the mirror circuit through the detection result.
  • the input end of the overvoltage protection module 3 is connected to the output end of the voltage detection module 1 , and the output end of the overvoltage protection module 3 is connected to the input end of the bias circuit module 2 .
  • the overvoltage protection module 3 may adopt a related art circuit structure.
  • the overvoltage protection module 3 is slightly adjusted according to the front and rear circuit structures to improve circuit performance.
  • FIG. 5 is a circuit structure diagram of the overvoltage protection module 3 according to the embodiment of the present invention.
  • the specific circuit structure of the overvoltage protection module 3 is as follows:
  • the overvoltage protection module 3 includes a fourth resistor R4, a seventh transistor H7 and an eighth transistor H8.
  • the collector of the seventh transistor H7 is connected to the base of the seventh transistor H7 and the base of the eighth transistor H8 respectively, and serves as an input terminal of the overvoltage protection module 3 .
  • Both the emitter of the seventh transistor H7 and the emitter of the eighth transistor H8 are connected to ground.
  • the collector of the eighth transistor H8 is connected to the first terminal of the fourth resistor R4.
  • the second terminal of the fourth resistor R4 serves as the output terminal of the overvoltage protection module 3 .
  • the first resistor R1, the second resistor R2, the third resistor R3, the fourth resistor R4, the fifth resistor R5, the sixth resistor R6 and the first The seven resistors R7 are parameter adjustable.
  • the working principle of the boost protection circuit 100 is as follows:
  • the first resistor R1 and the second resistor R2 of the voltage detection module 1 form a voltage divider network.
  • the purpose of the voltage dividing network is to provide a certain voltage to the base of the fourth transistor H4.
  • the first transistor H1 , the third transistor H3 and the fifth transistor H5 of the voltage detection module 1 form a voltage stabilizing network, and at the same time prevent reverse current from burning out the device.
  • the operating voltage of the second transistor H2 is the bias voltage Vbias
  • the second transistor H2 is turned on
  • the base voltage of the fourth transistor H4 is not enough to turn on the fourth transistor H4, so there is no current Pass through the fourth transistor H4 , so it has no influence on the bias circuit module 2 .
  • the base voltage of the fourth transistor H4 increases accordingly, causing the fourth transistor H4 to be turned on, and the current flows from the second transistor H2 through the fourth transistor H4, the sixth transistor H4, and the sixth transistor H4 in turn.
  • the transistor H6 and the seventh transistor H7 are connected to ground. Therefore, the current that should flow into the tenth transistor H10 in the bias circuit module 2 is shunted, so that the voltage detection module 1 realizes the control of the first power supply current ICC corresponding to the first power supply voltage VCC.
  • the bias circuit module 2 forms a voltage dividing network through the fifth resistor R5 and the sixth resistor R6, and has a certain voltage stabilizing effect on the base voltage of the tenth transistor H10 through the ninth transistor H9 and the eleventh transistor H11,
  • the tenth transistor H10 has a compensating effect on the base current flowing into the radio frequency amplifier transistor Q1 of the power amplifier.
  • the voltage detection module 1 When the first power supply voltage VCC supplies power normally, the voltage detection module 1 does not work, and the bias circuit module 2 does not receive current control.
  • the first power supply voltage VCC exceeds the rated value, there is a conduction current in the eighth transistor H8, causing the current flowing into the base of the tenth transistor H10 to drop suddenly, causing the current flowing out of the tenth transistor H10 to flow into the RF amplifier transistor Q1 The current also drops sharply, so as to realize the control of the first power supply current ICC corresponding to the first power supply voltage VCC.
  • the embodiment of the present utility model also provides a power amplifier, which includes a radio frequency amplifier transistor Q1 and the boost protection circuit 100 . Wherein, the output end of the bias circuit module 2 is connected to the base of the radio frequency amplifier transistor Q1.
  • the power amplifier also includes a first capacitor C1, a first inductor L1 and an output matching circuit module.
  • the circuit structure of the power amplifier is:
  • the positive terminal of the first capacitor C1 is used as the input terminal of the power amplifier.
  • the negative end of the first capacitor C1 is respectively connected to the output end of the bias circuit module 2 and the base of the RF amplifier transistor Q1.
  • the emitter of the RF amplifier transistor Q1 is connected to ground.
  • the collector of the RF amplifier transistor Q1 is respectively connected to the second terminal of the first inductor L1 and the input terminal of the output matching circuit module.
  • a first terminal of the first inductor L1 is connected to the first power supply voltage VCC.
  • the output terminal of the output matching circuit module is used as the output terminal of the power amplifier.
  • FIG. 7 is a schematic diagram of the relationship curve between the first power supply current ICC and the first power supply voltage VCC when the boost protection circuit 100 of the present invention is turned off and turned on.
  • FIG. 8 is a schematic diagram of the relationship curve between the leakage current Ileakage and the first power supply voltage VCC when the boost protection circuit 100 of the present invention is switched from off to on.
  • the protection circuit When the first power supply voltage VCC does not exceed 3.9V, the protection circuit is turned off, and the leakage current Ileakage is only nanoampere level, which is very small and does not affect the normal operation of the power amplifier.
  • the boost protection circuit 100 starts to work, and the current of the power amplifier power supply (namely the first power supply voltage VCC) drops sharply, which protects the power amplifier.
  • the voltage detection module 1 When the voltage detection module 1 is not working, the leakage current is extremely low; when the temperature rises, the bias circuit module 2 can more quickly and effectively control the bias current flowing into the power amplifier.
  • the embodiment of the present utility model also provides a chip, and the chip includes the boost protection circuit 100 .
  • the embodiment of the present utility model also provides another chip, and the chip includes the power amplifier.
  • the boost protection circuit of the present invention is provided with the voltage detection module and the bias circuit module.
  • the voltage detection module forms a voltage dividing network through the first resistor and the second resistor, and forms a voltage stabilizing network through the first transistor, the third transistor and the fifth transistor, and prevents the reverse current from being connected to burn out the device at the same time; when the first When the power supply voltage VCC exceeds the rated value, the base voltage of the fourth transistor increases correspondingly, causing the fourth transistor to be turned on, and the current flows from the second transistor through the fourth transistor, the sixth transistor, and the seventh transistor to ground in sequence.
  • the voltage detection module realizes the control of the first power supply current corresponding to the first power supply voltage.
  • the bias circuit module forms a voltage dividing network through the fifth resistor and the sixth resistor, and has a certain voltage stabilizing effect on the base voltage of the tenth transistor through the ninth transistor and the eleventh transistor, and the tenth transistor has a certain effect on the inflow power
  • the base current of the RF amplifying transistor of the amplifier has a compensating effect; when the power supply voltage VCC exceeds the rated value, there is a conduction current in the eighth transistor, which causes a sudden drop in the current flowing into the base of the tenth transistor, causing the current to flow out of the tenth transistor, The current flowing into the radio frequency amplifying transistor also drops suddenly, so as to realize the control of the first power supply current corresponding to the first power supply voltage. Therefore, the leakage current of the boost protection circuit, the power amplifier and the chip is reduced when the boost protection circuit is not working, and the power amplifier can work normally under the condition of high power supply voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Protection Of Static Devices (AREA)

Abstract

本实用新型提供了一种升压保护电路,包括电压检测模块、过压保护模块以及偏置电路模块;所述电压检测模块用于检测第一电源电压并产生检测结果,以实现对与所述第一电源电压相对应的第一电源电流的控制;所述过压保护模块用于将所述检测结果通过镜像电路输出镜像电流;所述偏置电路模块用于将接收的所述镜像电流进行调整,以控制所述射频放大晶体管的基极电压。本实用新型提供了一种功率放大器和芯片。采用本实用新型的技术方案,使得升压保护电路在未工作时的漏电流少,并使得功率放大器在高电源电压情况下正常工作。

Description

升压保护电路、功率放大器及相关芯片 技术领域
本实用新型涉及放大器电路领域,尤其涉及一种升压保护电路、功率放大器以及芯片。
背景技术
目前,在无线收发系统中,射频的功率放大器是重要的组成部分之一,功率放大器将信号进行功率放大,获得足够的射频功率以后,信号才能馈送到天线上辐射出去。
其中,功率放大器的放大增益、输出功率和工作电流均与电源电压直接相关。当功率放大器在额定电压下工作时可以达到各项性能指标;当电路工作环境恶劣、严重适配、长时间高功率工作等因素导致电源电压出现升高的状态时,导致功率放大器的电源电流急剧增加,从而产生很大的热量,对于散热能力差的电路来说,温度升高同样导致电源电流的进一步增加,并形成正反馈,最终导致功率放大器损坏。因此,在功率放大器电路中加入升压保护电路,当电源电压由于外界因素温度升高时,升压保护电路通过控制减小偏置电路的偏置电流,从而实现功率放大器工作电流降低,进一步降低功率放大器的增益和输出功率,从而降低了功率放大器的发热量,从而保证功率放大器在高电源电压情况下正常工作。
相关技术的升压保护电路包括电压检测电路、过压保护模块和被控制的偏置电路模块。如图1所示的升压保护电路为相关技术中常用的一种升压保护电路。其中,所述电压检测电路包括电阻R1’、电阻R2’、电阻R3’、电阻R4’、电阻R5’、晶体管H1’、晶体管H2’、晶体管H3’。所述过压保护模块包括电阻R6’、电阻R7’、晶体管H4’以及晶体管H5’。所述偏置电路模块包括电阻R8’、电阻R9’、晶体管H6’、二极管D2’以及二极管D3’。检测电路与电源电压VCC连接,通过电阻分压驱动晶体管。当电源 电压VCC提供额定电压时,电阻R3’和电阻R4’组成的分压网络,不能提供开启晶体管H2’的电压,因此没有电流流过晶体管H2’、晶体管H3’和晶体管H4’,因此过压保护模块停止工作,整个升压保护电路对偏置电路未产生影响。当电源电压VCC现升高的状态时,电阻R3’和电阻R4’组成的分压网络提供了更高的电压,开启晶体管H2’,导致有电流流过晶体管H2’、晶体管H3’和晶体管H4’。其中,晶体管H4’和及晶体管H5’构成所述过压保护模块的电流镜电路结构,由于电流镜原理,晶体管H5’流入与晶体管H4’同样大小的向下电流,因此流入偏置电路中的晶体管H6’的电流减少,导致电阻R9’两端的电压降低,因此功率放大器的偏置电压降低,从而减小射频放大管Q1’的工作电流和输出功率,该电路结构保证功率放大器在高电源电压情况下正常工作。
然而,相关技术的升压保护电路当电压检测模块不工作时,存在漏电流过大的问题;当电压检测模块工作时,降低偏置电压从而减少电源电流的方式存在响应缓慢的问题,而且温度过高时,射频放大管Q1’受温度漂移的影响,部分交流信号经过射频放大管Q1’本身整流后,会抬高偏置点电压,因而存在无法有效降低偏置电压的问题。
因此,实有必要提供一种新的升压保护电路、功率放大器以及芯片解决上述问题。
实用新型内容
针对以上现有技术的不足,本实用新型提出一种使得升压保护电路在未工作时的漏电流少,并使得功率放大器在高电源电压情况下正常工作的升压保护电路、功率放大器以及芯片。
为了解决上述技术问题,本实用新型的实施例提供了一种升压保护电路,其用于对功率放大器的射频放大晶体管进行升压保护,所述升压保护电路包括依次连接的电压检测模块、过压保护模块以及偏置电路模块;
所述电压检测模块用于检测第一电源电压并产生检测结果,以 实现对与所述第一电源电压相对应的第一电源电流的控制;所述电压检测模块包括第一电阻、第二电阻、第三电阻、第一晶体管、第二晶体管、第三晶体管、第四晶体管、第五晶体管以及第六晶体管;
所述第一电阻的第一端连接至第一电源电压;所述第一电阻的第二端分别连接至所述第一晶体管的集电极和所述第一晶体管的基极;
所述第一晶体管的发射极分别连接至所述第三晶体管的基极、所述第四晶体管的基极以及所述第五晶体管的集电极;
所述第二晶体管的集电极分别连接至所述第二晶体管的基极和偏置电压;所述第二晶体管的发射极分别连接至所述第三晶体管的集电极和所述第四晶体管的集电极;
所述第三晶体管的发射极连接至所述第五晶体管的基极;
所述第五晶体管的发射极通过串联所述第二电阻后连接至接地;
所述第四晶体管的发射极连接至所述第六晶体管的集电极;
所述第六晶体管的基极连接至所述第三电阻的第一端,所述第三电阻的第二端连接至偏置电压;所述第六晶体管的发射极作为所述电压检测模块的输出端;
所述过压保护模块用于将所述检测结果通过镜像电路输出镜像电流;所述过压保护模块的输入端连接至所述电压检测模块的输出端,所述过压保护模块的输出端连接至所述偏置电路模块的输入端;
所述偏置电路模块用于将接收的所述镜像电流进行调整,以控制所述射频放大晶体管的基极电压;所述偏置电路模块包括第五电阻、第六电阻、第七电阻、第九晶体管、第十晶体管以及第十一晶体管;
所述第五电阻的第一端分别连接至所述第九晶体管的基极、所述第十晶体管的基极以及所述第十一晶体管的集电极,并作为所述偏置电路模块的输入端;所述第五电阻的第二端连接至所述偏置电压;
所述第九晶体管的集电极分别连接至所述第十晶体管的集电极和第二电源电压;所述第九晶体管的发射极连接至所述第十一晶体管的基极;
所述第十一晶体管的发射极通过串联所述第六电阻后连接至接地;
所述第十晶体管的发射极连接至所述第七电阻的第一端;
所述第七电阻的第二端作为所述偏置电路模块的输出端。
优选的,所述过压保护模块包括第四电阻、第七晶体管以及第八晶体管;
所述第七晶体管的集电极分别连接至所述第七晶体管的基极和所述第八晶体管的基极,并作为所述过压保护模块的输入端;
所述第七晶体管的发射极和所述第八晶体管的发射极均连接至接地;
所述第八晶体管的集电极连接至所述第四电阻的第一端;
所述第四电阻的第二端作为所述过压保护模块的输出端。
优选的,所述第一电阻、所述第二电阻、所述第三电阻、所述第五电阻、所述第六电阻以及所述第七电阻均为参数可调。
优选的,所述第四电阻为参数可调。
优选的,所述第一电源电压的电压值大于所述偏置电压的电压值,所述偏置电压的电压值大于或等于所述第二电源电压的电压值。
本实用新型的实施例还提供了一种功率放大器,其包括射频放大晶体管和如上中任意一项所述的升压保护电路,所述偏置电路模块的输出端连接至所述射频放大晶体管的基极。
优选的,所述功率放大器还包括第一电容、第一电感以及输出匹配电路模块;
所述第一电容的正极端作为所述功率放大器的输入端;
所述第一电容的负极端分别连接至所述偏置电路模块的输出端和所述射频放大晶体管的基极;
所述射频放大晶体管的发射极连接至接地;
所述射频放大晶体管的集电极分别连接至所述第一电感的第二端和所述输出匹配电路模块的输入端;
所述第一电感的第一端连接至所述第一电源电压;
所述输出匹配电路模块的输出端作为所述功率放大器的输出端。
本实用新型的实施例还提供了一种芯片,所述芯片包括如上中任意一项所述的升压保护电路。
本实用新型的实施例还提供了一种芯片,所述芯片包括如上中任意一项所述的功率放大器。
与相关技术相比,本实用新型的升压保护电路通过设置所述电压检测模块和所述偏置电路模块。所述电压检测模块通过第一电阻和第二电阻组成分压网络,并通过第一晶体管、第三晶体管及第五晶体管组成稳压网络,同时防止接入反向电流烧坏器件;当第一电源电压VCC超过额定值时,第四晶体管的基极电压相应升高,导致第四晶体管开启,电流从第二晶体管依次流经第四晶体管、第六晶体管、第七晶体管到地。从而使得所述电压检测模块实现对与所述第一电源电压相对应的第一电源电流的控制。所述偏置电路模块通过第五电阻和第六电阻组成分压网络,并通过第九晶体管和第十一晶体管对第十晶体管的基极电压有一定的稳压作用,第十晶体管对流入功率放大器的射频放大晶体管的基极电流存在补偿作用;当电源电压VCC超过额定值时,第八晶体管中存在导通电流,导致流入第十晶体管的基极的电流骤降,导致流出第十晶体管,流入到射频放大晶体管中的电流同样骤降,从而实现对与所述第一电源电压相对应的第一电源电流的控制。因此,使得升压保护电路、功率放大器以及芯片实现升压保护电路在未工作时的漏电流少,并实现功率放大器在高电源电压情况下正常工作。
附图说明
下面结合附图详细说明本实用新型。通过结合以下附图所作的详细描述,本实用新型的上述或其他方面的内容将变得更清楚和更 容易理解。附图中,
图1为相关技术的升压保护电路的应用电路原理图;
图2为本实用新型实施例的升压保护电路的电路结构图;
图3为本实用新型实施例的电压检测模块的电路结构图;
图4为本实用新型实施例的偏置电路模块的电路结构图;
图5为本实用新型实施例的过压保护模块的电路结构图;
图6为本实用新型实施例的升压保护电路的应用电路原理图;
图7本实用新型升压保护电路从关闭到开启时第一电源电流与第一电源电压的关系曲线示意图;
图8本实用新型升压保护电路从关闭到开启时漏电流与第一电源电压的关系曲线示意图。
具体实施方式
下面结合附图详细说明本实用新型的具体实施方式。
在此记载的具体实施方式/实施例为本实用新型的特定的具体实施方式,用于说明本实用新型的构思,均是解释性和示例性的,不应解释为对本实用新型实施方式及本实用新型范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案,都在本实用新型的保护范围之内。
本实用新型提供一种升压保护电路100。所述升压保护电路100用于对功率放大器的射频放大晶体管Q1进行升压保护。所述升压保护电路100连接于功率放大器的射频放大晶体管Q1的基极。
请同时参考图2-6所示,图2为本实用新型实施例的升压保护电路的电路结构图。
所述升压保护电路100包括依次连接的电压检测模块1、过压保护模块3以及偏置电路模块2。
所述电压检测模块1用于检测第一电源电压VCC并产生检测 结果,以实现对与所述第一电源电压VCC相对应的第一电源电流ICC的控制。
所述电压检测模块1包括第一电阻R1、第二电阻R2、第三电阻R3、第一晶体管H1、第二晶体管H2、第三晶体管H3、第四晶体管H4、第五晶体管H5以及第六晶体管H6。
请参考图3所示,图3为本实用新型实施例的电压检测模块1的电路结构图。所述电压检测模块1的具体电路结构如下:
所述第一电阻R1的第一端连接至第一电源电压VCC,所述第一电源电压VCC用于向所述射频放大晶体管Q1提供电压。
所述第一电阻R1的第二端分别连接至所述第一晶体管H1的集电极和所述第一晶体管H1的基极。
所述第一晶体管H1的发射极分别连接至所述第三晶体管H3的基极、所述第四晶体管H4的基极以及所述第五晶体管H5的集电极。
所述第二晶体管H2的集电极分别连接至所述第二晶体管H2的基极和偏置电压Vbias。
所述第二晶体管H2的发射极分别连接至所述第三晶体管H3的集电极和所述第四晶体管H4的集电极。
所述第三晶体管H3的发射极连接至所述第五晶体管H5的基极。
所述第五晶体管H5的发射极通过串联所述第二电阻R2后连接至接地。
所述第四晶体管H4的发射极连接至所述第六晶体管H6的集电极。
所述第六晶体管H6的基极连接至所述第三电阻R3的第一端。所述第三电阻R3的第二端连接至偏置电压Vbias。
所述第六晶体管H6的发射极作为所述电压检测模块1的输出端。
本实施方式中,所述第一电源电压VCC的电压值大于所述偏置电压Vbias的电压值。其中所述第一电源电压VCC向所述电压 检测模块1的整个电路通过电压,并同时向功率放大器的射频放大晶体管Q1相关电路提供电压。
所述偏置电路模块2用于将接收的所述镜像电流进行调整,以控制所述射频放大晶体管Q1的基极电压。所述偏置电路模块2包括第五电阻R5、第六电阻R6、第七电阻R7、第九晶体管H9、第十晶体管H10以及第十一晶体管H11。
请参考图4所示,图4为本实用新型实施例的偏置电路模块2的电路结构图。偏置电路模块2的具体电路结构如下:
所述第五电阻R5的第一端分别连接至所述第九晶体管H9的基极、所述第十晶体管H10的基极以及所述第十一晶体管H11的集电极,并作为所述偏置电路模块2的输入端。所述第五电阻R5的第二端连接至所述偏置电压Vbias。
所述第九晶体管H9的集电极分别连接至所述第十晶体管H10的集电极和第二电源电压Vbat。
所述第九晶体管H9的发射极连接至所述第十一晶体管H11的基极。
所述第十一晶体管H11的发射极通过串联所述第六电阻R6后连接至接地。
所述第十晶体管H10的发射极连接至所述第七电阻R7的第一端。
所述第七电阻R7的第二端作为所述偏置电路模块2的输出端,并用于连接至射频放大晶体管Q1的基极。
本实施方式中,所述偏置电压Vbias的电压值大于或等于所述第二电源电压Vbat的电压值。该设置有利于所述第九晶体管H9和所述第十一晶体管H11对所述第十晶体管H10的基极的实现稳压;并同时使得所述第十晶体管H10对流入射频放大晶体管Q1的基极电流进行补充。
所述过压保护模块3用于将所述检测结果通过镜像电路输出镜像电流。所述过压保护模块3的输入端连接至所述电压检测模块1的输出端,所述过压保护模块3的输出端连接至所述偏置电路模 块2的输入端。
所述过压保护模块3可以采用相关技术的电路结构,本实施方式中,所述过压保护模块3根据前后电路结构进行稍微调整,以实现提高电路性能。请参考图5所示,图5为本实用新型实施例的过压保护模块3的电路结构图。
所述过压保护模块3的具体电路结构如下:
所述过压保护模块3包括第四电阻R4、第七晶体管H7以及第八晶体管H8。
所述第七晶体管H7的集电极分别连接至所述第七晶体管H7的基极和所述第八晶体管H8的基极,并作为所述过压保护模块3的输入端。
所述第七晶体管H7的发射极和所述第八晶体管H8的发射极均连接至接地。
所述第八晶体管H8的集电极连接至所述第四电阻R4的第一端。
所述第四电阻R4的第二端作为所述过压保护模块3的输出端。
本实施方式中,所述第一电阻R1、所述第二电阻R2、所述第三电阻R3、所述第四电阻R4、所述第五电阻R5、所述第六电阻R6以及所述第七电阻R7均为参数可调。
所述升压保护电路100的电路工作原理如下:
所述电压检测模块1的第一电阻R1和第二电阻R2组成分压网络。该分压网络目的是给所述第四晶体管H4的基极提供一定电压。
所述电压检测模块1的第一晶体管H1、第三晶体管H3及第五晶体管H5组成稳压网络,同时防止接入反向电流烧坏器件。
当当第一电源电压VCC正常供电时,第二晶体管H2的工作电压为所述偏置电压Vbias,第二晶体管H2开启,第四晶体管H4的基极电压不足以开启第四晶体管H4,所以没有电流经过第四晶体管H4,从而对偏置电路模块2没有任何影响。当第一电源电压VCC超过额定值时,所述第四晶体管H4的基极电压相应升高,导致所 述第四晶体管H4开启,电流从第二晶体管H2依次流经第四晶体管H4、第六晶体管H6、第七晶体管H7到地。从而将本应流入偏置电路模块2中第十晶体管H10的电流分流,从而使得所述电压检测模块1实现对与所述第一电源电压VCC相对应的第一电源电流ICC的控制。
所述偏置电路模块2通过第五电阻R5和第六电阻R6组成分压网络,并通过第九晶体管H9和第十一晶体管H11对第十晶体管H10的基极电压有一定的稳压作用,第十晶体管H10对流入功率放大器的射频放大晶体管Q1的基极电流存在补偿作用。
当第一电源电压VCC正常供电时,电压检测模块1并没有工作,偏置电路模块2没有收到电流控制。当第一电源电压VCC超过额定值时,第八晶体管H8中存在导通电流,导致流入第十晶体管H10的基极的电流骤降,导致流出第十晶体管H10,流入到射频放大晶体管Q1中的电流同样骤降,从而实现对与所述第一电源电压VCC相对应的第一电源电流ICC的控制。
本实用新型的实施例还提供一种功率放大器,其包括射频放大晶体管Q1和所述升压保护电路100。其中,所述偏置电路模块2的输出端连接至所述射频放大晶体管Q1的基极。
以下通过具体的电路进行说明:
所述功率放大器还包括第一电容C1、第一电感L1以及输出匹配电路模块。
所述功率放大器的电路结构为:
所述第一电容C1的正极端作为所述功率放大器的输入端。
所述第一电容C1的负极端分别连接至所述偏置电路模块2的输出端和所述射频放大晶体管Q1的基极。
所述射频放大晶体管Q1的发射极连接至接地。
所述射频放大晶体管Q1的集电极分别连接至所述第一电感L1的第二端和所述输出匹配电路模块的输入端。
所述第一电感L1的第一端连接至所述第一电源电压VCC。
所述输出匹配电路模块的输出端作为所述功率放大器的输出 端。
以下通过所述升压保护电路100的电路仿真得到:
请参考图7所示,图7本实用新型升压保护电路100从关闭到开启时第一电源电流ICC与第一电源电压VCC的关系曲线示意图。
请参考图8所示,图8本实用新型升压保护电路100从关闭到开启时漏电流Ileakage与第一电源电压VCC的关系曲线示意图。
当第一电源电压VCC不超过3.9V时,保护电路关断,漏电流Ileakage只有纳安级别,非常小,同时不影响功率放大器正常工作。当第一电源电压VCC超过3.9V工作电压时,升压保护电路100开始工作,功率放大器的供电电源(即第一电源电压VCC)的电流急剧下降,起到了保护功率放大器的作用。当电压检测模块1不工作时,漏电流极低;当温度升高时,偏置电路模块2可以更快速、有效地控制流入功率放大器的偏置电流。
本实用新型的实施例还提供一种芯片,所述芯片包括所述升压保护电路100。
本实用新型的实施例还提供另一种芯片,所述芯片包括所述功率放大器。
需要指出的是,本实用新型采用的相关电路、电阻及晶体管均为本领域常用的电路、元器件,对应的具体的指标和参数根据实际应用进行调整,在此,不作详细赘述。
与相关技术相比,本实用新型的升压保护电路通过设置所述电压检测模块和所述偏置电路模块。所述电压检测模块通过第一电阻和第二电阻组成分压网络,并通过第一晶体管、第三晶体管及第五晶体管组成稳压网络,同时防止接入反向电流烧坏器件;当第一电源电压VCC超过额定值时,第四晶体管的基极电压相应升高,导致第四晶体管开启,电流从第二晶体管依次流经第四晶体管、第六晶体管、第七晶体管到地。从而使得所述电压检测模块实现对与所述第一电源电压相对应的第一电源电流的控制。所述偏置电路模块通过第五电阻和第六电阻组成分压网络,并通过第九晶体管和第十一晶体管对第十晶体管的基极电压有一定的稳压作用,第十晶体管 对流入功率放大器的射频放大晶体管的基极电流存在补偿作用;当电源电压VCC超过额定值时,第八晶体管中存在导通电流,导致流入第十晶体管的基极的电流骤降,导致流出第十晶体管,流入到射频放大晶体管中的电流同样骤降,从而实现对与所述第一电源电压相对应的第一电源电流的控制。因此,使得升压保护电路、功率放大器以及芯片实现升压保护电路在未工作时的漏电流少,并实现功率放大器在高电源电压情况下正常工作。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本实用新型而非限制本实用新型的范围,本领域的普通技术人员应当理解,在不脱离本实用新型的精神和范围的前提下对本实用新型进行的修改或者等同替换,均应涵盖在本实用新型的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (9)

  1. 一种升压保护电路,其用于对功率放大器的射频放大晶体管进行升压保护,其特征在于,所述升压保护电路包括依次连接的电压检测模块、过压保护模块以及偏置电路模块;
    所述电压检测模块用于检测第一电源电压并产生检测结果,以实现对与所述第一电源电压相对应的第一电源电流的控制;所述电压检测模块包括第一电阻、第二电阻、第三电阻、第一晶体管、第二晶体管、第三晶体管、第四晶体管、第五晶体管以及第六晶体管;
    所述第一电阻的第一端连接至第一电源电压;所述第一电阻的第二端分别连接至所述第一晶体管的集电极和所述第一晶体管的基极;
    所述第一晶体管的发射极分别连接至所述第三晶体管的基极、所述第四晶体管的基极以及所述第五晶体管的集电极;
    所述第二晶体管的集电极分别连接至所述第二晶体管的基极和偏置电压;所述第二晶体管的发射极分别连接至所述第三晶体管的集电极和所述第四晶体管的集电极;
    所述第三晶体管的发射极连接至所述第五晶体管的基极;
    所述第五晶体管的发射极通过串联所述第二电阻后连接至接地;
    所述第四晶体管的发射极连接至所述第六晶体管的集电极;
    所述第六晶体管的基极连接至所述第三电阻的第一端,所述第三电阻的第二端连接至偏置电压;所述第六晶体管的发射极作为所述电压检测模块的输出端;
    所述过压保护模块用于将所述检测结果通过镜像电路输出镜像电流;所述过压保护模块的输入端连接至所述电压检测模块的输出端,所述过压保护模块的输出端连接至所述偏置电路模块的输入端;
    所述偏置电路模块用于将接收的所述镜像电流进行调整,以控制所述射频放大晶体管的基极电压;所述偏置电路模块包括第五电阻、第六电阻、第七电阻、第九晶体管、第十晶体管以及第十一晶 体管;
    所述第五电阻的第一端分别连接至所述第九晶体管的基极、所述第十晶体管的基极以及所述第十一晶体管的集电极,并作为所述偏置电路模块的输入端;所述第五电阻的第二端连接至所述偏置电压;
    所述第九晶体管的集电极分别连接至所述第十晶体管的集电极和第二电源电压;所述第九晶体管的发射极连接至所述第十一晶体管的基极;
    所述第十一晶体管的发射极通过串联所述第六电阻后连接至接地;
    所述第十晶体管的发射极连接至所述第七电阻的第一端;
    所述第七电阻的第二端作为所述偏置电路模块的输出端。
  2. 根据权利要求1所述的升压保护电路,其特征在于,所述过压保护模块包括第四电阻、第七晶体管以及第八晶体管;
    所述第七晶体管的集电极分别连接至所述第七晶体管的基极和所述第八晶体管的基极,并作为所述过压保护模块的输入端;
    所述第七晶体管的发射极和所述第八晶体管的发射极均连接至接地;
    所述第八晶体管的集电极连接至所述第四电阻的第一端;
    所述第四电阻的第二端作为所述过压保护模块的输出端。
  3. 根据权利要求1所述的升压保护电路,其特征在于,所述第一电阻、所述第二电阻、所述第三电阻、所述第五电阻、所述第六电阻以及所述第七电阻均为参数可调。
  4. 根据权利要求2所述的升压保护电路,其特征在于,所述第四电阻为参数可调。
  5. 根据权利要求1所述的升压保护电路,其特征在于,所述第一电源电压的电压值大于所述偏置电压的电压值,所述偏置电压的电压值大于或等于所述第二电源电压的电压值。
  6. 一种功率放大器,其包括射频放大晶体管,其特征在于,所述功率放大器还包括如权利要求1-5中任意一项所述的升压保护 电路,所述偏置电路模块的输出端连接至所述射频放大晶体管的基极。
  7. 根据权利要求6所述的功率放大器,其特征在于,所述功率放大器还包括第一电容、第一电感以及输出匹配电路模块;
    所述第一电容的正极端作为所述功率放大器的输入端;
    所述第一电容的负极端分别连接至所述偏置电路模块的输出端和所述射频放大晶体管的基极;
    所述射频放大晶体管的发射极连接至接地;
    所述射频放大晶体管的集电极分别连接至所述第一电感的第二端和所述输出匹配电路模块的输入端;
    所述第一电感的第一端连接至所述第一电源电压;
    所述输出匹配电路模块的输出端作为所述功率放大器的输出端。
  8. 一种芯片,其特征在于,所述芯片包括如权利要求1-5中任意一项所述的升压保护电路。
  9. 一种芯片,其特征在于,所述芯片包括如权利要求6-7中任意一项所述的功率放大器。
PCT/CN2022/116492 2021-10-19 2022-09-01 升压保护电路、功率放大器及相关芯片 WO2023065844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122519880.1U CN216216786U (zh) 2021-10-19 2021-10-19 升压保护电路、功率放大器及相关芯片
CN202122519880.1 2021-10-19

Publications (1)

Publication Number Publication Date
WO2023065844A1 true WO2023065844A1 (zh) 2023-04-27

Family

ID=80884798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116492 WO2023065844A1 (zh) 2021-10-19 2022-09-01 升压保护电路、功率放大器及相关芯片

Country Status (2)

Country Link
CN (1) CN216216786U (zh)
WO (1) WO2023065844A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117200826A (zh) * 2023-11-06 2023-12-08 唯捷创芯(天津)电子技术股份有限公司 一种射频前端模块的过压保护方法及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216216786U (zh) * 2021-10-19 2022-04-05 深圳飞骧科技股份有限公司 升压保护电路、功率放大器及相关芯片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201409116Y (zh) * 2009-04-30 2010-02-17 惠州市正源微电子有限公司 射频功率放大器偏置电路
CN201887469U (zh) * 2010-12-31 2011-06-29 惠州市正源微电子有限公司 射频功率放大器过压保护电路
CN103973237A (zh) * 2014-04-30 2014-08-06 广州钧衡微电子科技有限公司 一种功率放大器的分阶段过压保护电路
CN107196613A (zh) * 2017-04-17 2017-09-22 锐迪科微电子(上海)有限公司 一种实现过压保护的功率放大器
US20200274499A1 (en) * 2019-02-22 2020-08-27 Qorvo Us, Inc. Power amplifier system
CN216216786U (zh) * 2021-10-19 2022-04-05 深圳飞骧科技股份有限公司 升压保护电路、功率放大器及相关芯片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201409116Y (zh) * 2009-04-30 2010-02-17 惠州市正源微电子有限公司 射频功率放大器偏置电路
CN201887469U (zh) * 2010-12-31 2011-06-29 惠州市正源微电子有限公司 射频功率放大器过压保护电路
CN103973237A (zh) * 2014-04-30 2014-08-06 广州钧衡微电子科技有限公司 一种功率放大器的分阶段过压保护电路
CN107196613A (zh) * 2017-04-17 2017-09-22 锐迪科微电子(上海)有限公司 一种实现过压保护的功率放大器
US20200274499A1 (en) * 2019-02-22 2020-08-27 Qorvo Us, Inc. Power amplifier system
CN216216786U (zh) * 2021-10-19 2022-04-05 深圳飞骧科技股份有限公司 升压保护电路、功率放大器及相关芯片

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117200826A (zh) * 2023-11-06 2023-12-08 唯捷创芯(天津)电子技术股份有限公司 一种射频前端模块的过压保护方法及电子设备
CN117200826B (zh) * 2023-11-06 2024-03-05 唯捷创芯(天津)电子技术股份有限公司 一种射频前端模块的过压保护方法及电子设备

Also Published As

Publication number Publication date
CN216216786U (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2023065844A1 (zh) 升压保护电路、功率放大器及相关芯片
US8692619B2 (en) High frequency power amplifier
WO2011026293A1 (zh) 功率放大器温度补偿电路
JP4271708B2 (ja) 電力増幅器、およびそれを備えた多段増幅回路
JP2009200770A (ja) 電力増幅器
JP2015149519A (ja) 電力増幅モジュール
JP2004040769A (ja) バイアス電流制御回路を含む電力増幅器
CN201616811U (zh) 功率控制电路及应用该电路的射频功率放大器模块
US11177772B2 (en) Power control circuit and power amplification circuit
CN102255605A (zh) 用于射频功率放大器的可调有源偏置电路
WO2023231527A1 (zh) 温度补偿偏置电路和功率放大器
WO2020228133A1 (zh) 一种自适应线性化射频偏置模块及其使用电路
CN108900167B (zh) 阻抗补偿电路及功率放大补偿电路
US20200083807A1 (en) Control circuit, bias circuit, and control method
US20140327482A1 (en) Radio frequency power amplifier with no reference voltage for biasing and electronic system
US8791761B2 (en) Electronic system, RF power amplifier and output power compensation method thereof
WO2023065846A1 (zh) 升压保护电路、功率放大器及芯片
US20230104737A1 (en) Temperature compensation circuit of power amplifier and temperature compensation method
CN109768775B (zh) 功率放大电路
US10566934B2 (en) Power amplifier circuit
KR100556192B1 (ko) 달링톤 증폭기의 온도 보상 회로
CN215450005U (zh) 一种基于tec的大功率恒温控制系统
CN103592991A (zh) 用于双极型线性稳压器的功率限制型保护电路
CN107222174A (zh) 一种低损耗自适应偏置电路及无线发射系统
TWI699964B (zh) 偏壓電路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882460

Country of ref document: EP

Kind code of ref document: A1