WO2023231527A1 - 温度补偿偏置电路和功率放大器 - Google Patents

温度补偿偏置电路和功率放大器 Download PDF

Info

Publication number
WO2023231527A1
WO2023231527A1 PCT/CN2023/082968 CN2023082968W WO2023231527A1 WO 2023231527 A1 WO2023231527 A1 WO 2023231527A1 CN 2023082968 W CN2023082968 W CN 2023082968W WO 2023231527 A1 WO2023231527 A1 WO 2023231527A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
transistor
capacitor
temperature compensation
bias circuit
Prior art date
Application number
PCT/CN2023/082968
Other languages
English (en)
French (fr)
Inventor
朱魏
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Priority to KR1020247027611A priority Critical patent/KR20240135834A/ko
Publication of WO2023231527A1 publication Critical patent/WO2023231527A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/302Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in bipolar transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/301Indexing scheme relating to amplifiers the loading circuit of an amplifying stage comprising a coil

Definitions

  • the utility model relates to the field of amplifier circuits, in particular to a temperature compensation bias circuit and a power amplifier.
  • the radio frequency power amplifier (PowerAmplifier, PA) is one of the key units in the wireless communication link. Its function is to amplify the modulated electrical signal carrying the modulation information to a certain power level, and can stimulate the back-end antenna to generate corresponding electromagnetic wave signals to achieve wireless signal transmission.
  • the current power amplifier uses the GaAsHBT process. Since the thermal conductivity is very low and continues to decrease as the temperature increases, considerable power dissipation will occur when the power amplifier operates in a large signal state. And accumulate more heat, this is the self-heating effect. Since the base-emitter junction of a transistor can be regarded as a PN junction, the rise in temperature will cause the electrons in the emitter region to be thermally excited, and the total number of drifting electrons will gradually increase as the temperature rises. Temperature affects the parameters of the transistor. Changes in the parameters of the transistor cause the static operating point of the transistor to change with temperature changes. Therefore, solving the temperature drift of the transistor has always been a key issue in transistor circuit design.
  • the related art temperature compensation bias circuit includes a voltage detection circuit, an overvoltage protection module and a controlled bias circuit module.
  • Figure 1 is an application circuit schematic diagram of a temperature compensation bias circuit in the related art.
  • the temperature compensation bias circuit shown is a temperature compensation bias circuit commonly used in related technologies.
  • the temperature compensation bias circuit includes a first resistor R1, a second resistor R2, a first transistor T1, a second transistor T2, a third transistor T3 and a first capacitor C1.
  • the temperature compensation bias circuit, DC blocking resistor CIN, choke inductor L1 and power amplification transistor T4 shown together form a radio frequency power amplifier circuit.
  • the bias current of the power amplifier transistor T4 is provided by the current mirror composed of the first transistor T1 and the third transistor T3, and can be adjusted by adjusting the current limiting resistor R1.
  • the quiescent current of the power amplifying transistor T4, the first transistor T1 and the second transistor T2, which connect the base and the collector together as diodes, can play a temperature compensation role in conjunction with the ballast resistor R2.
  • the temperature compensation bias circuit needs to concentrate the first transistor T1, the second transistor T2, the third transistor T3 and the power amplifier transistor T4 on the layout. So that the first transistor T1, the second transistor T2, the third transistor T3 and the power amplifier transistor T4 are in close temperature environments.
  • the current I be of the power amplifier transistor T4 and the third transistor T3 will increase. increase.
  • the conduction current of the first transistor T1 and the second transistor T2 will also increase. According to the analysis of Ohm's law, the voltage drop across the first resistor R1 will also increase.
  • the base voltage of the third transistor T3 decreases, thereby decreasing the I be of the third transistor T3, thereby suppressing temperature drift.
  • this solution has the following problems: to achieve optimal temperature compensation, the first transistor T1, the second transistor T2, the third transistor T3 and the power amplification transistor T4 must all work in the same state and have consistent Temperature environment, the parameters of the four transistor devices should be completely matched. Obviously, this cannot be achieved in practical applications. It can only ensure a centralized layout so that each device, especially the first transistor T1 and the second transistor T2, are in line with the power The temperature of the power amplifier transistor T4 should be as consistent as possible to maximize the suppression of temperature drift.
  • the second resistor R2 As a ballast resistor, temperature compensation can also be adjusted to a certain extent.
  • the second resistor R2 will also affect the bias point under RF working conditions, specifically when a large RF signal is input. When The larger it is, the smaller the gain. Therefore, how to design a bias circuit to reduce the impact of the ballast resistor on the bias point under radio frequency operation and to optimize the temperature compensation effect and linearity of the radio frequency amplifier circuit power amplifier is an urgent need for those skilled in the art. Technical issues resolved.
  • the present invention proposes a temperature compensation bias circuit and a power amplifier that have little influence on the bias point under radio frequency operation, and enable the power amplifier to have good temperature compensation effect and high linearity.
  • an embodiment of the present invention provides a temperature compensation bias circuit, which is used to provide a bias current for a power amplifier. It is characterized in that the temperature compensation bias circuit includes a third three resistors, a fourth resistor, a fifth resistor, a sixth resistor, a seventh resistor, a second capacitor, a third capacitor, a fifth capacitor, a fifth transistor, a sixth transistor and a seventh transistor;
  • the first end of the third resistor is connected to the first end of the fourth resistor and the reference voltage respectively;
  • the second end of the third resistor is connected to the first end of the fifth capacitor and the base of the fifth transistor respectively;
  • the second end of the fifth capacitor is connected to ground
  • the second end of the fourth resistor is respectively connected to the collector of the fifth transistor, the first end of the third capacitor, the base of the seventh transistor, the first end of the second capacitor and The collector of the sixth transistor;
  • the second end of the third capacitor is connected to ground
  • the second end of the second capacitor is connected to the first end of the fifth resistor
  • the second end of the fifth resistor is connected to the base of the sixth transistor and the first end of the sixth resistor respectively;
  • the emitter of the sixth transistor is connected to ground;
  • the emitter of the fifth transistor is respectively connected to the emitter of the seventh transistor, the second end of the sixth resistor, and the first end of the seventh resistor;
  • the collector of the seventh transistor is connected to the battery voltage
  • the second terminal of the seventh resistor serves as the output terminal of the temperature compensation bias circuit.
  • the seventh resistor is a resistor with adjustable parameters.
  • the second capacitor is a capacitor with adjustable parameters
  • the fifth resistor is a resistor with adjustable parameters.
  • the sixth resistor is a resistor with adjustable parameters.
  • an embodiment of the present invention provides a power amplifier, which includes the temperature compensation bias circuit as provided in the embodiment of the present invention.
  • the power amplifier further includes a fourth capacitor, a second inductor and a radio frequency amplification transistor;
  • the first end of the fourth capacitor serves as the input end of the power amplifier
  • the second end of the fourth capacitor is connected to the output end of the bias circuit module and the base of the radio frequency amplification transistor respectively;
  • the emitter of the radio frequency amplification transistor is connected to ground;
  • the collector of the radio frequency amplification transistor serves as the output end of the power amplifier, and the collector of the radio frequency amplification transistor is connected to the second end of the second inductor;
  • the first terminal of the second inductor is connected to the power supply voltage.
  • the second inductor is a choke coil or a chip inductor.
  • the collector voltage V C5 of the fifth transistor T5 VCC-I C5 * R4.
  • the temperature compensation bias circuit of the present invention can further adjust the temperature compensation effect of the bias by setting a seventh resistor R7 and adjusting the value of the seventh resistor R7. Therefore, the influence of the temperature compensation bias circuit and the bias point of the power amplifier in the radio frequency operating state is small, and the temperature compensation effect of the power amplifier is good and the linearity is high.
  • Figure 1 is an application circuit schematic diagram of a temperature compensation bias circuit in related technology
  • Figure 2 is a diagram showing the relationship between gain and input power of the circuit in Figure 1;
  • FIG. 3 is a schematic diagram of the application circuit of the temperature compensation bias circuit of the present invention.
  • Figure 4 is a schematic diagram comparing the relationship curves between quiescent current and temperature in the temperature compensation bias circuit of the related art and the application circuit of the temperature compensation bias circuit of the present invention
  • Figure 5 is a schematic diagram of the relationship between the V BE8 voltage and the input power of the temperature compensation bias circuit of the present invention.
  • the utility model provides a temperature compensation bias circuit 100.
  • Figure 3 is a schematic diagram of the application circuit of the temperature compensation bias circuit of the present invention.
  • the utility model also provides a power amplifier using the temperature compensation bias circuit 100.
  • the power amplifier includes the temperature compensation bias circuit 100, a fourth capacitor C4, a second inductor L2 and a radio frequency amplification transistor T8.
  • the circuit connection relationship of the power amplifier is:
  • the first terminal of the fourth capacitor C4 serves as the input terminal RFIN of the power amplifier.
  • the second end of the fourth capacitor C4 is connected to the output end of the bias circuit module and the base of the radio frequency amplification transistor T8 respectively.
  • the emitter of the radio frequency amplification transistor T8 is connected to the ground GND.
  • the collector of the radio frequency amplification transistor T8 is connected to the second inductor L2 Second end.
  • the collector of the radio frequency amplification transistor T8 serves as the output terminal RFOUT of the power amplifier.
  • the first terminal of the second inductor L2 is connected to the power supply voltage VCC.
  • the fourth capacitor C4 is used as a DC blocking capacitor, passing only radio frequency signals and preventing DC voltage from entering the radio frequency amplification transistor T8.
  • the second inductor L2 is a choke coil or a chip inductor.
  • the second inductor L2 is used to isolate radio frequency signals from entering the power supply, and only passes DC current.
  • the second inductor L2 is a choke coil.
  • the temperature compensation bias circuit 100 includes a third resistor R3, a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, a second capacitor C2, a third capacitor C3, a fifth capacitor C5.
  • the circuit connection relationship of the temperature compensation bias circuit 100 is:
  • the first terminal of the third resistor R3 is connected to the first terminal of the fourth resistor R4 and the reference voltage VRef respectively.
  • the second terminal of the third resistor R3 is connected to the first terminal of the fifth capacitor C5 and the base of the fifth transistor T5 respectively.
  • the second terminal of the fifth capacitor C5 is connected to the ground GND.
  • the second end of the fourth resistor R4 is respectively connected to the collector of the fifth transistor T5, the first end of the third capacitor C3, the base of the seventh transistor T7, and the second capacitor C2.
  • the first terminal and the collector of the sixth transistor T6 is respectively connected to the collector of the fifth transistor T5, the first end of the third capacitor C3, the base of the seventh transistor T7, and the second capacitor C2.
  • the second terminal of the third capacitor C3 is connected to the ground GND.
  • the second terminal of the second capacitor C2 is connected to the first terminal of the fifth resistor R5.
  • the second terminal of the fifth resistor R5 is connected to the base of the sixth transistor T6 and the first terminal of the sixth resistor R6 respectively.
  • the emitter of the sixth transistor T6 is connected to the ground GND.
  • the emitter of the fifth transistor T5 is respectively connected to the emitter of the seventh transistor T7, the second end of the sixth resistor R6, and the first end of the seventh resistor R7.
  • the collector of the seventh transistor T7 is connected to the battery voltage VBat.
  • the second terminal of the seventh resistor R7 serves as the output terminal of the temperature compensation bias circuit 100 .
  • the working principle of the temperature compensation bias circuit 100 is:
  • the seventh resistor R7 is used as a ballast resistor.
  • the third resistor R3 is the base current limiting resistance of the fifth transistor T5 and can adjust the static operating point of the fifth transistor T5.
  • the fourth resistor R4 is the collector resistance of the fifth transistor T5, and the fourth resistor R4 and the sixth transistor T6 jointly determine the static operating point of the seventh transistor T7.
  • the seventh resistor R7 is a resistor with adjustable parameters. By adjusting the value of the seventh resistor R7, the temperature compensation effect of the bias of the temperature compensation bias circuit 100 can be further adjusted. Compare the bias temperature compensation effects of the existing bias scheme and the utility model scheme. Please refer to FIG. 4 .
  • FIG. 4 is a schematic diagram comparing the relationship curves between quiescent current and temperature in the temperature compensation bias circuit of the related art and the application circuit of the temperature compensation bias circuit 100 of the present invention. It can be concluded from Figure 4 that W1 is the relationship curve between the quiescent current and temperature of the temperature compensation bias circuit of the related art. W2 is the relationship curve between the quiescent current and temperature of the temperature compensation bias circuit 100 of the present invention.
  • the quiescent current output by the temperature compensation bias circuit 100 increases from 0.088 amps to 0.099 amps.
  • the current is basically stable with little change.
  • the temperature drift of the RF amplification transistor T8 under the same normal temperature quiescent operating current is obviously smaller than that of the temperature compensation bias circuit of related technologies. Therefore, the invention's
  • the temperature compensation bias circuit 100 achieves temperature compensation of the bias circuit, and at the same time makes the function of the ballast resistor independent of temperature compensation, so that it can be used for the gain curve adjustment of the power amplifier to achieve the purpose of adjusting the bias.
  • the temperature compensation effect and linearity of the power amplifier are optimized.
  • the seventh resistor R7 which is a ballast resistor, can adjust the base current of the power amplifier T8 under high power input, and plays a role in adjusting the gain curve of the power amplifier.
  • the seventh resistor R7 can play the role of adjusting the gain of the radio frequency amplification transistor T8 without participating in the above temperature compensation, and will hardly affect the temperature compensation performance of this solution.
  • the power of the input signal is too high, the swing exceeds the static bias point and the conduction angle will decrease. As a result, under large signal input, the gain of the power amplifier will decrease and gain compression will occur.
  • the temperature compensation bias circuit 100 is connected to the ground GND through the fifth capacitor C5 and the third capacitor C3.
  • the fifth capacitor C5 and the third capacitor C serve as filter capacitors. Whether the temperature compensation bias circuit 100 sets a grounded filter capacitor directly affects V BE8 of the radio frequency amplification transistor T8. Please refer to FIG.
  • W3 is the relationship curve between the V BE8 voltage and the input power of the temperature compensation bias circuit 100 of the present invention.
  • W4 is the relationship curve between the V BE8 voltage and the input power of the temperature compensation bias circuit 100 of the present invention after removing the fifth capacitor C5 and the third capacitor C.
  • the grounded filter capacitor provided in the temperature compensation bias circuit 100 directly affects the RF amplification transistor T8 and increases the static bias point of the RF amplification transistor T8 under large signal input, thereby delaying gain compression.
  • the size ratio of the fifth capacitor C5 and the third capacitor C3 the flatness of the entire gain curve as the input power increases can be further adjusted, and the linearity level of the power amplifier can be optimized.
  • the temperature compensated bias circuit 100 sets the sixth transistor T6 and the sixth resistor for isolation R6.
  • the power supply voltage VCC is converted into the bias voltage of the seventh transistor T7 through the voltage difference between the fourth resistor R4 and the sixth transistor T6, and generates a bias The current I B8 ; and is output to the input end of the radio frequency amplification transistor T8 through the seventh resistor R7.
  • the seventh resistor R7 blocks most of the radio frequency signal, but a small part still leaks from the temperature compensation bias circuit 100. Specifically, through the The sixth resistor R6 is the low resistance point of the base of the sixth transistor T6 to isolate the radio frequency signal attenuated by the seventh resistor R7, so that the radio frequency signal attenuated by the seventh resistor R7 is transmitted to the The seventh transistor T7 then passes the radio frequency signal attenuated by the seventh resistor R7.
  • the emitter of the seventh transistor T7 will have a certain radio frequency swing, and the radio frequency swing passes through the base-emitter of the seventh transistor T7
  • the detection effect of the BE junction makes the bias voltage of the base-emitter junction smaller, thereby increasing the I E7 output by the emitter of the seventh transistor T7, thus compensating the base of the radio frequency amplification transistor T8.
  • the pole voltage decreases as the power of the input signal increases, suppressing the AM-AM distortion of the power amplifier under large signals.
  • the second capacitor C2 is a capacitor with adjustable parameters
  • the fifth resistor R5 is a resistor with adjustable parameters.
  • the second capacitor C2 and the fifth resistor R5 form a phase margin network. If the radio frequency signal is coupled to the base of the sixth transistor T6 through the second capacitor C2 and the fifth resistor R5, the radio frequency signal coupled to the sixth transistor T6 passes through the base of the sixth transistor T6 -The detection effect of the emitter junction will cause the base potential of the sixth transistor T6 to decrease as the radio frequency signal increases, causing the emitter potential of the seventh transistor T7 to also decrease, resulting in the power The amplifier exhibits obvious AM-AM distortion under large signals, which in turn causes the linearity of the power amplifier to deteriorate. It can be seen that the introduction of the second capacitor C2 and the fifth resistor R5 with adjustable parameters improves the stability of the bias circuit.
  • the sixth resistor R6 is a resistor with adjustable parameters.
  • the sixth resistor R6 and the second capacitor C2 used for isolation are switchable. That is to say, the sixth resistor R6 may be a variable resistor, and the second capacitor C2 may be So variable capacitance.
  • the collector voltage V C5 of the fifth transistor T5 VCC-I C5 * R4.
  • the temperature compensation bias circuit of the present invention can further adjust the temperature compensation effect of the bias by setting a seventh resistor R7 and adjusting the value of the seventh resistor R7. Therefore, the influence of the temperature compensation bias circuit and the bias point of the power amplifier in the radio frequency operating state is small, and the temperature compensation effect of the power amplifier is good and the linearity is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

一种温度补偿偏置电路(100),其包括第三电阻(R3)、第四电阻(R4)、第五电阻(R5)、第六电阻(R6)、第七电阻(R7)、第二电容(C2)、第三电容(C3)、第五电容(C5)、第五晶体管(T5)、第六晶体管(T6)以及第七晶体管(T7)。一种应用所述温度补偿偏置电路(100)的功率放大器,温度补偿偏置电路(100)和功率放大器在射频工作状态下的偏置点影响小,并使得功率放大器的温度补偿效果好且线性度高。

Description

温度补偿偏置电路和功率放大器 技术领域
本实用新型涉及放大器电路领域,尤其涉及一种温度补偿偏置电路和功率放大器。
背景技术
目前,通信领域的在无线收发系统中,射频的功率放大器(PowerAmplifier,PA)是无线通信链路中的关键单元之一,其作用是将经过调制的携带了调制信息的电信号放大至一定的功率水平,并能激发后端的天线产生相应的电磁波信号,实现无线信号传输。
其中,对于目前的功率放大器采用GaAsHBT工艺,由于热导率很低,而且还会随着温度的升高而不断减小,所以当功率放大器工作在大信号状态时,将产生可观的功率耗散并积聚更多的热量,此即为自热效应。由于晶体管的基-射结可等同视为PN结,故温度的上升会使得发射区中的电子受到热激发,漂移的电子总数随温度升高而逐渐增多。温度对晶体管的参数产生影响,晶体管的参数变化导致了晶体管的静态工作点随温度变化而变化,因此,解决晶体管的温漂一直是晶体管电路设计的一个关键问题。
相关技术的温度补偿偏置电路包括电压检测电路、过压保护模块和被控制的偏置电路模块。如图1,图1为相关技术的温度补偿偏置电路的应用电路原理图。所示的温度补偿偏置电路为相关技术中常用的一种温度补偿偏置电路。其中,所述温度补偿偏置电路包括第一电阻R1、第二电阻R2、第一晶体管T1、第二晶体管T2、第三晶体管T3以及第一电容C1。所示的温度补偿偏置电路、隔直电阻CIN、扼流电感L1和功率放大晶体管T4共同组成射频功率放大器电路。其中,功率放大晶体管T4的偏置电流由第一晶体管T1和第三晶体管T3组成的电流镜提供,通过调节限流电阻R1即可 功率放大晶体管T4的静态电流,把基极和集电极接在一起作二极管用的第一晶体管T1和第二晶体管T2协同镇流电阻R2能起到温度补偿作用。
然而,相关技术的温度补偿偏置电路在实际应用中,温度补偿偏置电路需要将第一晶体管T1、第二晶体管T2、第三晶体管T3和功率管功率放大晶体管T4在版图上的位置集中,以使第一晶体管T1、第二晶体管T2、第三晶体管T3和功率管功率放大晶体管T4在接近的温度环境下,当温度升高时,功率放大晶体管T4和第三晶体管T3的电流Ibe会增大。与此同时,受温度升高的影响,电流镜结构下,第一晶体管T1和第二晶体管T2的导通电流也会增大,根据欧姆定律的分析,第一电阻R1两端的压降也随之增加,第三晶体管T3基极电压下降,进而使第三晶体管T3的Ibe下降,起到抑制温漂的效果。但是这种方案存在以下问题:若要实现最优的温度补偿,则必须使第一晶体管T1、第二晶体管T2、第三晶体管T3以及功率放大晶体管T4均工作在相同的状态,并具有一致的温度环境,4个晶体管器件的各项参数应完全匹配,显然,这在实际应用中是无法实现的,只能够确保集中版图布局,使得各器件特别是第一晶体管T1、第二晶体管T2与功率管功率放大晶体管T4的温度尽量一致,以最大化抑制温漂。通过调节作为镇流电阻的第二电阻R2,也能在一定程度上起到调节温度补偿的作用,但第二电阻R2也会影响射频工作状态下的偏置点,具体为在大射频信号输入时,功率放大器的增益曲线的变化以及线性度性能改变,如图2所示,RA的阻值>RB的阻值>RC的阻值>RD的阻值,因此,第二电阻R2的阻值越大,增益越小。因此,如何设计偏置电路,以使得镇流电阻对射频工作状态下的偏置点的影响减小,且能够使得射频放大电路功放的温度补偿效果和线性度最优,是本领域技术人员亟待解决的技术问题。
因此,实有必要提供一种新的温度补偿偏置电路和功率放大器解决上述问题。
实用新型内容
针对以上现有技术的不足,本实用新型提出一种在射频工作状态下的偏置点影响小,并使得功率放大器的温度补偿效果好且线性度高的温度补偿偏置电路和功率放大器。
为了解决上述技术问题,第一方面,本实用新型的实施例提供了一种温度补偿偏置电路,其用于为功率放大器提供偏置电流,其特征在于,所述温度补偿偏置电路包括第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第二电容、第三电容、第五电容、第五晶体管、第六晶体管以及第七晶体管;
所述第三电阻的第一端分别连接至所述第四电阻的第一端和参考电压;
所述第三电阻的第二端分别连接至所述第五电容的第一端和所述第五晶体管的基极;
所述第五电容的第二端连接至接地;
所述第四电阻的第二端分别连接至所述第五晶体管的集电极、所述第三电容的第一端、所述第七晶体管的基极、所述第二电容的第一端以及所述第六晶体管的集电极;
所述第三电容的第二端连接至接地;
所述第二电容的第二端连接至所述第五电阻的第一端;
所述第五电阻的第二端分别连接至所述第六晶体管的基极和所述第六电阻的第一端;
所述第六晶体管的发射极连接至接地;
所述第五晶体管的发射极分别连接至所述第七晶体管的发射极、所述第六电阻的第二端和所述第七电阻的第一端;
所述第七晶体管的集电极连接至电池电压;
所述第七电阻的第二端作为所述温度补偿偏置电路的输出端。
优选的,所述第七电阻为参数可调的电阻。
优选的,所述第二电容为参数可调的电容,所述第五电阻为参数可调的电阻。
优选的,所述第六电阻为参数可调的电阻。
第二方面,本实用新型的实施例提供了一种功率放大器,所述功率放大器包括如实用新型的实施例提供上述的温度补偿偏置电路。
优选的,所述功率放大器还包括第四电容、第二电感以及射频放大晶体管;
所述第四电容的第一端作为所述功率放大器的输入端;
所述第四电容的第二端分别连接至所述偏置电路模块的输出端和所述射频放大晶体管的基极;
所述射频放大晶体管的发射极连接至接地;
所述射频放大晶体管的集电极作为所述功率放大器的输出端,且所述射频放大晶体管的集电极连接至所述第二电感的第二端;
所述第二电感的第一端连接至电源电压。
优选的,所述第二电感为扼流线圈或贴片电感。
与相关技术相比,本实用新型的温度补偿偏置电路通过设置第五晶体管、第七晶体管和第四电阻,并在温度升高时,第五晶体管T5的IE5电流也随温度升高而增加,由于IE5=IC5+IB5,IB5远远小于IC5,IE5≈IC5,IC5就随温度升高而增加。第五晶体管T5的集电极电压VC5=VCC-IC5*R4,当IC5即增大,VC5会减小,所以第七晶体管T7的基极电压就减小,IE7就减小,从而使得IB8的电流减小,抑制了因为温度升高IB8的增加,起到了温度补偿的作用。更优的,本实用新型的温度补偿偏置电路通过设置第七电阻R7,通过调节第七电阻R7的取值,可以进一步调节偏置的温度补偿效果。因此,使得温度补偿偏置电路和功率放大器在射频工作状态下的偏置点影响小,并使得功率放大器的温度补偿效果好且线性度高。
附图说明
下面结合附图详细说明本实用新型。通过结合以下附图所作的详细描述,本实用新型的上述或其他方面的内容将变得更清楚和更容易理解。附图中,
图1为相关技术的温度补偿偏置电路的应用电路原理图;
图2为图1电路的增益与输入功率关系图;
图3为本实用新型的温度补偿偏置电路的应用电路原理图;
图4为相关技术的温度补偿偏置电路和本实用新型的温度补偿偏置电路的应用电路中的静态电流与温度的关系曲线对比示意图;
图5为本实用新型温度补偿偏置电路的VBE8电压与输入功率的关系曲线示意图。
具体实施方式
下面结合附图详细说明本实用新型的具体实施方式。
在此记载的具体实施方式/实施例为本实用新型的特定的具体实施方式,用于说明本实用新型的构思,均是解释性和示例性的,不应解释为对本实用新型实施方式及本实用新型范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案,都在本实用新型的保护范围之内。
本实用新型提供一种温度补偿偏置电路100。
请同时参考图3-5所示,图3为本实用新型的温度补偿偏置电路的应用电路原理图。本实用新型还提供了一种应用所述温度补偿偏置电路100的功率放大器。具体的,所述功率放大器包括所述温度补偿偏置电路100、第四电容C4、第二电感L2以及射频放大晶体管T8。
所述功率放大器的电路连接关系为:
所述第四电容C4的第一端作为所述功率放大器的输入端RFIN。
所述第四电容C4的第二端分别连接至所述偏置电路模块的输出端和所述射频放大晶体管T8的基极。
所述射频放大晶体管T8的发射极连接至接地GND。
所述射频放大晶体管T8的集电极连接至所述第二电感L2的 第二端。所述射频放大晶体管T8的集电极作为所述功率放大器的输出端RFOUT。
所述第二电感L2的第一端连接至电源电压VCC。
其中,所述第四电容C4用作隔直电容,只通过射频信号,阻止直流电压进入所述射频放大晶体管T8。
所述第二电感L2为扼流线圈或贴片电感。所述第二电感L2用于隔绝射频信号进入电源,仅通过直流电流。本实施方式中,所述第二电感L2为扼流线圈。
所述温度补偿偏置电路100包括第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第二电容C2、第三电容C3、第五电容C5、第五晶体管T5、第六晶体管T6以及第七晶体管T7。
所述温度补偿偏置电路100的电路连接关系为:
所述第三电阻R3的第一端分别连接至所述第四电阻R4的第一端和参考电压VRef。
所述第三电阻R3的第二端分别连接至所述第五电容C5的第一端和所述第五晶体管T5的基极。
所述第五电容C5的第二端连接至接地GND。
所述第四电阻R4的第二端分别连接至所述第五晶体管T5的集电极、所述第三电容C3的第一端、所述第七晶体管T7的基极、所述第二电容C2的第一端以及所述第六晶体管T6的集电极。
所述第三电容C3的第二端连接至接地GND。
所述第二电容C2的第二端连接至所述第五电阻R5的第一端。
所述第五电阻R5的第二端分别连接至所述第六晶体管T6的基极和所述第六电阻R6的第一端。
所述第六晶体管T6的发射极连接至接地GND。
所述第五晶体管T5的发射极分别连接至所述第七晶体管T7的发射极、所述第六电阻R6的第二端和所述第七电阻R7的第一端。
所述第七晶体管T7的集电极连接至电池电压VBat。
所述第七电阻R7的第二端作为所述温度补偿偏置电路100的输出端。
所述温度补偿偏置电路100的工作原理为:
所述温度补偿偏置电路100用于为所述功率放大器提供偏置电流。具体的,所述第五晶体管T5和所述第七晶体管T7组合提供所述射频放大晶体管T8的基极偏置电流,并满足:IB8=IE5+IE7+IB6。所述第七电阻R7用作为镇流电阻。所述第三电阻R3是所述第五晶体管T5的基极限流电阻,可以调整第五晶体管T5的静态工作点。所述第四电阻R4是所述第五晶体管T5的集电极电阻,所述第四电阻R4和所述第六晶体管T6共同决定了所述第七晶体管T7的静态工作点。
当工作在静态工作点的晶体管温度升高时,所述射频放大晶体管T8的基极电流会增大,所述第五晶体管T5的IE5电流也随温度升高而增加,由于IE5=IC5+IB5,IB5远远小于IC5,IE5≈IC5,IC5就随温度升高而增加。第五晶体管T5的集电极电压VC5=VCC-IC5*R4,当IC5即增大,VC5会减小,所以第七晶体管T7的基极电压就减小,IE7就减小,从而使得IB8的电流减小,抑制了因为温度升高IB8的增加,起到了温度补偿的作用。
本实施方式中,所述第七电阻R7为参数可调的电阻。通过调节第七电阻R7的取值,可以进一步调节所述温度补偿偏置电路100的偏置的温度补偿效果。对比现有的偏置方案和本实用新型方案的偏置温度补偿效果。请参考图4所示,图4为相关技术的温度补偿偏置电路和本实用新型的温度补偿偏置电路100的应用电路中的静态电流与温度的关系曲线对比示意图。从图4中可以得出,W1为相关技术的温度补偿偏置电路的静态电流与温度的关系曲线。W2为本实用新型的温度补偿偏置电路100的静态电流与温度的关系曲线。W2在温度从35摄氏度到85摄氏度,温度补偿偏置电路100输出的静态电流由0.088安增加至0.099安,电流基本是稳定,变化很小。射频放大晶体管T8在相同常温静态工作电流下温漂明显要比相关技术的温度补偿偏置电路小。因而,本实用新型的所述 温度补偿偏置电路100达到了偏置电路的温度补偿,同时使镇流电阻的作用独立于温度补偿之外,使其另外用于所述功率放大器的增益曲线调节,以达到调节偏置使得的功放的温度补偿效果和线性度最优的目的。作为镇流电阻的第七电阻R7可以调节功率放大器T8在大功率输入下的基极电流,起到调节所述功率放大器的增益曲线的作用。第七电阻R7可以起到调节射频放大晶体管T8增益的作用而不参与上述温度补偿,几乎不影响本方案的温度补偿性能。当输入信号的功率过高时,摆幅超过静态偏置点,导通角会下降,导致大信号输入下,功放增益会下降,出现增益压缩。
所述温度补偿偏置电路100通过所述第五电容C5和所述第三电容C3均连接至接地GND。作为线性电容的第五电容C5和作为线性电容的第三电容C3的加入使得泄露到偏置的射频成分更多,从而使稳定射频状态下的第五晶体管T5、第七晶体管T7的发射极电流增大,从而使得IB8=IE7+IE5+IB6会增大,以此提高大信号输入下射频放大晶体管T8的静态偏置点,延缓增益压缩。所述第五电容C5和所述第三电容C作为滤波电容,所述温度补偿偏置电路100是否设置接地的滤波电容直接影响到射频放大晶体管T8的VBE8。请参考图5所示,图5为本实用新型温度补偿偏置电路100的VBE8电压与输入功率的关系曲线示意图。其中,W3为本实用新型的温度补偿偏置电路100的VBE8电压与输入功率的关系曲线。W4为本实用新型的温度补偿偏置电路100去掉所述第五电容C5和所述第三电容C后的电路的VBE8电压与输入功率的关系曲线。由图5所得,所述温度补偿偏置电路100设置接地的滤波电容直接影响到射频放大晶体管T8提高大信号输入下射频放大晶体管T8的静态偏置点,延缓增益压缩。通过调节所述第五电容C5和所述第三电容C3的大小配比,可以进一步调节整个增益曲线随输入功率增加时的平坦度,优化功率放大器的线性度水平。
为了进一步降低所述温度补偿偏置电路100的基带阻抗,进而改善所述功率放大器输出信号线性度恶化的问题。所述温度补偿偏置电路100设置所述第六晶体管T6和用于隔离的所述第六电阻 R6。在没有射频信号输入所述功率放大器的情况下,电源电压VCC经过所述第四电阻R4和所述第六晶体管T6的电压差转化为所述第七晶体管T7的偏置电压,并生成偏置电流IB8;并通过所述第七电阻R7输出到所述射频放大晶体管T8的输入端。另外,在有射频信号输入所述功率放大器的情况下,所述第七电阻R7阻隔了大部分射频信号,但仍有少部分从所述温度补偿偏置电路100泄漏过来,具体为,通过所述第六电阻R6为所述第六晶体管T6的基极低阻点隔离被所述第七电阻R7衰减后的射频信号,以使被所述第七电阻R7衰减后的射频信号传输到所述第七晶体管T7,再通过被所述第七电阻R7衰减后的射频信号。其中,如果该射频信号为大信号(即功率较大的信号),所述第七晶体管T7的发射极会有一定的射频摆幅,射频摆幅经过所述第七晶体管T7的基极-发射极结(BE结)的检波效应使该基极-发射极结的偏置电压变小,从而使所述第七晶体管T7发射极输出的IE7增大,从而补偿所述射频放大晶体管T8基极电压随输入信号的功率的增大而降低,抑制大信号下所述功率放大器的AM-AM失真。
本实施方式中,所述第二电容C2为参数可调的电容,所述第五电阻R5为参数可调的电阻。
所述第二电容C2和所述第五电阻R5组成了相位裕度网络。如果射频信号通过所述第二电容C2和所述第五电阻R5耦合到所述第六晶体管T6的基级,耦合到所述第六晶体管T6的射频信号经过所述第六晶体管T6的基极-发射极结的检波效应,会使所述第六晶体管T6的基极电位随着射频信号增大而下降,从而使得所述第七晶体管T7的发射极电位也随之下降,导致所述功率放大器在大信号下出现明显的AM-AM失真,进而导致所述功率放大器线性度恶化。由此可见,参数可调的所述第二电容C2和所述第五电阻R5的引入提升了偏置电路稳定性。
本实施方式中,所述第六电阻R6为参数可调的电阻。用于隔离作用的所述第六电阻R6和所述第二电容C2是可以切换的。也就是说,所述第六电阻R6可以是可变电阻,所述第二电容C2可 以是可变电容。通过改变所述第六电阻R6和所述第二电容C2的取值,根据不同的调制带宽信号选择不同的所述温度补偿偏置电路100的基带阻抗带宽以及噪声抑制度,能够达到增加所述温度补偿偏置电路100的电路的适用性和灵活性的目的。
需要指出的是,本实用新型采用的相关电路、电阻及晶体管均为本领域常用的电路、元器件,对应的具体的指标和参数根据实际应用进行调整,在此,不作详细赘述。
与相关技术相比,本实用新型的温度补偿偏置电路通过设置第五晶体管、第七晶体管和第四电阻,并在温度升高时,第五晶体管T5的IE5电流也随温度升高而增加,由于IE5=IC5+IB5,IB5远远小于IC5,IE5≈IC5,IC5就随温度升高而增加。第五晶体管T5的集电极电压VC5=VCC-IC5*R4,当IC5即增大,VC5会减小,所以第七晶体管T7的基极电压就减小,IE7就减小,从而使得IB8的电流减小,抑制了因为温度升高IB8的增加,起到了温度补偿的作用。更优的,本实用新型的温度补偿偏置电路通过设置第七电阻R7,通过调节第七电阻R7的取值,可以进一步调节偏置的温度补偿效果。因此,使得温度补偿偏置电路和功率放大器在射频工作状态下的偏置点影响小,并使得功率放大器的温度补偿效果好且线性度高。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本实用新型而非限制本实用新型的范围,本领域的普通技术人员应当理解,在不脱离本实用新型的精神和范围的前提下对本实用新型进行的修改或者等同替换,均应涵盖在本实用新型的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (7)

  1. 一种温度补偿偏置电路,其用于为功率放大器提供偏置电流,其特征在于,所述温度补偿偏置电路包括第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第二电容、第三电容、第五电容、第五晶体管、第六晶体管以及第七晶体管;
    所述第三电阻的第一端分别连接至所述第四电阻的第一端和参考电压;
    所述第三电阻的第二端分别连接至所述第五电容的第一端和所述第五晶体管的基极;
    所述第五电容的第二端连接至接地;
    所述第四电阻的第二端分别连接至所述第五晶体管的集电极、所述第三电容的第一端、所述第七晶体管的基极、所述第二电容的第一端以及所述第六晶体管的集电极;
    所述第三电容的第二端连接至接地;
    所述第二电容的第二端连接至所述第五电阻的第一端;
    所述第五电阻的第二端分别连接至所述第六晶体管的基极和所述第六电阻的第一端;
    所述第六晶体管的发射极连接至接地;
    所述第五晶体管的发射极分别连接至所述第七晶体管的发射极、所述第六电阻的第二端和所述第七电阻的第一端;
    所述第七晶体管的集电极连接至电池电压;
    所述第七电阻的第二端作为所述温度补偿偏置电路的输出端。
  2. 根据权利要求1所述的温度补偿偏置电路,其特征在于,所述第七电阻为参数可调的电阻。
  3. 根据权利要求1所述的温度补偿偏置电路,其特征在于,所述第二电容为参数可调的电容,所述第五电阻为参数可调的电阻。
  4. 根据权利要求1所述的温度补偿偏置电路,其特征在于,所述第六电阻为参数可调的电阻。
  5. 一种功率放大器,其特征在于,所述功率放大器包括如权 利要求1-5中任意一项所述的温度补偿偏置电路。
  6. 根据权利要求5所述的功率放大器,其特征在于,所述功率放大器还包括第四电容、第二电感以及射频放大晶体管;
    所述第四电容的第一端作为所述功率放大器的输入端;
    所述第四电容的第二端分别连接至所述偏置电路模块的输出端和所述射频放大晶体管的基极;
    所述射频放大晶体管的发射极连接至接地;
    所述射频放大晶体管的集电极作为所述功率放大器的输出端,且所述射频放大晶体管的集电极连接至所述第二电感的第二端;
    所述第二电感的第一端连接至电源电压。
  7. 根据权利要求6所述的功率放大器,其特征在于,所述第二电感为扼流线圈或贴片电感。
PCT/CN2023/082968 2022-06-01 2023-03-22 温度补偿偏置电路和功率放大器 WO2023231527A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247027611A KR20240135834A (ko) 2022-06-01 2023-03-22 온도 보상 바이어스 회로 및 전력 증폭기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221383893.9U CN217428086U (zh) 2022-06-01 2022-06-01 温度补偿偏置电路和功率放大器
CN202221383893.9 2022-06-01

Publications (1)

Publication Number Publication Date
WO2023231527A1 true WO2023231527A1 (zh) 2023-12-07

Family

ID=83170539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082968 WO2023231527A1 (zh) 2022-06-01 2023-03-22 温度补偿偏置电路和功率放大器

Country Status (3)

Country Link
KR (1) KR20240135834A (zh)
CN (1) CN217428086U (zh)
WO (1) WO2023231527A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217428086U (zh) * 2022-06-01 2022-09-13 深圳飞骧科技股份有限公司 温度补偿偏置电路和功率放大器
CN116260400B (zh) * 2022-12-31 2024-08-09 广州慧智微电子股份有限公司 偏置电路、功率放大器及电子设备
CN116073770B (zh) * 2023-03-21 2023-06-13 成都明夷电子科技有限公司 一种hbt功率放大器和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060077001A1 (en) * 2004-10-11 2006-04-13 Wavics Inc. Temperature-Compensated Bias Circuit for Power Amplifier
CN113054915A (zh) * 2021-04-14 2021-06-29 广东工业大学 一种应用于射频功率放大器的温度补偿偏置电路
CN113271069A (zh) * 2021-05-14 2021-08-17 广东工业大学 一种射频功率放大器温度补偿偏置电路和射频功率放大器
CN216437157U (zh) * 2021-11-18 2022-05-03 深圳飞骧科技股份有限公司 自适应线性偏置电路、射频功率放大器及射频芯片
CN217428086U (zh) * 2022-06-01 2022-09-13 深圳飞骧科技股份有限公司 温度补偿偏置电路和功率放大器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060077001A1 (en) * 2004-10-11 2006-04-13 Wavics Inc. Temperature-Compensated Bias Circuit for Power Amplifier
CN113054915A (zh) * 2021-04-14 2021-06-29 广东工业大学 一种应用于射频功率放大器的温度补偿偏置电路
CN113271069A (zh) * 2021-05-14 2021-08-17 广东工业大学 一种射频功率放大器温度补偿偏置电路和射频功率放大器
CN216437157U (zh) * 2021-11-18 2022-05-03 深圳飞骧科技股份有限公司 自适应线性偏置电路、射频功率放大器及射频芯片
CN217428086U (zh) * 2022-06-01 2022-09-13 深圳飞骧科技股份有限公司 温度补偿偏置电路和功率放大器

Also Published As

Publication number Publication date
CN217428086U (zh) 2022-09-13
KR20240135834A (ko) 2024-09-12

Similar Documents

Publication Publication Date Title
WO2023231527A1 (zh) 温度补偿偏置电路和功率放大器
CN110677132B (zh) 一种射频线性功率放大器电路
CN107863939B (zh) 低功耗反馈型功率放大电路
JP2010124433A (ja) 高周波電力増幅器
US10355653B2 (en) Power amplifier circuit
CN109560777A (zh) 一种有源偏置Cascode射频放大器
CN113054915B (zh) 一种应用于射频功率放大器的温度补偿偏置电路
CN209330069U (zh) 一种有源偏置Cascode射频放大器
CN110176923B (zh) 一种自适应线性化射频偏置模块及其使用电路
CN113114121A (zh) 一种用于射频功率放大器的偏置电路
US9024689B2 (en) Electronic system—radio frequency power amplifier and method for self-adjusting bias point
US7064613B2 (en) Amplifier bias system and method
WO2024174798A1 (zh) 射频功率放大器及射频功放模组
US20040095192A1 (en) Radio frequency power amplifier adaptive bias control circuit
CN107222174A (zh) 一种低损耗自适应偏置电路及无线发射系统
Yang et al. A fully integrated GaAs HBT power amplifier with enhanced efficiency for 5-GHz WLAN applications
Wang et al. A Ka-band highly linear power amplifier with a linearization bias circuit
KR101801938B1 (ko) 전력 증폭기
WO2021227328A1 (zh) 一种阻抗调节电路和方法、偏置电路结构和放大器
EP3909127B1 (en) Bias circuit and power amplifier circuit
CN114584077A (zh) 多尔蒂功率放大器的偏置电路
CN207218642U (zh) 一种低损耗自适应偏置电路及无线发射系统
KR20170073459A (ko) 전력증폭장치 및 무선통신장치
KR20110007921A (ko) 낮은 온도에서 높은 선형성을 유지하기 위해 온도보상기능을 가지는 전력 증폭기용 바이어스 회로
Lee et al. A 10-to-650MHz 1.35 W class-AB power amplifier with instantaneous supply-switching efficiency enhancement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247027611

Country of ref document: KR

Kind code of ref document: A