WO2023065678A1 - 一种间接蒸发换热系统及其控制方法、冷却机组 - Google Patents

一种间接蒸发换热系统及其控制方法、冷却机组 Download PDF

Info

Publication number
WO2023065678A1
WO2023065678A1 PCT/CN2022/096498 CN2022096498W WO2023065678A1 WO 2023065678 A1 WO2023065678 A1 WO 2023065678A1 CN 2022096498 W CN2022096498 W CN 2022096498W WO 2023065678 A1 WO2023065678 A1 WO 2023065678A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
liquid
pipeline
valve
indirect evaporative
Prior art date
Application number
PCT/CN2022/096498
Other languages
English (en)
French (fr)
Inventor
颜利波
苏林
丁云霄
Original Assignee
广东美的暖通设备有限公司
合肥美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 合肥美的暖通设备有限公司 filed Critical 广东美的暖通设备有限公司
Publication of WO2023065678A1 publication Critical patent/WO2023065678A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/22Cleaning ducts or apparatus
    • F24F2221/225Cleaning ducts or apparatus using a liquid

Definitions

  • the present disclosure relates to but not limited to the field of electrical equipment, and specifically relates to an indirect evaporative heat exchange system, a control method of the indirect evaporative heat exchange system, and a cooling unit.
  • the related technology provides an indirect evaporative cooling unit, including an indirect evaporative heat exchange system and a refrigeration system.
  • This kind of cooling unit has good refrigeration performance in the early stage of use, but after a period of use, its refrigeration performance will be significantly reduced.
  • the indirect evaporative heat exchange system proposed by the embodiments of the present disclosure includes: a heat exchange core body with an outdoor air flow channel; and a flushing pipeline configured to clean the outdoor air passage by supplying liquid to the outdoor air passage.
  • Fig. 1 is a schematic structural block diagram of an indirect evaporative heat exchange system applied to a cooling unit described in some embodiments;
  • Fig. 2 is a schematic block diagram of a partial structure of an indirect evaporative heat exchange system applied to a cooling unit described in some embodiments;
  • Fig. 3 is a flow chart of the control method of the indirect evaporative heat exchange system described in some embodiments
  • Fig. 4 is a flowchart of at least one example of a control method for the indirect evaporative heat exchange system shown in Fig. 3 .
  • 100 heat exchange core 110 outdoor air, 120 indoor air, 200 spray pipeline, 300 flushing pipeline, 400 liquid supply component, 410 liquid contact device, 411 liquid connection port, 412 first interface, 413 liquid storage chamber, 414 liquid receiving chamber, 415 second interface, 416 air pressure balance port, 420 first three-way, 430 second switch valve, 440 first switch valve, 450 first liquid supply pipeline, 451 pump body, 460 second three-way , 470 second liquid supply pipeline, 480 third switch valve, 490 third three-way, 500 fourth switch valve, 510 cleaning agent supply device, 600 fifth switch valve.
  • fixation can be fixed connection, detachable connection, or integration; It can be mechanical connection or electrical connection; “connection” can be direct connection or indirect connection through an intermediary, internal communication between two elements or interaction relationship between two elements, unless otherwise clearly defined.
  • the indirect evaporative heat exchange system applied to the cooling unit proposed by the embodiment of the present disclosure includes: a heat exchange core 100, the heat exchange core 100 has an indoor air flow channel and an outdoor air flow channel; a spray pipe Road 200 cools the outdoor air flow channel by supplying liquid to the outdoor air flow channel.
  • a spray pipe Road 200 cools the outdoor air flow channel by supplying liquid to the outdoor air flow channel.
  • the outdoor air flow channel is cleaned by supplying liquid to the outdoor air flow channel through the flushing pipeline 300, so as to remove the dirt (scale, etc.) attached to the outdoor air flow channel. Dirty), to better ensure the heat exchange efficiency of the heat exchange core 100, so the indirect evaporative heat exchange system is applied to the cooling unit, which can solve the problem that the cooling performance of the cooling unit will be significantly reduced after a period of use.
  • the dirt adhering to the outdoor air channel is removed in time, which can also prevent the heat exchange core 100 from being corroded and damaged prematurely, and prolong the service life of the heat exchange core 100 .
  • the indirect evaporative heat exchange system further includes a liquid supply assembly 400, and both the flushing pipeline 300 and the spray pipeline 200 are connected (that is, communicated) with the liquid supply assembly 400, and the liquid supply assembly 400 is arranged to supply liquid to the flushing line 300 and the spraying line 200 .
  • the liquid supply assembly 400 includes a liquid contact device 410, the liquid contact device 410 has a first interface 412 and a liquid connection port 411, and the first air port of the outdoor air channel and the liquid connection port 411 Relatively arranged to ensure that the liquid contact device 410 can better collect the liquid flowing down from the outdoor air flow channel, the outlet of the flushing pipeline 300 and the outlet of the spray pipeline 200 are all set opposite to the second air port of the outdoor air flow channel, so as to To ensure that the flushing pipeline 300 and the spraying pipeline 200 can better supply liquid to the outdoor air flow channel, the inlet of the spraying pipeline 200 is connected (that is, communicated) with the first interface 412, and the liquid-contacting device 410 supplies water to the spraying pipeline.
  • the liquid in the present disclosure can be water.
  • the first air port of the outdoor air flow path faces downward
  • the second air port of the outdoor air flow path faces upward
  • the outlet of the flushing pipeline 300 faces downward
  • the outlet of the spraying pipeline 200 faces downward. It may be that the first air port is set as an air inlet, and the second air port is set as an air outlet; or it may be that the first air port is set as an air outlet, and the second air port is set as an air inlet.
  • the liquid receiving device 410 has a liquid storage chamber 413 and a liquid receiving chamber 414, the liquid receiving port 411 is arranged in the liquid receiving chamber 414, and the liquid storage chamber 413 has a first interface 412, a second Interface 415 and air pressure balance port 416, a first flow path that can be shut off and communicated is formed between the second interface 415 and the outlet of the liquid receiving chamber 414, and a second flow that can be shut off and communicated is formed between the outside world and the outlet of the liquid receiving chamber 414.
  • the air pressure balance port 416 communicates with the outside world to ensure that the liquid enters and flows out of the liquid storage chamber 413 smoothly.
  • the liquid supply assembly 400 further includes a first three-way 420 , a second on-off valve 430 and a first on-off valve 440 , and the first end of the first three-way 420 is connected to the liquid chamber 414
  • the outlet of the first three-way 420 is connected to the second port 415 through the first switching valve 440 to form a first flow path, and the third end of the first three-way 420 is connected to the second switching valve 430,
  • a second flow path is constructed; or it can be replaced by a two-position three-way valve structure, and the structures of the two schemes are relatively simple.
  • It can be set to open the first on-off valve 440 and close the second on-off valve 430 when cooling down, and reuse the liquid to cool the outdoor air flow channel.
  • the liquid falling into the liquid-contacting chamber 414 during this process is relatively clean;
  • it is set to close the first on-off valve 440 and open the second on-off valve 430 to drain the dirty liquid flowing into the liquid receiving chamber 414 in time to prevent the dirty liquid from entering the liquid storage chamber 413 and causing pollution to the liquid storage chamber 413 , and also prevent the outdoor air channel from being dirty again due to the use of dirty liquid in the subsequent liquid supply process of the spray pipeline 200, and ensure the use of clean liquid circulation in the liquid supply process of the spray pipeline 200.
  • the liquid supply assembly 400 further includes a first liquid supply pipeline 450, a pump body 451 is arranged on the first liquid supply pipeline 450, and the first liquid supply pipeline 450 is connected to the first The interface 412 and the inlet of the spray pipeline 200, the pump body 451 is configured to pump liquid.
  • the liquid supply assembly 400 further includes a second three-way 460 , a second liquid supply pipeline 470 , a third on-off valve 480 , a third three-way 490 and a fourth on-off valve 500 .
  • the inlet of the first liquid supply pipeline 450 , the first interface 412 and the outlet of the second liquid supply pipeline 470 are connected through the second tee 460 .
  • the inlet of the flushing pipeline 300, the inlet of the spray pipeline 200 and the outlet of the first liquid supply pipeline 450 are connected through a third tee 490, the third switch valve 480 is arranged on the spray pipeline 200, and the fourth switch valve 500 is set on the flushing pipeline 300; or it can be replaced by a two-position three-way valve structure.
  • the structures of the two schemes are relatively simple; both can achieve the purpose of the present disclosure, and its purpose does not deviate from the design of the present disclosure Thoughts, which will not be described in detail here, should all belong to the protection scope of the present disclosure.
  • the second liquid supply line 470 can not only supply liquid to the flushing line 300 , but can also manually supply liquid to the liquid storage chamber 413 when there is less liquid stored in the liquid storage chamber 413 .
  • Liquid replenishment or automatic liquid replenishment ensures that the liquid in the liquid storage chamber 413 is sufficient for circulation during the liquid supply process using the spray pipeline 200 .
  • the second liquid supply pipeline 470 is provided with a fifth on-off valve 600, and the inlet of the second liquid supply pipeline 470 is connected to a tap water source.
  • the indirect evaporative heat exchange system further includes a cleaning agent supply device 510, which is arranged on the flushing pipeline 300, and is configured to be able to The cleaning agent is supplied to the flushing pipeline 300 in a controlled manner, and the cleaning agent is supplied into the outdoor air flow path together with the flushing pipeline 300 , so that the cleaning speed and cleaning effect of the outdoor air flow path can be improved.
  • a cleaning agent supply device 510 which is arranged on the flushing pipeline 300, and is configured to be able to The cleaning agent is supplied to the flushing pipeline 300 in a controlled manner, and the cleaning agent is supplied into the outdoor air flow path together with the flushing pipeline 300 , so that the cleaning speed and cleaning effect of the outdoor air flow path can be improved.
  • the pressure of the liquid sprayed from the flushing pipeline 300 is greater than the pressure of the liquid sprayed from the spraying pipeline 200 , which can improve the cleaning effect of the outdoor air passage.
  • the spray pipeline 200 is set to supply liquid (that is, spray liquid) to the outlet of the outdoor air flow channel in a spray manner
  • the flushing pipeline 300 is also set to supply liquid to the outlet of the outdoor air flow channel.
  • the outlet supplies liquid (that is, spray liquid) in the form of spraying, and the spraying pressure of the spraying pipeline 200 is lower than that of the flushing pipeline 300, making it easier for the dirt attached to the outdoor air flow channel to be flushed by the pipeline. 300 sprays of liquid to rinse off.
  • the indirect evaporative heat exchange system further includes a temperature detection device, and the temperature detection device includes a first temperature detection sensor, a second temperature detection sensor and a third temperature detection sensor.
  • the first temperature detection sensor is arranged at the entrance of the indoor air passage, and is arranged to detect the dry-bulb temperature T 1i of the indoor air 120 at the entrance of the indoor air passage.
  • the second temperature detection sensor is arranged at the outlet of the indoor air flow channel, and is configured to detect the dry-bulb temperature T 1o of the indoor air 120 at the outlet of the indoor air flow channel.
  • the third temperature detection sensor is arranged at the first air port of the outdoor air channel, and is configured to detect the wet bulb temperature T 2iw of the outdoor air 110 at the first air port of the outdoor air channel.
  • the first air port is set as an air inlet
  • the second air port is set as an air outlet.
  • the actual heat transfer efficiency ⁇ the comparison module makes the actual heat transfer efficiency ⁇ compare with the preset heat transfer efficiency ⁇ 0 (which can be the heat transfer efficiency of the heat transfer core 100 when the cooling unit leaves the factory), in:
  • the control module controls the spraying pipeline 200 to supply liquid, and controls the flushing pipeline 300 to stop. Specifically, it can be: the control module controls the operation of the pump body 451, The first on-off valve 440 and the third on-off valve 480 are opened, the second on-off valve 430 and the fourth on-off valve 500 are closed, and the speed of the pump body 451 during this process is the first speed;
  • the actual heat exchange efficiency ⁇ of the heat exchange core 100 may specifically be: the control module controls the operation of the pump body 451, the second on-off valve 430 and the fourth on-off valve 500 are opened, the first on-off valve 440 and the third on-off valve 480 are closed, Ensure that the dirty liquid flowing into the liquid receiving chamber 414 is drained in time to prevent the dirty liquid from entering the liquid storage chamber 413 and causing pollution to the liquid storage chamber 413, and also avoid the use of dirty liquid during the subsequent spraying pipeline 200 liquid supply process.
  • the liquid will pollute the outdoor air channel again to ensure the use of clean liquid circulation in the liquid supply process of the spray pipeline 200.
  • the rotation speed of the pump body 451 is the second rotation speed, and the second rotation speed is greater than the first rotation speed, so the pipeline is flushed
  • the liquid spray pressure of 300 is greater than the liquid spray pressure of spray pipeline 200 .
  • the outlet of the spray pipeline 200 and the outlet of the flushing pipeline 300 are equipped with different types of nozzles.
  • the outlet of the spray pipeline 200 is equipped with nozzles with finer and more uniform spray droplets to improve the cooling effect;
  • the outlet of the flush pipeline 300 is equipped with nozzles with larger spray droplets and more condensed spray directions to improve the cooling effect.
  • the nozzles equipped at the outlet of the spraying pipeline 200 and the outlet of the flushing pipeline 300 can also be replaced according to the working conditions of the heat exchange core 100, so as to better adapt to changes in the heat exchange performance of the heat exchange core 100 and Changes in the cleanliness of the runner surface.
  • control method of the indirect evaporative heat exchange system proposed in some embodiments of the present disclosure is applied to the indirect evaporative heat exchange system described in any of the above embodiments.
  • the control method includes:
  • the spray pipeline 200 can be controlled to supply liquid, and the flushing pipeline 300 can be controlled to stop liquid supply;
  • the actual heat exchange efficiency of the heat exchange core 100 is lower than the preset heat exchange efficiency, it indicates that there is more dirt attached to the outdoor air channel.
  • the liquid is used to clean the outdoor air passage, so as to improve the actual heat exchange efficiency of the heat exchange core 100 .
  • the cooling unit (not shown in the figure) proposed in some embodiments includes the indirect evaporative heat exchange system described in any of the above embodiments.
  • the cooling unit provided in some embodiments has all the advantages of the indirect evaporative heat exchange system described in any of the above embodiments, and will not be repeated here.
  • the indirect evaporative heat exchange system of the cooling unit is controlled by the control method for the indirect evaporative heat exchange system described in any one of the above embodiments.
  • the outdoor air flow channel is cleaned by supplying liquid to the outdoor air flow channel through the flushing pipeline to remove the outdoor air.
  • the dirt attached to the flow channel can better ensure the heat exchange efficiency of the heat exchange core. Therefore, the indirect evaporative heat exchange system is applied to the cooling unit, which can solve the problem that the cooling performance of the cooling unit will be significantly reduced after a period of use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

一种间接蒸发换热系统及其控制方法、冷却机组。间接蒸发换热系统包括:具有室外空气流道的换热芯体;喷淋管路,被设置为通过向室外空气流道供液来对室外空气流道进行降温;和冲洗管路,被设置为通过向室外空气流道供液来对室外空气流道进行清洁。

Description

一种间接蒸发换热系统及其控制方法、冷却机组
相关申请的交叉引用
本申请要求在2021年10月22日提交中国专利局、申请号为2021112355461、名称为“一种间接蒸发换热系统及其控制方法、冷却机组”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及但不限于电器设备领域,具体涉及一种间接蒸发换热系统、一种间接蒸发换热系统的控制方法和一种冷却机组。
背景技术
相关技术提供了一种间接蒸发冷却机组,包括间接蒸发换热系统和制冷系统。这种冷却机组使用前期的制冷性能较好,使用一段时间后,其制冷性能会明显降低。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
分析研究发现:冷却机组使用一段时间后,室外空气流道的内表面会附着大量的水垢,这些脏污和水垢严重影响室外空气流道内的室外空气和水对室内空气流道内的室内空气进行降温,换热芯体的换热效率降低,这也是冷却机组在使用一段时间后,其制冷性能会明显降低的原因。
本公开实施例提出的间接蒸发换热系统,包括:具有室外空气流道的换热芯体;喷淋管路,被设置为通过向所述室外空气流道供液来对所述室外空气流道进行降温;和冲洗管路,被设置为通过向所述室外空气流道供液来对所述室外空气流道进行清洁。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为一些实施例所述的应用于冷却机组的间接蒸发换热系统的结构示意框图;
图2为一些实施例所述的应用于冷却机组的间接蒸发换热系统的局部结构示意框图;
图3为一些实施例所述的间接蒸发换热系统的控制方法的流程图;
图4为图3所示间接蒸发换热系统的控制方法至少一示例的流程图。
图1和图2中附图标记与部件名称之间的对应关系为:
100换热芯体,110室外空气,120室内空气,200喷淋管路,300冲洗管路,400供液组件,410接液器件,411接液口,412第一接口,413存液腔,414接液腔,415第二接口,416气压平衡口,420第一三通,430第二开关阀,440第一开关阀,450第一供液管路,451泵体,460第二三通,470第二供液管路,480第三开关阀,490第三三通,500第四开关阀,510清洁剂供应装置,600第五开关阀。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明,本公开实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本公开中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“连通”、“固定”等应做广义理解,例如,“固定”可以是固定连通,也可以是可拆卸连通,或成一体;可以是机械连通,也可以是电连通;“连通”可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
另外,本公开各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本公开要求的保护范围之内。
分析研究发现:冷却机组使用一段时间后,室外空气流道的内表面会附着大量的水垢,这些脏污和水垢严重影响室外空气流道内的室外空气和水对室内空气流道内的室内空气进行降温,换热芯体的换热效率降低,这也是冷却机组在使用一段时间后,其制冷性能会明显降低的原因。
如图1所示,本公开实施例提出的应用于冷却机组的间接蒸发换热系统,包括:换热芯体100,换热芯体100具有室内空气流道和室外空气流道;喷淋管路200,以向室外空气流道供液的方式,对室外空气流道降温,冷却机组使用状态下,流至室外空气流道上的液体蒸发会吸热,配合经过室外空气流道的室外空气110,实现对经过室内空气流道的室内空气120进行降温;和冲洗管路300,以向室外空气流道供液的方式,来清洁室外空气流道,使室外空气流道上附着的污物被去除。
该间接蒸发换热系统,换热芯体100使用一段时间后,通过冲洗管路300向室外空气流道供液来清洁室外空气流道,以去除掉室外空气流道上附着的污物(水垢等脏污),更好地保证换热芯体100的换热效率,因此该间接蒸发换热系统应用于冷却机组,能够解决冷却机组在使用一段时间后,制冷性能会明显降低的问题。而且,室外空气流道上附着的污物被及时去除,还可以避免换热芯体100被过早腐蚀损坏,能够延长换热芯体100的使用寿命。
在一些实施例中,如图1所示,间接蒸发换热系统还包括供液组件400, 冲洗管路300和喷淋管路200均与供液组件400相连接(即连通),供液组件400设置成向冲洗管路300和喷淋管路200进行供液。
在一些实施例中,如图1所示,供液组件400包括接液器件410,接液器件410具有第一接口412以及接液口411,室外空气流道的第一气口与接液口411相对设置,以确保接液器件410更好地收集自室外空气流道下流的液体,冲洗管路300的出口和喷淋管路200的出口均与室外空气流道的第二气口相对设置,以确保冲洗管路300和喷淋管路200更好地向室外空气流道供液,喷淋管路200的入口与第一接口412相连接(即连通),接液器件410向喷淋管路200供液,本公开中的液体可以为水。室外空气流道的第一气口朝下,室外空气流道的第二气口朝上,冲洗管路300的出口朝下,喷淋管路200的出口朝下。可以是,第一气口设置为进气口,第二气口设置为出气口;或者可以是,第一气口设置为出气口,第二气口设置为进气口。
在一些实施例中,如图1所示,接液器件410具有存液腔413和接液腔414,接液口411设置在接液腔414,存液腔413具有第一接口412、第二接口415和气压平衡口416,第二接口415与接液腔414的出口之间形成能够关断和连通的第一流路,外界与接液腔414的出口形成能够关断和连通的第二流路,气压平衡口416与外界连通,确保液体顺利进入和流出存液腔413。
在一些实施例中,如图1所示,供液组件400还包括第一三通420、第二开关阀430和第一开关阀440,第一三通420的第一端与接液腔414的出口相连接,第一三通420的第二端与第二接口415通过第一开关阀440相连接而构造出第一流路,第一三通420的第三端连接第二开关阀430、构造出第二流路;或者可以是,该处通过二位三通阀结构进行替代,两种方案的结构均比较简单。可以是,在降温时设置为打开第一开关阀440、关闭第二开关阀430,重复利用液体对室外空气流道进行降温,此过程落入接液腔414的液体比较洁净;可以是,在清洁时设置为关闭第一开关阀440、打开第二开关阀430,将清洗流入接液腔414的脏污液体及时排掉,避免脏污液体进入存液腔413而对存液腔413造成污染,也避免在后续喷淋管路200供液过程因使用脏污液体而再次脏污室外空气流道,保证在喷淋管路200供液过程使用洁净的液体循环。
在一些实施例中,如图1所示,供液组件400还包括第一供液管路450, 第一供液管路450上设置有泵体451,第一供液管路450连接第一接口412和喷淋管路200的入口,泵体451设置成泵送液体。
在一些实施例中,如图1所示,供液组件400还包括第二三通460、第二供液管路470、第三开关阀480、第三三通490和第四开关阀500。第一供液管路450的入口、第一接口412和第二供液管路470的出口通过第二三通460连接。冲洗管路300的入口、喷淋管路200的入口和第一供液管路450的出口通过第三三通490连接,第三开关阀480设置在喷淋管路200上,第四开关阀500设置在冲洗管路300上;或者可以是,该处通过二位三通阀结构进行替代,两种方案的结构均比较简单;均可实现本公开的目的,其宗旨未脱离本公开的设计思想,在此不再赘述,均应属于本公开的保护范围内。
在一些实施例中,如图1所示,第二供液管路470不仅可以向冲洗管路300进行供液,还可以在存液腔413内存储液体较少时向存液腔413进行手动补液或自动补液,确保存液腔413内的液体足够在使用喷淋管路200进行供液过程中循环使用。示例地,第二供液管路470上设置有第五开关阀600,第二供液管路470的入口与自来水源相连接。
在一些实施例中,如图2所示,间接蒸发换热系统还包括清洁剂供应装置510,设置在冲洗管路300上,设置成在冲洗管路300向室外空气流道内供液时,能够受控地向冲洗管路300供应清洁剂,清洗剂随冲洗管路300一并供入室外空气流道内,这样可以提升室外空气流道的清洁速度和清洁效果。
在一些实施例中,自冲洗管路300喷出液体的压力大于自喷淋管路200喷出液体的压力,这样可以提升室外空气流道的清洁效果。
在一些实施例中,喷淋管路200被设置为向室外空气流道的出口以喷淋的方式进行供液(即喷淋液体),冲洗管路300也被设置为向室外空气流道的出口以喷淋的方式进行供液(即喷淋液体),喷淋管路200的喷淋压力小于冲洗管路300的喷淋压力,使得室外空气流道附着的污物更容易被冲洗管路300喷淋的液体冲洗掉。
在一些实施例中,间接蒸发换热系统还包括温度检测装置,温度检测装置包括第一温度检测传感器、第二温度检测传感器和第三温度检测传感器。第一温度检测传感器设置在室内空气流道的入口,设置成检测室内空气流道 入口处的室内空气120的气流干球温度T 1i。第二温度检测传感器设置在室内空气流道的出口,设置成检测室内空气流道出口处的室内空气120的气流干球温度T 1o。第三温度检测传感器设置在室外空气流道的第一气口,设置成检测室外空气流道的第一气口处的室外空气110的气流湿球温度T 2iw。其中,第一气口设置为进气口,第二气口设置为出气口。
间接蒸发换热系统还包括:控制装置,控制装置包括控制模块、计算模块和比较模块,第一温度检测传感器、第二温度检测传感器和第三温度检测传感器均与控制模块电连接,控制模块接收第一温度检测传感器、第二温度检测传感器和第三温度检测传感器检测的各个温度,计算模块采用公式η=(T 1i-T 1o)/(T 1i-T 2iw)计算换热芯体100的实际换热效率η,比较模块使实际换热效率η与预设换热效率η 0(可以为冷却机组出厂时换热芯体100的换热效率)进行比较,在:
η≥η 0时,表明室外空气流道附着的污物较少,此时控制模块控制喷淋管路200供液,控制冲洗管路300停止,具体可以是:控制模块控制泵体451运行,第一开关阀440和第三开关阀480打开,第二开关阀430和第四开关阀500关闭,此过程泵体451的转速为第一转速;
η<η 0时,表明室外空气流道附着的污物较多,此时控制模块控制喷淋管路200停止,控制冲洗管路300供液,对室外空气流道进行清洁,以此来提升换热芯体100的实际换热效率η,具体可以是:控制模块控制泵体451运行,第二开关阀430和第四开关阀500打开,第一开关阀440和第三开关阀480关闭,确保将清洗流入接液腔414的脏污液体及时排掉,避免脏污液体进入存液腔413而对存液腔413造成污染,也避免在后续喷淋管路200供液过程因使用脏污液体而再次脏污室外空气流道,保证在喷淋管路200供液过程使用洁净的液体循环,此过程泵体451的转速为第二转速,第二转速大于第一转速,因此冲洗管路300的喷液压力大于喷淋管路200的喷液压力。
为实现更好地喷淋降温效果和喷淋清洁效果,喷淋管路200的出口和冲洗管路300的出口配置不同类型的喷嘴。喷淋管路200的出口配置喷淋液滴更细密、更均匀的喷嘴,以提高降温效果;冲洗管路300的出口配置喷淋液滴更大、喷淋方向更凝聚的喷嘴,以提高对室外空气流道上附着的污物的冲刷力。并且,喷淋管路200的出口和冲洗管路300的出口所配备的喷嘴还可 以根据换热芯体100的工作状况进行更换,以更好地适应换热芯体100换热性能的变化和流道表面清洁状况的变化。
本公开一些实施例中提出的间接蒸发换热系统的控制方法,如图3所示,应用于上述任一实施例所述的间接蒸发换热系统,该控制方法包括:
在换热芯体100的实际换热效率不小于预设换热效率时,表明室外空气流道附着的污物较少,此时可以控制喷淋管路200供液,控制冲洗管路300停止供液;
在换热芯体100的实际换热效率小于预设换热效率时,表明室外空气流道附着的污物较多,此时可以控制喷淋管路200停止供液,控制冲洗管路300供液,对室外空气流道进行清洁,以此来提升换热芯体100的实际换热效率。
在一些实施例中,获取室内空气流道入口的气流干球温度T 1i、室内空气流道出口的气流干球温度T 1o以及室外空气流道的第一气口的气流湿球温度T 2iw,采用η=(T 1i-T 1o)/(T 1i-T 2iw)计算换热芯体的实际换热效率η,通过实际换热效率η与预设换热效率η 0进行比较;如图4所示,在η≥η 0时,控制泵体451运行,第一开关阀440和第三开关阀480打开,第二开关阀430和第四开关阀500关闭,此过程泵体451的转速设置为第一转速;在η<η 0时,控制泵体451运行,第二开关阀430和第四开关阀500打开,第一开关阀440和第三开关阀480关闭,确保将清洗流入接液腔414的脏污液体及时排掉,避免脏污液体进入存液腔413而对存液腔413造成污染,也避免在后续喷淋管路200供液过程因使用脏污液体而再次脏污室外空气流道,保证在喷淋管路200供液过程使用洁净的液体循环,而且此过程泵体451的转速为第二转速,第二转速大于第一转速,因此冲洗管路300的喷液压力大于喷淋管路200的喷液压力。
本一些实施例中提出的冷却机组(图中未示出),包括上述任一实施例所述的间接蒸发换热系统。
本一些实施例中提供的冷却机组,具备上述任一实施例所述的间接蒸发换热系统的全部优点,在此不再赘述。
该冷却机组,其间接蒸发换热系统采用上述任一实施例所述的间接蒸发换热系统的控制方法进行控制。
综上所述,本公开实施例提供的间接蒸发换热系统,换热芯体使用一段时间后,通过冲洗管路向室外空气流道供液来对室外空气流道进行清洁,以去除掉室外空气流道上附着的污物,更好地保证换热芯体的换热效率,因此该间接蒸发换热系统应用于冷却机组,能够解决冷却机组在使用一段时间后,制冷性能会明显降低的问题。
以上所述仅为本公开的优选实施例,并非因此限制本公开的专利范围,凡是在本公开的构思下,利用本公开说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本公开的专利保护范围内。

Claims (15)

  1. 一种间接蒸发换热系统,包括:
    具有室外空气流道的换热芯体;
    喷淋管路,被设置为通过向所述室外空气流道供液来对所述室外空气流道进行降温;和
    冲洗管路,被设置为通过向所述室外空气流道供液来对所述室外空气流道进行清洁。
  2. 根据权利要求1所述的间接蒸发换热系统,还包括:
    供液组件,所述喷淋管路和所述冲洗管路均与所述供液组件相连接,所述供液组件设置成向所述喷淋管路和所述冲洗管路供液。
  3. 根据权利要求2所述的间接蒸发换热系统,其中,所述供液组件包括接液器件,所述接液器件具有接液口和第一接口,所述接液口与所述室外空气流道的第一气口对应设置,所述喷淋管路的出口和所述冲洗管路的出口均与所述室外空气流道的第二气口对应设置,所述第一接口与所述喷淋管路的入口相连接,所述接液器件被设置为收集自所述室外空气流道流出的液体以及向所述喷淋管路供液。
  4. 根据权利要求3所述的间接蒸发换热系统,其中,所述接液器件设有接液腔和存液腔,所述接液口位于所述接液腔,所述存液腔具有第二接口和所述第一接口,所述接液腔的出口与所述第二接口之间形成能够连通和关断的第一流路,所述接液腔的出口与外界形成能够连通和关断的第二流路。
  5. 根据权利要求4所述的间接蒸发换热系统,其中,所述供液组件还包括第一三通、第一开关阀和第二开关阀,所述接液腔的出口与所述第一三通的第一端相连接,所述第二接口与所述第一三通的第二端通过第一开关阀相连接,所述第二开关阀安装在所述第一三通的第三端。
  6. 根据权利要求4所述的间接蒸发换热系统,其中,所述存液腔还具有气压平衡口,所述气压平衡口将所述存液腔与外界连通。
  7. 根据权利要求4所述的间接蒸发换热系统,其中,所述供液组件还包括设有泵体的第一供液管路,所述第一接口通过所述第一供液管路与所述喷淋管路的入口相连接。
  8. 根据权利要求7所述的间接蒸发换热系统,其中,所述供液组件还 包括第二供液管路、第二三通、第三三通、第三开关阀和第四开关阀;所述第二供液管路的出口、所述第一接口和所述第一供液管路的入口通过第二三通连接,所述第一供液管路的出口、所述喷淋管路的入口和所述冲洗管路的入口通过第三三通连接,第三开关阀设于所述喷淋管路,所述第四开关阀设于所述冲洗管路。
  9. 根据权利要求1所述的间接蒸发换热系统,还包括:
    清洁剂供应装置,设置于所述冲洗管路,设置成受控地向所述冲洗管路供应清洁剂。
  10. 根据权利要求1至9中任一项所述的间接蒸发换热系统,其中,所述喷淋管路和所述冲洗管路均被设置为以喷淋的方式向所述室外空气流道进行供液,且所述冲洗管路的喷淋压力大于所述喷淋管路的喷淋压力。
  11. 根据权利要求1至9中任一项所述的间接蒸发换热系统,其中,所述换热芯体还具有室内空气流道,所述间接蒸发换热系统还包括温度检测装置,所述温度检测装置设置为检测所述室内空气流道入口的气流干球温度T 1i、所述室内空气流道出口的气流干球温度T 1o以及所述室外空气流道的第一气口的气流湿球温度T 2iw
  12. 根据权利要求11所述的间接蒸发换热系统,还包括:
    控制装置,与所述温度检测装置电连接,所述控制装置设置为根据所述温度检测装置检测的各个温度,采用η=(T 1i-T 1o)/(T 1i-T 2iw)计算所述换热芯体的实际换热效率η,通过实际换热效率η与预设换热效率η 0进行比较,并且:
    基于η≥η 0,控制所述喷淋管路供液,控制所述冲洗管路停止;
    基于η<η 0,控制所述喷淋管路停止,控制所述冲洗管路供液。
  13. 一种间接蒸发换热系统的控制方法,应用于如权利要求1至12中任一项所述的间接蒸发换热系统,所述控制方法包括:
    基于所述换热芯体的实际换热效率大于或等于预设换热效率,控制所述喷淋管路供液,控制所述冲洗管路停止供液;
    基于所述换热芯体的实际换热效率小于预设换热效率,控制所述喷淋管路停止供液,控制所述冲洗管路供液。
  14. 根据权利要求13所述的控制方法,实际换热效率为η,预设换热效率η 0
    基于η≥η 0,控制泵体运行,第一开关阀和第三开关阀打开,第二开关阀和第四开关阀关闭;
    基于η<η 0,控制泵体运行,第二开关阀和第四开关阀打开,第一开关阀和第三开关阀关闭。
  15. 一种冷却机组,包括权利要求1至12中任一项所述的间接蒸发换热系统。
PCT/CN2022/096498 2021-10-22 2022-05-31 一种间接蒸发换热系统及其控制方法、冷却机组 WO2023065678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111235546.1 2021-10-22
CN202111235546.1A CN114034091A (zh) 2021-10-22 2021-10-22 一种间接蒸发换热系统及其控制方法、冷却机组

Publications (1)

Publication Number Publication Date
WO2023065678A1 true WO2023065678A1 (zh) 2023-04-27

Family

ID=80141762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096498 WO2023065678A1 (zh) 2021-10-22 2022-05-31 一种间接蒸发换热系统及其控制方法、冷却机组

Country Status (2)

Country Link
CN (1) CN114034091A (zh)
WO (1) WO2023065678A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114034091A (zh) * 2021-10-22 2022-02-11 广东美的暖通设备有限公司 一种间接蒸发换热系统及其控制方法、冷却机组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031517A (ja) * 2016-08-24 2018-03-01 三菱電機株式会社 間接外気冷房装置および間接外気冷房装置と熱冷媒を利用した冷房装置を備えた冷房システム
CN111140950A (zh) * 2019-12-23 2020-05-12 南京壹格软件技术有限公司 一种数据中心间接蒸发冷却系统及控制方法
CN210772603U (zh) * 2019-10-18 2020-06-16 深圳市英维克科技股份有限公司 一种喷淋系统及间接蒸发冷却机组
US20200378632A1 (en) * 2017-12-20 2020-12-03 Shenzhen Esin Technology Inc., Ltd. Precision air conditioner with an indirect evaporative unit
CN113137679A (zh) * 2021-04-16 2021-07-20 南京天加环境科技有限公司 一种间接蒸发冷却喷雾系统及其控制方法
CN114034091A (zh) * 2021-10-22 2022-02-11 广东美的暖通设备有限公司 一种间接蒸发换热系统及其控制方法、冷却机组

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201373532Y (zh) * 2009-03-10 2009-12-30 尹宏文 一种通信机房节能系统
CN101509684B (zh) * 2009-03-10 2011-10-05 尹宏文 一种通信机房节能系统
CN202747516U (zh) * 2012-09-07 2013-02-20 河南东圣科技有限公司 蒸发冷却器
CN106288940A (zh) * 2016-09-08 2017-01-04 深圳达实智能股份有限公司 一种制冷机冷凝器在线清洗控制方法及系统
CN110500816B (zh) * 2019-09-20 2022-02-22 依米康科技集团股份有限公司 一种具有自清洗功能的蒸发式冷凝器系统及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031517A (ja) * 2016-08-24 2018-03-01 三菱電機株式会社 間接外気冷房装置および間接外気冷房装置と熱冷媒を利用した冷房装置を備えた冷房システム
US20200378632A1 (en) * 2017-12-20 2020-12-03 Shenzhen Esin Technology Inc., Ltd. Precision air conditioner with an indirect evaporative unit
CN210772603U (zh) * 2019-10-18 2020-06-16 深圳市英维克科技股份有限公司 一种喷淋系统及间接蒸发冷却机组
CN111140950A (zh) * 2019-12-23 2020-05-12 南京壹格软件技术有限公司 一种数据中心间接蒸发冷却系统及控制方法
CN113137679A (zh) * 2021-04-16 2021-07-20 南京天加环境科技有限公司 一种间接蒸发冷却喷雾系统及其控制方法
CN114034091A (zh) * 2021-10-22 2022-02-11 广东美的暖通设备有限公司 一种间接蒸发换热系统及其控制方法、冷却机组

Also Published As

Publication number Publication date
CN114034091A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2023065678A1 (zh) 一种间接蒸发换热系统及其控制方法、冷却机组
WO2020192070A1 (zh) 空调器清洁装置、清洁方法及空调器
US4968457A (en) Non-circulating water system for evaporative coolers
JPH10512361A (ja) 湿潤装置を有するプレート熱交換器
WO2022110670A1 (zh) 间接蒸发冷却装置
CN110793099A (zh) 具有自清洁功能的室内机、空调系统
JP2006038362A (ja) 冷凍装置
CN109945314A (zh) 空调器清洁装置、清洁方法及空调器
CN110500816A (zh) 一种具有自清洗功能的蒸发式冷凝器系统及控制方法
KR20160113170A (ko) 공랭식 열교환기를 포함하는 냉장 시스템
CN210772603U (zh) 一种喷淋系统及间接蒸发冷却机组
US8763417B2 (en) Water cool refrigeration
CN211261006U (zh) 具有自清洁功能的室内机、空调系统
JP2002219325A (ja) 熱回収式ケミカルワッシャ装置
CN206973764U (zh) 一种新风系统
WO2021223490A1 (zh) 空调器及其室外机
CN208920950U (zh) 一种清洁装置及具有其的空调室内机
JP3544836B2 (ja) エアワッシャ
KR101005295B1 (ko) 에어컨 실외기 청소장치
JP2001314723A (ja) 空気清浄機
JP2006194524A (ja) 全熱交換器および空気調和機
JPH1163746A (ja) 冷却塔における冷却水濃縮防止装置
CN100575847C (zh) 逆流式密闭型冷却水塔
JP4094302B2 (ja) オイルミスト除去装置
CN218296059U (zh) 喷淋装置、蒸发冷却系统及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE