WO2022110670A1 - 间接蒸发冷却装置 - Google Patents

间接蒸发冷却装置 Download PDF

Info

Publication number
WO2022110670A1
WO2022110670A1 PCT/CN2021/092828 CN2021092828W WO2022110670A1 WO 2022110670 A1 WO2022110670 A1 WO 2022110670A1 CN 2021092828 W CN2021092828 W CN 2021092828W WO 2022110670 A1 WO2022110670 A1 WO 2022110670A1
Authority
WO
WIPO (PCT)
Prior art keywords
wet film
water
outdoor air
evaporative cooling
cooling device
Prior art date
Application number
PCT/CN2021/092828
Other languages
English (en)
French (fr)
Inventor
李健
蒲明明
杨宗豪
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2022110670A1 publication Critical patent/WO2022110670A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/52Air quality properties of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/22Cleaning ducts or apparatus
    • F24F2221/225Cleaning ducts or apparatus using a liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Definitions

  • the embodiments of the present application relate to the technical field of refrigeration equipment, and in particular, to an indirect evaporative cooling device.
  • the indirect evaporative cooling device is a refrigeration device that transfers the cooling capacity of the wet air obtained by direct evaporative cooling to the air to be treated through a non-direct contact heat exchange core to realize the cooling of the air and other moisture, because the indirect evaporative cooling device can realize the The air is cooled by isohumidity, and it has the characteristics of energy saving. It is widely used in data room, shopping malls and other places.
  • the indirect evaporative cooling device includes a heat exchange core, a filter screen and a wet film.
  • the heat exchange core is used to realize indirect heat exchange between indoor air and outdoor air, thereby reducing the temperature of indoor air.
  • Both the filter screen and the wet film are arranged at the outdoor air inlet of the heat exchange core.
  • the filter screen is located at the outermost side of the outdoor air inlet and is in direct contact with the outdoor environment. It is used to filter catkins and sand and other debris in the outdoor air.
  • the wet film is arranged between the filter screen and the outdoor air inlet. The wet film is used to cool the outdoor air filtered by the filter screen to increase the temperature difference between the outdoor air entering the heat exchange core and the indoor air, thereby Improve heat exchange efficiency.
  • the filter screen is easily blocked by debris in the outdoor air, and the blocked filter screen is not easy to clean, which increases the difficulty and cost of maintenance in the later period.
  • the embodiment of the present application provides an indirect evaporative cooling device, so as to solve the problem that in the traditional indirect evaporative cooling device, the filter screen is blocked by catkins or dust and other sundries and is not easy to clean, thereby increasing the difficulty of post-maintenance of the indirect evaporative cooling device and maintenance costs.
  • the embodiment of the present application provides an indirect evaporative cooling device, including a heat exchange core, a wet film, a filter screen and a water storage device;
  • the indirect evaporative cooling device also includes an outdoor air inlet transition section, the air inlet end of the outdoor air inlet transition section is connected with the outdoor environment, and the air outlet end of the outdoor air inlet transition section is connected with the outdoor air inlet of the heat exchange core;
  • Both the wet film and the filter screen are arranged in the outdoor air inlet transition section, and the filter screen is located between the wet film and the outdoor air inlet, and the water storage device is communicated with the water inlet of the wet film for flushing the wet film.
  • the filter screen and the wet film are arranged in the transition section of the outdoor air inlet, and the wet film is arranged on the side of the filter screen away from the outdoor air inlet of the heat exchange core.
  • Larger debris such as catkins and large particles of sand and dust in the outdoor air are filtered through the wet film, and fine debris such as small particles of sand and dust are finely filtered through the filter screen, which not only ensures the outdoor air entering the heat exchange core.
  • the cleanliness of the filter screen is improved, and the short-term dirty block of the filter screen is avoided, the service life of the filter screen is prolonged, and the maintenance cost of the filter screen is reduced. maintenance cycle.
  • the water storage device at the water inlet of the wet film, when the wet film is blocked, the water source can be directly supplied to the wet film through the water storage device to flush the wet film, which simplifies the maintenance of the wet film.
  • the maintenance process reduces the maintenance difficulty and cost of the indirect evaporative cooling device in the later stage.
  • the process of rinsing the wet film is also the process of humidifying the wet film again, thereby rationally utilizing water resources.
  • the wet film includes a first wet film and a second wet film
  • the first wet film and the second wet film are arranged in sequence along the flow direction of the outdoor air, and the first wet film is located on the side of the second wet film away from the filter screen, and the first wet film and the second wet film are arranged separately.
  • the wet film is set as the first wet film and the second wet film, so that when any one of the first wet film or the second wet film is damaged, the wet film can be guaranteed Directly maintain or replace one of the damaged parts on the premise that the performance does not deteriorate. For example, when the first wet film located at the outermost part of the outdoor air inlet transition section is damaged due to clogging, etc., the first wet film can be directly repaired. Simple maintenance or replacement without having to process the entire wet film, reducing maintenance difficulty and material replacement costs for indirect evaporative cooling units.
  • the thickness of the first wet film is less than the thickness of the second wet film
  • the thickness of the first wet film or the second wet film refers to the distance between the two side walls of the first wet film or the second wet film oppositely disposed along the flow direction of the outdoor air.
  • the first wet film plays a major role in filtering catkins in the outdoor air, the first wet film is more likely to be blocked than the second wet film.
  • the thickness of the film makes the maintenance or replacement of the first wet film more convenient, thereby further reducing the difficulty of maintenance and the cost of material replacement.
  • the first wet film is in contact with opposite side walls of the second wet film.
  • the thickness of the first wet film is 10mm-20mm.
  • the thickness of the first wet film is set within the above range, so as to ensure the filtering effect of the first wet film on catkins and large particles of sand in the outdoor air, and at the same time facilitate the separate maintenance of the first wet film and replacement.
  • the thickness of the second wet film is 10 times to 15 times the thickness of the first wet film, so as to further ensure the filtering effect of the entire wet film on catkins and large particles of sand and dust in the outdoor air.
  • the indirect evaporative cooling device further includes a water tank
  • the water tank is communicated with the water outlet of the wet film, and a water outlet is formed on the water tank, and the water outlet is used to discharge the sewage in the water tank.
  • a water tank is connected to the water outlet of the wet film, and a water outlet is arranged on the water tank, so that the sewage after washing the wet film can be concentrated in the water tank, and can be discharged regularly and uniformly, thereby reducing the pollution to the environment .
  • the indirect evaporative cooling device further includes a water pump
  • the water tank is provided with a water supply port, the water storage device is connected with the water supply port, the water tank also has a water outlet, the water outlet is connected with the water inlet of the wet film, and the water pump is arranged on the pipeline connecting the water tank and the water inlet of the wet film.
  • the water tank is connected to the water inlet of the wet film, so that when the wet film needs to be cleaned, the water in the water tank can be pumped into the wet film by the water pump, and the sundries on the wet film such as catkins and The large particles of sand and dust are rinsed, and the rinsed water is directly discharged into the water tank, which can be used for re-rinsing, which not only ensures the timeliness and convenience of cleaning the wet film, but also the water in the water tank can be recycled, which further reduces the waste of water resources.
  • the water storage device by connecting the water storage device with the water tank, when the water in the water tank cannot continue to wash the wet film, it can be discharged at any time, and the water storage device can replenish clean water in the water tank at any time to ensure the cleaning of the circulating water in the water tank. degree, so that it can always meet the humidification and cleaning requirements of wet film.
  • the indirect evaporative cooling device further includes a liquid level sensor
  • the liquid level sensor is arranged in the water tank, and the liquid level sensor is used to detect the water level in the water tank.
  • a liquid level sensor is arranged in the water tank to monitor the water level in the water tank at any time, so as to ensure sufficient circulating water in the water tank.
  • the indirect evaporative cooling device further includes a particle size detection device
  • the particle size detection device is arranged at the air inlet end of the outdoor air inlet transition section.
  • the particle size detection device is used to detect the sand and dust content in the outdoor air, so that when the sand and dust content reaches a preset value, the water storage device provides the wet film with water. source of water to flush the wet film.
  • a particle size detection device is provided at the air inlet end of the outdoor air inlet transition section to detect the sand and dust content in the outdoor air at any time, so that when the sand and dust content reaches a preset value, the wet film can be tested in time. Flushing, thereby avoiding the blockage of the wet film and affecting the subsequent filtration, shortening the dirty blocking cycle of the wet film, ensuring that the outdoor air can pass through the wet film and the filter screen smoothly into the heat exchange core in time, and achieve effective heat dissipation of the indoor air.
  • the indirect evaporative cooling device further includes a water valve
  • the water valve is arranged on the pipe connecting the water storage device with the water inlet of the wet film.
  • a water valve is arranged on the pipeline connecting the water storage device and the water inlet of the wet film to control the flushing and humidification process of the wet film, reduce the waste of water resources, and at the same time ensure that the performance of the wet film is not affected .
  • FIG. 1 is a first structural schematic diagram of an indirect evaporative cooling device provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a second structure of the indirect evaporative cooling device provided by the embodiment of the present application;
  • FIG. 3 is a third structural schematic diagram of an indirect evaporative cooling device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a fourth structure of the indirect evaporative cooling device provided by the embodiment of the present application.
  • 110-indoor air inlet transition section 120-indoor air inlet; 130-indoor air outlet; 140-indoor air outlet transition section; 150-outdoor air inlet transition section; 160-outdoor air inlet; 170-outdoor air outlet Air outlet; 180-outdoor air outlet transition section; 310-first wet film; 320-second wet film; 710-drainage outlet; 720-water supply outlet; 730-liquid level sensor;
  • the indirect evaporative cooling device is a refrigeration device that transfers the cooling capacity of the wet air obtained by direct evaporative cooling to the air to be treated through a non-direct contact heat exchange core to realize the cooling of the air and other moisture, because the indirect evaporative cooling device can realize the The air is cooled by isohumidity, and it has the characteristics of energy saving. It is widely used in data room, shopping malls and other places.
  • the data room is usually equipped with base station equipment, power supply equipment, batteries, transmission equipment, etc.
  • indirect evaporative cooling can be installed in the data room.
  • the air in the data room is radiated to control the temperature of the outdoor cabinet or the inside of the room, so as to ensure the normal operation of the base station equipment and power equipment in the data room and prevent the equipment in the data room from being affected. damage.
  • the indirect evaporative cooling device includes a heat exchange core, a filter screen and a wet film.
  • the heat exchange core has mutually independent indoor air circulation channels and outdoor air circulation channels, and both ends of the indoor air circulation channels are respectively communicated with the indoor environment through the indoor air inlet and the indoor air outlet, so that the indoor air
  • the circulation channel and the air in the indoor environment can circulate and circulate.
  • Both ends of the outdoor air circulation channel are respectively communicated with the outdoor environment through the outdoor air inlet and the outdoor air outlet, so that the outdoor air circulation channel and the air in the outdoor environment can circulate and circulate.
  • an outdoor air inlet transition section between the outdoor air inlet of the heat exchange core and the outdoor environment.
  • an indirect evaporative cooling device has an outdoor air inlet, and one end of the outdoor air inlet transition section is connected to the outdoor air inlet to ensure that the The outdoor air inlet transition section is connected to the outdoor environment, and the other end of the outdoor air inlet transition section is connected to the outdoor air inlet of the heat exchange core to ensure that the outdoor air inlet transition section is connected to the outdoor air circulation channel in the heat exchange core. In this way, The connection between the outdoor air circulation channel and the outdoor environment can be achieved.
  • Both the wet film and the filter screen of the indirect evaporative cooling device are set in the transition section of the outdoor air inlet, and the wet film is located between the filter screen and the outdoor air inlet of the heat exchange core, that is to say, the filter screen is located close to the outdoor air inlet.
  • the wet film is located on the side of the filter screen away from the outdoor air inlet.
  • the filter screen is located at the outdoor air inlet, and the wet film is located at the outdoor air inlet of the heat exchange core.
  • the indoor hot air enters the indoor air circulation channel of the heat exchange core through the indoor air inlet, and the outdoor air first enters the outdoor air inlet transition section through the outdoor air inlet, and then passes through the filter.
  • the sundries in the outdoor air such as catkins and sand particles, are filtered, and then the filtered outdoor air is humidified and cooled by the wet film.
  • the cooled outdoor air then enters the outdoor air circulation through the outdoor air inlet of the heat exchange core.
  • the channel it exchanges heat with the high-temperature air in the indoor air circulation channel, and the cooled indoor air then enters the room through the indoor air outlet, that is, the inside of the data room, to dissipate heat for the batteries and other equipment in the data room, and the outdoor air circulates in the channel. After the outdoor air is heated, it is exhausted from the outdoor air outlet to the outside of the data room.
  • the filter screen plays the role of finely filtering the outdoor air, and the wet film only plays the role of humidifying and reducing the outdoor air temperature. .
  • the embodiment of the present application provides an indirect evaporative cooling device.
  • a filter screen and a wet film in the transition section of the outdoor air intake, and arranging the wet film on the side of the filter screen away from the outdoor air inlet of the heat exchange core, it can be First, the larger debris such as catkins and large particles of sand and dust in the outdoor air are filtered through the wet film, and then the smaller debris such as small particles of sand and dust are finely filtered through the filter screen, which not only ensures that they enter the heat exchange core.
  • the cleanliness of the outdoor air inside, and it avoids the short-term dirty block of the filter prolongs the service life of the filter, and reduces the maintenance cost of the filter. Extends the maintenance period of the wet film.
  • the water storage device at the water inlet of the wet film, when the wet film is blocked, the water source can be directly supplied to the wet film through the water storage device to flush the wet film, which simplifies the maintenance of the wet film.
  • the maintenance process reduces the maintenance difficulty and cost of the indirect evaporative cooling device in the later stage.
  • the process of rinsing the wet film is also the process of humidifying the wet film again, thereby rationally utilizing water resources.
  • FIG. 1 is a first structural schematic diagram of an indirect evaporative cooling device provided by an embodiment of the present application.
  • an embodiment of the present application provides an indirect evaporative cooling device 10 , which includes a heat exchange core 100 , a wet film 300 , a filter screen 200 and a water storage device 400 .
  • the heat exchange core 100 has an indoor air circulation channel and an outdoor air circulation channel which are independent of each other.
  • the indoor air circulation channel and the air in the indoor environment can circulate and circulate.
  • the indirect evaporative cooling device 10 further includes an indoor air inlet transition section 110 and an indoor air outlet transition section 140 , wherein the indirect evaporative cooling device 10 further includes an indoor air inlet 111 and an indoor air outlet 141 .
  • the indoor air inlet 111 is communicated with the indoor environment, and the air inlet end of the indoor air inlet transition section 110 is communicated with the indoor air inlet 111, so that the indoor air inlet transition section 110 is communicated with the indoor environment, and the air outlet end of the indoor air inlet transition section 110 is connected to the indoor air inlet transition section 110.
  • the indoor air inlet 120 of the heat exchange core 100 connects the indoor air inlet transition section 110 with the indoor air circulation passage, so that the indoor environment communicates with the indoor air circulation passage of the heat exchange core 100 through the indoor air inlet transition section 110,
  • the air in the indoor environment that is, the indoor air 101, enters the indoor air circulation channel through the indoor air inlet 111, the indoor air inlet transition section 110 and the indoor air air inlet 120 in sequence.
  • the indoor air inlet 111 may be arranged on any side wall where the indoor air inlet transition section 110 communicates with the indoor environment.
  • the indoor air inlet 111 may be arranged at the place where the indirect evaporative cooling device 10 is provided with the indoor air inlet transition section 110 . on the top wall.
  • the indoor air outlet 141 is communicated with the indoor environment, and the air inlet end of the indoor air outlet transition section 140 is communicated with the indoor air outlet 130 of the heat exchange core 100, so that the indoor air outlet transition section 140 is communicated with the indoor air circulation passage, and the indoor air outlet transition section 140 is connected with the indoor air circulation channel.
  • the air outlet end of the air outlet transition section 140 is communicated with the indoor air outlet 141, so that the indoor air outlet transition section 140 is communicated with the indoor environment. In this way, the indoor air circulation channel of the heat exchange core 100 is connected to the indoor air through the indoor air outlet transition section 140.
  • the environment is connected, so that the air in the indoor air circulation channel enters the indoor environment through the indoor air outlet 130 , the indoor air outlet transition section 140 and the indoor air outlet 141 in sequence.
  • the indoor air outlet 141 may be arranged on any side wall of the indoor air outlet transition section 140 that communicates with the indoor environment.
  • the indoor air inlet 111 may be arranged at the place where the indirect evaporative cooling device 10 is provided with the indoor air outlet transition section 140 . on the side wall.
  • the indoor air inlet transition section 110, the indoor air 101 circulation channel and the indoor air outlet transition section 140 together form an indoor air flow channel that circulates with the indoor air.
  • a fan 900 may be provided in the indoor air outlet transition section 140 to promote the flow efficiency of the indoor air flow channel of the indirect evaporative cooling device 10 and the air in the indoor environment, thereby improving the heat exchange efficiency.
  • both ends of the outdoor air circulation channel are connected to the outdoor environment through the outdoor air inlet 160 and the outdoor air outlet 170 respectively, so that the outdoor air circulation channel and the air in the outdoor environment can circulate and circulate.
  • the indirect evaporative cooling device 10 further includes an outdoor air inlet transition section 150 and an outdoor air outlet transition section 180 .
  • the indirect evaporative cooling device 10 has an outdoor air inlet 151, the outdoor air inlet 151 is connected with the outdoor environment, and the air inlet end of the outdoor air inlet transition section 150 is connected with the outdoor air inlet 151, so as to ensure that the outdoor air inlet transition section 150 is connected to the outdoor environment
  • the air outlet end of the outdoor air inlet transition section 150 is communicated with the outdoor air inlet 160 of the heat exchange core 100 to ensure that the outdoor air inlet transition section 150 is communicated with the outdoor air circulation channel in the heat exchange core 100.
  • the outdoor environment It is connected with the indoor air circulation channel of the heat exchange core 100 through the outdoor air inlet transition section 150, so that the air in the outdoor environment, that is, the outdoor air 102, enters through the outdoor air inlet 151, the outdoor air inlet transition section 150 and the outdoor air inlet 160 in turn.
  • the outdoor air circulation channel Inside the outdoor air circulation channel.
  • the outdoor air inlet 151 can be arranged on any side wall of the outdoor air inlet transition section 150 that communicates with the outdoor environment.
  • the outdoor air inlet 151 can be arranged in the indirect evaporative cooling device 10 where the outdoor air inlet transition section 150 is provided. on the side wall.
  • the indirect evaporative cooling device 10 has an outdoor air outlet 181, the outdoor air outlet 181 is communicated with the outdoor environment, and the air inlet end of the outdoor air outlet transition section 180 is communicated with the outdoor air outlet 170 of the heat exchange core 100 to ensure outdoor air outlet
  • the transition section 180 is communicated with the outdoor air circulation channel of the heat exchange core 100, and the air outlet end of the outdoor air outlet transition section 180 is communicated with the outdoor air outlet 181 to ensure that the outdoor air outlet transition section 180 is communicated with the outdoor environment.
  • the outdoor air circulation channel 100 is connected to the outdoor environment through the outdoor air outlet transition section 180, so that the air in the outdoor air circulation channel enters the outdoor environment through the outdoor air outlet 170, the outdoor air outlet transition section 180 and the outdoor air outlet 181 in turn. middle.
  • the outdoor air outlet 181 can be arranged on any side wall of the outdoor air outlet transition section 180 that communicates with the outdoor environment.
  • the outdoor air inlet 151 can be arranged in the indirect evaporative cooling device 10 where the outdoor air outlet transition section 180 is provided. on the side wall.
  • the outdoor air inlet transition section 150 , the outdoor air circulation channel and the outdoor air outlet transition section 180 together form an outdoor air flow channel that circulates with the outdoor air 102 .
  • a fan 900 may be provided in the outdoor air outlet transition section 180 to promote the flow efficiency of the outdoor air flow channel of the indirect evaporative cooling device 10 and the air in the outdoor environment, thereby improving the heat exchange efficiency.
  • the structure of the heat exchange core 100 may be various.
  • the heat exchange core 100 may be an integrally formed integral piece, and the integral piece has a plurality of pipelines that are independent of each other and are arranged in a cross direction, wherein the One or more pipelines extending in the first direction form indoor air circulation channels, and one or more pipelines extending in the second direction form outdoor air circulation channels, and there is a certain angle between the first direction and the second direction.
  • the air in the indoor air circulation channel can exchange heat with the air in the outdoor air circulation channel through the adjacent pipe walls.
  • the embodiment of the present application does not limit the specific structure of the heat exchange core 100 , and the existing heat exchange core can be directly referred to for details.
  • the wet film 300 and the filter screen 200 in the embodiment of the present application are both arranged in the outdoor air inlet transition section 150, wherein the filter screen 200 is located between the wet film 300 and the outdoor air inlet 160 of the heat exchange core 100, that is to say , the wet film 300 is arranged near the air inlet end of the outdoor air inlet transition section 150, and the filter screen 200 is arranged near the outdoor air inlet 160 of the heat exchange core 100.
  • the wet film 300 is arranged at the air inlet of the outdoor air inlet transition section 150.
  • the filter screen 200 is arranged at the outdoor air inlet 160 of the heat exchange core 100 .
  • the wet film 300 is an integral piece, which not only improves the structural stability of the wet film 300, but also makes the assembly of the wet film 300 in the transition section of the outdoor air inlet 151 more convenient and quick.
  • wet film 300 and the filter screen 200 in the embodiment of the present application can be fixed on the inner wall of the indirect evaporative cooling device 10 located in the outdoor air inlet transition section 150 by abutting, snapping, bonding, screw connection, etc.,
  • the embodiments of the present application do not specifically limit the fixing methods of the wet membrane 300 and the filter screen 200 .
  • the indoor hot air enters the room of the heat exchange core 100 through the indoor air inlet 111 , the indoor air inlet transition section 110 and the indoor air inlet 120 in sequence.
  • the outdoor air 102 first enters the outdoor air inlet transition section 150 through the outdoor air inlet 151, and then passes through the wet film 300 to filter large-sized debris such as catkins and large particles of sand in the outdoor air 102.
  • the outdoor air 102 exchanges heat with the cold water in the wet film 300 to humidify the outdoor air 102 and reduce the temperature of the outdoor air 102, and then the filter screen 200 removes the small-sized debris in the humidified and cooled outdoor air 102.
  • small particles of sand and dust are finely filtered, and the filtered outdoor air 102 then enters the outdoor air circulation channel through the outdoor air inlet 160 of the heat exchange core 100, and exchanges heat with the high-temperature air in the indoor air circulation channel.
  • the indoor air 101 enters the room such as the data room through the indoor air outlet 130, the indoor air transition section 140 and the indoor air outlet 141 in turn, and dissipates heat for the batteries and other equipment in the data room, and the outdoor air 102 in the outdoor air circulation channel is heated Then, the air is discharged to the outside, such as the data room, through the outdoor air outlet 170 , the outdoor air outlet transition section 180 and the outdoor air outlet 181 in sequence.
  • the process of humidifying and cooling the outdoor air 102 by the wet film 300 is specifically as follows: because the temperature of the outdoor air 102 is higher than the water in the wet film 300, the outdoor air 102 transfers heat to the cold water in the wet film 300, so that the cold water is It evaporates into water vapor, and is mixed with the outdoor air 102 , thereby realizing the humidification and cooling effects of the outdoor air 102 .
  • the temperature difference between the cooled outdoor air 102 and the indoor air 101 increases, thereby improving the heat dissipation efficiency of the indirect evaporative cooling device 10 to the indoor air 101 .
  • the wet film 300 is disposed on the side of the filter screen 200 away from the outdoor air inlet 160 of the heat exchange core 100, and the wet film 300 has filter holes, and the filter holes are larger than the filter holes of the filter screen 200, That is to say, the filtration efficiency of the wet membrane 300 is lower than the filtration efficiency of the filter screen 200.
  • the wet membrane 300 first filters the larger-sized debris in the outdoor air 102, such as catkins or large particles of sand, and the pre-filtered
  • the outdoor air 102 is then finely filtered through the filter screen 200, that is, the fine debris in the outdoor air 102, such as small particles of sand and dust, is filtered through the filter screen 200, which not only ensures the cleanliness of the outdoor air 102 entering the heat exchange core 100 , and avoids the filter screen 200 being dirty and blocked in a short period of time, prolongs the service life of the filter screen 200, reduces the maintenance cost of the filter screen 200, and at the same time, because the filtration accuracy of the wet film 300 is lower than that of the filter screen 200, it also prolongs the service life of the filter screen 200. Maintenance cycle of wet film 300.
  • the specific structures of the wet membrane 300 and the filter screen 200 can be directly referred to the conventional structures, which will not be repeated here.
  • the water storage device 400 in the embodiment of the present application communicates with the water inlet of the wet film 300 , and is used for flushing the wet film 300 .
  • the wet membrane 300 is inevitably blocked due to long-term filtering of large-sized debris such as catkins or large particles of sand.
  • debris such as catkins or large particles
  • the water in the water storage device 400 can enter the wet film 300, and the sundries in the wet film 300 can be flushed, so that the blocked wet film 300 can be flushed. 300 quick dredge.
  • a water source is provided to the wet film 300 through the water storage device 400 to flush the wet film 300.
  • This process not only dredges the wet film 300, but also ensures that the outdoor air 102 can smoothly enter the heat exchange core 100 through the wet film 300.
  • the wet film 300 can filter large-sized debris in the outdoor air 102, and the process of flushing the wet film 300 is also a process of humidifying the wet film 300 again, so as to ensure that the wet film 300 humidifies and cools the outdoor air 102 while reasonably Water resources are used.
  • the indirect evaporative cooling device 10 of the embodiment of the present application may further include a water valve 500, and the water valve 500 is arranged on the pipeline connecting the water storage device 400 and the water inlet of the wet film 300.
  • the water valve 500 can be opened, so that the water in the water storage device 400 enters the wet film 300 through the water inlet of the wet film 300 to complete the flushing process of large-sized sundries.
  • a water valve 500 is arranged on the pipeline connecting the water storage device 400 and the water inlet of the wet film 300 to control the flushing and humidification process of the wet film 300 , reduce the waste of water resources, and ensure the wet film 300 at the same time. performance is not affected.
  • the water valve 500 can be an on-off valve or a flow regulating valve.
  • the flow rate of the water entering the wet film 300 from the water storage device 400 can be reduced through the flow regulating valve.
  • the water flow rate of the water storage device 400 into the wet film 300 can be increased through the flow regulating valve to improve the flushing efficiency of the wet film 300 and ensure that the wet film 300 can be dredged smoothly.
  • the water valve 500 in this embodiment of the present application may be a solenoid valve, so that the switching state of the solenoid valve can be controlled through a signal, thereby improving the maintenance of the wet film 300 and the control efficiency of humidification, thereby improving the entire indirect evaporation. Maintenance efficiency of the cooling device 10 .
  • the specific structure and working principle of the solenoid valve can be directly referred to the solenoid valve in the conventional technology, which will not be repeated here.
  • the water storage device 400 in the embodiment of the present application may be a water storage tank, which is connected to the water inlet of the wet film 300 through a pipeline, and the water valve 500 may be arranged on the pipeline connecting the water storage tank and the wet film 300,
  • the water valve 500 may be disposed near the water storage tank, or may be disposed at the water inlet of the wet film 300, and the specific position of the water valve 500 is not limited in this embodiment of the present application.
  • the water valve 500 can be opened to allow the water in the water storage tank to enter the wet film 300 to humidify the wet film 300 , or to flush the sundries in the wet film 300 .
  • the water storage device 400 can also be a water delivery pipeline
  • the water valve 500 can be a water tap provided on the water delivery pipeline.
  • the faucet can be turned on, so that the water in the water delivery pipeline enters the wet film 300 , humidifies the wet film 300 , or flushes the sundries in the wet film 300 .
  • the indirect evaporative cooling device 10 in this embodiment of the present application may further include a particle size detection device 600 .
  • the particle size detection device 600 is arranged at the air inlet end of the outdoor air inlet transition section 150, and the particle size detection device 600 is used to detect the sand and dust content in the outdoor air 102, so as to pass the water storage device when the sand and dust content reaches a preset value 400 provides a water source to the wet film 300 to rinse the wet film 300 .
  • the particle size detection device 600 can be installed outside the outdoor air inlet 151, or can be installed on the inner wall of the outdoor air inlet 151.
  • the specific setting of the particle size detection device 600 is not limited here, as long as it can accurately detect the entering The content of sand and dust in the outdoor air 102 in the wet film 300 is sufficient.
  • the particle size detection device 600 is provided at the air inlet end of the outdoor air inlet transition section 150 to detect the sand and dust content in the outdoor air 102 at any time, so that when the sand and dust content reaches a preset value, the detection can be performed in time.
  • the wet film 300 is flushed, thereby preventing the wet film 300 from being blocked and affecting subsequent filtration, shortening the dirty blocking period of the wet film 300, and ensuring that the outdoor air 102 can pass through the wet film 300 and the filter screen 200 in time and smoothly enter the heat exchange core 100, Effective heat dissipation to indoor air 101 is achieved.
  • the specific structure and working principle of the particle size detection device 600 can be directly referred to the particle size detector in the conventional technology, which will not be repeated here.
  • the filter screen 200 and the wet film 300 are arranged in the outdoor air inlet transition section 150, and the wet film 300 is arranged at the outdoor air inlet 160 of the filter screen 200 away from the heat exchange core 100.
  • the larger debris such as catkins and large particles of sand in the outdoor air 102 can be filtered through the wet film 300 first, and then the fine debris such as small particles of sand can be finely filtered through the filter screen 200 , not only ensures the cleanliness of the outdoor air 102 entering the heat exchange core 100, but also avoids the short-cycle dirty blockage of the filter screen 200, prolongs the service life of the filter screen 200, and reduces the maintenance cost of the filter screen 200.
  • the filtration precision of the wet membrane 300 is lower than that of the filter screen 200 , thereby prolonging the maintenance period of the wet membrane 300 .
  • the water storage device 400 at the water inlet of the wet film 300, in this way, when the wet film 300 is blocked, the water source can be directly supplied to the wet film 300 through the water storage device 400 to flush the wet film 300, Therefore, the maintenance procedure for the wet film 300 is simplified, and the maintenance difficulty and cost of the indirect evaporative cooling device 10 in the later stage are reduced.
  • the process of rinsing the wet film 300 is also a process of humidifying the wet film 300 again, thereby rationally utilizing water resources.
  • FIG. 2 is a schematic diagram of a second structure of the indirect evaporative cooling device provided by the embodiment of the present application.
  • the wet film 300 of the embodiment of the present application includes a first wet film 310 and a second wet film 320 , wherein the first wet film 310 and the second wet film 320 extend along the outdoor
  • the flow directions of the air 102 are arranged in sequence, and the first wet film 310 is located on the side of the second wet film 320 away from the filter screen 200 , and the first wet film 310 and the second wet film 320 are disposed separately.
  • first wet film 310 and the second wet film 320 are arranged in the outdoor air inlet transition section 150, the first wet film 310 and the second wet film 320 are specifically along the outdoor air inlet transition section 150.
  • the flow directions of the air (refer to the direction indicated by arrow a in FIG. 2 ) are set in sequence, wherein the second wet film 320 is located between the first wet film 310 and the filter screen 200 , that is, the first wet film 310 is close to The outdoor air inlet 151 is arranged, and the second wet film 320 is arranged close to the filter screen 200 .
  • the separate arrangement of the first wet film 310 and the second wet film 320 specifically means that the first wet film 310 and the second wet film 320 are independent of each other, and either of the two can be independently cooled by indirect evaporation. removed from the device 10.
  • the indirect evaporative cooling device 10 when the indirect evaporative cooling device 10 according to the embodiment of the present application works specifically, after the outdoor air 102 enters the outdoor air inlet transition section 150 from the outdoor air inlet 151 , it first passes through the first wet film 310 , and passes through the first wet film 310 .
  • the membrane 310 preliminarily filters the larger-sized debris in the outdoor air 102, such as catkins and large particles of sand and dust, and simultaneously humidifies and cools the outdoor air 102 for the first time.
  • the membrane 320 continues to filter the remaining catkins or large particles of sand and dust in the outdoor air 102, and at the same time, the outdoor air 102 is humidified and cooled for the second time.
  • the outdoor The air 102 is then finely filtered through the filter screen 200, that is, the small-sized sundries in the outdoor air 102, such as small particles of sand and dust, are filtered through the filter screen 200 to ensure the cleanliness of the outdoor air 102 entering the heat exchange core 100.
  • the outdoor air 102 treated by the wet film 300 and the filter screen 200 enters the outdoor air circulation channel and exchanges heat with the indoor air 101 in the indoor air circulation channel.
  • the wet film 300 is set as a separate first wet film 310 and a second wet film 320, so that when any one of the first wet film 310 or the second wet film 320 is damaged, etc., A damaged part of the wet film 300 can be directly maintained or replaced on the premise that the performance of the wet film 300 is not attenuated.
  • the first wet film 310 located at the outermost side of the outdoor air inlet transition section 150 is damaged due to clogging or the like, the first wet film 310 can be simply maintained or replaced directly without the need to process the entire wet film 300, thereby The maintenance difficulty and the material replacement cost of the indirect evaporative cooling device 10 are reduced.
  • the first wet film 310 and the second wet film 320 are in contact with opposite sidewalls, that is, between the opposite sidewalls of the first wet film 310 and the second wet film 320
  • the gap between them is zero, so that a pipe can be connected to the water storage device 400, and the water outlet of the pipe can be communicated with the water inlet of the first wet film 310 or the water inlet of the second wet film 320.
  • Unified cleaning, maintenance and humidification of the first wet film 310 and the second wet film 320 are achieved, thereby simplifying the assembly process of the indirect evaporative cooling device 10 and improving the maintenance efficiency of the wet film 300 .
  • the space occupied by the wet film 300 in the indirect evaporative cooling device 10 is also saved, thereby facilitating the indirect evaporative cooling device 10. Installation of other components.
  • the first wet film 310 and the second wet film 320 may also be arranged at intervals along the extending direction of the outdoor air inlet transition section 150 (not shown in the figure), in other words, the first wet film 310 and the second wet film 310 There is a gap between the opposite side walls of the wet film 320, and the water storage device 400 can be communicated with the water inlets of the first wet film 310 and the water inlet of the second wet film 320 respectively, so that when any one of the wet films 300 needs to be cleaned or humidified, it can be The pipeline between the water storage device 400 and the corresponding wet film 300 is conducted, so that the water in the water storage device 400 is transported into the corresponding wet film 300, and the wet film 300 is cleaned or humidified.
  • the pipeline between the water storage device 400 and the first wet film 310 can be connected, so that the water in the water storage device 400 is transported into the first wet film 310, thereby The first wet film 310 is cleaned or humidified.
  • the water in the water storage device 400 can be simultaneously transported to the first wet film 310 and the second wet film 320 to perform maintenance, cleaning or humidification on the two wet films 300 at the same time.
  • a three-way valve can be provided on the communication pipeline between the water storage device 400 and the first wet film 310 and the second wet film 320, the first port of the three-way valve is communicated with the water storage device 400, and the third port of the three-way valve is connected to the water storage device 400.
  • the second port is connected to the water inlet of the first wet film 310, and the third port of the three-way valve is connected to the water inlet of the second wet film 320.
  • the water storage device 400 can be connected to the second wet film 320 in time.
  • the conduction between the first wet film 310 or the conduction between the water storage device 400 and the second wet film 320 can be provided on the communication pipeline between the water storage device 400 and the first wet film 310 and the second wet film 320, the first port of the three-way valve is communicated with the water storage device 400, and the third port of the three-way valve is connected to the water storage device 400.
  • the second port is connected to the water inlet of
  • the first wet film 310 mainly filters catkins in the outdoor air 102 , the first wet film 310 is more likely to be blocked than the second wet film 320 .
  • the thickness of the wet film 310 may be smaller than the thickness of the second wet film 320 .
  • the thickness of the first wet film 310 or the second wet film 320 refers to the distance between two side walls of the first wet film 310 or the second wet film 320 that are oppositely disposed along the flow direction of the outdoor air 102 .
  • the flow direction of the outdoor air 102 specifically refers to the flow direction of the air in the outdoor air inlet transition section 150 , as shown by arrow a in FIG. 2 .
  • the first wet film 310 is more convenient to maintain or replace, thereby further reducing maintenance difficulty and material replacement costs.
  • the thickness of the first wet film 310 may be set to 10mm-20mm.
  • the thickness of the first wet film 310 is set within the above range, so as to ensure the filtering effect of the first wet film 310 on catkins and large particles of sand and dust in the outdoor air 102 , and at the same time facilitate the first wet film 310 Individual maintenance and replacement of the 310.
  • the thickness of the first wet film 310 may be set to a suitable value such as 10 mm, 12 mm, 14 mm, 16 mm, 18 mm or 29 mm.
  • the thickness of the second wet film 320 may be 10 times to 15 times the thickness of the first wet film 310 when specifically set, so that the entire wet film 300 can ensure the filtration of catkins and large particles of sand and dust in the outdoor air 102 by the entire wet film 300 Effect.
  • the thickness of the first wet film 310 is 10 mm
  • the thickness of the second wet film 320 may be between 100 mm and 150 mm.
  • the thickness of the second wet film 320 can be set to a suitable value such as 100mm, 110mm, 130mm or 150mm, so as to ensure that the outdoor air 102 can effectively filter large-sized sundries such as catkins or large particles of sand after passing through the first wet film 310 and the second wet film 320 .
  • FIG. 3 is a third structural schematic diagram of the indirect evaporative cooling device provided by the embodiment of the present application.
  • the indirect evaporative cooling device 10 in the embodiment of the present application may further include a water tank 700 , the water tank 700 is communicated with the water outlet of the wet film 300 , and the water tank 700 is above the water tank 700 .
  • a drain port 710 is formed, and the drain port 710 is used to discharge the sewage in the water tank 700 .
  • a water tank 700 may be provided in the indirect evaporative cooling device 10 of the embodiment of the present application, the water outlet of the wet film 300 may be communicated with the water tank 700, and a drain port 710 may be provided on the water tank 700.
  • the water storage device 400 The water is transported to the wet film 300, and after the wet film 300 is cleaned and humidified for many times, it can be discharged into the water tank 700 in a centralized manner. The cleaned sewage pollutes the environment.
  • the drain port 710 may be disposed at the bottom of the water tank 700 to ensure that the sewage in the water tank 700 is completely discharged.
  • FIG. 4 is a schematic diagram of a fourth structure of the indirect evaporative cooling device provided by the embodiment of the present application.
  • the indirect evaporative cooling device 10 may further include a water pump 800 .
  • the water tank 700 has a water replenishing port 720, the water storage device 400 communicates with the water replenishing port 720, and the water tank 700 also has a water outlet, and the water outlet communicates with the water inlet of the wet film 300.
  • the membrane 300 is in communication, and the water pump 800 is arranged on the pipeline connecting the water tank 700 with the water inlet of the wet membrane 300 .
  • the water pump 800 is provided at the water outlet of the water tank 700 .
  • the water replenishing port 720 may be provided on the side wall of the water tank 700 .
  • the water tank 700 is connected to the water inlet of the wet film 300, so that when the wet film 300 needs to be cleaned, the water in the water tank 700 can be pumped into the wet film 300 through the water pump 800, and the wet film 300 can be cleaned.
  • the catkins and large particles of sand and dust on the surface are washed, and the washed water is directly discharged into the water tank 700, which can be used for re-flushing, which not only ensures the timeliness and convenience of cleaning the wet film 300, but also the water in the water tank 700 can be used for cleaning. Recycling further reduces the waste of water resources.
  • the water storage device 400 by connecting the water storage device 400 with the water tank 700, when the water in the water tank 700 cannot continue to wash the wet film 300, it can be discharged at any time, and the water storage device 400 can replenish clean water in the water tank 700 at any time to ensure the water tank The cleanliness of the circulating water in 700 makes it always meet the humidification and cleaning requirements of the wet film 300.
  • the water pump 800 in this embodiment of the present application may include, but is not limited to, any one of a metering pump, a centrifugal pump, an axial flow pump, and a mixed flow pump.
  • a flow meter may be provided on the water pump 800 .
  • the indirect evaporative cooling device 10 may further include a liquid level sensor 730 .
  • the liquid level sensor 730 is arranged in the water tank 700 , and the liquid level sensor 730 is used to detect the water level in the water tank 700 to ensure that the water tank is The circulating water in 700 is sufficient.
  • the liquid level sensor 730 may include but is not limited to any one of a float type liquid level sensor, a ball float type liquid level sensor, and a static pressure type liquid level sensor.
  • a float type liquid level sensor a ball float type liquid level sensor
  • a static pressure type liquid level sensor a liquid level sensor 730
  • the specific structure and working principle can be directly referred to the traditional liquid level sensor. , and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种间接蒸发冷却装置(10),通过在室外进风过渡段(150)设置过滤网(200)和湿膜(300),并将湿膜(300)设置在过滤网(200)背离换热芯(100)的室外空气进风口(170)的一侧,在湿膜(300)的进水口处连通储水装置(400),这样,先通过湿膜(300)对室外空气中尺寸较大的杂物例如柳絮以及大颗粒沙尘进行过滤,再经过滤网(200)对细小杂物例如小颗粒沙尘进行精细过滤,在湿膜(300)出现堵塞的情况时,可直接通过储水装置(400)向湿膜(300)提供水源,对湿膜(300)进行冲洗,从而简化了对湿膜(300)的维护工序,降低了间接蒸发冷却装置后期的维护难度以及成本,另外也避免了过滤网(200)短周期脏堵,延长了过滤网(200)的使用寿命,降低了对过滤网(200)的维护成本。

Description

间接蒸发冷却装置
本申请要求于2020年11月26日提交中国专利局、申请号为202011344866.6、申请名称为“间接蒸发冷却装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及制冷设备技术领域,特别涉及一种间接蒸发冷却装置。
背景技术
间接蒸发冷却装置是通过非直接接触式换热芯将直接蒸发冷却得到的湿空气的冷量传递给待处理空气,以实现空气等湿降温的制冷装置,因该间接蒸发冷却装置能够实现待处理空气的等湿降温,同时具有节能的特点,被广泛应用在数据机房、商场等场所。
间接蒸发冷却装置包括换热芯、过滤网和湿膜,换热芯用于实现室内空气与室外空气之间的间接换热,从而降低室内空气的温度。过滤网和湿膜均设置在换热芯的室外进风口处,其中,过滤网位于室外进风口的最外侧,与室外环境直接接触,其用于过滤室外空气中的柳絮以及沙尘等杂物,湿膜设置在过滤网与室外进风口之间,该湿膜用于冷却经过滤网过滤后的室外空气,以增大进入换热芯内的室外空气与室内空气之间的温度差,从而提高换热效率。
然而,传统的间接蒸发冷却装置中,过滤网极易被室外空气中的杂物堵塞,而堵塞后的过滤网不易清理,增大了后期维护难度以及维护成本。
发明内容
本申请实施例提供了一种间接蒸发冷却装置,以解决传统的间接蒸发冷却装置中,过滤网被柳絮或者沙尘等杂物堵塞而不易清理,从而增大了间接蒸发冷却装置的后期维护难度以及维护成本的问题。
本申请实施例提供一种间接蒸发冷却装置,包括换热芯、湿膜、过滤网及储水装置;
间接蒸发冷却装置还包括室外进风过渡段,室外进风过渡段的进风端与室外环境连通,室外进风过渡段的出风端与换热芯的室外空气进风口连通;
湿膜和过滤网均设置在室外进风过渡段内,且过滤网位于湿膜与室外空气进风口之间,储水装置与湿膜的进水口连通,用于冲洗湿膜。
本申请实施例提供的间接蒸发冷却装置,通过在室外进风过渡段设置过滤网和湿膜,并将湿膜设置在过滤网背离换热芯的室外空气进风口的一侧,这样,可先通过湿膜对室外空气中尺寸较大的杂物例如柳絮以及大颗粒沙尘进行过滤,再经过滤网对细小杂物例如小颗粒沙尘进行精细过滤,不仅保证进入换热芯内的室外空气的清洁度,而且避免了过滤网短周期脏堵,延长了过滤网的使用寿命,降低了对过滤网的维护成本,同时而且因湿膜的过滤精度较过滤网低,从而也延长了湿膜的维护周期。另外,通过在湿膜的进水口处连通储水装置,这样,在湿膜出现堵塞的情况时,可直接通过储水装置向湿膜提供水源,对湿膜进行冲洗,从而简化了对湿膜的维护工序,降低了间接蒸发冷却装置后期的维护难度以及成本。另外,对湿膜冲洗的过程也是再次加湿湿膜的过程,从而合理利用了水资源。
在一种可选地实现方式中,湿膜包括第一湿膜和第二湿膜;
第一湿膜和第二湿膜沿室外空气的流动方向依次设置,且第一湿膜位于第二湿膜背离过滤网的一侧,第一湿膜与第二湿膜分体设置。
本申请实施例通过将湿膜设置为分体的第一湿膜和第二湿膜,这样,当第一湿膜或者第二湿膜中的任意一个发生损坏等情况时,可在保证湿膜性能不衰减的前提下直接对其中的一个损坏的部分进行维护或者更换,例如,位于室外进风过渡段最外侧的第一湿膜因堵塞等发生损坏时,可直接对该第一湿膜进行简单维护或者更换,而无需对整个湿膜进行处理,从而降低维护难度以及间接蒸发冷却装置的物料更换成本。
在一种可选地实现方式中,第一湿膜的厚度小于第二湿膜的厚度;
其中,第一湿膜或者第二湿膜的厚度是指第一湿膜或者第二湿膜沿室外空气的流动方向相对设置的两个侧壁之间的距离。
因第一湿膜对室外空气中的柳絮起主要过滤作用,因此该第一湿膜相比于第二湿膜更易堵塞,本申请实施例通过将第一湿膜的厚度设置为小于第二湿膜的厚度,使得第一湿膜更加便于维护或者更换,从而进一步降低了维护难度以及物料更换成本。
在一种可选地实现方式中,第一湿膜与第二湿膜相对的侧壁相接触。
本申请实施例通过将第一湿膜与第二湿膜相对的侧壁接触设置,不仅节约湿膜在间接蒸发冷却装置内的占用空间,而且方便对第一湿膜和第二湿膜进行统一清洗。
在一种可选地实现方式中,第一湿膜的厚度为10mm-20mm。
本申请实施例通过将第一湿膜的厚度设置在上述范围内,以在保证第一湿膜对室外空气的柳絮以及大颗粒沙尘的过滤效果的同时,方便了第一湿膜的单独维护以及更换。
在一种可选地实现方式中,第二湿膜的厚度是第一湿膜厚度的10倍-15倍,以进一步确保整个湿膜对室外空气中的柳絮以及大颗粒沙尘的过滤效果。
在一种可选地实现方式中,间接蒸发冷却装置还包括水箱;
水箱与湿膜的出水口连通,且水箱上形成有排水口,排水口用于排出水箱内的污水。
本申请实施例通过在湿膜的出水口处连通一水箱,并在水箱上设置排水口,使得对湿膜进行冲洗后的污水能够集中至水箱内,并能够定期统一排出,降低对环境的污染。
在一种可选地实现方式中,间接蒸发冷却装置还包括水泵;
水箱上具有补水口,储水装置与补水口连通,水箱上还具有出水口,出水口与湿膜的进水口连通,水泵设置在水箱与湿膜的进水口连通的管路上。
本申请实施例通过将水箱连通至湿膜的进水口,这样,当需要对湿膜进行清洗时,可通过水泵将水箱内的水打入湿膜内,对湿膜上的杂物例如柳絮以及大颗粒沙尘进行冲洗,冲洗后的水直接排入水箱内,可供再次冲洗使用,不仅保证了对湿膜的清理及时性和方便性,而且水箱内的水可循环使用,也进一步降低了对水资源的浪费。另外,通过将储水装置与水箱连通,这样当水箱内的水无法继续冲洗湿膜时,可随时排出,并通过该储水装置随时为水箱内补充清洁水,保证水箱内的循环水的清洁度,使其始终满足湿膜的加湿与清洗要求。
在一种可选地实现方式中,间接蒸发冷却装置还包括液位传感器;
液位传感器设置在水箱内,液位传感器用于检测水箱内的水位。
本申请实施例通过在水箱内设置液位传感器,以随时监测水箱内的水位,确保水箱内的循环水充足。
在一种可选地的实现方式中,间接蒸发冷却装置还包括颗粒度检测装置;
颗粒度检测装置设置在室外进风过渡段的进风端处,颗粒度检测装置用于检测室外空气 中沙尘含量,以在沙尘含量达到预设值时,通过储水装置向湿膜提供水源,以冲洗湿膜。
本申请实施例通过在室外进风过渡段的进风端处设置颗粒度检测装置,以随时检测室外空气中沙尘含量,从而在该沙尘含量达到预设值时,能够及时对湿膜进行冲洗,从而避免湿膜发生堵塞而影响后续过滤,缩短该湿膜的脏堵周期,保证室外空气能够及时通过湿膜以及过滤网顺利进入换热芯内,实现对室内空气的有效散热。
在一种可选地实现方式中,间接蒸发冷却装置还包括水阀;
水阀设置在储水装置与湿膜的进水口连通的管道上。
本申请实施例通过在储水装置与湿膜的进水口连通的管道上设置水阀,以控制对湿膜的冲洗以及加湿过程,减小水资源的浪费,同时保证湿膜的性能不受影响。
附图说明
图1是本申请实施例提供的间接蒸发冷却装置的第一种结构示意图;
图2是本申请实施例提供的间接蒸发冷却装置的第二种结构示意图;
图3是本申请实施例提供的间接蒸发冷却装置的第三种结构示意图;
图4是本申请实施例提供的间接蒸发冷却装置的第四种结构示意图。
附图标记说明:
10-间接蒸发冷却装置;
101-室内空气;102-室外空气;
100-换热芯;200-过滤网;300-湿膜;400-储水装置;500-水阀;600-颗粒度检测装置;700-水箱;800-水泵;900-风扇;
110-室内进风过渡段;120-室内空气进风口;130-室内空气出风口;140-室内出风过渡段;150-室外进风过渡段;160-室外空气进风口;170-室外空气出风口;180-室外出风过渡段;310-第一湿膜;320-第二湿膜;710-排水口;720-补水口;730-液位传感器;
111-室内进风口;141-室内出风口;151-室外进风口;181-室外出风口。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
间接蒸发冷却装置是通过非直接接触式换热芯将直接蒸发冷却得到的湿空气的冷量传递给待处理空气,以实现空气等湿降温的制冷装置,因该间接蒸发冷却装置能够实现待处理空气的等湿降温,同时具有节能的特点,被广泛应用在数据机房、商场等场所。
以数据机房为例,实际应用中,数据机房内通常安装有基站设备、电源设备、蓄电池、传输设备等,为了保证基站设备等能够在正常温度下稳定工作,在数据机房内可以安装间接蒸发冷却装置,通过该间接蒸发冷却装置对数据机房内的空气进行散热,以控制户外机柜或者机房内部的温度,从而保证数据机房内的基站设备、电源设备等的正常工作,防止数据机房内的设备受损。
传统技术中,间接蒸发冷却装置包括换热芯、过滤网以及湿膜。其中,该换热芯内具有相互独立的室内空气循环通道和室外空气循环通道,该室内空气循环通道的两端通过室内空气进风口和室内空气出风口分别与室内环境连通,以使该室内空气循环通道与室内环境内空气能够循环流通。室外空气循环通道的两端分别通过室外空气进风口和室外空气出风口分别 与室外环境连通,以使该室外空气循环通道与室外环境内的空气能够循环流通。
实际应用中,在换热芯的室外进风口与室外环境之间具有室外进风过渡段,例如,间接蒸发冷却装置具有室外进风口,室外进风过渡段的一端与室外进风口连通,以保证室外进风过渡段与室外环境连通,室外进风过渡段的另一端与换热芯的室外空气进风口连通,以保证室外进风过渡段与换热芯内的室外空气循环通道连通,这样,便可实现室外空气循环通道与室外环境之间的连通。
间接蒸发冷却装置的湿膜和过滤网均设置在室外进风过渡段内,且湿膜位于过滤网与换热芯的室外空气进风口之间,也即是说,过滤网位于靠近室外进风口的位置,湿膜位于过滤网背离室外进风口的一侧,例如,过滤网位于室外进风口处,湿膜位于换热芯的室外空气进风口处。
间接蒸发冷却装置对数据机房进行散热时,室内的热空气通过室内空气进风口进入换热芯的室内空气循环通道内,室外空气先通过室外进风口进入室外进风过渡段,先通过过滤网对该室外空气中的杂物例如柳絮以及沙尘颗粒等进行过滤,继而通过湿膜对过滤后的室外空气进行加湿降温,降温后的室外空气随后经换热芯的室外空气进风口进入室外空气循环通道内,与室内空气循环通道内的高温空气进行热交换,降温后的室内空气随后经室内空气出风口进入室内即数据机房内部,对数据机房内的蓄电池等设备进行散热,室外空气循环通道内的室外空气受热后从室外空气出风口排出至室外即数据机房外部。
其中,因过滤网的过滤精度较湿膜大,且过滤网位于靠近室外环境的一侧,则该过滤网起到精细过滤室外空气的作用,湿膜仅起到加湿并降低室外空气温度的作用。
春季时节,室外空气中弥漫有大量的柳絮以及沙尘等杂物,尤其是在我国西北部地区,室外空气中的柳絮以及沙尘更多,因过滤网的过滤效率较高,使得该过滤网极易被室外空气中的柳絮以及沙尘等杂物堵塞,而脏堵后的过滤网需要人力进行维护,维护难度大,通常会直接更换新的过滤网,这就增大了间接蒸发冷却装置的后期维护难度以维护成本。
本申请实施例提供一种间接蒸发冷却装置,通过在室外进风过渡段设置过滤网和湿膜,并将湿膜设置在过滤网背离换热芯的室外空气进风口的一侧,这样,可先通过湿膜对室外空气内尺寸较大的杂物例如柳絮以及大颗粒沙尘进行过滤,再经过滤网对尺寸较小的杂物例如小颗粒沙尘进行精细过滤,不仅保证进入换热芯内的室外空气的清洁度,而且避免了过滤网短周期脏堵,延长了过滤网的使用寿命,降低了对过滤网的维护成本,同时而且因湿膜的过滤精度较过滤网低,从而也延长了湿膜的维护周期。另外,通过在湿膜的进水口处连通储水装置,这样,在湿膜出现堵塞的情况时,可直接通过储水装置向湿膜提供水源,对湿膜进行冲洗,从而简化了对湿膜的维护工序,降低了间接蒸发冷却装置后期的维护难度以及成本。另外,对湿膜冲洗的过程也是再次加湿湿膜的过程,从而合理利用了水资源。
以下通过几个实施例并结合附图对本申请实施例的间接蒸发冷却装置的具体结构进行详细描述。
实施例一
图1是本申请实施例提供的间接蒸发冷却装置的第一种结构示意图。参照图1所示,本申请实施例提供一种间接蒸发冷却装置10,包括换热芯100、湿膜300、过滤网200及储水装置400。
其中,换热芯100内具有相互独立的室内空气循环通道和室外空气循环通道,该室内空气循环通道的两端分别通过室内空气进风口120和室内空气出风口130分别与室内环境连通,以使该室内空气循环通道与室内环境内空气能够循环流通。
实际应用中,间接蒸发冷却装置10还包括室内进风过渡段110和室内出风过渡段140,其中,间接蒸发冷却装置10还包括室内进风口111和室内出风口141。
室内进风口111与室内环境连通,室内进风过渡段110的进风端与室内进风口111连通,以使室内进风过渡段110与室内环境连通,室内进风过渡段110的出风端与换热芯100的室内空气进风口120,以使室内进风过渡段110与室内空气循环通道连通,这样,室内环境便通过室内进风过渡段110与换热芯100的室内空气循环通道连通,使得室内环境中的空气即室内空气101依次通过室内进风口111、室内进风过渡段110及室内空气进风口120进入室内空气循环通道内。
其中,室内进风口111可以设置在室内进风过渡段110与室内环境连通的任意一个侧壁上,例如,该室内进风口111可以设置在间接蒸发冷却装置10设有室内进风过渡段110的顶壁上。
另外,室内出风口141与室内环境连通,室内出风过渡段140的进风端与换热芯100的室内空气出风口130连通,使得该室内出风过渡段140与室内空气循环通道连通,室内出风过渡段140的出风端与室内出风口141连通,使得该室内出风过渡段140与室内环境连通,这样,换热芯100的室内空气循环通道便通过室内出风过渡段140与室内环境连通,从而使得室内空气循环通道内的空气依次通过室内空气出风口130、室内出风过渡段140以及室内出风口141进入室内环境中。其中,室内出风口141可以设置在室内出风过渡段140与室内环境连通的任意一个侧壁上,例如,该室内进风口111可以设置在间接蒸发冷却装置10设有室内出风过渡段140的侧壁上。
基于上述可知,室内进风过渡段110、室内空气101循环通道及室内出风过渡段140共同形成与室内空气循环流通的室内空气流动通道。实际应用中,可以在室内出风过渡段140设置风扇900,以促进间接蒸发冷却装置10的室内空气流动通道与室内环境中空气的流动效率,从而提高换热效率。
本申请实施例中,室外空气循环通道的两端分别通过室外空气进风口160和室外空气出风口170与室外环境连通,以使该室外空气循环通道与室外环境内的空气能够循环流通。
实际应用中,间接蒸发冷却装置10还包括室外进风过渡段150和室外出风过渡段180。
其中,间接蒸发冷却装置10具有室外进风口151,室外进风口151与室外环境连通,室外进风过渡段150的进风端与室外进风口151连通,以保证室外进风过渡段150与室外环境连通,室外进风过渡段150的出风端与换热芯100的室外空气进风口160连通,以保证室外进风过渡段150与换热芯100内的室外空气循环通道连通,这样,室外环境便通过室外进风过渡段150与换热芯100的室内空气循环通道连通,使得室外环境中的空气即室外空气102依次通过室外进风口151、室外进风过渡段150及室外空气进风口160进入室外空气循环通道内。
其中,室外进风口151可以设置在室外进风过渡段150与室外环境连通的任意一个侧壁上,例如,该室外进风口151可以设置在间接蒸发冷却装置10设有室外进风过渡段150的侧壁上。
另外,间接蒸发冷却装置10具有室外出风口181,室外出风口181与室外环境连通,室外出风过渡段180的进风端与换热芯100的室外空气出风口170连通,以保证室外出风过渡段180与换热芯100的室外空气循环通道连通,室外出风过渡段180的出风端与室外出风口181连通,以保证室外出风过渡段180与室外环境连通,这样,换热芯100的室外空气循环通道便通过室外出风过渡段180与室外环境连通,从而使得室外空气循环通道内的空气依次 通过室外空气出风口170、室外出风过渡段180以及室外出风口181进入室外环境中。
其中,室外出风口181可以设置在室外出风过渡段180与室外环境连通的任意一个侧壁上,例如,该室外进风口151可以设置在间接蒸发冷却装置10设有室外出风过渡段180的侧壁上。
基于上述可知,室外进风过渡段150、室外空气循环通道及室外出风过渡段180共同形成与室外空气102循环流通的室外空气流动通道。
实际应用中,可以在室外出风过渡段180设置风扇900,以促进间接蒸发冷却装置10的室外空气流动通道与室外环境中空气的流动效率,从而提高换热效率。
需要说明的是,换热芯100的结构可为多种,例如,该换热芯100可以是一体成型的一体件,在该一体件内具有相互独立且交叉设置的多个管路,其中沿第一方向延伸的一个或多个管路形成室内空气循环通道,沿第二方向延伸的一个或多个管路形成室外空气循环通道,且第一方向和第二方向之间具有一定夹角。这样,室内空气循环通道内的空气可通过相邻管壁与室外空气循环通道内的空气进行热交换。本申请实施例不对换热芯100的具体结构进行限制,具体可直接参照现有的换热芯。
本申请实施例的湿膜300和过滤网200均设置在室外进风过渡段150内,其中,过滤网200位于湿膜300与换热芯100的室外空气进风口160之间,也即是说,湿膜300靠近室外进风过渡段150的进风端设置,过滤网200靠近换热芯100的室外空气进风口160设置,例如,该湿膜300设置在室外进风过渡段150的进风端,过滤网200设置在换热芯100的室外空气进风口160处。
本申请实施例中,湿膜300为一体成型的一体件,这样不仅提高了该湿膜300的结构稳定性,而且使得该湿膜300在室外进风口151过渡段中的装配更加方便快捷。
可以理解的是,本申请实施例的湿膜300以及过滤网200可通过抵接、卡接、粘接、螺钉连接等方式固定在间接蒸发冷却装置10位于室外进风过渡段150的内壁上,本申请实施例具体不对湿膜300以及过滤网200的固定方式进行限制。
本申请实施例的间接蒸发冷却装置10对数据机房等待降温场所进行散热时,室内的热空气依次通过室内进风口111、室内进风过渡段110以及室内空气进风口120进入换热芯100的室内空气循环通道内,室外空气102先通过室外进风口151进入室外进风过渡段150,继而通过湿膜300对室外空气102中尺寸较大的杂物例如柳絮及大颗粒沙尘等进行过滤,同时,该室外空气102与湿膜300中的冷水进行热交换,以加湿室外空气102并降低室外空气102的温度,随后过滤网200对加湿并降温后的室外空气102中的尺寸较小的杂物例如小颗粒沙尘进行精细过滤,过滤后的室外空气102接着经换热芯100的室外空气进风口160进入室外空气循环通道内,与室内空气循环通道内的高温空气进行热交换,降温后的室内空气101依次经室内空气出风口130、室内出风过渡段140及室内出风口141进入室内例如数据机房内部,对数据机房内的蓄电池等设备进行散热,室外空气循环通道内的室外空气102受热后依次经室外空气出风口170、室外出风过渡段180及室外出风口181排出至室外例如数据机房外部。
其中,湿膜300对室外空气102的加湿降温过程具体为:因室外空气102的温度较湿膜300内的水高,则室外空气102将热量传递至湿膜300内的冷水中,使得该冷水蒸发为水蒸汽,并与室外空气102进行混合,从而实现室外空气102的加湿以及降温作用。降温后的室外空气102增大了与室内空气101之间的温度差,从而提高了间接蒸发冷却装置10对室内空气101的散热效率。
可以理解的是,湿膜300设置在过滤网200背离换热芯100的室外空气进风口160的一侧,且该湿膜300上具有过滤孔,且该过滤孔大于过滤网200的过滤孔,也即是说,该湿膜300的过 滤效率低于过滤网200的过滤效率,湿膜300先对室外空气102中尺寸较大的杂物例如柳絮或大颗粒沙尘进行过滤,初步过滤后的室外空气102再经过滤网200进行精细过滤,即通过该过滤网200过滤室外空气102中的细小杂物例如小颗粒沙尘,这样,不仅保证进入换热芯100内的室外空气102的清洁度,而且避免了过滤网200短周期脏堵,延长了过滤网200的使用寿命,降低了对过滤网200的维护成本,同时而且因湿膜300的过滤精度较过滤网200低,从而也延长了湿膜300的维护周期。
本申请实施例中,湿膜300以及过滤网200的具体结构可直接参照传统的结构,此处不再赘述。
本申请实施例的储水装置400与湿膜300的进水口连通,用于冲洗湿膜300。例如,因长期过滤尺寸较大的杂物例如柳絮或大颗粒沙尘等,使得该湿膜300不可避免地会发生脏堵,而当该湿膜300被柳絮或者大颗粒沙尘等杂物堵塞时,可导通储水装置400与湿膜300之间的管路,使得储水装置400内的水进入湿膜300内,对湿膜300中的杂物进行冲洗,从而使堵塞的湿膜300快速疏通。
本申请实施例通过在湿膜300上连通储水装置400,以在湿膜300发生堵塞时,通过冲洗湿膜300,以疏通湿膜300内的过孔,简化了对湿膜300的维护工序,降低了间接蒸发冷却装置10后期的维护难度以及成本。
另外,通过储水装置400向湿膜300提供水源,以冲洗湿膜300,此过程不仅起到疏通湿膜300作用,确保室外空气102能够通过湿膜300顺利进入换热芯100内,也保证湿膜300能够对室外空气102中的大尺寸杂物进行过滤,而且冲洗湿膜300的过程也是再次加湿湿膜300的过程,从而在保证湿膜300对室外空气102进行加湿降温的同时,合理利用了水资源。
参照图1所示,本申请实施例的间接蒸发冷却装置10还可以包括水阀500,该水阀500设置在储水装置400与湿膜300的进水口连通的管道上,这样,当需要对湿膜300进行清洗维护时,可打开水阀500,使得储水装置400内的水通过湿膜300的进水口进入湿膜300内部,完成对大尺寸杂物的冲洗过程。
本申请实施例通过在储水装置400与湿膜300的进水口连通的管道上设置水阀500,以控制对湿膜300的冲洗以及加湿过程,减小水资源的浪费,同时保证湿膜300的性能不受影响。
具体设置时,该水阀500可以为开关阀,也可以为流量调节阀,例如,当需要加湿湿膜300时,可通过流量调节阀调小储水装置400进入湿膜300内的水流量,以避免对湿膜300的结构造成损坏,同时便于控制加湿程度。当湿膜300堵塞严重时,可通过流量调节阀调大储水装置400进入湿膜300内的水流量,以提高对湿膜300的冲洗效率,保证湿膜300能够顺利疏通。
示例性地,本申请实施例的水阀500可以为电磁阀,这样,可通过信号对电磁阀的开关状态进行控制,从而提高对湿膜300的维护以及加湿的控制效率,进而提高整个间接蒸发冷却装置10的维护效率。
其中,电磁阀的具体结构以及工作原理可直接参照传统技术中的电磁阀,此处不再赘述。
本申请实施例的储水装置400在具体设置时,可以为储水箱,该储水箱通过管道与湿膜300的进水口连通,水阀500可以设置在储水箱与湿膜300连通的管路上,例如,该水阀500可以设置在靠近储水箱的位置,也可以设置在湿膜300的进水口处,本申请实施例不对水阀500的具体位置进行限制。
当需要向湿膜300供水时,可打开水阀500,使储水箱内的水进入湿膜300内,对湿膜300进行加湿,或者冲洗湿膜300内的杂物。
在其他示例中,该储水装置400还可以是输水管道,水阀500可以为设置在输水管道上的 水龙头。当需要向湿膜300供水时,可打开水龙头,使输水管道内的水进入湿膜300内,对湿膜300进行加湿,或者冲洗湿膜300内的杂物。
在一种可选地的实现方式中,本申请实施例的间接蒸发冷却装置10还可以包括颗粒度检测装置600。颗粒度检测装置600设置在室外进风过渡段150的进风端处,颗粒度检测装置600用于检测室外空气102中沙尘含量,以在沙尘含量达到预设值时,通过储水装置400向湿膜300提供水源,以冲洗湿膜300。
例如,该颗粒度检测装置600可以安装在室外进风口151的外部,也可以设置在室外进风口151的内壁上,此处不对该颗粒度检测装置600的具体设置进行限制,只要能够准确检测进入湿膜300内的室外空气102中沙尘含量即可。
本申请实施例通过在室外进风过渡段150的进风端处设置颗粒度检测装置600,以随时检测室外空气102中沙尘含量,从而在该沙尘含量达到预设值时,能够及时对湿膜300进行冲洗,从而避免湿膜300发生堵塞而影响后续过滤,缩短该湿膜300的脏堵周期,保证室外空气102能够及时通过湿膜300以及过滤网200顺利进入换热芯100内,实现对室内空气101的有效散热。
其中,该颗粒度检测装置600的具体结构和工作原理可以直接参照传统技术中的颗粒度检测仪,此处不再赘述。
本申请实施例提供的间接蒸发冷却装置10,通过在室外进风过渡段150设置过滤网200和湿膜300,并将湿膜300设置在过滤网200背离换热芯100的室外空气进风口160的一侧,这样,可先通过湿膜300对室外空气102中尺寸较大的杂物例如柳絮以及大颗粒沙尘进行过滤,再经过滤网200对细小杂物例如小颗粒沙尘进行精细过滤,不仅保证进入换热芯100内的室外空气102的清洁度,而且避免了过滤网200短周期脏堵,延长了过滤网200的使用寿命,降低了对过滤网200的维护成本,同时而且因湿膜300的过滤精度较过滤网200低,从而也延长了湿膜300的维护周期。另外,通过在湿膜300的进水口处连通储水装置400,这样,在湿膜300出现堵塞的情况时,可直接通过储水装置400向湿膜300提供水源,对湿膜300进行冲洗,从而简化了对湿膜300的维护工序,降低了间接蒸发冷却装置10后期的维护难度以及成本。另外,对湿膜300冲洗的过程也是再次加湿湿膜300的过程,从而合理利用了水资源。
实施例二
图2是本申请实施例提供的间接蒸发冷却装置的第二种结构示意图。参照图2所示,与实施例一不同的是,本申请实施例的湿膜300包括第一湿膜310和第二湿膜320,其中,第一湿膜310和第二湿膜320沿室外空气102的流动方向依次设置,且第一湿膜310位于第二湿膜320背离过滤网200的一侧,第一湿膜310与第二湿膜320分体设置。
可以理解的是,因第一湿膜310和第二湿膜320设置在室外进风过渡段150中,因此,该第一湿膜310和第二湿膜320具体沿室外进风过渡段150中空气的流动方向(参照图2中箭头a所指的方向)依次设置,其中,第二湿膜320位于第一湿膜310与过滤网200之间,也即是说,第一湿膜310靠近室外进风口151设置,第二湿膜320靠近过滤网200设置。
可以理解的是,箭头a所指的方向与室外空气102在室外进风过渡段150中的流动方向一致。
本申请实施例中,第一湿膜310与第二湿膜320分体设置具体是指该第一湿膜310和第二湿膜320相互独立,两者中的任意一个可以单独从间接蒸发冷却装置10中拆卸下来。
参照图2所示,本申请实施例的间接蒸发冷却装置10具体工作时,室外空气102从室外进风口151进入室外进风过渡段150后,先经过第一湿膜310,通过该第一湿膜310对室外空气102中尺寸较大的杂物例如柳絮及大颗粒沙尘进行初步过滤,同时对室外空气102进行第一次加湿 降温,接着进入第二湿膜320内,通过该第二湿膜320对室外空气102中剩余的柳絮或者大颗粒沙尘等继续进行过滤,同时对室外空气102进行第二次加湿降温,经过第一湿膜310与第二湿膜320的粗过滤后,室外空气102再经过过滤网200进行精细过滤,即通过该过滤网200对室外空气102中尺寸较小的杂物例如小颗粒沙尘进行过滤,以保证进入换热芯100内的室外空气102的清洁度,经湿膜300以及过滤网200处理后的室外空气102进入室外空气循环通道内,与室内空气循环通道内的室内空气101进行热交换。
本申请实施例通过将湿膜300设置为分体的第一湿膜310和第二湿膜320,这样,当第一湿膜310或者第二湿膜320中的任意一个发生损坏等情况时,可在保证湿膜300性能不衰减的前提下直接对其中的一个损坏的部分进行维护或者更换。
例如,位于室外进风过渡段150最外侧的第一湿膜310因堵塞等发生损坏时,可直接对该第一湿膜310进行简单维护或者更换,而无需对整个湿膜300进行处理,从而降低维护难度以及间接蒸发冷却装置10的物料更换成本。
参照图2所示,在一些示例中,第一湿膜310与第二湿膜320相对的侧壁相接触,也即是说,第一湿膜310与第二湿膜320相对的侧壁之间的间隙为零,这样,可在储水装置400上连通一个管道,且该管道的出水口与第一湿膜310的进水口连通,或者与第二湿膜320的进水口连通,均可实现对第一湿膜310和第二湿膜320的统一清洗维护以及加湿,从而简化了间接蒸发冷却装置10的装配工序,提高了湿膜300的维护效率。
另外,本申请实施例通过将第一湿膜310与第二湿膜320相对的侧壁接触设置,还节约湿膜300在间接蒸发冷却装置10内的占用空间,从而方便间接蒸发冷却装置10中其他零部件的安装。
在其他示例中,第一湿膜310与第二湿膜320还可沿室外进风过渡段150的延伸方向间隔设置(图中未示出),换句话说,第一湿膜310与第二湿膜320相对的侧壁之间具有间隙,储水装置400可分别与第一湿膜310和第二湿膜320的进水口连通,这样,当任意一个湿膜300需要清理或者加湿时,可导通储水装置400与对应的湿膜300之间的管路,使得储水装置400内的水输送至相应的湿膜300内,对该湿膜300进行清洗或者加湿。
例如,当第一湿膜310需要清理或者加湿时,可导通储水装置400与第一湿膜310之间的管路,使得储水装置400内水输送至第一湿膜310内,从而对该第一湿膜310进行清理或者加湿。
当然,可将储水装置400内的水同时输送至第一湿膜310和第二湿膜320内,以对两个湿膜300同时进行维护清理或者加湿。
其中,可以在储水装置400与第一湿膜310和第二湿膜320的连通管路上设置一个三通阀,该三通阀的第一端口与储水装置400连通,三通阀的第二端口与第一湿膜310的进水口连通,三通阀的第三端口与第二湿膜320的进水口连通,这样,通过对三通阀进行操作,以及时实现储水装置400与第一湿膜310之间的导通或者储水装置400与第二湿膜320之间的导通。
因第一湿膜310对室外空气102中的柳絮起主要过滤作用,因此该第一湿膜310相比于第二湿膜320更易堵塞,因此,在具体设置时,本申请实施例的第一湿膜310的厚度可小于第二湿膜320的厚度。
需要说明的是,第一湿膜310或者第二湿膜320的厚度是指第一湿膜310或者第二湿膜320沿室外空气102的流动方向相对设置的两个侧壁之间的距离。其中,该室外空气102的流动方向具体是指室外进风过渡段150中空气的流动方向,参照图2中a箭头所示。
本申请实施例通过将第一湿膜310的厚度设置为小于第二湿膜320的厚度,使得第一湿膜310更加便于维护或者更换,从而进一步降低了维护难度以及物料更换成本。
具体实现时,第一湿膜310的厚度可以设置为10mm-20mm。
本申请实施例通过将第一湿膜310的厚度设置在上述范围内,以在保证第一湿膜310对室外空气102的柳絮以及大颗粒沙尘的过滤效果的同时,方便了第一湿膜310的单独维护以及更换。例如,第一湿膜310的厚度可以设置为10mm、12mm、14mm、16mm、18mm或者29mm等合适的数值。
另外,第二湿膜320的厚度在具体设置时,可以是第一湿膜310厚度的10倍-15倍,这样可确保整个湿膜300对室外空气102中的柳絮以及大颗粒沙尘的过滤效果。例如,当第一湿膜310的厚度为10mm时,第二湿膜320的厚度可以为100mm-150mm之间,例如,当第一湿膜310的厚度为10mm时,第二湿膜320的厚度可以设置为100mm、110mm、130mm或者150mm等合适的数值,从而保证室外空气102经第一湿膜310和第二湿膜320后能够完成对大尺寸杂物例如柳絮或者大颗粒沙尘的有效过滤。同时,也保证室外空气102在经过第一湿膜310和第二湿膜320后能够得到有效的降温,从而确保本申请实施例的间接蒸发冷却装置10的换热效率。
实施例三
图3是本申请实施例提供的间接蒸发冷却装置的第三种结构示意图。参照图3所示,在实施例一或者实施例二的基础上,本申请实施例的间接蒸发冷却装置10还可以包括水箱700,该水箱700与湿膜300的出水口连通,且水箱700上形成有排水口710,排水口710用于排出水箱700内的污水。
例如,可以在本申请实施例的间接蒸发冷却装置10内设置一水箱700,将湿膜300的出水口与该水箱700连通,同时在水箱700上设置排水口710,这样,储水装置400内的水输送至湿膜300内,对湿膜300进行多次清洗以及加湿后可集中排入水箱700内,而当水箱700内的污水积攒过多后,可集中排出至下水道等位置,从而降低清洗后的污水对环境造成污染。
其中,排水口710可以设置在水箱700的底部,以保证水箱700内的污水彻底排出。
图4是本申请实施例提供的间接蒸发冷却装置的第四种结构示意图。参照图4所示,本申请实施例的间接蒸发冷却装置10还可以包括水泵800。水箱700上具有补水口720,储水装置400与补水口720连通,水箱700上还具有出水口,出水口与湿膜300的进水口连通,换句话说,储水装置400通过水箱700与湿膜300连通,水泵800设置在水箱700与湿膜300的进水口连通的管路上。例如,该水泵800设置在水箱700的出水口处。
其中,补水口720可以设置在水箱700的侧壁上。
本申请实施例通过将水箱700连通至湿膜300的进水口,这样,当需要对湿膜300进行清洗时,可通过水泵800将水箱700内的水打入湿膜300内,对湿膜300上的柳絮以及大颗粒沙尘进行冲洗,冲洗后的水直接排入水箱700内,可供再次冲洗使用,不仅保证了对湿膜300的清理及时性和方便性,而且水箱700内的水可循环使用,也进一步降低了对水资源的浪费。
另外,通过将储水装置400与水箱700连通,这样当水箱700内的水无法继续冲洗湿膜300时,可随时排出,并通过该储水装置400随时为水箱700内补充清洁水,保证水箱700内的循环水的清洁度,使其始终满足湿膜300的加湿与清洗要求。
本申请实施例的水泵800可以包括但不限于计量泵、离心泵、轴流泵及混流泵中的任意一种。为了观测水箱700进入湿膜300中的水的流量,可以在水泵800上设置流量测量仪。
继续参照图4所示,本申请实施例的间接蒸发冷却装置10还可以包括液位传感器730,液位传感器730设置在水箱700内,液位传感器730用于检测水箱700内的水位,确保水箱700内的循环水充足。
其中,液位传感器730可以包括但不限于浮筒式液位传感器、浮球式液位传感器、静压式液位传感器中的任意一种,具体的结构和工作原理可直接参照传统的液位传感器,此处不再赘述。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。

Claims (11)

  1. 一种间接蒸发冷却装置,其特征在于,包括换热芯、湿膜、过滤网及储水装置;
    所述间接蒸发冷却装置还包括室外进风过渡段,所述室外进风过渡段的进风端与室外环境连通,所述室外进风过渡段的出风端与所述换热芯的室外空气进风口连通;
    所述湿膜和所述过滤网均设置在所述室外进风过渡段内,且所述过滤网位于所述湿膜与所述室外空气进风口之间,所述储水装置与所述湿膜的进水口连通,用于冲洗所述湿膜。
  2. 根据权利要求1所述的间接蒸发冷却装置,其特征在于,所述湿膜包括第一湿膜和第二湿膜;
    所述第一湿膜和第二湿膜沿所述室外空气的流动方向依次设置,且所述第一湿膜位于所述第二湿膜背离所述过滤网的一侧,所述第一湿膜与所述第二湿膜分体设置。
  3. 根据权利要求2所述的间接蒸发冷却装置,其特征在于,所述第一湿膜的厚度小于所述第二湿膜的厚度;
    其中,所述第一湿膜或者第二湿膜的厚度是指所述第一湿膜或者第二湿膜沿所述室外空气的流动方向相对设置的两个侧壁之间的距离。
  4. 根据权利要求2或3所述的间接蒸发冷却装置,其特征在于,所述第一湿膜与所述第二湿膜相对的侧壁相接触。
  5. 根据权利要求3或4所述的间接蒸发冷却装置,其特征在于,所述第一湿膜的厚度为10mm-20mm。
  6. 根据权利要求5所述的间接蒸发冷却装置,其特征在于,所述第二湿膜的厚度是第一湿膜厚度的10倍-15倍。
  7. 根据权利要求1-6任一项所述的间接蒸发冷却装置,其特征在于,所述间接蒸发冷却装置还包括水箱;
    所述水箱与所述湿膜的出水口连通,且所述水箱上形成有排水口,所述排水口用于排出所述水箱内的污水。
  8. 根据权利要求7所述的间接蒸发冷却装置,其特征在于,所述间接蒸发冷却装置还包括水泵;
    所述水箱上具有补水口,所述储水装置与所述补水口连通,所述水箱上还具有出水口,所述出水口与所述湿膜的进水口连通,所述水泵设置在所述水箱与所述湿膜的进水口连通的管路上。
  9. 根据权利要求8所述的间接蒸发冷却装置,其特征在于,所述间接蒸发冷却装置还包括液位传感器;
    所述液位传感器设置在所述水箱内,所述液位传感器用于监测所述水箱内的水位。
  10. 根据权利要求1-9任一项所述的间接蒸发冷却装置,其特征在于,所述间接蒸发冷却装置还包括颗粒度检测装置;
    所述颗粒度检测装置设置在所述室外进风过渡段的进风端处,所述颗粒度检测装置用于检测室外空气中沙尘含量,以在所述沙尘含量达到预设值时,通过所述储水装置向所述湿膜提供水源,以冲洗所述湿膜。
  11. 根据权利要求1-10任一项所述的间接蒸发冷却装置,其特征在于,所述间接蒸发冷却装置还包括水阀;
    所述水阀设置在所述储水装置与所述湿膜的进水口连通的管道上。
PCT/CN2021/092828 2020-11-26 2021-05-10 间接蒸发冷却装置 WO2022110670A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011344866.6 2020-11-26
CN202011344866.6A CN112611034A (zh) 2020-11-26 2020-11-26 间接蒸发冷却装置

Publications (1)

Publication Number Publication Date
WO2022110670A1 true WO2022110670A1 (zh) 2022-06-02

Family

ID=75225272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092828 WO2022110670A1 (zh) 2020-11-26 2021-05-10 间接蒸发冷却装置

Country Status (2)

Country Link
CN (1) CN112611034A (zh)
WO (1) WO2022110670A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112611034A (zh) * 2020-11-26 2021-04-06 华为技术有限公司 间接蒸发冷却装置
CN113465059B (zh) * 2021-05-31 2023-02-03 华为数字能源技术有限公司 一种蒸发冷却机组及数据中心
CN113349069A (zh) * 2021-07-10 2021-09-07 河南天聚福农牧发展有限公司 一种舍内温湿度智能控制的环保猪舍

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201187849Y (zh) * 2008-04-10 2009-01-28 西安工程大学 一种管式间接和填料式直接两级蒸发冷却空调机组
CN201926347U (zh) * 2011-01-27 2011-08-10 张宜万 多通道板翅式露点间接蒸发冷却装置
CN111140949A (zh) * 2019-11-25 2020-05-12 广东申菱环境系统股份有限公司 一种间接蒸发冷却装置及方法
CN111442443A (zh) * 2020-04-20 2020-07-24 西安工程大学 具有过滤柳絮功能的蒸发冷却空调机组
CN111637569A (zh) * 2020-07-22 2020-09-08 深圳易信科技股份有限公司 一种间接蒸发空气冷却装置
CN112611034A (zh) * 2020-11-26 2021-04-06 华为技术有限公司 间接蒸发冷却装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201740133U (zh) * 2009-12-17 2011-02-09 王玉玲 一种节能型降温装置
CN202547054U (zh) * 2012-03-06 2012-11-21 上海科力玛冷却技术系统有限公司 一种新风自然冷却空调系统
CN102967019A (zh) * 2012-12-18 2013-03-13 四川澄观节能环保科技有限公司 直接蒸发一体式热管换热器
CN203081716U (zh) * 2013-03-10 2013-07-24 浙江佳宝新纤维集团有限公司 一种空压机进气净化、降温装置
JP2015121356A (ja) * 2013-12-24 2015-07-02 三菱電機株式会社 熱交換換気装置
CN204084686U (zh) * 2014-04-15 2015-01-07 西安工程大学 用于温室的湿帘风机降温系统
CN103953990A (zh) * 2014-04-30 2014-07-30 中国国旅贸易有限责任公司 一种空气过滤湿帘
CN105338793A (zh) * 2015-11-17 2016-02-17 深圳市易信科技有限公司 一种集装箱式数据中心节能散热方法
US10876748B2 (en) * 2017-10-11 2020-12-29 Schneider Electric It Corporation System and method of a water management for an indirect evaporative cooler
CN208253826U (zh) * 2018-03-09 2018-12-18 捷通智慧科技股份有限公司 一种新风间接自然冷却与机械制冷联合装置
CN210951809U (zh) * 2019-08-08 2020-07-07 北京王府科技有限公司 一种新型风道除絮系统
CN210808051U (zh) * 2019-10-11 2020-06-19 无锡天云数据中心科技有限公司 间接蒸发冷却与重力热管相结合的数据中心冷却系统
CN111664530A (zh) * 2020-07-10 2020-09-15 深圳博健科技有限公司 一种间接蒸发空气冷却装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201187849Y (zh) * 2008-04-10 2009-01-28 西安工程大学 一种管式间接和填料式直接两级蒸发冷却空调机组
CN201926347U (zh) * 2011-01-27 2011-08-10 张宜万 多通道板翅式露点间接蒸发冷却装置
CN111140949A (zh) * 2019-11-25 2020-05-12 广东申菱环境系统股份有限公司 一种间接蒸发冷却装置及方法
CN111442443A (zh) * 2020-04-20 2020-07-24 西安工程大学 具有过滤柳絮功能的蒸发冷却空调机组
CN111637569A (zh) * 2020-07-22 2020-09-08 深圳易信科技股份有限公司 一种间接蒸发空气冷却装置
CN112611034A (zh) * 2020-11-26 2021-04-06 华为技术有限公司 间接蒸发冷却装置

Also Published As

Publication number Publication date
CN112611034A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2022110670A1 (zh) 间接蒸发冷却装置
WO2020192070A1 (zh) 空调器清洁装置、清洁方法及空调器
KR20160132442A (ko) 건조기 및 세탁건조 복합기
CN103245013A (zh) 空调机组室外机潜热节能装置
CN104654456A (zh) 一种具有清洗功能的除霾空调
WO2021051788A1 (zh) 一种燃料电池的空气降温增湿设备及应用的燃料电池
CN210801481U (zh) 一种立柜复合式新风空调器
CN210602031U (zh) 一种模块化数据中心机房系统
WO2024139213A1 (zh) 一种蒸发式冷凝器机组
WO2020237742A1 (zh) 基于新风及蒸发制冷的紧凑化叠加数据中心及其组合结构
WO2023065678A1 (zh) 一种间接蒸发换热系统及其控制方法、冷却机组
CN101619878B (zh) 水膜式空调机及其所用室内换热器
CN111829081A (zh) 一种智能恒氧恒净恒湿新风机
CN110260567A (zh) 一种喷淋式冷凝器、蒸发冷制冷机、蒸发冷空调机及其应用方法
WO2023184866A1 (zh) 一种箱式冷却机组
WO2021223490A1 (zh) 空调器及其室外机
CN212673402U (zh) 一种智能恒氧恒净恒湿新风机
CN220366553U (zh) 空气源热泵热水机组
CN218386356U (zh) 循环式水槽控制柜
CN104534577A (zh) 一种无机房中央水冷空调系统
CN220083212U (zh) 新风设备
CN221802610U (zh) 一种具有清洗功能的余热回收装置
CN218781350U (zh) 一种净化型高效率分体空调
CN221076582U (zh) 一种低阻供热机组设备
CN216291776U (zh) 一种人工智能技术的智能家居控制主机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21896185

Country of ref document: EP

Kind code of ref document: A1