WO2023065457A1 - 一种氧化钨一步碳化制备超细碳化钨粉的方法 - Google Patents

一种氧化钨一步碳化制备超细碳化钨粉的方法 Download PDF

Info

Publication number
WO2023065457A1
WO2023065457A1 PCT/CN2021/133169 CN2021133169W WO2023065457A1 WO 2023065457 A1 WO2023065457 A1 WO 2023065457A1 CN 2021133169 W CN2021133169 W CN 2021133169W WO 2023065457 A1 WO2023065457 A1 WO 2023065457A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten carbide
powder
carbide powder
tungsten
carbon
Prior art date
Application number
PCT/CN2021/133169
Other languages
English (en)
French (fr)
Inventor
郭家旺
徐建兵
陈冬英
文小强
陈后兴
王明
伍莺
胡小洣
张选旭
Original Assignee
赣州有色冶金研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赣州有色冶金研究所有限公司 filed Critical 赣州有色冶金研究所有限公司
Publication of WO2023065457A1 publication Critical patent/WO2023065457A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/949Tungsten or molybdenum carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the invention relates to the technical field of metallurgy and chemical industry, in particular to a method for preparing superfine tungsten carbide powder by one-step carbonization of tungsten oxide.
  • Cemented carbide has high hardness, high melting point, high strength and excellent wear resistance and corrosion resistance, and is widely used in key fields such as microelectronics, machining, mineral development, aerospace and defense industries.
  • Tungsten carbide (WC) powder is the main raw material of tungsten carbide cemented carbide, accounting for about 90% of the direct material cost of tungsten carbide cemented carbide.
  • the main method for industrial preparation of tungsten carbide powder is to first prepare tungsten oxide into ultra-fine tungsten powder by hydrogen reduction reaction, and then carbonize with carbon black at high temperature to obtain ultra-fine tungsten carbide powder.
  • the phase purity of the obtained ultra-fine tungsten carbide powder is High, the grain growth is complete, and the overall quality is stable.
  • the intermediate ultra-fine tungsten powder is prone to abnormally grown grains and hard agglomerations, resulting in the inability of the ultra-fine tungsten powder to be completely carbonized or abnormally coarsened.
  • the intermediate ultra-fine tungsten powder is easily oxidized by air and spontaneously ignites.
  • Chinese patents CN103626181A and CN108892141A use carbon black as the carbon source, and purple tungsten or yellow tungsten as the tungsten source.
  • the precursor powder with a carbon content of 11.46% to 15.34% is subjected to a carbothermal reduction, and then the obtained carbothermal reduction product is After the carbon content analysis, according to the theoretical C content of WC, carry out secondary carbon matching, ball milling, and carry out secondary carburizing reaction under hydrogen atmosphere to obtain ultra-fine tungsten carbide powder.
  • Patent CN109867286A uses CH 4 /H 2 mixed gas for secondary carburizing reaction.
  • Patent CN108675299A uses 10% CH 4 /90% H 2 to directly carbonize blue tungsten into tungsten carbide in one step, which shortens the process and reduces the cost; however, due to the large amount of water vapor generated during the carbonization reaction, WC crystals are prone to exist. It is difficult to obtain ultra-fine tungsten carbide powder due to grain growth or hard agglomerates.
  • the object of the present invention is to provide a method for preparing ultrafine tungsten carbide powder by one-step carbonization of tungsten oxide.
  • the preparation method provided by the invention has a short process flow, and the obtained tungsten carbide powder has a particle size of ⁇ 400nm, which belongs to the superfine tungsten carbide powder.
  • the invention provides a method for preparing superfine tungsten carbide powder by one-step carbonization of tungsten oxide, comprising the following steps:
  • the solid raw material In the atmosphere of carbon monoxide, the solid raw material is subjected to carburizing reaction to obtain ultra-fine tungsten carbide powder;
  • the solid raw material is a raw material mixture including tungsten oxide and a solid carbon source, and the solid carbon source includes carbon black and/or graphene.
  • the mass content of the solid carbon source is 6.0-17%.
  • the particle size of the tungsten oxide is 100-600 nm.
  • the mixing method of the raw material mixture includes ball milling; the rotating speed of the ball milling is 180-320 rpm; the time of the ball milling is 4-10 hours.
  • the temperature of the carburizing reaction is 900° C. to 1300° C. and the time is 1 to 4 hours.
  • the rate of heating up to the temperature of the carburizing reaction is 5-10°C/min.
  • the gas flow rate of the carbon monoxide is 400mL/min-2L/min.
  • the carburizing reaction further includes furnace cooling the carburizing reaction product obtained in the carburizing reaction under a protective atmosphere.
  • the invention provides a method for preparing ultra-fine tungsten carbide powder by one-step carbonization of tungsten oxide, comprising the following steps: in an atmosphere of carbon monoxide, performing carburizing reaction on solid raw materials to obtain ultra-fine tungsten carbide powder; the solid raw material is composed of A raw material mixture of tungsten oxide and a solid carbon source including carbon black and/or graphene.
  • the solid carbon source carbon black and/or graphene of the present invention can form a large number of crystal nuclei on the surface of tungsten oxide; moreover, carbon black and/or graphene can reduce the interfacial energy on the surface of tungsten oxide powder, so that tungsten oxide can undergo carburizing reaction Finally, tungsten carbide particle powder with a particle size of ⁇ 400nm is formed.
  • the gaseous carbon source carbon monoxide
  • the gaseous carbon source is easy to control and has strong migration ability, which can not only make up for the shortcomings of insufficient migration ability of solid carbon (carbon black and/or graphene); it can also inhibit the carbon dioxide and C and WC generated during the carburizing reaction.
  • the further carbonization of W, W 2 C and WO x can accurately control the carbon content in tungsten carbide through one-step carburizing reaction, so as to realize the stable control of carbon content in tungsten carbide.
  • the preparation method provided by the invention has a short process flow, and the grain size of the obtained ultrafine tungsten carbide powder is ⁇ 400nm; and the grain size of the ultrafine tungsten carbide obtained in the invention is more uniform and the carbon content is controllable .
  • the carburizing reaction temperature of the present invention is 900-1300° C.
  • the low carburizing reaction temperature can prevent the sintering and growth of crystal grains, and further ensure the obtaining of ultra-fine tungsten carbide powder.
  • Fig. 1 is the preparation method flowchart of ultrafine tungsten carbide powder provided by the present invention
  • Fig. 2 is the particle size distribution figure of embodiment 1 gained superfine tungsten carbide powder
  • Fig. 3 is the powder X-ray diffraction spectrum of embodiment 1 gained superfine tungsten carbide powder
  • Fig. 4 is the particle size distribution figure of embodiment 2 gained superfine tungsten carbide powder
  • Fig. 5 is the powder X-ray diffraction spectrum of embodiment 2 gained superfine tungsten carbide powder
  • Fig. 6 is the particle size distribution figure of embodiment 3 gained superfine tungsten carbide powder
  • Fig. 7 is the powder X-ray diffraction spectrum of embodiment 3 gained superfine tungsten carbide powder
  • Fig. 8 is the particle size distribution figure of embodiment 4 gained superfine tungsten carbide powder
  • Fig. 9 is the powder X-ray diffraction spectrum of embodiment 4 gained superfine tungsten carbide powder
  • Fig. 10 is the particle size distribution figure of embodiment 5 gained superfine tungsten carbide powder
  • Fig. 11 is the powder X-ray diffraction spectrum of embodiment 5 gained superfine tungsten carbide powder
  • Fig. 12 is the powder X-ray diffraction pattern of comparative example 1 obtained product
  • Figure 13 is a powder X-ray diffraction pattern of the product obtained in Comparative Example 2.
  • the invention provides a method for preparing superfine tungsten carbide powder by one-step carbonization of tungsten oxide, comprising the following steps:
  • the solid raw material In the atmosphere of carbon monoxide, the solid raw material is subjected to carburizing reaction to obtain ultra-fine tungsten carbide powder;
  • the solid raw material is a raw material mixture including tungsten oxide and a solid carbon source, and the solid carbon source includes carbon black and/or graphene.
  • the raw materials used in the present invention are preferably commercially available products.
  • the particle size of the tungsten oxide is preferably 100-600 nm.
  • the solid carbon source includes carbon black and/or graphene, preferably carbon black.
  • the carbon black is preferably metallurgical grade carbon black.
  • the particle diameter of the carbon black is preferably 20 to 100 nm.
  • the mass content of the solid carbon source is preferably 6.0-17%.
  • the mixing method of the raw material mixture is preferably ball milling; the rotational speed of the ball milling is preferably 180-320 rpm; the time of the ball milling is preferably 4-10 hours.
  • the ball milling preferably includes dry ball milling and wet ball milling.
  • the medium of the wet ball milling preferably includes one or more of methanol, ethanol, acetone and petroleum ether, more preferably ethanol; after the wet ball milling, the present invention preferably also includes wet The ball-milled mixture is dried, and the present invention does not specifically limit the drying temperature and time, as long as the wet ball-milling medium can be completely removed.
  • the temperature of the carburizing reaction is preferably 900°C to 1300°C, more preferably 1000 to 1200°C, more preferably 1100°C; the rate of heating to the temperature of the carburizing reaction is preferably 5 to 10 °C/min, more preferably 6-9 °C/min, more preferably 7-8 °C/min.
  • the carburizing reaction time is preferably 1-4 hours, more preferably 2-3 hours.
  • the gas flow rate of the carbon monoxide is preferably 400mL/min-2L/min, more preferably 500mL/min-1.5L/min, more preferably 600mL/min-1.0L/min.
  • the carburizing reaction is preferably carried out in a reaction furnace.
  • the specific process of the carburizing reaction carried out in the reaction furnace preferably includes: placing the solid raw material in the reaction furnace, feeding nitrogen to evacuate the air in the reaction furnace, and then feeding carbon monoxide; After stabilization, the temperature is raised to the temperature of carburizing reaction to carry out carburizing reaction.
  • the present invention preferably further includes furnace cooling the carburizing reaction product obtained from the carburizing reaction under a protective atmosphere.
  • the protective atmosphere is preferably nitrogen and/or argon.
  • Fig. 1 is a flow chart of the preparation method of ultrafine tungsten carbide powder provided by the present invention.
  • Fig. 2 is a particle size distribution diagram of the obtained ultrafine tungsten carbide powder. It can be seen from Fig. 2 that the particle size of the obtained ultrafine tungsten carbide powder is ⁇ 350nm, and the average particle size is 210 ⁇ 46nm.
  • Fig. 3 is the powder X-ray diffraction spectrum of the obtained ultrafine tungsten carbide powder, and it can be seen from Fig. 3 that the obtained product is tungsten carbide.
  • Fig. 4 is a particle size distribution diagram of the obtained ultrafine tungsten carbide powder. It can be seen from Fig. 4 that the particle size of the obtained ultrafine tungsten carbide powder is ⁇ 160 nm, and the average particle size is 120 ⁇ 24 nm.
  • Fig. 5 is the powder X-ray diffraction spectrum of the obtained ultrafine tungsten carbide powder, and it can be seen from Fig. 5 that the obtained product is tungsten carbide.
  • the carbon content of the obtained superfine tungsten carbide powder was tested according to the method in Example 1, and the result was: the carbon content was 6.13%.
  • Fig. 6 is a particle size distribution diagram of the obtained ultrafine tungsten carbide powder. It can be seen from Fig. 6 that the particle size of the obtained ultrafine tungsten carbide powder is ⁇ 170nm, and the average particle size is 102 ⁇ 22nm.
  • Fig. 7 is the powder X-ray diffraction spectrum of the obtained ultrafine tungsten carbide powder, and it can be seen from Fig. 7 that the obtained product is tungsten carbide.
  • the carbon content of the obtained superfine tungsten carbide powder was tested according to the method in Example 1, and the result was: the carbon content was 6.13%.
  • Fig. 8 is a particle size distribution diagram of the obtained ultrafine tungsten carbide powder. It can be seen from Fig. 8 that the particle size of the obtained ultrafine tungsten carbide powder is ⁇ 180 nm, and the average particle size is 98 ⁇ 28 nm.
  • Fig. 9 is a powder X-ray diffraction spectrum of the obtained ultrafine tungsten carbide powder, and it can be seen from Fig. 9 that the obtained product is tungsten carbide.
  • the carbon content of the obtained superfine tungsten carbide powder was tested according to the method of Example 1, and the result was: the carbon content was 7.14%.
  • Fig. 10 is the particle size distribution figure of gained ultrafine tungsten carbide powder, can find out from Fig. 10: the particle diameter of gained ultrafine tungsten carbide powder ⁇ 150nm, and average particle diameter is 96 ⁇ 20nm.
  • Fig. 11 is the powder X-ray diffraction spectrum of the obtained ultrafine tungsten carbide powder, and it can be seen from Fig. 11 that the obtained product is tungsten carbide.
  • the carbon content of the obtained superfine tungsten carbide powder was tested according to the method of Example 1, and the result was: the carbon content was 6.16%.
  • Fig. 12 is the powder X-ray diffraction spectrum of the obtained tungsten powder, and it can be seen from Fig. 12 that the prepared products are all tungsten powder.
  • Fig. 13 is a powder X-ray diffraction pattern of the obtained product. It can be seen from Fig. 13 that there is no mixture of WO 2 , W, W 2 C and WC in the obtained product.
  • the carbon content of the obtained product was tested according to the method of Example 1, and the result was: the carbon content was 4.00%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

涉及冶金化工技术领域,提供了一种氧化钨一步碳化制备超细碳化钨粉的方法。其中,固体碳源炭黑和/或石墨烯能够在氧化钨表面形成大量晶核;而且,炭黑和/或石墨烯能够降低氧化钨粉体表面的界面能,使氧化钨经渗碳反应后形成粒径≤400nm的碳化钨颗粒粉体。同时,气体碳源(一氧化碳)易于控制和迁移能力强,不仅可弥补固体碳(炭黑和/或石墨烯)迁移能力不足的缺点;还能够抑制渗碳反应过程中产生的二氧化碳与C和WC的反应,W、W 2C和WO x的进一步碳化,能够通过一步渗碳反应就能准确控制碳化钨中碳的含量,从而实现碳化钨中碳含量的稳定控制。该方法工艺流程短,所得超细碳化钨粉体晶粒尺寸≤400nm。

Description

一种氧化钨一步碳化制备超细碳化钨粉的方法
本申请要求于2021年10月19日提交中国专利局、申请号为202111214134X、发明名称为“一种氧化钨一步碳化制备超细碳化钨粉的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及冶金化工技术领域,尤其涉及一种氧化钨一步碳化制备超细碳化钨粉的方法。
背景技术
硬质合金具有高硬度、高熔点、高强度以及优良的耐磨性和耐腐蚀性能,广泛用于微电子、机械加工、矿产开发、航空航天和国防工业等关键领域。碳化钨(WC)粉是碳化钨硬质合金的主要原料,约占碳化钨硬质合金直接材料成本的90%。
目前,工业制备碳化钨粉的主要方法是先用氢还原反应将氧化钨制备成超细钨粉,然后再与碳黑高温碳化获得超细碳化钨粉,所获得的超细碳化钨粉相纯度高,晶粒增长完全,总体质量稳定。然而,由于采用氢还原工艺,中间体超细钨粉容易出现异常长大的晶粒和硬团聚,从而导致超细钨粉无法被碳化完全或异常粗化。此外,中间体超细钨粉易被空气氧化而发生自燃,在生产、保存和配碳工序均需要特殊设备和气氛进行操作,使得能耗和时间成本升高。中国专利CN103626181A和CN108892141A采用炭黑作为碳源,紫钨或黄钨作为钨源,首先将配碳量为11.46%~15.34%的前驱体粉末进行一次碳热还原,然后将获得的碳热还原产物经碳含量分析后,按WC的理论C含量进行二次配碳,球磨,在氢气气氛下进行二次渗碳反应,获得超细碳化钨粉。专利CN109867286A采用CH 4/H 2的混合气体进行二次渗碳反应,与前两者(CN103626181A和CN108892141A)相比,无需二次配碳和球磨,而且碳化温度更低,成本更低。此方法中,仍然需要进行二次碳化,存在流程长、能耗和人力成本高等缺点。专利CN108675299A采用10%CH 4/90%H 2的混合将蓝钨直接一步碳化成碳化 钨,缩短了流程,降低了成本;但是,由于碳化反应过程中会产生大量的水气,容易存在WC晶粒长大或硬团聚体的产生,难以得到超细碳化钨粉。
发明内容
鉴于此,本发明的目的在于提供一种氧化钨一步碳化制备超细碳化钨粉的方法。本发明提供的制备方法工艺流程短,且所得碳化钨粉末的粒径≤400nm,属于超细碳化钨粉。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种氧化钨一步碳化制备超细碳化钨粉的方法,包括以下步骤:
在一氧化碳的气氛中,将固体原料进行渗碳反应,得到超细碳化钨粉;
所述固体原料为包括氧化钨和固体碳源的原料混合物,所述固体碳源包括炭黑和/或石墨烯。
优选地,所述固体原料中,固体碳源的质量含量为6.0~17%。
优选地,所述氧化钨的粒径为100~600nm。
优选地,所述原料混合物的混合方式包括球磨;所述球磨的转速为180~320rpm;所述球磨的时间为4~10h。
优选地,所述渗碳反应的温度为900℃~1300℃,时间为1~4h。
优选地,升温至所述渗碳反应的温度的速率为5~10℃/min。
优选地,所述一氧化碳的气体流量为400mL/min~2L/min。
优选地,所述渗碳反应后,还包括将所述渗碳反应得到的渗碳反应产物在保护气氛下进行炉冷。
本发明提供了一种氧化钨一步碳化制备超细碳化钨粉的方法,包括以下步骤:在一氧化碳的气氛中,将固体原料进行渗碳反应,得到超细碳化钨粉;所述固体原料为包括氧化钨和固体碳源的原料混合物,所述固体碳源包括炭黑和/或石墨烯。本发明的固体碳源炭黑和/或石墨烯能够在氧化钨表面形成大量晶核;而且,炭黑和/或石墨烯能够降低氧化钨粉体表面的界面能,使氧化钨经渗碳反应后形成粒径≤400nm的碳化钨颗粒粉体。同时,气体碳源(一氧化碳)易于控制和迁移能力强,不仅可弥补固体碳(炭黑和/或石墨烯)迁移能力不足的缺点;还能够抑制渗碳反应过程中 产生的二氧化碳与C和WC的反应,W、W 2C和WO x的进一步碳化,能够通过一步渗碳反应就能准确控制碳化钨中碳的含量,从而实现碳化钨中碳含量的稳定控制。与现有工艺相比,本发明提供的制备方法具有工艺流程短,所得超细碳化钨粉体晶粒尺寸≤400nm;且本发明所得超细碳化钨的晶粒尺寸更均匀和碳含量可控。
进一步地,本发明的渗碳反应的温度为900~1300℃,渗碳反应温度低可防止晶粒的烧结和长大,进一步保证了超细碳化钨粉的获得。
附图说明
图1为本发明提供的超细碳化钨粉的制备方法流程图;
图2为实施例1所得超细碳化钨粉的粒径分布图;
图3为实施例1所得超细碳化钨粉的粉末X射线衍射图谱;
图4为实施例2所得超细碳化钨粉的粒径分布图;
图5为实施例2所得超细碳化钨粉的粉末X射线衍射图谱;
图6为实施例3所得超细碳化钨粉的粒径分布图;
图7为实施例3所得超细碳化钨粉的粉末X射线衍射图谱;
图8为实施例4所得超细碳化钨粉的粒径分布图;
图9为实施例4所得超细碳化钨粉的粉末X射线衍射图谱;
图10为实施例5所得超细碳化钨粉的粒径分布图;
图11为实施例5所得超细碳化钨粉的粉末X射线衍射图谱;
图12为对比例1所得产物的粉末X射线衍射图谱;
图13为对比例2所得产物的粉末X射线衍射图谱。
具体实施方式
本发明提供了一种氧化钨一步碳化制备超细碳化钨粉的方法,包括以下步骤:
在一氧化碳的气氛中,将固体原料进行渗碳反应,得到超细碳化钨粉;
所述固体原料为包括氧化钨和固体碳源的原料混合物,所述固体碳源包括炭黑和/或石墨烯。
在本发明中,如无特殊说明,本发明所用原料均优选为市售产品。
在本发明中,所述氧化钨的粒径优选为100~600nm。在本发明中,所述固体碳源包括炭黑和/或石墨烯,优选为炭黑。在本发明中,所述炭 黑优选为冶金级炭黑。在本发明中,所述炭黑的粒径优选为20~100nm。
在本发明中,所述固体原料中,固体碳源的质量含量优选为6.0~17%。
在本发明中,所述原料混合物的混合方式优选为球磨;所述球磨的转速优选为180~320rpm;所述球磨的时间优选为4~10h。在本发明中,所述球磨优选包括干法球磨和湿法球磨。在本发明中,所述湿法球磨的介质优选包括甲醇、乙醇、丙酮和石油醚中的一种或多种,进一步优选为乙醇;所述湿法球磨后,本发明优选还包括将湿法球磨的混合物干燥,本发明对所述干燥的温度和时间不做具体限定,只要能够将湿法球磨的介质去除完全即可。
在本发明中,所述渗碳反应的温度优选为900℃~1300℃,进一步优选为1000~1200℃,更优选为1100℃;升温至所述渗碳反应的温度的速率优选为5~10℃/min,进一步优选为6~9℃/min,更优选为7~8℃/min。在本发明中,所述渗碳反应的时间优选为1~4h,进一步优选为2~3h。
在本发明中,所述一氧化碳的气体流量优选为400mL/min~2L/min,进一步优选为500mL/min~1.5L/min,更优选为600mL/min~1.0L/min。
在本发明中,所述渗碳反应优选在反应炉中进行。
在本发明中,所述渗碳反应在反应炉中进行的具体过程优选包括:将所述固体原料置于反应炉中,通入氮气排空反应炉内的空气,再通入一氧化碳;待一氧化碳稳定后,升温至渗碳反应的温度进行渗碳反应。
所述渗碳反应后,本发明优选还包括将所述渗碳反应得到的渗碳反应产物在保护气氛下进行炉冷。在本发明中,所述保护气氛优选为氮气和/或氩气。
图1为本发明提供的超细碳化钨粉的制备方法流程图。
下面结合实施例对本发明提供的氧化钨一步碳化制备超细碳化钨粉的方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
(1)分别称取182g三氧化钨粉末(粒径为100~600nm)和18g炭黑(粒径为20~100nm),以酒精为湿法球磨的介质,于180rpm湿法球磨10h,在105℃下干燥,获得混合均匀的粉末原料混合物。
(2)将(1)中的粉末原料混合物置于反应炉中,充入氮气以排空空气,然后通入CO,待CO稳定后(CO的气体流量为500mL/min),以5℃/min的速率升温至1100℃,保温3h;停止通入CO,改为通入氮气,自然冷却至室温,得到超细碳化钨粉。
图2为所得超细碳化钨粉的粒径分布图,从图2可以看出:所得超细碳化钨粉的粒径≤350nm,平均粒径为210±46nm。
图3为所得超细碳化钨粉的粉末X射线衍射图谱,从图3可以看出:所得产物为碳化钨。
参照国标GB/T 5124.1硬质合金化学分析方法总碳量的测定测定所得超细碳化钨粉的碳含量,结果为:碳含量为6.14%。
实施例2
(1)分别称取176g三氧化钨粉末(粒径为100~600nm)和24g炭黑(粒径为20~100nm),以320rpm的转速干法球磨6h,得到混合均匀的粉末原料混合物。
(2)将(1)中的粉末原料混合物置于反应炉中,充入氮气以排空空气,然后通入CO,待CO稳定后(CO的气体流量为400mL/min),以5℃/min的速率升温至1100℃,保温3h;停止通入CO,改为通入氩气,自然冷却至室温,得到超细碳化钨粉。
图4为所得超细碳化钨粉的粒径分布图,从图4可以看出:所得超细碳化钨粉的粒径≤160nm,平均粒径为120±24nm。
图5为所得超细碳化钨粉的粉末X射线衍射图谱,从图5可以看出:所得产物为碳化钨。
按照实施例1的方法测试所得超细碳化钨粉的碳含量,结果为:碳含量为6.13%。
实施例3
(1)分别称取188g三氧化钨粉末(粒径为100~600nm)和12g炭黑(粒径为20~100nm),于180rpm干法球磨4h,获得混合均匀的粉末原料混合物。
(2)将(1)中的粉末原料混合物置于反应炉中,充入氮气以排空空气,然后通入CO,待CO稳定后(CO的气体流量为800mL/min),以 5℃/min的速率升温至1000℃,保温3h;停止通入CO,改为通入氩气,自然冷却至室温,得到超细碳化钨粉。
图6为所得超细碳化钨粉的粒径分布图,从图6可以看出:所得超细碳化钨粉的粒径≤170nm,平均粒径为102±22nm。
图7为所得超细碳化钨粉的粉末X射线衍射图谱,从图7可以看出:所得产物为碳化钨。
按照实施例1的方法测试所得超细碳化钨粉的碳含量,结果为:碳含量为6.13%。
实施例4
(1)分别称取182g三氧化钨粉末(粒径为100~600nm)和18g炭黑(粒径为20~100nm),于180rpm下干法球磨4h,获得混合均匀的粉末原料。
(2)将(1)中的粉末原料混合物置于反应炉中,充入氮气以排空空气,然后通入CO,待CO稳定后(CO的气体流量为800mL/min),以5℃/min的速率升温至1000℃,保温3h;停止通入CO,改为通入氩气,自然冷却至室温,得到超细碳化钨粉。
图8为所得超细碳化钨粉的粒径分布图,从图8可以看出:所得超细碳化钨粉的粒径≤180nm,平均粒径为98±28nm。
图9为所得超细碳化钨粉的粉末X射线衍射图谱,从图9可以看出:所得产物为碳化钨。
按照实施例1的方法测试所得超细碳化钨粉的碳含量,结果为:碳含量为7.14%。
实施例5
(1)分别称取182g三氧化钨粉末(粒径为100~600nm)和18g石墨烯,于180rpm下球磨4h,获得混合均匀的粉末原料。
(2)将(1)中的粉末原料混合物置于反应炉中,充入氮气以排空空气,然后通入CO,待CO稳定后(CO的气体流量为800mL/min),以9℃/min的速率升温至1000℃,保温3h;停止通入CO,改为通入氩气,自然冷却至室温,得到超细碳化钨粉。
图10为所得超细碳化钨粉的粒径分布图,从图10可以看出:所得超 细碳化钨粉的粒径≤150nm,平均粒径为96±20nm。
图11为所得超细碳化钨粉的粉末X射线衍射图谱,从图11可以看出:所得产物为碳化钨。
按照实施例1的方法测试所得超细碳化钨粉的碳含量,结果为:碳含量为6.16%。
对比例1
(1)分别称取176g三氧化钨粉末(粒径为100~600nm)和24g炭黑(粒径为20~100nm),于320rpm干法球磨4h,获得混合均匀的粉末原料。
(2)将(1)中的粉末原料混合物置于反应炉中,充入氮气以排空空气,然后在氮气氛围下,以5℃/min的速率升温至1100℃,保温3h;在持续通入氮气的氛围下,自然冷却至室温,得到钨粉。
图12为所得钨粉的粉末X射线衍射图谱,从图12可以看出:制备得到的产物均为钨粉。
对比例2
(1)分别称取200g三氧化钨粉末(粒径为100~600nm),于320rpm球磨4h,获得破碎的粉末原料;
(2)将(1)中的粉末原料混合物置于反应炉中,充入氮气以排空空气,然后通入CO,待CO稳定后(CO的气体流量为800mL/min),以5℃/min的速率升温至1100℃,保温3h;停止通入CO,改为通入氩气,自然冷却至室温,得到二氧化钨、钨、碳化二钨混合粉末。
图13为所得产物的粉末X射线衍射图谱,从图13可以看出:所得产物中未WO 2、W、W 2C和WC的混合物。
按照实施例1的方法测试所得产物的碳含量,结果为:碳含量为4.00%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种氧化钨一步碳化制备超细碳化钨粉的方法,其特征在于,包括以下步骤:
    在一氧化碳的气氛中,将固体原料进行渗碳反应,得到超细碳化钨粉;
    所述固体原料为包括氧化钨和固体碳源的原料混合物,所述固体碳源包括炭黑和/或石墨烯。
  2. 根据权利要求1所述的方法,其特征在于,所述固体原料中,固体碳源的质量含量为6.0~17%。
  3. 根据权利要求1所述的方法,其特征在于,所述氧化钨的粒径为100~600nm。
  4. 根据权利要求1所述的方法,其特征在于,所述原料混合物的混合方式包括球磨;所述球磨的转速为180~320rpm;所述球磨的时间为4~10h。
  5. 根据权利要求1所述的方法,其特征在于,所述渗碳反应的温度为900℃~1300℃,时间为1~4h。
  6. 根据权利要求5所述的方法,其特征在于,所述渗碳反应的温度为1000~1200℃。
  7. 根据权利要求5或6所述的方法,其特征在于,升温至所述渗碳反应的温度的速率为5~10℃/min。
  8. 根据权利要求1所述的方法,其特征在于,所述一氧化碳的气体流量为400mL/min~2L/min。
  9. 根据权利要求1或5或6所述的方法,其特征在于,所述渗碳反应后,还包括将所述渗碳反应得到的渗碳反应产物在保护气氛下进行炉冷。
  10. 权利要求1~9任一项所述的方法得到的超细碳化钨粉,其特征在于,所述超细碳化钨粉的粒径≤400nm。
PCT/CN2021/133169 2021-10-19 2021-11-25 一种氧化钨一步碳化制备超细碳化钨粉的方法 WO2023065457A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111214134.X 2021-10-19
CN202111214134.XA CN113816380B (zh) 2021-10-19 2021-10-19 一种氧化钨一步碳化制备超细碳化钨粉的方法

Publications (1)

Publication Number Publication Date
WO2023065457A1 true WO2023065457A1 (zh) 2023-04-27

Family

ID=78917027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133169 WO2023065457A1 (zh) 2021-10-19 2021-11-25 一种氧化钨一步碳化制备超细碳化钨粉的方法

Country Status (2)

Country Link
CN (1) CN113816380B (zh)
WO (1) WO2023065457A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326424A (zh) * 1998-11-13 2001-12-12 H·C·施塔克公司 通过气相渗碳制造碳化钨的方法
JP2004025425A (ja) * 2002-05-01 2004-01-29 Mitsubishi Materials Corp 高速穴あけ加工での撓み変形が小さい表面被覆超硬合金製ミニチュアドリル
JP2004074388A (ja) * 2002-06-18 2004-03-11 Mitsubishi Materials Corp 高送り条件での切削加工ですぐれた耐ねじれ変形性を発揮する表面被覆超硬合金製エンドミル
JP2004074384A (ja) * 2002-06-18 2004-03-11 Mitsubishi Materials Corp 高速切削加工ですぐれた耐チッピング性を発揮する超硬合金製エンドミル
JP2004098206A (ja) * 2002-09-09 2004-04-02 Mitsubishi Materials Corp 高速切削加工ですぐれた耐摩耗性を発揮する超硬合金製スローアウエイ式切削チップ
CN1569625A (zh) * 2003-04-25 2005-01-26 美国英佛曼公司 金属碳化物的制备方法
CN1907604A (zh) * 2006-08-18 2007-02-07 谭天翔 碳化钨或碳化钨-金属钴超细颗粒粉末的直接还原碳化制备方法
CN109319785A (zh) * 2018-10-17 2019-02-12 东北大学 一种机械力化学法制备超细碳化钨粉末的方法
CN110980735A (zh) * 2019-12-04 2020-04-10 北京科技大学 短流程、用低成本微米wo3制备高性能纳米wc粉末的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326424A (zh) * 1998-11-13 2001-12-12 H·C·施塔克公司 通过气相渗碳制造碳化钨的方法
JP2004025425A (ja) * 2002-05-01 2004-01-29 Mitsubishi Materials Corp 高速穴あけ加工での撓み変形が小さい表面被覆超硬合金製ミニチュアドリル
JP2004074388A (ja) * 2002-06-18 2004-03-11 Mitsubishi Materials Corp 高送り条件での切削加工ですぐれた耐ねじれ変形性を発揮する表面被覆超硬合金製エンドミル
JP2004074384A (ja) * 2002-06-18 2004-03-11 Mitsubishi Materials Corp 高速切削加工ですぐれた耐チッピング性を発揮する超硬合金製エンドミル
JP2004098206A (ja) * 2002-09-09 2004-04-02 Mitsubishi Materials Corp 高速切削加工ですぐれた耐摩耗性を発揮する超硬合金製スローアウエイ式切削チップ
CN1569625A (zh) * 2003-04-25 2005-01-26 美国英佛曼公司 金属碳化物的制备方法
CN1907604A (zh) * 2006-08-18 2007-02-07 谭天翔 碳化钨或碳化钨-金属钴超细颗粒粉末的直接还原碳化制备方法
CN109319785A (zh) * 2018-10-17 2019-02-12 东北大学 一种机械力化学法制备超细碳化钨粉末的方法
CN110980735A (zh) * 2019-12-04 2020-04-10 北京科技大学 短流程、用低成本微米wo3制备高性能纳米wc粉末的方法

Also Published As

Publication number Publication date
CN113816380A (zh) 2021-12-21
CN113816380B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
Koc et al. Tungsten carbide (WC) synthesis from novel precursors
WO2017016079A1 (zh) 高纯超细ZrC-SiC复合粉体的合成方法
CN107585768B (zh) 一种氧化-还原法制备超细碳化钨粉末的方法
WO2015161732A1 (zh) 一种制备钴包覆纳米wc晶体复合粉末及超细晶硬质合金的方法
CN106219547B (zh) 一种固-液掺杂法制备含Cr的超细WC粉的方法
CN108423684B (zh) 一种环保纳米碳化钨粉制备方法
CN103924111B (zh) 一种硬质合金纳米粒径粉末与高性能烧结块体材料的制备方法
US4122152A (en) Process for preparing silicon nitride powder having a high α-phase content
WO2020186752A1 (zh) 一种等离子体球磨制备超细晶 WC-Co 硬质合金的方法
Wu et al. Synthesis of tungsten carbide nanopowders by direct carbonization of tungsten oxide and carbon: Effects of tungsten oxide source on phase structure and morphology evolution
Wang et al. Study on influencing factors and mechanism of high-quality tungsten carbide nanopowders synthesized via carbothermal reduction
CN113106281A (zh) 一种氧化钇掺杂钨基纳米复合粉体及其合金的制备方法
CN101955184A (zh) 一种新型纳米级碳化铬粉末的制备方法
JP6912238B2 (ja) 微粒炭化タングステン粉末の製造方法
US7465432B2 (en) Fine tungsten carbide powder and process for producing the same
WO2023065457A1 (zh) 一种氧化钨一步碳化制备超细碳化钨粉的方法
CN108044126A (zh) 利用废旧硬质合金制备板状结构WC-Co复合粉末的方法
US7267808B2 (en) Aluminum nitride powder, method for producing the same and use thereof
CN110817879B (zh) 一种碳热还原燃烧前驱物合成纳米wc粉末的方法
CN111893339A (zh) 一种湿化学法制备高性能WC-8Co-Y2O3硬质合金的方法
CN107116227A (zh) 一种超细WC‑Ni复合粉末的制备方法
CN113319742B (zh) 一种具有磨削与抛光功能磨料的制备方法
CN112705719B (zh) 高比表面纳米w粉及高比表面纳米wc粉的制备方法
CN112846170B (zh) 一种(Ti,W)C固溶体粉末及其制备方法
CN114752801A (zh) 一种板状晶强化网状结构硬质合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE