WO2023061161A1 - 一种选择性能场辅助加工系统 - Google Patents

一种选择性能场辅助加工系统 Download PDF

Info

Publication number
WO2023061161A1
WO2023061161A1 PCT/CN2022/119848 CN2022119848W WO2023061161A1 WO 2023061161 A1 WO2023061161 A1 WO 2023061161A1 CN 2022119848 W CN2022119848 W CN 2022119848W WO 2023061161 A1 WO2023061161 A1 WO 2023061161A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
energy field
ultrasonic
micron
module
Prior art date
Application number
PCT/CN2022/119848
Other languages
English (en)
French (fr)
Inventor
许剑锋
郑正鼎
张建国
黄凯
王茂
陈肖
肖峻峰
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2023061161A1 publication Critical patent/WO2023061161A1/zh
Priority to US18/395,622 priority Critical patent/US20240227097A9/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P25/00Auxiliary treatment of workpieces, before or during machining operations, to facilitate the action of the tool or the attainment of a desired final condition of the work, e.g. relief of internal stress
    • B23P25/003Auxiliary treatment of workpieces, before or during machining operations, to facilitate the action of the tool or the attainment of a desired final condition of the work, e.g. relief of internal stress immediately preceding a cutting tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P25/00Auxiliary treatment of workpieces, before or during machining operations, to facilitate the action of the tool or the attainment of a desired final condition of the work, e.g. relief of internal stress
    • B23P25/003Auxiliary treatment of workpieces, before or during machining operations, to facilitate the action of the tool or the attainment of a desired final condition of the work, e.g. relief of internal stress immediately preceding a cutting tool
    • B23P25/006Heating the workpiece by laser during machining
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices

Definitions

  • the invention belongs to the technical field of ultra-precision processing, and more specifically relates to a selective energy field auxiliary processing system.
  • Composite materials such as silicon-aluminum alloy and aluminum-based silicon carbide are composed of soft metal matrix and brittle particles (silicon, silicon carbide, etc.), with low density, high specific stiffness, high fatigue resistance, high wear resistance and high corrosion resistance And other excellent physical, chemical and mechanical properties, widely used in aerospace, electronic packaging and biotechnology. Machining surface integrity has a significant impact on composite part performance. With the progress and development of science and technology in our country, higher requirements are put forward for the processing accuracy and processing quality of composite matrix materials.
  • Diamond cutting technology has the advantages of high processing efficiency, high processing freedom, high processing accuracy, and low subsurface damage, and has been proven to be an effective processing method for preparing high-quality processed surfaces of composite materials. Since the brittle particles greatly reduce the deformation behavior of the ductile soft metal matrix, it is easy to cause the brittle particles to peel off, resulting in extremely low processability of the composite material. However, the extrusion deformation and strong friction of the soft metal substrate will cause a lot of pressure and high cutting temperature between the chip and the rake face, resulting in a large built-up edge, resulting in adhesive wear of the tool and affecting the tool life. , reducing the quality of workpiece surface processing.
  • the existing technology is to use multi-step cutting process to realize material removal with a thickness of tens of microns in the ultra-precision diamond cutting process with a single-step cutting depth of micron level.
  • the residual stress generated in the previous cutting process has a strong impact on the subsequent material removal. The interaction between them will make it difficult to improve the surface quality of composite materials, and the processing efficiency is not high.
  • the efficient and high-quality manufacturing of composite materials has become a "stuck neck" problem in the field of aerospace manufacturing.
  • Laser in-situ assisted cutting technology can realize the coupling of laser and tool, so that the laser beam passes through the tool body and focuses on the cutting area, softens hard and brittle materials, improves the plastic flow ability of brittle materials, inhibits crack growth, and reduces cutting force. In this way, the ultra-precision forming and manufacturing of high-efficiency and high-quality hard and brittle material components can be realized.
  • laser in-situ assisted processing technology will make the soft metal matrix softer, resulting in easier peeling of brittle particles during processing, and it will also aggravate tool adhesive wear.
  • diamond tools are also more likely to generate heat and undergo thermochemical reactions, resulting in reduced service life.
  • Ultrasonic vibration assisted cutting technology is an intermittent pulse field assisted processing method, which can realize nano-scale material removal and reduce cutting force in each vibration cycle.
  • the intermittent contact between the tool and the workpiece makes cutting fluid or air It is easier to reach the processing area, optimize the cooling and lubrication effect, reduce the cutting heat, reduce the thermochemical reaction of the tool, inhibit the formation of built-up edge, and realize the ultra-precision machining of soft metal materials.
  • the cutting speed is low and the processing efficiency is low.
  • the purpose of the present invention is to provide a selective energy field assisted processing system, which can simultaneously complete the ultra-precision cutting of brittle particles and soft metal substrates in one processing process, and can realize high precision and low damage of brittle particles Ultra-precision cutting can also effectively suppress tool wear when processing soft metal substrates.
  • the present invention provides a selective energy field assisted processing system, including a micron-level high-speed identification module, a laser in-situ auxiliary module, an ultrasonic vibration auxiliary module, an energy field loading high-speed control module and a diamond tool, wherein,
  • the micron-level high-speed identification module is used to quickly identify the type of material matrix of the workpiece to be processed during processing, and process the identified information into a corresponding control signal and send it to the said
  • the energy field is loaded into the high-speed control module to realize the selective processing of the workpiece to be processed;
  • the electro-optic modulator controls the laser in-situ auxiliary module to generate a laser energy field according to the control signal, and the laser energy field is focused on the The cutting area between the diamond tool and the workpiece to be processed assists the diamond tool in cutting;
  • the ultrasonic power controller The ultrasonic vibration auxiliary module is controlled according to the control signal to generate an ultrasonic energy field, and the ultrasonic energy field makes the diamond tool intermittently contact the workpiece to be processed, thereby realizing ultra-precision machining of the soft metal substrate.
  • the selective energy field assisted processing system organically integrates diamond cutting technology, laser in-situ assisted technology and ultrasonic vibration assisted technology by adding a micron-level high-speed identification module and an energy field loaded high-speed control module.
  • the energy field loading high-speed control module controls the laser energy field and ultrasonic energy field to be selectively loaded on different substrates of the workpiece to be processed according to the type of material substrate quickly identified by the micron-level high-speed identification module, that is, the laser in-situ auxiliary module is used to assist in processing Brittle particles can effectively improve the plastic flow ability and plastic-brittle transition depth of brittle particles, inhibit crack propagation, and reduce subsurface damage; use ultrasonic vibration to assist in processing soft metal substrates, which can optimize the cutting cooling and lubrication effect of soft metal substrates, and inhibit tool wear. Meet the high-efficiency manufacturing needs of composite materials with ultra-high surface quality and surface shape accuracy.
  • the laser in-situ auxiliary module includes a fiber laser and a laser high-frequency control device, wherein,
  • the electro-optic modulator is installed in the laser cavity of the fiber laser, and the electro-optic modulator is connected to the micron-level high-speed identification module.
  • the electro-optic modulator controls the fiber laser to emit laser light according to the control signal sent by the micron-level high-speed identification module;
  • the laser high-frequency control device is set on the laser light emitted by the fiber laser, and is used for high-frequency control of the laser spot shape, size, and energy, so that the laser is projected on the diamond tool and focused In the cutting area, laser energy field assisted cutting processing is realized.
  • the rear end of the diamond cutter is set as an ellipsoid.
  • the shape of the spot includes a circular spot, an elliptical spot or a square spot; the diameter of the spot is 20-1000 ⁇ m; the energy distribution includes uniform distribution, Gaussian distribution, elliptical Gaussian distribution, super Gaussian distribution or a flat-topped Gaussian distribution.
  • the ultrasonic vibration auxiliary module is installed at the front end of the laser in-situ auxiliary module, and the ultrasonic vibration auxiliary module includes an ultrasonic horn, an ultrasonic power supply and a piezoelectric ceramic unit, and the piezoelectric ceramic unit mounted on the ultrasonic horn, wherein,
  • the center of the ultrasonic horn is a through hole, which is used to focus the laser energy field generated by the laser in-situ auxiliary module on the cutting area;
  • the ultrasonic power supply and the micron-level high-speed identification module are respectively connected to the ultrasonic power supply controller.
  • the ultrasonic power supply controller according to the The control signal sent by the micron-level high-speed identification module controls the ultrasonic power supply to generate a high-frequency vibration signal;
  • the piezoelectric ceramic unit is connected with the ultrasonic power supply, and is used to receive the high-frequency vibration signal and convert the high-frequency vibration signal into a mechanical vibration signal, so that the diamond tool installed at the front end of the ultrasonic horn generates The two-dimensional ultrasonic vibration realizes intermittent contact between the diamond tool and the workpiece to be processed.
  • the piezoelectric ceramic unit adopts four sets of piezoelectric ceramic sheets, including annular piezoelectric ceramics and semicircular piezoelectric ceramics, which are used to simultaneously generate axial vibration and bending of the ultrasonic horn vibration, so that the diamond tool produces ultrasonic elliptical vibration.
  • the micron-level high-speed identification module includes a fast information acquisition unit and a data processing unit, wherein,
  • the information rapid collection unit is installed on the front end of the diamond tool, and is used to quickly collect surface data information of the workpiece to be processed;
  • the data processing unit is connected with the fast information collection unit, and is used to collect and process the information collected by the fast information collection unit, and process the collected information into the electro-optical modulator and the ultrasonic power control device control signal.
  • the fast information collection unit adopts a high-speed camera or a fiber optic sensor.
  • the data processing unit adopts an industrial-grade IPC, adopts binary image recognition processing for the high-speed camera, and adopts luminous flux threshold comparison processing for the optical fiber sensor.
  • Fig. 1 is a block diagram of a selective performance field assisted processing system in an embodiment
  • Fig. 2 is a technical principle block diagram of the selective energy field assisted processing system in an embodiment
  • Fig. 3 is a schematic diagram of the auxiliary processing process of the selective energy field auxiliary processing system in an embodiment
  • Fig. 4 is a schematic structural diagram of a selective energy field assisted processing system in an embodiment
  • Fig. 5 is a schematic cross-sectional structure diagram of a selective energy field assisted processing system in an embodiment.
  • Fig. 6 is a schematic diagram of energy field switching of the selective energy field assisted processing system in an embodiment
  • Fig. 7 is a schematic diagram of the control flow of the selective performance field assisted processing system in an embodiment.
  • the invention provides a selective energy field auxiliary processing system, which can be used for selective processing of workpieces of any material and shape.
  • the invention uses the system for selective processing of composite material workpieces as an example to describe in detail.
  • FIG. 1 is a schematic diagram of a module of a selective performance field assisted processing system provided by an embodiment of the present invention.
  • the selective performance field assisted processing system provided by this embodiment includes a micron-level high-speed identification module 100 , a laser in-situ auxiliary module 200, an ultrasonic vibration auxiliary module 300, an energy field loading high-speed control module 500 and a diamond cutter 400.
  • the micron-level high-speed identification module 100 adopts micron-level high-speed identification technology, which can quickly identify the material matrix type of the composite material to be processed during the processing process, and process the identified information into corresponding control signals and send them to the electro-optical modulator. 510 and the energy field loading high-speed control module 500 of the ultrasonic power controller 520, using the energy field loading high-speed control module 500 to realize the selective processing of composite materials by the laser in-situ auxiliary module 200 and the ultrasonic vibration auxiliary module 300.
  • the electro-optic modulator 510 controls the laser in-situ auxiliary module 200 to generate a laser energy field according to the control signal sent by it, and the laser
  • the energy field is focused on the cutting area between the diamond tool 400 and the composite material to be processed, that is, the cutting edge of the diamond tool 400, and the brittle particles are heated and softened and the material is modified by using the laser energy field, and then the brittle particles are softened by the diamond tool 400.
  • the cutting process of particles can effectively improve the plastic flow ability of brittle materials, inhibit crack growth and reduce cutting force, so as to realize the ultra-precision forming and manufacturing of high-efficiency and high-quality hard and brittle material components.
  • the ultrasonic power supply controller 520 controls the ultrasonic vibration auxiliary module 300 to generate an ultrasonic energy field according to the control signal sent by it.
  • the field acts on the diamond cutter 400, making the diamond cutter 400 and the composite material to be processed intermittently contact, so that the cutting fluid or air can reach the cutting area more easily during the cutting process, optimize the cooling and lubrication effect, reduce the cutting heat, and reduce the thermal chemistry of the cutter. reaction, inhibit the formation of built-up edge, and realize ultra-precision machining of soft metal substrates.
  • the selective energy field assisted processing system organically integrates diamond cutting technology, laser in-situ assisted technology and ultrasonic vibration assisted technology by adding a micron-level high-speed identification module 100 and an energy field loading high-speed control module 500 .
  • the energy field loading high-speed control module 500 controls the laser energy field and the ultrasonic energy field to be selectively loaded on different substrates of the composite material to be processed according to the type of material matrix quickly identified by the micron-level high-speed identification module 100, that is, using laser in-situ assisted Processing brittle particles can effectively improve the plastic flow ability and plastic-brittle transition depth of brittle particles, inhibit crack propagation, and reduce subsurface damage; use ultrasonic vibration to assist in processing soft metal substrates, which can optimize the cutting cooling and lubrication effect of soft metal substrates and inhibit tool wear , to meet the high-efficiency manufacturing needs of composite materials with ultra-high surface quality and surface shape accuracy.
  • the laser in-situ auxiliary module 200 may include a fiber laser 210 and a laser high-frequency control device 220 (not shown in FIG. 2 ).
  • an electro-optic modulator 510 is installed in the laser cavity of the fiber laser 210, and the electro-optic modulator 510 is connected to the micron-level high-speed identification module 100.
  • the modulator 510 controls the fiber laser 210 to emit laser light 21 according to the control signal sent by the micron-level high-speed identification module 100 , that is, the electro-optic modulator 510 allows the fiber laser 210 to generate laser pulses by not blocking the resonant channel of the fiber laser 210 .
  • the laser power of the fiber laser 210 can be set and adjusted within a range of 0-100W.
  • the laser high-frequency control device 220 is arranged on the laser beam 21 emitted by the fiber laser 210, and is used for high-frequency control of the spot shape, size and energy of the laser 21, so that the laser 21 is projected onto the diamond tool 400 and focused on the diamond tool 400.
  • the laser energy field assisted cutting process is realized.
  • the rear end of the diamond tool 400 provided in this embodiment can be set as an ellipsoid, which can ensure that the laser 21 projected on any part of the ellipsoid can be refracted and focused to the cutting edge of the tool place, to ensure that the laser can achieve precise focus and achieve precise heating and softening of the cutting area.
  • the laser high-frequency control device 220 may include a laser control device 222 and a focusing lens 224.
  • the position and the distance and direction of the focusing lens 224 can realize multiple adjustments of laser energy distribution, spot diameter, and spot shape; the laser emission position has a certain relationship with the selected diamond tool 400, and the tool lasers with different rake angles are focused Finally, the position of the irradiation on the surface of the workpiece is different, and the up and down adjustment of the spot position can be realized by adjusting the height of the focusing lens 224 .
  • the distance between the laser beam and the focal point of the light spot of the focusing lens 224 determines the degree of focus of the light beam and affects the size and shape of the light spot.
  • the adjustment of different spot sizes and shapes can be realized.
  • the focus of the spot is the best, and the spot diameter is the smallest at 20 ⁇ m; when the distance is adjusted to the maximum stroke, the focus of the beam is small, and the spot diameter is the largest at this time, up to 1000 ⁇ m.
  • the adjustment of different energy distributions can mainly change the position of the highest energy of the laser beam, which is mainly realized by changing the relative position of the focusing lens 224 and the incident laser beam.
  • the center position of the beam waist Gaussian laser has the highest energy. Focus remains at the same level.
  • the laser energy distribution includes uniform distribution, Gaussian distribution, elliptical Gaussian distribution, super-Gaussian distribution, flat-top Gaussian distribution, etc.;
  • the spot diameter can be adjusted arbitrarily within the range of 20-1000 ⁇ m;
  • the spot shape includes circular spot, elliptical spot, Square spot, etc.
  • the ultrasonic vibration auxiliary module 300 is installed on the front end of the laser in-situ auxiliary module 200 , and the ultrasonic vibration auxiliary module 300 includes a piezoelectric ceramic unit 310 , an ultrasonic horn 320 and an ultrasonic power supply 330 , the piezoelectric ceramic unit 310 is installed on the ultrasonic horn 320 .
  • the center of the ultrasonic horn 320 is a through hole, which is used to focus the laser light emitted by the fiber laser 210 on the cutting edge of the diamond tool 400 .
  • the ultrasonic power supply 330 and the micron-level high-speed identification module 100 are connected to the ultrasonic power supply controller 520 respectively.
  • the control signal sent by 100 controls the ultrasonic power supply 330 to generate a high-frequency vibration signal.
  • the piezoelectric ceramic unit 310 is connected with the ultrasonic power supply 330, and is used to receive the high-frequency vibration signal and convert the high-frequency vibration signal into a mechanical vibration signal, so that the diamond cutter 400 installed at the front end of the ultrasonic horn 320 generates two-dimensional ultrasonic vibration, realizing The diamond tool 400 is in intermittent contact with the composite material 50 to be processed.
  • the piezoelectric ceramic unit 310 can adopt four sets of piezoelectric ceramic sheets, including annular piezoelectric ceramics and semicircular piezoelectric ceramics, which can cause the ultrasonic horn 320 to generate axial vibration and bending vibration at the same time, so that the ultrasonic horn 320 can be installed on the ultrasonic
  • the diamond tool 400 at the front end of the horn 320 can generate ultrasonic elliptical vibration, which can bring out the chips in time after material removal in each vibration cycle, avoiding material stacking on the rake face of the tool, and avoiding the in-situ assistance of the chips.
  • the piezoelectric ceramic unit 310 makes the vibration frequency of the ultrasonic elliptical vibration generated by the diamond tool 400 reach above 40 kHz, and the axial and transverse amplitudes both reach above 4 ⁇ m.
  • the micron-level high-speed identification module 100 includes a fast information collection unit 110 and a data processing unit 120, the fast collection unit 110 is connected to the data processing unit 120, wherein the fast collection unit 110 is used to quickly collect the surface of the workpiece to be processed Data information; the data processing unit 120 is used to collect and process the information collected by the information rapid collection unit 110 , and process the collected information into control signals for the electro-optic modulator 510 and the ultrasonic power controller 520 .
  • the rapid information collection unit 110 can be installed at the front end of the diamond cutter 400, which can effectively reduce the delay caused by identification, so that the energy field can be accurately and selectively loaded.
  • the fast information collection unit 110 can use a high-speed camera or an optical fiber sensor to collect the surface data of the composite material in real time.
  • the data processing unit 120 can choose an industrial-grade IPC as a data processing controller, adopt binary image recognition processing for high-speed cameras, and adopt luminous flux threshold comparison processing for optical fiber sensors. It can realize data collection on the surface of the composite material 50 to be processed under high-speed rotation, and has the characteristics of micron-level collection area, high stability, small delay, and high collection frequency.
  • the data processing unit 120 used can process the collected data in real time, and can quickly issue control instructions to take different processing measures for different materials.
  • the working principle of the selective energy field assisted processing system is: when the material matrix type identified by the micron-level high-speed identification module 100 is brittle particles 52, the micron-level high-speed identification module 100 processes the identified information into a control signal, Send to the electro-optic modulator 510 and the ultrasonic power controller 520, the ultrasonic power controller 520 controls the ultrasonic power source 330 not to generate a high-frequency vibration signal according to the control signal, and the electro-optic modulator 510 passes through the fiber laser 210 according to the control signal.
  • the resonant channel allows the laser pulse to be generated, so that the laser 21 can be focused on the cutting edge of the tool, thereby accurately heating and softening the cutting area, and realizing ultra-precision machining of brittle particles.
  • the micron-level high-speed identification module 100 processes the identified information into another control signal, which is sent to the electro-optical modulator 510 and the ultrasonic power controller 520,
  • the ultrasonic power supply controller 520 controls the ultrasonic power supply 330 to supply power according to the control signal to generate a high-frequency vibration signal, so that the tool is in intermittent contact with the workpiece, and the electro-optic modulator 510 cuts off the resonance channel of the fiber laser 210 according to the control signal to suppress the generation of laser pulses , so that the laser cannot be loaded into the cutting area, thereby realizing ultra-precision machining of soft metal substrates.
  • FIG. 6 is a schematic diagram of energy field switching of the selective energy field assisted processing system provided in this embodiment.
  • the selective energy field assisted processing system provided by the present invention can be built on ultra-precision machining, as shown in Figure 4 and Figure 5, the ultra-precision machining includes a clamping device, a processing device and the aforementioned selective energy field assisted processing system.
  • the composite material 50 to be processed is adsorbed on the spindle 90 of the clamping device by vacuum, the ultrasonic vibration auxiliary module 300 is fixed on the front end of the laser in-situ auxiliary module 200, and the laser in-situ auxiliary module 200 is fixed on the tool holder seat 70 of the processing device.
  • the information rapid acquisition unit 110 in the micron-level high-speed identification module 100 is fixed on the bracket 80 provided at the front end of the diamond cutter 400, so that the acquisition area is placed in front of the cutting area.
  • the selective energy field assisted processing system recognizes the material matrix type in the processing process in real time through the micron-level high-speed recognition technology, and processes the recognition information into a control signal, which is sent to the electro-optical modulator 510 and the ultrasonic power controller 520 to realize Selective processing of the composite material 50 to be processed, that is, laser in-situ assisted processing of the brittle particles 52 and ultrasonic vibration assisted processing of the soft metal matrix 54, to meet the high-efficiency manufacturing requirements of the composite material 50 to be processed with ultra-high surface quality and surface shape accuracy .
  • the selective energy field assisted processing system provided by this embodiment has a simple structure and a high degree of integration. It can simultaneously complete the ultra-precision processing of brittle particles and soft metal substrates in one processing process, and can increase the cutting depth on the premise of meeting the manufacturing accuracy. ,Increase productivity.
  • using the selective energy field assisted processing system of this embodiment to implement the selective processing of the present invention specifically includes the following steps:
  • the surface data information of the composite material to be processed is quickly collected by the rapid information collection unit 110 , and the information is transmitted to the data processing unit 120 .
  • the ultrasonic power supply controller 520 controls the ultrasonic power supply 330 to generate a high-frequency vibration signal, and the piezoelectric ceramic unit 310 installed on the ultrasonic horn 320 converts the electrical signal into a mechanical vibration signal,
  • the diamond tool 400 installed at the front end of the ultrasonic horn 320 generates two-dimensional ultrasonic vibration, and the tool contacts the workpiece intermittently, thereby realizing ultra-precision machining of the soft metal substrate 54;
  • the electro-optic The modulator 510 allows laser pulses to be generated by not blocking the resonant channel of the fiber laser 210, and the laser high-frequency control device 220 focuses the laser 21 on the cutting edge by adjusting the distance and direction between the laser output position and the focusing lens, thereby Accurately heat and soften the cutting area to realize ultra-precision machining of brittle particles 52.
  • the selective energy field assisted processing system provided in this embodiment fully utilizes the advantages of laser energy field and ultrasonic energy field, selectively loads on different substrates of composite materials, and uses laser in-situ assisted technology to improve the plastic flow ability and plasticity of brittle particles 52. Brittle transition depth, inhibit crack propagation, reduce subsurface damage. Ultrasonic vibration-assisted technology is used to optimize the cutting cooling and lubrication effect of the soft metal matrix 54, and to suppress tool wear, so as to meet the high-efficiency manufacturing needs of composite materials with ultra-high surface quality and surface shape accuracy.
  • the invention is not only applicable to composite material workpieces, but also suitable for selective processing of workpieces of other materials and shapes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种选择性能场辅助加工系统。其中,该系统包括微米级高速识别模块、激光原位辅助模块、超声振动辅助模块、能场加载高速控制模块和金刚石刀具;其中,微米级高速识别模块用于快速识别待加工工件在加工过程中的材料基体类型,并将识别到的信息处理成相应的控制信号发送至包括电光调制器和超声电源控制器的能场加载高速控制模块中,实现对待加工工件的选择性加工,即采用激光原位辅助加工脆性颗粒,采用超声振动辅助加工软金属基体。本发明可以在一次加工过程中同时完成脆性颗粒和软金属基体的超精密切削,能实现脆性颗粒的高精度低损伤超精密切削,还能在加工软金属基体时有效抑制刀具磨损。

Description

一种选择性能场辅助加工系统 【技术领域】
本发明属于超精密加工技术领域,更具体地,涉及一种选择性能场辅助加工系统。
【背景技术】
硅铝合金、铝基碳化硅等复合材料,由软金属基体和脆性颗粒(硅、碳化硅等)组成,具有低密度、高比刚度、高抗疲劳性、高抗磨损性和高抗腐蚀性等优异的物理、化学和机械性能,广泛应用于航空航天、电子封装和生物技术中。加工表面完整性对复合材料零件性能具有重要影响。随着我国科技的进步与发展,对复合基材料的加工精度和加工质量提出了更高的要求。
金刚石切削技术具有加工效率高、加工自由度高、加工精度高、亚表面损伤低等优势,已被证实为制备复合材料高质量加工表面的一种有效加工手段。由于脆性颗粒大大降低了延性软金属基体的变形行为,容易造成脆性颗粒剥落,导致复合材料加工性能极低。而软金属基体的挤压变形和强烈摩擦,会使切屑与前刀面之间产生很大的压力和很高的切削温度,造成较大的积屑瘤,导致刀具发生粘着磨损,影响刀具寿命,降低工件表面加工质量。现有技术是在单步切深为微米量级的超精密金刚石切削加工中,采用多步切削工艺来实现几十微米厚度的材料去除。在复合材料的多步切削加工过程中,前一步切削过程中产生的残余应力对后续的材料去除产生强烈的影响,例如显著的应力松弛对颗粒-基体界面强度产生影响,进而影响刀具-颗粒之间的相互作用,这会导致复合材料加工表面质量难以提升,且加工效率不高。复合材料的高效高质量制造已经成为航天制造领域的“卡脖子”难题。
激光原位辅助切削技术可实现激光与刀具的耦合,使激光光束穿过刀具本体并聚焦于切削区域,使硬脆材料发生软化,提高脆性材料的塑性流动能力,抑制裂纹扩展、降低切削力,从而实现高效率高质量硬脆材料元件的超精密成形制造。但是对于复合材料,激光原位辅助加工技术会使软金属基体变得更软,导致加工过程中脆性颗粒更容易剥落,也会加剧刀具粘着磨损。同时金刚石刀具也更容易发热,发生热化学反应,导致使用寿命降低。超声振动辅助切削技术是一种间歇式的脉冲场辅助加工方法,在每一个振动周期内可实现纳米级材料去除,降低切削力,与此同时,刀具与工件间歇式接触,使切削液或空气更容易到达加工区域,优化冷却和润滑效果,降低切削热,减少刀具热化学反应,抑制积屑瘤的形成,可实现软金属材料的超精密加工。但在加工硬脆材料时存在因微观冲击作用造成刀具崩刃的风险,且受到振幅和频率限制,切削速度较低,加工效率较低。
因此,如何实现复合材料脆性颗粒的高效率高精度低损伤超精密切削,并能在加工复合材料软金属基体时有效抑制刀具磨损是亟需解决的问题。
【发明内容】
针对现有技术的缺陷,本发明的目的在于提供一种选择性能场辅助加工系统,可以在一次加工过程中同时完成脆性颗粒和软金属基体的超精密切削,能实现脆性颗粒的高精度低损伤超精密切削,还能在加工软金属基体时有效抑制刀具磨损。
为实现上述目的,本发明提供了一种选择性能场辅助加工系统,包括微米级高速识别模块、激光原位辅助模块、超声振动辅助模块、能场加载高速控制模块和金刚石刀具,其中,
所述微米级高速识别模块,用于快速识别待加工工件在加工过程中的材料基体类型,并将识别到的信息处理成相应的控制信号发送至包括电光调制器和超声电源控制器的所述能场加载高速控制模块中,实现对待加工工件的选择性加工;
当所述微米级高速识别模块识别到的材料基体类型为脆性颗粒时,所述电光调制器根据所述控制信号控制所述激光原位辅助模块产生激光能场,所述激光能场聚焦在所述金刚石刀具与所述待加工工件之间的切削区域,辅助所述金刚石刀具进行切削加工;当所述微米级高速识别模块识别到的材料基体类型为软金属基体时,所述超声电源控制器根据所述控制信号控制所述超声振动辅助模块产生超声能场,所述超声能场使所述金刚石刀具与所述待加工工件间歇式接触,实现对软金属基体的超精密加工。
本发明提供的选择性能场辅助加工系统,通过增加微米级高速识别模块和能场加载高速控制模块,将金刚石切削技术、激光原位辅助技术和超声振动辅助技术有机融合。能场加载高速控制模块根据微米级高速识别模块快速识别到的材料基体类型,控制激光能场、超声能场选择性地加载在待加工工件的不同基体上,即利用激光原位辅助模块辅助加工脆性颗粒,可有效提高脆性颗粒塑性流动能力和塑脆转变深度,抑制裂纹扩展,减小亚表面损伤;利用超声振动辅助加工软金属基体,能优化软金属基体切削冷却润滑效果,抑制刀具磨损,满足复合材料超高表面质量和面形精度的高效制造需求。
在其中一个实施例中,所述激光原位辅助模块包括光纤激光器和激光高频调控装置,其中,
所述光纤激光器的激光谐振腔内安装有所述电光调制器,所述电光调制器与所述微米级高速识别模块相连,当所述微米级高速识别模块识别到的材料基体类型为脆性颗粒时,所述电光调制器根据所述微米级高速识别模块发出的控制信号控制所述光纤激光器发射激光;
所述激光高频调控装置设置在所述光纤激光器发射的激光光线上,用于对所述激光的光斑形状、尺寸、能量进行高频调控,使所述激光投射到所述金刚石刀具上并聚焦在所述切削区域,实现激光能场辅助切削加工。
在其中一个实施例中,所述金刚石刀具的后端设置为椭球面。
在其中一个实施例中,所述光斑形状包括圆形光斑、椭圆形光斑或方形光斑;所述光斑直径为20~1000μm;所述能量分布包括均匀分布、高斯分布、椭圆高斯分布、超高斯分布或平顶高斯分布。
在其中一个实施例中,所述超声振动辅助模块安装在所述激光原位辅助模块的前端,所述超声振动辅助模块包括超声变幅杆、超声电源和压电陶瓷单元,所述压电陶瓷单元安装在所述超声变幅杆上,其中,
所述超声变幅杆的中心为通孔,用于使所述激光原位辅助模块产生的激光能场聚焦在所述切削区域;
所述超声电源、所述微米级高速识别模块分别与所述超声电源控制器相连,当所述微米级高速识别模块识别到的材料基体类型为软金属基体时,所述超声电源控制器根据所述微米级高速识别模块发出的控制信号控制所述超声电源产生高频振动信号;
所述压电陶瓷单元与所述超声电源相连,用于接收所述高频振动信号并将所述高频振动信号转换为机械振动信号,使安装在所述超声变幅杆前端的金刚石刀具产生二维超声振动,实现所述金刚石刀具与所述待加工工件间歇式接触。
在其中一个实施例中,所述压电陶瓷单元采用四组压电陶瓷片,包括环形压电陶瓷和半圆形压电陶瓷,用于使所述超声变幅杆同时产生轴向振动和弯曲振动,使所述金刚石刀具产生超声椭圆振动。
在其中一个实施例中,所述微米级高速识别模块包括信息快速采集单元和数据处理单元,其中,
所述信息快速采集单元,安装在所述金刚石刀具的前端,用于快速采集待加工工件的表面数据信息;
所述数据处理单元,与所述信息快速采集单元相连,用于收集和处理所述信息快速采集单元采集到的信息,并将采集到的信息处理为所述电光调制器和所述超声电源控制器的控制信号。
在其中一个实施例中,所述信息快速采集单元采用高速相机或光纤传感器。
在其中一个实施例中,所述数据处理单元采用工业级IPC,对所述高速相机采用二值化的图像识别处理,对所述光纤传感器采用光通量阈值比较处理。
【附图说明】
图1是一实施例中选择性能场辅助加工系统的模块示意图;
图2是一实施例中选择性能场辅助加工系统的技术原理框图;
图3是一实施例中选择性能场辅助加工系统辅助加工过程示意图;
图4是一实施例中选择性能场辅助加工系统的结构示意图;
图5是一实施例中选择性能场辅助加工系统的剖面结构示意图。
图6是一实施例中选择性能场辅助加工系统的能场切换示意图;
图7是一实施例中选择性能场辅助加工系统的控制流程示意图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供了一种选择性能场辅助加工系统,可用于任何材料、形状的工件进行选择性加工,本发明以该系统用于对复合材料工件进行选择性加工为例进行详细说明。
请先查阅图1,图1是本发明一实施例提供的选择性能场辅助加工系统的模块示意图,如图1所示,本实施例提供的选择性能场辅助加工系统包括微米级高速识别模块100、激光原位辅助模块200、超声振动辅助模块300、能场加载高速控制模块500和金刚石刀具400。
其中,微米级高速识别模块100,采用微米级高速识别技术,可快速识别待加工复合材料在加工过程中的材料基体类型,并将识别到的信息处理 成相应的控制信号发送至包括电光调制器510和超声电源控制器520的能场加载高速控制模块500,利用能场加载高速控制模块500实现激光原位辅助模块200、超声振动辅助模块300对复合材料的选择性加工。
即当微米级高速识别模块100识别到的材料基体类型为脆性颗粒时,如硅基部分时,电光调制器510根据其发出的控制信号控制激光原位辅助模块200产生激光能场,且该激光能场聚焦在金刚石刀具400与待加工复合材料之间的切削区域,即金刚石刀具400的切削刃口处,利用激光能场使脆性颗粒加热软化和材料改性,继而通过金刚石刀具400对该脆性颗粒进行切削加工,可有效提高脆性材料的塑性流动能力,抑制裂纹扩展、降低切削力,从而实现高效率高质量硬脆材料元件的超精密成形制造。
当微米级高速识别模块100识别到的材料基体类型为软金属基体时,如铝基部分时,超声电源控制器520根据其发出的控制信号控制超声振动辅助模块300产生超声能场,该超声能场作用在金刚石刀具400上,使金刚石刀具400和待加工复合材料间歇式接触,从而使切削过程中切削液或空气更容易到达切削区域,优化冷却和润滑效果,降低切削热,减少刀具热化学反应,抑制积屑瘤的形成,实现软金属基体的超精密加工。
本实施例提供的选择性能场辅助加工系统,通过增加微米级高速识别模块100和能场加载高速控制模块500,将金刚石切削技术、激光原位辅助技术和超声振动辅助技术有机融合。能场加载高速控制模块500根据微米级高速识别模块100快速识别到的材料基体类型,控制激光能场、超声能场选择性地加载在待加工复合材料的不同基体上,即利用激光原位辅助加工脆性颗粒,可有效提高脆性颗粒塑性流动能力和塑脆转变深度,抑制裂纹扩展,减小亚表面损伤;利用超声振动辅助加工软金属基体,能优化软金属基体切削冷却润滑效果,抑制刀具磨损,满足复合材料超高表面质量和面形精度的高效制造需求。
在一个实施例中,参见图2和图3,激光原位辅助模块200可包括光纤 激光器210和激光高频调控装置220(图2中未示出)。
其中,光纤激光器210的激光谐振腔内安装有电光调制器510,电光调制器510与微米级高速识别模块100相连,当微米级高速识别模块100识别到的材料基体类型为脆性颗粒52时,电光调制器510根据微米级高速识别模块100发出的控制信号控制光纤激光器210发射激光21,即电光调制器510通过不阻断光纤激光器210的谐振通道来容许其激光脉冲产生。具体地,光纤激光器210的激光功率可设置在0~100W范围内可调。
激光高频调控装置220设置在光纤激光器210发射的激光光线21上,用于对激光21的光斑形状、尺寸、能量进行高频调控,使激光21投射到金刚石刀具400上并聚焦在金刚石刀具400的切削刃口处,实现激光能场辅助切削加工。为保证激光能实现精准聚焦,本实施例提供的金刚石刀具400后端可设置为椭球面,该椭球面可以确保投射到椭球面上任意一处的激光21均可以经过折射聚焦到刀具切削刃口处,保证激光能实现精准聚焦,实现切削区域精确加热软化。
具体地,激光高频调控装置220可包括激光调控器222和聚焦透镜224,参见图4,激光高频调控装置220可安装于最小运动量为1μm的精密微位移运动平台60上,通过调节激光发射位置与聚焦透镜224的距离、方向等,可实现激光能量分布、光斑直径、光斑形状的多种调节;激光发射位置与所选的金刚石刀具400具有一定的关系,不同前角的刀具激光经过聚焦后在辐照于工件表面的位置有所区别,通过调节聚焦透镜224的高低可以实现光斑位置的上下调整。激光光束与聚焦透镜224光斑焦点的距离决定了光束聚焦程度,影响光斑的大小、形状等。因此通过调节聚焦透镜224的距离可以实现不同光斑大小、形状的调节。激光光束位置聚焦透镜224焦点位置时,光斑聚焦程度最好,此时光斑直径最小为20μm;当距离调节到行程最大值时,光束聚焦程度较小,此时光斑直径最大,可达1000μm。不同能量分布的调节可主要改变了激光光束最高能量的位置,其主要通过改 变聚焦透镜224与激光光束入射时的相对位置实现,束腰高斯激光中心位置能量最高,此时激光光束与聚焦透镜224焦点保持在同一水平。
其中,激光能量分布包括均匀分布、高斯分布、椭圆高斯分布、超高斯分布、平顶高斯分布等;光斑直径在20~1000μm范围内可进行任意调控;光斑形状包括圆形光斑、椭圆形光斑、方形光斑等。
在一个实施例中,参见图3~图5,超声振动辅助模块300安装在激光原位辅助模块200的前端,超声振动辅助模块300包括压电陶瓷单元310、超声变幅杆320和超声电源330,压电陶瓷单元310安装在超声变幅杆320上。
其中,超声变幅杆320的中心为通孔,用于使光纤激光器210发射的激光聚焦在金刚石刀具400的切削刃口处。
超声电源330、微米级高速识别模块100分别与超声电源控制器520相连,当微米级高速识别模块100识别到的材料基体类型为软金属基体54时,超声电源控制器520根据微米级高速识别模块100发出的控制信号控制超声电源330产生高频振动信号。
压电陶瓷单元310与超声电源330相连,用于接收高频振动信号并将高频振动信号转换为机械振动信号,使安装在超声变幅杆320前端的金刚石刀具400产生二维超声振动,实现金刚石刀具400与待加工复合材料50间歇式接触。
具体地,压电陶瓷单元310可采用四组压电陶瓷片,包括环形压电陶瓷和半圆形压电陶瓷,可以使超声变幅杆320同时产生轴向振动和弯曲振动,使安装于超声变幅杆320前端的金刚石刀具400能够产生超声椭圆振动,超声椭圆振动在每个振动周期内进行材料去除之后能够及时将切屑带出,避免刀具前刀面出现材料堆叠,避免切屑对原位辅助激光光路的影响。优选地,压电陶瓷单元310使金刚石刀具400产生的超声椭圆振动的振动频率达40kHz以上,轴向振幅和横向振幅均达4μm以上。
在一个实施例中,微米级高速识别模块100包括信息快速采集单元110和数据处理单元120,快速采集单元110与数据处理单元120相连,其中,快速采集单元110用于快速采集待加工工件的表面数据信息;数据处理单元120用于收集和处理信息快速采集单元110采集到的信息,并将采集到的信息处理为上述电光调制器510和超声电源控制器520的控制信号。
具体地,信息快速采集单元110可安装在金刚石刀具400的前端,能有效减少识别带来的延迟,以便能场能够准确的选择性加载。
考虑到脆性颗粒尺寸在20~150μm,切削速度0.5~5m/min,信息快速采集单元110可选用高速相机或光纤传感器实时采集复合材料表面数据。数据处理单元120可选用工业级IPC作为数据处理控制器,对于高速相机采用二值化的图像识别处理,对于光纤传感器采用光通量阈值比较处理。可实现高速旋转下对待加工复合材料50表面数据采集,具有微米级采集区域、稳定性高、延迟小、采集频率高的特点。采用的数据处理单元120可对采集到的数据进行实时处理,并能快速发出控制指令,对不同材料采取不同的加工措施。
上述实施例提供的选择性能场辅助加工系统的工作原理为:当微米级高速识别模块100识别到的材料基体类型为脆性颗粒52时,微米级高速识别模块100将识别的信息处理成一控制信号,发送至电光调制器510和超声电源控制器520,超声电源控制器520根据该控制信号控制超声电源330不产生高频振动信号,而电光调制器510根据该控制信号通过不阻断光纤激光器210的谐振通道来允许激光脉冲产生,使激光21聚焦于刀具刃口处,从而精准加热软化切削区域,实现脆性颗粒的超精密加工。
当微米级高速识别模块100识别到的材料基体类型为软金属基体54时,微米级高速识别模块100将识别的信息处理成另一控制信号,发送至电光调制器510和超声电源控制器520,超声电源控制器520根据该控制信号控制超声电源330供电产生高频振动信号,使刀具与工件间歇式接触, 而电光调制器510根据该控制信号则切断光纤激光器210的谐振通道来抑制激光脉冲产生,使激光无法加载到切削区域中,从而实现对软金属基体的超精密加工。具体可参见图6,图6为本实施例提供的选择性能场辅助加工系统的能场切换示意图。
本发明提供的选择性能场辅助加工系统可搭建在超精密加工上,如图4和图5所示,该超精密加工包括装夹装置、加工装置和前述的选择性能场辅助加工系统。待加工复合材料50通过真空吸附在装夹装置的主轴90上,超声振动辅助模块300固定在激光原位辅助模块200前端,激光原位辅助模块200固定在加工装置的刀架座70上。微米级高速识别模块100中的信息快速采集单元110固定于金刚石刀具400前端设置的支架80上,使采集区域前置于切削区域。本发明提供的选择性能场辅助加工系统通过微米级高速识别技术实时识别加工过程中的材料基体类型,并将识别信息处理成控制信号,发送至电光调制器510和超声电源控制器520中,实现待加工复合材料50的选择性加工,即采用激光原位辅助加工脆性颗粒52,采用超声振动辅助加工软金属基体54,以满足待加工复合材料50超高表面质量和面形精度的高效制造需求。
本实施例提供的选择性能场辅助加工系统结构简单、集成化程度高,可以在一次加工过程中同时完成脆性颗粒和软金属基体的超精密加工,能够在满足制造精度的前提下,增加切削深度,提高生产效率。
参见图7,使用本实施例的选择性能场辅助加工系统实施本发明的选择性加工具体包括如下步骤:
首先通过信息快速采集单元110快速采集待加工复合材料的表面数据信息,并将该信息传递给数据处理单元120。
然后利用数据处理单元120将该信息处理为控制信号,发送至电光调制器510和超声电源控制器520。
当刀尖区域识别为软金属基体54时,超声电源控制器520控制超声电 源330产生高频振动信号,安装在超声变幅杆320上的压电陶瓷单元310将电信号转换为机械振动信号,使安装于超声变幅杆320前端的金刚石刀具400产生二维超声振动,刀具与工件间歇式接触,从而实现对软金属基体54的超精密加工;当刀尖区域识别为脆性颗粒52时,电光调制器510通过不阻断光纤激光器210的谐振通道来允许激光脉冲产生,激光高频调控装置220通过调节激光出射位置与聚焦透镜的距离、方向等,使激光21聚焦于刀具刃口处,从而精准加热软化切削区域,实现脆性颗粒52的超精密加工。
本实施例提供的选择性能场辅助加工系统,充分发挥激光能场和超声能场的优势,选择性地加载在复合材料不同基体上,利用激光原位辅助技术提高脆性颗粒52塑性流动能力和塑脆转变深度,抑制裂纹扩展,减小亚表面损伤。利用超声振动辅助技术优化软金属基体54切削冷却润滑效果,抑制刀具磨损,以满足复合材料超高表面质量和面形精度的高效制造需求。本发明不仅适用于复合材料工件,也适用于其他材料、其他形状的工件的选择性加工。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种选择性能场辅助加工系统,其特征在于,包括微米级高速识别模块、激光原位辅助模块、超声振动辅助模块、能场加载高速控制模块和金刚石刀具,其中,
    所述微米级高速识别模块,用于快速识别待加工工件在加工过程中的材料基体类型,并将识别到的信息处理成相应的控制信号发送至包括电光调制器和超声电源控制器的所述能场加载高速控制模块中,实现对待加工工件的选择性加工;
    当所述微米级高速识别模块识别到的材料基体类型为脆性颗粒时,所述电光调制器根据所述控制信号控制所述激光原位辅助模块产生激光能场,所述激光能场聚焦在所述金刚石刀具与所述待加工工件之间的切削区域,辅助所述金刚石刀具进行切削加工;当所述微米级高速识别模块识别到的材料基体类型为软金属基体时,所述超声电源控制器根据所述控制信号控制所述超声振动辅助模块产生超声能场,所述超声能场使所述金刚石刀具与所述待加工工件间歇式接触,实现对软金属基体的超精密加工。
  2. 根据权利要求1所述的选择性能场辅助加工系统,其特征在于,所述激光原位辅助模块包括光纤激光器和激光高频调控装置,其中,
    所述光纤激光器的激光谐振腔内安装有所述电光调制器,所述电光调制器与所述微米级高速识别模块相连,当所述微米级高速识别模块识别到的材料基体类型为脆性颗粒时,所述电光调制器根据所述微米级高速识别模块发出的控制信号控制所述光纤激光器发射激光;
    所述激光高频调控装置设置在所述光纤激光器发射的激光光线上,用于对所述激光的光斑形状、尺寸、能量进行高频调控,使所述激光投射到所述金刚石刀具上并聚焦在所述切削区域,实现激光能场辅助切削加工。
  3. 根据权利要求1或2所述的选择性能场辅助加工系统,其特征在于, 所述金刚石刀具的后端设置为椭球面。
  4. 根据权利要求2所述的选择性能场辅助加工系统,其特征在于,所述光斑形状包括圆形光斑、椭圆形光斑或方形光斑;所述光斑直径为20~1000μm;所述能量分布包括均匀分布、高斯分布、椭圆高斯分布、超高斯分布或平顶高斯分布。
  5. 根据权利要求1或2所述的选择性能场辅助加工系统,其特征在于,所述超声振动辅助模块安装在所述激光原位辅助模块的前端,所述超声振动辅助模块包括超声变幅杆、超声电源和压电陶瓷单元,所述压电陶瓷单元安装在所述超声变幅杆上,其中,
    所述超声变幅杆的中心为通孔,用于使所述激光原位辅助模块产生的激光能场聚焦在所述切削区域;
    所述超声电源、所述微米级高速识别模块分别与所述超声电源控制器相连,当所述微米级高速识别模块识别到的材料基体类型为软金属基体时,所述超声电源控制器根据所述微米级高速识别模块发出的控制信号控制所述超声电源产生高频振动信号;
    所述压电陶瓷单元与所述超声电源相连,用于接收所述高频振动信号并将所述高频振动信号转换为机械振动信号,使安装在所述超声变幅杆前端的金刚石刀具产生二维超声振动,实现所述金刚石刀具与所述待加工工件间歇式接触。
  6. 根据权利要求5所述的选择性能场辅助加工系统,其特征在于,所述压电陶瓷单元采用四组压电陶瓷片,包括环形压电陶瓷和半圆形压电陶瓷,用于使所述超声变幅杆同时产生轴向振动和弯曲振动,使所述金刚石刀具产生超声椭圆振动。
  7. 根据权利要求1所述的选择性能场辅助加工系统,其特征在于,所述微米级高速识别模块包括信息快速采集单元和数据处理单元,其中,
    所述信息快速采集单元,安装在所述金刚石刀具的前端,用于快速采 集待加工工件的表面数据信息;
    所述数据处理单元,与所述信息快速采集单元相连,用于收集和处理所述信息快速采集单元采集到的信息,并将采集到的信息处理为所述电光调制器和所述超声电源控制器的控制信号。
  8. 根据权利要求7所述的选择性能场辅助加工系统,其特征在于,所述信息快速采集单元采用高速相机或光纤传感器。
  9. 根据权利要求8所述的选择性能场辅助加工系统,其特征在于,所述数据处理单元采用工业级IPC,对所述高速相机采用二值化的图像识别处理,对所述光纤传感器采用光通量阈值比较处理。
PCT/CN2022/119848 2021-10-15 2022-09-20 一种选择性能场辅助加工系统 WO2023061161A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/395,622 US20240227097A9 (en) 2021-10-15 2023-12-25 Selective field-assisted machining system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111205023.2 2021-10-14
CN202111205023.2A CN113829081B (zh) 2021-10-15 2021-10-15 一种选择性能场辅助加工系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/395,622 Continuation US20240227097A9 (en) 2021-10-15 2023-12-25 Selective field-assisted machining system

Publications (1)

Publication Number Publication Date
WO2023061161A1 true WO2023061161A1 (zh) 2023-04-20

Family

ID=78965142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119848 WO2023061161A1 (zh) 2021-10-15 2022-09-20 一种选择性能场辅助加工系统

Country Status (2)

Country Link
CN (1) CN113829081B (zh)
WO (1) WO2023061161A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113829081B (zh) * 2021-10-15 2022-06-07 华中科技大学 一种选择性能场辅助加工系统
CN114850936B (zh) * 2022-05-17 2023-07-11 南京航空航天大学 一种双步多分区力调控的自适应超声辅助加工平台及方法
CN114918736B (zh) * 2022-06-13 2023-11-21 重庆大学 一种适用于难加工材料的智能工艺系统
CN116079432B (zh) * 2023-01-04 2024-03-26 重庆大学 一种基于智能刀柄的超声铣削自适应调控装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050274702A1 (en) * 2004-06-15 2005-12-15 Laserfacturing Inc. Method and apparatus for dicing of thin and ultra thin semiconductor wafer using ultrafast pulse laser
US6980571B1 (en) * 2002-05-17 2005-12-27 Lpl Systems, Inc. Laser cutting method and system
CN105710980A (zh) * 2016-01-17 2016-06-29 长春理工大学 激光原位辅助机械刻划硬脆材料的装置及方法
CN111069767A (zh) * 2019-12-31 2020-04-28 华中科技大学 一种超声振动微激光辅助复合单点金刚石切削加工系统
CN212599634U (zh) * 2020-06-01 2021-02-26 广东宏石激光技术股份有限公司 一种具有识别材料功能的激光加工头
CN113829081A (zh) * 2021-10-15 2021-12-24 华中科技大学 一种选择性能场辅助加工系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3972066B2 (ja) * 2004-03-16 2007-09-05 大日精化工業株式会社 光制御式光路切替型データ配信装置および配信方法
US8038693B2 (en) * 2009-10-21 2011-10-18 Tyco Healthcare Group Ip Methods for ultrasonic tissue sensing and feedback
WO2020006062A1 (en) * 2018-06-26 2020-01-02 Db Sonics, Inc. Sonotrode and method of manufacturing
CN112621551B (zh) * 2020-12-19 2021-10-08 华中科技大学 一种可快速定位的超精密晶圆磨削设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980571B1 (en) * 2002-05-17 2005-12-27 Lpl Systems, Inc. Laser cutting method and system
US20050274702A1 (en) * 2004-06-15 2005-12-15 Laserfacturing Inc. Method and apparatus for dicing of thin and ultra thin semiconductor wafer using ultrafast pulse laser
CN105710980A (zh) * 2016-01-17 2016-06-29 长春理工大学 激光原位辅助机械刻划硬脆材料的装置及方法
CN111069767A (zh) * 2019-12-31 2020-04-28 华中科技大学 一种超声振动微激光辅助复合单点金刚石切削加工系统
CN212599634U (zh) * 2020-06-01 2021-02-26 广东宏石激光技术股份有限公司 一种具有识别材料功能的激光加工头
CN113829081A (zh) * 2021-10-15 2021-12-24 华中科技大学 一种选择性能场辅助加工系统

Also Published As

Publication number Publication date
CN113829081A (zh) 2021-12-24
CN113829081B (zh) 2022-06-07
US20240131644A1 (en) 2024-04-25

Similar Documents

Publication Publication Date Title
WO2023061161A1 (zh) 一种选择性能场辅助加工系统
CN111069767B (zh) 一种超声振动微激光辅助复合单点金刚石切削加工系统
KR102096674B1 (ko) 웨이퍼 가공 방법
CN113843631B (zh) 一种基于原位激光高频调控技术的选择性加工系统
CN106737199B (zh) 一种在线去毛刺和砂轮修锐激光辅助微细磨削装置及方法
CN111347571A (zh) 用于光学硬脆材料的激光辅助低损伤切削加工系统及方法
WO2012108052A1 (ja) 単結晶基板製造方法および内部改質層形成単結晶部材
WO2012108055A1 (ja) 単結晶基板製造方法および内部改質層形成単結晶部材
TW200408491A (en) Laser-assisted machining method
CN113649686B (zh) 一种激光-超声振动复合辅助切削加工装置
CN114571086B (zh) 纳秒激光诱导等离子体复合飞秒激光加工装置及加工方法
CN112743297B (zh) 激光在线预加热辅助加工方法
WO2013118645A1 (ja) 基板加工方法及び基板加工装置
CN109909610A (zh) 一种硅片和玻璃的焊接方法及焊接系统
CN206416045U (zh) 一种在线去毛刺和砂轮修锐激光辅助微细磨削装置
WO2023097804A1 (zh) 一种激光-超声同步辅助切削系统
CN113500711A (zh) 一种高精度复合能场辅助切削及光整设备及方法
CN113414889B (zh) 激光辅助金刚石切削与激光抛光原位复合的方法及装置
CN110202266A (zh) 一种飞秒激光加工金刚石微槽截面形状的调控方法
US20240227097A9 (en) Selective field-assisted machining system
CN114131208A (zh) 激光诱导等离子体进行仿形加工装置及方法
CN102021561B (zh) 一种激光顶面熔覆方法
CN112809196A (zh) 一种5g高频lcp材料外形切割方法
CN111943499A (zh) 一种基于超声氮气射流的超快激光精密切割方法
WO2023087708A1 (zh) 大深径比微纳织构刀具、其加工装置及其加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE