WO2023087708A1 - 大深径比微纳织构刀具、其加工装置及其加工方法 - Google Patents

大深径比微纳织构刀具、其加工装置及其加工方法 Download PDF

Info

Publication number
WO2023087708A1
WO2023087708A1 PCT/CN2022/100857 CN2022100857W WO2023087708A1 WO 2023087708 A1 WO2023087708 A1 WO 2023087708A1 CN 2022100857 W CN2022100857 W CN 2022100857W WO 2023087708 A1 WO2023087708 A1 WO 2023087708A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
nano
tool
plasma
magnetic field
Prior art date
Application number
PCT/CN2022/100857
Other languages
English (en)
French (fr)
Inventor
刘亚运
王传洋
刘同舜
张克栋
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023087708A1 publication Critical patent/WO2023087708A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/02Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
    • B08B7/026Using sound waves
    • B08B7/028Using ultrasounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma

Definitions

  • the invention belongs to the technical field of cutting tools and processing thereof, and in particular relates to a cutting tool with a large depth-to-diameter ratio micro-nano texture, a processing device and a processing method thereof.
  • Patent No. 201210447210.6 discloses a self-lubricating ceramic tool with micro-nano composite texture and its preparation method. It uses laser processing technology to process micron-scale textures with different shapes on the rake face of the tool. Nano-scale textures of different shapes are processed on the surface, which can reduce wear, reduce cutting force and cutting temperature, and reduce the wear of the tool body.
  • the literature "International Journal of Refractory Metals and Hard Materials” 43(2014) 46-58 reported that the cutting force, cutting temperature and tool wear of the rake face micro-textured tool dry cutting hardened steel are all in a certain degree compared with the traditional tool has been lowered.
  • the technical problem to be solved by the present invention is how to provide a large depth-to-diameter ratio micro-nano textured tool with better self-lubricating performance and ability to store wear debris, its processing device and its processing method.
  • the present invention provides a processing device for a micro-nano texture tool, including a laser emitting unit, a plasma induction unit, and a mobile platform.
  • the laser emitting unit It includes a laser for emitting laser beams and an optical path conversion mechanism for focusing the laser beams on the surface to be processed of the tool body
  • the plasma induction unit includes a container containing a liquid dielectric and is used to fix the tool body on the The tool fixing mechanism in the liquid dielectric medium
  • the moving platform drives one of the laser emitting unit and the plasma induction unit to pass the other along the processing direction
  • the plasma induction unit also includes a A magnetic field generating mechanism that generates a magnetic field distribution around the main body.
  • the magnetic field generating mechanism in order to simplify the structure of the magnetic field generating mechanism and ensure the strength of the magnetic field, includes two magnets with opposite poles opposite to each other. The generated magnetic lines of force are located above the surface to be machined of the tool body.
  • the mobile platform is high-precision Three-axis mobile platform.
  • the present invention also provides a processing method for a micro-nano-textured tool, in which laser-induced plasma is used to process a Micro-nano textured grooves, by applying a magnetic field to the induced plasma to increase the velocity of the plasma and increase the energy density of the plasma, thereby obtaining a micro-nano textured groove with a large aspect ratio.
  • a magnetic field whose direction intersects the processing direction is applied to the induced plasma to change the The trajectory of the plasma, so as to obtain the micro-nano texture groove with curved surface profile.
  • the processing method of the micro-nano textured tool includes the following preparation steps:
  • the tool body is fully immersed in the liquid dielectric medium in the container with the attitude of the surface to be processed facing upwards and fixed, and a magnet is used to generate a magnetic field distribution around the surface to be processed of the tool body;
  • Micro-nano texture groove the groove depth of the micro-nano texture groove is 30-200 microns;
  • step (1) the tool body is sequentially put into alcohol and acetone for ultrasonic cleaning 10-30 minutes
  • step (2) the liquid dielectric is distilled water
  • the flank of the tool body is 3-8 millimeters away from the liquid surface of the liquid dielectric
  • the magnetic field strength is 0-3T
  • the magnetic field direction is perpendicular to the processing direction
  • step (3) is a picosecond laser
  • the spot diameter of the laser beam focused on the surface to be processed of the tool body is 10.5 microns
  • the relative movement speed of the laser beam and the tool body is less than 0.2mm/s
  • the laser pulse frequency is 10- 80KHz
  • step (4) the micro-nano texture cutter is placed in alcohol and acetone for ultrasonic cleaning for 10-30 minutes.
  • micro-nano textured tool In order to provide a micro-nano textured tool with a large depth-to-diameter ratio with better self-lubricating performance and the ability to store wear debris, it is processed by the processing method of the micro-nano textured tool, and the micro-nano texture groove
  • the groove depth is 30-200 microns.
  • the groove width of the micro-nano texture groove is 10-80 ⁇ m , the aspect ratio is 3-5.
  • the micro-nano-textured groove is a parabolic groove.
  • the present invention has the following advantages compared with the prior art:
  • the processing device and processing method of the micro-nano texture tool disclosed in the present invention utilizes the magnetic field distribution to increase the motion velocity and energy density of the plasma induced by the laser, and then uses the plasma to prepare a large Micro-nano texture with aspect ratio;
  • the processing device and processing method of the micro-nano texture tool disclosed in the present invention uses the magnetic field distribution to change the trajectory of the plasma induced by the laser, and then uses the plasma to prepare the micro-nano textured surface profile on the flank of the tool body. Texture;
  • the micro-nano texture tool disclosed by the present invention has a large depth-to-diameter ratio, increases the self-lubricating performance of the micro-textured tool body and the ability to store wear debris, and improves the cutting performance of the tool body when cutting difficult-to-machine materials;
  • the micro-nano-textured cutter disclosed in the present invention has a curved surface profile, so it is easy to clean the cutter later.
  • Fig. 1 is the structural representation of the processing device of the micro-nano texture tool with large depth-to-diameter ratio in the present invention
  • Fig. 2 is a schematic structural view of a large depth-to-diameter ratio micro-nano texture cutter in the present invention
  • Fig. 3 is a schematic structural view of the micro-nano textured tool with a large depth-to-diameter ratio in the present invention.
  • a processing device of a large depth-to-diameter ratio micro-nano texture tool includes a laser emitting unit, a plasma induction unit and a mobile platform (not shown in the figure), and the above-mentioned laser emitting unit Including a laser 12 for emitting a laser beam 11 and an optical path conversion mechanism 13 for focusing the laser beam 11 on the surface to be processed of the tool body 21,
  • the above-mentioned plasma induction unit includes a container 32 containing a liquid dielectric 31, for Fix the tool body 21 in the tool fixing mechanism (not shown in the figure) in the above-mentioned liquid dielectric 31 and a magnetic field generating mechanism for generating a magnetic field distribution around the tool body 21, and the above-mentioned mobile platform drives the above-mentioned laser emitting unit and the above-mentioned plasma
  • One of the body-inducing units passes the other in the machine direction.
  • a strong magnetic field is arranged around the tool body, and the laser-induced plasma accelerates the movement speed and increases the energy density under the action of the magnetic field, thereby increasing the processing depth, and can obtain a larger depth of micro-nano texture without repeated laser processing. structure groove.
  • the laser-induced plasma cuts the magnetic field lines to change the trajectory, thereby obtaining micro-nano textured grooves with curved surface profiles.
  • the above-mentioned magnetic field generating mechanism includes two magnets 34 opposite to each other, and the lines of magnetic force generated between them are above the surface to be processed of the tool body 21 .
  • the magnet 34 is a cylindrical magnet, and the N pole of one of them is facing the S pole of the other.
  • the magnetic force lines generated between the two magnets are parallel to or intersect with the processing direction.
  • the magnetic field will only affect the depth of the micro-nano texture groove.
  • the magnetic force lines intersect with the processing direction the magnetic field will not only affect the The depth of the micro-nano texture groove will also affect the contour surface shape of the micro-nano texture groove.
  • the above-mentioned magnetic field generating mechanism may further include one magnet or more magnets, and corresponding magnetic fields are formed between each magnet.
  • the above-mentioned mobile platform is a high-precision three-axis mobile platform. Since the structure of the laser emitting unit is relatively complicated, the mobile platform in this embodiment drives the plasma induction unit to move along the processing direction. In other embodiments, the mobile platform may also drive the laser emitting unit to move along the processing direction.
  • the laser device is a device capable of emitting laser light.
  • the optical path conversion laser includes a focusing lens, and the laser beam can be well converged on one point through the above-mentioned focusing lens (convex lens), and a high concentration can be obtained at this focusing point. energy.
  • the container can be a beaker, the liquid dielectric can be distilled water, the magnetic field generating mechanism refers to a magnet assembly that can generate a magnetic field around the induced plasma, and the magnet can be a permanent magnet or an electromagnetic coil.
  • the following introduces a processing method of a micro-nano texture tool with a large depth-to-diameter ratio.
  • the plasma induced by the laser is used to process the micro-nano texture groove on the surface of the tool body to be processed, and by applying a magnetic field to the induced plasma Therefore, the moving speed and energy density of the plasma are increased, thereby obtaining a micro-nano textured groove with a large aspect ratio.
  • a strong magnetic field is arranged around the tool body, and the laser-induced plasma accelerates the movement speed and increases the energy density under the action of the magnetic field, thereby increasing the processing depth, and can obtain a larger depth of micro-nano texture without repeated laser processing. structure groove.
  • the motion trajectory of the plasma is changed by applying a magnetic field whose magnetic field direction intersects the processing direction to the induced plasma, so as to obtain the micro-nano textured groove with a curved surface profile.
  • the laser-induced plasma cuts the magnetic field lines to change the trajectory, thereby obtaining micro-nano textured grooves with curved surface profiles.
  • the tool body material is YG6 cemented carbide
  • the processing method of the micro-nano textured tool specifically includes the following steps:
  • the tool body is completely submerged in dielectric distilled water and fixed, the flank surface is 5mm away from the liquid surface, and a pair of neodymium permanent magnets are used to generate a strong magnetic field distribution around the tool body, and the magnetron plasma induction device is fixed at a high precision On the XYZ three-axis mobile platform;
  • the magnetic field parameters are: magnetic field strength 0.1T, the magnetic field direction is perpendicular to the processing direction; the picosecond laser parameters are: scanning speed 0.1mm/s, focusing spot 10.5 ⁇ m, pulse frequency 40KHz, scan once;
  • Fig. 2 it is a micro-nano texture tool obtained by using the processing method in the preferred embodiment of this example, including a tool body 21 and a micro-nano texture groove arranged on the surface of the tool body 21 22.
  • the micro-nano textured groove 22 is a parabolic groove, the groove depth of the micro-nano textured groove 22 is 200 microns, the groove width is 40 ⁇ m, and the depth-to-diameter ratio is 5.
  • the tool body material is Al2O3/TiC ceramic material
  • the processing method of the micro-nano textured tool specifically includes the following steps:
  • the tool body is completely submerged in dielectric distilled water and fixed, the flank surface is 5mm away from the liquid surface, and a pair of neodymium permanent magnets are used to generate a strong magnetic field distribution around the tool body, and the magnetron plasma induction device is fixed at a high precision On the XYZ three-axis mobile platform.
  • the magnetic field parameters are: magnetic field strength 0.1T, the magnetic field direction is perpendicular to the processing direction; the picosecond laser parameters are: scanning speed 0.05mm/s, focusing spot 10.5 ⁇ m, pulse frequency 20KHz, scan once.
  • the groove depth of the micro-nano texture groove obtained by the processing method in the preferred embodiment of this example is 120 microns, the groove width is 30 ⁇ m, and the depth-to-diameter ratio is 4.
  • the rest is the same as that of Embodiment 1 or Embodiment 2, except that, in the processing method of the micro-nano texture tool in this embodiment, the direction of the magnetic field is parallel to the processing direction.
  • the micro-nano texture groove 22 of the micro-nano texture tool processed by the above-mentioned processing method in this embodiment is a rectangular groove.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种大深径比微纳织构刀具、其加工装置及其加工方法,加工装置包括激光发射单元、等离子体诱导单元以及移动平台,等离子体诱导单元还包括用于向诱导出的等离子体(33)施加磁场的磁场发生机构。加工方法通过激光诱导出的等离子体(33)在刀具本体(21)的待加工表面上加工出微纳织构槽(22),通过向被诱导出的等离子体(33)施加磁场从而增大等离子体(33)的运动速度和增大等离子体(33)的能量密度,从而获得具有大深径比的微纳织构槽(22)。利用磁场分布对激光诱导出的等离子体(33)进行运动加速,然后再利用加速后等离子体(33)在刀具本体后刀面制备出大深径比的微纳织构。

Description

大深径比微纳织构刀具、其加工装置及其加工方法 技术领域
本发明属于刀具及其加工技术领域,尤其涉及一种大深径比微纳织构刀具、其加工装置及其加工方法。
背景技术
公开于该背景技术部分的信息仅仅旨在加深对本发明的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
在干式切削脆性材料过程中,缺少切削液的润滑和冷却作用,刀具后刀面与工件摩擦异常严重,产生大量的热,而且刀具与工件之间由于切屑或硬质相的存在,会对刀具后刀面产生严重的划擦,导致磨粒磨损严重,导致刀具快速磨损。且切屑也会对工件已加工表面产生不可避免的负面影响。因此迫切需要开发一种新技术,来降低切削脆性材料时刀具后刀面与工件之间的摩擦磨损和磨屑对刀具表面的摩擦,提高刀具本体寿命。
通过近几年的研究,对微织构刀具的研究取得了很大的进展。中国专利“专利号201210447210.6”公开了一种微纳复合织构自润滑陶瓷刀具及其制备方法,它采用激光加工技术在刀具前刀面上加工出不同形貌微米级织构,在负倒棱上加工出不同形状纳米级织构,实现了减磨,降低切削力和切削温度,减少刀具本体的磨损。文献“International Journal of Refractory Metals and Hard Materials”43(2014)46-58报道了前刀面微织构刀具干切削淬硬钢,相比于传统刀具切削力、切削温度和刀具磨损都在一定程度上得到了降低。文献“WAER”372-373(2017)91-103报道了利用纳秒激光在刀具后刀面制备微米级织构,改进的后刀面织构化刀具干切削氧化铝陶瓷生坯时织构能够储存一定的磨屑,能够有效减小刀具本体后刀面由于磨屑或硬质相产生磨粒磨损,进而增加刀具本体寿命。
为了增大微纳织构槽的深度,目前最普遍的是多次进行激光加工,这种 方法容易产生严重烧蚀,严重影响刀具本体可耐用度,同时会影响工件加工表面质量,刀具表面微织构的存储磨屑和自润滑特性持续时间短,对刀具本体寿命和加工表面质量提升有限,进而影响织构刀具本体的进一步应用。
发明内容
为此,本发明所要解决的技术问题在于如何提供一种具有更优自润滑性能和储存磨屑能力的大深径比微纳织构刀具、其加工装置及其加工方法。
为了提供一种大深径比微纳织构刀具的加工装置,本发明提供了一种微纳织构刀具的加工装置,包括激光发射单元、等离子体诱导单元以及移动平台,所述激光发射单元包括用于发出激光束的激光器和用于将激光束聚焦在刀具本体的待加工表面的光路转换机构,所述等离子体诱导单元包括容置有液态电介质的容器和用于将刀具本体固定在所述液态电介质中的刀具固定机构,所述移动平台带动所述激光发射单元和所述等离子体诱导单元的中一者沿加工方向经过另一者,所述等离子体诱导单元还包括用于在刀具本体的周围产生磁场分布的磁场发生机构。
在其中一个实施例的大深径比微纳织构刀具的加工装置中,为了简化磁场发生机构的结构并保证磁场强度,所述磁场发生机构包括异极相对的两个磁铁,二者之间产生的磁力线位于刀具本体的待加工表面上方。
在其中一个实施例的大深径比微纳织构刀具的加工装置中,为了提高微纳织构槽的加工精度和适应各种形状微纳织构槽的加工,所述移动平台为高精度三轴移动平台。
为了提供一种大深径比微纳织构刀具的加工方法,本发明还提供了一种微纳织构刀具的加工方法,通过激光诱导出的等离子体在刀具本体的待加工表面上加工出微纳织构槽,通过向被诱导出的等离子体施加磁场从而增大等离子体的运动速度和增大等离子体的能量密度,从而获得具有大深径比的微纳织构槽。
在其中一个实施例的大深径比微纳织构刀具的加工方法中,为了获得微纳织构槽的曲面轮廓,通过向被诱导出的等离子体施加磁场方向与加工方向相交的磁场从而改变等离子体的运动轨迹,从而获得具有曲面轮廓的微纳织 构槽。
在其中一个实施例的大深径比微纳织构刀具的加工方法中,为了进一步提高微纳织构槽的加工质量,所述的微纳织构刀具的加工方法包括如下制备步骤:
(1)将刀具本体的待加工表面抛光研磨至镜面,进行清洗,去除表面污染层;
(2)将刀具本体以待加工表面朝上的姿态完全浸没于容器中的液态电介质中并固定,利用磁铁在刀具本体的待加工表面周围产生磁场分布;
(3)将激光器发出的激光束聚焦于刀具本体的待加工表面同时使激光束与刀具本体沿加工方向相对运动,激光诱导出的等离子体在磁场的作用下在刀具本体的待加工表面加工出微纳织构槽,所述微纳织构槽的槽深为30-200微米;
(4)将微纳织构刀具清洗后干燥。
在其中一个实施例的大深径比微纳织构刀具的加工方法中,为了实现微纳织构槽最优加工质量,步骤(1)中,刀具本体依次放入酒精和丙酮中的超声清洗10-30分钟,步骤(2)中,液态电介质为蒸馏水,刀具本体的后刀面距离液态电介质的液面3-8毫米,磁场强度为0-3T,磁场方向与加工方向垂直;步骤(3)中采用的激光束为皮秒激光,激光束聚焦于刀具本体的待加工表面上的光斑直径为10.5微米,激光束与刀具本体相对运动的速度小于0.2mm/s,激光脉冲频率为10-80KHz;步骤(4)中,微纳织构刀具依次放入酒精和丙酮中的超声清洗10-30分钟。
为了提供一种具有更优自润滑性能和储存磨屑能力的大深径比微纳织构刀具,采用所述的微纳织构刀具的加工方法加工而成,所述微纳织构槽的槽深为30-200微米。
在其中一个实施例的大深径比微纳织构刀具中,为了进一步提高微纳织构槽刀具的自润滑性能和储存磨屑能力,所述微纳织构槽的槽宽为10-80μm,深径比为3-5。
在其中一个实施例的大深径比微纳织构刀具中,为了实现刀具后续清洁简易性,所述微纳织构槽为抛物线形槽。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
1)本发明公开的微纳织构刀具的加工装置和加工方法,利用磁场分布增大激光诱导出的等离子体的运动速度和能量密度,然后再利用等离子体在刀具本体后刀面制备出大深径比的微纳织构;
2)本发明公开的微纳织构刀具的加工装置和加工方法,利用磁场分布改变激光诱导出的等离子体的运动轨迹,然后再利用等离子体在刀具本体后刀面制备出曲面轮廓的微纳织构;
3)本发明公开的微纳织构刀具,具有大深径比,增加微织构刀具本体自润滑性能和储存磨屑能力,改善刀具本体切削难加工材料时的切削加工性能;
4)本发明公开的微纳织构刀具,具有曲面轮廓,从而容易在后续对刀具进行清洁。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明中的大深径比微纳织构刀具的加工装置的结构示意图;
图2为本发明中的大深径比微纳织构刀具的结构示意图;
图3为本发明中的大深径比微纳织构刀具的结构示意图。
其中,11、激光束;12、激光器;13、光路转换机构;21、刀具本体;22、微纳织构槽;31、液态电介质;32、容器;33、等离子体;34、磁铁。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
应该指出,以下详细说明都是示例性的,旨在对本申请提供作为进一步改进说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所 属技术领域的普通技术人员通常理解的相同含义。需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、部件和/或它们的组合。在本公开中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本公开各部件或元件结构关系而确定的关系词,并非特指本公开中任一部件或元件,不能理解为对本公开的限制。本公开中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本公开中的具体含义,不能理解为对本公开的限制。
以下为用于说明本发明的一较佳实施例,但不用来限制本发明的范围。
实施例1
参见图1,如其中的图例所示,一种大深径比微纳织构刀具的加工装置,包括激光发射单元、等离子体诱导单元以及移动平台(图中未示出),上述激光发射单元包括用于发出激光束11的激光器12和用于将激光束11聚焦在刀具本体21的待加工表面的光路转换机构13,上述等离子体诱导单元包括容置有液态电介质31的容器32、用于将刀具本体21固定在上述液态电介质31中的刀具固定机构(图中未示出)以及用于在刀具本体21的周围产生磁场分布的磁场发生机构,上述移动平台带动上述激光发射单元和上述等离子体诱导单元的中一者沿加工方向经过另一者。在刀具本体的四周布置强磁场,激光诱导的等离子体在磁场的作用下加快运动速度和增大能量密度,从而增加了加工深度,不需要反复激光加工,即可得到较大深度的微纳织构槽。激光诱导的等离子体切割磁力线改变了运动轨迹,从而获得曲面轮廓的微纳织构槽。
本实施例中,上述磁场发生机构包括异极相对的两个磁铁34,二者之间产生的磁力线位于刀具本体21的待加工表面上方。磁铁34为圆柱形磁铁,其中一个的N极正对另一个的S极。两个磁铁之间产生的磁力线与加工方向平行或与加工方向相交,当磁力线与加工方向平行时,磁场仅会影响微纳织构槽的深度,当磁力线与加工方向相交时,磁场不但会影响微纳织构槽的深度,还会影响微纳织构槽的轮廓面形状。在其他实施例中,为了适应不同要求的微纳织构槽,上述磁场发生机构还可以包括一个磁铁或更多的磁铁,各个磁铁之间形成相应的磁场。
本实施例中,上述移动平台为高精度三轴移动平台。由于激光射出单元的结构较为复杂,因此,本实施例中的移动平台带动等离子体诱导单元沿加工方向移动。在其他实施例中,也可以是移动平台带动激光发射单元沿加工方向运动。
在本实施例中,激光器是能够发射激光的装置,光路转换激光包括聚焦透镜,激光束通过上述聚焦透镜(凸透镜)能很好地会聚于一点,在这一聚光点上可以获得很高的能量。容器可以采用烧杯,液态电介质可以采用蒸馏水,磁场发生机构是指能够在被诱导出的等离子体周围产生磁场的磁铁组件,磁铁可以为永磁体或电磁线圈。
下面介绍一种大深径比微纳织构刀具的加工方法,通过激光诱导出的等离子体在刀具本体的待加工表面上加工出微纳织构槽,通过向被诱导出的等离子体施加磁场从而增大等离子体的运动速度和能量密度,从而获得具有大深径比的微纳织构槽。在刀具本体的四周布置强磁场,激光诱导的等离子体在磁场的作用下加快运动速度和增大能量密度,从而增加了加工深度,不需要反复激光加工,即可得到较大深度的微纳织构槽。
本实施例中,通过向被诱导出的等离子体施加磁场方向与加工方向相交的磁场从而改变等离子体的运动轨迹,从而获得曲面轮廓的微纳织构槽。激光诱导的等离子体切割磁力线改变了运动轨迹,从而获得曲面轮廓的微纳织构槽。在其他实施例中,也可以是通过向被诱导出的等离子体施加磁场方向与加工方向平行的磁场从而仅改变等离子体的运动速度和能量密度,而不改 变等离子体的运动轨迹。
具体的,刀具本体材料为YG6硬质合金,其微纳织构刀具的加工方法具体包括如下步骤:
(1)将YG6硬质合金刀具本体后刀面抛光研磨至镜面,依次放入酒精和丙酮中,超声清洗20min,去除表面污染层;
(2)将刀具本体完全浸没于电介质蒸馏水中并固定,后刀面距离液面5mm,并利用一对钕永磁铁在刀具本体周围产生强磁场分布,将此磁控等离子诱导装置固定在高精度XYZ三轴移动平台上;
(3)采用皮秒激光直射如磁控等离子诱导装置并聚焦于刀具本体后刀面,通过改变加工方向、磁场强度对电介质产生的等离子体进行运动加速,加工出大深径比的微米及织构,磁场参数为:磁场强度0.1T,磁场方向与加工方向垂直;皮秒激光参数为:扫描速度0.1mm/s,聚焦光斑10.5μm,脉冲频率40KHz,扫描一遍;
(4)将磁控激光诱导等离子体微细加工后的刀具本体分别置于酒精和丙酮中超声清洗各20min,并进行干燥。
参见图2,如其中的图例所示,为采用本实施例中优选实施方式中的加工方法得到的微纳织构刀具,包括刀具本体21和设于刀具本体21表面上的微纳织构槽22,上述微纳织构槽22为抛物线形槽,上述微纳织构槽22的槽深为200微米,槽宽为40μm,深径比为5。
实施例2
其余与实施例1相同,不同之处在于,本实施例中刀具本体材料为Al2O3/TiC陶瓷材料,微纳织构刀具的加工方法具体包括如下步骤:
(1)将Al2O3/TiC陶瓷刀具本体后刀面抛光研磨至镜面,依次放入酒精和丙酮中,超声清洗20min,去除表面污染层。
(2)将刀具本体完全浸没于电介质蒸馏水中并固定,后刀面距离液面5mm,并利用一对钕永磁铁在刀具本体周围产生强磁场分布,将此磁控等离子诱导装置固定在高精度XYZ三轴移动平台上。
(3)采用皮秒激光直射如磁控等离子诱导装置并聚焦于刀具本体后刀面,通过改变加工方向、磁场强度对电介质产生的等离子体进行运动加速,加工出大深径比的微米及织构,磁场参数为:磁场强度0.1T,磁场方向与加工方向垂直;皮秒激光参数为:扫描速度0.05mm/s,聚焦光斑10.5μm,脉冲频率20KHz,扫描一遍。
(4)将磁控激光诱导等离子体微细加工后的刀具本体分别置于酒精和丙酮中超声清洗各20min,并进行干燥。
通过本实施例中优选实施方式中加工方法得到的微纳织构槽的槽深为120微米,槽宽为30μm,深径比为4。
实施例3
其余与实施例1或实施例2相同,不同之处在于,本实施例中微纳织构刀具的加工方法中,磁场方向与加工方向平行。
参见图3,如其中的图例所示,本实施例中通过上述加工方法加工而成的微纳织构刀具的微纳织构槽22为矩形槽。
以上为对本发明实施例的描述,通过对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种大深径比微纳织构刀具的加工装置,包括激光发射单元、等离子体诱导单元以及移动平台,所述激光发射单元包括用于发出激光束的激光器和用于将激光束聚焦在刀具本体的待加工表面的光路转换机构,所述等离子体诱导单元包括容置有液态电介质的容器和用于将刀具本体固定在所述液态电介质中的刀具固定机构,所述移动平台带动所述激光发射单元和所述等离子体诱导单元的中一者沿加工方向经过另一者,其特征在于,所述等离子体诱导单元还包括用于在刀具本体的周围产生磁场分布的磁场发生机构。
  2. 根据权利要求1所述的大深径比微纳织构刀具的加工装置,其特征在于,所述磁场发生机构包括异极相对的两个磁铁,二者之间产生的磁力线位于刀具本体的待加工表面上方。
  3. 根据权利要求1所述的大深径比微纳织构刀具的加工装置,其特征在于,所述移动平台为高精度三轴移动平台。
  4. 一种大深径比微纳织构刀具的加工方法,通过激光诱导出的等离子体在刀具本体的待加工表面上加工出微纳织构槽,其特征在于,通过向被诱导出的等离子体施加磁场从而增大等离子体的运动速度和增大等离子体的能量密度,从而获得具有大深径比的微纳织构槽。
  5. 根据权利要求4所述的大深径比微纳织构刀具的加工方法,其特征在于,通过向被诱导出的等离子体施加磁场方向与加工方向相交的磁场从而改变等离子体的运动轨迹,从而获得具有曲面轮廓的微纳织构槽。
  6. 根据权利要求4所述的大深径比微纳织构刀具的加工方法,其特征在于,包括如下制备步骤:
    (1)将刀具本体的待加工表面抛光研磨至镜面,进行清洗,去除表面污染层;
    (2)将刀具本体以待加工表面朝上的姿态完全浸没于容器中的液态电介质中并固定,利用磁铁在刀具本体的待加工表面周围产生磁场分布;
    (3)将激光器发出的激光束聚焦于刀具本体的待加工表面同时使激光束与刀具本体沿加工方向相对运动,激光诱导出的等离子体在磁场的作用下在刀具本体的待加工表面加工出微纳织构槽,所述微纳织构槽的槽深为30-200微米;
    (4)将微纳织构刀具清洗后干燥。
  7. 根据权利要求6所述的大深径比微纳织构刀具的加工方法,其特征在于,步骤(1)中,刀具本体依次放入酒精和丙酮中的超声清洗10-30分钟,步骤(2)中,液态电介质为蒸馏水,刀具本体的后刀面距离液态电介质的液面3-8毫米,磁场强度为0-3T,磁场方向与加工方向垂直;步骤(3)中采用的激光束为皮秒激光,激光束聚焦于刀具本体的待加工表面上的光斑直径为10.5微米,激光束与刀具本体相对运动的速度小于0.2mm/s,激光脉冲频率为10-80KHz;步骤(4)中,微纳织构刀具依次放入酒精和丙酮中的超声清洗10-30分钟。
  8. 一种大深径比微纳织构刀具,其特征在于,采用如权利要求4至7任一所述的微纳织构刀具的加工方法加工而成,所述微纳织构槽的槽深为30-200微米。
  9. 根据权利要求8所述的大深径比微纳织构刀具,其特征在于,所述微纳织构槽的槽宽为10-80μm,深径比为3-5。
  10. 根据权利要求8所述的大深径比微纳织构刀具,其特征在于,所述微纳织构槽为抛物线形槽。
PCT/CN2022/100857 2021-11-19 2022-06-23 大深径比微纳织构刀具、其加工装置及其加工方法 WO2023087708A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111391766.3A CN114054961A (zh) 2021-11-19 2021-11-19 大深径比微纳织构刀具、其加工装置及其加工方法
CN202111391766.3 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023087708A1 true WO2023087708A1 (zh) 2023-05-25

Family

ID=80279651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100857 WO2023087708A1 (zh) 2021-11-19 2022-06-23 大深径比微纳织构刀具、其加工装置及其加工方法

Country Status (2)

Country Link
CN (1) CN114054961A (zh)
WO (1) WO2023087708A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114054961A (zh) * 2021-11-19 2022-02-18 苏州大学 大深径比微纳织构刀具、其加工装置及其加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042325A (en) * 1976-06-21 1977-08-16 Eli Lilly And Company Method of killing microorganisms in the inside of a container utilizing a plasma initiated by a focused laser beam and sustained by an electromagnetic field
CN110016642A (zh) * 2019-05-13 2019-07-16 东南大学 一种微织构梯度涂层刀具及其制备方法
CN111702353A (zh) * 2020-06-30 2020-09-25 松山湖材料实验室 激光剥离晶圆装置及激光剥离晶圆方法
CN111843124A (zh) * 2020-07-06 2020-10-30 中国人民解放军空军工程大学 一种基于激光冲击的金属焊接方法及系统
CN113102390A (zh) * 2021-04-28 2021-07-13 浙江工业大学 一种磁场约束双束脉冲激光诱导冲击波清洗微纳颗粒方法
CN114054961A (zh) * 2021-11-19 2022-02-18 苏州大学 大深径比微纳织构刀具、其加工装置及其加工方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266073A (ja) * 1994-03-25 1995-10-17 Nippondenso Co Ltd レーザ加工装置
CN103014314A (zh) * 2012-12-25 2013-04-03 中国人民解放军空军工程大学 以磁电场提高激光等离子体冲击波压力方法
CN109014620B (zh) * 2018-07-13 2020-07-31 江苏大学 一种基于直流电场和磁场的激光制孔装置
CN112658446B (zh) * 2020-12-10 2023-04-07 中国科学院宁波材料技术与工程研究所 一种激光诱导等离子体微细加工装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042325A (en) * 1976-06-21 1977-08-16 Eli Lilly And Company Method of killing microorganisms in the inside of a container utilizing a plasma initiated by a focused laser beam and sustained by an electromagnetic field
CN110016642A (zh) * 2019-05-13 2019-07-16 东南大学 一种微织构梯度涂层刀具及其制备方法
CN111702353A (zh) * 2020-06-30 2020-09-25 松山湖材料实验室 激光剥离晶圆装置及激光剥离晶圆方法
CN111843124A (zh) * 2020-07-06 2020-10-30 中国人民解放军空军工程大学 一种基于激光冲击的金属焊接方法及系统
CN113102390A (zh) * 2021-04-28 2021-07-13 浙江工业大学 一种磁场约束双束脉冲激光诱导冲击波清洗微纳颗粒方法
CN114054961A (zh) * 2021-11-19 2022-02-18 苏州大学 大深径比微纳织构刀具、其加工装置及其加工方法

Also Published As

Publication number Publication date
CN114054961A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN107127459B (zh) 一种金刚石刀具的激光精确加工方法
US20200269355A1 (en) Picosecond-nanosecond laser composite asynchronous ceramics polishing method
CN111070433B (zh) 一种多场辅助的金刚石切削设备
CN110732776B (zh) 一种激光修刃装置及方法
US20150118522A1 (en) Method of fabricating a glass magnetic hard drive disk platter using filamentation by burst ultrafast laser pulses
CN106737199B (zh) 一种在线去毛刺和砂轮修锐激光辅助微细磨削装置及方法
WO2023087708A1 (zh) 大深径比微纳织构刀具、其加工装置及其加工方法
CN103921356A (zh) 一种硬脆材料端面精密加工的方法
CN111822887A (zh) 一种激光打孔厚玻璃的加工系统及方法
CN105689898B (zh) 一种超声辅助激光等离子体背部湿刻法刻蚀石英玻璃的加工方法
JP2015076115A (ja) 磁気記録媒体用円盤状ガラス基板、及び磁気記録媒体用円盤状ガラス基板の製造方法
CN111548023B (zh) 一种利用红光纳秒激光对玻璃表面微细加工的方法
CN109551335A (zh) 一种激光辅助精密磨削透明材料的工艺
CN105855821A (zh) 纳米孪晶立方氮化硼微车削刀具的精密加工方法
CN113843631B (zh) 一种基于原位激光高频调控技术的选择性加工系统
JP3096943B2 (ja) ダイヤモンドのレーザ研磨方法および装置ならびにそれを利用したダイヤモンド製品
WO2023061161A1 (zh) 一种选择性能场辅助加工系统
CN113649686B (zh) 一种激光-超声振动复合辅助切削加工装置
CN109967804B (zh) 一种微型车刀前刀面表面织构衍生切削抑制处理方法
WO2019075789A1 (zh) 一种激光诱导koh化学反应刻蚀和切割蓝宝石的加工方法
CN112372144A (zh) 一种激光透明材料镀层/刻蚀的方法及装置
CN206416045U (zh) 一种在线去毛刺和砂轮修锐激光辅助微细磨削装置
CN108581844A (zh) 短波长超快激光修整金属结合剂金刚石砂轮的装置及方法
US20190366484A1 (en) A method of high-precision laser processing sapphire with submicron cutting surface
CN103878704A (zh) 一种利用光纤激光修锐密实型结合剂超硬砂轮的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894251

Country of ref document: EP

Kind code of ref document: A1