WO2019075789A1 - 一种激光诱导koh化学反应刻蚀和切割蓝宝石的加工方法 - Google Patents

一种激光诱导koh化学反应刻蚀和切割蓝宝石的加工方法 Download PDF

Info

Publication number
WO2019075789A1
WO2019075789A1 PCT/CN2017/109217 CN2017109217W WO2019075789A1 WO 2019075789 A1 WO2019075789 A1 WO 2019075789A1 CN 2017109217 W CN2017109217 W CN 2017109217W WO 2019075789 A1 WO2019075789 A1 WO 2019075789A1
Authority
WO
WIPO (PCT)
Prior art keywords
sapphire
laser
etching
koh
chemical reaction
Prior art date
Application number
PCT/CN2017/109217
Other languages
English (en)
French (fr)
Inventor
袁根福
丛启东
郭百澄
章辰
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2019075789A1 publication Critical patent/WO2019075789A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring

Definitions

  • the present invention relates to a laser-induced KOH chemical reaction etching and cutting sapphire processing method, which belongs to the field of application of special processing.
  • Single crystal sapphire is a multifunctional crystal material, in addition to excellent physical properties. In addition to chemical properties and optical properties, it also has good light transmission, high melting point, high hardness, excellent electrical insulation, good thermal conductivity, stable chemical properties, etc., and is widely used in defense, superconductivity, optoelectronics, and microelectronics. application. Whether it is a sapphire window for infrared detectors in the defense field or a sapphire substrate for the LED industry, high demands are placed on the processing accuracy (face accuracy, dimensional accuracy, etc.) and surface finish of sapphire.
  • the traditional free abrasive grinding and chemical mechanical polishing sapphire processing technology has low processing efficiency, high processing cost, unstable processing precision, and difficulty in automation, which restricts the development of sapphire crystal processing technology. Therefore, it is particularly important to study and develop a new high-efficiency, low-damage sapphire process.
  • Laser etching technology is a non-contact, no cutting force, small heat impact processing method, it has excellent processing quality, high efficiency, wide processing range, clean, good economic efficiency, easy to implement automatic control, can achieve The characteristics of flexible processing and intelligent processing solve the problems that cannot be solved by traditional processing techniques.
  • ultrashort pulse lasers and ordinary pulsed ultraviolet lasers for sapphire processing there are ultrashort pulse lasers and ordinary pulsed ultraviolet lasers for sapphire processing.
  • ultrashort pulse laser etching sapphire has a very low decontamination rate, which is only suitable for precision machining
  • ordinary pulsed ultraviolet laser etching sapphire generally Laser induced plasma etching and laser back wet etching are used.
  • the laser induced plasma method is difficult to avoid the occurrence of damage such as chipping and cracking.
  • the laser back wet etching sapphire also has the erosion rate. Extremely low problem.
  • the method etches sapphire by laser-induced KOH chemical reaction, and combines the two methods of chemical etching and laser etch etching to greatly improve the processing efficiency and the etching rate of etching.
  • the main reason is chemical corrosion, so the groove surface obtained by this method is smooth, and there is no obvious damage such as chipping and cracking.
  • Phenomenon through the computer software Smart MC software programming or drawing function can etch any complex two-dimensional graphics on the sapphire surface; In addition, through the above method on the sapphire sheet for the deeper groove of the regular pattern, you can use the control The crack method sapphire in the direction of the groove, which can achieve better quality sapphire cutting.
  • a laser-induced KOH chemical reaction etching and cutting sapphire processing method comprising:
  • the sapphire coupon has a cross-section microscopic morphology after the laser beam scanning is a "V" shaped groove, and the number of scanning times of the laser beam processing is one or more times.
  • the laser pulse width is 0.5 to 1.7 ms
  • the laser current intensity is 150 to 250 A
  • the defocus amount from the upper surface of the sapphire is 2 mm
  • the pulse repetition frequency is 30 to 60 Hz
  • the laser scanning speed is 0. • 2 to 1.0 mm/s.
  • the mesh number of the KOH powder is higher than 60 mesh, and the thickness of the cover layer is 0.2 to 2 mm.
  • the low-pressure auxiliary air is required to mainly blow off the melting, debris, and the like generated during the etching process, thereby avoiding affecting the processing effect.
  • the main component of sapphire is A1 2 0 3
  • the sapphire is etched
  • the sapphire cutting method is based on a controlled crack method.
  • etching sapphire by laser-induced KOH chemical reaction that is, etching sapphire by chemical etching, can effectively avoid the influence of the heat-affected region which is difficult to avoid by laser direct etching on the etching quality;
  • the chemical reaction rate is very high relative to the surrounding area, so in the short squat, Under the action of the laser beam, the molten KOH can achieve precise corrosion, and a more precise etching can be achieved under the synergistic effect of laser ablation.
  • FIG. 1 is a structural view of a device required for the processing method of the present invention.
  • FIG. 2 is a flow chart of a method for processing a laser-induced KOH chemical reaction etching and cutting sapphire according to the present invention.
  • 3 is a ring-shaped path of a laser scanning path according to an embodiment of the present invention.
  • a laser-induced KOH chemical reaction etching and cutting sapphire processing method including
  • the KOH powder is ground to a mesh size of more than 60 mesh, and the ground KOH powder is coated on the upper surface of the sapphire sample, and the thickness of the cover layer is 0.2 mm to 2 mm.
  • the sapphire sample size is 30x30x2mm3, and the sapphire is fixed at a reasonable position on the workbench so that the processing position is exactly the center of the sapphire sheet.
  • the laser is a 500W Nd 3 +: YAG laser
  • the laser pulse width is adjusted to 0.5 ⁇ 1.7ms
  • the laser current intensity is 150 ⁇ 250A
  • the focal length is 2 mm
  • the pulse repetition frequency is 30 to 60 Hz
  • the laser scanning speed is 0.5 to 1.5 mm/s.
  • the scanning speed of the selected laser etching is 0.7 mm/s, and the scanning path is an arc.
  • the circular path shown in FIG. 3 is specifically: the laser is scanned from the outside to the inside, and the laser is turned off after the peripheral arc scanning is finished, and then the laser is turned off.
  • the line spacing is fed horizontally, and then the laser is re-scanned and repeated until the end of the scan.
  • the processing method performs sapphire cutting, and is limited to simple straight-line cutting.
  • the etched groove processing of the sapphire sheet can be conveniently completed by the above steps, and the sapphire is etched by the laser-induced KOH chemical reaction, which greatly improves the cracking phenomenon without obvious chipping and cracking. Processing efficiency and etching rate; The sapphire is cut by the above steps, and the obtained cutting edge is relatively flat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光诱导KOH化学反应刻蚀和切割蓝宝石的加工方法,主要有四个步骤:(1)在蓝宝石表面均匀覆盖一层KOH粉体;(2)确定激光刻蚀蓝宝石的激光系统参数及工艺参数;(3)确定激光扫描路径和扫描速度后,激光束按照扫描路径进行蓝宝石的刻蚀;(4)若为蓝宝石的切割,则沿着刻槽方向掰开,若为蓝宝石的刻蚀,则省略该步骤。该方法主要利用熔融KOH腐蚀蓝宝石和激光烧蚀蓝宝石两种刻蚀方法结合起来,可在蓝宝石表面上刻蚀出较复杂的二维刻槽,由于该加工方法的刻蚀机理是以化学反应腐蚀蓝宝石为主,故能够实现在较低裂损情况下实现高去蚀率,也可以实现蓝宝石薄板较高质量的直线切割。

Description

一种激光诱导 KOH化学反应刻蚀和切割蓝宝石的加工方法
技术领域
[0001] 本发明涉及一种激光诱导 KOH化学反应刻蚀和切割蓝宝石的加工方法, 属于特 种加工的应用领域。
背景技术
[0002] 单晶蓝宝石是一种多功能晶体材料, 除了具有优良的物理性能。 化学性能和光 学性外, 其还具有透光性好, 熔点高, 硬度高, 电绝缘性优良, 热传导性良好 , 化学性能稳定等特性, 在国防、 超导、 光电子、 微电子领域具有广泛的应用 。 无论是用于国防领域的红外探测器的蓝宝石窗口, 还是用于 LED行业的蓝宝石 基片, 对蓝宝石的加工精度 (面型精度、 尺寸精度等) 和表面加工完整性提出 了很高的要求。 传统游离磨料研磨、 化学机械抛光蓝宝石加工工艺, 其加工效 率低, 加工成本高, 加工精度不稳定, 很难实现自动化等缺点制约了蓝宝石晶 体加工技术的发展。 因此, 研究和幵发一种新型高效低损伤蓝宝石加工工艺尤 为重要。
[0003] 激光刻蚀技术是一种无接触、 无切削力、 热影响小的加工方法, 它具有加工质 量优、 效率高、 加工范围广、 清洁、 经济效益好、 易于实施自动化控制、 能实 现柔性加工和智能加工等特点, 解决了传统加工工艺无法解决的难题。 目前用 于蓝宝石加工的有超短脉冲激光和普通脉冲紫外激光, 其中超短脉冲激光刻蚀 蓝宝石存在去蚀率非常低下的问题, 仅仅适用于精密加工, 而普通脉冲紫外激 光刻蚀蓝宝石, 一般采用激光诱导等离子体刻蚀法和激光背部湿法刻蚀两种方 法, 其中激光诱导等离子体体法难以避免崩边和裂纹等损伤现象的产生, 激光 背部湿法刻蚀蓝宝石同样存在去蚀率极其低下的问题。 本方通过激光诱导 KOH 化学反应刻蚀蓝宝石, 通过将化学腐蚀刻蚀和激光烧蚀刻蚀两种方法结合起来 的方法, 极大的提高了加工的效率和刻蚀的去蚀率, 由于该方法的主要是以化 学腐蚀为主, 故该方法得到的刻槽表面光滑, 刻蚀无明显的崩边、 裂纹等损伤 现象, 通过计算机软件 Smart MC软件编程或者绘图功能可以实现在蓝宝石表面 刻蚀出任意较复杂的二维图形; 此外, 通过上述方法在蓝宝石薄板上进行规则 图形的较深的刻槽, 可以利用控制裂纹法沿着刻槽的方向掰幵蓝宝石, 可以实 现质量较好的蓝宝石切割。
技术问题
[0004] 为了克服激光刻蚀蓝宝石的低去蚀率问题, 实现在保持低损伤的情况下保证高 去蚀率, 实现较蓝宝石薄板较高质量的切割。
问题的解决方案
技术解决方案
[0005] 本发明所述一种激光诱导 KOH化学反应刻蚀和切割蓝宝石的加工方法, 该方法 包括:
[0006] (1) 在蓝宝石表面均匀覆盖一层 KOH粉体;
[0007] (2) 确定激光刻蚀蓝宝石的激光系统参数及工艺参数;
[0008] (3) 确定激光扫描路径和扫描速度, 激光束按照加工路径进行加工;
[0009] (4) 若为蓝宝石的切割, 则沿着蓝宝石薄板表面的刻槽方向掰幵; 若为蓝宝 石的刻蚀, 则省略此步骤。
[0010] 在本发明中, 蓝宝石试样片在激光束扫描后其截面的微观形貌为" V"形槽, 激 光束加工扫描次数为一次或者多次。
[0011] 在本发明中, 激光脉冲宽度为 0.5〜1.7ms, 激光的电流强度为 150〜250A, 距 离蓝宝石上表面的离焦量为 2mm, 脉冲重复频率在 30〜60Hz, 激光扫描速度为 0 •2〜1.0mm/s。
[0012] 在本发明中, KOH粉体的目数高于 60目, 覆盖层厚度为 0.2〜2mm。
[0013] 在本发明中, 激光幵始加工的过程中, 要通低压辅助空气, 主要是为了吹除刻 蚀过程中产生的熔澄、 碎屑等, 从而其避免影响加工效果。
[0014] 工作原理:
[0015] (1) 蓝宝石的主要成分为 A1 20 3
, 能够与熔融的 KOH发生化学反应, 生成 KA10 2, 化学反应方程式如方程式 (1 ) , 而 KOH的高能激光束的辐射下, 由于光热效应 KOH粉体自身温度会瞬间升 高, 当温度超过其熔点 380°C, 低于其沸点 1324°C吋, KOH粉体会转变为熔融状
, 此吋即实现蓝宝石的刻蚀;
[0016] Al 20 3+2KOH®2KA10 2+H 20 ( 1 )
[0017] (2) 在蓝宝石表面覆盖一层 KOH粉体能够有效阻止激光直接透过蓝宝石, 使 得更多的激光能作用在蓝宝石上表面, 有利于激光烧蚀蓝宝石;
[0018] (3) 在以上两种刻蚀原理的共同作用下, 实现蓝宝石的刻蚀, 刻蚀机理主要 以化学腐蚀作用为主;
[0019] (4) 蓝宝石的切割方法基于控制裂纹法。
发明的有益效果
有益效果
[0020] 本发明具有的有益效果:
[0021] (1) 该发明中, 工艺简单, 操作简单, 成本低廉;
[0022] (2) 该发明中, 使用激光诱导 KOH化学反应刻蚀蓝宝石, 即通过化学腐蚀的 方法刻蚀蓝宝石, 能够有效避免激光直接刻蚀难以避免的热影响区域对刻蚀质 量的影响;
[0023] (3) 该发明中, 由于是通过激光束辐射在光热效应作用下将激光能量转化为 热量, 使得 KOH在瞬间转变为熔融态, 从而与蓝宝石发生化学反应实现刻蚀, 另一方面, 蓝宝石上表面的覆盖的 KOH粉体能够有效阻止激光束直接透过蓝宝 石, 故更多的激光束作用在蓝宝石上表面, 当辐射区域的温度超过了蓝宝石熔 点 2050°C吋发生烧蚀, 熔化的蓝宝石会被辅助空气吹除去蚀; 在化学腐蚀和激光 烧蚀双重作用下去蚀率得到了极大的提高, 该方法的去蚀率相对于传统的化学 腐蚀剂腐蚀, 不仅加工效率有了极大的提高, 而且去蚀率也得到了极大的提高 , 相对于激光直接刻蚀蓝宝石的去蚀率也有了极大的提高;
[0024] (4) 该发明中, 由于激光束的光斑直径仅为 0.5mm, 故激光束辐射范围非常 小, 激光束辐射区域的温度会骤然升高, 故在激光束光斑辐射区域的 KOH粉体 的温度会骤然上升, 从而转变为熔融态, 而激光束辐射周边区域的温度相对于 辐射中心处的温度低很多, 由于化学反应速率与温度有极大的关系, 激光束辐 射中心的温度极高, 故化学反应速率相对于周边区域高很对, 故在短吋间内, 在激光束的辐射作用下, 熔融的 KOH能够实现精确的腐蚀, 在激光烧蚀的协同 作用下能够实现较精确的刻蚀。
[0025] (5) 该发明中, 可以通过计算机编程软件 smart MC编程或者绘图, 数控工作 台执行, 实现任意二维图形的刻蚀。
对附图的简要说明
附图说明
[0026] 图 1为本发明加工方法所需的装置结构图。
[0027] 其中 1.激光加工平台; 2.蓝宝石薄片试样 3.KOH粉体覆盖层 4.辅助气体空气; 5. 聚焦镜; 6.激光束; 7.反射镜; 8.激光头。
[0028] 图 2为本发明实施一种激光诱导 KOH化学反应刻蚀和切割蓝宝石的加工方法流 程图。
[0029] 图 3为本发明实施的激光扫描路径为环型路径。
[0030] 其中: 1、 扫描路径幵始点; 2、 扫描路径结束点
本发明的实施方式
[0031] 为了使本发明的技术方案能够更加清晰地表示出来, 下面结合附图, 选择合理 的激光系统工艺参数, 对本发明作进一步说明。
[0032] 请参阅图 2, 一种激光诱导 KOH化学反应刻蚀和切割蓝宝石的加工方法, 包括
[0033] (1) 在蓝宝石表面覆盖一层 KOH粉体:
[0034] 首先将 KOH粉体进行研磨, 要求目数大于 60目, 将研磨好的 KOH粉体覆盖到 蓝宝石试样上表面, 覆盖层厚度为 0.2mm至 2mm。
[0035] 蓝宝石试样尺寸为 30x30x2mm 3, 把蓝宝石固定在工作台上的合理位置, 使得 加工位置恰好为蓝宝石片的正中心。
[0036] (2) 确定激光刻蚀蓝宝石的激光系统工艺参数:
[0037] 正常启动空气幵关和激光器幵光, 激光器为 500W的 Nd 3+: YAG激光器, 把激 光脉冲宽度调为 0.5〜1.7ms, 激光的电流强度为 150〜250A, 距离蓝宝石上表面 的离焦量为 2mm, 脉冲重复频率在 30〜60HZ, 激光扫描速度为 0.5〜1.5mm/s。 [0038] (3) 确定激光扫描速度和扫描路径, 激光束按照路径进型扫描加工:
[0039] 选择激光刻蚀的扫描速度为 0.7mm/s, 扫描路径为圆弧, 如图 3所示圆弧型路径 具体为: 激光从外向内扫描, 外围圆弧扫描结束则关闭激光, 再横向进给一个 行间距, 然后幵启激光重新进行扫描加工, 如此重复进行, 直至扫描结束。
[0040] (4) 若为蓝宝石的切割, 则沿着刻槽方向掰幵, 若为蓝宝石的刻蚀, 则略过 此步骤:
[0041] 需要说明的是, 一般情况下, 该加工方法进行蓝宝石的切割, 仅限于简单的直 线型切割。
[0042] (5) 加工过程结束。
[0043] 通过上述步骤可以方便的完成蓝宝石片的刻蚀凹槽加工, 通过激光诱导 KOH化 学反应刻蚀蓝宝石, 在保证无明显崩边和裂纹等裂损现象的情况下, 极大的提 高了加工效率以及刻蚀率; 通过上述步骤切割蓝宝石, 得到的切割边缘比较平 整。
[0044] 以上所述仅表达了本发明的一种实施方式, 其表述比较详细, 但是不可以理解 为对本发明专利范围的限制, 需要说明的是, 对于本领域的普通技术人员来说 , 在不脱离本发明构思的前提下, 还可以作任何形式的修改, 因此, 本发明专 利的保护范围应以所附权利要求为准。

Claims

权利要求书
一种激光诱导 KOH化学反应刻蚀和切割蓝宝石的加工方法, 其特征 在于, 包括: (1) 在蓝宝石表面均匀覆盖一层 KOH粉体; (2) 确 定激光刻蚀蓝宝石的激光系统参数及工艺参数; (3) 确定激光扫描 路径和扫描速度后, 激光束按照扫描路径进行刻蚀加工; (4) 若为 蓝宝石薄板的切割, 则沿着蓝宝石薄板表面的刻槽方向掰幵; 若为蓝 宝石的刻蚀, 则省略此步骤。
根据权利要求 1所述的激光诱导 KOH化学反应刻蚀和切割蓝宝石的加 工方法, 其特征在于, 激光加工刻蚀蓝宝石之前, 在蓝宝石上表面均 匀覆盖一层经过研磨的 KOH粉体, KOH粉体的目数大于 60目。
根据权利要求 1所述的激光诱导 KOH化学反应刻蚀和切割蓝宝石的加 工方法, 其特征在于, 进行蓝宝石薄板的切割首先通过激光诱导 KO H化学反应在蓝宝石表面刻蚀出较深的刻槽, 然后沿着这条刻槽掰幵
PCT/CN2017/109217 2017-10-16 2017-11-03 一种激光诱导koh化学反应刻蚀和切割蓝宝石的加工方法 WO2019075789A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710970214.5A CN107570876A (zh) 2017-10-16 2017-10-16 一种激光诱导koh化学反应刻蚀和切割蓝宝石的加工方法
CN201710970214.5 2017-10-16

Publications (1)

Publication Number Publication Date
WO2019075789A1 true WO2019075789A1 (zh) 2019-04-25

Family

ID=61037524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109217 WO2019075789A1 (zh) 2017-10-16 2017-11-03 一种激光诱导koh化学反应刻蚀和切割蓝宝石的加工方法

Country Status (2)

Country Link
CN (1) CN107570876A (zh)
WO (1) WO2019075789A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT6791B (lt) * 2019-05-15 2020-12-28 Uab "Altechna R&D" Skaidrių medžiagų apdirbimo būdas ir įrenginys
RU2731167C1 (ru) * 2019-07-11 2020-08-31 Федеральное государственное автономное научное учреждение Институт сверхвысокочастотной полупроводниковой электроники имени В.Г. Мокерова Российской академии наук (ФГАНУ ИСВЧПЭ РАН) Способ лазерной плазмохимической резки пластин
CN112979170B (zh) * 2019-12-16 2022-12-02 航天科工惯性技术有限公司 一种激光辅助的化学腐蚀加工方法
US20210387907A1 (en) * 2020-06-15 2021-12-16 JPT Electronics Pte Ltd Method and apparatus for machining glass with laser induced chemical reaction
CN112620960A (zh) * 2020-12-24 2021-04-09 江南大学 一种金属氧化物涂层辅助激光正面刻蚀蓝宝石的加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101524819A (zh) * 2009-02-03 2009-09-09 广东工业大学 绿光和紫外光激光抛光蓝宝石的复合工艺方法
US20100227133A1 (en) * 2009-03-09 2010-09-09 Imra America, Inc. Pulsed laser micro-deposition pattern formation
CN102837369A (zh) * 2012-09-18 2012-12-26 广东工业大学 一种绿激光划片蓝宝石的工艺方法
CN103317234A (zh) * 2012-03-22 2013-09-25 江南大学 激光诱导低压射流复合刻蚀加工方法及装置
CN105689898A (zh) * 2016-04-05 2016-06-22 江南大学 一种超声辅助激光等离子体背部湿刻法刻蚀石英玻璃的加工方法
CN106271091A (zh) * 2016-09-07 2017-01-04 江南大学 一种化学盐膜辅助激光正面刻蚀石英玻璃的加工方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101314198A (zh) * 2007-05-29 2008-12-03 张世达 高尔夫杆头的制作方法
US9561964B2 (en) * 2010-06-24 2017-02-07 Hamid-Reza Jahangiri-Famenini Method and apparatus for forming graphene
CN102031518A (zh) * 2010-12-30 2011-04-27 同济大学 钛合金表面激光熔覆生物陶瓷复合涂层材料的制备方法
CN104651948B (zh) * 2015-01-12 2017-05-31 上海应用技术学院 一种c面蓝宝石的刻蚀方法
CN106735917A (zh) * 2016-12-05 2017-05-31 广东富源科技股份有限公司 一种高速激光蚀刻蓝宝石镜片的方法
CN106871671A (zh) * 2017-02-22 2017-06-20 东海县凯凯石英制品有限公司 一种石英密闭列管式换热器及其制备工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101524819A (zh) * 2009-02-03 2009-09-09 广东工业大学 绿光和紫外光激光抛光蓝宝石的复合工艺方法
US20100227133A1 (en) * 2009-03-09 2010-09-09 Imra America, Inc. Pulsed laser micro-deposition pattern formation
CN103317234A (zh) * 2012-03-22 2013-09-25 江南大学 激光诱导低压射流复合刻蚀加工方法及装置
CN102837369A (zh) * 2012-09-18 2012-12-26 广东工业大学 一种绿激光划片蓝宝石的工艺方法
CN105689898A (zh) * 2016-04-05 2016-06-22 江南大学 一种超声辅助激光等离子体背部湿刻法刻蚀石英玻璃的加工方法
CN106271091A (zh) * 2016-09-07 2017-01-04 江南大学 一种化学盐膜辅助激光正面刻蚀石英玻璃的加工方法

Also Published As

Publication number Publication date
CN107570876A (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
WO2019075789A1 (zh) 一种激光诱导koh化学反应刻蚀和切割蓝宝石的加工方法
JP5432285B2 (ja) 面取りした端部を有する形状にガラスをレーザ加工する方法
JP5449665B2 (ja) レーザ加工方法
CN106966580B (zh) 一种飞秒激光切割玻璃的方法
TW201143947A (en) Laser machining and scribing systems and methods
CN105689898B (zh) 一种超声辅助激光等离子体背部湿刻法刻蚀石英玻璃的加工方法
US9776906B2 (en) Laser machining strengthened glass
JP2013146747A (ja) レーザによる割断方法、及びレーザ割断装置
CN104972226A (zh) 一种双头激光加工装置及加工方法
CN111548023B (zh) 一种利用红光纳秒激光对玻璃表面微细加工的方法
Rung et al. Laserscribing of thin films using top-hat laser beam profiles
WO2007094348A1 (ja) レーザスクライブ方法、レーザスクライブ装置、及びこの方法または装置を用いて割断した割断基板
CN105081568A (zh) 激光焊接方法
CN114571086B (zh) 纳秒激光诱导等离子体复合飞秒激光加工装置及加工方法
KR20210048000A (ko) 크랙 프리 유리기판 절단 및 박형화 방법
JP2008100284A (ja) レーザ加工方法及びレーザ加工装置
WO2019119617A1 (zh) 一种高折射率、低硬度透明材料激光切割装置及切割方法
CN108500468A (zh) 一种曲线轮廓激光去毛刺的方法
JP2009012061A (ja) レーザ加工機
CN112372144A (zh) 一种激光透明材料镀层/刻蚀的方法及装置
CN111151895A (zh) 一种利用成丝效应切割透明材料的工艺及系统
US20150158117A1 (en) System and method for obtaining laminae made of a material having known optical transparency characteristics
US10596663B2 (en) High-precision laser machining method for sapphire submicron-order section
CN114131208B (zh) 激光诱导等离子体进行仿形加工装置及方法
CN111069786B (zh) 激光开槽装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928974

Country of ref document: EP

Kind code of ref document: A1