WO2023097804A1 - 一种激光-超声同步辅助切削系统 - Google Patents

一种激光-超声同步辅助切削系统 Download PDF

Info

Publication number
WO2023097804A1
WO2023097804A1 PCT/CN2021/139673 CN2021139673W WO2023097804A1 WO 2023097804 A1 WO2023097804 A1 WO 2023097804A1 CN 2021139673 W CN2021139673 W CN 2021139673W WO 2023097804 A1 WO2023097804 A1 WO 2023097804A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
ultrasonic
tool
cutting
cutting system
Prior art date
Application number
PCT/CN2021/139673
Other languages
English (en)
French (fr)
Inventor
康仁科
鲍岩
董志刚
殷森
潘延安
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2023097804A1 publication Critical patent/WO2023097804A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0093Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment

Definitions

  • the invention relates to the technical field of precision special processing, in particular to a three-dimensional ultrasonic elliptical vibration cutting device.
  • Laser-assisted cutting technology refers to focusing the high-energy laser beam on the workpiece material in front of the tool, so that the temperature of the cutting area before being cut reaches the optimum softening temperature of the workpiece material, and the workpiece material is easy to achieve plastic deformation, thereby reducing the cutting force. Cutting specific energy, surface roughness and tool wear, thereby improving processing quality and processing efficiency.
  • the processing mechanism is not only the reduction of the strength and hardness of the workpiece material at high temperature, but also the change of the stress field in the plastic deformation zone caused by the local instantaneous high temperature inside the workpiece material and the complex physical interaction between the workpiece material and the laser or medium at high temperature. All chemical reactions lead to changes in the cutting performance of the workpiece material.
  • the thermal stress generated by laser-assisted cutting can easily cause microcracks on the machined surface of the workpiece, thus affecting the processing quality.
  • Ultrasonic elliptical vibration cutting technology refers to the cutting method in which two-dimensional ultrasonic vibration is applied to the tool to make it present an elliptical vibration trajectory. Compared with ordinary cutting and one-dimensional ultrasonic vibration cutting, its cutting process has "friction force reversal" Angle cutting" and more thorough “tool-workpiece separation", which have the advantages of extending tool life, improving cutting surface finish and cutting stability, suppressing burrs and regenerative chatter.
  • the present invention proposes a laser-ultrasonic synchronous assisted cutting system, which combines ultrasonic elliptical vibration cutting and laser assisted cutting to further reduce the Wear and improve processing quality.
  • the present invention carries out a highly integrated design of the ultrasonic elliptical vibration cutting system and the laser-assisted cutting system, and the high-energy laser
  • the beam is emitted from the tip point of the diamond tool and concentrated precisely on the core cutting area, the relative position is stable and reliable, and the composite auxiliary cutting system has a compact structure, a high degree of integration, small size, high safety, and can achieve smooth cutting during cutting.
  • -Independent and precise input control of sound energy with stronger adaptability, can give full play to the advantages of ultrasonic-laser composite assisted cutting technology, and has a good prospect for engineering application.
  • the present invention provides a laser-ultrasonic synchronous auxiliary cutting system with strong adaptability.
  • the technical means adopted in the present invention are as follows:
  • a laser-ultrasonic synchronous assisted cutting system which is composed of an ultrasonic elliptical vibration cutting system, a laser assisted cutting system, a light-guiding diamond tool, and a protective housing.
  • the ultrasonic elliptical vibration cutting system includes a light-guiding tool holder, and an ultrasonic elliptical vibration cutting input mechanism .
  • the light guiding diamond tool is installed on the light guiding knife seat, the light guiding knife seat is arranged at the output end of the ultrasonic elliptical vibration cutting output mechanism, the ultrasonic The elliptical vibration cutting input mechanism is connected with the ultrasonic elliptical vibration cutting output mechanism, the ultrasonic elliptical vibration cutting output mechanism is used to drive the light guiding diamond tool to complete the ultrasonic elliptical vibration cutting, the tool height adjustment mechanism is connected with the ultrasonic elliptical vibration cutting output mechanism connected, the tool height adjustment mechanism is used to realize the tool setting operation of the light-guiding diamond tool in the cutting process;
  • the laser-assisted cutting system includes a laser input mechanism, a laser output mechanism and a laser calibration mechanism, and the laser input mechanism and the laser output
  • the laser calibration mechanism is connected with the laser output mechanism, the laser output mechanism is used to output the laser beam, and the laser calibration mechanism is used to adjust the output position of the laser beam so
  • the ultrasonic elliptical vibration cutting input mechanism includes an ultrasonic power supply
  • the ultrasonic elliptical vibration cutting output mechanism includes a transducer and a special-shaped horn
  • the ultrasonic power supply is connected to the transducer through an ultrasonic signal cable, so
  • the output end of the transducer is connected to the input end of the special-shaped horn
  • the output end of the special-shaped horn is connected to the light-guiding knife seat
  • the light-guiding diamond tool is brazed in front of the light-guiding knife seat
  • the two-phase ultrasonic vibration with a certain phase difference output by the special-shaped horn is synthesized at the tip of the tool, so that it presents an elliptical vibration trajectory.
  • the ultrasonic power supply is a digital single-channel ultrasonic power supply, which is used to excite the transducer, and the PID fuzzy algorithm is used to realize the automatic tracking function of the resonance frequency of the ultrasonic elliptical vibration cutting system, so as to ensure the ultrasonic vibration of the vibration cutting system stable output.
  • the transducer is a sandwich piezoelectric transducer, which is composed of four circular piezoelectric ceramic sheets of model PZT-4 and four copper electrode sheets, and utilizes the higher working efficiency of piezoelectric ceramics
  • the d33 working mode under the excitation of the ultrasonic power supply, outputs ultrasonic longitudinal vibration.
  • the special-shaped horn has an asymmetric structure, which is used to amplify, decompose and convert the longitudinal vibration output by the transducer, a part of the longitudinal vibration is converted into a bending vibration along the center of the asymmetric structure, and the other part of the longitudinal vibration is Continue to transmit forward, and the two-phase ultrasonic vibration has a preset phase difference; through the selection of special-shaped horns with different structures, the adjustment of the conversion ratio of longitudinal vibration to bending vibration is realized.
  • the different structures are differentiated and different Location and/or differentiated geometry of symmetric structures.
  • the special-shaped horn is constrained by the flange on the tool height adjustment mechanism.
  • the tool height adjustment mechanism has a tool height coarse adjustment knob and a tool height fine adjustment knob.
  • the tool height adjustment mechanism can realize the displacement of the diamond tool in the Y direction fine-tuning, the adjustment accuracy of the fine-tuning is 0.1 micron.
  • the laser input mechanism includes a laser generator
  • the laser output mechanism includes a laser head and a laser power calibrator
  • the laser emitted by the laser generator is transmitted to the laser head via a flexible optical fiber
  • the laser calibrator The mechanism includes a three-way displacement fine-tuning mechanism.
  • the output end of the laser head is provided with a focusing lens, the focusing lens is used to focus the spot diameter to 50-150 ⁇ m, and the laser generator is used to adjust the power of the emitted laser beam, so as to adapt to Different processing materials and needs.
  • the laser head is connected to the three-way displacement fine-tuning mechanism through a fixed clamp, the end of the fixed clamp is installed on the three-way displacement fine-adjustment mechanism, and the front end of the fixed clamp is clamped on the outer wall of the laser head.
  • the laser power calibrator is used to check the power and energy density of the laser beam emitted from the tool.
  • the composite assisted cutting system combines ultrasonic elliptical vibration cutting technology with laser assisted cutting technology to give full play to the advantages of the two cutting technologies. It can effectively solve the problems of low processing efficiency of ultrasonic elliptical vibration cutting, and the thermal stress of laser-assisted cutting can easily lead to micro-cracks on the processed surface, further reducing tool wear and improving the processing quality of workpieces.
  • ultrasonic elliptical vibration cutting and laser assisted cutting are carried out at the same time.
  • the high-energy laser beam is emitted from the tip point of the diamond tool to heat and soften the material, and it is locally heated to a high temperature in a short time before the material is removed.
  • the temperature reduces the yield stress and hardness of the material, and the cutting deformation changes from brittle to plastic or quasi-plastic.
  • the ultrasonic elliptical vibration transforms the cutting into a discontinuous process, which reduces the frictional contact time between the front and back of the tool and the workpiece, effectively reduces the wear of the tool, and when the cutting is separated, the laser irradiates the processed surface
  • the surface is heated and tempered by laser to restore the material to its original structure, reducing subsurface damage and improving the quality of the processed surface.
  • the present invention Compared with the split-type ultrasonic-laser composite cutting system, the present invention has a highly integrated design of the ultrasonic elliptical vibration cutting system and the laser-assisted cutting system.
  • the structure of the auxiliary cutting system is compact, and the engineering application prospect is good.
  • the amplitude of ultrasonic vibration can be adjusted by the ultrasonic power supply, the trajectory of ultrasonic elliptical vibration can be controlled by optimizing the structure of the horn, and the power and spot size of the laser beam can also be continuously adjusted by the laser generator.
  • Cutting process optimization provides the foundation, and also makes the composite auxiliary cutting system more adaptable.
  • the present invention can be widely promoted in the technical field of precision special processing.
  • Fig. 1 is a schematic diagram of the external structure of the main body in the embodiment of the present invention.
  • Fig. 2 is a schematic diagram of the internal structure of the housing in the embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of the ultrasonic elliptical vibration cutting output mechanism in the embodiment of the present invention.
  • Fig. 4 is a schematic structural view of the light guiding tool holder in an embodiment of the present invention, wherein (a) is a structural schematic view of installing a light guiding diamond tool; (b) is a structural schematic view of dismounting a light guiding diamond tool.
  • 1 is a laser generator
  • 2 is an ultrasonic power supply
  • 3 is a flexible optical fiber
  • 4 is an ultrasonic signal cable
  • 5 is a protective shell
  • 6 is a light-guiding diamond tool
  • 7 is a laser power calibrator
  • 8 is a light-guiding knife seat
  • 9 is the special-shaped horn
  • 10 is the flange
  • 11 is the flange base
  • 12 is the tool height adjustment mechanism
  • 13 is the tool height coarse adjustment knob
  • 14 is the tool height fine adjustment knob
  • 15 is the X direction displacement fine adjustment knob
  • 23A, 23B, 23C and 23D are annular piezoelectric ceramic sheets
  • 24A, 24B, 24C and 24D are copper electrode sheets
  • 25 is a rear cover plate
  • the embodiment of the present invention discloses a laser-ultrasonic synchronous assisted cutting system, which is composed of an ultrasonic elliptical vibration cutting system, a laser assisted cutting system, a light-guiding diamond tool and a protective shell.
  • the ultrasonic elliptical vibration cutting system includes a light-guiding tool holder, Ultrasonic elliptical vibration cutting input mechanism, ultrasonic elliptical vibration cutting output mechanism and tool height adjustment mechanism, the light guiding diamond tool is installed on the light guiding knife seat, and the light guiding knife seat is arranged on the side of the ultrasonic elliptical vibration cutting output mechanism At the output end, the ultrasonic elliptical vibration cutting input mechanism is connected with the ultrasonic elliptical vibration cutting output mechanism.
  • the ultrasonic elliptical vibration cutting output mechanism is used to drive the light-guiding diamond tool to complete ultrasonic elliptical vibration cutting.
  • the tool height adjustment mechanism is connected to the The ultrasonic elliptical vibration cutting output mechanism is connected, and the tool height adjustment mechanism is used to realize the tool setting operation of the light-guiding diamond tool in the cutting process;
  • the laser-assisted cutting system includes a laser input mechanism, a laser output mechanism and a laser calibration mechanism.
  • the laser input mechanism is connected to the laser output mechanism
  • the laser calibration mechanism is connected to the laser output mechanism
  • the laser output mechanism is used to output the laser beam
  • the laser calibration mechanism is used to adjust the output position of the laser beam so that the laser beam It can pass through the light-guiding tool holder and incident on the light-guiding diamond tool in the working state.
  • the protective shell is sleeved on the outside of the ultrasonic elliptical vibration cutting system and the laser-assisted cutting system.
  • the shell is equipped with a laser beam and Ultrasonic elliptical vibration cuts the hole moved by the output mechanism.
  • a laser-ultrasonic synchronous assisted cutting system of the present invention includes an ultrasonic elliptical vibration cutting system, a laser assisted cutting system, a light guiding diamond tool 6 and a protective shell 5 .
  • 1 is a laser generator
  • 2 is an ultrasonic power supply
  • 3 is a flexible optical fiber
  • 4 is an ultrasonic signal cable.
  • the ultrasonic elliptical vibration cutting system includes an ultrasonic power source 2 , a transducer, a special-shaped horn 9 , a light guide tool holder 8 , a flange base 11 and a tool height adjustment mechanism 12 .
  • the flange 10 on the special-shaped horn 9 is constrained in the flange base 11 by high-strength bolts, and the flange base 11 is welded on the tool height adjustment mechanism 12, and the tool height adjustment mechanism 12 can be
  • the coarse adjustment knob 13 of the tool height and the fine adjustment knob 14 of the tool height are used to fine-tune the displacement of the light-guiding diamond tool 6 in the Y direction, and the adjustment accuracy is 0.1 micron, which can realize accurate tool setting during cutting and improve cutting precision.
  • the laser-assisted cutting system includes a laser generator 1 , a laser head 20 , a laser power calibrator 7 and a three-way displacement fine-tuning mechanism 18 .
  • the laser light emitted by the laser generator 1 is transmitted to the laser head 20 through the flexible optical fiber 3, and the spot diameter is focused to 50-150 ⁇ m by the focusing lens 21 installed at the front end of the laser head 20, which greatly improves the The energy density of the laser spot is improved, and the laser generator 1 can realize the adjustment of the power of the emitted laser beam, so as to adapt to different processing materials and requirements.
  • the laser head 20 is connected with the three-way displacement fine-tuning mechanism 18 through the fixed clamp 19, and the three-way displacement fine-adjustment mechanism 18 passes the high-energy laser beam output by the laser head 20 through the opening on the light guide knife seat 8.
  • the groove 27 is incident on the rear end face of the light-guiding diamond cutter 6, and by designing and optimizing the geometric features of the front and rear rake surfaces of the light-guiding diamond cutter 6, the refraction direction and angle of the laser beam from the light-guiding diamond cutter 6 can be adjusted, so that The laser beam is refracted and emitted from the rake face of the light-guiding diamond tool 6, and focused to the cutting area before the workpiece material is cut to soften it.
  • the laser power calibrator 7 can check the power and energy density of the laser beam emitted from the tool.
  • the transducer includes annular piezoelectric ceramic sheets 23A, 23B, 23C and 23D, copper electrode sheets 24A, 24B, 24C and 24D, rear cover plate 25 and pre-tightening bolts 26, and the annular Piezoelectric ceramics 23A, 23B, 23C and 23D all adopt the model PZT-4 piezoelectric ceramics, and use the d33 working mode with higher working efficiency of piezoelectric ceramics.
  • the light guiding diamond tool 6 As shown in Figure 3, before the assembly of the ultrasonic elliptical vibration cutting system, the light guiding diamond tool 6, the light guiding tool seat 8, the special-shaped horn 9, the light guiding tool seat upper cover 21, the annular piezoelectric ceramic sheets 23A, 23B, 23C and 23D, copper electrode sheets 24A, 24B, 24C and 24D, rear cover plate 25 and pre-tightening bolts 26, etc.
  • the special-shaped horn 9 has an asymmetric structure, which amplifies, decomposes, and converts the longitudinal vibration output by the transducer. Part of the longitudinal vibration is converted into bending vibration along the center of the asymmetric structure, and the other part of the longitudinal vibration Continue to pass forward, and the two-phase ultrasonic vibration has a certain phase difference.
  • the light-guiding knife holder 8 is installed on the output end of the special-shaped horn 9 through fastening bolts, and the light-guiding diamond cutter 6 is brazed on the front part of the light-guiding knife holder 8, and the two phases have a certain phase difference.
  • Ultrasonic vibration is synthesized at the tip of the tool, making it present an elliptical vibration trajectory.
  • the light guide knife seat upper cover 22 is installed on the top of the light guide knife seat 8 by fastening bolts to ensure that the path of the laser beam incident on the light guide diamond tool 6 rear is stable.
  • the laser-ultrasonic synchronous assisted cutting system in the present invention has the advantages of ultrasonic elliptical vibration cutting technology and laser assisted cutting technology at the same time.
  • the ultrasonic elliptical vibration cutting system and laser assisted cutting system are highly integrated, so that the composite assisted cutting system has two The advantages of cutting technology, and the overall compact structure and high degree of integration are conducive to the realization of engineering applications.
  • the two-phase ultrasonic vibration output by the laser-ultrasonic synchronous assisted cutting system and the adjustable laser beam power provide a basis for the optimization of the compound assisted cutting process.

Abstract

本发明提供一种激光-超声同步辅助切削系统,由超声椭圆振动切削系统、激光辅助切削系统、导光金刚石刀具组成。换能器输出纵向超声振动,异形变幅杆将换能器输出的纵向振动转换为纵-弯复合振动,使刀具上呈现超声椭圆振动轨迹,实现断续切削;激光头通过激光发生器将激光束进行集中聚焦,通过导光刀座上开设的沟槽入射到导光金刚石刀具的后端面,经过折射后从导光金刚石刀具的前刀面射出,聚焦到工件材料被切除前的切削区,软化工件材料。本发明将超声椭圆振动切削技术与激光辅助切削技术进行复合,使复合辅助切削充分发挥两者的优势,有效解决超声椭圆振动切削加工效率低,激光辅助切削热应力易导致加工表面产生微裂纹等问题。

Description

一种激光-超声同步辅助切削系统 技术领域
本发明涉及精密特种加工技术领域,尤其涉及一种三维超声椭圆振动切削装置。
背景技术
随着精密超精密切削加工技术的迅速发展,特别是精密切削方法与特种加工技术的结合,为难加工材料的超精密加工带来了技术上的革新。
激光辅助切削技术是指将高能激光束聚焦到刀具前方的工件材料,使其在被切除前切削区的温度达到工件材料的最佳软化温度,工件材料易于实现塑性变形,从而减小切削力、切削比能、表面粗糙度及刀具磨损,进而提高加工质量及加工效率。其加工机理不仅在于高温下工件材料的强度及硬度的降低,而且局部瞬时的高温在工件材料的内部引起的塑性变形区应力场的变化以及工件材料在高温下与激光或介质发生的复杂的物理化学反应均致使工件材料切削性能发生变化。但是,激光辅助切削产生的热应力容易引起工件加工表面产生微裂纹,从而影响加工质量。
超声椭圆振动切削技术是指在刀具上施加二维超声振动,使其呈现椭圆振动轨迹的切削方式,相比普通切削及一维超声振动切削,其切削过程具有“摩擦力反转”、“变角度切削”及更加彻底“刀具-工件分离”的等特点,从而具有延长刀具寿命、提高切削表面光洁度和切削稳定性、抑制毛刺和再生颤振等优势。
为了充分发挥超声椭圆振动切削及激光辅助切削两种特种加工技术的优势,本发明提出了一种激光-超声同步辅助切削系统,将超声椭圆振动切削及激光辅助切削相结合,进而进一步减小刀具磨损,提高加工质量。相比现有的分体式超声-激光复合辅助切削系统(将超声振动切削系统和激光辅助切削系统分别布置),本发明将超声椭圆振动切削系统和激光辅助切削系统进行 了高度集成设计,高能激光束通过金刚石刀具从刀尖点射出并精准集中在核心切削区域,相对位置稳定可靠,且复合辅助切削系统的结构紧凑,集成化程度高,体积小,安全性高,并可实现切削加工中光-声能量的独立精确输入控制,具有更强的适应性,可充分发挥超声-激光复合辅助切削技术的优势,工程应用前景较好。
发明内容
为充分发挥超声椭圆振动切削及激光辅助切削的优势,本发明提供了一种激光-超声同步辅助切削系统,具有较强的适应性。本发明采用的技术手段如下:
一种激光-超声同步辅助切削系统,由超声椭圆振动切削系统、激光辅助切削系统、导光金刚石刀具及防护壳体组成,所述超声椭圆振动切削系统包括导光刀座、超声椭圆振动切削输入机构、超声椭圆振动切削输出机构和刀具高度调整机构,所述导光金刚石刀具安装在所述导光刀座上,所述导光刀座设置于所述超声椭圆振动切削输出机构的输出端,所述超声椭圆振动切削输入机构和超声椭圆振动切削输出机构相连,所述超声椭圆振动切削输出机构用于带动导光金刚石刀具完成超声椭圆振动切削,所述刀具高度调整机构与所述超声椭圆振动切削输出机构相连,所述刀具高度调整机构用于实现切削加工中导光金刚石刀具的对刀操作;所述激光辅助切削系统包括激光输入机构、激光输出机构和激光校准机构,所述激光输入机构和激光输出机构相连,所述激光校准机构与激光输出机构相连,所述激光输出机构用于输出激光束,所述激光校准机构用于调节激光束的输出位置,使所述激光束能够在工作状态下穿过所述导光刀座入射到导光金刚石刀具上,所述防护壳体套接在超声椭圆振动切削系统、激光辅助切削系统外部,其壳体上设有供激光束和超声椭圆振动切削输出机构移动的孔。
进一步地,所述超声椭圆振动切削输入机构包括超声电源,所述超声椭圆振动切削输出机构包括换能器、异形变幅杆,所述超声电源通过超声信号电缆与所述换能器相连,所述换能器的输出端与所述异形变幅杆的输入端相连,所述异形变幅杆的输出端与所述导光刀座相连,所述导光金刚石刀具钎 焊在导光刀座的前部,异形变幅杆输出的两相具有一定相位差的超声振动在刀尖进行合成,使其呈现椭圆振动轨迹。
进一步地,所述超声电源为数字式单通道超声电源,用于对换能器进行激励,采用PID模糊算法实现对超声椭圆振动切削系统的谐振频率的自动追踪功能,保证振动切削系统的超声振动的稳定的输出。
进一步地,所述换能器为夹心式压电换能器,由四片型号为PZT-4的圆环形压电陶瓷片及四片铜质电极片组成,利用压电陶瓷较高工作效率的d33工作模式,在超声电源的激励下,输出超声纵向振动。
进一步地,所述异形变幅杆上具有不对称结构,用于将换能器输出纵向振动进行放大、分解及转换,一部分纵向振动转换为沿着不对称结构中心的弯曲振动,另一部分纵向振动继续向前传递,且两相超声振动具有预设的相位差;通过选择不同结构的异形变幅杆中,实现对纵向振动向弯曲振动的转换比例的调整,所述不同结构为差异化的不对称结构的位置和/或差异化的几何尺寸。
进一步地,异形变幅杆通过法兰约束在在刀具高度调整机构上,刀具高度调整机构具有刀具高度粗调旋钮和刀具高度微调旋钮,所述刀具高度调整机构能够实现对金刚石刀具Y方向的位移微调,所述微调的调整精度为0.1微米。
进一步地,所述激光输入机构包括激光发生器,所述激光输出机构包括激光头和激光功率校准器,所述激光发生器发射出的激光经由柔性光纤传输到所述激光头,所述激光校准机构包括三向位移微调机构。
进一步地,所述激光头的输出端设有聚焦镜,所述聚焦镜用于将光斑直径聚焦到50-150μm,所述激光发生器用于实现对发射出的激光束的功率进行调整,从而适应不同的加工材料和需求。
进一步地,所述激光头通过固定钳与三向位移微调机构相连接,所述固定钳的末端安装在三向位移微调机构上,所述固定钳的前端卡接在所述激光头外壁上。
进一步地,激光功率校准器用于对从刀具射出的激光束的功率和能量密 度进行校核。
本发明具有以下优点:
该复合辅助切削系统将超声椭圆振动切削技术与激光辅助切削技术相结合,充分发挥两种切削技术的优势。可有效解决超声椭圆振动切削加工效率低,激光辅助切削的热应力易导致加工表面产生微裂纹等问题,进一步减小刀具磨损,提高工件的加工质量。在复合辅助切削加工过程中,超声椭圆振动切削和激光辅助切削同时进行,高能激光束通过金刚石刀具从刀尖点出射加热软化材料,在材料被去除前的短时间内将其局部加热到较高的温度,使材料的屈服应力和硬度降低,切削变形从脆性转变为塑性或准塑性。而超声椭圆振动使切削转变为断续过程,减小了刀具前后刀面与工件的摩擦接触时间,有效减小了刀具的磨损,且在切削分离时,激光辐照已加工表面,对已加工表面进行激光加热回火,使材料恢复到原始结构,减小了亚表面损伤,提高了加工表面质量。
相较于分体式超声-激光复合切削系统,本发明将超声椭圆振动切削系统和激光辅助切削系统进行了高度集成设计,激光束在工件材料上的集中位置与切削区的相对位置稳定,且复合辅助切削系统的结构紧凑,工程应用前景较好。
此外,超声振动的振幅可由超声电源进行调整,超声椭圆振动轨迹可通过对变幅杆结构优化进行控制,激光束的功率及光斑大小也可由激光发生器进行连续可调,为超声-激光复合辅助切削工艺优化提供了基础,也使复合辅助切削系统具有更强的适应性。
基于上述理由本发明可在精密特种加工技术领域广泛推广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中主体外部结构示意图。
图2是本发明实施例中壳体内部结构示意图。
图3是本发明实施例中超声椭圆振动切削输出机构结构示意图。
图4是本发明实施例中导光刀座结构示意图,其中(a)为安装导光金刚石刀具的结构示意图;(b)为拆卸导光金刚石刀具的结构示意图。
图中,1是激光发生器,2是超声电源,3是柔性光纤,4是超声信号电缆,5是防护壳体,6是导光金刚石刀具,7是激光功率校准器,8是导光刀座,9是异形变幅杆,10是法兰,11是法兰底座,12是刀具高度调整机构,13是刀具高度粗调旋钮,14是刀具高度微调旋钮,15是X方向位移微调旋钮,16是Y方向位移微调旋钮,17是Z方向位移微调旋钮,18是三向位移微调机构,19是固定钳,20是激光头,21是聚焦镜,22是导光刀座上盖,23A、23B、23C和23D是圆环形压电陶瓷片,24A、24B、24C和24D是铜电极片,25是后盖板,26是预紧螺栓,27是沟槽。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种激光-超声同步辅助切削系统,由超声椭圆振动切削系统、激光辅助切削系统、导光金刚石刀具及防护壳体组成,所述超声椭圆振动切削系统包括导光刀座、超声椭圆振动切削输入机构、超声椭圆振动切削输出机构和刀具高度调整机构,所述导光金刚石刀具安装在所述导光刀座上,所述导光刀座设置于所述超声椭圆振动切削输出机构的输出端,所述超声椭圆振动切削输入机构和超声椭圆振动切削输出机构相连,所述超声椭圆振动切削输出机构用于带动导光金刚石刀具完成超声椭圆振动切削,所述刀具高度调整机构与所述超声椭圆振动切削输出机构相连,所述刀具高度 调整机构用于实现切削加工中导光金刚石刀具的对刀操作;所述激光辅助切削系统包括激光输入机构、激光输出机构和激光校准机构,所述激光输入机构和激光输出机构相连,所述激光校准机构与激光输出机构相连,所述激光输出机构用于输出激光束,所述激光校准机构用于调节激光束的输出位置,使所述激光束能够在工作状态下穿过所述导光刀座入射到导光金刚石刀具上,所述防护壳体套接在超声椭圆振动切削系统、激光辅助切削系统外部,其壳体上设有供激光束和超声椭圆振动切削输出机构移动的孔。
具体地,如图1所示,本发明的一种激光-超声同步辅助切削系统,包括超声椭圆振动切削系统、激光辅助切削系统、导光金刚石刀具6及防护壳体5。其中1是激光发生器,2是超声电源,3是柔性光纤,4是超声信号电缆。
超声椭圆振动切削系统包括超声电源2、换能器、异形变幅杆9、导光刀座8、法兰底座11及刀具高度调整机构12。
如图2所示,利用高强螺栓将异形变幅杆9上的法兰10约束在法兰底座11之中,而法兰底座11焊接在刀具高度调整机构12之上,刀具高度调整机构12可通过刀具高度粗调旋钮13和刀具高度微调旋钮14是来实现对导光金刚石刀具6的Y方向的位移微调,调整精度为0.1微米,可实现切削加工中精确对刀,提高切削加工精度。
如图1和2所示,激光辅助切削系统包括激光发生器1、激光头20、激光功率校准器7及三向位移微调机构18。
如图1和2所示,激光发生器1发射出的激光经由柔性光纤3传输到激光头20,并通过安装在激光头20前端的聚焦镜21将光斑直径聚焦为50-150μm,大大的提高了激光光斑的能量密度,且激光发生器1可以实现对发射出的激光束的功率进行调整,从而适应不同的加工材料和需求。
如图1和2所示,激光头20通过固定钳19与三向位移微调机构18相连接,而三向位移微调机构18将激光头20输出的高能量激光束经过导光刀座8上开设的沟槽27入射到导光金刚石刀具6的后端面,通过对导光金刚石刀具6的前后刀面的几何特征进行设计与优化,可调整激光束从导光金刚石刀具6的折射方向和角度,使其激光束经折射后从导光金刚石刀具6的前刀面射出,并聚焦到工件材料被切除前的切削区,对其进行软化。激光功率校准 器7可对从刀具射出的激光束的功率和能量密度进行校核。
如图3所示,换能器包括圆环形压电陶瓷片23A、23B、23C和23D,铜电极片24A、24B、24C和24D,后盖板25及预紧螺栓26,且圆环形压电陶瓷片23A、23B、23C和23D均采用的是型号为PZT-4压电陶瓷,利用压电陶瓷较高工作效率的的d33工作模式。
如图3所示,超声椭圆振动切削系统在装配前,导光金刚石刀具6,导光刀座8,异形变幅杆9,导光刀座上盖21,圆环形压电陶瓷片23A、23B、23C和23D,铜电极片24A、24B、24C和24D,后盖板25及预紧螺栓26等均应采用无水乙醇进行清洗,并使用鼓风干燥箱进行烘干;预紧螺栓26与后盖板25,圆环形压电陶瓷片23A、23B、23C和23D,铜电极片24A、24B、24C和24D接触的部分应缠绕绝缘胶带:后盖板25与圆环形压电陶瓷片23A、23B、23C和23D,铜电极片24A、24B、24C和24D之间的接触面之间应涂抹环氧树脂胶。
如图3所示,换能器中的如图3所示,利用预紧螺栓26将后盖板25,圆环形压电陶瓷23A,铜电极片24A,圆环形压电陶瓷23B,铜电极片24B,圆环形压电陶瓷23C,铜电极片24C,圆环形压电陶瓷23D,铜电极片24D及后盖板25沿轴向按顺序进行紧固,本实施例中,施加120N的预紧力,进行保温老化处理。
如图3所示,异形变幅杆9上具有不对称结构,将换能器输出纵向振动进行放大、分解及转换,一部分纵向振动转换为沿着不对称结构中心的弯曲振动,另一部分纵向振动继续向前传递,且两相超声振动具有一定的相位差。
如图3和4所示,导光刀座8通过紧固螺栓安装在异形变幅杆9的输出端,导光金刚石刀具6钎焊在导光刀座8的前部,两相具有一定相位差的超声振动在刀尖进行合成,使其呈现椭圆振动轨迹。
如图3所示,通过对异形变幅杆9中不对称结构的位置和几何尺寸的计算和优化,可实现对纵向振动向弯曲振动的转换比例的调整,进而调整合成的椭圆振动的轨迹。
如图4所示,导光刀座上盖22通过紧固螺栓安装在导光刀座8的上部,以保证入射到导光金刚石刀具6后部的激光束的路径稳定。
本发明的中的激光-超声同步辅助切削系统同时具有超声椭圆振动切削技术与激光辅助切削技术的优势,将超声椭圆振动切削系统及激光辅助切削系统高度集成,使复合辅助切削系统同时具有两种切削技术的优势,且整体结构紧凑,一体化程度较高,有利于实现工程应用。激光-超声同步辅助切削系统输出的两相超声振动的振及激光束功率可调,为复合辅助切削工艺优化提供了基础。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种激光-超声同步辅助切削系统,其特征在于,由超声椭圆振动切削系统、激光辅助切削系统、导光金刚石刀具及防护壳体组成;所述超声椭圆振动切削系统包括导光刀座、超声椭圆振动切削输入机构、超声椭圆振动切削输出机构和刀具高度调整机构;所述导光金刚石刀具安装在所述导光刀座上,所述导光刀座设置于所述超声椭圆振动切削输出机构的输出端,所述超声椭圆振动切削输入机构和超声椭圆振动切削输出机构相连,所述超声椭圆振动切削输出机构用于带动导光金刚石刀具完成超声椭圆振动切削,所述刀具高度调整机构与所述超声椭圆振动切削输出机构相连,所述刀具高度调整机构用于实现切削加工中导光金刚石刀具的对刀操作;所述激光辅助切削系统包括激光输入机构、激光输出机构和激光校准机构,所述激光输入机构和激光输出机构相连,所述激光校准机构与激光输出机构相连,所述激光输出机构用于输出激光束,所述激光校准机构用于调节激光束的输出位置,使所述激光束能够在工作状态下穿过所述导光刀座入射到导光金刚石刀具上,所述防护壳体套接在超声椭圆振动切削系统、激光辅助切削系统外部,其壳体上设有供激光束和超声椭圆振动切削输出机构移动的孔。
  2. 根据权利要求1所述的激光-超声同步辅助切削系统,其特征在于,所述超声椭圆振动切削输入机构包括超声电源,所述超声椭圆振动切削输出机构包括换能器、异形变幅杆,所述超声电源通过超声信号电缆与所述换能器相连,所述换能器的输出端与所述异形变幅杆的输入端相连,所述异形变幅杆的输出端与所述导光刀座相连,所述导光金刚石刀具钎焊在导光刀座的前部,异形变幅杆输出的两相具有一定相位差的超声振动在刀尖进行合成,使其呈现椭圆振动轨迹。
  3. 根据权利要求2所述的激光-超声同步辅助切削系统,其特征在于,所述超声电源为数字式单通道超声电源,用于对换能器进行激励,采用PID模糊算法实现对超声椭圆振动切削系统的谐振频率的自动追踪功能,保证振动切削系统的超声振动的稳定的输出。
  4. 根据权利要求2所述的激光-超声同步辅助切削系统,其特征在于,所述换能器为夹心式压电换能器,由四片型号为PZT-4的圆环形压电陶瓷片及四片铜质电极片组成,利用压电陶瓷较高工作效率的d33工作模式,在超声电源的激励下,输出超声纵向振动。
  5. 根据权利要求2所述的激光-超声同步辅助切削系统,其特征在于,所述异形变幅杆上具有不对称结构,用于将换能器输出纵向振动进行放大、分解及转换,一部分纵向振动转换为沿着不对称结构中心的弯曲振动,另一部分纵向振动继续向前传递,且两相超声振动具有预设的相位差;通过选择不同结构的异形变幅杆中,实现对纵向振动向弯曲振动的转换比例的调整,所述不同结构为差异化的不对称结构的位置和/或差异化的几何尺寸。
  6. 根据权利要求2或4所述的激光-超声同步辅助切削系统,其特征在于,异形变幅杆通过法兰约束在在刀具高度调整机构上,刀具高度调整机构具有刀具高度粗调旋钮和刀具高度微调旋钮,所述刀具高度调整机构能够实现对金刚石刀具Y方向的位移微调,所述微调的调整精度为0.1微米。
  7. 根据权利要求1所述的激光-超声同步辅助切削系统,其特征在于,所述激光输入机构包括激光发生器,所述激光输出机构包括激光头和激光功率校准器,所述激光发生器发射出的激光经由柔性光纤传输到所述激光头,所述激光校准机构包括三向位移微调机构。
  8. 根据权利要求7所述的激光-超声同步辅助切削系统,其特征在于,所述激光头的输出端设有聚焦镜,所述聚焦镜用于将光斑直径聚焦到50-150μm,所述激光发生器用于实现对发射出的激光束的功率进行调整,从而适应不同的加工材料和需求。
  9. 根据权利要求7所述的激光-超声同步辅助切削系统,其特征在于, 所述激光头通过固定钳与三向位移微调机构相连接,所述固定钳的末端安装在三向位移微调机构上,所述固定钳的前端卡接在所述激光头外壁上。
  10. 根据权利要求7所述的激光-超声同步辅助切削系统,其特征在于激光功率校准器用于对从刀具射出的激光束的功率和能量密度进行校核。
PCT/CN2021/139673 2021-12-02 2021-12-20 一种激光-超声同步辅助切削系统 WO2023097804A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111460177.6 2021-12-02
CN202111460177.6A CN114178676A (zh) 2021-12-02 2021-12-02 一种激光-超声同步辅助切削系统

Publications (1)

Publication Number Publication Date
WO2023097804A1 true WO2023097804A1 (zh) 2023-06-08

Family

ID=80603258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139673 WO2023097804A1 (zh) 2021-12-02 2021-12-20 一种激光-超声同步辅助切削系统

Country Status (2)

Country Link
CN (1) CN114178676A (zh)
WO (1) WO2023097804A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114932410B (zh) * 2022-04-08 2024-04-05 大连理工大学 一种激光与超声磨削复合的加工刀柄及加工方法
CN115056046B (zh) * 2022-06-22 2024-01-23 广州大学 一种二维压电异形变幅杆超声研抛装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192097A (zh) * 2013-05-08 2013-07-10 苏州科技学院 一种单激励超声椭圆振动车削装置
DE102017009688A1 (de) * 2017-10-18 2019-04-18 Innolite Gmbh Verfahren für die Drehbearbeitung von Werkstücken und Vorrichtung insbesondere für die Durchführung eines derartigen Verfahrens
CN111070433A (zh) * 2019-12-31 2020-04-28 华中科技大学 一种多场辅助的金刚石切削设备
CN111069767A (zh) * 2019-12-31 2020-04-28 华中科技大学 一种超声振动微激光辅助复合单点金刚石切削加工系统
CN111347571A (zh) * 2020-03-17 2020-06-30 华中科技大学 用于光学硬脆材料的激光辅助低损伤切削加工系统及方法
CN113182539A (zh) * 2021-04-02 2021-07-30 大连理工大学 一种具有多级放大功能的三维超声椭圆振动切削装置
CN113500711A (zh) * 2021-06-29 2021-10-15 华中科技大学 一种高精度复合能场辅助切削及光整设备及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008030783B3 (de) * 2008-06-28 2009-08-13 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Laserstrahlschrägschneiden und Laserbearbeitungsmaschine
JP7137992B2 (ja) * 2018-08-02 2022-09-15 株式会社ディスコ 加工装置及び剥離装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192097A (zh) * 2013-05-08 2013-07-10 苏州科技学院 一种单激励超声椭圆振动车削装置
DE102017009688A1 (de) * 2017-10-18 2019-04-18 Innolite Gmbh Verfahren für die Drehbearbeitung von Werkstücken und Vorrichtung insbesondere für die Durchführung eines derartigen Verfahrens
CN111070433A (zh) * 2019-12-31 2020-04-28 华中科技大学 一种多场辅助的金刚石切削设备
CN111069767A (zh) * 2019-12-31 2020-04-28 华中科技大学 一种超声振动微激光辅助复合单点金刚石切削加工系统
CN111347571A (zh) * 2020-03-17 2020-06-30 华中科技大学 用于光学硬脆材料的激光辅助低损伤切削加工系统及方法
CN113182539A (zh) * 2021-04-02 2021-07-30 大连理工大学 一种具有多级放大功能的三维超声椭圆振动切削装置
CN113500711A (zh) * 2021-06-29 2021-10-15 华中科技大学 一种高精度复合能场辅助切削及光整设备及方法

Also Published As

Publication number Publication date
CN114178676A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2023097804A1 (zh) 一种激光-超声同步辅助切削系统
CN111069767B (zh) 一种超声振动微激光辅助复合单点金刚石切削加工系统
CN111347571A (zh) 用于光学硬脆材料的激光辅助低损伤切削加工系统及方法
CN113500711B (zh) 一种高精度复合能场辅助切削及光整设备及方法
CN109604817A (zh) 一种超声振动透镜微转动辅助激光加工装置
WO2023061161A1 (zh) 一种选择性能场辅助加工系统
CN113084365B (zh) 一种异型材的激光切割装置及切割方法
CN113649686B (zh) 一种激光-超声振动复合辅助切削加工装置
CN114939740B (zh) 一种三维超声辅助超快激光制孔装置及方法
CN112643100A (zh) 适用于难加工材料的匀场激光辅助铣削加工装置和方法
CN114770234B (zh) 一种激光复合超声辅助磨削机床及加工方法
CN113414889B (zh) 激光辅助金刚石切削与激光抛光原位复合的方法及装置
CN208513650U (zh) 一种中心高可调的精密超声车削装置
CN112059402B (zh) 一种激光原位辅助单点金刚石飞切装置
CN212239981U (zh) 一种激光加热辅助切削的刀具装置
CN109604814B (zh) 一种透镜轴向低频振动辅助激光加工装置
CN109129038A (zh) 复合砂轮粗加工与超声辅助精加工的成形机床及控制方法
CN115351439B (zh) 一种基于激光角度控制的激光切割装置及快速切割方法
CN115958287A (zh) 一种激光辅助滚压改性工具系统及激光辅助滚压方法
CN109590745A (zh) 一种用于加工中心的激光辅助铣削装置及其操作方法
CN110900010A (zh) 一种电力设备生产用的板材激光切割机
CN110625147A (zh) 一种中心高可调的精密超声车削装置
CN115365639A (zh) 一种基于超声振动辅助飞秒激光加工C/SiC复合材料的方法
CN114083150A (zh) 一种激光复合切割管体的方法及切割系统
US20240131644A1 (en) Selective field-assisted machining system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966228

Country of ref document: EP

Kind code of ref document: A1