WO2023059085A1 - 전해액 및 이를 포함하는 이차전지 - Google Patents

전해액 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2023059085A1
WO2023059085A1 PCT/KR2022/015029 KR2022015029W WO2023059085A1 WO 2023059085 A1 WO2023059085 A1 WO 2023059085A1 KR 2022015029 W KR2022015029 W KR 2022015029W WO 2023059085 A1 WO2023059085 A1 WO 2023059085A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
additive
electrolyte solution
secondary battery
lithium
Prior art date
Application number
PCT/KR2022/015029
Other languages
English (en)
French (fr)
Inventor
김민구
장민정
김재윤
이상호
윤종철
한지성
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220126139A external-priority patent/KR20230049557A/ko
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Publication of WO2023059085A1 publication Critical patent/WO2023059085A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte solution and a secondary battery including the same, and more particularly, to an electrolyte solution for a battery including an electrolyte solution additive capable of improving output characteristics and high-temperature storage characteristics of the battery and significantly reducing gas generation and thickness increase rate. and secondary batteries.
  • a lithium secondary battery enables smooth movement of lithium ions by putting electrolyte between a positive electrode and a negative electrode, and electricity is generated or consumed by oxidation-reduction reactions according to intercalation and deintercalation at the positive electrode and the negative electrode.
  • Lithium secondary batteries which are mainly used as power sources for mobile IT devices such as mobile phones and power tools, are expanding their use for automobiles and energy storage as capacity-enhancing technology develops.
  • Patent Document 1 Korean Patent Registration No. 1295395
  • the present invention is to provide an electrolyte solution for a battery including an electrolyte solution additive capable of improving the output characteristics and high-temperature storage characteristics of the battery and significantly reducing gas generation and thickness increase rate. The purpose.
  • Another object of the present invention is to provide an excellent secondary battery capable of reducing discharge resistance, thereby improving battery output, improving recovery capacity at high temperatures, enabling long-term storage, and suppressing gas generation in the battery.
  • the present invention is an electrolyte solution comprising an organic solvent, a lithium salt, a first additive and a second additive,
  • the first additive contains 15% by weight or less of a compound consisting of a pair of a lithium or sodium cation and an anion represented by Formula 1 below, based on 100% by weight of the electrolyte solution,
  • the second additive is composed of 3 to 5 atoms, has 2 to 4 atoms having an electronegativity of 3 or more, has at least one double bond, and has a compound having a symmetrical structure and an atomic group, based on 100% by weight of the electrolyte solution. It provides an electrolyte solution characterized in that it comprises 0.01 to 10% by weight.
  • R 1 and R 2 are each independently hydrogen, halogen, or a straight-chain or branched alkyl group including a halogen substituent having 1 to 7 carbon atoms, and h is an integer of 1 to 10.
  • the halogen substituent may be fluorine.
  • the first additive may be a compound comprising a pair of lithium or sodium cations and one or more anions selected from the group represented by Formulas 2 to 5 below.
  • h is an integer from 1 to 10.
  • the second additive may have an atomic group represented by Formula 6 below.
  • the second additive may be a compound comprising a pair of one or more cations selected from the group consisting of alkali metal ions (excluding lithium) and an anion represented by Formula 1 below.
  • R 1 and R 2 are each independently hydrogen, halogen, or a straight-chain or branched alkyl group including a halogen substituent having 1 to 7 carbon atoms, and h is an integer of 1 to 10.
  • the halogen substituent may be fluorine.
  • the second additive may be a compound comprising a pair of a cesium cation and one or more anions selected from the group represented by Formulas 3 to 5 below.
  • h is an integer from 1 to 10.
  • the first additive and the second additive may be included in a weight ratio of 1:0.5 to 2.5 (first additive: second additive).
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiBF 6 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiN(CaF 2a+1 SO 2 )(C b F 2b+1 SO 2 ) (however, a and b are natural number), LiCl, LiI, and LiB(C 2 O 4 ) 2 .
  • the organic solvent is ethylene carbonate (EC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC), propylene carbonate (PC), dipropyl carbonate (DPC), butylene carbonate, methylpropyl carbonate , ethylpropyl carbonate, methyl propionate (MP), ethyl propionate (EP) and propyl propionate (PP) may include two or more selected from the group consisting of.
  • the electrolyte may include 10% by weight or less of one or more third additives selected from the group consisting of a boron compound, a phosphorus compound, a sulfur compound, and a nitrogen-based compound based on 100% by weight of the electrolyte.
  • an electrolyte solution additive comprising a compound comprising a pair of a cesium cation and an anion represented by Formula 1 below.
  • R 1 and R 2 are each independently hydrogen, halogen, or a straight-chain or branched alkyl group including a halogen substituent having 1 to 7 carbon atoms, and h is an integer of 1 to 10.
  • a compound consisting of a pair of the lithium cation and an anion represented by the following formula (1) and a compound consisting of a pair of a cesium cation and an anion represented by the following formula (1) were prepared in a ratio of 1:0.5 to 2.5 (first additive: second Additives) may be included in a weight ratio.
  • a secondary battery comprising a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte solution
  • the electrolyte solution provides a lithium secondary battery, characterized in that the above-described electrolyte solution.
  • the secondary battery may have a discharge resistance value of 28 m ⁇ or less at 60 °C.
  • the secondary battery may have a recovery capacity of 585 mAh or more at 60 °C.
  • the secondary battery may have a thickness increase rate of 2.6% or less at 60 °C calculated by Equation 1 below.
  • Thickness increase rate (%) ⁇ (thickness after high temperature storage - initial thickness) / initial thickness ⁇ X 100
  • the secondary battery is calculated by Equation 2 below after 300 cycles Coulombic efficiency may be greater than 99.5%.
  • the thickness of the cell may increase to less than 4 mm due to the generation of CO 2 gas and H 2 gas in the course of decomposition of the electrolyte solution and formation of the SEI film during charging and discharging of 300 cycles.
  • the secondary battery may be an energy storage system (ESS) or a vehicle battery.
  • ESS energy storage system
  • vehicle battery ESS
  • the output can be improved by reducing the discharge resistance, and the recovery capacity at high temperature is improved, thereby providing a secondary battery with excellent long life and high temperature capacity retention rate.
  • the additive for a battery according to the present invention has an effect of providing a secondary battery with excellent performance and lifespan by suppressing gas generation and thickness increase in the battery.
  • the present inventors studied a secondary battery having improved output, high temperature recovery capacity and excellent lifespan characteristics, when adding an additive having a specific structure to the electrolyte of the secondary battery, the above It was confirmed that all of the objects of can be achieved, and based on this, further research was conducted to complete the present invention.
  • the electrolyte solution additive of the present invention includes a first additive and a second additive
  • the first additive is a compound consisting of a pair of a cation of lithium or sodium and an anion represented by the following formula (1)
  • the second additive is 3 to 5 atoms, having 2 to 4 atoms with an electronegativity of 3 or more, and having at least one double bond, and a compound having a symmetrical structure.
  • the output is improved, the recovery capacity at high temperature is improved, so long-term storage is possible, and the life retention rate at high temperature is excellent.
  • R 1 and R 2 are each independently hydrogen, halogen, or a straight-chain or branched alkyl group including a halogen substituent having 1 to 7 carbon atoms, and h is an integer of 1 to 10.
  • the anion represented by Formula 1 is characterized in that the halogen substituent is fluorine.
  • the electrolyte solution for a battery of the present invention is characterized in that it includes the electrolyte solution additive.
  • the electrolyte solution additive having an anion represented by Formula 1 When the electrolyte solution additive having an anion represented by Formula 1 is added to the electrolyte solution of a secondary battery, electrons are localized toward the O element due to the electronegativity difference between the P or S element and the O element directly connected. Accordingly, the P or S element becomes electron-deficient (e-poor, ⁇ +) state, and an oxidation reaction is induced in an electrolyte containing lithium ions to form a stable film on an electrode, specifically, a cathode.
  • the stability of the film it is possible to prevent the decomposition of the electrolyte solution, thereby improving the cycle characteristics, and in particular, it does not decompose at high temperatures, compared to the conventional electrode film decomposing at high temperatures, resulting in poor storage performance at high temperatures.
  • an increase in resistance is prevented to improve charging efficiency and output, and gas generation due to a chemical reaction inside the battery is also suppressed, thereby improving battery safety.
  • the structure of the electrode active materials of the positive electrode and the negative electrode is prevented from collapsing at high temperatures, thereby improving the capacity retention rate, thereby prolonging the lifespan.
  • the first additive may be a compound comprising a pair of a cation of lithium or sodium and one or more anions selected from the group represented by the following formulas 2 to 5, and a lithium secondary battery is constructed using an electrolyte solution containing the same
  • the terminal group of the compound has the effect of suppressing the decomposition of the electrolyte, thereby reducing the rate of increase in internal resistance and reducing the amount of gas generated and the rate of increase in thickness, thereby extending the lifespan of the battery.
  • h is an integer from 1 to 10.
  • the symmetrical linear structure can stabilize the flow of electrons in the molecule, resulting in molecular structure stabilization, chemical stability, and ionic mobility of the electrolyte.
  • the compound represented by Formula 1 is preferably symmetric about N, and in this case, it has a symmetrical linear structure, which not only stabilizes the flow of electrons in the molecule, but also increases molecular rigidity through which the battery performance is greatly improved. There is an advantage.
  • the halogen substituent included in the compound represented by Formula 1 may be, for example, fluorine or iodine, preferably fluorine.
  • Fluorine is an element with the highest electronegativity of 3.98, and when the halogen substituent is fluorine, the polarity of the compound represented by Chemical Formula 1 increases.
  • the ionic mobility of the electrolyte containing the compound represented by Formula 1 and the organic solvent can be improved, and the compound forms a hydrogen bond with the electrode active material on the surface of the electrode, which can occur during charging and discharging of the battery. It is possible to prevent the side reaction of the battery, the effect of improving the stability and charge and discharge efficiency of the battery can be maximized.
  • R 1 and R 2 are each independently a trifluoromethyl group or a difluoromethyl group, and when both R 1 and R 2 are trifluoromethyl groups or both difluoromethyl groups, they are chemically stable. It is made inert and has a simplified molecular structure, which is the most preferable in terms of stability.
  • the electrolyte solution of the present invention may include 15 wt% or less of the first additive, preferably 0.01 to 10 wt%, based on 100 wt% of the total electrolyte solution. Within this range, there is an advantage in that the decomposition effect of the electrolyte is suppressed and the life characteristics and cycle characteristics of the battery are improved.
  • the second additive may have, for example, an atomic group represented by Formula 6 below.
  • the stability of the electrolyte may be further improved by being adsorbed on the metal surface of the electrode to suppress side reactions between the electrode and the electrolyte, thereby further improving the stability of the electrolyte.
  • the cycle characteristics, stability and lifespan of the battery can be improved.
  • atomic group refers to a covalently bonded polyatomic ion, unless otherwise specified.
  • the second additive may be a compound comprising a pair of one or more cations selected from the group consisting of alkali metal ions (excluding lithium) and an anion represented by Formula 1 below.
  • R 1 and R 2 are each independently hydrogen, halogen, or a straight-chain or branched alkyl group including a halogen substituent having 1 to 7 carbon atoms, and h is an integer of 1 to 10.
  • the electrolyte solution additive including the compound represented by Formula 1 When the electrolyte solution additive including the compound represented by Formula 1 is added to the electrolyte solution of a secondary battery, electrons are localized toward the N element due to the electronegativity difference between the N element and the S element directly connected thereto. Accordingly, the S element becomes electron-deficient (e-poor, ⁇ +) state, and an oxidation reaction is induced in the electrolyte solution containing lithium ions, forming a stable film on the electrode, for example, the cathode, and at the same time substituting at the terminal. Improved ionic conductivity due to halogenated substituents.
  • the decomposition of the electrolyte can be prevented, and thus the cycle characteristics can be improved, and in particular, it does not decompose at a high temperature, so that the high temperature storage property is lowered as the conventional electrode film is decomposed at a high temperature.
  • an increase in resistance is prevented to improve charging efficiency and output, and gas generation due to a chemical reaction inside the battery is also suppressed, thereby improving battery safety.
  • gas generation inside the battery is mainly caused by the decomposition of electrolyte components, especially carbonate-based solvents, on the surface of the anode/cathode electrodes, and the anode/cathode protective film is easily deteriorated or is further promoted due to oxygen radicals generated from the cathode.
  • This material forms a protective film with excellent stability composed of N, S, O, and F components to suppress direct decomposition of the solvent, and prevents the elution of transition metal ions at the anode due to deterioration of the anode by the metal ion coordination effect, ultimately resulting in It is possible to prevent the escape of the oxygen element constituting the skeleton of the anode.
  • the structure of the electrode active materials of the positive electrode and the negative electrode is prevented from collapsing at high temperatures, thereby improving the capacity retention rate, thereby prolonging the lifespan.
  • the second additive may be a compound consisting of a pair of a cesium cation and one or more anions selected from the group represented by Formulas 3 to 5 below, when a lithium secondary battery is constructed using an electrolyte solution containing the cesium cation.
  • the terminal group of the compound has the effect of suppressing the decomposition of the electrolyte, thereby reducing the rate of increase in internal resistance and reducing the amount of gas generated and the rate of increase in thickness, thereby prolonging the life of the battery.
  • h is an integer from 1 to 10.
  • the symmetrical linear structure can stabilize the flow of electrons in the molecule, which has a great advantage in improving battery performance.
  • the compound represented by Chemical Formula 1 is preferably symmetric about N, and in this case, it has a symmetrical linear structure and has a great advantage in improving battery performance by stabilizing the flow of electrons in the molecule.
  • the electrolyte solution of the present invention may include 0.1 to 10% by weight of the second additive, preferably 1 to 5% by weight, based on 100% by weight of the total electrolyte solution. Within this range, there is an advantage in that the decomposition effect of the electrolyte is suppressed and the life characteristics and cycle characteristics of the battery are improved.
  • the electrolyte solution of the present invention can maximize the effect of suppressing side reactions of the electrolyte by using the first additive and the second additive in combination, and when a lithium secondary battery is formed including the electrolyte solution, the amount of gas generated when left at high temperature is reduced. This has the effect of reducing the internal resistance increase rate, and ultimately has the effect of improving the lifespan characteristics of the battery.
  • first additive and the second additive are included in a weight ratio of 1:0.5 to 2.5 (first additive: second additive) or 1:0.5 to 2 based on 100% by weight of the total electrolyte solution, high temperature When left unattended, an effect of reducing discharge resistance may be provided.
  • Non-aqueous solvents that may be included in the electrolyte solution of the present invention are not particularly limited as long as decomposition due to oxidation reactions or the like can be minimized during the charging and discharging process of the battery and desired properties can be exhibited together with additives.
  • carbonate-based organic solvents or It may be a propionate-based organic solvent or the like. These may be used alone or in combination of two or more.
  • ethylene carbonate 0 to 40% by volume of ethylene carbonate, 5 to 80% by volume of one or more selected from the group consisting of ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, ethyl propionate, propyl propionate, and propylene carbonate Can be used in combination.
  • carbonate-based organic solvents include, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC) , dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl ethyl carbonate (MEC), fluoroethylene carbonate (FEC), 1 species selected from the group consisting of methyl propyl carbonate (MPC) and ethyl propyl carbonate (EPC) may be ideal
  • a carbonate-based organic solvent having a high dielectric constant having a high ionic conductivity capable of increasing the charge/discharge performance of a battery and a carbonate having a low viscosity capable of properly adjusting the viscosity of the organic solvent having a high dielectric constant It may be preferable to use a mixture of organic solvents.
  • an organic solvent with a high dielectric constant selected from the group consisting of ethylene carbonate, propylene carbonate and mixtures thereof, and an organic solvent with low viscosity selected from the group consisting of ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate and mixtures thereof Can be used in combination.
  • the high dielectric constant organic solvent and the low viscosity organic solvent are mixed and used in a volume ratio of 2:8 to 8:2, and more specifically, ethylene carbonate or propylene carbonate; ethyl methyl carbonate; And dimethyl carbonate or diethyl carbonate may be mixed and used in a volume ratio of 5:1:1 to 2:5:3, for example, a volume ratio of 3:5:2.
  • the carbonate-based organic solvent may include ethylene carbonate (EC), diethyl carbonate (DEC) and ethylmethyl carbonate (EMC), and 10 to 40% by weight or 15 to 35% by weight of ethylene carbonate, 20 to 30% by weight or 22 to 28% by weight; 15 to 45% by weight, 20 to 40% by weight, 25 to 35% by weight or 27 to 33% by weight of diethyl carbonate; Ethyl methyl carbonate may be mixed at 30 to 60% by weight, 35 to 55% by weight, 40 to 50% by weight, or 42 to 48% by weight.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • the propionate-based organic solvent may include, for example, propionate, methyl propionate, etc., but is not limited thereto.
  • the organic solvent may be used in an amount remaining after subtracting the contents of components other than the organic solvent in the electrolyte solution.
  • the moisture content in the organic solvent is preferably controlled to 150 ppm or less, preferably 100 ppm or less.
  • Lithium salts that may be included in the electrolyte of the present invention include, for example, LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiBF 6 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiN(CaF 2a+1 SO 2 )(C b F 2b+1 SO 2 ) (where a and b are natural numbers), LiCl, LiI, and LiB(C 2 O 4 ) 2 may be used, and preferably, LiPF 6 may be used.
  • the a and b may be integers of 1 to 4, for example.
  • the lithium salt When the lithium salt is dissolved in the electrolyte solution, the lithium salt functions as a source of lithium ions in the lithium secondary battery and can promote the movement of lithium ions between the positive electrode and the negative electrode. Accordingly, the lithium salt is preferably included in a concentration of about 0.6 to 2M in the electrolyte solution. When the concentration of the lithium salt is less than 0.6 M, the conductivity of the electrolyte may be lowered and thus electrolyte performance may be deteriorated, and when the concentration of the lithium salt is greater than 2 M, the mobility of lithium ions may be reduced due to an increase in viscosity of the electrolyte.
  • the lithium salt may be included in the electrolyte at a concentration of 0.5 to 1.5 M (mol/L), preferably at a concentration of 0.7 to 1.3 M, , more preferably at a concentration of 0.8 to 1.1M.
  • the conductivity of the electrolyte solution is high, and the performance of the electrolyte solution is excellent, and the viscosity of the electrolyte solution is low, so that the mobility of lithium ions is excellent.
  • the electrolyte solution may have a lithium ion conductivity of, for example, 0.3 S/m or more, or 0.3 to 10 S/m under a condition of 25° C., and cycle life characteristics of a lithium secondary battery may be further improved within the above range .
  • the electrolyte solution may further include an electrolyte solution additive generally used in the electrolyte solution for the purpose of improving lifespan characteristics of a battery, suppressing a decrease in battery capacity, and improving discharge capacity of a battery.
  • the electrolyte solution additive may be, for example, at least one selected from the group consisting of a boron compound, a phosphorus compound, a sulfur compound, and a nitrogen-based compound (hereinafter, also referred to as a 'third additive').
  • the third additive may be, for example, at least one selected from compounds represented by Formulas 7 to 21 below, and by including the additive, the decomposition reaction of the electrolyte can be more effectively inhibited.
  • the electrolyte solution of the present invention may include 10% by weight or less, preferably 1 to 5% by weight, of the third additive based on 100% by weight of the total electrolyte solution.
  • 10% by weight or less preferably 1 to 5% by weight
  • the third additive based on 100% by weight of the total electrolyte solution.
  • the electrolyte solution additive may include, for example, metal fluoride, and when the metal fluoride is further included as the electrolyte solution additive, the influence of acid generated around the cathode active material is reduced, and the cathode By suppressing the reaction between the active material and the electrolyte, it is possible to improve a phenomenon in which the capacity of the battery is rapidly reduced.
  • the metal fluoride is specifically, LiF, RbF, TiF, AgF, AgF 2 , BaF 2 , CaF 2 , CdF 2 , FeF 2 , HgF 2 , Hg 2 F 2 , MnF 2 , NiF 2 , PbF 2 , SnF 2 , SrF 2 , XeF 2 , ZnF 2 , AlF 3 , BF 3 , BiF 3 , CeF 3 , CrF 3 , DyF 3 , EuF 3 , GaF 3 , GdF 3 , FeF 3 , HoF 3 , InF 3 , LaF 3 , LuF 3 , MnF 3 , NdF 3 , PrF 3 , SbF 3 , ScF 3 , SmF 3 , TbF 3, TiF 3, TmF 3 , YF 3 , YbF 3 , TIF 3 , CeF 4 , GeF 4 , HfF 4 ,
  • the metal fluoride may be included in an amount of, for example, 0.1 to 10% by weight or 0.2 to 5% by weight based on the total weight of the electrolyte, and within this range, cycle life characteristics of the lithium secondary battery may be further improved.
  • the electrolyte solution according to the present invention having the composition as described above can provide an electrolyte secondary battery with high stability and reliability as the decomposition reaction of the electrolyte is suppressed in a wide temperature range of -20 °C to 60 °C, and the amount of gas generated and the rate of increase in internal resistance are reduced.
  • the structure of the battery itself is the same as that of a general electrolyte secondary battery, there is an advantage in that it is easy to manufacture and advantageous for mass production.
  • a lithium secondary battery according to the present invention includes a cathode; cathode; a separator provided between the positive electrode and the negative electrode; and an electrolyte solution.
  • the electrolyte solution may include the above-described electrolyte solution, and the positive electrode and the negative electrode may include a positive electrode active material and a negative electrode active material, respectively.
  • the cathode may be prepared by preparing a composition for forming a cathode active material layer by mixing a cathode active material, a binder, and optionally a conductive agent, and then applying the composition to a cathode current collector such as aluminum foil.
  • the cathode active material may be a lithium composite metal oxide and lithium olivine-type phosphate used in lithium secondary batteries.
  • the cathode active material includes at least one metal selected from the group consisting of cobalt, manganese, nickel, and iron. can be used, more preferably NCM (lithium nickel cobalt oxide) can be used.
  • the cathode active material may be a lithium composite metal oxide having the formula Li[Ni x Co 1-xy Mn y ]O 2 (where 0 ⁇ x ⁇ 0.5 and 0 ⁇ y ⁇ 0.5), but is not limited thereto.
  • the variables x and y of the formula Li[Ni x Co 1-xy Mn y ]O 2 of the lithium composite metal oxide are, for example, 0.0001 ⁇ x ⁇ 0.5, 0.0001 ⁇ y ⁇ 0.5, or 0.001 ⁇ x ⁇ 0.3, 0.001 ⁇ y may be ⁇ 0.3.
  • the cathode active material may use a compound capable of reversible intercalation and deintercalation of lithium (lithiated intercalation compound).
  • a compound capable of reversible intercalation and deintercalation of lithium lithium (lithiated intercalation compound).
  • LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi x Mn (1-x) O 2 (where 0 ⁇ x ⁇ 1), and LiMl x M2 y O 2 (provided that 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1, M1 and M2 are each independently selected from the group consisting of Al, Sr, Mg and La ) At least one selected from the group consisting of is preferred.
  • lithium olivine-type phosphate may preferably contain, for example, one or more selected from iron, cobalt, nickel, and manganese, and specifically, LiFePO 4 , LiCoPO 4 , and LiMnPO 4 . can include In addition, a compound in which some metals of the lithium olivine-type phosphate are substituted with other metals may also be possible.
  • the negative electrode may be prepared by preparing a composition for forming a negative electrode active material layer by mixing a negative electrode active material, a binder, and optionally a conductive agent, and then applying the composition to a negative electrode current collector such as copper foil.
  • the negative electrode active material for example, a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • the anode active material may include, for example, at least one selected from the group consisting of tin, tin compound, silicon, silicon compound, lithium titanate, crystalline carbon, amorphous carbon, artificial graphite, and natural graphite.
  • a tin compound or a silicon compound is a compound in which tin or silicon is combined with one or more other chemical elements, respectively.
  • a metallic compound capable of alloying with lithium or a composite including a metallic compound and a carbonaceous material may also be used as an anode active material.
  • it may be graphite.
  • the metal capable of alloying with lithium for example, at least one of Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy may be used.
  • a metal lithium thin film may be used as the anode active material.
  • the negative electrode active material one or more selected from the group consisting of crystalline carbon, amorphous carbon, carbon composites, lithium metal, and lithium-containing alloys may be used in view of high stability.
  • a battery assembly may be completed by placing a separator between the positive electrode and the negative electrode, inserting the separator into the cell, injecting an electrolyte solution, and sealing the separator.
  • the lithium secondary battery including the above-described electrolyte, positive electrode, negative electrode, and separator is, for example, a unit cell having a positive electrode/separator/negative electrode structure, a bi-cell having a positive electrode/separator/negative electrode/separator/positive electrode structure, or a unit cell. It is a self-evident fact that the structure of can be formed as a structure of repeated stacked cells.
  • a secondary battery according to an embodiment of the present invention by adding the first additive and the second additive to improve battery performance, battery discharge resistance, output characteristics, 60 °C measured by HPPC (Hybrid Pulse Power Characterization) method There is an effect of improving battery characteristics such as capacity recovery characteristics and life characteristics at high temperatures above.
  • HPPC Hybrid Pulse Power Characterization
  • a secondary battery according to another embodiment of the present invention by adding a performance improver in addition to the first additive and the second additive added to the electrolyte, the battery discharge resistance, output characteristics, 60 °C measured by HPPC (Hybrid Pulse Power Characterization) method At higher temperatures than above, there is an effect of further improving battery characteristics such as capacity recovery characteristics and life characteristics.
  • HPPC Hybrid Pulse Power Characterization
  • the secondary battery of the present invention may have an HPPC discharge resistance value measured at 60 °C of 28 m ⁇ or less, preferably 25 to 28 m ⁇ .
  • the HPPC discharge resistance value can be measured by the method prescribed in the document “Battery test manual for plug-in hybrid electric vehicles,” (2010, Idaho National Laboratory for the US Department of Energy.), It is an important indicator of battery characteristics such as battery output.
  • the discharge resistance is a resistance value measured during discharging of the battery, and improved output performance can be provided within the above range. The lower the discharge resistance, the smaller the energy loss, the faster the charging speed, and the higher the output of the battery.
  • the secondary battery of the present invention has excellent charging speed and output because the HPPC discharge resistance value is reduced by up to 23.6%, so it is suitable for use as, for example, a vehicle battery.
  • the secondary battery of the present invention may have a recovery capacity of 585 mAh or more, preferably 585.5 to 606.5 mAh, measured at 60 °C.
  • the recovery capacity represents the capacity conservation characteristics of a battery that has been left unattended for a long time, and the discharged electric capacity when the battery left for a long time is discharged to the discharge end voltage, and the discharged electric capacity when the discharged battery is recharged and returned to the discharge end voltage.
  • the discharged capacitance at the time of discharging was measured, respectively, and the two capacitance values were compared.
  • the higher the recovery capacity the smaller the amount of natural discharge due to battery preservation (storage), which means that the battery can be stored for a long time.
  • the higher the storage temperature of the battery the faster the natural discharge rate. This is a very important characteristic of batteries.
  • the electrolyte solution additive of the present invention is added to the electrolyte solution for a battery, the recovery capacity is improved as described above, and there is an effect that can be stored for a longer period of time with a single charge.
  • the secondary battery may have a thickness of 2.6 mm or less, preferably 2.4 to 2.6 mm, measured at 60 °C.
  • the secondary battery may have a thickness increase rate of 13.04% or less, preferably 4.35 to 13.04%, at 60 °C calculated by Equation 1 below.
  • Thickness increase rate (%) ⁇ (thickness after high temperature storage - initial thickness) / initial thickness ⁇ X 100
  • the thickness increase rate represents swelling characteristics due to gas generation inside the battery, and the initial thickness of the pouch cell and the thickness after being left at a high temperature are measured, respectively, and the difference between the two values is compared.
  • the secondary battery may have a coulombic efficiency of 99.5% or more, preferably 99.5 to 99.9%, as measured by Equation 2 below.
  • the coulombic efficiency is calculated based on the charge capacity and discharge capacity in 300 cycles, and has an effect of improving charge and discharge efficiency .
  • the thickness of the cell may increase to less than 4 mm due to the generation of CO 2 gas and H 2 gas in the course of decomposition of the electrolyte solution and formation of the SEI film during charging and discharging of 300 cycles.
  • the battery of the present invention when used as a vehicle battery, it improves output, which is important depending on the size of the vehicle, and at low and high temperatures, which is a problem in the environment of the vehicle, which is mostly exposed to sunlight during climate change, driving or parking. Performance improvement and lifespan improvement are made, so that it can exhibit excellent performance as an automobile battery.
  • the lithium secondary battery according to the present disclosure may be classified into a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery according to the type of separator and electrolyte used, and may be classified into cylindrical, prismatic, coin, pouch, etc. It can be classified, and it can be divided into a bulk type and a thin film type according to the size.
  • the electrolyte solution according to the embodiment of the present disclosure is particularly excellent for application to a lithium ion battery, an aluminum laminate battery, and a lithium polymer battery among others.
  • the lithium secondary battery containing the electrolyte solution according to the present disclosure can improve life characteristics and increase internal resistivity as well as reduce thickness increase rate and gas generation rate, especially at high temperatures of 45 ° C. or higher, for example, 45 ° C. to 60 ° C.,
  • the battery of the present invention When the battery of the present invention is used as a vehicle battery, it improves output, which is important depending on the size of the vehicle, and performance at low and high temperatures, which is a problem due to the nature of the vehicle, which is exposed to sunlight mostly during driving or parking. Improvements can be made to exhibit excellent performance as a vehicle battery.
  • the electrolyte solution additive according to the embodiments of the present invention and the electrolyte solution containing the same are applied to a secondary battery, the charging resistance, output, recovery capacity and lifetime efficiency are improved, making it suitable for use as a secondary battery for automobiles, Portable devices such as mobile phones, laptop computers, digital cameras, and camcorders, electric vehicles such as hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), and medium and large-sized energy storage systems can be useful for
  • a battery electrolyte was prepared by adding a compound in which h is 1 and the cation is sodium according to the content shown in Table 2 below.
  • a battery electrolyte was prepared by adding a compound in which h is 1 and the cation is sodium according to the content shown in Table 3 below.
  • a positive electrode mixture slurry was prepared by adding 100 parts by weight of N-methyl-2-pyrrolidone (NMP) as a solvent.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture slurry was coated on an aluminum (Al) thin film, which is a positive electrode current collector, and dried to have a thickness of about 20 ⁇ m, and then a roll press was performed to prepare a positive electrode.
  • a negative electrode mixture containing 96% by weight, 3% by weight, and 1% by weight of carbon powder obtained by mixing artificial graphite and natural graphite as a negative electrode active material, PVdF as a binder, and carbon black as a conductive agent, respectively.
  • An anode mixture slurry was prepared by adding 100 parts by weight of NMP as a solvent.
  • the negative electrode mixture slurry was coated on a copper (Cu) thin film as a negative electrode current collector having a thickness of 10 ⁇ m, dried to prepare a negative electrode, and then rolled pressed to prepare a negative electrode.
  • Cu copper
  • a pouch-type battery was prepared, and then the examples 1-1 to 6-1, comparison The manufacture of the lithium secondary battery was completed by injecting the electrolyte solutions prepared in Examples 1-1 to 6-3.
  • the charging conditions were charged until the charging current became 1/10C at a constant current of 1.0C and a voltage of 4.2V.
  • As for the discharge conditions after charging and discharging by discharging up to 3.0V at a constant current of 1.0C, (initial) recovery capacity was measured.
  • the thickness of the secondary battery was measured using a pressure-type thickness meter manufactured by Mitutoyo, in a state in which the pouch cell was placed between compression plates and then compressed with a weight of 300 g.
  • the result of measuring the thickness immediately after taking it out of the oven at 60 ° C (expansion thickness) and the thickness value measured in the same way after storing in a constant temperature bath at 60 ° C for 4 weeks were substituted into Equation 1 to increase the thickness (%) was calculated and the resulting values are shown in Tables 7 and 8 below.
  • Thickness increase rate (%) ⁇ (thickness after high temperature storage - initial thickness) / initial thickness ⁇ X 100
  • the secondary battery is charged with a constant current at 45 ° C. at a current of 1C rate until the voltage reaches 4.20V (vs. Li), and then cut-off at a current of 0.05C rate while maintaining 4.20V in constant voltage mode. did Subsequently, the discharge was performed at a constant current of 1C rate until the voltage reached 3.0V (vs. Li) during discharge.
  • the secondary battery was charged and discharged for 5 cycles each at 1C-rate, 2C-rate, and 3C-rate at room temperature.
  • the results obtained through the evaluation were substituted into the following Equation 3 to calculate the rate efficiency of each composition, and the obtained results are shown in Table 9 below.
  • the discharge capacity per C-rate is 1C-rate discharge capacity
  • the charge capacity per C-rate refers to the 1C-rate charge capacity.
  • Rate efficiency (%) (discharge capacity by C-rate / charge capacity by C-rate) X 100
  • Example 2-3 Expression 1d(10) Equation 2a+ Cesium(5) 26.24 586.6 ⁇ 2.3 2.4 4.35 99.8
  • the charging resistance value was 25.59 to 27.65 m ⁇ , but the first additive and the second battery In the case of Comparative Examples 1-1 to 6-3 using only one of the two additives, it appeared as high as 28.24 to 31.65 m ⁇ , and it was confirmed that the charging resistance value was lowered by up to 23.6% by using the electrolyte additive of the present invention.
  • the high temperature recovery capacity is 585.5 to 606.5 mAh
  • the first additive In the case of Comparative Examples 1-1 to 6-3 using only one of the second additives, the values were 559.1 to 591.6 mAh, up to 47.4 mAh lower than those of Examples of the present invention.
  • the recovery capacity at a high temperature of 60 ° C. is improved by the electrolyte additive of the present invention, and thus the recovery capacity efficiency of the battery is improved when stored for a long time in a high temperature environment by the electrolyte additive of the present invention. You can check.
  • the thickness increase rate was 2.4 to 2.6%, whereas only one of the first additive and the second additive was used. It can be seen that in the case of Comparative Examples 1-1 to 6-3 used, it is 2.6 to 3.1%, which is up to 0.7%p (% point) lower than that of the examples of the present invention.
  • the capacity retention rate of the battery is improved during repeated 300 cycles at a high temperature of 60 ° C. compared to the case of using the conventional electrolyte additive. showed an improvement in performance.
  • the electrolyte solution additive of the present invention and the electrolyte solution containing the same are applied to a secondary battery, discharge resistance, output, recovery capacity and lifetime efficiency are improved, making it suitable for use as a secondary battery for energy storage systems (ESS) and automobiles. suitable can be found.
  • ESS energy storage systems

Abstract

본 발명은 전해액 및 이를 포함하는 이차전지에 관한 것으로, 본 발명에 따르면, 방전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 가스발생 및 두께 증가를 억제하여 장기 수명 및 고온 용량 유지율이 우수한 이차전지를 제공하는 효과가 있다.

Description

전해액 및 이를 포함하는 이차전지
본 발명은 전해액 및 이를 포함하는 이차전지에 관한 것으로, 보다 상세하게는 전지의 출력 특성과 고온저장 특성을 향상시킬 수 있고, 가스 발생과 두께 증가율을 현저히 감소시킬 수 있는 전해액 첨가제를 포함하는 전지용 전해액 및 이차전지에 관한 것이다.
리튬 이차전지는 양극 및 음극 사이에 전해액을 넣어 리튬이온의 원활한 이동을 가능하게 하며, 양극 및 음극에서 삽입 및 탈리에 따른 산화 환원반응에 의해 전기가 생성 또는 소비된다.
주로 휴대폰 등 모바일 IT 기기, 전동공구 등의 전원으로서 사용되고 있는 리튬 이차전지는 대용량화 기술이 발전함에 따라 자동차 및 에너지 저장 등의 용도로 사용이 확대되고 있다.
이와 같은 응용분야의 확대 및 수요의 증가에 따라 기존의 소형전지에서 요구되는 특성보다 더욱 우수한 전지 성능과 안정성이 요구되고 있으며, 근래에서는 출력특성, 사이클특성, 보존특성, 피막특성 등의 전지특성을 개선하기 위해 전해액 구비 성분으로서 유기용매나 첨가제에 대한 다양한 검토가 이루어지고 있다.
종래에는 전해액 첨가제를 포함하지 않거나 열악한 특성의 전해액 첨가제를 포함하는 전해액의 경우 불균일한 SEI 막의 형성으로 인해 저온 출력 특성의 향상을 기대하기 어려웠다. 더욱이, 전해액 첨가제를 포함하는 경우에도 그 투입량을 필요량으로 조절하지 못하는 경우, 상기 전해액 첨가제로 인해 고온 반응시 양극 표면이 분해되거나 전해액이 산화 반응을 일으켜 궁극적으로 이차 전지의 사이클 특성 및 저장 안정성이 저하되는 문제가 있었다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 등록특허 제1295395호
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 전지의 출력 특성과 고온저장 특성을 향상시킬 수 있고, 가스 발생 및 두께 증가율을 현저히 감소시킬 수 있는 전해액 첨가제를 포함하는 전지용 전해액을 제공하는 것을 목적으로 한다.
또한 본 발명은 방전 저항이 감소되어 전지의 출력이 향상되고, 고온에서의 회복 용량이 향상되어 장기 보관이 가능하며, 전지 내 가스발생을 억제시킬 수 있는 우수한 이차전지를 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 유기용매, 리튬염, 제1 첨가제 및 제2 첨가제를 포함하는 전해액으로서,
상기 제1 첨가제는 리튬 또는 나트륨 양이온과, 하기 화학식 1로 표시되는 음이온과의 쌍으로 이루어지는 화합물을, 상기 전해액 100중량%를 기준으로 15 중량% 이하로 포함하고,
상기 제2 첨가제는 3 내지 5개의 원자로 구성되고, 전기 음성도가 3 이상인 원자를 2 내지 4개 갖고, 적어도 1개의 이중 결합을 갖는 원자단 및 대칭 구조를 갖는 화합물을, 상기 전해액 100중량%를 기준으로 0.01 내지 10 중량%로 포함하는 것을 특징으로 하는 전해액을 제공한다.
[화학식 1]
Figure PCTKR2022015029-appb-img-000001
(상기 화학식 1에서, R1 및 R2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 7의 할로겐 치환기를 포함하는 직쇄형 또는 분지형 알킬기이고, h는 1 내지 10의 정수이다.)
상기 화학식 1로 표시되는 음이온은, 상기 할로겐 치환기가 불소일 수 있다.
상기 제1 첨가제가 리튬 또는 나트륨 양이온과, 하기 화학식 2 내지 5로 표시되는 군에서 선택되는 1종 이상 음이온과의 쌍으로 이루어지는 화합물일 수 있다.
[화학식 2]
Figure PCTKR2022015029-appb-img-000002
[화학식 3]
Figure PCTKR2022015029-appb-img-000003
[화학식 4]
Figure PCTKR2022015029-appb-img-000004
[화학식 5]
Figure PCTKR2022015029-appb-img-000005
(상기 화학식 2 내지 5에서, h는 1 내지 10의 정수이다.)
상기 제2 첨가제는 하기 화학식 6으로 표시되는 원자단을 갖는 것일 수 있다.
[화학식 6]
Figure PCTKR2022015029-appb-img-000006
(상기 화학식 6에서, 실선은 결합이다.)
상기 제2 첨가제는 알칼리 금속이온(리튬 제외)으로 이루어진 군에서 선택된 1종 이상의 양이온과, 하기 화학식 1로 표시되는 음이온과의 쌍으로 이루어지는 화합물일 수 있다.
[화학식 1]
Figure PCTKR2022015029-appb-img-000007
(상기 화학식 1에서, R1 및 R2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 7의 할로겐 치환기를 포함하는 직쇄형 또는 분지형 알킬기이고, h는 1 내지 10의 정수이다.)
상기 화학식 6으로 표시되는 음이온은, 상기 할로겐 치환기가 불소일 수 있다.
상기 제2 첨가제가 세슘의 양이온과, 하기 화학식 3 내지 5로 표시되는 군에서 선택되는 1종 이상 음이온과의 쌍으로 이루어지는 화합물일 수 있다.
[화학식 3]
Figure PCTKR2022015029-appb-img-000008
[화학식 4]
Figure PCTKR2022015029-appb-img-000009
[화학식 5]
Figure PCTKR2022015029-appb-img-000010
(상기 화학식 3 내지 5에서, h는 1 내지 10의 정수이다.)
상기 제1 첨가제와 제2 첨가제를 1:0.5 내지 2.5(제1 첨가제: 제2 첨가제) 의 중량비로 포함할 수 있다.
상기 리튬염은 LiPF6, LiClO4, LiAsF6, LiBF4, LiBF6, LiSbF6, LiAl04, LiAlCl4, LiClO4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2, LiN(CaF2a+1SO2)(CbF2b+1SO2)(단, a 및 b는 자연수임), LiCl, LiI 및 LiB(C2O4)2로 이루어진 군 중에서 선택되는 1종 이상을 포함할 수 있다.
상기 유기용매는 에틸렌 카보네이트(EC), 디에틸 카보네이트(DEC), 에틸메틸 카보네이트(EMC), 디메틸 카보네이트(DMC), 프로필렌 카보네이트(PC), 디프로필 카보네이트(DPC), 부틸렌 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸 프로피오네이트(MP), 에틸 프로피오네이트(EP) 및 프로필 프로피오네이트(PP)로 이루어진 군에서 선택된 2종 이상을 포함할 수 있다.
상기 전해액은 붕소 화합물, 인 화합물, 황 화합물 및 질소계 화합물로 이루어진 군으로부터 선택된 1종 이상의 제3 첨가제를 상기 전해액 총 100 중량%를 기준으로 10 중량% 이하로 포함할 수 있다.
또한, 본 발명은
리튬 양이온과, 하기 화학식 1로 표시되는 음이온과의 쌍으로 이루어지는 화합물; 및
세슘 양이온과, 하기 화학식 1로 표시되는 음이온과의 쌍으로 이루어지는 화합물을 포함하는 것을 특징으로 하는 전해액 첨가제를 제공한다.
[화학식 1]
Figure PCTKR2022015029-appb-img-000011
(상기 화학식 1에서, R1 및 R2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 7의 할로겐 치환기를 포함하는 직쇄형 또는 분지형 알킬기이고, h는 1 내지 10의 정수이다.)
상기 리튬 양이온과, 하기 화학식 1로 표시되는 음이온과의 쌍으로 이루어지는 화합물과, 세슘 양이온과, 하기 화학식 1로 표시되는 음이온과의 쌍으로 이루어지는 화합물을 1:0.5 내지 2.5(제1 첨가제: 제2 첨가제)의 중량비로 포함할 수 있다.
또한, 본 발명은
음극, 양극, 상기 음극과 양극 사이에 개재된 분리막 및 전해액을 포함하는 이차전지로서,
상기 전해액은 전술한 전해액인 것을 특징으로 하는 리튬 이차전지를 제공한다.
상기 이차전지는, 60 ℃에서 방전 저항 값이 28 mΩ 이하일 수 있다.
상기 이차전지는, 60 ℃에서 회복용량이 585 mAh 이상일 수 있다.
상기 이차전지는, 하기 수학식 1로 계산된 60 ℃에서의 두께 증가율이 2.6 % 이하일 수 있다.
[수학식 1]
두께 증가율(%) = {(고온 저장 후 두께 - 초기 두께) / 초기 두께} Ⅹ 100
상기 이차전지는, 300 cycle 이후 하기 수학식 2로 계산된 쿨롱 효율이 99.5% 이상일 수 있다.
[수학식 2]
쿨롱 효율(%) = (300 cycle에서의 방전용량 / 300 cycle에서의 충전용량) Ⅹ 100
상기 이차전지는, 300 cycle 충방전 도중 전해액 분해 및 SEI 피막 형성과정에서 CO2 가스와 H2 가스의 발생으로 셀의 두께가 4 mm 이내로 증가할 수 있다.
상기 이차전지는, 에너지 저장시스템(ESS) 또는 자동차용 전지일 수 있다.
본 발명에 따른 전지용 전해액을 이차전지에 포함하는 경우, 방전 저항을 저감시켜 출력이 향상될 수 있고, 고온에서의 회복 용량이 향상되어 장기 수명 및 고온 용량 유지율이 우수한 이차전지를 제공하는 효과가 있다.
특히, 본 발명에 따른 전지용 첨가제 등은 전지 내 가스발생과 두께 증가를 억제시켜 성능 및 수명이 우수한 이차전지를 제공하는 효과가 있다.
이하 본 발명의 전해액 첨가제, 전지용 전해액 및 이를 포함하는 이차전지에 대하여 상세하게 설명한다.
본 발명자들은 자동차 전지로 사용 가능한 전지를 제조하기 위하여, 출력이 향상되고, 고온 회복 용량 및 수명 특성이 우수한 이차전지에 대해 연구하던 중, 이차전지의 전해액에 특정 구조의 첨가제를 첨가하는 경우, 상기의 목적을 모두 달성할 수 있는 것을 확인하고, 이를 토대로 더욱 연구에 매진하여 본 발명을 완성하게 되었다.
본 발명의 전해액 첨가제는, 제1 첨가제 및 제2 첨가제를 포함하고, 제1 첨가제가 리튬 또는 나트륨의 양이온과, 하기 화학식 1로 표시되는 음이온과의 쌍으로 이루어지는 화합물이며, 상기 제2 첨가제가 3 내지 5개의 원자로 구성되고, 전기 음성도가 3 이상인 원자를 2 내지 4개 갖고, 적어도 1개의 이중 결합을 갖는 원자단 및 대칭 구조를 갖는 화합물인 것을 특징으로 하며, 이 경우 충전 저항이 감소되어 전지의 출력이 향상되고, 고온에서의 회복 용량이 향상되어 장기 보관이 가능하며, 고온에서의 수명 유지율이 우수한 효과가 있다.
[화학식 1]
Figure PCTKR2022015029-appb-img-000012
(상기 화학식 1에서, R1 및 R2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 7의 할로겐 치환기를 포함하는 직쇄형 또는 분지형 알킬기이고, h는 1 내지 10의 정수이다.)
상기 화학식 1로 표시되는 음이온은, 상기 할로겐 치환기가 불소인 것을 특징으로 한다.
또한, 본 발명의 전지용 전해액은 상기 전해액 첨가제를 포함하는 것을 특징으로 한다.
상기 화학식 1로 표시되는 음이온을 갖는 전해액 첨가제는, 이차전지의 전해액에 첨가되는 경우, P 또는 S 원소와 직접 연결된 O 원소 사이의 전기 음성도 차로 인해 전자가 O 원소 쪽으로 편재된다. 이에 따라 P 또는 S 원소는 전자 부족(e- poor, δ+) 상태가 되어 리튬 이온을 포함하는 전해액 중에서 산화 반응이 유도되어, 전극, 구체적으로는 양극(Cathode)에 안정한 피막을 형성한다. 이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 고온에서 분해되지 않아, 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여, 고온 저장성이 크게 개선되는 우수한 효과가 있다. 또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
상기 제1 첨가제는 리튬 또는 나트륨의 양이온과, 하기 화학식 2 내지 5로 표시되는 군에서 선택되는 1종 이상 음이온과의 쌍으로 이루어지는 화합물일 수 있으며, 이를 포함하는 전해액을 사용하여 리튬 이차전지를 구성할 경우, 해당 화합물의 말단기가 전해액의 분해를 억제하는 효과가 있으며, 이에 의해 내부저항 증가율이 감소하고 가스발생량과 두께 증가율이 감소되어 전지의 수명을 연장시키는 효과가 있다.
[화학식 2]
Figure PCTKR2022015029-appb-img-000013
[화학식 3]
Figure PCTKR2022015029-appb-img-000014
[화학식 4]
Figure PCTKR2022015029-appb-img-000015
[화학식 5]
Figure PCTKR2022015029-appb-img-000016
(상기 화학식 2 내지 5에서, h는 1 내지 10의 정수이다.)
구체적인 예로, 상기 양이온이 리튬이고, 음이온이 상기 화학식 2 또는 3으로 표시되는 구조를 가지는 경우, 대칭의 선형 구조로서 분자 내의 전자 흐름이 안정을 이룰 수 있어 분자 구조 안정화와 화학적 안정성, 전해액의 이온 이동성, 전극 활물질의 부반응 방지 측면에서 바람직하다. 또한, 이를 포함하는 이차전지의 충전 저항이 낮아져 전지 출력이 향상되고, 고온에서 충전 회복 용량이 상승되며, 수명 효율은 높아지는 효과가 우수하여 전지용 전해액 첨가제로서 바람직하다.
상기 화학식 1로 표시되는 화합물은 바람직하게는 N을 중심으로 대칭이고, 이 경우 대칭의 선형 구조로서 분자 내의 전자 흐름이 안정을 이루게 될 뿐 아니라 이를 통해 분자 강직도(rigidity)가 높아져 전지 성능 향상이 큰 이점이 있다.
상기 화학식 1로 표시되는 화합물에 포함되는 할로겐 치환기는 일례로 불소 또는 아이오딘일 수 있고, 바람직하게는 불소일 수 있다. 불소는 전기 음성도가 3.98로 가장 높은 원소로서, 상기 할로겐 치환기가 불소인 경우, 상기 화학식 1로 표시되는 화합물의 극성이 높아지게 된다. 이를 통해 상기 화학식 1로 표시되는 화합물 및 유기용매를 포함하는 전해액의 이온 이동성이 향상될 수 있고, 상기 화합물이 전극 표면에서 전극 활물질과의 수소 결합을 이루어, 전지의 충방전 시 발생할 수 있는 전극 활물질의 부반응을 방지할 수 있어, 전지의 안정성 및 충방전 효율 개선 효과가 극대화될 수 있다.
상기 R1 및 R2는 각각 독립적으로 트리플루오로메틸기 또는 디플루오로메틸기인 것이 바람직하며, 상기 R1 및 R2는 모두 트리플루오로메틸기이거나, 혹은 모두 디플루오로메틸기인 경우 화학적으로 안정을 이루어 불활성이 되고 분자 구조가 간소화되어 안정성 측면에서 가장 바람직하다.
본 발명의 전해액은 전해액 총 100 중량%를 기준으로 상기 제1 첨가제를 15 중량% 이하로 포함할 수 있으며, 바람직하게는 0.01 내지 10 중량%로 포함할 수 있다. 이 범위 내에서 전해액의 분해 효과가 억제되어 전지의 수명 특성 및 사이클 특성 등이 향상되는 이점이 있다.
상기 제2 첨가제는 일례로 하기 화학식 6으로 표시되는 원자단을 갖는 것일 수 있으며, 이 경우에 전극의 금속 표면에 흡착하여 전극과 전해질의 부반응을 억제함으로써 전해액의 안정성을 더욱 향상시킬 수 있으며, 이에 의해 전지의 사이클 특성, 안정성 및 수명이 향상될 수 있다.
[화학식 6]
Figure PCTKR2022015029-appb-img-000017
(상기 화학식 6에서, 실선은 결합이다.)
본 기재에서 사용하는 용어 "원자단"이란 달리 특정하지 않는 한, 공유결합하는 다원자이온을 지칭한다.
상기 제2 첨가제는 알칼리 금속이온(리튬 제외)으로 이루어진 군에서 선택된 1종 이상의 양이온과, 하기 화학식 1로 표시되는 음이온과의 쌍으로 이루어지는 화합물일 수 있다.
[화학식 1]
Figure PCTKR2022015029-appb-img-000018
(상기 화학식 1에서, R1 및 R2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 7의 할로겐 치환기를 포함하는 직쇄형 또는 분지형 알킬기이고, h는 1 내지 10의 정수이다.)
상기 화학식 1로 표시되는 화합물을 포함하는 전해액 첨가제는, 이차전지의 전해액에 첨가되는 경우, N 원소 및 이에 직접 연결된 S 원소 사이의 전기 음성도 차로 인해 전자가 N 원소 쪽으로 편재된다. 이에 따라 S 원소는 전자 부족(e-poor, δ+) 상태가 되어 리튬 이온을 포함하는 전해액 중에서 산화 반응이 유도되어, 전극, 구체적인 일례로 양극(Cathode)에 안정한 피막을 형성하는 동시에 말단에 치환된 할로겐 치환기로 인해 이온 전도도를 개선한다.
이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 고온에서 분해되지 않아 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온 저장성이 크게 개선되는 우수한 효과가 있다. 또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다.
구체적으로, 전지 내부의 가스 발생은 주로 양/음극 전극 표면에서 전해액 성분, 특히 카보네이트계 용매의 분해에 의해 발생되는데 양/음극 보호막이 쉽게 열화되거나 양극에서 발생하는 산소 라디칼로 인해 더욱 촉진되기도 한다. 본 물질은 N, S, O, F 성분으로 이루어진 안정성이 우수한 보호막을 형성하여 용매의 직접적인 분해를 억제할 수 있으며, 금속 이온 배위 효과에 의해 양극 열화에 의한 양극 전이금속 이온 용출을 방지하여 궁극적으로 양극의 골격을 이루는 산소 원소의 이탈을 방지할 수 있다.
또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
상기 제2 첨가제는 세슘의 양이온과, 하기 화학식 3 내지 5로 표시되는 군에서 선택되는 1종 이상 음이온과의 쌍으로 이루어지는 화합물일 수 있으며, 이를 포함하는 전해액을 사용하여 리튬 이차전지를 구성할 경우, 해당 화합물의 말단기가 전해액의 분해를 억제하는 효과가 있으며, 이에 의해 내부저항 증가율이 감소하고 가스발생량과 두께 증가율이 감소되어 전지의 수명을 연장시키는 효과가 있다.
[화학식 3]
Figure PCTKR2022015029-appb-img-000019
[화학식 4]
Figure PCTKR2022015029-appb-img-000020
[화학식 5]
Figure PCTKR2022015029-appb-img-000021
(상기 화학식 3 내지 5에서, h는 1 내지 10의 정수이다.)
구체적인 예로, 상기 양이온이 세슘이고, 음이온이 상기 화학식 3으로 표시되는 구조를 가지는 경우, 대칭의 선형 구조로서 분자 내의 전자 흐름이 안정을 이룰 수 있어 전지 성능 향상이 큰 이점이 있다.
상기 화학식 1로 표시되는 화합물은 바람직하게는 N을 중심으로 대칭이고, 이 경우 대칭의 선형 구조로서 분자 내의 전자 흐름이 안정을 이루어 전지 성능 향상이 큰 이점이 있다.
본 발명의 전해액은 전해액 총 100 중량%를 기준으로 상기 제2 첨가제를 0.1 내지 10 중량%로 포함할 수 있으며, 바람직하게는 1 내지 5 중량%로 포함할 수 있다. 이 범위 내에서 전해액의 분해 효과가 억제되어 전지의 수명 특성 및 사이클 특성 등이 향상되는 이점이 있다.
본 발명의 전해액은 상기 제1 첨가제와 제2 첨가제를 조합하여 사용함에 따라 전해질의 부반응 억제 효과를 극대화시킬 수 있으며, 상기 전해액을 포함하여 리튬 이차전지를 구성하는 경우, 고온 방치 시 가스발생량이 저감되어 내부저항 증가율이 감소하는 효과가 있으며, 궁극적으로 전지의 수명 특성이 향상되는 효과가 있다.
상기 제1 첨가제와 제2 첨가제는, 상기 전해액 총 100 중량%를 기준으로 1:0.5 내지 2.5의 중량비(제1 첨가제: 제2 첨가제), 또는 1: 0.5 내지 2의 중량비로 포함되는 경우, 고온 방치시 방전 저항 감소 효과를 제공할 수 있다.
본 발명의 전해액에 포함될 수 있는 비수용매는 전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 특별히 제한되지 않으며, 일례로 카보네이트계 유기용매 또는 프로피오네이트계 유기용매 등일 수 있다. 이들은 단독으로 사용될 수 있고, 2종 이상이 조합되어 사용될 수도 있다.
일례로, 에틸렌카보네이트 0 내지 40 부피%에, 에틸메틸카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 및 프로필렌카보네이트로 이루어진 군에서 선택된 1종 이상 5 내지 80 부피%로 혼합하여 사용할 수 있다.
상기 비수용매들 중 카보네이트계 유기용매는 일례로 에틸렌 카보네이트(EC), 프로필렌카보네이트(PC), 부틸렌 카보네이트(BC), 비닐렌 카보네이트(VC), 디메틸카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸에틸 카보네이트(MEC), 플루오로에틸렌카보네이트(FEC), 메틸프로필카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 카보네이트계 유기용매 중에서도 보다 바람직하게는 전지의 충방전 성능을 높일 수 있는 높은 이온전도도를 갖는 고유전율의 카보네이트계 유기용매와 상기 고유전율의 유기용매의 점도를 적절하게 조절할 수 있는 점도가 낮은 카보네이트계 유기용매를 혼합하여 사용하는 것이 바람직할 수 있다.
구체적으로 에틸렌카보네이트, 프로필렌카보네이트 및 이들의 혼합물로 이루어진 군에서 선택되는 고유전율의 유기용매와, 에틸메틸카보네이트, 디메틸카보네이트, 디에틸카보네이트 및 이들의 혼합물로 이루어진 군에서 선택되는 저점도의 유기용매를 혼합하여 사용할 수 있다.
바람직하게는 상기 고유전율의 유기용매와 저점도의 유기용매를 2:8 내지 8:2의 부피비로 혼합하여 사용하는 것이 좋으며, 보다 구체적으로 에틸렌카보네이트 또는 프로필렌카보네이트; 에틸메틸카보네이트; 그리고 디메틸카보네이트 또는 디에틸카보네이트를 5:1:1 내지 2:5:3의 부피비, 일례로 3:5:2의 부피비로 혼합하여 사용할 수 있다.
구체적인 일례로, 상기 카보네이트계 유기용매는 에틸렌 카보네이트(EC), 디에틸 카보네이트(DEC) 및 에틸메틸카보네이트(EMC)를 포함할 수 있으며, 에틸렌 카보네이트 10 내지 40 중량% 또는 15 내지 35 중량%, 20 내지 30 중량% 또는 22 내지 28 중량%; 디에틸카보네이트 15 내지 45 중량%, 20 내지 40 중량%, 25 내지 35 중량% 또는 27 내지 33 중량%; 에틸메틸카보네이트 30 내지 60 중량%, 35 내지 55 중량%, 40 내지 50 중량% 또는 42 내지 48 중량%로 혼합하여 사용할 수 있다.
또한, 상기 비수용매들 중 프로피오네이트계 유기용매는 일례로 프로피오네이트, 메틸프로피오네이트 등을 포함할 수 있으나 이에 한정되는 것은 아니다.
상기 유기용매는 일례로 전해액 중에서 유기용매를 제외한 성분들의 함량을 뺀 잔량으로 사용될 수 있다.
상기 유기용매는 수분을 포함하는 경우, 전해액 중 리튬 이온이 가수분해될 수 있으므로, 유기용매 중 수분은 150 ppm 이하, 바람직하게는 100 ppm 이하로 통제되는 것이 바람직하다.
본 발명의 전해액에 포함될 수 있는 리튬염은 일례로 LiPF6, LiClO4, LiAsF6, LiBF4, LiBF6, LiSbF6, LiAl04, LiAlCl4, LiClO4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2, LiN(CaF2a+1SO2)(CbF2b+1SO2)(단, a 및 b는 자연수임), LiCl, LiI 및 LiB(C2O4)2로 이루어진 군 중에서 선택되는 1종 이상이 사용될 수 있으며, 바람직하게는 LiPF6를 사용할 수 있다. 상기 a 및 b는 일례로 1 내지 4의 정수일 수 있다.
상기 리튬염을 전해액에 용해시키면, 상기 리튬염은 리튬 이차 전지 내에서 리튬 이온의 공급원으로 기능하고, 양극과 음극 간의 리튬 이온의 이동을 촉진할 수 있다. 이에 따라, 상기 리튬염은 상기 전해액 중 대략 0.6 내지 2M의 농도로 포함되는 것이 바람직하다. 상기 리튬염의 농도가 0.6M 미만인 경우 전해질의 전도도가 낮아져 전해질 성능이 떨어질 수 있고, 2M를 초과하는 경우 전해질의 점도가 증가하여 리튬 이온의 이동성이 낮아질 수 있다.
이와 같은 전해질의 전도도 및 리튬 이온의 이동성을 고려하면, 상기 리튬염은 상기 전해액 내에 0.5 내지 1.5M(mol/L)의 농도로 포함될 수 있고, 바람직하게는 0.7 내지 1.3M의 농도로 포함될 수 있고, 더욱 바람직하게는 0.8 내지 1.1M의 농도로 포함될 수 있다. 이 범위 내에서 전해액의 전도도가 높아 전해액 성능이 우수하고, 전해액의 점도가 낮아 리튬 이온의 이동성이 우수한 효과가 있다.
상기 전해액은 일례로 25 ℃ 조건 하에 리튬 이온 전도도가 0.3 S/m 이상, 또는 0.3 내지 10 S/m일 수 있으며, 상기 범위 내에서 리튬 이차전지의 사이클 수명 특성이 더욱 향상될 수 있다.
상기 전해액은 상기 전해액 구성 성분들 외에도 전지의 수명 특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 일반적으로 전해액에 사용될 수 있는 전해액 첨가제를 더 포함할 수 있다.
상기 전해액 첨가제는 일례로, 붕소 화합물, 인 화합물, 황 화합물 및 질소계 화합물로 이루어진 군으로부터 선택된 1종 이상(이하, '제3 첨가제'라고도 함)일 수 있다.
상기 제3 첨가제는 일례로, 하기 화학식 7 내지 화학식 21로 표시되는 화합물로부터 선택된 1종 이상일 수 있고, 이를 포함함으로써 전해질의 분해 반응을 보다 효과적으로 억제할 수 있다.
[화학식 7]
Figure PCTKR2022015029-appb-img-000022
[화학식 8]
Figure PCTKR2022015029-appb-img-000023
[화학식 9]
Figure PCTKR2022015029-appb-img-000024
[화학식 10]
Figure PCTKR2022015029-appb-img-000025
[화학식 11]
Figure PCTKR2022015029-appb-img-000026
[화학식 12]
Figure PCTKR2022015029-appb-img-000027
[화학식 13]
Figure PCTKR2022015029-appb-img-000028
[화학식 14]
Figure PCTKR2022015029-appb-img-000029
[화학식 15]
Figure PCTKR2022015029-appb-img-000030
[화학식 16]
Figure PCTKR2022015029-appb-img-000031
[화학식 17]
Figure PCTKR2022015029-appb-img-000032
[화학식 18]
Figure PCTKR2022015029-appb-img-000033
[화학식 19]
Figure PCTKR2022015029-appb-img-000034
[화학식 20]
Figure PCTKR2022015029-appb-img-000035
[화학식 21]
Figure PCTKR2022015029-appb-img-000036
(상기 화학식 7 내지 21에서, 실선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
본 발명의 전해액은 전해액 총 100 중량%를 기준으로 상기 제3 첨가제를 10 중량% 이하로 포함할 수 있으며, 바람직하게는 1 내지 5 중량%로 포함할 수 있다. 이 범위 내에서 전해액의 분해 효과가 억제되어 전지의 수명 특성 및 사이클 특성 등이 향상되는 이점이 있다.
또한, 상기 전해액 첨가제는 일례로 메탈 플루오라이드(metal fluoride)를 포함할 수 있으며, 상기 메탈 플루오라이드를 상기 전해액 첨가제로 더 포함하는 경우에는 양극 활물질 주변에서 생성되는 산에 의한 영향력을 감소시키고, 양극 활물질과 전해액의 반응을 억제하여, 전지의 용량이 급격하게 줄어드는 현상을 개선할 수 있다.
상기 메탈 플루오라이드는 구체적으로, LiF, RbF, TiF, AgF, AgF2, BaF2, CaF2, CdF2, FeF2, HgF2, Hg2F2, MnF2, NiF2, PbF2, SnF2, SrF2, XeF2, ZnF2, AlF3, BF3, BiF3, CeF3, CrF3, DyF3, EuF3, GaF3, GdF3, FeF3, HoF3, InF3, LaF3, LuF3, MnF3, NdF3, PrF3, SbF3, ScF3, SmF3, TbF3, TiF3, TmF3, YF3, YbF3, TIF3, CeF4, GeF4, HfF4, SiF4, SnF4, TiF4, VF4, ZrF4, NbF5, SbF5, TaF5, BiF5, MoF6, ReF6, SF6, WF6, CoF2, CoF3, CrF2, CsF, ErF3, PF3, PbF3, PbF4, ThF4, TaF5 및 SeF6으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 메탈 플루오라이드는 일례로 상기 전해액 총 중량에 대하여 0.1 내지 10 중량%, 또는 0.2 내지 5 중량%로 포함할 수 있고, 이 범위 내에서 리튬 이차 전지의 사이클 수명 특성이 더욱 향상될 수 있다.
상기와 같은 조성을 갖는 본 발명에 따른 전해액은 -20℃ 내지 60℃의 넓은 온도범위에서 전해액의 분해 반응이 억제되어 가스발생량 및 내부저항 증가율이 감소함에 따라 안정성, 신뢰성이 높은 전해액 이차전지를 제공할 수 있다. 또한 전지의 구조 자체는 일반적인 전해액 이차전지와 같으므로, 제조가 용이하고 양산하기 유리하다는 이점이 있다.
본 발명에 따른 리튬 이차전지는 양극; 음극; 상기 양극과 음극 사이에 구비된 세퍼레이터; 및 전해액을 포함할 수 있다. 상기 전해액은 상술한 전해액을 포함할 수 있고, 상기 양극과 음극은 각각 양극 활물질과 음극 활물질을 포함할 수 있다.
상기 양극은 일례로 양극 활물질, 바인더 및 선택적으로 도전제를 혼합하여 양극 활물질층 형성용 조성물을 제조한 후, 이를 알루미늄 호일 등의 양극 전류 집전체에 도포하여 제조할 수 있다.
상기 양극 활물질은 일례로 리튬 이차전지에 사용되는 통상의 리튬 복합 금속 산화물 및 리튬 올리빈형 인산염을 사용할 수 있으며, 바람직하게 양극 활물질은 코발트, 망간, 니켈 및 철로 이루어진 군으로부터 선택된 1종 이상의 금속을 포함할 수 있으며, 더욱 바람직하게는 NCM(리튬·니켈·코발트 산화물)을 사용할 수 있다.
구체적인 예로 양극 활물질은 화학식 Li[NixCo1-x-yMny]O2 (여기서0<x<0.5, 0<y<0.5이다) 형태의 리튬 복합금속 산화물일 수 있으나 이에 제한되는 것은 아니다. 상기 리튬 복합금속 산화물의 화학식 Li[NixCo1-x-yMny]O2의 변수 x, y는 일례로 0.0001<x<0.5, 0.0001<y<0.5, 또는 0.001<x<0.3, 0.001<y<0.3일 수 있다.
상기 양극 활물질은 다른 예로 리튬의 가역적인 인터칼레이션(intercalation) 및 디인터칼레이션(deintercalation)이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다. 상기 화합물 중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 LiCoO2, LiMnO2, LiMn2O4, LiNiO2, LiNixMn(1-x)O2(단, 0<x<1), 및 LiMlxM2yO2(단, 0≤x≤1, 0≤y≤1, 0≤x+y≤1, M1 및 M2은 각각 독립적으로 Al, Sr, Mg 및 La로 이루어진 군에서 선택된 어느 하나이다)로 이루어진 군에서 선택되는 1종 이상이 바람직하다.
또한, 양극 활물질들 중에서 리튬 올리빈형 인산염은 일례로, 철, 코발트, 니켈 및 망간으로부터 선택되는 1종 또는 그 이상을 포함하는 것이 바람직할 수 있으며, 구체적으로 LiFePO4, LiCoPO4 및 LiMnPO4 등을 포함할 수 있다. 또한, 상기 리튬 올리빈형 인산염의 일부 금속이 다른 금속으로 치환된 화합물도 가능할 수 있다.
상기 음극은 일례로 음극 활물질, 바인더 및 선택적으로 도전제를 혼합하여 음극 활물질층 형성용 조성물을 제조한 후, 이를 구리 포일 등의 음극 전류 집전체에 도포하여 제조할 수 있다.
상기 음극 활물질로는 일례로 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 사용할 수 있다.
상기 음극 활물질은 일례로 주석, 주석 화합물, 규소, 규소 화합물, 타이타늄산리튬, 결정질 탄소, 비정질 탄소, 인조 흑연 및 천연 흑연으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
본 기재에서 주석 화합물 또는 규소 화합물은 각각 주석 또는 규소와 1종 이상의 다른 화학원소가 결합된 화합물이다.
또한, 상기 결정질 탄소, 비정질 탄소, 흑연 등을 포함하는 탄소질 재료 이외에, 리튬과 합금화가 가능한 금속질 화합물, 또는 금속질 화합물과 탄소질 재료를 포함하는 복합물도 음극 활물질로 사용할 수 있다. 일례로 그라파이트(graphite)일 수 있다.
상기 리튬과 합금화가 가능한 금속으로는, 일례로 Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 중 적어도 어느 하나가 사용될 수 있다. 또한, 상기 음극 활물질로서 금속 리튬 박막을 사용할 수도 있다.
상기 음극 활물질로는 안정성이 높다는 면에서 결정질 탄소, 비결정질 탄소, 탄소 복합체, 리튬 금속 및 리튬을 포함하는 합금으로 이루어진 군에서 선택된 어느 하나 이상을 사용할 수 있다.
일례로, 전술한 양극과 음극 사이에 세퍼레이터를 위치시켜 셀에 삽입한 다음 전해액을 주입하고 실링하여 전지 조립체를 완성할 수 있다. 이때 상술한 전해액, 양극, 음극 및 세퍼레이터를 포함하는 리튬 이차전지는 일례로 양극/세퍼레이터/음극의 구조를 갖는 단위 셀, 양극/세퍼레이터/음극/세퍼레이터/양극의 구조를 갖는 바이셀, 또는 단위 셀의 구조가 반복되는 적층 셀의 구조로 형성할 수 있음은 자명한 사실이다.
본 발명의 일 구현예에 따른 이차전지는, 전지 성능 향상을 위해 상기 제1 첨가제 및 제2 첨가제를 첨가함으로써, HPPC(Hybrid Pulse Power Characterization)법에 의해 측정되는 전지 방전 저항, 출력 특성, 60 ℃ 이상의 고온에서 용량 회복 특성 및 수명 특성 등 전지 특성 개선 효과가 향상되는 효과가 있다.
본 발명의 다른 구현예에 따른 이차전지는, 전해액에 첨가되는 제1 첨가제 및 제2 첨가제 외에 성능 개선제를 첨가함으로써 HPPC(Hybrid Pulse Power Characterization)법에 의해 측정되는 전지 방전 저항, 출력 특성, 60 ℃ 이상의 고온에서 용량 회복 특성 및 수명 특성 등 전지 특성 개선 효과가 더욱 향상되는 효과가 있다.
구체적으로, 본 발명의 이차전지는, 60 ℃에서 측정된 HPPC 방전 저항 값이 28 mΩ 이하일 수 있고, 바람직하게는 25 내지 28 mΩ일 수 있다.
본 기재에서, HPPC 방전 저항 값은, “Battery test manual for plug-in hybrid electric vehicles,” (2010, Idaho National Laboratory for the U.S. Department of Energy.) 문헌에서 규정된 방식에 의해 측정될 수 있는 것으로, 전지 출력 등 전지의 특성을 나타내는 중요한 지표이다. 또한 방전 저항이란, 전지의 방전 시 측정되는 저항 값으로, 상기 범위 내에서 개선된 출력성능을 제공할 수 있다. 방전 저항이 낮을수록 에너지 손실이 적어, 충전 속도가 빨라질 수 있고, 전지의 출력이 향상될 수 있다. 본 발명의 이차전지는 HPPC 방전 저항 값이 최대 23.6% 저감되므로 충전 속도 및 출력이 우수하여, 예를 들어 자동차용 전지로 사용하기에 적합하다.
구체적으로, 본 발명의 이차전지는 60 ℃에서 측정된 회복 용량이 585 mAh 이상일 수 있고, 바람직하게는 585.5 내지 606.5 mAh일 수 있다.
본 기재에서, 회복 용량은 장시간 방치된 전지의 용량 보존 특성을 나타내는 것으로, 장시간 방치된 전지를 방전종지전압까지 방전시켰을 때의 방전된 전기 용량과, 상기 방전된 전지를 재충전시키고 다시 방전종지전압까지 방전시켰을 때의 방전된 전기 용량을 각각 측정하여, 상기 두 용량 값을 비교한 것이다. 회복 용량이 높을수록 전지 보존(저장)에 의한 자연 방전량이 적어, 전지의 장기간 보존이 가능함을 의미하며, 특히 전지의 보존 온도가 높을수록 자연 방전 속도가 빨라지므로, 고온에서의 회복 용량이 자동차용 전지에서 매우 중요한 특성이다. 본 발명의 전해액 첨가제를 전지용 전해액에 첨가하는 경우, 회복 용량이 상기와 같이 향상되어, 한 번의 충전으로 더욱 장기간 보관이 가능한 효과가 있다.
또한, 상기 이차전지는 60 ℃에서 측정된 두께가 2.6 mm 이하일 수 있고, 바람직하게는 2.4 내지 2.6 mm일 수 있다.
또한, 상기 이차전지는 하기 수학식 1로 계산된 60 ℃에서 두께 증가율이 13.04 % 이하일 수 있고, 바람직하게는 4.35 내지 13.04 %일 수 있다.
[수학식 1]
두께 증가율(%) = {(고온 저장 후 두께 - 초기 두께) / 초기 두께} Ⅹ 100
본 기재에서, 두께 증가율은 전지 내부 가스 발생에 의한 스웰링 특성을 나타내는 것으로 파우치 셀의 초기두께와 고온방치 후 두께를 각각 측정하여, 두 값의 차를 비교한 것이다. 양극과 음극에 안정한 피막이 형성되면 전해질 성분의 분해를 억제할 수 있기 때문에 두께 증가율이 낮을수록 전지의 반복 충방전에 따른 안정성을 제공할 수 있어 개선된 전지 수명을 제공하는 효과가 있다.
또한, 상기 이차전지는 하기 수학식 2로 측정한 쿨롱 효율이 99.5% 이상일 수 있고, 바람직하게는 99.5 내지 99.9 %일 수 있다.
[수학식 2]
쿨롱 효율(%) = (300 cycle에서의 방전용량 / 300 cycle에서의 충전용량) Ⅹ 100
본 기재에서, 쿨롱 효율은 300 cycle에서의 충전 용량과 방전용량을 기준으로 계산된 것으로, 충방전 효율을 개선하는 효과가 있다.
상기 이차전지는, 300 cycle 충방전 도중 전해액 분해 및 SEI 피막 형성과정에서 CO2 가스와 H2 가스의 발생으로 셀의 두께가 4 mm 이내로 증가할 수 있다.
따라서, 본 발명의 전지가 자동차 전지로 사용되는 경우, 자동차의 크기에 따라 중요해지는 출력 개선과, 기후 변화, 운전 중 또는 주차 시에 대부분 일광에 그대로 노출되는 자동차의 환경상 문제되는 저온 및 고온에서의 성능 개선 및 수명 개선이 이루어져, 자동차 전지로서 우수한 성능을 나타낼 수 있다.
본 기재에 따른 리튬 이차전지는, 사용하는 세퍼레이터와 전해액의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 본 기재의 실시예에 따른 전해액은 이중에서도 리튬 이온 전지, 알루미늄 적층 전지 및 리튬 폴리머 전지에 적용하기에 특히 우수하다.
본 기재에 따른 전해액을 포함하는 리튬 이차전지는 특히 45 ℃ 이상, 일례로 45 ℃ 내지 60 ℃의 고온에서 수명 특성을 향상시키고 내부 저항율을 증가시킬 뿐 아니라 두께 증가율과 가스 발생율을 저감할 수 있어, 본 발명의 전지가 자동차 전지로 사용되는 경우, 자동차의 크기에 따라 중요해지는 출력 개선과, 기후 변화, 운전 중 또는 주차 시에 대부분 일광에 그대로 노출되는 자동차의 특성 상 문제되는 저온 및 고온에서의 성능 개선이 이루어져, 자동차 전지로서 우수한 성능을 나타낼 수 있다.
즉, 본 발명의 실시예들에 따른 전해액 첨가제, 이를 포함하는 전해액을 이차전지에 적용하는 경우, 충전 저항, 출력, 회복 용량 및 수명 효율이 개선되어, 자동차용 이차전지로 사용하기에 적합하며, 휴대전화, 노트북 컴퓨터, 디지털 카메라, 캠코더 등의 휴대용 기기나, 하이브리드 전기자동차(hybrid electric vehicle, HEV), 플러그인 하이브리드 전기자동차(plug-in HEV, PHEV) 등의 전기 자동차 분야, 그리고 중대형 에너지 저장 시스템에 유용할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예: 전지용 전해액의 제조]
실시예 1-1, 및 비교예 1-1 내지 1-3
유기용매로는 EC:EMC:DMC = 2:4:4의 부피비를 갖는 카보네이트계 혼합용매에 리튬염으로 LiPF6을 1.15M의 농도가 되도록 용해하고, 제1 전해액 첨가제로 하기 화학식 1a(화학식 7로도 표시됨)로 표시되는 화합물과 제2 전해액 첨가제로 하기 화학식 2a(화학식 3으로도 표시됨)로 표시되고 h가 1이며 양이온이 세슘인 화합물과, 하기 화학식 2a로 표시되고 h가 1이며 양이온이 나트륨인 화합물을 하기 표 1에 나타낸 함량대로 첨가하여 전지용 전해액을 제조하였다.
[화학식 1a]
Figure PCTKR2022015029-appb-img-000037
[화학식 2a]
Figure PCTKR2022015029-appb-img-000038
구분 제1 첨가제 종류 제1 첨가제 함량(wt%) 제2 첨가제 종류 제2 첨가제 함량(wt%)
실시예 1-1 식 1a 10 식 2a+세슘 5
비교예 1-1 식 1a 10 - -
비교예 1-2 식 1a 10 식 2a+나트륨 5
비교예 1-3 - - 식 2a+세슘 5
실시예 2-1 내지 2-3, 및 비교예 2-1 내지 2-10 유기용매로는 EC:EMC:DMC = 2:4:4의 부피비를 갖는 카보네이트계 혼합용매에 리튬염으로 LiPF6을 1.15M의 농도가 되도록 용해하고, 제1 전해액 첨가제로 하기 화학식 1b로 표시되는 화합물(화학식 9로도 표시됨)과 하기 화학식 1c로 표시되는 화합물(화학식 10으로도 표시됨)과 하기 화학식 1d로 표시되는 화합물(화학식 22로도 표시됨)과, 제2 전해액 첨가제로 상기 화학식 2a로 표시되고 h가 1이며 양이온이 세슘인 화합물과, 상기 화학식 2a로 표시되고 h가 1이며 양이온이 세슘인 화합물과, 상기 화학식 2a로 표시되고 h가 1이며 양이온이 나트륨인 화합물을 하기 표 2에 나타낸 함량대로 첨가하여 전지용 전해액을 제조하였다.
[화학식 1b]
Figure PCTKR2022015029-appb-img-000039
[화학식 1c]
Figure PCTKR2022015029-appb-img-000040
[화학식 1d]
Figure PCTKR2022015029-appb-img-000041
구분 제1 첨가제 종류 제1 첨가제 함량(wt%) 제2 첨가제 종류 제2 첨가제 함량(wt%)
실시예 2-1 식 1b 10 식 2a+세슘 5
실시예 2-2 식 1c 10 식 2a+세슘 5
실시예 2-3 식 1d 10 식 2a+세슘 5
비교예 2-1 식 1b 5 식 2a+세슘 10
비교예 2-2 식 1b 5 식 2a+나트륨 5
비교예 2-3 - - 식 2a+세슘 5
비교예 2-4 식 1b 10 - -
비교예 2-5 식 1c 5 식 2a+세슘 10
비교예 2-6 식 1c 10 식 2a+나트륨 5
비교예 2-7 식 1c 10 - -
비교예 2-8 식 1d 5 식 2a+세슘 10
비교예 2-9 식 1d 10 식 2a+나트륨 5
비교예 2-10 식 1d 10 - -
실시예 3-1, 및 비교예 3-1 내지 3-2 유기용매로는 EC:EMC:DMC = 2:4:4의 부피비를 갖는 카보네이트계 혼합용매에 리튬염으로 LiPF6을 1.15M의 농도가 되도록 용해하고, 제1 전해액 첨가제로 하기 화학식 1e로 표시되는 화합물(화학식 12로도 표기함)과 제2 전해액 첨가제로 상기 화학식 2a로 표시되고 h가 1이며 양이온이 세슘인 화합물과, 상기 화학식 2a로 표시되고 h가 1이며 양이온이 나트륨인 화합물을 하기 표 3에 나타낸 함량대로 첨가하여 전지용 전해액을 제조하였다.
[화학식 1e]
Figure PCTKR2022015029-appb-img-000042
구분 제1 첨가제 종류 제1 첨가제 함량(wt%) 제2 첨가제 종류 제2 첨가제 함량(wt%)
실시예 3-1 식 1e 10 식 2a+세슘 5
비교예 3-1 식 1e 10 - -
비교예 3-2 식 1e 10 식 2a+나트륨 5
실시예 4-1, 및 비교예 4-1 내지 4-3 유기용매로는 EC:EMC:DMC = 2:4:4의 부피비를 갖는 카보네이트계 혼합용매에 리튬염으로 LiPF6을 1.15M의 농도가 되도록 용해하고, 제1 전해액 첨가제로 하기 화학식 1f(화학식 13으로도 표기됨)로 표시되는 화합물과 제2 전해액 첨가제로 상기 화학식 2a로 표시되고 h가 1이며 양이온이 세슘인 화합물과, 상기 화학식 2a로 표시되고 h가 1이며 양이온이 나트륨인 화합물을 하기 표 4에 나타낸 함량대로 첨가하여 전지용 전해액을 제조하였다.
[화학식 1f]
Figure PCTKR2022015029-appb-img-000043
구분 제1 첨가제 종류 제1 첨가제 함량(wt%) 제2 첨가제 종류 제2 첨가제 함량(wt%)
실시예 4-1 식 1f 10 식 2a+세슘 5
비교예 4-1 식 1f 15 식 2a+세슘 5
비교예 4-2 식 1f 10 식 2a+나트륨 5
비교예 4-3 식 1f 10 - -
실시예 5-1 내지 5-7, 및 비교예 5-1 내지 5-10 유기용매로는 EC:EMC:DMC = 2:4:4의 부피비를 갖는 카보네이트계 혼합용매에 리튬염으로 LiPF6을 1.15M의 농도가 되도록 용해하고, 제1 전해액 첨가제로 하기 화학식 1g 내지 1m으로 표시되는 화합물(각각 화학식 14, 15, 20, 19, 16, 17, 18로도 표기함)과, 제2 전해액 첨가제로 상기 화학식 2a로 표시되고 h가 1이며 양이온이 세슘인 화합물과, 상기 화학식 2a로 표시되고 h가 1이며 양이온이 나트륨인 화합물을 하기 표 5에 나타낸 함량대로 첨가하여 전지용 전해액을 제조하였다.
[화학식 1g]
Figure PCTKR2022015029-appb-img-000044
[화학식 1h]
Figure PCTKR2022015029-appb-img-000045
[화학식 1i]
Figure PCTKR2022015029-appb-img-000046
[화학식 1j]
Figure PCTKR2022015029-appb-img-000047
[화학식 1k]
Figure PCTKR2022015029-appb-img-000048
[화학식 1l]
Figure PCTKR2022015029-appb-img-000049
[화학식 1m]
Figure PCTKR2022015029-appb-img-000050
구분 제1 첨가제 종류 제1 첨가제 함량(wt%) 제2 첨가제 종류 제2 첨가제 함량(wt%)
실시예 5-1 식 1g 10 식 2a+세슘 5
실시예 5-2 식 1h 10 식 2a+세슘 5
실시예 5-3 식 1i 10 식 2a+세슘 5
실시예 5-4 식 1j 10 식 2a+세슘 5
실시예 5-5 식 1k 10 식 2a+세슘 5
실시예 5-6 식 1l 10 식 2a+세슘 5
실시예 5-7 식 1m 10 식 2a+세슘 5
비교예 5-1 식 1g 5 식 2a+나트륨 5
비교예 5-2 식 1g 10 - -
비교예 5-3 식 1h 10 - -
비교예 5-4 식 1i 10 - -
비교예 5-5 식 1j 10 - -
비교예 5-6 식 1k 10 식 2a+나트륨 10
비교예 5-7 식 1k 10 - -
비교예 5-8 식 1l 10 식 2a+나트륨 5
비교예 5-9 식 1l 10 - -
비교예 5-10 식 1m 10 - -
실시예 6-1, 및 비교예 6-1 내지 6-3 유기용매로는 EC:EMC:DMC = 2:4:4의 부피비를 갖는 카보네이트계 혼합용매에 리튬염으로 LiPF6을 1.15M의 농도가 되도록 용해하고, 제1 전해액 첨가제로 하기 화학식 1n(화학식 21로도 표시함)으로 표시되는 화합물과 제2 전해액 첨가제로 상기 화학식 2a로 표시되고 h가 1이며 양이온이 세슘인 화합물과, 상기 화학식 2a로 표시되고 h가 1이며 양이온이 나트륨인 화합물을 하기 표 6에 나타낸 함량대로 첨가하여 전지용 전해액을 제조하였다.
[화학식 1n]
Figure PCTKR2022015029-appb-img-000051
구분 제1 첨가제 종류 제1 첨가제 함량(wt%) 제2 첨가제 종류 제2 첨가제 함량(wt%)
실시예 6-1 식 1n 10 식 2a+세슘 5
비교예 6-1 식 1n 15 식 2a+세슘 5
비교예 6-2 식 1n 10 식 2a+나트륨 5
비교예 6-3 식 1n 10 - -
전지의 제조
양극 활물질로서 Li(Ni0.8Co0.1Mn0.1)O2 92 중량%, 도전제로 카본 블랙(carbon black) 4 중량% 및 바인더로 폴리비닐리덴 플루오라이드(PVdF) 4 중량%를 포함하는 양극 혼합물 100 중량부를, 용매인 N-메틸-2-피롤리돈(NMP) 100 중량부에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
또한, 음극 활물질로 인조 흑연과 천연 흑연을 배합한 탄소 분말, 바인더로 PVdF, 도전제로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 포함하는 음극 혼합물 100 중량부를, 용매인 NMP 100 중량부에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
제조된 양극과 음극을 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막과 함께 통상적인 방법으로 파우치형 전지를 제작 후, 상기 실시예 1-1 내지 6-1, 비교예 1-1 내지 6-3에서 제조된 전해액을 주액하여 리튬 이차 전지의 제조를 완성하였다.
시험예
상기에서 제조된 이차전지 성능을 평가하기 위해 하기의 방법으로 각각의 성능을 측정하였으며, 그 결과를 하기 표 7 내지 표 9로 나타내었다.
[HPPC 방전 저항 평가]
“Battery test manual for plug-in hybrid electric vehicles," (2010, Idaho National Laboratory for the U.S. Department of Energy.) 문헌에서 규정된 방식에 의해 측정하였다.
60 ℃에서 5시간 방치 후, 측정 전압값, C-rate에 해당하는 충방전 전류값, 전류 변화량(△I), 방전 전압 변화량(△V), 충전 전압 변화량(△V), 방전 저항, 충전 저항을 측정하여, C-rate별로 충방전 전류를 일정 시간동안 짧게 흘려주어 전류 및 전압 변화량으로 얻은 기울기값으로 저항값을 계산한 결과를 하기 표 7 및 표 8에 초기 방전 저항 항목에 나타내었다.
[고온 회복 용량 평가]
충전 조건은 정전류 1.0C 및 전압 4.2V에서 충전전류가 1/10C가 될 때까지 충전하였다. 방전 조건은 1.0C의 정전류로 3.0V까지 방전에 의해 충방전을 시행한 후, (초기) 회복용량을 측정하였다.
동일한 충방전 조건으로 충전 후 60 ℃의 항온조에서 4주간 보관 후, 25℃의 실온 조건에서 방전 전압 3V까지 방전시킨 후 잔존 용량을 측정하였다. 이후 동일한 충방전 조건으로 100회 실시 후 회복 용량을 측정하여 이의 평균 값을 계산한 결과를 하기 표 7 및 표 8에 고온 저장 후 회복용량 항목에 나타내었다.
[음극 팽창 평가]
상기 이차전지를 Mitutoyo사 압착식 두께 측정기를 이용하여, 압착판 사이에 파우치셀을 위치시킨 후 300g의 무게로 압착시킨 상태에서 두께를 측정하였다. 냉각 효과를 배제하기 위해 60 ℃ 오븐에서 꺼낸 직후에 바로 두께를 측정한 결과(팽창 두께)와 60 ℃의 항온조에서 4주간 보관 후 동일한 방식으로 측정한 두께값을 하기 수학식 1에 대입하여 두께 증가율(%)을 계산하고 결과값을 하기 표 7 및 표 8에 나타내었다.
[수학식 1]
두께 증가율(%) = {(고온 저장 후 두께 - 초기 두께) / 초기 두께} Ⅹ 100
[쿨롱 효율 평가]
상기 이차전지를 45 ℃에서 1C rate의 전류로 전압이 4.20V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.20V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 3.0V(vs. Li)에 이를 때까지 1C rate의 정전류로 방전하였다.
300 cycle 이후 충전 용량과 방전용량을 하기 수학식 2에 대입하여 쿨롱 효율을 산출하고 결과값을 하기 표 7 및 표 8에 나타내었다.
[수학식 2]
쿨롱 효율(%) = (300 cycle에서의 방전용량 / 300 cycle에서의 충전용량) Ⅹ 100
[가스 발생량]
전술한 300 cycle 이후 300 cycle 충방전 도중 전해액 분해 및 SEI 피막 형성과정에서 CO2 가스와 H2 가스의 발생을 셀 두께 증가여부로 확인하였다.
[출력 특성 평가]
상기 이차전지를 상온에서 1C-rate, 2C-rate, 3C-rate로 각각 5 Cycle씩 충방전을 진행하였다. 해당 평가를 통해 얻어진 결과는 하기 수학식 3에 대입하여 각 조성의 율속 효율을 산출하고 얻어진 결과를 하기 표 9에 나타내었다. 예를 들어, C-rate별 방전용량이 1C-rate 방전용량일 때 C-rate별 충전용량은 1C-rate 충전용량을 지칭한다.
[수학식 3]
율속 효율(%) = (C-rate별 방전용량 / C-rate별 충전용량) X 100
구분 제1첨가제(wt%) 제2첨가제
(wt%)
초기 저항
(mΩ)
고온 저장후
회복용량
(mAh)
가스 발생 초기 두께
(mm
팽창
두께
(mm)
두께 증가율
(%)
쿨롱 효율
(%)
실시예1-1 식 1a(10) 식 2a+
세슘(5)
25.59 604.3 2.3 2.5 8.96 -
실시예2-1 식 1b(10) 식 2a+
세슘(5)
27.35 591.7 Χ 2.3 2.5 8.96 99.8
실시예2-2 식 1c(10) 식 2a+
세슘(5)
26.68 593.6 Χ 2.3 2.6 13.04 99.8
실시예2-3 식 1d(10) 식 2a+
세슘(5)
26.24 586.6 Χ 2.3 2.4 4.35 99.8
실시예3-1 식 1e(10) 식 2a+
세슘(5)
26.85 585.5 2.3 2.4 4.35 99.7
실시예4-1 식 1f(10) 식 2a+
세슘(5)
26.98 602.7 Χ 2.3 2.4 4.35 99.8
실시예5-1 식 1g(10) 식 2a+
세슘(5)
27.65 594.1 2.3 2.5 8.96 99.6
실시예5-2 식 1h(10) 식 2a+
세슘(5)
26.89 593.6 2.3 2.5 8.96 99.8
실시예5-3 식 1i(10) 식 2a+
세슘(5)
26.13 583.7 2.3 2.4 4.35 99.7
실시예5-4 식 1j(10) 식 2a+
세슘(5)
26.32 585.5 2.3 2.4 4.35 99.6
실시예5-5 식 1k(10) 식 2a+
세슘(5)
26.95 579.1 2.3 2.6 13.04 99.7
실시예5-6 식 1l(10) 식 2a+
세슘(5)
26.65 588.6 2.3 2.6 13.04 99.8
실시예5-7 식 1m(10) 식 2a+
세슘(5)
26.32 591.7 2.3 2.5 8.96 99.8
실시예6-1 식 1n(10) 식 2a+ 세슘(5) 27.11 606.5 X 2.3 2.5 8.96 99.8
구분 제1첨가제(wt%) 제2첨가제
(wt%)
초기 저항
(mΩ)
고온 저장후
회복용량
(mAh)
초기 두께
(mm)
가스 발생 팽창
두께
(mm)
두께 증가율
(%)
쿨롱 효율
(%)
비교예1-1 식 1a
(10)
- 29.62 579.2 2.3 2.8 21.74 -
비교예1-2 식 1a(10) 식 2a+
나트륨(5)
30.75 571.6 2.3 2.7 17.39 -
비교예1-3 - 식 2a+ 세슘(5) 28.74 586.7 2.3 2.8 21.74 -
비교예2-2 식 1b(5) 식 2a+
나트륨(5)
31.28 569.2 2.3 X 2.6 13.04 99.4
비교예2-6 식 1c(10) 식 2a+
나트륨(5)
28.24 568.7 2.3 2.6 13.04 99.6
비교예2-7 식 1c(10) - 28.65 560.1 2.3 2.7 17.39 99.5
비교예2-9 식 1d(10) 식 2a+
나트륨(5)
29.16 561.2 2.3 2.7 17.39 99.4
비교예2-10 식 1d(10) - 30.15 559.1 2.3 2.8 21.74 99.3
비교예3-1 식 1e(10) - 28.96 564.6 2.3 2.8 21.74 99.4
비교예3-2 식 1e
(10)
식 2a+
나트륨(5)
28.95 572.2 2.3 2.7 17.39 99.6
비교예4-2 식 1f(10) 식 2a+
나트륨(5)
31.65 581.1 2.3 2.7 17.39 99.2
비교예4-3 식 1f(10) - 29.56 586.8 2.3 2.5 8.96 99.3
비교예5-1 식 1g(5) 식 2a+
나트륨(5)
29.65 575.6 2.3 2.8 21.74 99.4
비교예5-2 식 1g(10) - 30.12 586.2 2.3 2.7 17.39 99.5
비교예5-3 식 1h(10) - 30.65 571.9 2.3 2.8 21.74 99.6
비교예5-4 식 1i(10) - 32.45 588.8 2.3 2.7 17.39 99.5
비교예5-5 식 1j(10) - 29.98 566.7 2.3 2.6 13.04 99.5
비교예5-6 식 1k(10) 식 2a+
나트륨(10)
30.25 559.3 2.3 2.7 17.39 99.2
비교예5-7 식 1k(10) - 30.13 562.2 2.3 2.8 21.74 99.3
비교예5-8 식 1l(10) 식 2a+
나트륨(5)
28.28 566.3 2.3 2.9 26.09 99.6
비교예5-9 식 1l(10) - 29.31 568.7 2.3 3.1 34.78 99.6
비교예5-10 식 1m(10) - 30.12 563.6 2.3 2.9 26.09 99.7
비교예6-2 식 1n (10) 식 2a+
나트륨(5)
28.65 589.3 2.3 2.8 21.74 99.6
비교예6-3 식 1n(10) - 31.25 591.6 2.3 2.9 26.09 99.8
구분 제1첨가제(wt%) 제2첨가제(wt%) 율속 효율
1C-rate(%)
율속 효율
2C-rate(%)
율속 효율
3C-rate(%)
실시예1-1 식 1a(10) 식 2a+세슘(5) 97.5 94.7 74.1
실시예2-1 식 1b(10) 식 2a+세슘(5) 97.2 94.3 74.4
실시예2-2 식 1c(10) 식 2a+세슘(5) 97.5 94.5 76.0
실시예2-3 식 1d(10) 식 2a+세슘(5) 97.2 95.1 74.2
실시예3-1 식 1e(10) 식 2a+세슘(5) 97.4 94.7 74.9
실시예4-1 식 1f(10) 식 2a+세슘(5) 97.4 94.6 74.4
실시예5-1 식 1g(10) 식 2a+세슘(5) 97.5 94.5 74.2
실시예5-2 식 1h(10) 식 2a+세슘(5) 97.6 94.9 77.1
실시예5-3 식 1i(10) 식 2a+세슘(5) 97.4 95.3 74.4
실시예5-4 식 1j(10) 식 2a+세슘(5) 97.4 94.7 74.6
실시예5-5 식 1k(10) 식 2a+세슘(5) 97.4 94.9 76.6
실시예5-6 식 1l(10) 식 2a+세슘(5) 97.6 94.5 74.8
실시예5-7 식 1m(10) 식 2a+세슘(5) 97.7 94.8 74.5
실시예6-1 식 1n(10) 식 2a+세슘(5) 97.5 94.6 74.6
비교예1-1 식 1a(10) - 97.2 94.6 72.5
상기 표 7 및 표 8에 나타낸 바와 같이, 본 발명의 전해액 첨가제를 사용한 실시예 1-1 내지 6-1의 이차전지의 경우 충전 저항값이 25.59 내지 27.65 mΩ으로 나타났으나, 제1 첨가제와 제2 첨가제 중 1종만을 사용한 비교예 1-1 내지 6-3의 경우 28.24 내지 31.65 mΩ으로 높게 나타나, 본 발명의 전해액 첨가제를 사용함으로써 충전 저항값이 최대 23.6%까지 낮아진 것을 확인할 수 있었다. 또한 상기 표 9에 나타낸 바와 같이, 본 발명의 전해액 첨가제를 사용한 실시예 1-1 내지 6-1의 이차전지의 경우 율속 효율 3C-rate(고율 충방전 특성)에 있어 비교예 1-1 대비 2~4 % 상승을 나타내는 것을 확인할 수 있었다. 이는 본 발명의 전해액 첨가제에 의해 전지의 출력이 개선되는 효과가 있음을 나타낸다. 또한, 상기 표 7 및 표 8에 나타낸 바와 같이, 본 발명의 전해액 첨가제를 사용한 실시예 1-1 내지 6-1의 이차전지의 경우 고온 회복 용량이 585.5 내지 606.5 mAh인 것에 반해, 제1 첨가제와 제2 첨가제 중 1종만을 사용한 비교예 1-1 내지 6-3의 경우 559.1 내지 591.6 mAh로 본 발명의 실시예에 비하여 최대 47.4 mAh 낮게 나타났다. 이는 본 발명의 전해액 첨가제에 의해 60℃ 고온에서의 회복 용량이 향상되는 효과가 있음을 뜻하며, 이로써 본 발명의 전해액 첨가제에 의해 고온 환경에서 장기간 보관 시 전지의 회복 용량 효율이 개선되는 효과가 있음을 확인할 수 있다.
또한, 음극 팽창 확인 결과, 본 발명의 전해액 첨가제를 사용한 실시예 1-1 내지 6-1의 이차전지의 경우 두께 증가율이 2.4 내지 2.6%인 것에 반해, 제1 첨가제와 제2 첨가제 중 1종만을 사용한 비교예 1-1 내지 6-3의 경우 2.6 내지 3.1%로 본 발명의 실시예에 비하여 최대 0.7%p(%포인트) 낮을 것을 알 수 있다. 이는 본 발명의 전해액 첨가제를 사용함으로써 종래 전해액 첨가제를 사용했을 때 비하여 60℃의 고온에서 300 사이클을 반복하는 동안 전지의 용량 유지율이 향상되었음을 뜻하며, 이로써 본 발명의 전해액 첨가제를 사용하여 고온 저장성 및 수명성능 향상을 나타내었다.
또한, 쿨롱 효율 평가 결과, 본 발명의 전해액 첨가제를 사용한 실시예 1-1 내지 6-1의 이차전지의 경우 99.6 내지 99.8%인 것에 반해, 비교예 1-1 내지 6-3의 경우 99.2 및 99.8%로 본 발명의 실시예에 비하여 최대 0.3%p(%포인트) 낮은 것을 알 수 있다. 이는 본 발명의 전해액 첨가제를 사용함으로써 종래 전해액 첨가제를 사용했을 때 비하여 60℃의 고온에서 300 사이클을 반복하는 동안 전지의 용량 유지율이 향상되었음을 뜻하며, 이로써 본 발명의 전해액 첨가제를 사용하여 고온 환경에서 전지의 사이클 특성 및 수명 효율이 향상되는 것을 알 수 있다.
따라서, 본 발명의 전해액 첨가제, 이를 포함하는 전해액을 이차전지에 적용하는 경우, 방전 저항, 출력, 회복 용량 및 수명 효율이 개선되어, 에너지 저장 시스템(ESS), 자동차 등의 이차전지로 사용하기에 적합한 것을 알 수 있다.

Claims (19)

  1. 유기용매, 리튬염, 제1 첨가제 및 제2 첨가제를 포함하는 전해액으로서,
    상기 제1 첨가제는 리튬 또는 나트륨 양이온과, 하기 화학식 1로 표시되는 음이온과의 쌍으로 이루어지는 화합물을, 상기 전해액 100중량%를 기준으로 15 중량% 이하로 포함하고,
    상기 제2 첨가제는 3 내지 5개의 원자로 구성되고, 전기 음성도가 3 이상인 원자를 2 내지 4개 갖고, 적어도 1개의 이중 결합을 갖는 원자단 및 대칭 구조를 갖는 화합물을, 상기 전해액 100중량%를 기준으로 0.01 내지 10 중량%로 포함하는 것을 특징으로 하는 전해액.
    [화학식 1]
    Figure PCTKR2022015029-appb-img-000052
    (상기 화학식 1에서, R1 및 R2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 7의 할로겐 치환기를 포함하는 직쇄형 또는 분지형 알킬기이고, h는 1 내지 10의 정수이다.)
  2. 제1항에 있어서,
    상기 화학식 1로 표시되는 음이온은, 상기 할로겐 치환기가 불소인 것을 특징으로 하는 전해액.
  3. 제1항에 있어서,
    상기 제1 첨가제가 리튬 양이온과, 하기 화학식 2 내지 5로 표시되는 군에서 선택되는 1종 이상 음이온과의 쌍으로 이루어지는 화합물인 것을 특징으로 하는 전해액.
    [화학식 2]
    Figure PCTKR2022015029-appb-img-000053
    [화학식 3]
    Figure PCTKR2022015029-appb-img-000054
    [화학식 4]
    Figure PCTKR2022015029-appb-img-000055
    [화학식 5]
    Figure PCTKR2022015029-appb-img-000056
    (상기 화학식 2 내지 5에서, h는 1 내지 10의 정수이다.)
  4. 제1항에 있어서,
    상기 제2 첨가제는 하기 화학식 6으로 표시되는 원자단을 갖는 것을 특징으로 하는 전해액.
    [화학식 6]
    Figure PCTKR2022015029-appb-img-000057
    (상기 화학식 6에서, 실선은 결합이다.)
  5. 제1항에 있어서,
    상기 제2 첨가제는 알칼리 금속이온(리튬 제외)으로 이루어진 군에서 선택된 1종 이상의 양이온과, 하기 화학식 1로 표시되는 음이온과의 쌍으로 이루어지는 화합물인 것을 특징으로 하는 전해액.
    [화학식 1]
    Figure PCTKR2022015029-appb-img-000058
    (상기 화학식 1에서, R1 및 R2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 7의 할로겐 치환기를 포함하는 직쇄형 또는 분지형 알킬기이고, h는 1 내지 10의 정수이다.)
  6. 제5항에 있어서,
    상기 화학식 6으로 표시되는 음이온은, 상기 할로겐 치환기가 불소인 것을 특징으로 하는 전해액.
  7. 제1항에 있어서,
    상기 제2 첨가제가 세슘 또는 나트륨의 양이온과, 하기 화학식 3 내지 5로 표시되는 군에서 선택되는 1종 이상 음이온과의 쌍으로 이루어지는 화합물인 것을 특징으로 하는 전해액.
    [화학식 3]
    Figure PCTKR2022015029-appb-img-000059
    [화학식 4]
    Figure PCTKR2022015029-appb-img-000060
    [화학식 5]
    Figure PCTKR2022015029-appb-img-000061
    (상기 화학식 3 내지 5에서, h는 1 내지 10의 정수이다.)
  8. 제1항에 있어서,
    상기 제1 첨가제와 제2 첨가제를 1:0.5 내지 2.5(제1 첨가제: 제2 첨가제) 의 중량비로 포함하는 것을 특징으로 하는 전해액.
  9. 제1항에 있어서,
    상기 리튬염은 LiPF6, LiClO4, LiAsF6, LiBF4, LiBF6, LiSbF6, LiAl04, LiAlCl4, LiClO4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2, LiN(CaF2a+1SO2)(CbF2b+1SO2)(단, a 및 b는 자연수임), LiCl, LiI 및 LiB(C2O4)2로 이루어진 군 중에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 전해액.
  10. 제1항에 있어서,
    상기 유기용매는 에틸렌 카보네이트(EC), 디에틸 카보네이트(DEC), 에틸메틸 카보네이트(EMC), 디메틸 카보네이트(DMC), 프로필렌 카보네이트(PC), 디프로필 카보네이트(DPC), 부틸렌 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸 프로피오네이트(MP), 에틸 프로피오네이트(EP) 및 프로필 프로피오네이트(PP)로 이루어진 군에서 선택된 2종 이상을 포함하는 것을 특징으로 하는 전해액.
  11. 제1항에 있어서,
    상기 전해액은 붕소 화합물, 인 화합물, 황 화합물 및 질소계 화합물로 이루어진 군으로부터 선택된 1종 이상의 제3 첨가제를 상기 전해액 총 100 중량%를 기준으로 10 중량% 이하로 포함하는 것을 특징으로 하는 전해액.
  12. 리튬 또는 나트륨 양이온과, 하기 화학식 1로 표시되는 음이온과의 쌍으로 이루어지는 화합물; 및
    세슘 양이온과, 하기 화학식 1로 표시되는 음이온과의 쌍으로 이루어지는 화합물을 포함하는 것을 특징으로 하는 전해액 첨가제.
    [화학식 1]
    Figure PCTKR2022015029-appb-img-000062
    (상기 화학식 1에서, R1 및 R2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 7의 할로겐 치환기를 포함하는 직쇄형 또는 분지형 알킬기이고, h는 1 내지 10의 정수이다.)
  13. 제12항에 있어서,
    상기 리튬 또는 나트륨 양이온과, 하기 화학식 1로 표시되는 음이온과의 쌍으로 이루어지는 화합물과, 세슘 양이온과, 하기 화학식 1로 표시되는 음이온과의 쌍으로 이루어지는 화합물을 1:0.5 내지 2.5(제1 첨가제: 제2 첨가제)의 중량비로 포함하는 것을 특징으로 하는 전해액 첨가제.
  14. 음극, 양극, 상기 음극과 양극 사이에 개재된 분리막 및 전해액을 포함하는 이차전지로서,
    상기 전해액은 제1항 내지 제11항 중 어느 한 항의 전해액인 것을 특징으로 하는 리튬 이차전지.
  15. 제14항에 있어서,
    상기 이차전지는, 60 ℃에서 방전 저항 값이 28 mΩ 이하인 것을 특징으로 하는 리튬 이차전지.
  16. 제14항에 있어서,
    상기 이차전지는, 60 ℃에서 회복용량이 585 mAh 이상인 것을 특징으로 하는 리튬 이차전지.
  17. 제14항에 있어서,
    상기 이차전지는, 하기 수학식 1로 계산된 60 ℃에서의 두께 증가율이 2.6 % 이하인 것을 특징으로 하는 리튬 이차전지.
    [수학식 1]
    두께 증가율(%) = {(고온 저장 후 두께 - 초기 두께) / 초기 두께} Ⅹ 100
  18. 제14항에 있어서,
    상기 이차전지는, 300 cycle 이후 하기 수학식 2로 계산된 쿨롱 효율이 99.5% 이상인 것을 특징으로 하는 리튬 이차전지.
    [수학식 2]
    쿨롱 효율(%) = (300 cycle에서의 방전용량 / 300 cycle에서의 충전용량) Ⅹ 100
  19. 제14항에 있어서,
    상기 이차전지는, 에너지 저장시스템(ESS) 또는 자동차용 전지인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2022/015029 2021-10-06 2022-10-06 전해액 및 이를 포함하는 이차전지 WO2023059085A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210132199 2021-10-06
KR10-2021-0132199 2021-10-06
KR10-2022-0126139 2022-10-04
KR1020220126139A KR20230049557A (ko) 2021-10-06 2022-10-04 전해액 및 이를 포함하는 이차전지

Publications (1)

Publication Number Publication Date
WO2023059085A1 true WO2023059085A1 (ko) 2023-04-13

Family

ID=85804530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015029 WO2023059085A1 (ko) 2021-10-06 2022-10-06 전해액 및 이를 포함하는 이차전지

Country Status (1)

Country Link
WO (1) WO2023059085A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067644A (ja) * 2007-09-14 2009-04-02 Kyoto Univ 溶融塩組成物及びその利用
KR20120064651A (ko) * 2009-09-28 2012-06-19 고쿠리츠 다이가쿠 호진 교토 다이가쿠 전지 및 에너지 시스템
KR101295395B1 (ko) 2004-12-10 2013-08-09 소니 주식회사 전지
KR20180027999A (ko) * 2016-09-07 2018-03-15 솔브레인 주식회사 전해액 첨가제 및 이를 포함하는 리튬 이차 전지
KR20190003710A (ko) * 2016-05-27 2019-01-09 가부시기가이샤 닛뽕쇼꾸바이 비스(플루오로설포닐)이미드 알칼리 금속염의 제조방법 및 비수계 전해액의 제조방법
KR20210132199A (ko) 2019-03-29 2021-11-03 다탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 검색 공간 시간 영역 위치 확정 방법, 장치 및 통신 기기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101295395B1 (ko) 2004-12-10 2013-08-09 소니 주식회사 전지
JP2009067644A (ja) * 2007-09-14 2009-04-02 Kyoto Univ 溶融塩組成物及びその利用
KR20120064651A (ko) * 2009-09-28 2012-06-19 고쿠리츠 다이가쿠 호진 교토 다이가쿠 전지 및 에너지 시스템
KR20190003710A (ko) * 2016-05-27 2019-01-09 가부시기가이샤 닛뽕쇼꾸바이 비스(플루오로설포닐)이미드 알칼리 금속염의 제조방법 및 비수계 전해액의 제조방법
KR20180027999A (ko) * 2016-09-07 2018-03-15 솔브레인 주식회사 전해액 첨가제 및 이를 포함하는 리튬 이차 전지
KR20210132199A (ko) 2019-03-29 2021-11-03 다탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 검색 공간 시간 영역 위치 확정 방법, 장치 및 통신 기기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KEIGO KUBOTA, TOSHIYUKI NOHIRA, RIKA HAGIWARA: "Thermal Properties of Alkali Bis(fluorosulfonyl)amides and Their Binary Mixtures", JOURNAL OF CHEMICAL & ENGINEERING DATA, vol. 55, no. 9, 9 September 2010 (2010-09-09), pages 3142 - 3146, XP055171576, ISSN: 00219568, DOI: 10.1021/je9010932 *

Similar Documents

Publication Publication Date Title
WO2020130575A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2018135822A1 (ko) 비수전해액용 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2019093853A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021033987A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019164164A1 (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
WO2023027547A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2023043190A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2018093152A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022158920A1 (ko) 전해액 및 이를 포함하는 이차전지
WO2022203206A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2022211320A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2023059085A1 (ko) 전해액 및 이를 포함하는 이차전지
WO2023059079A1 (ko) 전해액 및 이를 포함하는 이차전지
WO2023059081A1 (ko) 전해액 및 이를 포함하는 이차전지
WO2023059080A1 (ko) 전해액 및 이를 포함하는 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2023059083A1 (ko) 전해액 및 이를 포함하는 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2020085726A1 (ko) 리튬 이차 전지용 전극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 전극
WO2020190076A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022270812A1 (ko) 전지용 전해액 및 이를 포함하는 이차전지
WO2019103496A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022158916A1 (ko) 전해액 및 이를 포함하는 이차전지
WO2022158919A1 (ko) 전해액 및 이를 포함하는 이차전지
WO2022158917A1 (ko) 전해액 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878906

Country of ref document: EP

Kind code of ref document: A1