WO2023058437A1 - 半導体装置、電力変換装置、および、半導体装置の製造方法 - Google Patents

半導体装置、電力変換装置、および、半導体装置の製造方法 Download PDF

Info

Publication number
WO2023058437A1
WO2023058437A1 PCT/JP2022/034700 JP2022034700W WO2023058437A1 WO 2023058437 A1 WO2023058437 A1 WO 2023058437A1 JP 2022034700 W JP2022034700 W JP 2022034700W WO 2023058437 A1 WO2023058437 A1 WO 2023058437A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
configuration
recess
semiconductor device
die pad
Prior art date
Application number
PCT/JP2022/034700
Other languages
English (en)
French (fr)
Inventor
創一 坂元
純司 藤野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023552784A priority Critical patent/JP7546783B2/ja
Publication of WO2023058437A1 publication Critical patent/WO2023058437A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present disclosure relates to a semiconductor device having a configuration in which members are sealed with a sealing material, a power conversion device, and a method of manufacturing a semiconductor device.
  • a power semiconductor device as a semiconductor module to be mounted on home electric appliances is required to be miniaturized.
  • a sealing structure in which a lead frame and an electronic component mounted on one surface of the lead frame are sealed with a molding resin as a sealing material. It is
  • the electronic component is, for example, a power semiconductor device.
  • the mold resin is, for example, an epoxy thermosetting resin.
  • Patent Document 1 discloses a configuration (hereinafter also referred to as "related configuration A") of a power semiconductor device having a sealing structure in which a semiconductor element is sealed with a mold resin as a sealing material.
  • the power semiconductor device is required to efficiently dissipate heat from the other surface of the lead frame, which is opposite to the one surface described above.
  • the one surface is a surface on which electronic components are mounted.
  • the power semiconductor device is required to ensure electrical insulation between the other surface of the lead frame and the outside.
  • a power semiconductor device having a configuration in which an insulating layer is arranged on the other surface of the lead frame and the insulating layer is exposed from the mold resin.
  • the insulating layer for example, a ceramic substrate or a thermosetting resin layer made of epoxy resin is applied.
  • the sealing material when a sealing material such as a molding resin is injected into the molding die, the sealing material fills the gap between the lead frame on which the electronic component is mounted and the molding die. may flow in and cause resin burrs.
  • the gap is caused, for example, by the dimensional tolerance of the lead frame.
  • Patent Document 2 discloses a configuration for suppressing the occurrence of resin burrs (hereinafter also referred to as "related configuration B").
  • a related configuration B is a configuration in which a semiconductor chip as a semiconductor element is sealed with a molding resin as a sealing material.
  • the insulating layer provided on the other surface of the lead frame is made of a thermoplastic resin.
  • the thermoplastic resin is a material that chemically bonds with the epoxy resin that is the molding resin as the sealing material.
  • Related configuration B is a configuration in which an insulating layer, which is a member that conducts heat generated by a semiconductor chip as a semiconductor element, is exposed from a mold resin as a sealing material. Therefore, the heat dissipation property of the semiconductor device of the related configuration B is higher than that of the semiconductor device of the related configuration A.
  • the insulating layer of the semiconductor device of Related Configuration B is made of a thermoplastic resin with low thermal conductivity. Therefore, it cannot be said that the heat dissipation property of the semiconductor device of Related Configuration B is excellent.
  • the present disclosure has been made to solve such problems, and aims to provide a semiconductor device having high heat dissipation, a power conversion device to which the semiconductor device is applied, and a method for manufacturing the semiconductor device. aim.
  • a semiconductor device includes a die pad having a first surface that is one surface and a second surface that is the other surface, and a semiconductor mounted on the first surface of the die pad.
  • An element a heat sink having a third surface that is one side and a fourth surface that is the other side, an insulating layer existing between the die pad and the heat sink, a semiconductor element, the die pad, the insulating layer, and the heat sink an encapsulant encapsulating, the second surface of the die pad being the surface of the die pad opposite the first surface, and the insulating layer contacting the second surface of the die pad and the third surface of the heat sink.
  • the fourth surface of the heat sink is the surface of the heat sink opposite to the third surface, and the fourth surface of the heat sink having the third surface in contact with the insulating layer is exposed from the encapsulant. It is an exposed surface that is A depression and a protrusion are formed on the periphery of the exposed surface of the heat sink.
  • a power conversion device includes the above-described semiconductor device, a main conversion circuit that converts input power and outputs it, and a control circuit that outputs a control signal for controlling the main conversion circuit to the main conversion circuit. Prepare.
  • a method of manufacturing a semiconductor device uses a mold having a cavity and a bottom surface facing the cavity.
  • a semiconductor device includes a die pad having a first surface that is one surface and a second surface that is the other surface, a semiconductor element, a third surface that is one surface, and a fourth surface that is the other surface.
  • a heat sink having a surface and an insulating layer, wherein the second surface of the die pad is opposite the first surface of the die pad, and the fourth surface of the heat sink is opposite the third surface of the heat sink. This is the side surface.
  • the manufacturing method comprises: (a) a step of mounting a semiconductor element on a first surface of a die pad; (c) injecting an encapsulant into the mold cavity;
  • the sealing compatible state is a state in which the insulating layer exists between the die pad and the heat sink, and the sealing compatible state is a state in which the insulating layer is in contact with the second surface of the die pad and the third surface of the heat sink.
  • step (c) is performed after step (b), and step (c)
  • an encapsulant is injected into the cavity of the mold such that the fourth side of the heat sink with the third side in contact with the insulating layer is exposed from the encapsulant.
  • the semiconductor element is mounted on the first surface of the die pad.
  • the encapsulant encapsulates the semiconductor element, die pad, insulating layer and heat sink.
  • An insulating layer exists between the die pad and the heat sink.
  • the insulating layer contacts the second surface of the die pad and the third surface of the heat sink.
  • a fourth side of the heat sink with a third side in contact with the insulating layer is exposed from the encapsulant.
  • the heat sink is in contact with the insulating layer that contacts the die pad on which the semiconductor element is mounted. Also, the heat sink in contact with the insulating layer is exposed from the encapsulant. Therefore, the semiconductor device of the present disclosure has higher heat dissipation than the semiconductor device of Related Configuration B in which the insulating layer is exposed from the sealing material due to the action of the heat sink. Therefore, a semiconductor device with high heat dissipation can be provided.
  • a power conversion device includes the above semiconductor device. Thereby, a power conversion device having high heat dissipation can be obtained.
  • the encapsulant is placed in the cavity of the mold such that the fourth surface of the heat sink having the third surface in contact with the insulating layer is exposed from the encapsulant. injected. Thereby, a semiconductor device having high heat dissipation can be manufactured.
  • FIG. 1 is a plan view of a semiconductor device according to a first embodiment;
  • FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment;
  • FIG. 1 is a diagram showing a configuration of a lead frame according to Embodiment 1;
  • FIG. It is a top view which shows the structure of a hollow.
  • It is a cross-sectional view showing the configuration of the recess.
  • 4 is a flow chart of a method for manufacturing a semiconductor device according to Embodiment 1;
  • FIG. 4 is a cross-sectional view for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a cross-sectional view for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a cross-sectional view for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a cross-sectional view for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a cross-sectional view for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • 1 illustrates a configuration of a semiconductor device according to a first embodiment;
  • FIG. 11 is a cross-sectional view showing another configuration of the recess;
  • FIG. 10 is a diagram showing another configuration of the recess in plan view;
  • FIG. 10 is a diagram showing another configuration of the recess in plan view;
  • FIG. 10 is a diagram for explaining the configuration of Modification 1;
  • FIG. 11 is a diagram for explaining the configuration of Modified Example 2;
  • 2 is a block diagram showing the configuration of a power conversion system to which a power conversion device according to Embodiment 2 is applied;
  • FIG. FIG. 10 is a diagram showing an example of resin burrs that occur in the configuration of the comparative example;
  • FIG. 1 is a plan view of a semiconductor device 100 according to Embodiment 1.
  • the semiconductor device 100 is, for example, a power semiconductor device that operates at high voltage.
  • the package structure of the semiconductor device 100 is, for example, a DIP (Dual In-line Package) structure.
  • the X direction, Y direction and Z direction are orthogonal to each other.
  • the X, Y and Z directions shown in the following figures are also orthogonal to each other.
  • the direction including the X direction and the direction opposite to the X direction ( ⁇ X direction) is also referred to as the “X-axis direction”.
  • the direction including the Y direction and the direction opposite to the Y direction ( ⁇ Y direction) is also referred to as the “Y-axis direction”.
  • the direction including the Z direction and the direction opposite to the Z direction ( ⁇ Z direction) is also referred to as the “Z-axis direction”.
  • the plane including the X-axis direction and the Y-axis direction is also referred to as the "XY plane”.
  • a plane including the X-axis direction and the Z-axis direction is also referred to as an "XZ plane”.
  • a plane including the Y-axis direction and the Z-axis direction is also referred to as a "YZ plane”.
  • FIG. 2 is a cross-sectional view of the semiconductor device 100 in the XZ plane of FIG.
  • FIG. 2 in order to facilitate understanding of the configuration of the semiconductor device 100, only the outline of the sealing material 11, which will be described later, is shown.
  • the semiconductor device 100 includes the lead frame 2 of FIG.
  • FIG. 3 is a diagram showing the configuration of the lead frame 2 according to the first embodiment.
  • the lead frame 2 includes a die pad 2a, suspension leads 2n, leads 2c, and control leads 2b. That is, as shown in FIGS. 1 and 2, semiconductor device 100 includes die pad 2a, suspension leads 2n, leads 2c, and control leads 2b.
  • the lead 2c is, for example, a power lead as a lead terminal.
  • the shape of the die pad 2a is plate-like.
  • the shape of the die pad 2a in plan view is rectangular.
  • the die pad 2a has a surface 2s which is one surface and a surface 2r which is the other surface.
  • the surface 2s is the first surface.
  • the surface 2r is the surface of the die pad 2a opposite to the surface 2s.
  • the surface 2r is the second surface.
  • the surfaces 2s and 2r are flat surfaces.
  • the die pad 2a is joined to the lead 2c by a suspension lead 2n.
  • the semiconductor device 100 further includes a semiconductor element S3, a control semiconductor element S6, an insulating layer 9, a heat sink 10, and a sealing material 11.
  • the semiconductor element S3 is, for example, a power semiconductor element that operates at high voltage. Note that the semiconductor element S3 is not limited to a power semiconductor element, and may be a semiconductor element that operates at a low voltage, for example.
  • a semiconductor element S3 is mounted on the surface 2s of the die pad 2a. Specifically, the semiconductor element S3 is bonded to the surface 2s of the die pad 2a with the bonding material 4. As shown in FIG. The bonding material 4 is solder, for example. A control semiconductor element S6 is bonded to the surface of the control lead 2b with a bonding material 8. As shown in FIG. The bonding material 8 is solder, for example.
  • Each wire W7 is a wire for signal transmission.
  • the two wires W7 are hereinafter also referred to as a wire W7a and a wire W7b, respectively.
  • the semiconductor element S3 and the control semiconductor element S6 are electrically connected by a wire W7a. Also, the control semiconductor element S6 and the control lead 2b are electrically connected by a wire W7b. Also, the semiconductor element S3 is electrically connected to the lead 2c by a wire W5.
  • the heat sink 10 has a surface 10s that is one surface and a surface 10r that is the other surface.
  • the surface 10s is the third surface.
  • the surface 10r is the fourth surface.
  • the surface 10r is the surface of the heat sink 10 opposite to the surface 10s.
  • the insulating layer 9 and the heat sink 10 are provided in this order on the surface 2r of the die pad 2a.
  • An insulating layer 9 is present between the die pad 2 a and the heat sink 10 .
  • the insulating layer 9 is in contact with the surface 2 r of the die pad 2 a and the surface 10 s of the heat sink 10 .
  • the sealing material 11 is, for example, mold resin.
  • the sealing material 11 seals the semiconductor element S3, the control semiconductor element S6, the wires W5 and W7, the die pad 2a, the suspension leads 2n, the leads 2c, the insulating layer 9, and the heat sink .
  • the sealing material 11 has a surface 11s and a surface 11r.
  • the surface 11r is the surface of the sealing material 11 opposite to the surface 11s.
  • the lead 2c protrudes from one side of the sealing member 11 in the X direction. Further, the lead 2c is bent so that the tip portion of the lead 2c existing outside the sealing material 11 is parallel to the Z direction.
  • the control lead 2b protrudes from the other side of the sealing member 11 in the -X direction. Further, the control lead 2b is bent so that the tip portion of the control lead 2b existing outside the sealing material 11 is parallel to the Z direction.
  • a surface 10 r of the heat sink 10 having a surface 10 s in contact with the insulating layer 9 is exposed from the sealing material 11 .
  • the surface 10 r of the heat sink 10 is exposed from the surface 11 r of the sealing material 11 .
  • the surface 10r exposed from the sealing material 11 is hereinafter also referred to as an "exposed surface".
  • the shape of the surface 10r, which is the exposed surface, is a rectangle as a polygon.
  • the surface of the lead frame 2 may be plated with nickel (Ni), silver (Ag), or gold (Au) to prevent oxidation. That is, a nickel plating film, a silver plating film, or a gold plating film may be formed on the surface of the lead frame 2 as a plating film. The plating film may be partially formed on the lead frame 2 .
  • the target area for forming the plating film is also referred to as "plating target area".
  • the area to be plated is the area susceptible to surface oxidation.
  • the area to be plated is, for example, the periphery of the area of the surface 2 s of the die pad 2 a to which the semiconductor element S 3 is bonded by the bonding material 4 .
  • the plating target region is, for example, the periphery of the region of the surface of the control lead 2b to which the control semiconductor element S6 is bonded by the bonding material 8. As shown in FIG.
  • the area to be plated is, for example, the periphery of the area to which the wire W7 is connected on the surface of the control lead 2b.
  • the plating target region is, for example, the periphery of the region to which the wire W5 is connected on the surface of the lead 2c.
  • the semiconductor element S3 is, for example, an element that functions as a switching element or a rectifying element.
  • the switching element is, for example, an IGBT (Insulated Gate Bipolar Transistor), a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), or the like.
  • the rectifying element is a diode element.
  • the material that constitutes the semiconductor element S3 is, for example, silicon (Si).
  • the material forming the semiconductor element S3 is not limited to silicon, and may be, for example, a wide bandgap semiconductor material such as silicon carbide (SiC), gallium nitride (GaN), diamond (C), or the like.
  • a wide bandgap semiconductor material is a material that has a bandgap wider than that of silicon.
  • the semiconductor element S3 made of a wide bandgap semiconductor material can operate using a large current, operate in a high temperature environment, and the like.
  • the material forming the semiconductor element S3 in the semiconductor device 100 is preferably a wide bandgap semiconductor material.
  • an electronic component such as a resistance element or a capacitor element may be mounted on the surface of the control lead 2b instead of the control semiconductor element S6.
  • a semiconductor device 100 mounted with the electronic component is called an IPM (Intelligent Power Module).
  • the material constituting each of the wires W5 and W7 may be aluminum (Al), copper (Cu), gold (Au), silver (Ag), or the like. Also, the material forming each of the wires W5 and W7 may be an alloy. The alloy is composed of two or more metals among aluminum (Al), copper (Cu), gold (Au) and silver (Ag) as metals. Also, the material forming each of the wires W5 and W7 may be an alloy to which a metal element such as nickel (Ni) or iron (Fe) is added.
  • each of the wires W5 and W7 is, for example, a thin wire shape, a cylinder shape, or the like.
  • the cross-sectional shape of each of the wires W5 and W7 is, for example, a circle.
  • the diameter of the circle is, for example, 10 ⁇ m or more and 500 ⁇ m or less.
  • the wires W5 and W7 are bonded by existing methods such as ball bonding and wedge bonding in the wire bonding process. If the material forming the wire W5 is the same as the material forming the wire W7, the wires W5 and W7 can be bonded in the same wire bonding process.
  • wire W5 is the main wiring. Therefore, wire W5 is thicker than wire W7.
  • the thickness of the wire W5 may be the same as the thickness of the wire W7. Also, the wire W5 may be thinner than the wire W7.
  • the wire W5 has the same thickness as the wire W7.
  • the wire W5 has the same thickness as the wire W7. There may be.
  • the sealing material 11 may be a composite material.
  • the composite material is, for example, a material containing a filler such as a filler and a resin as main components.
  • the filler is used to adjust the coefficient of thermal expansion or mechanical properties of the encapsulant 11 .
  • the resin contained in the composite material is, for example, a thermosetting resin with high electrical resistivity.
  • the resin is, for example, an epoxy resin.
  • the encapsulant 11 preferably has high insulation, good moldability and reliability.
  • the sealing material 11 is formed, for example, by a transfer molding method.
  • the sealing material 11 seals a part of the lead frame 2 so that the tips of the leads 2c and the tips of the control leads 2b are exposed from the sealing material 11 .
  • the sealing material 11 also seals the semiconductor element S3, the control semiconductor element S6, the wires W5 and W7, the die pad 2a, the suspension leads 2n, the leads 2c, the insulating layer 9, and the heat sink .
  • the tips of the leads 2c and the tips of the control leads 2b exposed from the sealing material 11 are electrically connected to other devices (not shown).
  • a surface 10 r of the heat sink 10 is exposed from the sealing material 11 .
  • the surfaces of the heat sink 10 other than the surface 10 r are sealed with a sealing material 11 . That is, the surfaces of the heat sink 10 other than the surface 10 r are not exposed from the sealing material 11 .
  • the material forming the insulating layer 9 is a material with high heat dissipation and insulating properties.
  • Insulating layer 9 is, for example, a thermally conductive insulating resin sheet.
  • the insulating layer 9 is arranged on the surface 2r of the die pad 2a.
  • the insulating layer 9 is, for example, a printed sheet, a transferred sheet or a molded sheet.
  • the shape of the insulating layer 9 in plan view is a rectangle.
  • the size of the insulating layer 9 in plan view is equal to or smaller than the size of the die pad 2a in plan view.
  • the thickness of the insulating layer 9 is set in consideration of the heat dissipation of the insulating layer 9.
  • the thickness of the insulating layer 9 is thinner than the thickness of the die pad 2a.
  • the thickness of the insulating layer 9 is preferably about 200 ⁇ m or less.
  • the insulating layer 9 may be an insulating substrate composed of a conductor layer and a ceramic plate.
  • Materials forming the conductor layer are metals such as copper (Cu), aluminum (Al), and nickel (Ni).
  • the surface of the conductor layer may be plated with gold (Au), silver (Ag), nickel (Ni), or the like.
  • the material forming the ceramic plate is, for example, a ceramic material or a glass-ceramic material.
  • the ceramic material is, for example, alumina, silicon nitride, aluminum nitride, or the like.
  • the heat sink 10 is in contact with the insulating layer 9 in order to improve the heat dissipation of the insulating layer 9 .
  • the material forming the heat sink 10 is, for example, an alloy.
  • the alloy is, for example, aluminum (Al) to which at least one metal of magnesium (Mg) and manganese (Mn) is added.
  • the material forming the heat sink 10 is not limited to, for example, an alloy, and may be a metal different from the alloy.
  • the material forming the heat sink 10 may be, for example, copper (Cu).
  • the heat sink 10 may be a plate made of aluminum (Al).
  • the material constituting the heat sink 10 may be a material other than metal.
  • the material forming the heat sink 10 may be, for example, an inorganic substance or an organic substance with high thermal conductivity.
  • a recess V1 is formed on the surface 10r (that is, the exposed surface) of the heat sink 10.
  • 4 and 5 are diagrams for explaining the configuration of the recess V1.
  • FIG. 4 is a plan view showing the configuration of the recess V1.
  • FIG. 5 is a cross-sectional view showing the configuration of the recess V1.
  • the heat sink 10 has a recess V1 formed all around the exposed surface 10r. That is, the heat sink 10 has a recess V1 formed along the periphery of the surface 10r, which is the exposed surface.
  • the recess V1 extends along the periphery of the surface 10r of the heat sink 10 (ie, the exposed surface). That is, the recess V1 is formed at the end of the heat sink 10.
  • the shape of the recess V1 in plan view is a closed loop shape. Further, the shape of the depression V1 in plan view is a rectangle.
  • the direction in which the depression V1 extends on the surface 10r of the heat sink 10 is also referred to as "the extending direction of the depression".
  • the extension directions of the depressions in FIG. 4 are the X-axis direction and the Y-axis direction.
  • the closed-loop recess V1 includes a recess V1a, a recess V1b, a recess V1c, and a recess V1d.
  • Each of recess V1a, recess V1b, recess V1c and recess V1d is part of recess V1. That is, each of recess V1a, recess V1b, recess V1c and recess V1d is recess V1.
  • each of the depressions V1a and V1c extends in the Y-axis direction. Also, in FIG. 4, each of the recess V1b and the recess V1d extends in the X-axis direction.
  • the shape of the recess V1 in cross section is semicircular. Specifically, the cross-sectional shape of the recess V1 along the depth direction of the recess V1 is a semicircle. In FIG. 5, the depth direction of the recess V1 is the Z direction.
  • the depth of the recess V1 is also referred to as “depth L1”.
  • the width of the depression V1 on the surface 10r, which is the exposed surface is also referred to as "width L2”.
  • the heat sink 10 is connected to a heat dissipating member (not shown).
  • the heat dissipation member is a member having a function of dissipating heat.
  • the heat dissipation member is, for example, a member having heat dissipation fins.
  • a surface 10r, which is an exposed surface, of the heat sink 10 serves as a connection surface to be connected to a heat dissipation member.
  • the state in which the surface 10r of the heat sink 10 is connected to the heat radiating member is also referred to as a "heat radiating member connected state.”
  • the surface 10r of the heat sink 10 may be configured so that it is not connected to the heat radiation member (hereinafter also referred to as "heat radiation member unconnected configuration").
  • Any method can be used to manufacture and process the heat sink 10 .
  • a method of manufacturing the heat sink 10 is, for example, forging using a mold.
  • the method of manufacturing the heat sink 10 is, for example, cutting work performed on the object to be processed.
  • the recesses V1 may be formed, for example, by forging using a die together with the manufacture of the heat sink 10.
  • FIG. Further, the recess V1 may be formed in the surface 10r of the manufactured heat sink 10 by cutting the surface 10r.
  • the area other than the peripheral edge of the surface 10r is also referred to as "exposed surface non-peripheral area".
  • the exposed surface non-peripheral area is, for example, an area of the surface 10r of the heat sink 10 in FIG. 4 other than the peripheral edge of the surface 10r.
  • the semiconductor element S3 shown in FIG. 2 is arranged above the exposed surface non-peripheral region of the heat sink 10 . That is, the exposed surface non-peripheral region of the heat sink 10 exists below the semiconductor element S3.
  • the semiconductor device 100 according to the first embodiment is configured as described above.
  • FIGS. 3, 7, 8, 9 and 10 are cross-sectional views for explaining the method of manufacturing the semiconductor device 100 according to the first embodiment.
  • FIG. 6 is a flowchart of manufacturing method Pr according to the first embodiment.
  • FIG. 6 shows only major steps included in the plurality of steps of manufacturing method Pr.
  • an initial process is first performed (step S110).
  • the lead frame 2 of FIG. 3 is prepared.
  • the lead frame 2 includes a die pad 2a, suspension leads 2n, leads 2c, and control leads 2b. Each of lead 2c and control lead 2b is bent.
  • the lead frame 2 is formed by processing the plate member by a known method.
  • the plate member is made of copper (Cu) or aluminum (Al), for example.
  • the lead frame 2 is provided with a plurality of leads 2c and a plurality of control leads 2b.
  • a plurality of leads 2c are connected to each other by tie bars (not shown).
  • a plurality of control leads 2b are also connected to each other by tie bars (not shown).
  • the element mounting step is a step of mounting the control semiconductor element S6 on the surface of the control lead 2b included in the lead frame 2.
  • the joining material 8 is not limited to solder.
  • the bonding material 8 may be a conductive adhesive or a sintered body.
  • the sintered body is composed of metal particles such as silver (Ag), copper (Cu), gold (Au), and nickel (Ni), for example.
  • the bonding material 8 may be a mixed material.
  • the mixed material is a member in which two or more metal particles of silver (Ag), copper (Cu), gold (Au), and nickel (Ni) are mixed.
  • the bonding material 8 may be composed of metal particles in which the core member is coated with a coating material.
  • the core member is metal particles of silver (Ag), copper (Cu), gold (Au), or nickel (Ni).
  • the coating material is metal particles different from the core member.
  • the coating material is metal particles of silver (Ag), copper (Cu), gold (Au), or nickel (Ni).
  • the bonding material 8 may be a hybrid sintered body containing metal particles having a low stress effect and resin.
  • the hybrid type sintered body can be obtained, for example, by incorporating an epoxy resin into the sintered body.
  • the material forming the bonding material 8 is selected, for example, in consideration of the material of the back surface of the control semiconductor element S6.
  • the rear surface of the control semiconductor element S6 is a surface that is bonded to the front surface of the control lead 2b by the bonding material 8. As shown in FIG. When plating exists on the back surface of the control semiconductor element S6, the material of the back surface is, for example, the type of plating.
  • the material forming the bonding material 8 is selected, for example, in consideration of the state of the surface of the control lead 2b.
  • the material forming the bonding material 8 is selected, for example, based on whether or not the surface of the control lead 2b is plated.
  • the element mounting step is also a step of mounting the semiconductor element S3 on the surface 2s of the die pad 2a included in the lead frame 2. Specifically, in the element mounting step, as shown in FIG. 8, the semiconductor element S3 is bonded to the surface 2s of the die pad 2a with the bonding material 4. As shown in FIG. As described above, the bonding material 4 is solder, for example.
  • the joining material 4 is not limited to solder.
  • the bonding material 8 may be a sintered body.
  • the sintered body is composed of metal particles such as silver (Ag), copper (Cu), gold (Au), and nickel (Ni), for example.
  • the thermal conductivity of the sintered body is k times the thermal conductivity of solder. "k" is a real number in the range of 3 to 5, for example.
  • the bonding material 4 may be a mixed material.
  • the mixed material is a member in which two or more metal particles of silver (Ag), copper (Cu), gold (Au), and nickel (Ni) are mixed.
  • the bonding material 4 may be composed of metal particles in which the core member is coated with a coating material.
  • the core member is metal particles of silver (Ag), copper (Cu), gold (Au), or nickel (Ni).
  • the coating material is metal particles different from the core member.
  • the coating material is metal particles of silver (Ag), copper (Cu), gold (Au), or nickel (Ni).
  • the bonding material 4 may be a hybrid sintered body containing metal particles having a low stress effect and resin.
  • the hybrid type sintered body can be obtained, for example, by incorporating an epoxy resin into the sintered body.
  • the material forming the bonding material 4 is selected, for example, in consideration of the material of the back surface of the semiconductor element S3.
  • the back surface of the semiconductor element S3 is a surface that is bonded to the surface 2s of the die pad 2a by the bonding material 4. As shown in FIG. When plating exists on the back surface of the semiconductor element S3, the material of the back surface is, for example, the type of plating.
  • the material forming the bonding material 4 is selected, for example, in consideration of the state of the surface of the lead 2c.
  • the material forming the bonding material 4 is selected, for example, based on whether or not the surface of the lead 2c is plated.
  • the semiconductor element S3 and the control semiconductor element S6 are mounted on the lead frame 2 including the die pad 2a and the control leads 2b.
  • the wire bonding process is performed.
  • the semiconductor element S3 and leads 2c are electrically connected by wires W5.
  • the semiconductor element S3 and the control semiconductor element S6 are electrically connected by a wire W7a.
  • the control semiconductor element S6 and the control lead 2b are electrically connected by a wire W7b.
  • one end of the wire W5 is bonded to, for example, an electrode (not shown) of the semiconductor element S3.
  • the electrodes are emitter electrodes, source electrodes, anode electrodes, and the like.
  • the other end of wire W5 is joined to lead 2c.
  • One end of wire W7a is joined to a gate pad (not shown) of semiconductor element S3.
  • the other end of wire W7a is joined to control semiconductor element S6.
  • One end of the wire W7b is joined to the control semiconductor element S6.
  • the other end of wire W7b is joined to control lead 2b.
  • a method for bonding the wires W5, W7a, W7b is, for example, ball bonding, wedge bonding, or the like.
  • wires W5 and W7 are of the same type of wire, the wires W5 and W7 can be bonded in the same wire bonding step.
  • the optimum wire W5 and the optimum wire W7 are used in consideration of the size of the gate pad in the semiconductor element S3 and the current capacity to flow through the semiconductor element S3. Also, the order of joining the wires W5 and W7 is not particularly restricted.
  • the lead frame 2 in the element-connected state is the lead frame 2 shown in FIG.
  • the lead frame 2 in the element-connected state includes a die pad 2a on which the semiconductor element S3 is mounted, and control leads 2b on which the control semiconductor element S6 is mounted. That is, the semiconductor element S3 and the control semiconductor element S6 are mounted on the lead frame 2 in the element-connected state.
  • the lead frame 2 in the element-connected state is the lead frame 2 to which the wires W5, W7a, and W7b are joined.
  • wires W5 and W7a are joined to the semiconductor element S3
  • wires W7a and W7b are joined to the control semiconductor element S6.
  • FIG. 10 shows mold 51 .
  • the mold 51 is a mold for sealing members by a transfer molding method.
  • the mold 51 is a transfer mold mold.
  • the mold 51 includes a lower mold 51a and an upper mold 51b.
  • the mold 51 has a sealable state and an unsealable state.
  • the sealable state is a state in which the member can be sealed with a sealing material.
  • FIG. 10 shows, as an example, a mold 51 in a sealable state. 10 shows the configuration of the lead frame 2 in the element-connected state of FIG. 9 on the YZ plane.
  • the upper mold 51b faces the lower mold 51a. Further, the mold 51 in a sealable state has a cavity Cv1 defined by the upper mold 51b and the lower mold 51a. Further, the mold 51 ready for sealing has a resin injection gate 55 .
  • sealing material 11n the sealing material having fluidity is also referred to as "sealing material 11n".
  • the encapsulant 11 is a hardened encapsulant 11n.
  • the resin injection gate 55 is a hole for injecting the sealing material 11n into the cavity Cv1.
  • the non-sealable state is a state in which the member cannot be sealed with the sealing material.
  • the upper mold 51b and the lower mold 51a are separated.
  • the lower mold 51a has a bottom surface Sb1.
  • the mold 51 in a sealable state has a bottom surface Sb1 facing the cavity Cv1.
  • the state of the die pad 2a, the insulating layer 9 and the heat sink 10 in the state for sealing the members with the sealing material is also referred to as “sealing corresponding state”. Further, hereinafter, the direction in which the sealing material is caused to flow when sealing the member with the sealing material is also referred to as “direction Dr1”.
  • step S130 an arrangement process is performed (step S130).
  • the disposition process is performed by placing the die pad 2a, the insulating layer 9 and the heat sink 10 in a mold ready for sealing so that the die pad 2a, the insulating layer 9 and the heat sink 10 are ready for sealing.
  • 51 is a step of arranging it in the cavity Cv1.
  • the sealed state is a state in which the insulating layer 9 exists between the die pad 2a and the heat sink 10.
  • the sealed state is a state in which the insulating layer 9 is in contact with the surface 2 r of the die pad 2 a and the surface 10 s of the heat sink 10 .
  • the sealed state is a state in which the surface 10 r of the heat sink 10 is in contact with the bottom surface Sb 1 of the mold 51 .
  • a recess V1 is formed on the surface 10r of the heat sink 10 used in the placement process, as shown in FIG.
  • the direction in which the depression V1 extends on the surface 10r of the heat sink 10 is the extension direction of the depression.
  • the extension directions of the depressions in FIG. 4 are the X-axis direction and the Y-axis direction.
  • the lower mold 51a of the mold 51 that cannot be sealed is prepared.
  • the heat sink 10 is arranged such that the surface 10r of the heat sink 10 is in contact with the bottom surface Sb1 of the lower mold 51a. Further, the heat sink 10 is arranged such that the extending direction of the recess V1b, which is the recess V1, formed in the surface 10r of the heat sink 10 intersects the direction Dr1.
  • the heat sink 10 is arranged such that the extending direction of the recess V1b, which is the recess V1, is orthogonal to the direction Dr1.
  • the expression "the extension direction of the recess is orthogonal to the direction Dr1" also includes the meaning that "the extension direction of the recess is substantially orthogonal to the direction Dr1".
  • the insulating layer 9 is arranged on the surface 10 s of the heat sink 10 .
  • the insulating layer 9 is, for example, a printed sheet, a transferred sheet or a molded sheet.
  • the position where the insulating layer 9 is arranged is the position below the die pad 2a under the assumption that the die pad 2a is arranged.
  • the heat sink 10 and the insulating layer 9 are not limited to being individually arranged on the lower mold 51a.
  • the heat sink 10 and the insulating layer 9 may be arranged in the lower mold 51a in a state in which the heat sink 10 and the insulating layer 9 are integrated.
  • the element-connected lead frame 2 is placed on the lower die 51 a so that the surface 2 r of the die pad 2 a included in the element-connected lead frame 2 in FIG. 9 is in contact with the insulating layer 9 .
  • the lead frame 2 in the element-connected state includes the die pad 2a on which the semiconductor element S3 is mounted and the control lead 2b on which the control semiconductor element S6 is mounted. That is, the semiconductor element S3 and the control semiconductor element S6 are mounted on the lead frame 2 in the element-connected state.
  • the upper mold 51b is arranged so that the state of the mold 51 transitions from the unsealable state to the sealable state. Specifically, the upper mold 51b is arranged so that the upper mold 51b faces the lower mold 51a. As a result, the die pad 2a and the control leads 2b included in the lead frame 2 are accommodated in the cavity Cv1 of the mold 51 ready for sealing. As a result, the state of the die pad 2a, the insulating layer 9 and the heat sink 10 becomes the state corresponding to the above sealing.
  • the arrangement process is performed as described above.
  • the sealing process is performed (step S140). That is, the sealing process is performed after the arranging process.
  • the sealing step is a step of injecting the sealing material 11n into the cavity Cv1 of the mold 51 ready for sealing.
  • the surface 10r of the heat sink 10 is in contact with the bottom surface Sb1 of the mold 51. Therefore, in the sealing step, the surface 10 r of the heat sink 10 having the surface 10 s in contact with the insulating layer 9 is exposed from the sealing material 11 n, and the sealing is performed in the cavity Cv 1 of the mold 51 in a sealable state. Material 11n is injected.
  • the resin is injected so that the sealing material 11n flows from the resin injection gate 55 toward the cavity Cv1 and flows in the specific direction Dr1.
  • the sealing material 11n is injected into the gate 55.
  • the sealing material 11n is injected into the cavity Cv1 of the mold 51 so that the sealing material 11n flows in the direction Dr1.
  • the direction Dr1 is the Y direction.
  • the sealing material 11n flows in the direction Dr1 or substantially in the direction Dr1.
  • the heat sink 10 is arranged such that the extending direction of the recess V1b, which is the recess V1, formed in the surface 10r of the heat sink 10 intersects the direction Dr1. Therefore, when the sealing process is performed, the heat sink 10 is arranged such that the extending direction of the recess V1b, which is the recess V1, formed in the surface 10r of the heat sink 10 intersects the direction Dr1.
  • the extension direction of the recess intersects the direction Dr1 specifically means that "the extension direction of the recess is orthogonal to the direction Dr1".
  • the sealing material 11n urges the die pad 2a toward the bottom surface Sb1 of the lower mold 51a.
  • the insulating layer 9 and the heat sink 10 are urged toward the bottom surface Sb1. Therefore, the surface 10r of the heat sink 10 is in close contact with the bottom surface Sb1 of the lower mold 51a. Therefore, it becomes difficult for the sealing material 11n to flow between the surface 10r of the heat sink 10 and the bottom surface Sb1 of the lower mold 51a.
  • gap Gp is caused by, for example, dimensional tolerance of the heat sink 10 .
  • the semiconductor element S3 and the control semiconductor element S6 mounted on the lead frame 2 in the element-connected state are sealed with the sealing material 11n, and the insulating layer 9 And the heat sink 10 is also sealed with the sealing material 11n.
  • the sealing material 11n is cured.
  • the encapsulant 11n becomes the encapsulant 11 when the encapsulant 11n is cured.
  • the sealing material 11n hardens.
  • the lead frame 2 and the members mounted on the lead frame 2 are sealed with the sealing material 11, which is the cured sealing material 11n.
  • the members mounted on the lead frame 2 are, for example, the semiconductor element S3, the control semiconductor element S6, and the like.
  • the hardened sealing material 11 is in contact with the inner wall of the mold 51 in a sealable state.
  • the inner wall of the mold 51 in the sealable state is the portion of the mold 51 that faces the cavity Cv1. The sealing process is performed as described above.
  • the state of the lead frame 2 when the lead frame 2 is sealed with the sealing material 11 is also referred to as the "sealed state".
  • the configuration of the lead frame 2 in a sealed state will be described with reference to FIG. 11 .
  • FIG. 11 is a diagram showing the configuration of the semiconductor device 100 according to the first embodiment.
  • FIG. 11 in order to facilitate understanding of the configuration of the semiconductor device 100, only the contour of the sealing material 11 is shown.
  • the semiconductor device 100 of FIG. 11 shows the configuration of the semiconductor device 100 of FIG. 2 on the YZ plane.
  • the configuration of the lead frame 2 in the sealed state is a configuration in which, for example, an unnecessary part (not shown) is added to the semiconductor device 100 of FIG.
  • the unnecessary portion is, for example, a runner.
  • the sealed lead frame 2 is obtained by performing the sealing process described above.
  • the semiconductor element S3, the control semiconductor element S6, the wires W5 and W7, the die pad 2a, the leads 2c, the insulating layer 9, the heat sink 10, and the like are sealed with the sealing material 11.
  • FIG. 1 the semiconductor element S3, the control semiconductor element S6, the wires W5 and W7, the die pad 2a, the leads 2c, the insulating layer 9, the heat sink 10, and the like are sealed with the sealing material 11.
  • step S150 a removal process is performed (step S150).
  • the upper mold 51b is removed so that the state of the mold 51 changes from the sealable state to the non-sealable state.
  • the configuration of the sealed lead frame 2 taken out is a configuration in which, for example, an unnecessary portion (not shown) is added to the semiconductor device 100 of FIG. 11 .
  • the unnecessary portion is, for example, a runner.
  • the runner is, for example, a member made of the sealing material existing inside the resin injection gate 55 .
  • the removal process is performed as described above.
  • the finishing process is carried out.
  • the sealed lead frame 2 is subjected to a finishing process.
  • a die press (not shown) is used to cut tie bars (not shown) that connect the leads 2c to each other. Thereby, each lead 2c is formed as an independent lead 2c.
  • tie bars (not shown) connecting the plurality of control leads 2b are cut using a die press. Thereby, each control lead 2b is formed as an independent control lead 2b. In addition, unnecessary parts such as runners are also removed in the finishing process.
  • the semiconductor device 100 is completed.
  • the completed semiconductor device 100 is the semiconductor device 100 of FIG.
  • Gate marks M1 are present on the surface of the sealing material 11 of the completed semiconductor device 100 .
  • the gate marks M1 are caused by removing the aforementioned runners. Therefore, the surface of the sealing material 11 on which the gate marks M1 are present is higher than the surface of the sealing material 11 that was in contact with the inner wall of the mold 51 in a sealable state immediately before the above-described removal process. ,rough.
  • the position of the resin injection gate 55 used in the sealing process can be grasped from the gate marks M1 present on the surface of the sealing material 11 of the completed semiconductor device 100. That is, the position of the resin injection gate 55 used in the sealing process can be grasped from the appearance of the completed semiconductor device 100 .
  • each of lead 2c and control lead 2b may be bent after manufacturing semiconductor device 100 using unbent lead 2c and unbent control lead 2b.
  • the semiconductor device 100 in which each of the leads 2c and control leads 2b included in the semiconductor device 100 is not bent may be used as a finished product.
  • the package structure of the semiconductor device 100 is not limited to the DIP structure, and may be an SOP (Small Outline Package) structure.
  • the depression V1 formed in the surface 10r (that is, the exposed surface) of the heat sink 10 can suppress the occurrence of resin burrs in the semiconductor device 100. This will be described.
  • semiconductor device N1 differs from the semiconductor device 100 in that it includes a heat sink 10n instead of the heat sink 10.
  • FIG. Other configurations of the semiconductor device N1 are the same as those of the semiconductor device 100.
  • the heat sink 10n differs from the heat sink 10 in that the recess V1 is not formed on the surface 10r. Other configurations of the heat sink 10n are the same as those of the heat sink 10. FIG.
  • the manufacturing method of the semiconductor device N1 according to the comparative example is also referred to as "manufacturing method Prn".
  • the manufacturing method Prn differs from the manufacturing method Pr described above only in that a heat sink 10n is used instead of the heat sink 10 in which the recess V1 is formed.
  • FIG. 18 is a diagram showing an example of resin burrs B1 generated in the configuration of the comparative example.
  • a recess V1 is formed on the surface 10r (that is, the exposed surface) of the heat sink 10 of the semiconductor device 100 according to the present embodiment, as shown in FIG.
  • the extending direction of the recess V1b, which is the recess V1 formed in the surface 10r of the heat sink 10 is the direction Dr1.
  • the heat sinks 10 are arranged so as to intersect. "The extension direction of the recess intersects the direction Dr1" specifically means that "the extension direction of the recess is orthogonal to the direction Dr1.”
  • the recess V1b is the recess V1.
  • the X-axis direction is the recess extension direction.
  • the depth direction of the recess V1b, which is the recess V1 is the Z direction.
  • the direction in which the sealing material 11n flows is also referred to as "flow direction".
  • the recess V1b which is the recess V1
  • the flow direction of the sealing material 11n changes from the Y direction, which is the direction Dr1, to the X-axis direction, which is the extending direction of the recess, and the Z direction, which is the depth direction. do. Therefore, the recess V1b, which is the recess V1, has a function of blocking the sealing material 11n that has entered the gap Gp.
  • the width L2 of the recess V1 the greater the change in the flow direction of the sealing material 11n entering the recess V1.
  • the deeper the depth L1 of the recess V1 the greater the change in the flow direction of the sealing material 11n entering the recess V1.
  • the flow direction changes from the Y direction, which is the direction Dr1, to the X-axis direction, which is the extending direction of the recess, and the Z direction, which is the depth direction of the recess V1. Therefore, the greater the change in the flow direction of the sealing material 11n that has entered the recess V1b, which is the recess V1, the greater the effect of suppressing the formation of the resin burr B1.
  • the rigidity of the end of the heat sink 10 where the recess V1 exists becomes weak.
  • the exposed surface non-peripheral region is a region below the semiconductor element S3.
  • the depth L1 of the recess V1 and the width L2 of the recess V1 in consideration of the rigidity of the heat sink 10 and the heat dissipation path of the semiconductor element S3.
  • the width L2 is the width of the recess V1 on the exposed surface 10r.
  • the heat dissipation of the semiconductor device 100 improves as the width L2 of the recess V1 increases.
  • the relationship between the depth L1 and the width L2 of the recess V1 is set according to the heat radiation specifications of the semiconductor device 100, for example.
  • the length corresponding to the depth L1 of the recess V1 is the same as the width L2 of the recess V1.
  • the length corresponding to the depth L1 of the recess V1 is shorter than the width L2 of the recess V1.
  • the length corresponding to the depth L1 of the recess V1 is longer than the width L2 of the recess V1.
  • FIG. 12 is a cross-sectional view showing another configuration of the recess V1.
  • the shape of the cross section of the recess V1 along the depth direction of the recess V1 may be triangular (hereinafter also referred to as "configuration Cs2").
  • the shape of the cross section of the recess V1 along the depth direction of the recess V1 may be a quadrangular configuration (hereinafter also referred to as “configuration Cs3").
  • the shape of the cross section of the recess V1 along the depth direction of the recess V1 may be rhomboid (hereinafter also referred to as "configuration Cs4").
  • the relationship between the depth L1 and the width L2 of the recess V1 is appropriately set according to the heat dissipation specifications of the semiconductor device 100.
  • any of the configurations Cs1, Cs2, Cs3, and Cs4 the effect of suppressing the generation of the resin burr B1 can be obtained. Therefore, one of the configurations Cs1, Cs2, Cs3, and Cs4 may be adopted in consideration of the productivity when forming the depression V1 in the heat sink 10. FIG.
  • one depression V1 is formed on the entire circumference of the surface 10r, which is the exposed surface, of the heat sink 10, but the present invention is not limited to this.
  • the heat sink 10 may be configured to have two or more recesses V1 formed along the entire periphery of the exposed surface 10r.
  • FIG. 13 is a diagram showing another configuration of the recess V1 in plan view.
  • FIG. 13 is a diagram showing, as an example, a state in which two depressions V1 are formed on the entire circumference of the surface 10r of the heat sink 10.
  • the surface 10r that is, the exposed surface
  • the heat sink 10 is formed with a plurality of depressions V1 extending along the periphery of the surface 10r.
  • the configuration in which a plurality of depressions V1 are formed in the surface 10r (that is, the exposed surface) of the heat sink 10 is also referred to as a "multiple depression configuration".
  • the configuration of Figure 13 is a multi-well configuration.
  • the exposed surface non-peripheral region is a region below the semiconductor element S3.
  • the larger the number of the recesses V1 the smaller the area where the surface 10r of the heat sink 10 contacts the heat dissipating member. Therefore, in the state where the heat dissipation member is connected, the heat dissipation performance of the semiconductor device 100 decreases as the number of the recesses V1 increases.
  • the number of recesses V1 formed in the peripheral edge of the surface 10r, which is the exposed surface should be set.
  • the heat dissipation performance of the semiconductor device 100 improves as the number of the depressions V1 increases.
  • FIG. 14 is a diagram showing another configuration of the recess V1 in plan view.
  • the depression V1 formed in the surface 10r which is the exposed surface, may be a U-shaped depression V1 shown in FIG. 14(a).
  • the recess V1 in FIG. 14(a) includes a recess V1a, a recess V1b, and a recess V1c.
  • the recess V1 formed in the surface 10r, which is the exposed surface may be the recess V1 shown in FIG. 14(b).
  • the configuration in which the recess V1 is formed only in part of the periphery of the surface 10r, which is the exposed surface, of the heat sink 10 is also referred to as the "minimum recess configuration.”
  • the configuration of the recess V1 in FIG. 14(b) is the minimum recess configuration.
  • the recess V1 is configured as shown in FIG. 14(b).
  • the shape of the surface 10r which is the exposed surface, is a rectangle as a polygon.
  • the recess V1 in FIG. 14(b) extends along only one of the four sides that make up the rectangle in the shape of surface 10r.
  • a heat sink 10 is arranged. Therefore, in the manufacturing method Pr in the minimum recess configuration, only the region intersecting with the direction Dr1 of the periphery of the surface 10r (that is, the exposed surface) of the heat sink 10 arranged when the sealing process of step S140 is performed. A recess V1 is formed. “A region of the periphery of the surface 10r of the heat sink 10 intersecting the direction Dr1” specifically means “a region of the periphery of the surface 10r of the heat sink 10 orthogonal to the direction Dr1”. The expression "perpendicular to the surface 10r perpendicular to the direction Dr1" also means “perpendicular to the surface 10r substantially perpendicular to the direction Dr1".
  • the semiconductor element S3 is mounted on the surface 2s of the die pad 2a.
  • the sealing material 11 seals the semiconductor element S3, the die pad 2a, the insulating layer 9 and the heat sink 10.
  • FIG. An insulating layer 9 is present between the die pad 2 a and the heat sink 10 .
  • the insulating layer 9 is in contact with the surface 2 r of the die pad 2 a and the surface 10 s of the heat sink 10 .
  • a surface 10 r of the heat sink 10 having a surface 10 s in contact with the insulating layer 9 is exposed from the sealing material 11 .
  • the heat sink 10 is in contact with the insulating layer 9 that is in contact with the die pad 2a on which the semiconductor element S3 is mounted. Also, the heat sink 10 is exposed from the sealing material 11 . Therefore, the semiconductor device of the present disclosure has higher heat dissipation than the semiconductor device of Related Configuration B in which the insulating layer is exposed from the encapsulant due to the action of the heat sink 10 . Therefore, a semiconductor device with high heat dissipation can be provided.
  • the extending direction of the recess V1b, which is the recess V1, formed in the surface 10r of the heat sink 10 intersects the direction Dr1.
  • the heat sink 10 is arranged as follows. "The extension direction of the recess intersects the direction Dr1" specifically means that "the extension direction of the recess is orthogonal to the direction Dr1.”
  • the sealing material 11n When the sealing material 11n enters the gap Gp and enters the depression V1b, most of the sealing material 11n that has entered the depression V1b, which is the depression V1, is in the X-axis direction, which is the depression extending direction of the depression V1b. flow along Also, a part of the sealing material 11n that has entered the recess V1b, which is the recess V1, faces in the Z direction, which is the depth direction of the recess V1b.
  • the flow direction of the sealing material 11n in the sealing step changes from the Y direction, which is the direction Dr1, to the X-axis direction, which is the extending direction of the recess, and the depth direction. Change in the Z direction.
  • the recess V1b which is the recess V1
  • FIG. 15 is a diagram for explaining the configuration of Modification 1.
  • FIG. The configuration of FIG. 15 is a configuration obtained by applying the configuration of Modification 1 to the configuration of FIG.
  • projections X1 are further formed on surface 10r, which is the exposed surface, of heat sink 10, as compared with the configuration of Embodiment 1.
  • FIG. the configuration in which the protrusions X1 are formed on the surface 10r, which is the exposed surface, of the heat sink 10 is also referred to as "protrusion formation configuration".
  • the configuration of FIG. 15 is a protruding configuration.
  • recesses V1 and projections X1 are formed on the periphery of the surface 10r (that is, the exposed surface) of the heat sink 10.
  • FIG. A projection X1 is formed on the surface 10r, which is an exposed surface, in a region outside the position where the recess V1 exists.
  • the protrusion X1 is formed at the end of the surface 10r.
  • the projection X1 extends along the periphery of the exposed surface 10r.
  • the protrusion X1 protrudes in the -Z direction.
  • the direction in which the protrusion X1 protrudes is also referred to as a "protrusion direction”.
  • the projection X1 extends in the extending direction of the recess V1.
  • the direction in which the protrusion X1 extends on the surface 10r of the heat sink 10 is also referred to as the "protrusion extending direction”.
  • the projection extending direction of the projection X1 is the X-axis direction.
  • the configuration of this modified example is applied to the first embodiment.
  • the shape of the projection X1 in plan view is a closed loop shape.
  • the configuration of this modified example is applied to the configuration of FIG. It extends along one side only.
  • the configuration of the protrusion X1 will be described. Since the configuration of recess V1 has been described in the first embodiment, description thereof will not be repeated.
  • the shape of the protrusion X1 in a cross-sectional view is a semicircle.
  • the height of the projection X1 is also referred to as "height L3”.
  • the width of the protrusion X1 on the surface 10r, which is the exposed surface is also referred to as "width L4".
  • the sealing material 11n flows along the X-axis direction, which is the projection extending direction of the projection X1. Also, part of the sealing material 11n flows along the Z-axis direction including the -Z direction, which is the projecting direction of the projection X1. That is, due to the presence of the protrusion X1, the flow direction of the sealing material 11n changes from the Y direction, which is the direction Dr1, to the X-axis direction, which is the protrusion extending direction, and the Z-axis direction, which includes the protrusion direction of the protrusion X1. . Therefore, the protrusion X1 has a function of blocking the sealing material 11n that has entered the gap Gp. Thereby, it can suppress that resin burr B1 is formed.
  • the change in the flow direction is from the Y direction, which is the direction Dr1, to the X-axis direction, which is the extension direction of the projection, and the -Z direction, which is the projection direction of the projection X1. Therefore, the greater the change in the flow direction of the sealing material 11n, the greater the effect of suppressing the formation of the resin burr B1.
  • the relationship between the height L3 and the width L4 of the protrusion X1 is set according to the heat radiation specifications of the semiconductor device 100, for example.
  • the shape of the protrusion X1 in cross-sectional view is configured to be semicircular, but is not limited to this.
  • the shape of the protrusion X1 in a cross-sectional view may be a triangle, a square, a rhombus, or the like.
  • the relationship between the height L3 and the width L4 of the protrusion X1 is determined according to the heat dissipation specifications of the semiconductor device 100, for example. Appropriately set.
  • the material forming the protrusion X1 is the same as the material forming the heat sink 10.
  • the material forming the protrusion X1 is, for example, a metal with high heat dissipation such as copper (Cu) or aluminum (Al).
  • Cu copper
  • Al aluminum
  • the material forming the protrusion X1 is not limited to the above materials.
  • the material forming the protrusion X1 may be, for example, a ceramic material, a glass ceramic material, or the like.
  • the ceramic material is alumina, silicon nitride, aluminum nitride, or the like.
  • the structure in which the material forming the protrusion X1 is a ceramic material has higher adhesion between the protrusion X1 and the sealing material 11 than the structure in which the material forming the protrusion X1 is metal. Thereby, peeling of the sealing material 11 can be suppressed by the anchor effect.
  • the heat sink 10 is connected to a heat dissipating member (not shown).
  • the heat dissipation member is, for example, a member having heat dissipation fins.
  • a surface 10r, which is an exposed surface, of the heat sink 10 serves as a connection surface to be connected to a heat dissipation member.
  • the heat dissipation member is fixed to the heat sink 10 using two screw holes H1 of the encapsulant 11 shown in FIG. Specifically, a fixing screw (not shown) is fixed to each of the two screw holes H1 of the sealing material 11, so that the surface 10r (that is, the exposed surface) of the heat sink 10 is fixed to the heat dissipation member. .
  • Grease as an intermediate member is provided between the surface 10r of the heat sink 10 and the heat radiating member.
  • the surface 10r of the heat sink 10 and the heat dissipating member are in close contact with each other via grease.
  • a configuration in which the surface 11r of the sealing member 11 is a curved surface (hereinafter also referred to as a "close contact configuration") may be adopted.
  • the shape of the curved surface is a downward convex shape.
  • the downwardly convex shape is a shape in which the surface 11r of the sealing material 11 protrudes downward from the surface 11r.
  • the surface 10r of the heat sink 10 and the heat radiating member can be brought into close contact with each other via grease. Further, in the close contact configuration, the curved surface, which is the surface 11r of the sealing member 11, is corrected to a flat surface when the screw is tightened as described above. As a result, stress is applied to the insulating layer 9 and the heat sink 10, and cracks may occur.
  • the protrusion X1 is formed at the end of the surface 10r of the heat sink 10. As shown in FIG. Therefore, in the close contact configuration, when the screw is tightened, the projection X1 first comes into contact with the heat radiating member. The protrusion X1 may be crushed when the protrusion X1 comes into contact with the heat radiating member. When the protrusion X1 is crushed, the stress applied to the insulating layer 9 is relieved. By relaxing the stress applied to the insulating layer 9, the surface 10r of the heat sink 10 is in close contact with the heat dissipation member. Therefore, in the semiconductor device 100 of this modified example, high insulation and high heat dissipation can be ensured.
  • the protrusion X1 blocks the sealing material 11n that has entered the gap Gp. That is, the protrusion X1 controls the flow direction of the sealing material 11n. Thereby, it can suppress that resin burr B1 is formed.
  • the protrusions X1 may be crushed by contact with the heat radiating member.
  • the stress applied to the insulating layer 9 is relieved.
  • high insulation and high heat dissipation can be ensured.
  • the recess V1 is composed of a plurality of local recesses. Each local depression is part of a depression V1.
  • the structure in which the recess V1 is composed of a plurality of local recesses is also referred to as a "local recess structure".
  • the local depression structure of this modified example is applied to the first embodiment or the first modified example.
  • FIG. 16 is a diagram for explaining the configuration of Modification 2.
  • FIG. FIG. 16 is a diagram showing another configuration of the recess V1 in plan view.
  • the configuration of FIG. 16(a) is a configuration in which the configuration of FIG. 4 is applied with the local depression configuration of Modification 2.
  • the configuration of the depressions V1 formed in the surface 10r (that is, the exposed surface) of the heat sink 10 may be the configuration of the depressions V1 shown in FIG. 16(a).
  • the configuration of the recess V1 shown in FIG. 16(a) is also referred to as "local recess configuration A”.
  • the shape of the depression V1 in plan view is a dotted line.
  • the depression V1 consists of a plurality of local depressions V1s.
  • Each local depression V1s is part of a depression V1.
  • a plurality of local depressions V1s are scattered along the periphery of the surface 10r of the heat sink 10 (that is, the exposed surface). Also, a plurality of local depressions V1s are formed all around the surface 10r.
  • the sealing material 11n is applied in the X-axis direction, which is the extending direction of the depression V1b, and the depth of the depression V1b. It faces in the Z direction, which is the vertical direction. Therefore, the recess V1b, which is the recess V1 of the local recess configuration A, has a function of blocking the sealing material 11n that has entered the gap Gp.
  • the shape of the depression V1 in plan view is a dotted line. Therefore, the sealing material 11n is more preferentially guided in the X-axis direction.
  • the configuration of the depression V1 formed in the surface 10r (that is, the exposed surface) of the heat sink 10 may be the configuration of the depression V1 shown in FIG. 16(b).
  • the configuration of the recess V1 shown in FIG. 16(b) is also referred to as "local recess configuration B".
  • the local recess configuration B in FIG. 16(b) is a configuration in which the shape of the local recess V1s in FIG. 16(a) is changed.
  • the shape of the depression V1 in plan view is a dotted line.
  • the depression V1 consists of a plurality of local depressions V1s.
  • a plurality of local depressions V1s are scattered along the periphery of the surface 10r of the heat sink 10 (that is, the exposed surface).
  • a plurality of local depressions V1s are formed all around the surface 10r.
  • each local depression V1s is formed of dots. That is, each local depression V1s is a dot depression.
  • the shape of each local depression V1s in plan view is a circle.
  • the recess V1b which is the recess V1 of the local recess configuration B, has a function of blocking the sealing material 11n that has entered the gap Gp.
  • each local depression V1s is formed of dots. This facilitates the formation of the depressions. In addition, it is possible to easily change the size (for example, diameter, depth) of the recess, adjust the size of the recess, and the like.
  • the protrusion X1 can be formed at the same time. Therefore, it is possible to ensure high insulation and high heat dissipation of the semiconductor device 100 while improving the productivity of the heat sink 10 .
  • Embodiment 2 a power converter to which the semiconductor device 100 according to the first embodiment, modified example 1, or modified example 2 is applied will be described.
  • the present disclosure is not limited to a specific power conversion device, the semiconductor device 100 according to Embodiment 1, Modification 1, or Modification 2 is applied to a three-phase inverter as Embodiment 2 below. A case will be described.
  • FIG. 17 is a block diagram showing the configuration of a power conversion system to which the power converter according to Embodiment 2 is applied.
  • the power conversion system shown in FIG. 17 includes a power supply Pw1, a power conversion device 200, and a load 300.
  • the power conversion system shown in FIG. Power supply Pw1 is a DC power supply.
  • the power supply Pw1 supplies DC power to the power conversion device 200 .
  • the power source Pw1 is composed of various components.
  • the power source Pw1 can be composed of, for example, a DC system, a solar battery, a storage battery, or the like.
  • the power supply Pw1 may be configured by a rectifier circuit or an AC/DC converter connected to an AC system. Also, the power supply Pw1 may be configured by a DC/DC converter that converts DC power output from the DC system into predetermined power.
  • the power conversion device 200 is a three-phase inverter connected between the power supply Pw1 and the load 300.
  • the power conversion device 200 converts the DC power supplied from the power supply Pw1 into AC power and supplies the AC power to the load 300 .
  • power conversion device 200 includes main conversion circuit 201 and control circuit 203 .
  • the main conversion circuit 201 converts the power input to the main conversion circuit 201 and outputs the converted power. Specifically, the main conversion circuit 201 converts DC power into AC power and outputs the AC power.
  • the control circuit 203 outputs a control signal for controlling the main converter circuit 201 to the main converter circuit 201 .
  • the load 300 is a three-phase electric motor driven by AC power supplied from the power conversion device 200 .
  • the load 300 is not limited to a specific application, and is an electric motor mounted on various electric devices.
  • the load 300 is used, for example, as a hybrid vehicle, an electric vehicle, a railroad car, an elevator, or an electric motor for an air conditioner.
  • the main conversion circuit 201 includes a switching element (not shown) and a free wheel diode (not shown). By switching the switching element, the DC power supplied from the power supply Pw ⁇ b>1 is converted into AC power, and the AC power is supplied to the load 300 .
  • the main conversion circuit 201 is a two-level three-phase full bridge circuit.
  • the main conversion circuit 201 is composed of, for example, six switching elements and six free wheel diodes. The six switching elements are connected in anti-parallel with the six freewheeling diodes.
  • At least one of each switching element and each freewheeling diode of the main conversion circuit 201 is configured by a semiconductor module 202 .
  • the semiconductor module 202 corresponds to the semiconductor device 100 according to the first embodiment, modified example 1, or modified example 2 described above. That is, the main converter circuit 201 has a semiconductor module 202 corresponding to the semiconductor device 100 according to the first embodiment, the first modification, or the second modification.
  • the main conversion circuit 201 includes three upper and lower arms configured using six switching elements. Each of the three upper and lower arms is composed of two switching elements connected in series. The three upper and lower arms respectively correspond to the U-phase, V-phase and W-phase of the full bridge circuit. The output terminals of the three upper and lower arms correspond to the three output terminals of the main converter circuit 201 . Three output terminals of the main conversion circuit 201 are connected to the load 300 .
  • the main conversion circuit 201 also includes a drive circuit (not shown) that drives each switching element.
  • the drive circuit may be built into the semiconductor module 202 . Further, the main conversion circuit 201 may have a drive circuit separate from the semiconductor module 202 .
  • the drive circuit generates a drive signal for driving the switching element of the main converter circuit 201 and supplies the drive signal to the control electrode of the switching element of the main converter circuit 201 .
  • the drive circuit outputs a drive signal for turning on the switching element and a drive signal for turning off the switching element to the control electrode of each switching element in accordance with a control signal from the control circuit 203, which will be described later. .
  • the driving signal is a voltage signal (that is, ON signal) equal to or higher than the threshold voltage of the switching element.
  • the drive signal is a voltage signal below the threshold voltage of the switching element (ie, the OFF signal) when the switching element is kept in the OFF state.
  • the control circuit 203 controls the switching elements of the main conversion circuit 201 so that the desired power is supplied to the load 300 . Specifically, the control circuit 203 calculates the ON time, which is the time during which each switching element of the main conversion circuit 201 should be in the ON state, based on the power to be supplied to the load 300 .
  • the control circuit 203 can control the main conversion circuit 201 by PWM control, for example.
  • the PWM control is control that modulates the ON time of the switching element according to the voltage to be output.
  • control circuit 203 outputs a control signal as a control command to the drive circuit included in the main conversion circuit 201 .
  • the control signal is a signal for outputting an ON signal to the switching element to be turned ON at each time point.
  • the control signal is also a signal for outputting an off signal to the switching element that should be turned off at each time point.
  • the drive circuit outputs an ON signal or an OFF signal as a drive signal to the control electrode of each switching element according to this control signal.
  • each switching element and each freewheeling diode of main conversion circuit 201 is configured by semiconductor module 202 .
  • the semiconductor module 202 corresponds to the semiconductor device 100 according to the first embodiment, modified example 1, or modified example 2 described above. Therefore, by ensuring the heat dissipation of the semiconductor device 100, the reliability of the power conversion device can be improved.
  • the semiconductor device 100 according to Embodiment 1, Modification 1, or Modification 2 is applied to a two-level three-phase inverter has been described, but the present disclosure is not limited to this.
  • the semiconductor device 100 according to the first embodiment, the first modification, or the second modification can be applied to various power converters.
  • a two-level power conversion device is used, but a three-level or multi-level power conversion device may be used.
  • the semiconductor device 100 according to Embodiment 1, Modification 1, or Modification 2 may be applied to a single-phase inverter.
  • the semiconductor device 100 according to Embodiment 1, Modification 1, or Modification 2 can be applied to a DC/DC converter or an AC/DC converter.
  • the configuration of the power conversion device to which the semiconductor device 100 according to the first embodiment, modified example 1, or modified example 2 is applied is not limited to the configuration in which the load 300 described above is an electric motor.
  • the load 300 may be, for example, an electrical discharge machine, a laser machine, an induction cooker, or a power supply for a contactless power supply system.
  • a power conversion device to which the semiconductor device 100 according to Embodiment 1, Modification 1, or Modification 2 is applied may be used as a power conditioner for a photovoltaic power generation system, an electricity storage system, or the like.
  • the semiconductor device 100 is not limited to a power semiconductor device.
  • Semiconductor device 100 may be, for example, a semiconductor device that operates at a low voltage.
  • the shape of the depression V1 in cross-section is not limited to a semicircle, triangle, quadrangle, rhombus, or the like.
  • the shape of the depression V1 in a cross-sectional view may be trapezoidal, for example.
  • the shape of the depression V1 in a cross-sectional view may be, for example, a trapezoid, a triangle, a quadrangle, or a polygon other than a rhombus.
  • the shape of the exposed surface 10r of the heat sink 10 is not limited to a rectangle.
  • the shape of the surface 10r may be, for example, a polygon such as a trapezoid or a hexagon.
  • the multi-indentation configuration described above may be applied to all or part of the indentation minimum configuration and the projection formation configuration.
  • the configuration in which the multi-cavity configuration is applied to the minimal-cavity configuration is also referred to as "variant configuration A”.
  • the configuration in which the multiple depression configuration is applied to the projection formation configuration is also referred to as "modified configuration B”.
  • each of the plurality of depressions V1 extends along only one of the four sides that make up the rectangle that is the shape of surface 10r.
  • the configuration in FIG. 13 is further provided with the projection X1 in FIG.
  • a plurality of depressions V1 and protrusions X1 are formed on the surface 10r, which is the exposed surface.
  • the projection forming configuration may be configured to be applied to the modified configuration A (hereinafter also referred to as "modified configuration Ax").
  • modified configuration Ax a plurality of depressions V1 are formed only in a portion of the peripheral edge of the surface 10r, and a protrusion X1 is further formed on the peripheral edge of the surface 10r.
  • a configuration in which the configuration Cm1 is applied to all or part of the multiple recess configuration, the minimum recess configuration, the protrusion formation configuration, the modified configuration A, the modified configuration B, and the modified configuration Ax is also referred to as “modified configuration Cm1a”.
  • the configuration Cm2 in which the relationship between the depth L1 and the width L2 is “L1 ⁇ L2” includes all or one of the multiple recess configuration, the minimum recess configuration, the protrusion formation configuration, the modified configuration A, the modified configuration B, and the modified configuration Ax. may be applied to parts.
  • a configuration in which the configuration Cm2 is applied to all or part of the multiple recess configuration, the minimum recess configuration, the protrusion formation configuration, the modified configuration A, the modified configuration B, and the modified configuration Ax is also referred to as “modified configuration Cm2a”.
  • the configuration Cm3 in which the relationship between the depth L1 and the width L2 is “L1>L2” is all or one of the multiple recess configuration, the minimum recess configuration, the protrusion formation configuration, the modified configuration A, the modified configuration B, and the modified configuration Ax. may be applied to parts.
  • the configuration in which the configuration Cm3 is applied to all or part of the multiple recess configuration, the minimum recess configuration, the protrusion formation configuration, the modified configuration A, the modified configuration B, and the modified configuration Ax is also referred to as “modified configuration Cm3a”.
  • the configuration Cs1 in which the shape of the cross section of the depression V1 is a semicircle includes a multiple depression configuration, a minimum depression configuration, a projection formation configuration, a modified configuration A, a modified configuration B, a modified configuration Ax, a modified configuration Cm1a, a modified configuration Cm2a, and a modified configuration Cm2a. It may apply to all or part of configuration Cm3a.
  • configuration Cs1 applies to all or part of multiple-indentation configuration, minimal-indentation configuration, protrusion-forming configuration, variant configuration A, variant configuration B, variant configuration Ax, variant configuration Cm1a, variant configuration Cm2a and variant configuration Cm3a.
  • the modified configuration is also referred to as “modified configuration Cs1a”.
  • the configuration Cs2 in which the shape of the cross section of the recess V1 is triangular includes the multiple recess configuration, the minimum recess configuration, the protrusion formation configuration, the modified configuration A, the modified configuration B, the modified configuration Ax, the configuration Cm1, the configuration Cm2, the configuration Cm3, the modified configuration It may be applied to all or part of configuration Cm1a, variant configuration Cm2a and variant configuration Cm3a.
  • configuration Cs2 includes multiple-indentation configuration, indentation-minimum configuration, protrusion-forming configuration, variant configuration A, variant configuration B, variant configuration Ax, configuration Cm1, configuration Cm2, configuration Cm3, variant configuration Cm1a, variant configuration Cm2a, and variant A configuration applied to all or part of configuration Cm3a is also referred to as "modified configuration Cs2a.”
  • the configuration Cs3 in which the shape of the cross section of the recess V1 is a square includes the multiple recess configuration, the minimum recess configuration, the protrusion formation configuration, the modified configuration A, the modified configuration B, the modified configuration Ax, the configuration Cm1, the configuration Cm2, the configuration Cm3, and the modified configuration. It may be applied to all or part of configuration Cm1a, variant configuration Cm2a and variant configuration Cm3a.
  • configuration Cs3 includes multiple-indentation configuration, indentation-minimum configuration, protrusion-forming configuration, variant configuration A, variant configuration B, variant configuration Ax, configuration Cm1, configuration Cm2, configuration Cm3, variant configuration Cm1a, variant configuration Cm2a, and variant A configuration applied to all or part of configuration Cm3a is also referred to as "modified configuration Cs3a.”
  • the configuration Cs4 in which the cross-sectional shape of the depression V1 is a rhombus includes a multiple depression configuration, a minimum depression configuration, a protrusion formation configuration, a modified configuration A, a modified configuration B, a modified configuration Ax, a configuration Cm1, a configuration Cm2, a configuration Cm3, and a modified configuration. It may be applied to all or part of configuration Cm1a, variant configuration Cm2a and variant configuration Cm3a.
  • configuration Cs4 includes multiple-indentation configuration, indentation minimum configuration, protrusion-forming configuration, variant configuration A, variant configuration B, variant configuration Ax, configuration Cm1, configuration Cm2, configuration Cm3, variant configuration Cm1a, variant configuration Cm2a and variant A configuration applied to all or part of configuration Cm3a is also referred to as "modified configuration Cs4a.”
  • the semiconductor device 100 corresponding to the semiconductor module 202 included in the power conversion system of Embodiment 2 may have all or part of the plurality of configurations described above.
  • the plurality of configurations includes a multi-indentation configuration, a minimal indentation configuration, a protrusion formation configuration, a variant configuration A, a variant configuration B, a variant configuration Ax, a variant configuration Cm1a, a variant configuration Cm2a, a variant configuration Cm3a, a variant configuration Cs1a, a variant configuration Cs2a, A modified configuration Cs3a and a modified configuration Cs4a.
  • the present disclosure is effectively used for a semiconductor device having a die pad on which a semiconductor element or the like is mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

半導体素子S3は、ダイパッド2aの面2sに搭載されている。封止材11は、半導体素子S3、ダイパッド2a、絶縁層9およびヒートシンク10を封止する。絶縁層9は、ダイパッド2aとヒートシンク10との間に存在する。絶縁層9は、ダイパッド2aの面2rとヒートシンク10の面10sとに接触している。絶縁層9に接触している面10sを有するヒートシンク10の面10rは、封止材11から露出している。ヒートシンク10の面10rの周縁には、くぼみV1と、突起X1とが形成されている。

Description

半導体装置、電力変換装置、および、半導体装置の製造方法
 本開示は、封止材により部材が封止される構成を有する半導体装置、電力変換装置、および、半導体装置の製造方法に関する。
 パワー半導体装置が搭載された、産業機器、家電製品、情報端末等が普及しつつある。家電製品に搭載される、半導体モジュールとしてのパワー半導体装置については、当該パワー半導体装置の小型化が求められている。
 パワー半導体装置は高電圧および大電流を扱うため、当該パワー半導体装置の発熱量は大きい。したがって、パワー半導体装置に定まった容量の電流を通電させるためには、当該パワー半導体装置に発生した熱を当該パワー半導体装置の外部へ効率的に放散させるとともに、外部との電気的な絶縁性を保つ必要がある。
 このようなパワー半導体装置の構造としては、たとえば、リードフレームと、当該リードフレームにおける一方の面に実装された電子部品とが、封止材としてのモールド樹脂によって封止された封止構造が知られている。当該電子部品は、たとえば、パワー半導体素子である。当該モールド樹脂は、たとえば、エポキシ系の熱硬化性樹脂である。
 特許文献1には、半導体素子を、封止材としてのモールド樹脂で封止する当該封止構造を有するパワー半導体装置の構成(以下、「関連構成A」ともいう)が開示されている。
 さらに、パワー半導体装置には、リードフレームにおける上記の一方の面とは反対側の他方の面から熱を効率的に放散させることが求められている。当該一方の面は、電子部品が実装されている面である。また、パワー半導体装置には、リードフレームにおける他方の面と外部との電気的な絶縁性を確保することが求められている。
 このような要求に応えるため、リードフレームにおける他方の面に絶縁層を配置し、その絶縁層をモールド樹脂から露出させた構成を有するパワー半導体装置がある。当該絶縁層としては、たとえば、セラミック基板、または、エポキシ樹脂からなる熱硬化性樹脂層が適用されている。
 このようなパワー半導体装置では、モールド樹脂等の封止材をモールド金型内に注入する際に、電子部品が実装されたリードフレームと当該モールド金型との間に存在する隙間に封止材が流れ込み、樹脂バリが発生する可能性がある。当該隙間は、例えば、リードフレームの寸法公差等により生じたものである。
 そこで、たとえば、特許文献2では、樹脂バリの発生を抑制する構成(以下、「関連構成B」ともいう)が開示されている。関連構成Bは、半導体素子としての半導体チップを、封止材としてのモールド樹脂で封止する構成である。関連構成Bでは、リードフレームにおける他方の面に設けられた絶縁層は、熱可塑性樹脂で構成される。当該熱可塑性樹脂は、封止材としてのモールド樹脂であるエポキシ樹脂と化学結合する材料である。
国際公開第2019/216160号 特開2013-258354号公報
 関連構成A,Bのような、半導体素子を封止材で封止する構成では、高い放熱性が求められる。関連構成Bは、半導体素子としての半導体チップが発する熱が伝わる部材である絶縁層が、封止材としてのモールド樹脂から露出する構成である。そのため、関連構成Bの半導体装置の放熱性は、関連構成Aの半導体装置の放熱性より高い。
 ところで、関連構成Bの半導体装置の絶縁層は、熱伝導率が低い熱可塑性樹脂で構成される。そのため、関連構成Bの半導体装置の放熱性は、優れているとはいえない。
 本開示は、このような問題を解決するためになされたものであり、高い放熱性を有する半導体装置、当該半導体装置を適用した電力変換装置、および、当該半導体装置の製造方法を提供することを目的とする。
 上記目的を達成するために、本開示に係る半導体装置は、一方の面である第1面、および、他方の面である第2面を有するダイパッドと、ダイパッドの第1面に搭載された半導体素子と、一方の面である第3面、および、他方の面である第4面を有するヒートシンクと、ダイパッドとヒートシンクとの間に存在する絶縁層と、半導体素子、ダイパッド、絶縁層およびヒートシンクを封止する封止材とを備え、ダイパッドの第2面は、ダイパッドのうち、第1面と反対側の面であり、絶縁層は、ダイパッドの第2面とヒートシンクの第3面とに接触しており、ヒートシンクの第4面は、ヒートシンクのうち、第3面と反対側の面であり、絶縁層に接触している第3面を有するヒートシンクの第4面は、封止材から露出している露出面である。ヒートシンクの露出面の周縁には、くぼみと、突起とが形成されている。
 本開示に係る電力変換装置は、上述した半導体装置を有し、入力される電力を変換して出力する主変換回路と、主変換回路を制御する制御信号を主変換回路に出力する制御回路とを備える。
 本開示に係る半導体装置の製造方法は、キャビティと、キャビティに面する底面とを有するモールド金型を使用する。半導体装置は、一方の面である第1面、および、他方の面である第2面を有するダイパッドと、半導体素子と、一方の面である第3面、および、他方の面である第4面を有するヒートシンクと、絶縁層とを備え、ダイパッドの第2面は、ダイパッドのうち、第1面と反対側の面であり、ヒートシンクの第4面は、ヒートシンクのうち、第3面と反対側の面である。製造方法は、(a)ダイパッドの第1面に半導体素子を搭載する工程と、(b)ダイパッド、絶縁層およびヒートシンクの状態が封止対応状態になるように、ダイパッド、絶縁層およびヒートシンクを、モールド金型のキャビティに配置する工程と、(c)モールド金型のキャビティに封止材を注入する工程と備える。封止対応状態は、絶縁層がダイパッドとヒートシンクとの間に存在する状態であり、封止対応状態は、絶縁層が、ダイパッドの第2面とヒートシンクの第3面とに接触している状態であり、封止対応状態は、ヒートシンクの第4面が、モールド金型の底面に接触している状態であり、工程(c)は、工程(b)よりも後に行われ、工程(c)では、絶縁層に接触している第3面を有するヒートシンクの第4面が封止材から露出するように、モールド金型のキャビティに封止材が注入される。
 本開示に係る半導体装置によれば、半導体素子は、ダイパッドの第1面に搭載されている。封止材は、半導体素子、ダイパッド、絶縁層およびヒートシンクを封止する。絶縁層は、ダイパッドとヒートシンクとの間に存在する。絶縁層は、ダイパッドの第2面とヒートシンクの第3面とに接触している。絶縁層に接触している第3面を有するヒートシンクの第4面は、封止材から露出している。
 すなわち、半導体素子が搭載されたダイパッドに接触する絶縁層に、ヒートシンクが接触している。また、絶縁層に接触しているヒートシンクは、封止材から露出している。そのため、本開示の半導体装置は、ヒートシンクの作用により、絶縁層が封止材から露出している関連構成Bの半導体装置よりも、高い放熱性を有する。したがって、高い放熱性を有する半導体装置を提供することができる。
 また、本開示に係る電力変換装置は、上記の半導体装置を備える。これにより、高い放熱性を有する電力変換装置を得ることができる。
 本開示に係る半導体装置の製造方法によれば、絶縁層に接触している第3面を有するヒートシンクの第4面が封止材から露出するように、モールド金型のキャビティに封止材が注入される。これにより、高い放熱性を有する半導体装置を製造することができる。
 本開示の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1に係る半導体装置の平面図である。 実施の形態1に係る半導体装置の断面図である。 実施の形態1に係るリードフレームの構成を示す図である。 くぼみの構成を示す平面図である。 くぼみの構成を示す断面図である。 実施の形態1に係る半導体装置の製造方法のフローチャートである。 実施の形態1に係る半導体装置の製造方法を説明するための断面図である。 実施の形態1に係る半導体装置の製造方法を説明するための断面図である。 実施の形態1に係る半導体装置の製造方法を説明するための断面図である。 実施の形態1に係る半導体装置の製造方法を説明するための断面図である。 実施の形態1に係る半導体装置の構成を示す図である。 断面視における、くぼみの別の構成を示す図である。 平面視における、くぼみの別の構成を示す図である。 平面視における、くぼみの別の構成を示す図である。 変形例1の構成を説明するための図である。 変形例2の構成を説明するための図である。 実施の形態2に係る電力変換装置を適用した電力変換システムの構成を示すブロック図である。 比較例の構成において発生する樹脂バリの一例を示す図である。
 以下、図面を参照しつつ、実施の形態について説明する。以下の図面では、同一の構成要素には同一の符号を付してある。同一の符号が付されている構成要素の名称および機能は同じである。したがって、同一の符号が付されている構成要素の一部についての詳細な説明を省略する場合がある。
 なお、実施の形態において例示される構成要素の寸法、材質、形状、当該構成要素の相対配置などは、装置の構成、各種条件等により適宜変更されてもよい。また、図における構成要素の寸法は、実際の寸法と異なる場合がある。
 <実施の形態1>
 (半導体装置の構成)
 図1は、実施の形態1に係る半導体装置100の平面図である。半導体装置100は、例えば、高電圧で動作するパワー半導体装置である。半導体装置100のパッケージ構造は、たとえば、DIP(Dual In-line Package)構造である。
 図1において、X方向、Y方向およびZ方向は、互いに直交する。以下の図に示されるX方向、Y方向およびZ方向も、互いに直交する。以下においては、X方向と、当該X方向の反対の方向(-X方向)とを含む方向を「X軸方向」ともいう。また、以下においては、Y方向と、当該Y方向の反対の方向(-Y方向)とを含む方向を「Y軸方向」ともいう。また、以下においては、Z方向と、当該Z方向の反対の方向(-Z方向)とを含む方向を「Z軸方向」ともいう。
 また、以下においては、X軸方向およびY軸方向を含む平面を、「XY面」ともいう。また、以下においては、X軸方向およびZ軸方向を含む平面を、「XZ面」ともいう。また、以下においては、Y軸方向およびZ軸方向を含む平面を、「YZ面」ともいう。
 図2は、図1のXZ面における、半導体装置100の断面図である。図2では、半導体装置100の構成を分かり易くするために、後述の封止材11については、当該封止材11の輪郭のみを示している。
 半導体装置100は、図3のリードフレーム2を備える。図3は、実施の形態1に係るリードフレーム2の構成を示す図である。図3に示すように、リードフレーム2は、ダイパッド2aと、吊りリード2nと、リード2cと、制御リード2bとを含む。すなわち、図1および図2に示すように、半導体装置100は、ダイパッド2aと、吊りリード2nと、リード2cと、制御リード2bとを含む。リード2cは、例えば、リード端子としてのパワーリードである。
 ダイパッド2aの形状は、板状である。平面視における、ダイパッド2aの形状は、矩形である。ダイパッド2aは、一方の面である面2s、および、他方の面である面2rを有する。面2sは、第1面である。面2rは、ダイパッド2aのうち、面2sと反対側の面である。面2rは、第2面である。面2s,2rは、平面である。
 ダイパッド2aは、吊りリード2nにより、リード2cと接合されている。
 半導体装置100は、さらに、半導体素子S3と、制御用半導体素子S6と、絶縁層9と、ヒートシンク10と、封止材11とを備える。
 半導体素子S3は、例えば、高電圧で動作するパワー半導体素子である。なお、半導体素子S3は、パワー半導体素子に限定されず、たとえば、低電圧で動作する半導体素子であってもよい。
 ダイパッド2aの面2sには、半導体素子S3が搭載されている。具体的には、ダイパッド2aの面2sには、接合材4によって、半導体素子S3が接合されている。接合材4は、たとえば、はんだである。また、制御リード2bの表面には、接合材8によって、制御用半導体素子S6が接合されている。接合材8は、たとえば、はんだである。
 制御用半導体素子S6には、2本のワイヤW7が接続されている。各ワイヤW7は、信号伝達用ワイヤである。以下においては、2本のワイヤW7を、それぞれ、ワイヤW7aおよびワイヤW7bともいう。
 半導体素子S3と制御用半導体素子S6とが、ワイヤW7aによって電気的に接続されている。また、制御用半導体素子S6と制御リード2bとが、ワイヤW7bによって電気的に接続されている。また、半導体素子S3は、ワイヤW5によってリード2cと電気的に接続されている。
 ヒートシンク10は、一方の面である面10s、および、他方の面である面10rを有する。面10sは、第3面である。面10rは、第4面である。面10rは、ヒートシンク10のうち、面10sと反対側の面である。
 ダイパッド2aの面2rには、絶縁層9およびヒートシンク10の順で、当該絶縁層9および当該ヒートシンク10が設けられている。絶縁層9は、ダイパッド2aとヒートシンク10との間に存在する。絶縁層9は、ダイパッド2aの面2rとヒートシンク10の面10sとに接触している。
 封止材11は、たとえば、モールド樹脂である。封止材11は、半導体素子S3、制御用半導体素子S6、ワイヤW5,W7、ダイパッド2a、吊りリード2n、リード2c、絶縁層9およびヒートシンク10を封止する。
 封止材11には、2つのネジ穴H1が形成されている。2つのネジ穴H1については、後述する。また、封止材11は、面11sおよび面11rを有する。面11rは、封止材11のうち、面11sと反対側の面である。
 リード2cは、封止材11における一方の側部から、X方向へ突出している。また、封止材11の外部に存在するリード2cの先端部が、Z方向と平行になるように、当該リード2cは屈曲している。
 制御リード2bは、封止材11における他方の側部から、-X方向へ突出している。また、封止材11の外部に存在する制御リード2bの先端部が、Z方向と平行になるように、当該制御リード2bは屈曲している。
 絶縁層9に接触している面10sを有するヒートシンク10の面10rは、封止材11から露出している。具体的には、ヒートシンク10の面10rは、封止材11の面11rから露出している。以下においては、封止材11から露出している面10rを、「露出面」ともいう。露出面である面10rの形状は、多角形としての矩形である。
 次に、各部の構成について具体的に説明する。リードフレーム2の材料には、たとえば、銅(Cu)およびアルミニウム(Al)のいずれかが適用される。また、リードフレーム2の材料としては、銅(Cu)およびアルミニウム(Al)で構成される合金が適用されてもよい。
 リードフレーム2の表面には、酸化防止のために、ニッケル(Ni)、銀(Ag)または金(Au)を使用しためっき処理が施されてもよい。すなわち、リードフレーム2の表面には、めっき膜としての、ニッケルめっき膜、銀めっき膜または金めっき膜が形成されてもよい。めっき膜は、リードフレーム2において、部分的に形成されてもよい。
 以下においては、めっき膜の形成の対象となる領域を、「めっき対象領域」ともいう。めっき対象領域は、表面酸化の影響を受けやすい領域である。めっき対象領域は、例えば、ダイパッド2aの面2sのうち、接合材4により、半導体素子S3が接合される領域の周辺である。また、めっき対象領域は、例えば、制御リード2bの表面のうち、接合材8により、制御用半導体素子S6が接合される領域の周辺である。
 また、めっき対象領域は、例えば、制御リード2bの表面のうち、ワイヤW7が接続される領域の周辺である。また、めっき対象領域は、例えば、リード2cの表面のうち、ワイヤW5が接続される領域の周辺である。
 半導体素子S3は、たとえば、スイッチング素子または整流素子として機能する素子である。当該スイッチング素子は、たとえば、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)等である。当該整流素子は、ダイオード素子である。
 半導体素子S3を構成する材料は、たとえば、シリコン(Si)である。なお、半導体素子S3を構成する材料は、シリコンに限定されず、たとえば、炭化珪素(SiC)、窒化ガリウム(GaN)、ダイヤモンド(C)等のワイドバンドギャップ半導体材料であってもよい。ワイドバンドギャップ半導体材料は、シリコンのバンドギャップよりも広いバンドギャップを有する材料である。ワイドバンドギャップ半導体材料で構成される半導体素子S3は、大電流を使用した動作、高温環境下における動作等を行うことが可能になる。半導体装置100における半導体素子S3を構成する材料は、ワイドバンドギャップ半導体材料であることが好ましい。
 また、制御リード2bの表面には、制御用半導体素子S6の代わりに、たとえば、抵抗素子、コンデンサ素子等の電子部品が搭載されてもよい。当該電子部品が搭載された半導体装置100は、いわゆるIPM(Intelligent Power Module)と称される。
 ワイヤW5,W7の各々を構成する材料は、アルミニウム(Al)、銅(Cu)、金(Au)、銀(Ag)等であってもよい。また、ワイヤW5,W7の各々を構成する材料は、合金であってもよい。当該合金は、金属としてのアルミニウム(Al)、銅(Cu)、金(Au)および銀(Ag)のうち、2つ以上の金属で構成される。また、ワイヤW5,W7の各々を構成する材料は、ニッケル(Ni)、鉄(Fe)等の金属元素が添加された合金であってもよい。
 ワイヤW5,W7の各々の形状は、例えば、細線状、円柱等である。ワイヤW5,W7の各々の断面の形状は、例えば、円である。当該円の直径は、例えば、10μm以上であって、かつ、500μm以下である。
 ワイヤW5,W7は、ワイヤボンディング工程において、ボールボンド、ウェッジボンド等の既存の方法によって接合される。ワイヤW5を構成する材料が、ワイヤW7を構成する材料と同じである場合、ワイヤW5,W7を、同じワイヤボンディング工程において接合することができる。
 ワイヤW5,W7のうちワイヤW5は、主配線である。そのため、ワイヤW5は、ワイヤW7より太い。なお、ワイヤW5の太さは、ワイヤW7の太さと同じ太さであってもよい。また、ワイヤW5は、ワイヤW7より細くてもよい。
 たとえば、半導体装置100が、ディスクリート半導体装置である場合、ワイヤW5の太さは、ワイヤW7の太さと同じ太さである。また、半導体装置100に、IC(Integrated Circuit)またはLSI(Large Scale Insulator)等の複雑な構成を有する半導体素子が搭載される場合、ワイヤW5の太さは、ワイヤW7の太さと同じ太さであってもよい。
 また、封止材11は、複合材であってもよい。当該複合材は、たとえば、主成分として、フィラー等の充填材と、樹脂とを含む材料である。当該充填材は、封止材11の熱膨張率または機械的性質を調整するために使用される。当該複合材に含まれる当該樹脂は、たとえば、電気抵抗率の高い熱硬化性の樹脂である。当該樹脂は、たとえば、エポキシ樹脂である。封止材11は、高い絶縁性、良好な成型性および信頼性を有していることが好ましい。
 封止材11は、たとえば、トランスファーモールド法によって形成される。封止材11は、リード2cの先端部、および、制御リード2bの先端部が封止材11から露出するように、リードフレーム2の一部を封止している。また、封止材11は、半導体素子S3、制御用半導体素子S6、ワイヤW5,W7、ダイパッド2a、吊りリード2n、リード2c、絶縁層9、ヒートシンク10を封止している。半導体装置100では、封止材11から露出している、リード2cの先端部、および、制御リード2bの先端部が、図示しない他の機器等と電気的に接続される。
 ヒートシンク10の面10rは、封止材11から露出している。ヒートシンク10のうち、面10r以外の表面は、封止材11により封止されている。すなわち、ヒートシンク10のうち、面10r以外の表面は、封止材11から露出していない。
 絶縁層9を構成する材料は、放熱性および絶縁性の高い材料である。絶縁層9は、たとえば、熱伝導性絶縁樹脂シートである。また、絶縁層9は、ダイパッド2aの面2rに配置される。絶縁層9は、例えば、印刷されたシート、転写されたシートまたは成形されたシートである。平面視における、絶縁層9の形状は、矩形である。平面視における絶縁層9のサイズは、平面視におけるダイパッド2aのサイズ以下のサイズである。
 絶縁層9の厚さは、当該絶縁層9の放熱性を考慮して設定される。絶縁層9の厚さは、ダイパッド2aの厚さよりも薄い。たとえば、ダイパッド2aの厚さが、200μmから500μmの範囲の厚さである場合、絶縁層9の厚さは、約200μm以下であることが好ましい。
 絶縁層9に対して、高い放熱性および高い絶縁性が求められる場合、絶縁層9は、導体層とセラミック板とからなる絶縁基板であってもよい。当該導体層を構成する材料は、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)等の金属である。当該導体層の表面には、金(Au)、銀(Ag)、ニッケル(Ni)等のめっきが施されてもよい。当該セラミック板を構成する材料は、例えば、セラミック材、ガラスセラミック材である。当該セラミック材は、例えば、アルミナ、窒化珪素、窒化アルミニウム等である。
 本実施の形態では、絶縁層9の放熱性を高めるために、絶縁層9にヒートシンク10が接触する。
 ヒートシンク10を構成する材料は、例えば、合金である。当該合金は、たとえば、アルミニウム(Al)に、金属としてのマグネシウム(Mg)およびマンガン(Mn)の少なくともいずれかの金属が添加されたものである。
 なお、ヒートシンク10を構成する材料は、例えば、合金に限定されず、合金と異なる金属であってもよい。ヒートシンク10を構成する材料は、例えば、銅(Cu)であってもよい。また、ヒートシンク10は、アルミニウム(Al)で構成された板であってもよい。
 また、ヒートシンク10を構成する材料は、金属以外の材料であってもよい。ヒートシンク10を構成する材料は、例えば、熱伝導率が高い無機物または有機物であってもよい。
 ヒートシンク10の面10r(すなわち、露出面)には、くぼみV1が形成されている。図4および図5は、くぼみV1の構成を説明するための図である。図4は、くぼみV1の構成を示す平面図である。図5は、くぼみV1の構成を示す断面図である。
 図4に示すように、ヒートシンク10における、露出面である面10rの全周には、くぼみV1が形成されている。つまり、ヒートシンク10における、露出面である面10rの周縁には、くぼみV1が形成されている。くぼみV1は、ヒートシンク10の面10r(すなわち、露出面)の周縁に沿って延びている。すなわち、くぼみV1は、ヒートシンク10の端部に形成されている。平面視におけるくぼみV1の形状は、閉ループ状である。また、平面視におけるくぼみV1の形状は、矩形である。
 以下においては、ヒートシンク10の面10rにおいてくぼみV1が延びている方向を、「くぼみ延在方向」ともいう。図4におけるくぼみ延在方向は、X軸方向およびY軸方向である。
 閉ループ状のくぼみV1は、くぼみV1aと、くぼみV1bと、くぼみV1cと、くぼみV1dとを含む。くぼみV1a、くぼみV1b、くぼみV1cおよびくぼみV1dの各々は、くぼみV1の一部である。すなわち、くぼみV1a、くぼみV1b、くぼみV1cおよびくぼみV1dの各々は、くぼみV1である。
 図4において、くぼみV1aおよびくぼみV1cの各々は、Y軸方向に延びている。また、図4において、くぼみV1bおよびくぼみV1dの各々は、X軸方向に延びている。
 図5に示すように、断面視におけるくぼみV1の形状は、半円である。具体的には、くぼみV1の深さ方向に沿った、当該くぼみV1の断面の形状は、半円である。図5において、くぼみV1の深さ方向は、Z方向である。
 以下においては、くぼみV1の深さを、「深さL1」ともいう。また、以下においては、露出面である面10rにおける、くぼみV1の幅を、「幅L2」ともいう。
 ヒートシンク10は、図示されない放熱部材に接続される。当該放熱部材は、放熱を行う機能を有する部材である。放熱部材は、たとえば、放熱フィンを有する部材である。ヒートシンク10における、露出面である面10rは、放熱部材と接続される接続面となる。以下においては、ヒートシンク10の面10rが、放熱部材と接続された状態を、「放熱部材接続状態」ともいう。
 なお、ヒートシンク10の面10rを、放熱部材に接続しない構成(以下、「放熱部材非接続構成」ともいう)としてもよい。
 ヒートシンク10を、製造する方法および加工する方法は、任意の方法を用いることができる。ヒートシンク10を製造する方法は、たとえば、金型を使用した鍛造加工である。また、ヒートシンク10を製造する方法は、たとえば、加工対象物に対して行われる切削加工である。
 また、くぼみV1を形成する方法も任意の方法を用いることができる。くぼみV1は、例えば、金型を使用した鍛造加工により、ヒートシンク10の製造とともに、形成されてもよい。また、製造されたヒートシンク10の面10rに対して、切削加工が行われることにより、当該面10rにくぼみV1が形成されてもよい。
 以下においては、露出面である面10rのうち、当該面10rの周縁以外の領域を、「露出面非周縁領域」ともいう。露出面非周縁領域は、例えば、図4のヒートシンク10の面10rのうち、当該面10rの周縁以外の領域である。図2に示される半導体素子S3は、ヒートシンク10の露出面非周縁領域の上方に配置される。すなわち、半導体素子S3の下方には、ヒートシンク10の露出面非周縁領域が存在する。
 上記のように、実施の形態1に係る半導体装置100は構成されている。
 (製造方法)
 次に、図3、図6、図7、図8、図9および図10を用いて、半導体装置100の製造方法の一例について説明する。図3、図7、図8、図9および図10は、実施の形態1に係る半導体装置100の製造方法を説明するための断面図である。
 以下においては、半導体装置100の製造方法を、「製造方法Pr」ともいう。製造方法Prは、後述の金型51を使用する。図6は、実施の形態1に係る製造方法Prのフローチャートである。図6では、製造方法Prの複数の工程に含まれる、主要な工程のみを示している。
 製造方法Prでは、まず、初期工程が行われる(ステップS110)。初期工程では、図3のリードフレーム2が用意される。リードフレーム2は、ダイパッド2aと、吊りリード2nと、リード2cと、制御リード2bとを含む。リード2cおよび制御リード2bの各々は屈曲している。
 具体的には、初期工程では、板状部材に、公知の手法による加工が施されることにより、リードフレーム2が形成される。板状部材は、たとえば、銅(Cu)またはアルミニウム(Al)により構成される。
 リードフレーム2には、複数のリード2cと複数の制御リード2bとが設けられている。複数のリード2cは、図示されないタイバーによって互いに繋がっている。また、複数の制御リード2bも、図示されないタイバーによって互いに繋がっている。
 次に、素子搭載工程が行われる(ステップS120)。素子搭載工程は、リードフレーム2に含まれる制御リード2bの表面に制御用半導体素子S6を搭載する工程である。具体的には、素子搭載工程では、図7に示すように、制御リード2bの表面に、接合材8によって、制御用半導体素子S6が接合される。前述したように、接合材8は、たとえば、はんだである。
 なお、接合材8は、はんだに限定されない。接合材8は、導電性接着材または焼結体であってもよい。当該焼結体は、たとえば、金属粒子としての銀(Ag)、銅(Cu)、金(Au)およびニッケル(Ni)のいずれかの金属粒子からなる。また、接合材8は、混合材であってもよい。当該混合材は、金属粒子としての銀(Ag)、銅(Cu)、金(Au)およびニッケル(Ni)のうち、2つ以上の金属粒子が混合した部材である。
 また、接合材8は、さらに、コア部材が被覆材で被覆された金属粒子で構成されてもよい。当該コア部材は、金属粒子としての銀(Ag)、銅(Cu)、金(Au)およびニッケル(Ni)のいずれかの金属粒子である。当該被覆材は、コア部材と異なる金属粒子である。当該被覆材は、金属粒子としての銀(Ag)、銅(Cu)、金(Au)およびニッケル(Ni)のいずれかの金属粒子である。
 また、接合材8は、低応力効果を有する金属粒子と樹脂とを含むハイブリッド型の焼結体であってもよい。当該ハイブリッド型の焼結体は、例えば、焼結体にエポキシ樹脂を含有させることにより得られる。
 接合材8を構成する材料は、たとえば、制御用半導体素子S6の裏面の材質を考慮して選定される。制御用半導体素子S6の裏面は、接合材8によって、制御リード2bの表面に接合される面である。当該制御用半導体素子S6の裏面にめっきが存在する場合、当該裏面の材質は、たとえば、めっきの種類である。
 また、接合材8を構成する材料は、たとえば、制御リード2bの表面の状態を考慮して選定される。接合材8を構成する材料は、たとえば、制御リード2bの表面にめっきが存在するか否かに基づいて選定される。
 また、素子搭載工程は、リードフレーム2に含まれるダイパッド2aの面2sに半導体素子S3を搭載する工程でもある。具体的には、素子搭載工程では、図8に示すように、ダイパッド2aの面2sに、接合材4によって、半導体素子S3が接合される。前述したように、接合材4は、たとえば、はんだである。
 なお、接合材4は、はんだに限定されない。接合材8は、焼結体であってもよい。当該焼結体は、たとえば、金属粒子としての銀(Ag)、銅(Cu)、金(Au)およびニッケル(Ni)のいずれかの金属粒子からなる。当該焼結体の熱伝導率は、はんだの熱伝導率のk倍の熱伝導率である。「k」は、例えば、3から5の範囲に含まれる実数である。
 また、接合材4は、混合材であってもよい。当該混合材は、金属粒子としての銀(Ag)、銅(Cu)、金(Au)およびニッケル(Ni)のうち、2つ以上の金属粒子が混合した部材である。
 また、接合材4は、さらに、コア部材が被覆材で被覆された金属粒子で構成されてもよい。当該コア部材は、金属粒子としての銀(Ag)、銅(Cu)、金(Au)およびニッケル(Ni)のいずれかの金属粒子である。当該被覆材は、コア部材と異なる金属粒子である。当該被覆材は、金属粒子としての銀(Ag)、銅(Cu)、金(Au)およびニッケル(Ni)のいずれかの金属粒子である。
 また、接合材4は、低応力効果を有する金属粒子と樹脂とを含むハイブリッド型の焼結体であってもよい。当該ハイブリッド型の焼結体は、例えば、焼結体にエポキシ樹脂を含有させることにより得られる。
 接合材4を構成する材料は、たとえば、半導体素子S3の裏面の材質を考慮して選定される。半導体素子S3の裏面は、接合材4によって、ダイパッド2aの面2sに接合される面である。当該半導体素子S3の裏面にめっきが存在する場合、当該裏面の材質は、たとえば、めっきの種類である。
 また、接合材4を構成する材料は、たとえば、リード2cの表面の状態を考慮して選定される。接合材4を構成する材料は、たとえば、リード2cの表面にめっきが存在するか否かに基づいて選定される。
 上記の素子搭載工程により、ダイパッド2aおよび制御リード2bを含むリードフレーム2に、半導体素子S3および制御用半導体素子S6が搭載される。
 次に、ワイヤボンディング工程が行われる。ワイヤボンディング工程では、図9に示すように、半導体素子S3とリード2cとが、ワイヤW5によって電気的に接続される。また、半導体素子S3と制御用半導体素子S6とが、ワイヤW7aによって電気的に接続される。さらに、制御用半導体素子S6と制御リード2bとが、ワイヤW7bによって電気的に接続される。
 具体的には、ワイヤボンディング工程では、ワイヤW5の一方の端部は、半導体素子S3における、たとえば、図示されない電極に接合される。当該電極は、エミッタ電極、ソース電極、アノード電極等である。ワイヤW5の他方の端部は、リード2cに接合される。ワイヤW7aの一方の端部は、半導体素子S3における、図示されないゲートパッドに接合される。ワイヤW7aの他方の端部は、制御用半導体素子S6に接合される。ワイヤW7bの一方の端部は、制御用半導体素子S6に接合される。ワイヤW7bの他方の端部は、制御リード2bに接合される。ワイヤW5,W7a,W7bを接合する方法は、たとえば、ボールボンディング、ウェッジボンディング等である。
 ワイヤW5およびワイヤW7が同一の種類のワイヤである場合、ワイヤW5およびワイヤW7を、ワイヤボンディング工程における、同じ工程において接合することができる。
 なお、半導体素子S3におけるゲートパッドのサイズと半導体素子S3に流す電流容量とが考慮された、最適なワイヤW5と最適なワイヤW7とが使用されることが好ましい。また、ワイヤW5およびワイヤW7の接合の順序は、特に制約されない。
 以下においては、ワイヤボンディング工程が行われた後のリードフレーム2の状態を、「素子接続状態」ともいう。素子接続状態のリードフレーム2は、図9に示されるリードフレーム2である。素子接続状態のリードフレーム2は、半導体素子S3が搭載されたダイパッド2aと、制御用半導体素子S6が搭載された制御リード2bとを含む。すなわち、素子接続状態のリードフレーム2には、半導体素子S3および制御用半導体素子S6が搭載されている。
 また、素子接続状態のリードフレーム2は、ワイヤW5,W7a,W7bが接合されているリードフレーム2である。素子接続状態のリードフレーム2では、例えば、半導体素子S3にワイヤW5,W7aが接合されており、制御用半導体素子S6にワイヤW7a,W7bが接合されている。
 ここで、封止材により部材の封止を行うために使用される金型51について説明する。図10は、金型51を示す。金型51は、トランスファーモールド法により、部材の封止を行うためのモールド金型である。金型51は、トランスファーモールド金型である。金型51は、下金型51aと上金型51bとを含む。
 金型51の状態には、封止可能状態と、封止不能状態とが存在する。封止可能状態は、封止材により部材を封止可能な状態である。図10には、一例として、封止可能状態の金型51が示される。また、図10には、図9の素子接続状態のリードフレーム2の、YZ面における構成が示されている。
 封止可能状態の金型51では、上金型51bが下金型51aと対向している。また、封止可能状態の金型51は、上金型51bおよび下金型51aで規定されるキャビティCv1を有する。また、封止可能状態の金型51は、樹脂注入ゲート55を有する。
 以下においては、流動性を有する封止材を、「封止材11n」ともいう。封止材11は、硬化した封止材11nである。樹脂注入ゲート55は、キャビティCv1に封止材11nを注入するための穴である。
 封止不能状態は、封止材により部材を封止できない状態である。封止不能状態の金型51では、上金型51bと下金型51aとが分離している。
 また、下金型51aは、底面Sb1を有する。封止可能状態の金型51は、キャビティCv1に面する底面Sb1を有する。
 以下においては、封止材により部材の封止を行うための状況における、ダイパッド2a、絶縁層9およびヒートシンク10の状態を、「封止対応状態」ともいう。また、以下においては、封止材により部材の封止を行うための状況において、当該封止材を流動させる方向を、「方向Dr1」ともいう。
 次に、配置工程が行われる(ステップS130)。配置工程は、要約すれば、ダイパッド2a、絶縁層9およびヒートシンク10の状態が封止対応状態になるように、当該ダイパッド2a、当該絶縁層9および当該ヒートシンク10を、封止可能状態の金型51のキャビティCv1に配置する工程である。
 封止対応状態は、絶縁層9がダイパッド2aとヒートシンク10との間に存在する状態である。また、封止対応状態は、絶縁層9が、ダイパッド2aの面2rとヒートシンク10の面10sとに接触している状態である。また、封止対応状態は、ヒートシンク10の面10rが、金型51の底面Sb1に接触している状態である。
 配置工程で使用されるヒートシンク10の面10rには、図4に示すように、くぼみV1が形成されている。前述したように、ヒートシンク10の面10rにおいてくぼみV1が延びている方向は、くぼみ延在方向である。図4におけるくぼみ延在方向は、X軸方向およびY軸方向である。
 具体的には、配置工程では、まず、封止不能状態の金型51における下金型51aが用意される。次に、下金型51aの底面Sb1にヒートシンク10の面10rが接触するように、当該ヒートシンク10が配置される。また、ヒートシンク10の面10rに形成された、くぼみV1であるくぼみV1bのくぼみ延在方向が方向Dr1と交差するように、ヒートシンク10は配置される。
 具体的には、くぼみV1であるくぼみV1bのくぼみ延在方向が方向Dr1と直交するように、ヒートシンク10は配置される。「くぼみ延在方向が方向Dr1と直交する」という表現は、「くぼみ延在方向が方向Dr1とほぼ直交する」という意味も含む。
 次に、ヒートシンク10の面10sに絶縁層9が配置される。絶縁層9は、例えば、印刷されたシート、転写されたシートまたは成形されたシートである。絶縁層9が配置される位置は、仮に、ダイパッド2aが配置されたと仮定した状況において、当該ダイパッド2aの下方の位置である。
 ヒートシンク10および絶縁層9は、個別に、下金型51aに配置されることに限定されない。例えば、ヒートシンク10および絶縁層9が一体化された状態で、当該ヒートシンク10および当該絶縁層9が下金型51aに配置されてもよい。
 次に、図9の素子接続状態のリードフレーム2に含まれるダイパッド2aの面2rが絶縁層9に接触するように、当該素子接続状態のリードフレーム2が下金型51aに載置される。前述したように、素子接続状態のリードフレーム2は、半導体素子S3が搭載されたダイパッド2aと、制御用半導体素子S6が搭載された制御リード2bとを含む。すなわち、素子接続状態のリードフレーム2には、半導体素子S3および制御用半導体素子S6が搭載されている。
 次に、金型51の状態が、封止不能状態から封止可能状態に移行するように、上金型51bが配置される。具体的には、上金型51bが下金型51aと対向するように、上金型51bが配置される。これにより、封止可能状態の金型51のキャビティCv1に、リードフレーム2に含まれるダイパッド2aおよび制御リード2bが収容される。その結果、ダイパッド2a、絶縁層9およびヒートシンク10の状態は、前述の封止対応状態となる。以上のように、配置工程が行われる。
 配置工程が行われた後、封止工程が行われる(ステップS140)。すなわち、封止工程は、配置工程よりも後に行われる。封止工程は、封止可能状態の金型51のキャビティCv1に封止材11nを注入する工程である。
 ここで、ヒートシンク10の面10rは、金型51の底面Sb1に接触している。そのため、封止工程では、絶縁層9に接触している面10sを有するヒートシンク10の面10rが封止材11nから露出するように、封止可能状態の金型51のキャビティCv1に当該封止材11nが注入される。
 具体的には、封止工程では、封止材11nが樹脂注入ゲート55からキャビティCv1に向けて流動し、かつ、当該封止材11nが特定方向である方向Dr1へ流動するように、樹脂注入ゲート55に当該封止材11nが注入される。すなわち、封止工程では、封止材11nが方向Dr1へ流動するように、金型51のキャビティCv1に当該封止材11nが注入される。方向Dr1は、Y方向である。これにより、封止材11nは、方向Dr1またはほぼ方向Dr1へ流動する。
 前述したように、配置工程では、ヒートシンク10の面10rに形成された、くぼみV1であるくぼみV1bのくぼみ延在方向が方向Dr1と交差するように、ヒートシンク10は配置される。そのため、封止工程が行われる際に、ヒートシンク10の面10rに形成された、くぼみV1であるくぼみV1bのくぼみ延在方向が方向Dr1と交差するように、ヒートシンク10は配置されている。「くぼみ延在方向が方向Dr1と交差する」とは、具体的には、「くぼみ延在方向が方向Dr1と直交する」ということである。
 封止材11nが、ダイパッド2aに到達すると、方向Dr1に流動する封止材11nの流動力の一部が、方向Dr2にも加わる。そのため、封止材11nは、ダイパッド2aを、下金型51aの底面Sb1側へ付勢する。
 ダイパッド2aが下金型51aの底面Sb1側に付勢されることにより、絶縁層9およびヒートシンク10が当該底面Sb1側に付勢される。そのため、ヒートシンク10の面10rは、下金型51aの底面Sb1に密着する。したがって、封止材11nが、ヒートシンク10の面10rと、下金型51aの底面Sb1との間に流れ込にくくなる。
 ところで、ヒートシンク10の面10rと下金型51aの底面Sb1との間には、わずかな隙間(以下、「隙間Gp」ともいう)が存在する。隙間Gpは、例えば、ヒートシンク10の寸法公差等により、生じたものである。
 封止材11nがキャビティCv1に充填されることにより、素子接続状態のリードフレーム2に搭載されている半導体素子S3および制御用半導体素子S6が封止材11nにより封止され、かつ、絶縁層9およびヒートシンク10も封止材11nにより封止される。
 封止材11nがキャビティCv1に充填された後、当該封止材11nは硬化する。当該封止材11nが硬化すると、当該封止材11nは封止材11になる。例えば、封止材11nの温度が低下することにより、封止材11nは硬化する。これにより、リードフレーム2および当該リードフレーム2に搭載されている部材は、硬化した封止材11nである封止材11により封止される。リードフレーム2に搭載されている部材は、例えば、半導体素子S3、制御用半導体素子S6等である。
 また、硬化した封止材11は、封止可能状態の金型51の内壁に接触している。封止可能状態の金型51の内壁は、当該金型51のうち、キャビティCv1に面する部分である。以上のように、封止工程が行われる。
 以下においては、封止材11によりリードフレーム2が封止されている状況における、当該リードフレーム2の状態を、「封止状態」ともいう。ここで、封止状態のリードフレーム2の構成を、図11を用いて説明する。
 図11は、実施の形態1に係る半導体装置100の構成を示す図である。図11では、半導体装置100の構成を分かり易くするために、封止材11については、当該封止材11の輪郭のみを示している。図11の半導体装置100は、図2の半導体装置100の、YZ面における構成が示されている。
 封止状態のリードフレーム2の構成は、図11の半導体装置100に、例えば、図示されない不要部がさらに追加されている構成である。当該不要部は、例えば、ランナーである。
 封止状態のリードフレーム2は、前述の封止工程が行われることにより、得られる。封止状態のリードフレーム2では、封止材11により、半導体素子S3、制御用半導体素子S6、ワイヤW5,W7、ダイパッド2a、リード2c、絶縁層9、ヒートシンク10等が封止されている。
 次に、取り外し工程が行われる(ステップS150)。取り外し工程では、金型51の状態が、封止可能状態から封止不能状態に移行するように、上金型51bが取り外される。
 次に、封止状態のリードフレーム2が下金型51aから取り出される。取り出された封止状態のリードフレーム2の構成は、図11の半導体装置100に、例えば、図示されない不要部がさらに追加されている構成である。当該不要部は、例えば、ランナーである。ランナーは、例えば、樹脂注入ゲート55内に存在していた封止材で生成される部材である。以上のように、取り外し工程が行われる。
 次に、仕上げ工程が行われる。仕上げ工程では、封止状態のリードフレーム2に対し、仕上げ処理が行われる。仕上げ処理では、図示されない金型プレスを用いて、複数のリード2cを互いに繋いでいる、図示されないタイバーが切断される。これにより、各リード2cが、独立したリード2cとして形成される。
 また、仕上げ処理では、金型プレスを用いて、複数の制御リード2bを互いに繋いでいる、図示されないタイバーが切断される。これにより、各制御リード2bが、独立した制御リード2bとして形成される。また、仕上げ処理では、ランナー等の不要部も除去される。
 以上により、半導体装置100が完成する。完成した半導体装置100は、図11の半導体装置100である。完成した半導体装置100の封止材11の表面には、ゲート痕M1が存在する。ゲート痕M1は、前述のランナーが除去されたことにより生じたものである。そのため、ゲート痕M1が存在する、封止材11の表面は、前述の取り外し工程が行われる直前に、封止可能状態の金型51の内壁に接触していた封止材11の表面よりも、粗い。
 したがって、完成した半導体装置100の封止材11の表面に存在するゲート痕M1により、封止工程において使用された樹脂注入ゲート55の位置を把握することができる。すなわち、完成した半導体装置100の外観から、封止工程において使用された樹脂注入ゲート55の位置を把握することができる。
 前述の製造方法Prでは、屈曲したリード2c、および、屈曲した制御リード2bを使用して半導体装置100を製造する処理を説明したがこれに限定されない。製造方法Prでは、屈曲していないリード2c、および、屈曲していない制御リード2bを使用して半導体装置100を製造した後に、リード2cおよび制御リード2bの各々を屈曲させてもよい。
 半導体装置100に含まれるリード2cおよび制御リード2bの各々が屈曲していない当該半導体装置100を完成品としてもよい。なお、半導体装置100のパッケージ構造は、DIP構造に限定されず、SOP(Small Outline Package)構造であってもよい。
 上述した半導体装置100では、ヒートシンク10の面10r(すなわち、露出面)に形成されているくぼみV1によって、半導体装置100に樹脂バリが発生することを抑制することができる、このことについて説明する。
 ここで、本実施の形態の比較の対象となる比較例について説明する。以下においては、比較例に係る半導体装置を、「半導体装置N1」ともいう。半導体装置N1は、半導体装置100と比較して、ヒートシンク10の代わりにヒートシンク10nを含む点が異なる。半導体装置N1のそれ以外の構成は、半導体装置100と同様である。
 ヒートシンク10nは、ヒートシンク10と比較して、面10rにくぼみV1が形成されていない点が異なる。ヒートシンク10nのそれ以外の構成は、ヒートシンク10と同様である。
 以下においては、比較例に係る半導体装置N1の製造方法を、「製造方法Prn」ともいう。製造方法Prnは、前述の製造方法Prと比較して、くぼみV1が形成されているヒートシンク10の代わりにヒートシンク10nが使用される点のみが異なる。
 比較例に係る製造方法Prnの封止工程では、キャビティCv1に封止材11nが注入される。この場合、ヒートシンク10nの面10rと下金型51aの底面Sb1との間に存在する隙間Gpに封止材11nが流れ込むことにより、樹脂バリが発生することがある。以下においては、樹脂バリを、「樹脂バリB1」ともいう。図18は、比較例の構成において発生する樹脂バリB1の一例を示す図である。
 本実施の形態に係る半導体装置100のヒートシンク10の面10r(すなわち、露出面)には、図4に示すように、くぼみV1が形成されている。前述したように、本実施の形態に係る製造方法Prでは、封止工程が行われる際に、ヒートシンク10の面10rに形成された、くぼみV1であるくぼみV1bのくぼみ延在方向が方向Dr1と交差するように、ヒートシンク10は配置される。「くぼみ延在方向が方向Dr1と交差する」とは、具体的には、「くぼみ延在方向が方向Dr1と直交する」ということである。
 ここで、製造方法Prの封止工程において、図10に示される方向Dr1へ流動する封止材11nが、ヒートシンク10の面10rと下金型51aの底面Sb1との間の隙間Gpに侵入して、図4のX軸方向に延びているくぼみV1bに入ったと仮定する。くぼみV1bは、くぼみV1である。X軸方向は、くぼみ延在方向である。くぼみV1であるくぼみV1bの深さ方向は、Z方向である。以下においては、封止材11nが流動する方向を、「流動方向」ともいう。
 この場合、くぼみV1であるくぼみV1bに入った封止材11nの大部分は、くぼみV1bのくぼみ延在方向であるX軸方向に沿って流動する。また、くぼみV1であるくぼみV1bに入った封止材11nの一部は、くぼみV1bの深さ方向であるZ方向に向かう。
 すなわち、くぼみV1であるくぼみV1bの存在により、封止材11nの流動方向が、方向Dr1であるY方向から、くぼみ延在方向であるX軸方向、および、深さ方向であるZ方向へ変化する。そのため、くぼみV1であるくぼみV1bは、隙間Gpに侵入した封止材11nをせき止める機能を有する。
 したがって、半導体素子S3の下方に存在する、ヒートシンク10の面10rの露出面非周縁領域に樹脂バリB1が形成されることを抑制することができる。その結果、半導体装置100の放熱性を確保することができる。
 次に、図5を用いて、くぼみV1の構成について説明する。くぼみV1の幅L2が大きい程、くぼみV1に入った封止材11nの流動方向の変化は大きい。また、くぼみV1の深さL1が深い程、くぼみV1に入った封止材11nの流動方向の変化は大きい。流動方向の変化は、方向Dr1であるY方向から、くぼみ延在方向であるX軸方向、くぼみV1の深さ方向であるZ方向等への変化である。そのため、くぼみV1であるくぼみV1bに入った封止材11nの流動方向の変化が大きいほど、樹脂バリB1が形成されることを抑制する効果が高くなる。
 一方、くぼみV1の深さL1が、ヒートシンク10の厚みの半分以上になると、当該くぼみV1が存在する、当該ヒートシンク10の端部の剛性が弱くなる。
 また、くぼみV1の幅L2が大きい程、当該くぼみV1が露出面非周縁領域に近づく。当該露出面非周縁領域は、半導体素子S3の下方に存在する領域である。ヒートシンク10の面10rが放熱部材と接続された前述の放熱部材接続状態では、くぼみV1の幅L2が大きい程、ヒートシンク10の面10r(すなわち、露出面)が放熱部材に接触する面積が小さくなる。そのため、放熱部材接続状態では、くぼみV1の幅L2が大きい程、半導体装置100の放熱性が低下する。
 したがって、ヒートシンク10の剛性、および、半導体素子S3の放熱経路を考慮して、くぼみV1の深さL1、および、くぼみV1の幅L2を設定することが好ましい。前述したように、幅L2は、露出面である面10rにおける、くぼみV1の幅である。
 ところで、ヒートシンク10の面10rを放熱部材に接続しない前述の放熱部材非接続構成では、くぼみV1の幅L2が大きい程、ヒートシンク10が空気に触れる面積が増える。そのため、放熱部材非接続構成では、くぼみV1の幅L2が大きい程、半導体装置100の放熱性は向上する。
 くぼみV1における、深さL1と幅L2との関係は、例えば、半導体装置100の放熱の仕様に応じて設定される。設定される深さL1と幅L2との関係は、「L1=L2」、「L1<L2」および「L1>L2」のいずれかである。
 以下においては、くぼみV1における、深さL1と幅L2との関係が「L1=L2」である構成を、「構成Cm1」ともいう。また、以下においては、くぼみV1における、深さL1と幅L2との関係が「L1<L2」である構成を、「構成Cm2」ともいう。また、以下においては、くぼみV1における、深さL1と幅L2との関係が「L1>L2」である構成を、「構成Cm3」ともいう。
 深さL1と幅L2との関係が「L1=L2」である構成Cm1では、くぼみV1の深さL1に相当する長さは、当該くぼみV1の幅L2と同じである。深さL1と幅L2との関係が「L1<L2」である構成Cm2では、くぼみV1の深さL1に相当する長さは、当該くぼみV1の幅L2より短い。深さL1と幅L2との関係が「L1>L2」である構成Cm3では、くぼみV1の深さL1に相当する長さは、当該くぼみV1の幅L2より長い。
 また、図5に示すように、くぼみV1の深さ方向に沿った、当該くぼみV1の断面の形状は、半円である構成(以下、「構成Cs1」ともいう)としたがこれに限定されない。図12は、断面視における、くぼみV1の別の構成を示す図である。
 図12(a)のように、くぼみV1の深さ方向に沿った、当該くぼみV1の断面の形状は、三角形である構成(以下、「構成Cs2」ともいう)としてもよい。また、図12(b)のように、くぼみV1の深さ方向に沿った、当該くぼみV1の断面の形状は、四角形である構成(以下、「構成Cs3」ともいう)としてもよい。また、図12(c)のように、くぼみV1の深さ方向に沿った、当該くぼみV1の断面の形状は、菱形である構成(以下、「構成Cs4」ともいう)としてもよい。
 構成Cs2,Cs3,Cs4のいずれにおいても、くぼみV1における、深さL1と幅L2との関係は、半導体装置100の放熱の仕様に応じて、適宜設定される。
 また、構成Cs1,Cs2,Cs3,Cs4のいずれにおいても、樹脂バリB1の発生を抑制する効果が得られる。そのため、くぼみV1をヒートシンク10に形成する際の生産性を考慮して、構成Cs1,Cs2,Cs3,Cs4のいずれかが採用されればよい。
 また、本実施の形態では、図4に示すように、ヒートシンク10における、露出面である面10rの全周に、1つのくぼみV1が形成される構成としたがこれに限定されない。図13に示すように、ヒートシンク10における、露出面である面10rの全周に、2つ以上のくぼみV1が形成される構成としてもよい。
 図13は、平面視における、くぼみV1の別の構成を示す図である。図13は、一例として、ヒートシンク10の面10rの全周に2つのくぼみV1が形成されている状態を示す図である。図13では、ヒートシンク10の面10r(すなわち、露出面)に、当該面10rの周縁に沿って延びているくぼみV1が複数形成されている。
 以下においては、ヒートシンク10の面10r(すなわち、露出面)に複数のくぼみV1を形成した構成を、「複数くぼみ構成」ともいう。図13の構成は、複数くぼみ構成である。
 露出面である面10rの周縁に形成されるくぼみV1の数が多い程、樹脂バリB1の発生を抑制する効果が大きくなる。
 一方で、露出面である面10rの周縁に形成されるくぼみV1の数が多い程、当該くぼみV1が露出面非周縁領域に近づく。当該露出面非周縁領域は、半導体素子S3の下方に存在する領域である。前述の放熱部材接続状態では、くぼみV1の数が多い程、ヒートシンク10の面10rが放熱部材に接触する面積が小さくなる。そのため、放熱部材接続状態では、くぼみV1の数が多い程、半導体装置100の放熱性が低下する。
 したがって、樹脂バリB1の発生を抑制する効果、および、半導体素子S3の放熱経路を考慮して、露出面である面10rの周縁に形成するくぼみV1の数を設定すればよい。
 ところで、ヒートシンク10の面10rを放熱部材に接続しない前述の放熱部材非接続構成では、くぼみV1の数が多い程、ヒートシンク10が空気に触れる面積が増える。そのため、放熱部材非接続構成では、くぼみV1の数が多い程、半導体装置100の放熱性は向上する。
 なお、くぼみV1は、ヒートシンク10における、露出面である面10rの全周に形成されなくてもよい。例えば、樹脂バリB1の発生の起因となる封止材11nが流動する方向Dr1とくぼみV1が直交するように、当該くぼみV1が形成されればよい。図14は、平面視における、くぼみV1の別の構成を示す図である。
 たとえば、露出面である面10rに形成されるくぼみV1は、図14(a)に示される、コの字状のくぼみV1であってもよい。図14(a)のくぼみV1は、くぼみV1aと、くぼみV1bと、くぼみV1cとを含む。
 また、露出面である面10rに形成されるくぼみV1が、図14(b)に示されるくぼみV1である構成としてもよい。以下においては、くぼみV1が、ヒートシンク10における、露出面である面10rの周縁の一部のみに形成されている構成を、「くぼみ最小構成」ともいう。図14(b)のくぼみV1の構成は、くぼみ最小構成である。
 くぼみ最小構成では、たとえば、図14(b)に示すように、くぼみV1は構成される。ここで、露出面である面10rの形状は、多角形としての矩形である。図14(b)におけるくぼみV1は、面10rの形状である当該矩形を構成する4つの辺のうちの1つ辺のみに沿って延びている。
 また、くぼみ最小構成における製造方法Prの配置工程では、図14(b)に示すように、ヒートシンク10の面10rに形成された、くぼみV1のくぼみ延在方向が方向Dr1と交差するように、ヒートシンク10は配置される。そのため、くぼみ最小構成における製造方法Prでは、ステップS140の封止工程が行われる際に配置されているヒートシンク10の面10r(すなわち、露出面)の周縁のうち、方向Dr1と交差する領域のみにくぼみV1は形成されている。「ヒートシンク10の面10rの周縁のうち、方向Dr1と交差する領域」とは、具体的には、「ヒートシンク10の面10rの周縁のうち、方向Dr1と直交する領域」ということである。「面10rの周縁のうち、方向Dr1と直交する」という表現は、「面10rの周縁のうち、方向Dr1とほぼ直交する」という意味も含む。
 (まとめ)
 以上説明したように、本実施の形態によれば、半導体素子S3は、ダイパッド2aの面2sに搭載されている。封止材11は、半導体素子S3、ダイパッド2a、絶縁層9およびヒートシンク10を封止する。絶縁層9は、ダイパッド2aとヒートシンク10との間に存在する。絶縁層9は、ダイパッド2aの面2rとヒートシンク10の面10sとに接触している。絶縁層9に接触している面10sを有するヒートシンク10の面10rは、封止材11から露出している。
 すなわち、半導体素子S3が搭載されたダイパッド2aに接触する絶縁層9に、ヒートシンク10が接触している。また、当該ヒートシンク10は、封止材11から露出している。そのため、本開示の半導体装置は、ヒートシンク10の作用により、絶縁層が封止材から露出している関連構成Bの半導体装置よりも、高い放熱性を有する。したがって、高い放熱性を有する半導体装置を提供することができる。
 また、本実施の形態によれば、製造方法Prの封止工程が行われる際に、ヒートシンク10の面10rに形成された、くぼみV1であるくぼみV1bのくぼみ延在方向が方向Dr1と交差するように、ヒートシンク10は配置される。「くぼみ延在方向が方向Dr1と交差する」とは、具体的には、「くぼみ延在方向が方向Dr1と直交する」ということである。
 封止材11nが、隙間Gpに侵入して、くぼみV1bに入った場合、くぼみV1であるくぼみV1bに入った封止材11nの大部分は、くぼみV1bのくぼみ延在方向であるX軸方向に沿って流動する。また、くぼみV1であるくぼみV1bに入った封止材11nの一部は、くぼみV1bの深さ方向であるZ方向に向かう。
 すなわち、くぼみV1であるくぼみV1bの存在により、封止工程における封止材11nの流動方向が、方向Dr1であるY方向から、くぼみ延在方向であるX軸方向、および、深さ方向であるZ方向へ変化する。
 そのため、くぼみV1であるくぼみV1bは、隙間Gpに侵入した封止材11nをせき止める。すなわち、くぼみV1であるくぼみV1bは、封止材11nの流動方向を制御する。したがって、ヒートシンク10の面10rに樹脂バリが発生することを抑制することができる。その結果、半導体装置100の放熱性を確保することができるという効果が得られる。
 <変形例1>
 本変形例の構成は、ヒートシンク10の露出面に突起を形成した構成である。本変形例の構成は、実施の形態1に適用される。図15は、変形例1の構成を説明するための図である。図15の構成は、図5の構成に、変形例1の構成が適用された構成である。
 変形例1の構成は、実施の形態1の構成と比較して、ヒートシンク10における、露出面である面10rに、突起X1がさらに形成されている。以下においては、ヒートシンク10における、露出面である面10rに突起X1を形成した構成を、「突起形成構成」ともいう。図15の構成は、突起形成構成である。
 本変形例の構成では、ヒートシンク10の面10r(すなわち、露出面)の周縁には、くぼみV1と、突起X1とが形成されている。また、露出面である面10rのうち、くぼみV1が存在する位置より外側の領域には突起X1が形成されている。突起X1は、面10rの端部に形成されている。突起X1は、露出面である面10rの周縁に沿って延びている。
 突起X1は、-Z方向に突出している。以下においては、突起X1が突出している方向を、「突出方向」ともいう。突起X1は、くぼみV1のくぼみ延在方向に延びている。以下においては、ヒートシンク10の面10rにおいて突起X1が延びている方向を、「突起延在方向」ともいう。図15において、突起X1の突起延在方向は、X軸方向である。
 前述したように、本変形例の構成は、実施の形態1に適用される。たとえば、図4の構成に、本変形例の構成が適用された構成では、平面視における突起X1の形状は、閉ループ状である。また、たとえば、図14(b)の構成に、本変形例の構成が適用された構成では、突起X1は、露出面である面10rの形状である矩形を構成する4つの辺のうちの1つ辺のみに沿って延びている。
 次に、図15を用いて、突起X1の構成について説明する。くぼみV1の構成は、実施の形態1で説明したので、その説明は繰り返さない。断面視における突起X1の形状は、半円である。以下においては、突起X1の高さを、「高さL3」ともいう。また、以下においては、露出面である面10rにおける、突起X1の幅を、「幅L4」ともいう。
 ここで、製造方法Prの封止工程において、図10に示される方向Dr1へ流動する封止材11nが、ヒートシンク10の面10rに形成された突起X1に接触したと仮定する。
 この場合、封止材11nの大部分は、突起X1の突起延在方向であるX軸方向に沿って流動する。また、封止材11nの一部は、突起X1の突出方向である-Z方向を含むZ軸方向に沿って流動する。すなわち、突起X1の存在により、封止材11nの流動方向が、方向Dr1であるY方向から、突起延在方向であるX軸方向、および、突起X1の突出方向を含むZ軸方向へ変化する。そのため、突起X1は、隙間Gpに侵入した封止材11nをせき止める機能を有する。これにより、樹脂バリB1が形成されることを抑制することができる。
 また、突起X1の高さL3が高い程、封止材11nの流動方向の変化は大きい。当該流動方向の変化は、方向Dr1であるY方向から、突起延在方向であるX軸方向、突起X1の突出方向である-Z方向等への変化である。そのため、封止材11nの流動方向の変化が大きいほど、樹脂バリB1が形成されることを抑制する効果が高くなる。
 一方、突起X1の高さL3が高い程、ヒートシンク10の露出面に対する突起X1の形成が困難になる。また、突起X1の高さL3が高い程、突起X1の高さの制御が困難になる。そのため、ヒートシンク10の生産性、樹脂バリの発生の抑制の効果等を考慮して、突起X1の高さL3を設定することが好ましい。
 突起X1における、高さL3と幅L4との関係は、たとえば、半導体装置100の放熱の仕様に応じて設定される。設定される高さL3と幅L4との関係は、「L3=L4」、「L3<L4」および「L3>L4」のいずれかである。
 また、断面視における突起X1の形状は、半円である構成としたがこれに限定されない。断面視における突起X1の形状は、三角、四角、菱形等であってもよい。突起X1の形状が、半円、三角、四角および菱形のいずれである状況においても、突起X1における、高さL3と幅L4との関係は、たとえば、半導体装置100の放熱の仕様に応じて、適宜設定される。
 突起X1を構成する材料は、ヒートシンク10を構成する材料と同様である。突起X1を構成する材料は、例えば、銅(Cu)、アルミニウム(Al)等の放熱性の高い金属である。これにより、半導体素子S3が発生する熱を、ダイパッド2a、絶縁層9およびヒートシンク10を介して放散させることに加え、当該熱を突起X1を介して放散させることができる。そのため、半導体素子S3に偏りやすい熱を分散させる効果が得られる。
 また、突起X1を構成する材料は、上記の材料に限定されない。突起X1を構成する材料は、たとえば、セラミック材、ガラスセラミック材等であってもよい。当該セラミック材は、アルミナ、窒化珪素、窒化アルミニウム等である。突起X1を構成する材料がセラミック材である構成は、突起X1を構成する材料が金属である構成よりも、突起X1と封止材11との密着性が高い。これにより、アンカー効果によって、封止材11の剥離を抑制することができる。
 また、前述したように、ヒートシンク10は、図示されない放熱部材に接続される。放熱部材は、たとえば、放熱フィンを有する部材である。ヒートシンク10における、露出面である面10rは、放熱部材と接続される接続面となる。
 放熱部材は、図1に示される封止材11の2つのネジ穴H1を使用して、ヒートシンク10に固定される。具体的には、封止材11の2つのネジ穴H1の各々に、図示されない固定用ネジが固定されることにより、ヒートシンク10の面10r(すなわち、露出面)は、放熱部材に固定される。ヒートシンク10の面10rと放熱部材との間には、中間部材としてのグリスが設けられる。
 半導体装置100の半導体素子S3が発生する熱を効率よく放散するために、ヒートシンク10の面10rと放熱部材とは、グリスを介して、互いに密着する。ここで、封止材11の面11rが湾曲面である構成(以下、「密着構成」ともいう)としてもよい。当該湾曲面の形状は、下凸形状である。下凸形状とは、封止材11の面11rの下方に対し、当該面11rが出っ張る形状である。
 密着構成では、封止材11の2つのネジ穴H1を使用してネジ締めを行った際に、ヒートシンク10の面10rと放熱部材とを、グリスを介して隙間なく密着させることができる。また、密着構成では、上記のネジ締めが行われる際に、封止材11の面11rである湾曲面が平面に矯正される。これにより、絶縁層9およびヒートシンク10に応力が加わり、割れが発生する可能性がある。
 本変形例の構成では、図15に示したように、突起X1が、ヒートシンク10の面10rの端部に形成されている。そのため、密着構成において、ネジ締めが行われる際に、まず、突起X1が、放熱部材と接触する。突起X1が放熱部材と接触することにより、突起X1が潰れる場合がある。突起X1が潰れた場合、絶縁層9に加わる応力が緩和される。絶縁層9に加わる応力が緩和されることにより、ヒートシンク10の面10rは放熱部材と密着する。そのため、本変形例の半導体装置100では、高い絶縁性と高い放熱性とを確保することができる。
 (まとめ)
 以上説明したように、本変形例によれば、製造方法Prの封止工程において、突起X1は、隙間Gpに侵入した封止材11nをせき止める。すなわち、突起X1は、封止材11nの流動方向を制御する。これにより、樹脂バリB1が形成されることを抑制することができる。
 また、本変形例によれば、前述の密着構成においてネジ締めが行われた際に、突起X1が放熱部材と接触することにより、突起X1が潰れる場合がある。突起X1が潰れた場合、絶縁層9に加わる応力が緩和される。その結果、本変形例の半導体装置100では、高い絶縁性と高い放熱性とを確保することができる。
 <変形例2>
 本変形例の構成は、くぼみV1が、複数の局所くぼみからなる構成である。各局所くぼみは、くぼみV1の一部である。以下においては、くぼみV1が、複数の局所くぼみからなる構成を、「局所くぼみ構成」ともいう。本変形例の局所くぼみ構成は、実施の形態1または変形例1に適用される。
 図16は、変形例2の構成を説明するための図である。図16は、平面視における、くぼみV1の別の構成を示す図である。
 図16(a)の構成は、図4の構成に、変形例2の局所くぼみ構成が適用された構成である。ヒートシンク10の面10r(すなわち、露出面)に形成されるくぼみV1の構成は、図16(a)に示されるくぼみV1の構成であってもよい。以下においては、図16(a)に示されるくぼみV1の構成を、「局所くぼみ構成A」ともいう。
 図16(a)の局所くぼみ構成Aにおいて、平面視におけるくぼみV1の形状は、点線状である。具体的には、くぼみV1は、複数の局所くぼみV1sからなる。各局所くぼみV1sは、くぼみV1の一部である。複数の局所くぼみV1sは、ヒートシンク10の面10r(すなわち、露出面)の周縁に沿って点在している。また、複数の局所くぼみV1sは、面10rの全周に形成されている。
 図16(a)の構成を有するヒートシンク10に対し、製造方法Prの封止工程が行われる際、封止材11nは、くぼみV1bの延在方向であるX軸方向、および、くぼみV1bの深さ方向であるZ方向に向かう。そのため、局所くぼみ構成AのくぼみV1であるくぼみV1bは、隙間Gpに侵入した封止材11nをせき止める機能を有する。
 また、局所くぼみ構成Aでは、平面視におけるくぼみV1の形状は、点線状である。そのため、封止材11nを、より優先的にX軸方向に誘導する。
 なお、ヒートシンク10の面10r(すなわち、露出面)に形成されるくぼみV1の構成は、図16(b)に示されるくぼみV1の構成であってもよい。以下においては、図16(b)に示されるくぼみV1の構成を、「局所くぼみ構成B」ともいう。図16(b)の局所くぼみ構成Bは、図16(a)の局所くぼみV1sの形状を変化させた構成である。
 図16(b)の局所くぼみ構成Bにおいて、平面視におけるくぼみV1の形状は、点線状である。具体的には、くぼみV1は、複数の局所くぼみV1sからなる。複数の局所くぼみV1sは、ヒートシンク10の面10r(すなわち、露出面)の周縁に沿って点在している。また、複数の局所くぼみV1sは、面10rの全周に形成されている。
 また、各局所くぼみV1sは、ドットで形成されている。すなわち、各局所くぼみV1sは、ドットくぼみである。平面視における各局所くぼみV1sの形状は、円である。
 図16(b)の構成を有するヒートシンク10に対し、製造方法Prの封止工程が行われる際、封止材11nは、くぼみV1bの延在方向であるX軸方向、および、くぼみV1bの深さ方向であるZ方向に向かう。そのため、局所くぼみ構成BのくぼみV1であるくぼみV1bは、隙間Gpに侵入した封止材11nをせき止める機能を有する。
 また、各局所くぼみV1sは、ドットで形成されている。これにより、くぼみの形成を容易に実施することができる。また、くぼみのサイズ(例えば、直径、深さ)の変更、くぼみのサイズの調整等を容易に実施することができる。
 また、局所くぼみ構成BのくぼみV1をプレス加工などで形成する場合、同時に突起X1を形成することもできる。そのため、ヒートシンク10の生産性を改善しつつ、半導体装置100の高い絶縁性および高い放熱性を確保することができる。
 <実施の形態2>
 ここでは、上述した実施の形態1、変形例1または変形例2に係る半導体装置100を適用した電力変換装置について説明する。本開示は特定の電力変換装置に限定されるものではないが、以下、実施の形態2として、三相のインバータに実施の形態1、変形例1または変形例2に係る半導体装置100を適用した場合について説明する。
 図17は、実施の形態2に係る電力変換装置を適用した電力変換システムの構成を示すブロック図である。図17に示す電力変換システムは、電源Pw1と、電力変換装置200と、負荷300とを含む。電源Pw1は、直流電源である。電源Pw1は、電力変換装置200に直流電力を供給する。電源Pw1は種々のものにより構成される。電源Pw1は、たとえば、直流系統、太陽電池、蓄電池等により構成することができる。
 また、電源Pw1は、交流系統に接続された整流回路またはAC/DCコンバータにより構成されてもよい。また、電源Pw1は、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成されてもよい。
 電力変換装置200は、電源Pw1と負荷300との間に接続された三相のインバータである。電力変換装置200は、電源Pw1から供給された直流電力を交流電力に変換し、負荷300に交流電力を供給する。図17に示すように、電力変換装置200は、主変換回路201と、制御回路203とを備える。主変換回路201は、当該主変換回路201に入力される電力を変換して出力する。具体的には、主変換回路201は、直流電力を交流電力に変換し、当該交流電力を出力する。
 制御回路203は、主変換回路201を制御する制御信号を当該主変換回路201に出力する。
 負荷300は、電力変換装置200から供給された交流電力によって駆動する三相の電動機である。なお、負荷300は特定の用途に限られるものではなく、各種電気機器に搭載された電動機である。負荷300は、たとえば、ハイブリッド自動車、電気自動車、鉄道車両、エレベーター、または、空調機器向けの電動機として用いられる。
 以下、電力変換装置200の詳細について説明する。主変換回路201は、図示されないスイッチング素子と図示されない還流ダイオードとを備える。スイッチング素子がスイッチングすることによって、電源Pw1から供給される直流電力が交流電力に変換されて、当該交流電力が負荷300に供給される。主変換回路201の具体的な回路構成は種々のものがある。本実施の形態に係る主変換回路201は2レベルの三相フルブリッジ回路である。主変換回路201は、たとえば、6つのスイッチング素子と、6つの還流ダイオードとから構成される。当該6つのスイッチング素子は、当該6つの還流ダイオードと、逆並列で、接続される。
 主変換回路201の各スイッチング素子および各還流ダイオードの少なくともいずれかは、半導体モジュール202により構成される。半導体モジュール202は、上述した実施の形態1、変形例1または変形例2に係る半導体装置100に相当する。すなわち、主変換回路201は、実施の形態1、変形例1または変形例2に係る半導体装置100に相当する半導体モジュール202を有する。
 主変換回路201は、6つのスイッチング素子を使用して構成される3個の上下アームを含む。3個の上下アームの各々は、直列接続された2つのスイッチング素子で構成される。3個の上下アームは、それぞれ、フルブリッジ回路のU相、V相およびW相に対応する。3個の上下アームの出力端子は、主変換回路201の3つの出力端子に相当する。主変換回路201の3つの出力端子は、負荷300に接続される。
 また、主変換回路201は、各スイッチング素子を駆動する駆動回路(図示せず)を備える。駆動回路は半導体モジュール202に内蔵されてもよい。また、主変換回路201は、半導体モジュール202とは別に駆動回路を備えてもよい。
 駆動回路は、主変換回路201のスイッチング素子を駆動する駆動信号を生成し、当該駆動信号を、主変換回路201のスイッチング素子の制御電極に供給する。具体的には、駆動回路は、後述する制御回路203からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。
 スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(すなわち、オン信号)である。スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧未満の電圧信号(すなわち、オフ信号)である。
 制御回路203は、負荷300に所望の電力が供給されるように、主変換回路201のスイッチング素子を制御する。具体的には、制御回路203は、負荷300に供給すべき電力に基づいて主変換回路201の各スイッチング素子がオン状態となるべき時間であるオン時間を算出する。制御回路203は、たとえば、PWM制御によって主変換回路201を制御することができる。当該PWM制御は、出力すべき電圧に応じてスイッチング素子のオン時間を変調する制御である。
 そして、制御回路203は、主変換回路201が備える駆動回路に制御指令としての制御信号を出力する。当該制御信号は、各時点において、オン状態となるべきスイッチング素子にオン信号が出力されるようにするための信号である。また、当該制御信号は、各時点において、オフ状態となるべきスイッチング素子にオフ信号が出力されるようにするための信号でもある。駆動回路は、この制御信号に従い、各スイッチング素子の制御電極にオン信号またはオフ信号を駆動信号として出力する。
 本実施の形態に係る電力変換装置では、主変換回路201の各スイッチング素子および各還流ダイオードの少なくともいずれかは、半導体モジュール202により構成される。半導体モジュール202は、上述した実施の形態1、変形例1または変形例2に係る半導体装置100に相当する。そのため、半導体装置100の放熱性が確保されることで、電力変換装置の信頼性を向上させることができる。
 本実施の形態では、2レベルの三相インバータに実施の形態1、変形例1または変形例2に係る半導体装置100を適用する例について説明したが、本開示は、これに限られるものではなく、実施の形態1、変形例1または変形例2に係る半導体装置100を種々の電力変換装置に適用することができる。
 また、本実施の形態では、2レベルの電力変換装置としたが、3レベルまたはマルチレベルの電力変換装置であっても構わない。また、単相負荷に電力を供給する場合には、単相のインバータに実施の形態1、変形例1または変形例2に係る半導体装置100を適用しても構わない。また、直流負荷等に電力を供給する場合には、DC/DCコンバータまたはAC/DCコンバータに実施の形態1、変形例1または変形例2に係る半導体装置100を適用することも可能である。
 また、実施の形態1、変形例1または変形例2に係る半導体装置100を適用した電力変換装置の構成は、上述した負荷300が電動機である構成に限定されるものではない。負荷300は、たとえば、放電加工機、レーザー加工機、誘導加熱調理器または非接触器給電システムの電源装置であってもよい。また、実施の形態1、変形例1または変形例2に係る半導体装置100を適用した電力変換装置は、太陽光発電システム、蓄電システム等のパワーコンディショナーとして用いられてもよい。
 (その他の変形例)
 なお、実施の形態、変形例を自由に組み合わせたり、実施の形態、変形例を適宜、変形、省略することが可能である。
 例えば、半導体装置100は、パワー半導体装置に限定されない。半導体装置100は、たとえば、低電圧で動作する半導体装置であってもよい。
 また、例えば、断面視におけるくぼみV1の形状は、半円、三角形、四角形、菱形等に限定されない。断面視におけるくぼみV1の形状は、たとえば、台形であってもよい。また、断面視におけるくぼみV1の形状は、たとえば、台形、三角形、四角形および菱形と異なる多角形であってもよい。
 また、例えば、ヒートシンク10における、露出面である面10rの形状は、矩形に限定されない。面10rの形状は、例えば、台形、六角形等の多角形であってもよい。
 また、例えば、前述の複数くぼみ構成は、くぼみ最小構成および突起形成構成の全てまたは一部に適用されてもよい。以下においては、複数くぼみ構成がくぼみ最小構成に適用された構成を、「変形構成A」ともいう。また、以下においては、複数くぼみ構成が突起形成構成に適用された構成を、「変形構成B」ともいう。
 変形構成Aでは、たとえば、図14(b)の構成を有するくぼみV1が、面10rの周縁の一部のみに、複数形成される。変形構成Aでは、複数のくぼみV1の各々は、面10rの形状である矩形を構成する4つの辺のうちの1つ辺のみに沿って延びている。
 変形構成Bでは、たとえば、図13の構成に、図15の突起X1がさらに設けられた構成である。当該構成では、たとえば、露出面である面10rに、複数のくぼみV1と、突起X1とが形成されている。
 また、突起形成構成が、変形構成Aに適用される構成(以下、「変形構成Ax」ともいう)としてもよい。変形構成Axでは、面10rの周縁の一部のみに複数のくぼみV1が形成されており、かつ、面10rの周縁に突起X1がさらに形成されている。
 また、深さL1と幅L2との関係が「L1=L2」である構成Cm1は、複数くぼみ構成、くぼみ最小構成、突起形成構成、変形構成A、変形構成Bおよび変形構成Axの全てまたは一部に適用されてもよい。以下においては、構成Cm1が、複数くぼみ構成、くぼみ最小構成、突起形成構成、変形構成A、変形構成Bおよび変形構成Axの全てまたは一部に適用された構成を、「変形構成Cm1a」ともいう。
 また、深さL1と幅L2との関係が「L1<L2」である構成Cm2は、複数くぼみ構成、くぼみ最小構成、突起形成構成、変形構成A、変形構成Bおよび変形構成Axの全てまたは一部に適用されてもよい。以下においては、構成Cm2が、複数くぼみ構成、くぼみ最小構成、突起形成構成、変形構成A、変形構成Bおよび変形構成Axの全てまたは一部に適用された構成を、「変形構成Cm2a」ともいう。
 また、深さL1と幅L2との関係が「L1>L2」である構成Cm3は、複数くぼみ構成、くぼみ最小構成、突起形成構成、変形構成A、変形構成Bおよび変形構成Axの全てまたは一部に適用されてもよい。以下においては、構成Cm3が、複数くぼみ構成、くぼみ最小構成、突起形成構成、変形構成A、変形構成Bおよび変形構成Axの全てまたは一部に適用された構成を、「変形構成Cm3a」ともいう。
 また、くぼみV1の断面の形状が半円である構成Cs1は、複数くぼみ構成、くぼみ最小構成、突起形成構成、変形構成A、変形構成B、変形構成Ax、変形構成Cm1a、変形構成Cm2aおよび変形構成Cm3aの全てまたは一部に適用されてもよい。以下においては、構成Cs1が、複数くぼみ構成、くぼみ最小構成、突起形成構成、変形構成A、変形構成B、変形構成Ax、変形構成Cm1a、変形構成Cm2aおよび変形構成Cm3aの全てまたは一部に適用された構成を、「変形構成Cs1a」ともいう。
 また、くぼみV1の断面の形状が三角形である構成Cs2は、複数くぼみ構成、くぼみ最小構成、突起形成構成、変形構成A、変形構成B、変形構成Ax、構成Cm1、構成Cm2、構成Cm3、変形構成Cm1a、変形構成Cm2aおよび変形構成Cm3aの全てまたは一部に適用されてもよい。以下においては、構成Cs2が、複数くぼみ構成、くぼみ最小構成、突起形成構成、変形構成A、変形構成B、変形構成Ax、構成Cm1、構成Cm2、構成Cm3、変形構成Cm1a、変形構成Cm2aおよび変形構成Cm3aの全てまたは一部に適用された構成を、「変形構成Cs2a」ともいう。
 また、くぼみV1の断面の形状が四角形である構成Cs3は、複数くぼみ構成、くぼみ最小構成、突起形成構成、変形構成A、変形構成B、変形構成Ax、構成Cm1、構成Cm2、構成Cm3、変形構成Cm1a、変形構成Cm2aおよび変形構成Cm3aの全てまたは一部に適用されてもよい。以下においては、構成Cs3が、複数くぼみ構成、くぼみ最小構成、突起形成構成、変形構成A、変形構成B、変形構成Ax、構成Cm1、構成Cm2、構成Cm3、変形構成Cm1a、変形構成Cm2aおよび変形構成Cm3aの全てまたは一部に適用された構成を、「変形構成Cs3a」ともいう。
 また、くぼみV1の断面の形状が菱形である構成Cs4は、複数くぼみ構成、くぼみ最小構成、突起形成構成、変形構成A、変形構成B、変形構成Ax、構成Cm1、構成Cm2、構成Cm3、変形構成Cm1a、変形構成Cm2aおよび変形構成Cm3aの全てまたは一部に適用されてもよい。以下においては、構成Cs4が、複数くぼみ構成、くぼみ最小構成、突起形成構成、変形構成A、変形構成B、変形構成Ax、構成Cm1、構成Cm2、構成Cm3、変形構成Cm1a、変形構成Cm2aおよび変形構成Cm3aの全てまたは一部に適用された構成を、「変形構成Cs4a」ともいう。
 また、例えば、実施の形態2の電力変換システムに含まれる、半導体モジュール202に相当する半導体装置100は、上記の複数の構成の全てまたは一部を有してもよい。当該複数の構成は、複数くぼみ構成、くぼみ最小構成、突起形成構成、変形構成A、変形構成B、変形構成Ax、変形構成Cm1a、変形構成Cm2a、変形構成Cm3a、変形構成Cs1a、変形構成Cs2a、変形構成Cs3aおよび変形構成Cs4aである。
 本開示は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、限定的なものではない。例示されていない無数の変形例が、想定され得るものと解される。
 本開示は、半導体素子等が搭載されるダイパッドを備えた半導体装置に有効に利用される。
 2a ダイパッド、9 絶縁層、10,10n ヒートシンク、11,11n 封止材、51 金型、100,N1 半導体装置、Cv1 キャビティ、S3 半導体素子、V1,V1a,V1b,V1c,V1d くぼみ、V1s 局所くぼみ、X1 突起。

Claims (14)

  1.  半導体装置であって、
      一方の面である第1面、および、他方の面である第2面を有するダイパッドと、
      前記ダイパッドの前記第1面に搭載された半導体素子と、
      一方の面である第3面、および、他方の面である第4面を有するヒートシンクと、
      前記ダイパッドと前記ヒートシンクとの間に存在する絶縁層と、
      前記半導体素子、前記ダイパッド、前記絶縁層および前記ヒートシンクを封止する封止材とを備え、
     前記ダイパッドの前記第2面は、当該ダイパッドのうち、前記第1面と反対側の面であり、
     前記絶縁層は、前記ダイパッドの前記第2面と前記ヒートシンクの前記第3面とに接触しており、
     前記ヒートシンクの前記第4面は、当該ヒートシンクのうち、前記第3面と反対側の面であり、
     前記絶縁層に接触している前記第3面を有する前記ヒートシンクの前記第4面は、前記封止材から露出している露出面であり、
     前記ヒートシンクの前記露出面の周縁には、くぼみと、突起とが形成されている、
     半導体装置。
  2.  前記くぼみは、前記ヒートシンクの前記露出面の周縁に沿って延びている、
     請求項1に記載の半導体装置。
  3.  前記ヒートシンクの前記露出面には、当該露出面の周縁に沿って延びている前記くぼみが複数形成されている、
     請求項1に記載の半導体装置。
  4.  前記露出面の形状は、多角形であり、
     前記くぼみは、前記多角形を構成する複数の辺のうちの1つ辺のみに沿って延びている、
     請求項2または3に記載の半導体装置。
  5.  前記くぼみの深さに相当する長さは、前記露出面における、当該くぼみの幅と同じである、
     請求項1から4のいずれか1項に記載の半導体装置。
  6.  前記くぼみの深さに相当する長さは、前記露出面における、当該くぼみの幅より短い、
     請求項1から4のいずれか1項に記載の半導体装置。
  7.  前記くぼみの深さに相当する長さは、前記露出面における、当該くぼみの幅より長い、
     請求項1から4のいずれか1項に記載の半導体装置。
  8.  前記くぼみの深さ方向に沿った、当該くぼみの断面の形状は、半円、三角形、四角形または菱形である、
     請求項1から7のいずれか1項に記載の半導体装置。
  9.  前記くぼみは、複数の局所くぼみからなり、
     各前記局所くぼみは、前記くぼみの一部であり、
     前記複数の局所くぼみは、前記ヒートシンクの前記露出面の周縁に沿って点在している、
     請求項1に記載の半導体装置。
  10.  平面視における前記各局所くぼみの形状は、円である、
     請求項9に記載の半導体装置。
  11.  請求項1から10のいずれか1項に記載の半導体装置を有し、入力される電力を変換して出力する主変換回路と、
     前記主変換回路を制御する制御信号を前記主変換回路に出力する制御回路とを備える、
     電力変換装置。
  12.  キャビティと、当該キャビティに面する底面とを有するモールド金型を使用する、半導体装置の製造方法であって、
     前記半導体装置は、
      一方の面である第1面、および、他方の面である第2面を有するダイパッドと、
      半導体素子と、
      一方の面である第3面、および、他方の面である第4面を有するヒートシンクと、
      絶縁層とを備え、
     前記ダイパッドの前記第2面は、当該ダイパッドのうち、前記第1面と反対側の面であり、
     前記ヒートシンクの前記第4面は、当該ヒートシンクのうち、前記第3面と反対側の面であり、
     前記製造方法は、
     (a)前記ダイパッドの前記第1面に前記半導体素子を搭載する工程と、
     (b)前記ダイパッド、前記絶縁層および前記ヒートシンクの状態が封止対応状態になるように、当該ダイパッド、当該絶縁層および当該ヒートシンクを、前記モールド金型の前記キャビティに配置する工程と、
     (c)前記モールド金型の前記キャビティに封止材を注入する工程とを備え、
     前記封止対応状態は、前記絶縁層が前記ダイパッドと前記ヒートシンクとの間に存在する状態であり、
     前記封止対応状態は、前記絶縁層が、前記ダイパッドの前記第2面と前記ヒートシンクの前記第3面とに接触している状態であり、
     前記封止対応状態は、前記ヒートシンクの前記第4面が、前記モールド金型の前記底面に接触している状態であり、
     前記工程(c)は、前記工程(b)よりも後に行われ、
     前記工程(c)では、前記絶縁層に接触している前記第3面を有する前記ヒートシンクの前記第4面が前記封止材から露出するように、前記モールド金型の前記キャビティに当該封止材が注入される、
     半導体装置の製造方法。
  13.  前記ヒートシンクの前記第4面である露出面には、くぼみが形成されており、
     前記工程(c)では、前記封止材が特定方向へ流動するように、前記モールド金型の前記キャビティに当該封止材が注入され、
     前記くぼみは、前記ヒートシンクの前記露出面の周縁に沿って延びており、
     前記工程(c)が行われる際に、前記くぼみが延びている方向が前記特定方向と交差するように、前記ヒートシンクは配置されている、
     請求項12に記載の半導体装置の製造方法。
  14.  前記工程(c)が行われる際に配置されている前記ヒートシンクの前記露出面の周縁のうち、前記特定方向と交差する領域のみに前記くぼみは形成されている、
     請求項13に記載の半導体装置の製造方法。
PCT/JP2022/034700 2021-10-08 2022-09-16 半導体装置、電力変換装置、および、半導体装置の製造方法 WO2023058437A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023552784A JP7546783B2 (ja) 2021-10-08 2022-09-16 半導体装置、電力変換装置、および、半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021166103 2021-10-08
JP2021-166103 2021-10-08

Publications (1)

Publication Number Publication Date
WO2023058437A1 true WO2023058437A1 (ja) 2023-04-13

Family

ID=85804211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034700 WO2023058437A1 (ja) 2021-10-08 2022-09-16 半導体装置、電力変換装置、および、半導体装置の製造方法

Country Status (2)

Country Link
JP (1) JP7546783B2 (ja)
WO (1) WO2023058437A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254622A (ja) * 1995-03-08 1995-10-03 Sanyo Electric Co Ltd 半導体装置とその製造方法
JPH09213846A (ja) * 1996-01-31 1997-08-15 Sanyo Electric Co Ltd 半導体装置
JP2001035985A (ja) * 1999-07-19 2001-02-09 Denso Corp 樹脂封止半導体装置
WO2015173862A1 (ja) * 2014-05-12 2015-11-19 三菱電機株式会社 電力用半導体装置及びその製造方法
JP2019186338A (ja) * 2018-04-06 2019-10-24 株式会社デンソー 半導体装置
WO2019239997A1 (ja) * 2018-06-13 2019-12-19 三菱電機株式会社 電力用半導体装置および電力用半導体装置の製造方法
WO2020246456A1 (ja) * 2019-06-03 2020-12-10 三菱電機株式会社 半導体装置および電力変換装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258348A (ja) 2012-06-14 2013-12-26 Renesas Electronics Corp 半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254622A (ja) * 1995-03-08 1995-10-03 Sanyo Electric Co Ltd 半導体装置とその製造方法
JPH09213846A (ja) * 1996-01-31 1997-08-15 Sanyo Electric Co Ltd 半導体装置
JP2001035985A (ja) * 1999-07-19 2001-02-09 Denso Corp 樹脂封止半導体装置
WO2015173862A1 (ja) * 2014-05-12 2015-11-19 三菱電機株式会社 電力用半導体装置及びその製造方法
JP2019186338A (ja) * 2018-04-06 2019-10-24 株式会社デンソー 半導体装置
WO2019239997A1 (ja) * 2018-06-13 2019-12-19 三菱電機株式会社 電力用半導体装置および電力用半導体装置の製造方法
WO2020246456A1 (ja) * 2019-06-03 2020-12-10 三菱電機株式会社 半導体装置および電力変換装置

Also Published As

Publication number Publication date
JP7546783B2 (ja) 2024-09-06
JPWO2023058437A1 (ja) 2023-04-13

Similar Documents

Publication Publication Date Title
JP7196815B2 (ja) 半導体モジュール及び電力変換装置
US10366957B2 (en) Semiconductor device
US20160336251A1 (en) Semiconductor device
US10546800B2 (en) Semiconductor module, method for manufacturing the same and electric power conversion device
JP6077773B2 (ja) パワーモジュール半導体装置
US20220028794A1 (en) Semiconductor device, power converter, method for manufacturing semiconductor device, and method for manufacturing power converter
WO2014006814A1 (ja) 半導体装置
EP2851951B1 (en) Method for manufacturing semiconductor device and semiconductor device
JP6575739B1 (ja) 半導体装置、半導体装置の製造方法および電力変換装置
JP2020004893A (ja) パワー半導体モジュール、電力変換装置、およびパワー半導体モジュールの製造方法
CN110709969A (zh) 半导体元件接合用基板、半导体装置及电力转换装置
JP7035920B2 (ja) 半導体装置および電力変換装置
US11217514B2 (en) Power semiconductor device, method for manufacturing power semiconductor device, and power conversion device
JP6952889B2 (ja) パワー半導体モジュール及びその製造方法並びに電力変換装置
WO2023058437A1 (ja) 半導体装置、電力変換装置、および、半導体装置の製造方法
WO2020148879A1 (ja) 半導体装置、半導体装置の製造方法及び電力変換装置
JP7479771B2 (ja) 半導体装置、半導体装置の製造方法及び電力変換装置
WO2022138200A1 (ja) パワー半導体装置およびその製造方法ならびに電力変換装置
JP7561677B2 (ja) 電力半導体装置、電力半導体装置の製造方法及び電力変換装置
JP7535909B2 (ja) 電力用半導体装置およびその製造方法ならびに電力変換装置
JP2024138858A (ja) 電力用半導体装置、電力変換装置、及び、電力用半導体装置の製造方法
CN217719587U (zh) 一种智能功率模块的封装结构
WO2023175675A1 (ja) パワーモジュール半導体パッケージおよび半導体装置
JP6851559B1 (ja) 半導体装置および電力変換装置
US20240030087A1 (en) Semiconductor device, method of manufacturing semiconductor device, and power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878308

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552784

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22878308

Country of ref document: EP

Kind code of ref document: A1