WO2023058192A1 - リード線および電力貯蔵デバイス - Google Patents

リード線および電力貯蔵デバイス Download PDF

Info

Publication number
WO2023058192A1
WO2023058192A1 PCT/JP2021/037185 JP2021037185W WO2023058192A1 WO 2023058192 A1 WO2023058192 A1 WO 2023058192A1 JP 2021037185 W JP2021037185 W JP 2021037185W WO 2023058192 A1 WO2023058192 A1 WO 2023058192A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
lead wire
coating
metal
film
Prior art date
Application number
PCT/JP2021/037185
Other languages
English (en)
French (fr)
Inventor
有佑 暮石
健吾 後藤
光靖 小川
英乃 佐々木
和宏 後藤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN202180102699.0A priority Critical patent/CN117981018A/zh
Priority to PCT/JP2021/037185 priority patent/WO2023058192A1/ja
Priority to JP2023552631A priority patent/JPWO2023058192A1/ja
Publication of WO2023058192A1 publication Critical patent/WO2023058192A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to leads and power storage devices.
  • battery elements positive electrode, negative electrode, electrolyte
  • lead conductors for extracting current to the outside extend from the inside of the container to the outside.
  • the container and the lead conductor are joined by thermal fusion with resin or the like, thereby sealing the battery element.
  • a lead wire according to one aspect of the present disclosure includes: A lead wire including a lead conductor and a coating covering at least a part of the surface of the lead conductor,
  • the coating comprises a trivalent chromium compound and a first metal,
  • a ratio of the concentration of the first metal to the concentration of the trivalent chromium compound on the surface of the coating is 0.01 or more and 4.0 or less.
  • a lead wire according to another aspect of the present disclosure includes: A lead wire including a lead conductor and a coating covering at least a part of the surface of the lead conductor,
  • the film contains a trivalent chromium compound and a hydroxide of an element that constitutes the first metal,
  • the trivalent chromium compound contains chromium hydroxide,
  • the ratio of the concentration of chromium hydroxide to the concentration of the trivalent chromium compound on the surface of the coating is 0.3 or more and 0.9 or less
  • a ratio of the concentration of the hydroxide of the element constituting the first metal to the concentration of the trivalent chromium compound on the surface of the coating is 0.01 or more and 1.0 or less.
  • a lead wire according to another aspect of the present disclosure includes: A lead wire including a lead conductor and a coating covering at least a part of the surface of the lead conductor, the coating comprises a trivalent chromium compound, a first metal and a calcium compound; The ratio of the calcium concentration to the trivalent chromium compound concentration on the surface of the film is 0.01 or more and 1.0 or less.
  • a power storage device includes the lead wire according to the present disclosure.
  • FIG. 1 is a partial cross-sectional view of a lead wire according to Embodiments 1 to 3.
  • FIG. FIG. 2 is an overall cross-sectional view of a lead wire according to Embodiments 1-3.
  • Patent Document 1 discloses a film containing trivalent chromium that covers the surface of a lead conductor, and a heat-melting film that covers the surface of the film.
  • a lead is disclosed that includes a lamination.
  • Patent Document 2 discloses a lead wire including two nickel plating layers covering the surface of a lead conductor and a trivalent chromium film covering the nickel plating layer. It is however, the corrosion resistance and adhesiveness were not necessarily sufficient.
  • the present inventors have completed the present disclosure based on the belief that it is desirable to improve corrosion resistance and adhesiveness compared to the past.
  • an object of the present disclosure is to provide a lead wire with high corrosion resistance and adhesiveness.
  • a lead wire including a lead conductor and a coating covering at least a part of the surface of the lead conductor, The coating comprises a trivalent chromium compound and a first metal, A ratio of the concentration of the first metal to the concentration of the trivalent chromium compound on the surface of the coating is 0.01 or more and 4.0 or less.
  • the lead wire has improved corrosion resistance because the coating contains a trivalent chromium compound.
  • the film containing the first metal improves the adhesion between the film and the heat-sealable layer.
  • the corrosion resistance is improved when the ratio of the concentration of the first metal to the concentration of the trivalent chromium compound on the surface of the film is 4.0 or less. Therefore, the lead wire becomes a lead wire having a high degree of corrosion resistance and adhesion.
  • the ratio of the concentration of the first metal to the concentration of the trivalent chromium compound on the surface of the coating is preferably 0.1 or more and 4.0 or less.
  • a lead wire including a lead conductor and a coating covering at least a part of the surface of the lead conductor,
  • the film contains a trivalent chromium compound and a hydroxide of an element that constitutes the first metal
  • the trivalent chromium compound contains chromium hydroxide
  • the ratio of the concentration of chromium hydroxide to the concentration of the trivalent chromium compound on the surface of the coating is 0.3 or more and 0.9 or less
  • a ratio of the concentration of the hydroxide of the element constituting the first metal to the concentration of the trivalent chromium compound on the surface of the coating is 0.01 or more and 1.0 or less.
  • the lead wire has improved corrosion resistance because the coating contains a trivalent chromium compound.
  • the film when the lead wire includes a heat-sealing layer, the film contains hydroxides and chromium hydroxides of the elements that constitute the first metal, so that hydrogen bonds are formed between the film and the heat-sealing layer. Improves adhesion.
  • the lead wire when the lead wire includes a heat-sealable layer, the ratio of the concentration of chromium hydroxide to the concentration of the trivalent chromium compound on the surface of the coating is 0.3 or more and 0.9 or less, and the trivalent When the ratio of the concentration of the hydroxide of the element constituting the first metal to the concentration of the chromium compound is 0.01 or more and 1.0 or less, the adhesion between the coating and the heat sealing layer is improved. Therefore, the lead wire becomes a lead wire having a high degree of corrosion resistance and adhesion.
  • a lead wire including a lead conductor and a coating covering at least a part of the surface of the lead conductor, the coating comprises a trivalent chromium compound, a first metal and a calcium compound;
  • the ratio of the calcium concentration to the trivalent chromium compound concentration on the surface of the film is 0.01 or more and 1.0 or less.
  • the lead wire has improved corrosion resistance because the coating contains a trivalent chromium compound.
  • the film containing the first metal improves the adhesion between the film and the heat-sealable layer.
  • a calcium compound the stability against the decomposition products of the electrolytic solution components in the power storage device is improved, and the corrosion resistance is improved.
  • the lead wire when the lead wire includes a heat-sealing layer, the ratio of the concentration of calcium to the concentration of the trivalent chromium compound on the surface of the film is 0.01 or more and 1.0 or less, so that the film and the heat-sealing layer Improves adhesion with Therefore, the lead wire becomes a lead wire having a high degree of corrosion resistance and adhesion.
  • the calcium compound preferably contains at least one selected from the group consisting of calcium hydroxide, calcium oxide, calcium sulfate and calcium carbonate.
  • the first metal is the metal having the highest content in a first region surrounded by the surface of the coating and a virtual plane positioned parallel to the surface of the coating at a distance of 500 nm from the surface of the coating. is.
  • the first metal is preferably at least one selected from the group consisting of nickel, aluminum and copper.
  • the film preferably further contains metallic chromium.
  • the content of chromium contained in the film is preferably 0.1 mg/m 2 or more and less than 20 mg/m 2 .
  • the lead wire further includes a heat-sealing layer that covers at least part of the film.
  • the heat-sealable layer is preferably made of a maleic anhydride-modified polyolefin resin.
  • the thickness of the film is preferably 1 nm or more and 50 nm or less.
  • the film further includes a fluorine compound,
  • the concentration of fluorine on the surface of the film is preferably 0.1 atomic % or more and 5.0 atomic % or less.
  • the film preferably does not contain a hexavalent chromium compound. This is because hexavalent chromium compounds are environmentally hazardous substances.
  • the lead conductor may be nickel, nickel-plated metal, or nickel-phosphorus alloy-plated metal.
  • the lead conductor may be aluminum or an aluminum alloy.
  • the lead conductor may be copper or a copper alloy.
  • a power storage device of the present disclosure includes the lead wire according to any one of [1] to [17].
  • a power storage device with such a configuration has an excellent high degree of corrosion resistance and adhesiveness.
  • this embodiment An embodiment of the present disclosure (hereinafter referred to as "this embodiment") will be described below. However, this embodiment is not limited to this.
  • an element symbol or an element name it may mean a substance consisting only of that element, or it may mean a constituent element in a compound.
  • the lead wire of this embodiment will be described with reference to FIGS. 1 and 2.
  • FIG. The lead wire of this embodiment includes a lead conductor 1 and a coating 2 covering at least part of the surface of the lead conductor 1 .
  • the film 2 contains a trivalent chromium compound and a first metal, and the ratio of the concentration of the first metal to the concentration of the trivalent chromium compound on the surface A of the film is 0.01 or more and 4.0 or less.
  • a lead conductor is a conductive member, and is a member that electrically connects an electrode housed in a container of the power storage device and an external member, for example.
  • the lead conductor is made of highly conductive material and contains a first metal.
  • the first metal is any metal contained in the material forming the lead conductor, and is preferably at least one selected from the group consisting of nickel (Ni), aluminum (Al) and copper (Cu).
  • Examples of highly conductive materials that make up the lead conductor include first metals, plating metals, and alloys.
  • plating metals include nickel-plated metals and nickel-phosphorus alloy-plated metals, and examples of alloys include aluminum alloys and copper alloys.
  • the first metal is present in a first region C surrounded by a film surface A and a virtual plane B located parallel to the film surface A at a distance of 500 nm from the film surface A. , is the metal with the highest content.
  • the first metal can be confirmed by the following method. That is, a cross section of a film obtained using a focused ion beam device (FIB device), a cross section polisher device (CP device) or the like is observed with a scanning transmission electron microscope (SEM) at a magnification of 20,000.
  • FIB device focused ion beam device
  • CP device cross section polisher device
  • SEM scanning transmission electron microscope
  • the energy dispersive X-ray spectrometry (Energy Dispersive X-ray Spectrometry) attached to the SEM (hereinafter sometimes referred to as "EDX") is used to perform elemental quantitative analysis for the first region.
  • EDX Energy Dispersive X-ray Spectrometry
  • the metal element that occupies the largest area is specified as the first metal.
  • the shape of the lead conductor is not particularly limited, but a flat plate shape with a thickness of 50 ⁇ m to 1000 ⁇ m, a width of 1 mm to 200 mm, and a length of 5 mm to 200 mm can be preferably used.
  • the coating covers at least part of the surface of the lead conductor.
  • the film is preferably provided on the entire surface of the lead conductor, but may cover at least part of the surface of the lead conductor. Further, in this embodiment, the "surface of the film” means the surface opposite to the side in contact with the lead conductor, and the same applies to the second and third embodiments below.
  • the coating contains a trivalent chromium (Cr) compound. Corrosion resistance of the coating is improved by including the trivalent chromium compound in the coating.
  • a trivalent chromium compound is a compound containing trivalent chromium, and examples thereof include chromium hydroxide, chromium chloride, chromium sulfate, chromium acetate, and chromium nitrate.
  • the film may further contain metallic chromium. Since the coating contains metallic chromium, the adhesion between the lead conductor and the coating is improved, and high corrosion resistance can be obtained.
  • the content of chromium contained in the film is, for example, 0.1 mg/m 2 or more and less than 20 mg/m 2 .
  • the chromium contained in the film indicates the total amount of trivalent chromium compound and metallic chromium converted to chromium. If the content of chromium contained in the film is less than 0.1 mg/m 2 , the film will not be uniformly formed, and the corrosion resistance tends to decrease. When the content of chromium contained in the film is 20 mg/m 2 or more, cracks tend to form in the film and the corrosion resistance tends to decrease.
  • the concentration of chromium contained in the film is preferably 1 mg/m 2 or more and less than 15 mg/m 2 , more preferably 3 mg/m 2 or more and less than 10 mg/m 2 .
  • the content of chromium contained in the film can be measured using Inductively Coupled Plasma-Mass Spectrometry (hereinafter sometimes referred to as "ICP-MS").
  • ICP-MS Inductively Coupled Plasma-Mass Spectrometry
  • the content of chromium contained in the film can be obtained, for example, by cutting the lead conductor coated with the film, immersing it in a hydrochloric acid solution, dissolving the lead conductor together, and measuring the concentration of chromium in the resulting solution with the inductively coupled plasma mass. It can be determined by measurement using an analyzer (ICP-MS7700x manufactured by Agilent Technologies).
  • the presence or absence of metallic chromium in the film can be confirmed by measuring the X-ray absorption spectrum by the fluorescence yield method.
  • equipment for measuring the X-ray absorption spectrum for example, a synchrotron radiation facility (Saga Prefectural Kyushu Synchrotron Light Research Center (SAGA-LS) BL16) can be used. In this facility, the outermost surface of the film is irradiated with X-rays to obtain an X-ray absorption spectrum.
  • SAGA-LS Synchrotron Light Research Center
  • normalization and background processing are performed using software (for example, REX2000 manufactured by Rigaku Corporation).
  • the coating includes a first metal.
  • the film containing the first metal improves the adhesion between the coating and the heat sealing layer.
  • the ratio of the concentration of the first metal to the concentration of the trivalent chromium compound on the surface of the film is 0.01 or more and 4.0 or less.
  • the ratio of the concentration of the first metal to the concentration of the trivalent chromium compound on the surface of the film is preferably 3.0 or less, more preferably 2.0 or less, and even more preferably 1.5 or less.
  • the ratio of the concentration of the first metal to the concentration of the trivalent chromium compound on the surface of the film may be, for example, 0.1 or more, 0.3 or more, or 0.5 or more.
  • the concentration of the trivalent chromium compound and the concentration of the first metal on the surface of the film can be measured using X-ray Photoelectron Spectroscopy (hereinafter sometimes referred to as “XPS”). .
  • the XPS measurement conditions are, for example, as follows.
  • the ratio of the concentration of the first metal to the concentration of the trivalent chromium compound in the film can be calculated by performing curve fitting of the spectrum obtained under the following measurement conditions and determining the peak area ratio.
  • [XPS measurement conditions] X-ray source: Al-K ⁇ X-ray source output: 15 kV Photoelectron extraction angle: 45° Analysis area: 100 ⁇ m ⁇
  • the surface of the film may have defects. The defect occurs, for example, when forming a film on the surface of the lead conductor. Even if the surface of the film has defects, the film of the present embodiment has sufficient corrosion resistance and adhesiveness.
  • the film may contain a fluorine (F) compound.
  • F fluorine
  • the film may contain a fluorine (F) compound.
  • the fluorine concentration of the fluorine compound on the surface of the film is preferably 0.1 atomic % or more and 5.0 atomic % or less, more preferably 0.3 atomic % or more and 4.5 atomic % or less. If the fluorine concentration of the fluorine compound on the surface of the film is less than 0.1 atomic percent, the corrosion resistance tends to decrease. If the fluorine concentration of the fluorine compound on the surface of the film exceeds 5.0 atomic percent, the adhesion between the lead conductor and the film tends to decrease.
  • the fluorine concentration on the surface of the film can be measured using XPS.
  • the XPS measurement conditions are, for example, as follows. [XPS measurement conditions] X-ray source: Al-K ⁇ X-ray source output: 15 kV Photoelectron extraction angle: 45° Analysis area: 100 ⁇ m ⁇ (Thickness of film)
  • the thickness of the film is preferably 1 nm or more and 50 nm or less, more preferably 3 nm or more and 20 nm or less. If the thickness of the film is less than 1 nm, the film will not be formed uniformly, and the corrosion resistance tends to decrease. On the other hand, when the thickness of the film exceeds 50 nm, cracks are likely to form in the film and the film density tends to be low, which tends to reduce the corrosion resistance.
  • the thickness of the film can be measured in terms of SiO2 .
  • the thickness of the film is defined by the sputtering depth in terms of SiO 2 at which the composition ratio of the chromium element is half the maximum value, for example, by depth direction analysis by XPS under the following conditions.
  • XPS analysis conditions X-ray source: Al-K ⁇ X-ray source output: 15 kV Photoelectron extraction angle: 45° Analysis area: 100 ⁇ m ⁇ (others)
  • Other components contained in the film include carbon, nitrogen, oxygen, sodium, phosphorus, sulfur, chlorine, potassium, and the like.
  • the film does not contain hexavalent chromium compounds.
  • hexavalent chromium compounds include dichromates and chromates.
  • the film does not contain a hexavalent chromium compound, it is preferable that it does not contain a hexavalent chromium compound at all, but it may be below the detection limit of hexavalent chromium in the hexavalent chromium compound. It can be confirmed by JIS H 8625 that it does not contain hexavalent chromium compounds.
  • the lead wire of this embodiment may further include a heat-sealable layer.
  • the heat-sealable layer may cover at least a portion of the coating, and does not necessarily need to be provided over the entire coating.
  • Any resin that melts with heat (250°C to 300°C) during heat-sealing can be used for the heat-sealable layer, and examples thereof include polyolefin-based resins and acid-modified styrene-based elastomers.
  • Polyolefin resins include, for example, polyethylene, polypropylene, ionomer resins, acid-modified polyolefins, etc. Acid-modified polyolefins modified with maleic acid, acrylic acid, methacrylic acid, maleic anhydride, etc. and having adhesive functional groups is preferred, and a maleic anhydride-modified polyolefin resin that is excellent in adhesiveness and adhesiveness to metal is more preferred.
  • the heat-sealable layer In addition to these resins, it is possible to mix various additives such as flame retardants, ultraviolet absorbers, light stabilizers, heat stabilizers, lubricants, and colorants in the heat-sealable layer.
  • additives such as flame retardants, ultraviolet absorbers, light stabilizers, heat stabilizers, lubricants, and colorants in the heat-sealable layer.
  • These resin materials and additives are mixed using a known mixing device such as an open roll, a pressure kneader, a single-screw mixer, or a twin-screw mixer, and then extruded to prepare a film-like heat-sealable layer.
  • the thickness of the heat-sealing layer depends on the thickness of the lead conductor 1, it is preferably 30 ⁇ m to 200 ⁇ m.
  • the heat-sealable layer can also be crosslinked by irradiation with ionizing radiation such as accelerated electron beams and ⁇ rays.
  • the cross-linking can improve the heat resistance, and can prevent the decrease in the adhesive force when the temperature during use rises.
  • the entire heat-fusible layer may be crosslinked, or the heat-fusible layer may have a multi-layered structure and a non-crosslinked layer and a crosslinked layer may be laminated.
  • the adhesive force between the lead conductor and the heat-sealing layer can be evaluated by measuring the peel strength by the following method.
  • the peel strength is measured, for example, by cutting one of the lead conductor and the heat-sealing layer of the lead wire, bending it at 180°, and setting it in a tensile tester (EX-SX manufactured by Shimadzu Corporation). Next, it can be determined by pulling the set cut portion under the conditions of a tensile speed of 50 mm/min. The higher the peel strength value, the better the adhesive force between the lead conductor and the heat-sealable layer, and the better the corrosion resistance.
  • the lead wire of the present embodiment includes a lead conductor 1 and a film 2 covering at least part of the surface of the lead conductor 1.
  • the coating 2 contains a trivalent chromium compound and a hydroxide of an element constituting the first metal, and the trivalent chromium compound contains chromium hydroxide.
  • the ratio of the concentration of chromium hydroxide to the concentration of the trivalent chromium compound on the surface A of the coating is 0.3 or more and 0.9 or less, and constitutes the first metal with respect to the concentration of the trivalent chromium compound on the surface A of the coating.
  • the concentration ratio of the hydroxides of the elements is 0.01 or more and 1.0 or less.
  • the coating comprises hydroxides, specifically hydroxides and chromium hydroxides of the elements that make up the first metal.
  • the coating includes the hydroxide and chromium hydroxide of the elements constituting the first metal, and is formed on the surface of the metal including the first metal.
  • Hydroxides of elements constituting the first metal include nickel (II) hydroxide, aluminum hydroxide, copper (II) hydroxide, and the like.
  • the ratio of the concentration of chromium hydroxide to the concentration of the trivalent chromium compound on the surface of the film is 0.3 or more and 0.9 or less.
  • the coating and the heat are Adhesiveness with the fusion layer is improved.
  • the ratio of the concentration of chromium hydroxide to the concentration of the trivalent chromium compound on the surface of the film is preferably 0.35 or more and 0.8 or less, more preferably 0.4 or more and 0.7 or less.
  • the ratio of the concentration of the hydroxide of the element constituting the first metal to the concentration of the trivalent chromium compound on the surface of the film is 0.01 or more and 1.0 or less.
  • the ratio of the concentration of the hydroxide of the element constituting the first metal to the concentration of the trivalent chromium compound on the surface of the coating is 0.01 or more and 1.0 or less.
  • the ratio of the concentration of the first metal hydroxide to the concentration of the trivalent chromium compound on the surface of the film is preferably 0.05 or more and 0.8 or less, and more preferably 0.1 or more and 0.6 or less. more preferred.
  • the concentration of the trivalent chromium compound, chromium hydroxide, and hydroxide of the element constituting the first metal on the surface of the film can be measured using XPS.
  • the XPS measurement conditions are, for example, as follows.
  • the ratio of the concentration of chromium hydroxide to the concentration of the trivalent chromium compound on the surface of the coating and the ratio of the concentration of the hydroxide of the element constituting the first metal to the concentration of the trivalent chromium compound on the surface of the coating are as follows. It can be calculated by performing curve fitting of the spectrum obtained under the measurement conditions of , and determining the ratio of the peak areas.
  • the lead wire of the present embodiment includes a lead conductor 1 and a film 2 covering at least part of the surface of the lead conductor 1.
  • Coating 2 contains a trivalent chromium compound, a first metal and a calcium compound. The ratio of the calcium concentration to the trivalent chromium compound concentration on the surface A of the film is 0.01 or more and 1.0 or less.
  • the coating contains a calcium (Ca) compound.
  • a calcium compound By including a calcium compound in the film, the stability against decomposition products of the electrolytic solution components in the power storage device is improved, and excellent corrosion resistance can be obtained.
  • Calcium compounds are not particularly limited, and examples thereof include calcium hydroxide, calcium oxide, calcium sulfate and calcium carbonate.
  • the ratio of the calcium concentration to the trivalent chromium compound concentration on the surface of the film is 0.01 or more and 1.0 or less.
  • the ratio of the concentration of calcium to the concentration of the trivalent chromium compound on the surface of the film is 0.01 or more and 1.0 or less, so that the heat-sealing with the film Improves adhesion to layers.
  • the ratio of calcium concentration to trivalent chromium compound concentration on the surface of the film is preferably 0.03 or more and 0.7 or less, more preferably 0.05 or more and 0.4 or less.
  • the concentration of trivalent chromium compounds and the concentration of calcium on the surface of the film can be measured using XPS.
  • the XPS measurement conditions are, for example, as follows.
  • the ratio of the calcium concentration to the trivalent chromium compound concentration on the surface of the film can be calculated by performing curve fitting of the spectrum obtained under the following measurement conditions and determining the peak area ratio.
  • XPS measurement conditions X-ray source: Al-K ⁇ X-ray source output: 15 kV Photoelectron extraction angle: 45° Analysis area: 100 ⁇ m ⁇ ⁇ Application ⁇
  • the lead wires of Embodiments 1 to 3 are preferably used for power storage devices. Examples of power storage devices include non-aqueous electrolyte batteries and electric double layer capacitors using a non-aqueous electrolyte, and aqueous electrolyte batteries using water as the main solvent of the electrolyte.
  • ⁇ Preparation of lead wires ⁇ ⁇ Sample 1> (Preparation of lead conductor) An oxygen-free copper plate (C1020) having a length of 100 mm, a width of 45 mm, and a thickness of 0.2 mm was used as a lead conductor member.
  • the substrate was immersed in an aqueous sodium hydroxide solution (40 g/L) at 25° C., and cathodic electrolytic degreasing was performed at a current density of 1.0 A/dm 2 . The substrate after degreasing was washed with running water.
  • the substrate after washing was immersed in an aqueous solution of sulfuric acid (10% by mass) at 25°C for 30 seconds for acid activation.
  • the substrate after acid activation was washed with running water.
  • nickel amidosulfate tetrahydrate 350 g/L
  • nickel chloride hexahydrate 30 g/L
  • boric acid 30 g/L
  • the substrate after acid activation was immersed in a nickel plating solution at 50° C., and plating was performed for 120 seconds at a current density of 5.0 A/dm 2 .
  • a lead conductor made of nickel-plated copper was obtained by washing the base material after plating with running water.
  • Chromium chloride hexahydrate (5.0 g/L) and potassium formate (170 g/L) were mixed with pure water to obtain a surface treatment liquid.
  • the lead conductor was immersed in a surface treatment solution at 45° C., and cathodic electrolysis was performed for 30 seconds at a current density of 10 A/dm 2 . By washing the lead conductor after the cathodic electrolysis with running water, the lead conductor with the film shown in Table 1 was obtained.
  • Samples 2-5 and AC Lead conductors similar to Sample 1 were used for Samples 2-5 and AC.
  • Sample 2 was cathodic electrolyzed for 40 seconds
  • sample 3 was cathodic electrolyzed for 5 seconds
  • sample 4 had a chromium chloride hexahydrate concentration of 10 g. /L
  • sample 5 had a cathodic electrolysis time of 60 seconds
  • sample A had a current density of 1 A/dm, except that the concentration of chromium chloride hexahydrate was 10 g/L.
  • sample B the concentration of chromium chloride hexahydrate was 1.0 g/L
  • sample C the cathodic electrolysis time was set to 90 seconds, and chromium chloride hexahydrate was used.
  • a lead conductor was obtained with a film formed in the same manner as in Sample 1, except that the concentration of the wate was 10 g/L. Also, a heat-sealable layer was formed in the same manner as for sample 1, and a lead wire for each sample was produced.
  • Example 6> (Preparation of lead conductor) An aluminum plate (A1050) having a length of 100 mm, a width of 45 mm, and a thickness of 0.2 mm was used as a lead conductor member. As a pretreatment, the substrate was immersed in an aqueous sodium hydroxide solution (40 g/L) at 25° C., and cathodic electrolytic degreasing was performed at a current density of 1.0 A/dm 2 . A lead conductor was obtained by washing the base material after degreasing with running water.
  • aqueous sodium hydroxide solution 40 g/L
  • a lead wire of Sample 6 was produced by forming a heat-sealable layer in the same manner as Sample 1.
  • Example 7 For sample 7, a lead wire was produced in the same manner as for sample 6, except that potassium fluoride (5.0 g/L) was further mixed with the surface treatment liquid of sample 6 above.
  • Example 8 An oxygen-free copper plate (C1020) having a length of 100 mm, a width of 45 mm, and a thickness of 0.2 mm was used as a lead conductor member.
  • the substrate was immersed in an aqueous sodium hydroxide solution (40 g/L) at 25° C., and cathodic electrolytic degreasing was performed at a current density of 1.0 A/dm 2 .
  • the substrate after degreasing was washed with running water.
  • the washed substrate was immersed in an aqueous solution of sulfuric acid (10% by mass) at 25° C. for 30 seconds for acid activation.
  • a lead conductor was obtained by washing the substrate after acid activation with running water. Formation of the film and formation of the heat-sealable layer were carried out in the same manner as in Sample 1.
  • Chromium chloride hexahydrate (5.0 g/L) and potassium formate (170 g/L) were mixed with pure water to obtain a surface treatment liquid.
  • the lead conductor was immersed in a surface treatment solution at 45° C., and cathodic electrolysis was performed for 30 seconds at a current density of 10 A/dm 2 . After the cathodic electrolysis, the lead conductor was washed with running water and dried in a constant temperature bath at 100° C. for 180 seconds to obtain the lead conductor with the coating shown in Table 2.
  • a lead wire of Sample 9 was produced by forming a heat-sealable layer in the same manner as Sample 1.
  • Samples 10-13 and DE Lead conductors similar to Sample 9 were used for Samples 10-13 and DE.
  • sample 10 except that the time of cathodic electrolysis was 5 seconds, in sample 11, except that the concentration of chromium chloride hexahydrate was 10 g / L, in sample 12, drying after cathodic electrolysis Sample D was dried in a constant temperature bath at 250 ° C. for 3600 seconds after cathodic electrolysis, except that the drying time after cathodic electrolysis was 3600 seconds in sample 13, except that the time was 30 seconds.
  • Sample E a lead conductor was obtained which was coated in the same manner as Sample 9, except that the concentration of chromium chloride hexahydrate was 1.0 g/L. Also, a heat-sealable layer was formed in the same manner as for sample 1, and a lead wire for each sample was produced.
  • Chromium chloride hexahydrate (5.0 g/L), potassium formate (170 g/L) and calcium chloride (0.5 g/L) were mixed with pure water to obtain a surface treatment liquid.
  • the lead conductor was immersed in a surface treatment solution at 45° C., and cathodic electrolysis was performed for 30 seconds at a current density of 10 A/dm 2 .
  • the lead conductor after the cathodic electrolysis was washed with running water and dried in a constant temperature bath at 100° C. for 180 seconds to obtain the lead conductor with the coating shown in Table 3.
  • a lead wire of sample 14 was produced by forming a heat-sealable layer in the same manner as sample 1.
  • sample 15 lead conductors similar to sample 14 were used.
  • the film was formed in the same manner as for sample 14, except that the concentration of calcium chloride was 3.0 g/L for sample 15 and 5.0 g/L for sample F. was obtained.
  • a heat-sealable layer was formed in the same manner as for sample 1, and a lead wire for each sample was produced.
  • the lead wires of samples 1 to 15 correspond to the examples.
  • the leads for samples AF correspond to comparative examples.
  • test solution was prepared by mixing ethylene carbonate, diethyl carbonate, and dimethyl carbonate at a volume ratio of 1:1:1 and dissolving lithium hexafluorophosphate (LiPF 6 ) to 1.0 mol/L.
  • Samples 1 to 11 and A to E were immersed in this test solution, adjusted so that the moisture content of the test solution was 1000 ppm, and left in a constant temperature bath at 80 ° C. for 4 weeks. )" was measured by the same method. The results are shown in the column "Peel strength 4 weeks (N/cm 2 )" in Tables 1-3.
  • the test solution is generally used as an electrolytic solution for battery elements in power storage devices, and was prepared to evaluate the corrosion resistance of lead wires. If the 4-week peel strength is 10 N/cm 2 or more, the lead wire can be evaluated as having high corrosion resistance.
  • samples A to C in which the ratio of the concentration of the first metal to the concentration of the trivalent chromium compound on the surface of the coating is not in the range of 0.01 to 4.0, had high adhesion but decreased corrosion resistance.
  • sample D in which the ratio of the concentration of chromium hydroxide to the concentration of the trivalent chromium compound on the surface of the film is 0.2, and the hydroxylation of the element constituting the first metal with respect to the concentration of the trivalent chromium compound on the surface of the film.
  • Sample E which has a concentration ratio of 1.2, has high adhesion but low corrosion resistance.
  • Samples 14 and 15 in which the ratio of the calcium concentration to the trivalent chromium compound concentration on the surface of the film is 0.01 or more and 1.0 or less, showed large values for both the initial peel strength and the 4-week peel strength. From this, it can be seen that the lead wire of each sample has a high degree of corrosion resistance and adhesiveness.
  • sample E which does not contain calcium, has high adhesiveness but low corrosion resistance.
  • Sample F in which the ratio of the calcium concentration to the trivalent chromium compound concentration on the film surface is 1.2, showed small values for both the initial peel strength and the 4-week peel strength.
  • Lead conductor 2 film, A film surface, B imaginary surface, C first region.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

リード導体と、前記リード導体の表面の少なくとも一部を被覆する皮膜と、を含むリード線であって、前記皮膜は、3価クロム化合物および第1金属を含み、前記皮膜の表面における3価クロム化合物の濃度に対する前記第1金属の濃度の比は、0.01以上4.0以下である、リード線。

Description

リード線および電力貯蔵デバイス
 本開示は、リード線および電力貯蔵デバイスに関する。
 リチウムイオン二次電池等の電力貯蔵デバイスは、容器に電池要素(正極、負極、電解液)が収納されて、電流を外部へ取り出すためのリード導体が容器の内部から外部に伸びているのが一般的である。この容器とリード導体とは、樹脂による熱融着等によって接合され、これにより電池要素を封止している。
 しかし、時間が経過すると徐々に接合力が低下し、容器とリード導体とが剥がれるという問題が起こる。これは、時間の経過と共に接合部分から水分が透過し、容器の内部に収納された電解液と水が反応してフッ化水素酸が発生してリード導体が腐食することに起因する。したがって、リード導体には、耐食性、接着性等が求められる。
特開2015-156365号公報 特開2016-184494号公報
 本開示の一態様に係るリード線は、
 リード導体と、前記リード導体の表面の少なくとも一部を被覆する皮膜と、を含むリード線であって、
 前記皮膜は、3価クロム化合物および第1金属を含み、
 前記皮膜の表面における3価クロム化合物の濃度に対する前記第1金属の濃度の比は、0.01以上4.0以下である。
 本開示の別態様に係るリード線は、
 リード導体と、前記リード導体の表面の少なくとも一部を被覆する皮膜と、を含むリード線であって、
 前記皮膜は、3価クロム化合物および前記第1金属を構成する元素の水酸化物を含み、
 前記3価クロム化合物は、水酸化クロムを含み、
 前記皮膜の表面における3価クロム化合物の濃度に対する水酸化クロムの濃度の比は、0.3以上0.9以下であり、
 前記皮膜の表面における3価クロム化合物の濃度に対する前記第1金属を構成する元素の水酸化物の濃度の比は、0.01以上1.0以下である。
 本開示の別態様に係るリード線は、
 リード導体と、前記リード導体の表面の少なくとも一部を被覆する皮膜と、を含むリード線であって、
 前記皮膜は、3価クロム化合物、第1金属およびカルシウム化合物を含み、
 前記皮膜の表面における3価クロム化合物の濃度に対するカルシウムの濃度の比は、0.01以上1.0以下である。
 本開示に係る電力貯蔵デバイスは、前記本開示に係るリード線を含む。
図1は、本実施形態1~3に係るリード線の部分断面図である。 図2は、本実施形態1~3に係るリード線の全体断面図である。
 [本開示が解決しようとする課題]
 従来から、リード導体の耐食性および接着性を改善することが望まれている。このような問題を解決するために、例えば、特開2015-156365号公報(特許文献1)には、リード導体の表面を被覆する3価クロムを含む皮膜と、皮膜の表面を被覆する熱融着層とを含むリード線が開示されている。また、特開2016-184494号公報(特許文献2)には、リード導体の表面を被覆する2層のニッケルめっき層と、ニッケルめっき層を被覆する3価クロムの膜とを含むリード線が開示されている。しかし、耐食性および接着性は必ずしも十分とは言えなかった。
 本発明者らは、耐食性および接着性を従来より高めることが望ましいと考え、本開示を完成するに至った。
 そこで、本開示は、高度な耐食性および接着性を有するリード線を提供することを目的とする。
 [本開示の効果]
 本開示によれば、高度な耐食性および接着性を有するリード線を提供することが可能になる。
[本開示の実施形態の説明]
 最初に本開示の一態様の内容を列記して説明する。
 [1]本開示の一態様に係るリード線は、
 リード導体と、前記リード導体の表面の少なくとも一部を被覆する皮膜と、を含むリード線であって、
 前記皮膜は、3価クロム化合物および第1金属を含み、
 前記皮膜の表面における3価クロム化合物の濃度に対する前記第1金属の濃度の比は、0.01以上4.0以下である。
 該リード線は、皮膜が3価クロム化合物を含むことで、耐食性が向上する。また、該リード線が熱融着層を含む場合、皮膜が第1金属を含むことで、皮膜と熱融着層との接着性が向上する。さらに、皮膜の表面における3価クロム化合物の濃度に対する第1金属の濃度の比が4.0以下であることで、耐食性が向上する。したがって、該リード線は、高度な耐食性および接着性を有するリード線となる。
 [2]前記皮膜の表面における3価クロム化合物の濃度に対する前記第1金属の濃度の比は、0.1以上4.0以下であることが好ましい。このように規定することで、より確実に高度な耐食性および接着性を有するリード線となる。
 [3]本開示の別態様に係るリード線は、
 リード導体と、前記リード導体の表面の少なくとも一部を被覆する皮膜と、を含むリード線であって、
 前記皮膜は、3価クロム化合物および前記第1金属を構成する元素の水酸化物を含み、
 前記3価クロム化合物は、水酸化クロムを含み、
 前記皮膜の表面における3価クロム化合物の濃度に対する水酸化クロムの濃度の比は、0.3以上0.9以下であり、
 前記皮膜の表面における3価クロム化合物の濃度に対する前記第1金属を構成する元素の水酸化物の濃度の比は、0.01以上1.0以下である。
 該リード線は、皮膜が3価クロム化合物を含むことで、耐食性が向上する。また、該リード線が熱融着層を含む場合、皮膜が第1金属を構成する元素の水酸化物および水酸化クロムを含むことで、水素結合が形成され、皮膜と熱融着層との接着性が向上する。さらに、該リード線が熱融着層を含む場合、皮膜の表面における3価クロム化合物の濃度に対する水酸化クロムの濃度の比が0.3以上0.9以下であり、皮膜の表面における3価クロム化合物の濃度に対する第1金属を構成する元素の水酸化物の濃度の比が0.01以上1.0以下であることで、皮膜と熱融着層との接着性が向上する。したがって、該リード線は、高度な耐食性および接着性を有するリード線となる。
 [4]本開示の別態様に係るリード線は、
 リード導体と、前記リード導体の表面の少なくとも一部を被覆する皮膜と、を含むリード線であって、
 前記皮膜は、3価クロム化合物、第1金属およびカルシウム化合物を含み、
 前記皮膜の表面における3価クロム化合物の濃度に対するカルシウムの濃度の比は、0.01以上1.0以下である。
 該リード線は、皮膜が3価クロム化合物を含むことで耐食性が向上する。また、該リード線が熱融着層を含む場合、皮膜が第1金属を含むことで、皮膜と熱融着層との接着性が向上する。さらに、カルシウム化合物を含むことで、電力貯蔵デバイス中の電解液成分の分解生成物に対する安定性が向上し、耐食性が向上する。また、該リード線が熱融着層を含む場合、皮膜の表面における3価クロム化合物の濃度に対するカルシウムの濃度の比が0.01以上1.0以下であることで、皮膜と熱融着層との接着性が向上する。したがって、該リード線は、高度な耐食性および接着性を有するリード線となる。
 [5]前記カルシウム化合物は、水酸化カルシウム、酸化カルシウム、硫酸カルシウムおよび炭酸カルシウムからなる群より選択される少なくとも一種を含むことが好ましい。このように規定することで、より確実に高度な耐食性および接着性を有するリード線となる。
 [6]前記第1金属は、前記皮膜の表面と、前記皮膜の表面から500nm離れて前記皮膜の表面に平行に位置する仮想面と、に囲まれる第1領域において、最も含有率が高い金属である。
 [7]前記第1金属は、ニッケル、アルミニウムおよび銅からなる群から選択される少なくとも一種であることが好ましい。
 [8]前記皮膜は、金属クロムをさらに含むことが好ましい。このように規定することで、より確実に高度な耐食性および接着性を有するリード線となる。
 [9]前記皮膜に含まれるクロムの含有量は、0.1mg/m以上20mg/m未満であることが好ましい。このように規定することで、より確実に高度な耐食性および接着性を有するリード線となる。
 [10]前記リード線は、前記皮膜の少なくとも一部を被覆する熱融着層をさらに含むことが好ましい。
 [11]前記熱融着層は、無水マレイン酸変性ポリオレフィン系樹脂からなることが好ましい。このように規定することで、より確実に高度な耐食性および接着性を有するリード線となる。
 [12]前記皮膜の厚みは、1nm以上50nm以下であることが好ましい。このように規定することで、より確実に高度な耐食性および接着性を有するリード線となる。
 [13]前記皮膜は、フッ素化合物をさらに含み、
 前記皮膜の表面におけるフッ素の濃度は、0.1原子%以上5.0原子%以下であることが好ましい。このように規定することで、より確実に高度な耐食性および接着性を有するリード線となる。
 [14]前記皮膜は、6価クロム化合物を含まないことが好ましい。6価クロム化合物は環境負荷物質であるからである。
 [15]前記リード導体は、ニッケル、ニッケルめっきされた金属またはニッケル-リン合金めっきされた金属であってもよい。
 [16]前記リード導体は、アルミニウムまたはアルミニウム合金であってもよい。
 [17]前記リード導体は、銅または銅合金であってもよい。
 [18]本開示の電力貯蔵デバイスは、前記[1]~[17]のいずれか一つに記載のリード線を備える。このような構成の電力貯蔵デバイスは優れた高度な耐食性および接着性を有する。
 [本開示の実施形態の詳細]
 以下、本開示の一実施形態(以下「本実施形態」と記す。)について説明する。ただし、本実施形態はこれに限定されるものではない。本明細書において、元素記号または元素名が記載されている場合は、その元素のみからなる物質を意味している場合もあるし、化合物中の構成元素を意味している場合もある。
 ≪実施形態1≫
 本実施形態のリード線を、図1および図2を参照して説明する。本実施形態のリード線は、リード導体1と、リード導体1の表面の少なくとも一部を被覆する皮膜2と、を含む。皮膜2は、3価クロム化合物および第1金属を含み、皮膜の表面Aにおける3価クロム化合物の濃度に対する第1金属の濃度の比は、0.01以上4.0以下である。
 <リード導体>
 リード導体は、導電部材であり、例えば電力貯蔵デバイスの容器内に収納された電極と、外部の部材とを電気的に接続する部材である。リード導体は、導電性の高い材料により形成され、第1金属を含む。第1金属は、リード導体を構成する材料に含まれる任意の金属であり、ニッケル(Ni)、アルミニウム(Al)および銅(Cu)からなる群から選択される少なくとも一種であることが好ましい。
 リード導体を構成する導電性の高い材料としては、例えば、第1金属、めっき金属、合金等が挙げられる。めっき金属としては、例えば、ニッケルめっきされた金属、ニッケル-リン合金めっきされた金属等が、合金としては、例えば、アルミニウム合金、銅合金等が、挙げられる。
 また、図1を参照して、第1金属は、皮膜の表面Aと、皮膜の表面Aから500nm離れて皮膜の表面Aに平行に位置する仮想面Bと、に囲まれる第1領域Cにおいて、最も含有率が高い金属である。
 第1金属は、以下の方法で確認することができる。すなわち、集束イオンビーム装置(FIB装置)、クロスセクションポリッシャー装置(CP装置)等を用いて得た皮膜の断面を、走査型透過電子顕微鏡(SEM)にて20000倍で観察する。
 上記の観察視野について、SEMに付属のエネルギー分散型X線分光分析(Energy Dispersive X-ray Spectrometry)(以下、「EDX」という場合がある。)を用いて、上記第1領域について元素定量分析を行うことで、最大面積を占める金属元素を第1金属として特定する。
 リード導体の形状は特に限定されないが、厚み50μm~1000μm、幅1mm~200mm、長さ5mm~200mmの平板形状が好ましく使用できる。
 <皮膜>
 皮膜は、リード導体の表面の少なくとも一部を被覆する。皮膜は、リード導体の表面全体に設けることが好ましいが、リード導体の表面の少なくとも一部を被覆していてもよい。また、本実施形態において「皮膜の表面」とは、リード導体と接する側と反対の表面を意味し、以下実施形態2および3においても同様とする。
 (クロム)
 皮膜は、3価クロム(Cr)化合物を含む。皮膜が3価クロム化合物を含むことで、皮膜の耐食性が向上する。3価クロム化合物は、3価クロムを含む化合物であり、例えば、水酸化クロム、塩化クロム、硫酸クロム、酢酸クロム、硝酸クロム等が挙げられる。
 皮膜は、金属クロムをさらに含んでいてもよい。皮膜が金属クロムを含むことで、リード導体と皮膜との接着性が向上し、高度な耐食性を有することができる。
 皮膜に含まれるクロムの含有量は、例えば、0.1mg/m以上20mg/m未満である。ここで、皮膜に含まれるクロムとは、3価クロム化合物および金属クロムのクロム換算量の合計量を示す。皮膜に含まれるクロムの含有量が0.1mg/m未満である場合、皮膜が均一に形成されず、耐食性が低下する傾向がある。皮膜に含まれるクロムの含有量が20mg/m以上である場合、皮膜にクラックを形成しやすくなり、耐食性が低下する傾向がある。皮膜に含まれるクロムの濃度は、1mg/m以上15mg/m未満であることが好ましく、3mg/m以上10mg/m未満であることがより好ましい。
 皮膜に含まれるクロムの含有量は、誘導結合プラズマ質量分析法(Inductively Coupled Plasma-Mass Spectrometry)(以下、「ICP-MS」という場合がある。)を用いて測定することができる。皮膜に含まれるクロムの含有量は、例えば、皮膜により被覆されたリード導体を切断し、塩酸溶液中に浸漬させて、リード導体ごと溶解させ、得られた溶液のクロムの濃度を誘導結合プラズマ質量分析装置(アジレントテクノロジー社製 ICP-MS7700x)を用いて測定することで求めることができる。
 また、皮膜中の金属クロムの有無は、蛍光収量法によりX線吸収スペクトルを測定することで確認することができる。X線吸収スペクトルを測定するための設備として、例えば、放射光施設(佐賀県立九州シンクロトロン光研究センター(SAGA-LS) BL16)を利用することができる。当該設備にて、X線を皮膜の最表面に照射し、X線吸収スペクトルを取得する。取得したX線吸収スペクトルについて、金属クロムを用いて横軸のX線エネルギー値を校正した後、ソフトウェア(例えば、株式会社リガク社製 REX2000)を用いて規格化およびバックグラウンド処理を行う。その後、6007eVのX線吸収に対する5990eVのX線吸収の比を求め、当該比が0.1以上であれば皮膜中に金属クロムが含まれるとみなすことができる。
(第1金属)
 皮膜は、第1金属を含む。本実施形態のリード線が後述する熱融着層を含む場合、皮膜が第1金属を含むことで、皮膜と熱融着層との接着性が向上する。
 (3価クロム化合物の濃度に対する第1金属の濃度の比)
 皮膜の表面における3価クロム化合物の濃度に対する第1金属の濃度の比は、0.01以上4.0以下である。皮膜の表面における3価クロム化合物の濃度に対する第1金属の濃度の比が4.0を超える場合、皮膜が不均一に形成され、耐食性が低下する傾向がある。皮膜の表面における3価クロム化合物の濃度に対する第1金属の濃度の比は、3.0以下が好ましく、2.0以下がより好ましく、1.5以下がさらに好ましい。また、皮膜の表面における3価クロム化合物の濃度に対する第1金属の濃度の比は、例えば、0.1以上であってもよく、0.3以上であってもよく、0.5以上であってもよい。
 皮膜の表面における3価クロム化合物の濃度および第1金属の濃度は、X線光電子分光法(X-ray Photoelectron Spectroscopy)(以下、「XPS」という場合がある。)を用いて測定することができる。XPSの測定条件は、例えば、下記の通りである。また、皮膜における3価クロム化合物の濃度に対する第1金属の濃度の比は、下記の測定条件により得られたスペクトルのカーブフィッティングを行い、ピーク面積の比率を求めることで算出することができる。
[XPSの測定条件]
X線源     :Al-Kα
X線源の出力  :15kV
光電子取り出し角:45°
分析エリア   :100μmΦ
 また、皮膜の表面は欠損を有している場合がある。該欠損は、例えば、リード導体の表面に皮膜を形成する際に生じる。皮膜の表面に欠損を有している場合であっても、本実施形態の皮膜を有していれば、十分な耐食性および接着性を有する。
 (フッ素化合物)
 皮膜は、フッ素(F)化合物を含んでいてもよい。皮膜がフッ素化合物を含むことで、電力貯蔵デバイス中の電解液成分の分解生成物に対する安定性が向上し、高度な耐食性を有することができる。
 皮膜の表面におけるフッ素化合物のフッ素濃度は、0.1原子%以上5.0原子%以下であることが好ましく、0.3原子%以上4.5原子%以下であることがより好ましい。皮膜の表面におけるフッ素化合物のフッ素濃度が0.1原子%未満の場合、耐食性が低下する傾向がある。皮膜の表面におけるフッ素化合物のフッ素濃度が5.0原子%を超える場合、リード導体と皮膜との接着性が低下する傾向がある。
 皮膜の表面におけるフッ素濃度は、XPSを用いて測定することができる。XPSの測定条件は、例えば、下記の通りである。
[XPSの測定条件]
X線源     :Al-Kα
X線源の出力  :15kV
光電子取り出し角:45°
分析エリア   :100μmΦ
 (皮膜の厚み)
 皮膜の厚みは、1nm以上50nm以下であることが好ましく、3nm以上20nm以下であることがより好ましい。皮膜の厚みが1nm未満の場合、皮膜が均一に形成されず、耐食性が低下する傾向がある。また、皮膜の厚みが50nmを超える場合、皮膜にクラックを形成しやすく、皮膜密度が小さくなりやすいため、耐食性が低下する傾向がある。
 皮膜の厚みは、SiO換算で測定することができる。皮膜の厚みは、例えば、以下の条件により、XPSによる深さ方向分析を行い、クロム元素の組成比が最大値の半分となるSiO換算でのスパッタ深さで定義される。
[XPSの分析条件]
X線源     :Al-Kα
X線源の出力  :15kV
光電子取り出し角:45°
分析エリア   :100μmΦ
 (その他)
 皮膜に含まれるその他の成分としては、炭素、窒素、酸素、ナトリウム、リン、硫黄、塩素、カリウム等が挙げられる。
 皮膜は、近年の環境保護の観点から、6価クロム化合物を含まないことが好ましい。6価クロム化合物としては、二クロム酸塩、クロム酸塩等が挙げられる。皮膜が6価クロム化合物を含まないとは、6価クロム化合物を全く含まないことが好ましいが、6価クロム化合物中の6価クロムの検出限界以下であってもよい。6価クロム化合物を含んでいないことは、JIS H 8625により確認することができる。
 <熱融着層>
 本実施形態のリード線は、熱融着層をさらに含んでいてもよい。熱融着層は、皮膜の少なくとも一部を被覆していればよく、必ずしも皮膜の全体に設ける必要はない。
 熱融着層には、熱融着時の熱(250℃~300℃)によって溶融する任意の樹脂を使用でき、例えば、ポリオレフィン系樹脂、酸変性スチレン系エラストマー等が挙げられる。ポリオレフィン系樹脂としては、例えば、ポリエチレン、ポリプロピレン、アイオノマー樹脂、酸変性ポリオレフィン等が挙げられ、マレイン酸、アクリル酸、メタクリル酸、無水マレイン酸等で変性されて接着性の官能基を持つ酸変性ポリオレフィンが好ましく、金属との接着性および接着性に優れた無水マレイン酸変性ポリオレフィン樹脂がより好ましい。
 熱融着層には、これらの樹脂の他に、難燃剤、紫外線吸収剤、光安定剤、熱安定剤、滑剤、着色剤等の各種添加剤を混合することが可能である。これらの樹脂材料および添加剤をオープンロール、加圧ニーダー、単軸混合機、2軸混合機などの既知の混合装置を用いて混合した後押出成形などによってフィルム状の熱融着層を作製する。熱融着層の厚みはリード導体1の厚みに依存するが、30μm~200μmが好ましい。
 熱融着層は、加速電子線やγ線などの電離放射線の照射によって架橋して使用することもできる。架橋することで耐熱性を高めることができ、使用時の温度が上がった場合の接着力の低下を防止することができる。熱融着層全体を架橋してもよいし、熱融着層を多層構造とし、非架橋層と架橋した層とを積層してもよい。
 <ピール強度>
 本実施形態に係るリード線において、リード導体と熱融着層との間の接着力については、以下の方法によりピール強度を測定することによって評価することができる。ピール強度は、例えば、リード線のリード導体と熱融着層の一方を切断して180°に折り曲げ、引張試験機(島津製作所社製 EX-SX)にセットする。次に、セットした前記切断部分を引張速度50mm/分の条件で引っ張ることによって求めることができる。ピール強度の値が大きい程、リード導体と熱融着層との間の接着力が優れており、耐食性に優れていると評価できる。
 ≪実施形態2≫
 図1および図2を参照して、本実施形態のリード線は、リード導体1と、リード導体1の表面の少なくとも一部を被覆する皮膜2と、を含む。皮膜2は、3価クロム化合物および第1金属を構成する元素の水酸化物を含み、3価クロム化合物には水酸化クロムが含まれる。皮膜の表面Aにおける3価クロム化合物の濃度に対する水酸化クロムの濃度の比は、0.3以上0.9以下であり、皮膜の表面Aにおける3価クロム化合物の濃度に対する第1金属を構成する元素の水酸化物の濃度の比は、0.01以上1.0以下である。以下、本実施形態のリード線について説明するが、実施形態1と重複する説明は省略する。
 (水酸化物)
 皮膜は、水酸化物、具体的には第1金属を構成する元素の水酸化物および水酸化クロムを含む。本実施形態のリード線が熱融着層を含む場合、皮膜が第1金属を構成する元素の水酸化物および水酸化クロムを含むことで、第1金属を含む金属の表面に形成されている水酸基と、水酸化物の水酸基とが水素結合を形成することで、皮膜と熱融着層との接着性が向上する。第1金属を構成する元素の水酸化物としては、水酸化ニッケル(II)、水酸化アルミニウム、水酸化銅(II)等が挙げられる。
 (3価クロム化合物の濃度に対する水酸化クロムの濃度の比)
 皮膜の表面における3価クロム化合物の濃度に対する水酸化クロムの濃度の比は、0.3以上0.9以下である。本実施形態のリード線が熱融着層を含む場合、皮膜の表面における3価クロム化合物の濃度に対する水酸化クロムの濃度の比が0.3以上0.9以下であることで、皮膜と熱融着層との接着性が向上する。皮膜の表面における3価クロム化合物の濃度に対する水酸化クロムの濃度の比は、0.35以上0.8以下であることが好ましく、0.4以上0.7以下であることがより好ましい。
 (3価クロム化合物の濃度に対する第1金属を構成する元素の水酸化物の濃度の比)
 また、皮膜の表面における3価クロム化合物の濃度に対する第1金属を構成する元素の水酸化物の濃度の比は、0.01以上1.0以下である。本実施形態のリード線が熱融着層を含む場合、皮膜の表面における3価クロム化合物の濃度に対する第1金属を構成する元素の水酸化物の濃度の比が0.01以上1.0以下であることで、皮膜と熱融着層との接着性が向上する。皮膜の表面における3価クロム化合物の濃度に対する第1金属の水酸化物の濃度の比は、0.05以上0.8以下であることが好ましく、0.1以上0.6以下であることがより好ましい。
 皮膜の表面における3価クロム化合物、水酸化クロムおよび第1金属を構成する元素の水酸化物の濃度は、XPSを用いて測定することができる。XPSの測定条件は、例えば、下記の通りである。また、皮膜の表面における3価クロム化合物の濃度に対する水酸化クロムの濃度の比および皮膜の表面における3価クロム化合物の濃度に対する第1金属を構成する元素の水酸化物の濃度の比は、下記の測定条件により得られたスペクトルのカーブフィッティングを行い、ピーク面積の比率を求めることで算出することができる。
[XPSの測定条件]
X線源     :Al-Kα
X線源の出力  :15kV
光電子取り出し角:45°
分析エリア   :100μmΦ
 ≪実施形態3≫
 図1および図2を参照して、本実施形態のリード線は、リード導体1と、リード導体1の表面の少なくとも一部を被覆する皮膜2と、を含む。皮膜2は、3価クロム化合物、第1金属およびカルシウム化合物を含む。皮膜の表面Aにおける3価クロム化合物の濃度に対するカルシウムの濃度の比は、0.01以上1.0以下である。以下、本実施形態のリード線について説明するが、実施形態1および2と重複する説明は省略する。
 (カルシウム化合物)
 皮膜は、カルシウム(Ca)化合物を含む。皮膜がカルシウム化合物を含むことで、電力貯蔵デバイス中の電解液成分の分解生成物に対する安定性が向上し、優れた耐食性を有することができる。カルシウム化合物は、特に制限はないが、例えば、水酸化カルシウム、酸化カルシウム、硫酸カルシウムおよび炭酸カルシウム等が挙げられる。
 皮膜の表面における3価クロム化合物の濃度に対するカルシウムの濃度の比は、0.01以上1.0以下である。本実施形態のリード線が熱融着層を含む場合、皮膜の表面における3価クロム化合物の濃度に対するカルシウムの濃度の比が0.01以上1.0以下であることで、皮膜と熱融着層との接着性が向上する。皮膜の表面における3価クロム化合物の濃度に対するカルシウムの濃度の比は、0.03以上0.7以下であることが好ましく、0.05以上0.4以下であることがより好ましい。
 皮膜の表面における3価クロム化合物の濃度およびカルシウムの濃度は、XPSを用いて測定することができる。XPSの測定条件は、例えば、下記の通りである。また、皮膜の表面における3価クロム化合物の濃度に対するカルシウムの濃度の比は、下記の測定条件により得られたスペクトルのカーブフィッティングを行い、ピーク面積の比率を求めることで算出することができる。
[XPSの測定条件]
X線源     :Al-Kα
X線源の出力  :15kV
光電子取り出し角:45°
分析エリア   :100μmΦ
 ≪用途≫
 実施形態1~3のリード線は、電力貯蔵デバイスに好適に用いられる。電力貯蔵デバイスとしては、例えば、非水電解液を用いる非水電解質電池や電気二重層キャパシタ、電解液の主溶媒を水とする水系電解質電池等が挙げられる。
 以下、実施例を挙げて本開示を詳細に説明するが、本開示はこれらに限定されるものではない。
 ≪リード線の作製≫
 <試料1>
 (リード導体の作製)
 リード導体の部材として、長さ100mm、幅45mm、厚み0.2mmの無酸素銅板(C1020)を用いた。前処理として、25℃の水酸化ナトリウム水溶液(40g/L)に基材を浸漬し、電流密度1.0A/dmで陰極電解脱脂を行った。脱脂後の基材を流水で洗浄した。
 次に、洗浄後の基材に対して、25℃の硫酸水溶液(10質量%)に基材を30秒間浸漬して酸活性を行った。酸活性後の基材を流水で洗浄した。
 次に、アミド硫酸ニッケル四水和物(350g/L)、塩化ニッケル六水和物(30g/L)およびホウ酸(30g/L)を混合し、ニッケルめっき液を得た。50℃のニッケルめっき液に酸活性後の基材を浸漬し、電流密度5.0A/dmで120秒間めっきを行った。めっき後の基材を流水で洗浄することによって、ニッケルめっき銅(ニッケルめっきされた金属)からなるリード導体を得た。
 (皮膜の形成)
 塩化クロム六水和物(5.0g/L)およびギ酸カリウム(170g/L)を純水に混合し、表面処理液を得た。45℃の表面処理液にリード導体を浸漬し、電流密度10A/dmで30秒間陰極電解を行った。陰極電解後のリード導体を流水で洗浄することで、表1に記載の皮膜を形成したリード導体を得た。
 (熱融着層の形成)
 皮膜を形成したリード導体の両面に、厚み50μmの無水マレイン酸変性ポリプロピレンフィルムを被覆し、260℃で30秒間プレスして接着した。以上より、試料1のリード線を作製した。
 <試料2~5、A~C>
 試料2~5およびA~Cに関して、試料1と同様のリード導体を用いた。試料2では、陰極電解の時間を40秒間とした点を除いて、試料3では、陰極電解の時間を5秒間とした点を除いて、試料4では、塩化クロム六水和物の濃度を10g/Lとした点を除いて、試料5では、陰極電解の時間を60秒間とし、塩化クロム六水和物の濃度を10g/Lとした点を除いて、試料Aでは、電流密度1A/dmとした点を除いて、試料Bでは、塩化クロム六水和物の濃度を1.0g/Lとした点を除いて、試料Cでは、陰極電解の時間を90秒間とし、塩化クロム六水和物の濃度を10g/Lとした点を除いて、試料1と同様の方法で皮膜を形成したリード導体を得た。また、試料1と同様の方法で熱融着層を形成し、各試料のリード線を作製した。
 <試料6>
 (リード導体の作製)
 リード導体の部材として、長さ100mm、幅45mm、厚み0.2mmのアルミニウム板(A1050)を用いた。前処理として、25℃の水酸化ナトリウム水溶液(40g/L)に基材を浸漬し、電流密度1.0A/dmで陰極電解脱脂を行った。脱脂後の基材を流水で洗浄することで、リード導体を得た。
 (皮膜の形成)
 塩化クロム六水和物(5.0g/L)およびギ酸カリウム(170g/L)を純水に混合し、表面処理液を得た。45℃の表面処理液にリード導体を浸漬し、電流密度10A/dmで10秒間陰極電解を行った。陰極電解後のリード導体を流水で洗浄することで、表1に記載の皮膜を形成したリード導体を得た。
 (熱融着層の形成)
 試料1と同様の方法で熱融着層を形成することで、試料6のリード線を作製した。
 <試料7>
 試料7では、上記の試料6の表面処理液にさらにフッ化カリウム(5.0g/L)を混合した点を除いて、試料6と同様の方法でリード線を作製した。
 <試料8>
 リード導体の部材として、長さ100mm、幅45mm、厚み0.2mmの無酸素銅板(C1020)を用いた。前処理として、25℃の水酸化ナトリウム水溶液(40g/L)に基材を浸漬し、電流密度1.0A/dmで陰極電解脱脂を行った。脱脂後の基材を流水で洗浄した。次に、洗浄後の基材に対して、25℃の硫酸水溶液(10質量%)に基材を30秒間浸漬して酸活性を行った。酸活性後の基材を流水で洗浄することで、リード導体を得た。皮膜の形成および熱融着層の形成は試料1と同様の方法で行った。
 <試料9>
 (リード導体の作製)
 試料1と同様の方法でニッケルめっき銅(ニッケルめっきされた金属)からなるリード導体を作製した。
 (皮膜の形成)
 塩化クロム六水和物(5.0g/L)およびギ酸カリウム(170g/L)を純水に混合し、表面処理液を得た。45℃の表面処理液にリード導体を浸漬し、電流密度10A/dmで30秒間陰極電解を行った。陰極電解後のリード導体を流水で洗浄し、100℃の恒温槽で180秒間乾燥を行うことで、表2に記載の皮膜を形成したリード導体を得た。
 (熱融着層の形成)
 試料1と同様の方法で熱融着層を形成することで、試料9のリード線を作製した。
 <試料10~13、D~E>
 試料10~13およびD~Eに関して、試料9と同様のリード導体を用いた。試料10では、陰極電解の時間を5秒間とした点を除いて、試料11では、塩化クロム六水和物の濃度を10g/Lとした点を除いて、試料12では、陰極電解後の乾燥時間を30秒間とした点を除いて、試料13では、陰極電解後の乾燥時間を3600秒間とした点を除いて、試料Dでは、陰極電解後に250℃の恒温槽で3600秒間乾燥を行った点を除いて、試料Eでは、塩化クロム六水和物の濃度を1.0g/Lとした点を除いて、試料9と同様の方法で皮膜を形成したリード導体を得た。また、試料1と同様の方法で熱融着層を形成し、各試料のリード線を作製した。
 <試料14>
 (リード導体の作製)
 試料1と同様の方法でニッケルめっき銅(ニッケルめっきされた金属)からなるリード導体を作製した。
 (皮膜の形成)
 塩化クロム六水和物(5.0g/L)、ギ酸カリウム(170g/L)および塩化カルシウム(0.5g/L)を純水に混合し、表面処理液を得た。45℃の表面処理液にリード導体を浸漬し、電流密度10A/dmで30秒間陰極電解を行った。陰極電解後のリード導体を流水で洗浄し、100℃の恒温槽で180秒間乾燥を行うことで、表3に記載の皮膜を形成したリード導体を得た。
 (熱融着層の形成)
 試料1と同様の方法で熱融着層を形成することで、試料14のリード線を作製した。
 <試料15、F>
 試料15およびFに関して、試料14と同様のリード導体を用いた。試料15では、塩化カルシウムの濃度を3.0g/Lとした点を除いて、試料Fでは、塩化カルシウムの濃度を5.0g/Lとした点を除いて、試料14と同様の方法で皮膜を形成したリード導体を得た。また、試料1と同様の方法で熱融着層を形成し、各試料のリード線を作製した。
 試料1~15のリード線は、実施例に対応する。試料A~Fのリード線は、比較例に対応する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 ≪試料の観察≫
 <第1金属>
 各試料について、クロスセクションポリッシャー装置(CP装置)を用いて得た皮膜の断面を、SEMにて20000倍で観察し、SEMに付属のEDXを用いて、複数の第1領域について、元素マッピングを行った。上記元素マッピングにおいて、最も含有比率の高い元素を第1金属とした。結果を表1~3の「第1金属」欄に示す。表中、Niは「ニッケル」を、Alは「アルミニウム」を、Cuは「銅」を、それぞれ示す。
 <クロム含有量の算出>
 作製した各試料のリード線の熱融着層が接着していない部分を10mm幅に切断し、50℃の希塩酸(3mol/L)に60分間浸漬させた。得られた溶液中のクロム量を、誘導結合プラズマ質量分析装置(アジレントテクノロジー社製 ICP-MS7700x)を用いて測定し、得られた結果から、皮膜中に含まれるクロムの含有量(mg/m)を算出した。結果を表1~3の「Cr含有量(mg/m)」欄に示す。
 <金属クロム>
 放射光施設(佐賀県立九州シンクロトロン光研究センター、BL16)にてX線を各試料の皮膜の最表面に照射し、X線吸収スペクトルを取得した。取得したX線吸収スペクトルについて、金属クロムを用いて横軸のX線エネルギー値を校正した後、ソフトウェア(株式会社リガク社製 REX2000)を用いて規格化およびバックグラウンド処理を行い、6007eVのX線吸収に対する5990eVのX線吸収の比を求め、各試料の皮膜中の金属クロムの有無を確認した。結果を表1~3の「金属Cr」欄に示す。当該比が0.1以上であれば「あり」、当該比が0.1未満であれば「なし」とした。
 <皮膜の厚み>
 X線光電子分光装置(アルバック・ファイ社製 QuanteraSXM)を用いて、以下の条件により、各試料の皮膜の深さ方向分析を行い、573eV~578eVのピークに帰属するクロム元素のSiO換算での深さを算出した。また、X線光電子分光装置で測定したSiOのエッチングレートは、1.0nm/minであった。結果を表1~3の「厚み(nm)」欄に示す。
[XPSの測定条件]
X線源     :Al-Kα
X線源の出力  :15kV
光電子取り出し角:45°
分析エリア   :100μmΦ
 <第1金属の濃度の比>
 X線光電子分光装置(アルバック・ファイ社製 QuanteraSXM)を用いて、上述の<皮膜の厚み>の[XPSの測定条件]と同様の条件により、試料1~8およびA~Cの皮膜の表面における3価クロム化合物および第1金属の濃度を測定することで、皮膜の表面における3価クロム化合物の濃度に対する第1金属の濃度の比を算出した。結果を表1の「第1金属の濃度の比」欄に示す。なお、同様の条件により、試料7の皮膜におけるフッ素濃度を測定したところ、フッ素濃度は4.0原子%であった。
 <水酸化クロムの濃度の比、第1金属を構成する元素の水酸化物の濃度の比>
 X線光電子分光装置(アルバック・ファイ社製 QuanteraSXM)を用いて、上述の<皮膜の厚み>の[XPSの測定条件]と同様の条件により、試料9~13およびD~Eの皮膜の表面における3価クロム化合物、水酸化クロムおよび第1金属を構成する元素の水酸化物の濃度を測定することで、皮膜の表面における3価クロム化合物の濃度に対する水酸化クロムの濃度の比および皮膜の表面における3価クロム化合物の濃度に対する第1金属を構成する元素の水酸化物の濃度の比を算出した。結果を表2の「水酸化Crの濃度の比」および「第1金属を構成する元素の水酸化物の濃度の比」欄に示す。
 <カルシウムの濃度の比>
 X線光電子分光装置(アルバック・ファイ社製 QuanteraSXM)を用いて、上述の<皮膜の厚み>の[XPSの測定条件]と同様の条件により、試料14~15およびE~Fの皮膜の表面における3価クロム化合物およびカルシウムの濃度を測定することで、皮膜の表面における3価クロム化合物の濃度に対するカルシウムの濃度の比を算出した。結果を表3の「Caの濃度の比」欄に示す。
 ≪評価試験≫
 <ピール試験>
 試料1~15および試料A~Fのピール強度を以下の方法により測定した。当該試験では、作製後に行う「初期ピール強度」および作製から4週間後に行う「4週間ピール強度」を測定した。
 (初期ピール強度)
 試料1~15およびA~Fのリード導体と熱融着層の一方を切断して180°に折り曲げ、引張試験機(島津製作所社製 EX-SX)にセットする。セットした前記切断部分を引張速度50mm/分の条件で引っ張ることによって、初期ピール強度を測定した。結果を表1~3の「ピール強度 初期(N/cm)」欄に示す。初期ピール強度が15N/cm以上の場合、高度な接着性を有するリード線として評価できる。
 (4週間ピール強度)
 エチレンカーボネート、ジエチルカーボネート、炭酸ジメチルを1:1:1の体積比率で混合し、六フッ化リン酸リチウム(LiPF)を1.0mol/Lとなるように溶解した試験液を準備した。この試験液に試料1~11およびA~Eを浸漬し、試験液の水分率が1000ppmになるように調整して80℃の恒温槽内に4週間放置した後、上述の「(初期ピール強度)」と同様の方法で測定した。結果を表1~3の「ピール強度 4週間(N/cm)」欄に示す。なお、前記試験液は、電力貯蔵デバイス中の電池要素の電解液として一般的に用いられるものであり、リード線の耐食性を評価するために作製されたものである。4週間ピール強度が10N/cm以上の場合、高度な耐食性を有するリード線として評価できる。
 <考察>
 皮膜の表面における3価クロム化合物の濃度に対する第1金属の濃度の比が0.01以上4.0以下である試料1~8は、初期ピール強度および4週間ピール強度共に大きい値を示した。これより、前記各試料のリード線は、高度な耐食性および接着性を有することがわかる。
 一方、皮膜の表面における3価クロム化合物の濃度に対する第1金属の濃度の比が0.01以上4.0以下の範囲にない試料A~Cは、接着性は高いが、耐食性は低下した。
 皮膜の表面における3価クロム化合物の濃度に対する水酸化クロムの濃度の比が0.3以上0.9以下であり、かつ、皮膜の表面における3価クロム化合物の濃度に対する第1金属を構成する元素の水酸化物の濃度の比が0.01以上1.0以下である試料9~13は、初期ピール強度および4週間ピール強度共に大きい値を示した。これより、前記各試料のリード線は、高度な耐食性および接着性を有することがわかる。
 一方、皮膜の表面における3価クロム化合物の濃度に対する水酸化クロムの濃度の比が0.2である試料Dおよび皮膜の表面における3価クロム化合物の濃度に対する第1金属を構成する元素の水酸化物の濃度の比が1.2である試料Eは、接着性は高いが、耐食性は低下した。
 皮膜の表面における3価クロム化合物の濃度に対するカルシウムの濃度の比が0.01以上1.0以下である試料14~15は、初期ピール強度および4週間ピール強度共に大きい値を示した。これより、前記各試料のリード線は、高度な耐食性および接着性を有することがわかる。
 一方、カルシウムを含まない試料Eは、接着性は高いが、耐食性は低下した。また、皮膜の表面における3価クロム化合物の濃度に対するカルシウムの濃度の比が1.2である試料Fは、初期ピール強度および4週間ピール強度共に小さい値を示した。
 以上のように本開示の実施形態および実施例について説明を行なったが、上述の各実施形態および各実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は前記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1 リード導体、2 皮膜、A 皮膜の表面、B 仮想面、C 第1領域。

Claims (18)

  1.  リード導体と、前記リード導体の表面の少なくとも一部を被覆する皮膜と、を含むリード線であって、
     前記皮膜は、3価クロム化合物および第1金属を含み、
     前記皮膜の表面における3価クロム化合物の濃度に対する前記第1金属の濃度の比は、0.01以上4.0以下である、リード線。
  2.  前記皮膜の表面における3価クロム化合物の濃度に対する前記第1金属の濃度の比は、0.1以上4.0以下である、請求項1に記載のリード線。
  3.  リード導体と、前記リード導体の表面の少なくとも一部を被覆する皮膜と、を含むリード線であって、
     前記皮膜は、3価クロム化合物および第1金属を構成する元素の水酸化物を含み、
     前記3価クロム化合物は、水酸化クロムを含み、
     前記皮膜の表面における3価クロム化合物の濃度に対する水酸化クロムの濃度の比は、0.3以上0.9以下であり、
     前記皮膜の表面における3価クロム化合物の濃度に対する前記第1金属を構成する元素の水酸化物の濃度の比は、0.01以上1.0以下である、リード線。
  4.  リード導体と、前記リード導体の表面の少なくとも一部を被覆する皮膜と、を含むリード線であって、
     前記皮膜は、3価クロム化合物、第1金属およびカルシウム化合物を含み、
     前記皮膜の表面における3価クロム化合物の濃度に対するカルシウムの濃度の比は、0.01以上1.0以下である、リード線。
  5.  前記カルシウム化合物は、水酸化カルシウム、酸化カルシウム、硫酸カルシウムおよび炭酸カルシウムからなる群より選択される少なくとも一種を含む、請求項4に記載のリード線。
  6.  前記第1金属は、前記皮膜の表面と、前記皮膜の表面から500nm離れて前記皮膜の表面に平行に位置する仮想面と、に囲まれる第1領域において、最も含有率が高い金属である、請求項1から請求項5のいずれか一項に記載のリード線。
  7.  前記第1金属は、ニッケル、アルミニウムおよび銅からなる群から選択される少なくとも一種である、請求項1から請求項6のいずれか一項に記載のリード線。
  8.  前記皮膜は、金属クロムをさらに含む、請求項1から請求項7のいずれか一項に記載のリード線。
  9.  前記皮膜に含まれるクロムの含有量は、0.1mg/m以上20mg/m未満である、請求項1から請求項8のいずれか一項に記載のリード線。
  10.  前記リード線は、前記皮膜の少なくとも一部を被覆する熱融着層をさらに含む、請求項1から請求項9のいずれか一項に記載のリード線。
  11.  前記熱融着層は、無水マレイン酸変性ポリオレフィン系樹脂からなる、請求項10に記載のリード線。
  12.  前記皮膜の厚みは、1nm以上50nm以下である、請求項1から請求項11のいずれか一項に記載のリード線。
  13.  前記皮膜は、フッ素化合物をさらに含み、
     前記皮膜の表面におけるフッ素の濃度は、0.1原子%以上5.0原子%以下である、請求項1から請求項12のいずれか一項に記載のリード線。
  14.  前記皮膜は、6価クロム化合物を含まない、請求項1から請求項13のいずれか一項に記載のリード線。
  15.  前記リード導体は、ニッケル、ニッケルめっきされた金属またはニッケル-リン合金めっきされた金属である、請求項1から請求項14のいずれか一項に記載のリード線。
  16.  前記リード導体は、アルミニウムまたはアルミニウム合金である、請求項1から請求項14のいずれか一項に記載のリード線。
  17.  前記リード導体は、銅または銅合金である、請求項1から請求項14のいずれか一項に記載のリード線。
  18.  請求項1から請求項17のいずれか一項に記載のリード線を備えた電力貯蔵デバイス。
PCT/JP2021/037185 2021-10-07 2021-10-07 リード線および電力貯蔵デバイス WO2023058192A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180102699.0A CN117981018A (zh) 2021-10-07 2021-10-07 引线以及电力储存设备
PCT/JP2021/037185 WO2023058192A1 (ja) 2021-10-07 2021-10-07 リード線および電力貯蔵デバイス
JP2023552631A JPWO2023058192A1 (ja) 2021-10-07 2021-10-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/037185 WO2023058192A1 (ja) 2021-10-07 2021-10-07 リード線および電力貯蔵デバイス

Publications (1)

Publication Number Publication Date
WO2023058192A1 true WO2023058192A1 (ja) 2023-04-13

Family

ID=85804042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037185 WO2023058192A1 (ja) 2021-10-07 2021-10-07 リード線および電力貯蔵デバイス

Country Status (3)

Country Link
JP (1) JPWO2023058192A1 (ja)
CN (1) CN117981018A (ja)
WO (1) WO2023058192A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155713A (ja) * 1999-09-16 2001-06-08 Fujimori Kogyo Co Ltd 電極リード部材及び電池
JP2009099527A (ja) * 2007-09-28 2009-05-07 Dainippon Printing Co Ltd 電池タブ及びそれを用いたリチウムイオン電池
JP2016184494A (ja) * 2015-03-26 2016-10-20 Jx金属株式会社 フィルム外装電池用タブリード材料及びその製造方法
WO2019004163A1 (ja) * 2017-06-29 2019-01-03 ユケン工業株式会社 防錆部材およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155713A (ja) * 1999-09-16 2001-06-08 Fujimori Kogyo Co Ltd 電極リード部材及び電池
JP2009099527A (ja) * 2007-09-28 2009-05-07 Dainippon Printing Co Ltd 電池タブ及びそれを用いたリチウムイオン電池
JP2016184494A (ja) * 2015-03-26 2016-10-20 Jx金属株式会社 フィルム外装電池用タブリード材料及びその製造方法
WO2019004163A1 (ja) * 2017-06-29 2019-01-03 ユケン工業株式会社 防錆部材およびその製造方法

Also Published As

Publication number Publication date
JPWO2023058192A1 (ja) 2023-04-13
CN117981018A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
TWI295119B (en) Lead line for non-aqueous electrolyte cell and non-aqueous electrolyte cell
JP6220359B2 (ja) フィルム外装電池用タブリード材料及びその製造方法
WO2013061932A1 (ja) 電気化学セル用包装材料
KR101427541B1 (ko) 전기 부품, 비수 전해질 전지 및 그것에 이용하는 리드선 및 봉입 용기
WO2002101849A2 (en) Tab surface treatments for polymer-metal laminate electrochemical cell packages
Lee et al. Tris (pentafluorophenyl) silane as an electrolyte additive for 5 V LiNi0. 5Mn1. 5O4 positive electrode
CN111279511A (zh) 极耳引线用膜、以及采用该极耳引线用膜的极耳引线
JP6232302B2 (ja) リチウムイオン電池用電極タブの製造方法
WO2023058192A1 (ja) リード線および電力貯蔵デバイス
Soon et al. Copper oxide as a hydrogen fluoride scavenger for high-voltage LiNi0. 5Mn1. 5O4 positive electrode
KR20140116795A (ko) 탭 리드
WO2022153399A1 (ja) リード線、電力貯蔵デバイスおよびリード線の製造方法
TWI588301B (zh) Electrodeposited copper foil, electrode for lithium ion secondary battery using the same, and lithium ion secondary battery using the same
CN106469803A (zh) 电极端子、电化学装置和含电化学装置的电化学装置模块
TWI423510B (zh) Copper foil for lithium ion battery collectors
JP6131559B2 (ja) 電気化学セル用包装材料
TW201700752A (zh) 電池包裝用不鏽鋼箔
WO2023223972A1 (ja) 導体
JP7354345B1 (ja) 非水電解質電池用タブリード
WO2023223970A1 (ja) 非水電解質電池用タブリード
WO2023223971A1 (ja) 非水電解質電池用タブリード
WO2024058247A1 (ja) リチウムイオン電池及びリチウムイオン電池の製造方法
WO2023223969A1 (ja) 非水電解質電池用タブリード
KR101579489B1 (ko) 표면 처리 동박과 그 제조방법, 리튬이온 이차전지용 전극 및 리튬이온 이차전지
WO2024214195A1 (ja) 非水電解液電池用リード線及び非水電解液電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552631

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180102699.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21959934

Country of ref document: EP

Kind code of ref document: A1