WO2023057855A1 - 表示装置、表示モジュール、及び、電子機器 - Google Patents

表示装置、表示モジュール、及び、電子機器 Download PDF

Info

Publication number
WO2023057855A1
WO2023057855A1 PCT/IB2022/059212 IB2022059212W WO2023057855A1 WO 2023057855 A1 WO2023057855 A1 WO 2023057855A1 IB 2022059212 W IB2022059212 W IB 2022059212W WO 2023057855 A1 WO2023057855 A1 WO 2023057855A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
insulating layer
emitting
film
Prior art date
Application number
PCT/IB2022/059212
Other languages
English (en)
French (fr)
Inventor
杉澤希
青山智哉
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2023057855A1 publication Critical patent/WO2023057855A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • One embodiment of the present invention relates to a display device, a display module, and an electronic device.
  • One embodiment of the present invention relates to a method for manufacturing a display device.
  • one embodiment of the present invention is not limited to the above technical field.
  • Technical fields of one embodiment of the present invention include semiconductor devices, display devices, light-emitting devices, power storage devices, storage devices, electronic devices, lighting devices, input devices (e.g., touch sensors), input/output devices (e.g., touch panels), Their driving method or their manufacturing method can be mentioned as an example.
  • display devices are expected to be applied to various uses.
  • applications of large display devices include home television devices (also referred to as televisions or television receivers), digital signage (digital signage), and PID (Public Information Display).
  • home television devices also referred to as televisions or television receivers
  • digital signage digital signage
  • PID Public Information Display
  • mobile information terminals such as smart phones and tablet terminals with touch panels are being developed.
  • Devices that require high-definition display devices include, for example, virtual reality (VR), augmented reality (AR), alternative reality (SR), and mixed reality (MR) ) are being actively developed.
  • VR virtual reality
  • AR augmented reality
  • SR alternative reality
  • MR mixed reality
  • a light-emitting device having a light-emitting device As a display device, for example, a light-emitting device having a light-emitting device (also referred to as a light-emitting element) has been developed.
  • a light-emitting device also referred to as an EL device or EL element
  • EL the phenomenon of electroluminescence
  • EL is a DC constant-voltage power supply that can easily be made thin and light, can respond quickly to an input signal, and It is applied to a display device.
  • Patent Document 1 discloses a display device for VR using an organic EL device (also referred to as an organic EL element).
  • An object of one embodiment of the present invention is to provide a high-definition display device.
  • An object of one embodiment of the present invention is to provide a high-resolution display device.
  • An object of one embodiment of the present invention is to provide a highly reliable display device.
  • An object of one embodiment of the present invention is to provide a display device capable of high-luminance display.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a high-definition display device.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a high-resolution display device.
  • An object of one embodiment of the present invention is to provide a highly reliable method for manufacturing a display device.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a display device with high yield.
  • One aspect of the present invention includes a first light-emitting device, a second light-emitting device, a third light-emitting device, a first colored layer, a second colored layer, a first insulating layer, and a second insulating layer.
  • a first light-emitting device having a first pixel electrode, a first light-emitting layer on the first pixel electrode, a common electrode on the first light-emitting layer;
  • the light-emitting device has a second pixel electrode, a second light-emitting layer on the second pixel electrode, and a common electrode on the second light-emitting layer;
  • the third light emitting device emits light at a shorter wavelength than the first light emitting device and the second light emitting device, and the first colored layer and the second colored layer have different colors from each other.
  • the first colored layer overlaps the first light emitting device
  • the second colored layer overlaps the second light emitting device
  • the first insulating layer overlies the top surface of the first light emitting layer.
  • the second insulating layer covers part and side surfaces and part and side surfaces of the top surface of the second light-emitting layer
  • the second insulating layer covers the part and side surfaces of the top surface of the first light-emitting layer and the first light-emitting layer with the first insulating layer interposed therebetween.
  • the second insulating layer has a portion located between the side surface of the first light emitting layer and the side surface of the second light emitting layer, and the common electrode is the second light emitting layer.
  • the display device covers the upper surface of the insulating layer of the .
  • One aspect of the present invention includes a first light-emitting device, a second light-emitting device, a third light-emitting device, a first colored layer, a second colored layer, a first insulating layer, and a second insulating layer.
  • the first light-emitting device comprising: a first pixel electrode; a first light-emitting layer on the first pixel electrode; a first functional layer on the first light-emitting layer; a common electrode on the layer
  • the second light emitting device comprising: a second pixel electrode; a second light emitting layer on the second pixel electrode; and a second function on the second light emitting layer.
  • the third light emitting device includes a third pixel electrode, a third light emitting layer on the third pixel electrode, and a third light emitting layer. a third functional layer on the layer; and a common electrode on the third functional layer; the first light-emitting layer and the second light-emitting layer have the same light-emitting material; Among the light emitting device, the second light emitting device, and the third light emitting device, the third light emitting device emits light with the shortest wavelength, and the first colored layer and the second colored layer are different from each other the first colored layer overlies the first light emitting device, the second colored layer overlies the second light emitting device, and the first insulating layer overlies the first light emitting layer.
  • the second insulating layer includes, through the first insulating layer, part of the top surface of the first light-emitting layer, part of the top surface of the second light-emitting layer, part of the top surface of the first functional layer, and , the second insulating layer has a portion located between the side surface of the first light emitting layer and the side surface of the second light emitting layer, and the common electrode includes: A display device covering the upper surface of the second insulating layer.
  • the first functional layer, the second functional layer, and the third functional layer are respectively a hole injection layer, an electron injection layer, a hole transport layer, an electron transport layer, a hole blocking layer, and an electron blocking layer. It is preferable to have at least one of them.
  • the first light emitting device and the second light emitting device emit yellow light
  • the third light emitting device emits blue light
  • the first colored layer transmits red light
  • the second colored layer transmits red light.
  • the layer is preferably transparent to green light.
  • the above display device preferably has a third colored layer that transmits blue light, overlapping with the third light-emitting device.
  • the end of the second insulating layer preferably has a tapered shape with a taper angle of less than 90°.
  • the second insulating layer preferably covers at least part of the side surface of the first insulating layer.
  • the end of the second insulating layer is preferably located outside the end of the first insulating layer.
  • the second insulating layer preferably has a convex curved shape on the upper surface.
  • the end of the first insulating layer preferably has a tapered shape with a taper angle of less than 90°.
  • Each of the first insulating layer and the second insulating layer preferably has a portion overlapping with the upper surface of the first pixel electrode and a portion overlapping with the upper surface of the second pixel electrode.
  • the first light-emitting layer covers the sides of the first pixel electrode
  • the second light-emitting layer covers the sides of the second pixel electrode
  • the third light-emitting layer covers the sides of the third pixel electrode. is preferred.
  • the end portion of the first pixel electrode, the end portion of the second pixel electrode, and the end portion of the third pixel electrode each have a tapered shape with a taper angle of less than 90°.
  • the first insulating layer is an inorganic insulating layer and the second insulating layer is an organic insulating layer.
  • the first insulating layer preferably comprises aluminum oxide.
  • the first light emitting device having a common layer between the first light emitting layer and the common electrode
  • the second light emitting device having a common layer between the second light emitting layer and the common electrode
  • the third light emitting device has a common layer between the third light emitting layer and the common electrode, the common layer being located between the second insulating layer and the common electrode.
  • one aspect of the present invention includes a display device having any one of the above configurations, and a connector such as a flexible printed circuit board (hereinafter referred to as FPC) or TCP (tape carrier package) is attached. or a display module in which an integrated circuit (IC) is mounted by a COG (Chip On Glass) method, a COF (Chip On Film) method, or the like.
  • FPC flexible printed circuit board
  • TCP tape carrier package
  • Another embodiment of the present invention is an electronic device including the above display module and at least one of a housing, a battery, a camera, a speaker, and a microphone.
  • One embodiment of the present invention can provide a high-definition display device.
  • One embodiment of the present invention can provide a high-resolution display device.
  • One embodiment of the present invention can provide a highly reliable display device.
  • a display device capable of high-luminance display can be provided.
  • a method for manufacturing a high-definition display device can be provided.
  • a method for manufacturing a high-resolution display device can be provided.
  • a highly reliable method for manufacturing a display device can be provided.
  • a method for manufacturing a display device with high yield can be provided.
  • FIG. 1A is a top view showing an example of a display device.
  • FIG. 1B is a cross-sectional view showing an example of a display device;
  • FIG. 1C is a top view showing an example of layer 113Y.
  • 2A and 2B are cross-sectional views showing an example of a display device.
  • 3A and 3B are cross-sectional views showing an example of a display device.
  • 4A and 4B are cross-sectional views showing an example of the display device.
  • 5A and 5B are cross-sectional views showing an example of the display device.
  • 6A and 6B are cross-sectional views showing an example of the display device.
  • 7A and 7F are cross-sectional views showing an example of a display device.
  • FIG. 7B to 7E are cross-sectional views showing examples of pixel electrodes.
  • 8A to 8C are cross-sectional views showing examples of display devices.
  • 9A to 9D are cross-sectional views showing examples of display devices.
  • FIG. 10A is a top view showing an example of a display device.
  • FIG. 10B is a cross-sectional view showing an example of a display device;
  • 11A to 11C are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 12A to 12C are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 13A to 13C are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 14A to 14C are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 15A and 15B are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 16A to 16E are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 17A and 17B are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 18A to 18G are diagrams showing examples of pixels.
  • 19A to 19K are diagrams showing examples of pixels.
  • 20A and 20B are perspective views showing an example of a display device.
  • 21A and 21B are cross-sectional views showing an example of a display device.
  • FIG. 22 is a cross-sectional view showing an example of a display device.
  • FIG. 23 is a cross-sectional view showing an example of a display device.
  • FIG. 24 is a cross-sectional view showing an example of a display device.
  • FIG. 25 is a cross-sectional view showing an example of a display device.
  • FIG. 26 is a cross-sectional view showing an example of a display device.
  • FIG. 27 is a perspective view showing an example of a display device.
  • 29A to 29D are cross-sectional views showing examples of display devices.
  • FIG. 30 is a cross-sectional view showing an example of a display device.
  • 31A to 31F are diagrams showing configuration examples of light-emitting devices.
  • 32A and 32B are diagrams showing configuration examples of light receiving devices.
  • 32C to 32E are diagrams showing configuration examples of display devices.
  • 33A to 33D are diagrams showing examples of electronic devices.
  • 34A to 34F are diagrams showing examples of electronic devices.
  • 35A to 35G are diagrams illustrating examples of electronic devices.
  • film and “layer” can be interchanged depending on the case or situation.
  • conductive layer can be changed to the term “conductive film.”
  • insulating film can be changed to the term “insulating layer”.
  • a device manufactured using a metal mask or FMM may be referred to as a device with an MM (metal mask) structure.
  • a device manufactured without using a metal mask or FMM may be referred to as a device with an MML (metal maskless) structure.
  • an SBS side-by-side structure
  • the material and structure can be optimized for each light-emitting device, so the degree of freedom in selecting the material and structure increases, and it becomes easy to improve luminance and reliability.
  • holes or electrons are sometimes referred to as “carriers”.
  • the hole injection layer or electron injection layer is referred to as a "carrier injection layer”
  • the hole transport layer or electron transport layer is referred to as a “carrier transport layer”
  • the hole blocking layer or electron blocking layer is referred to as a "carrier It is sometimes called a block layer.
  • the carrier injection layer, the carrier transport layer, and the carrier block layer described above may not be clearly distinguished from each other due to their cross-sectional shape, characteristics, or the like.
  • one layer may serve as two or three functions of the carrier injection layer, the carrier transport layer, and the carrier block layer.
  • a light-emitting device (also referred to as a light-emitting element) includes an EL layer between a pair of electrodes.
  • the EL layer has at least a light-emitting layer.
  • the layers (also referred to as functional layers) included in the EL layer include a light-emitting layer, a carrier-injection layer (hole-injection layer and electron-injection layer), a carrier-transport layer (hole-transport layer and electron-transport layer), and A carrier block layer (a hole block layer and an electron block layer) and the like are included.
  • a light-receiving device (also referred to as a light-receiving element) has at least an active layer functioning as a photoelectric conversion layer between a pair of electrodes.
  • one of a pair of electrodes may be referred to as a pixel electrode and the other may be referred to as a common electrode.
  • a tapered shape refers to a shape in which at least part of a side surface of a structure is inclined with respect to a substrate surface or a formation surface.
  • a region where the angle between the inclined side surface and the substrate surface or the formation surface also referred to as a taper angle
  • the side surfaces of the structure, the substrate surface, and the formation surface are not necessarily completely flat, and may be substantially planar with a fine curvature or substantially planar with fine unevenness.
  • a display device of one embodiment of the present invention includes a first light-emitting device and a second light-emitting device which include the same light-emitting material, a first colored layer overlapping with the first light-emitting device, and an overlapping layer with the second light-emitting device. and a second colored layer that transmits light of a color different from that of the first colored layer; and a third light emitting device that emits light having a shorter wavelength than the first light emitting device and the second light emitting device; have
  • an island-shaped light-emitting layer can be formed by a vacuum deposition method using a metal mask.
  • island-like structures are formed due to various influences such as precision of the metal mask, misalignment between the metal mask and the substrate, bending of the metal mask, and broadening of the contour of the deposited film due to vapor scattering.
  • the shape and position of the light-emitting layer in (1) deviate from the design, it is difficult to increase the definition and aperture ratio of the display device.
  • the layer profile may be blurred and the edge thickness may be reduced. In other words, the thickness of the island-shaped light-emitting layer may vary depending on the location.
  • the manufacturing yield will be low due to low dimensional accuracy of the metal mask and deformation due to heat or the like.
  • the light-emitting layer is processed into a fine pattern by a photolithography method without using a shadow mask such as a metal mask. Specifically, after forming a pixel electrode for each sub-pixel, a light-emitting layer is formed over a plurality of pixel electrodes. After that, the light-emitting layer is processed by photolithography to form one island-shaped light-emitting layer for one pixel electrode. Thereby, the light-emitting layer is divided for each sub-pixel, and an island-shaped light-emitting layer can be formed for each sub-pixel.
  • the display device is composed of three types of light-emitting devices that emit blue light (also referred to simply as blue light-emitting devices), light-emitting devices that emit green light, and light-emitting devices that emit red light
  • the light-emitting layer By repeating the film formation and processing by photolithography three times, three types of island-shaped light-emitting layers can be formed.
  • the state of the interface between the pixel electrode and the EL layer is important in the characteristics of the light-emitting device.
  • the pixel electrodes in the light-emitting devices of the second and subsequent colors may be damaged by the previous step.
  • the driving voltage of the light emitting device of the second and subsequent colors may be increased.
  • the damage to the pixel electrode is greater when the formation order is the third than the second, and the effect on the characteristics of the light-emitting device is greater.
  • a light-emitting device having the same light-emitting layer (which can be said to be the same light-emitting material) is used for two subpixels, and a red colored layer and a green colored layer are combined. , to realize a sub-pixel exhibiting red light and a sub-pixel exhibiting green light.
  • a light-emitting device that emits yellow light for example, is used for the sub-pixel that emits red light and the sub-pixel that emits green light.
  • Examples of the light-emitting device include a structure having a light-emitting layer (or light-emitting material) that emits yellow light, a light-emitting layer (or light-emitting material) that emits red light, and a light-emitting layer (or light-emitting material) that emits green light. or a light-emitting layer (or light-emitting material) that emits yellow light, a light-emitting layer (or light-emitting material) that emits red light, and a light-emitting layer (or light-emitting material) that emits green light.
  • a light-emitting device that emits blue light is used for a sub-pixel that emits blue light. Accordingly, sub-pixels of three colors can be separately manufactured only by separately manufacturing light-emitting devices of two colors.
  • the light-emitting layer can be processed twice by photolithography; therefore, the display device can be manufactured with high yield.
  • a light-emitting device that emits light with a shorter wavelength requires a higher drive voltage, so a blue light-emitting device tends to have a higher drive voltage than a light-emitting device that emits light with a longer wavelength.
  • blue light-emitting devices tend to be less reliable than other colors.
  • a light-emitting layer of a light-emitting device that emits light with the shortest wavelength for example, a blue light-emitting device is preferably formed.
  • the interface between the pixel electrode and the EL layer can be kept in good condition in the blue light-emitting device, and an increase in the driving voltage of the blue light-emitting device can be suppressed.
  • the life of the blue light-emitting device can be lengthened and the reliability can be improved. Note that a light-emitting device that emits light with a wavelength longer than that of blue is less affected by an increase in driving voltage or the like than a blue light-emitting device. be able to.
  • the light-emitting layer when processing the light-emitting layer into an island shape, a structure in which the light-emitting layer is processed using a photolithography method right above the light-emitting layer is conceivable. In the case of such a structure, the light-emitting layer may be damaged (damage due to processing, etc.) and the reliability may be significantly impaired.
  • a functional layer for example, a carrier block layer, a carrier transport layer, or a carrier injection layer, more specifically, a hole A mask layer (also referred to as a sacrificial layer, a protective layer, etc.) is formed on a block layer, an electron transport layer, or an electron injection layer, etc.
  • a highly reliable display device can be provided.
  • the light-emitting layer can be prevented from being exposed to the outermost surface during the manufacturing process of the display device, and damage to the light-emitting layer can be reduced.
  • the EL layer preferably has a first region that is a light-emitting region (also referred to as a light-emitting area) and a second region outside the first region.
  • the second area can also be called a dummy area or a dummy area.
  • the first region is located between the pixel electrode and the common electrode.
  • the first region is covered with a mask layer during the manufacturing process of the display device, and the damage received is extremely reduced. Therefore, it is possible to realize a light-emitting device with high luminous efficiency and long life.
  • the second region includes the end portion of the EL layer and its vicinity, and includes a portion that may be damaged by being exposed to plasma during the manufacturing process of the display device. By not using the second region as the light emitting region, variations in the characteristics of the light emitting device can be suppressed.
  • a layer located below the light-emitting layer (for example, a carrier injection layer, a carrier transport layer, or a carrier block layer, more specifically a hole injection layer, A hole-transporting layer, an electron-blocking layer, etc.) is preferably processed into islands in the same pattern as the light-emitting layer.
  • a layer located below the light-emitting layer is preferably processed into islands in the same pattern as the light-emitting layer.
  • the light-emitting layer and the hole-injection layer can be processed to have the same island shape; It does not occur, or the lateral leakage current can be made extremely small.
  • the EL layer is variously damaged by heating during manufacturing of the resist mask and exposure to an etchant or etching gas during processing and removal of the resist mask. may join. Further, when a mask layer is provided over the EL layer, the EL layer may be affected by heat, an etchant, an etching gas, or the like during film formation, processing, and removal of the mask layer.
  • each step performed after forming the EL layer is performed at a temperature higher than the heat-resistant temperature of the EL layer, the deterioration of the EL layer progresses, and the luminous efficiency and reliability of the light-emitting device may decrease. .
  • the heat resistance temperature of the compounds contained in the light-emitting device is preferably 100° C. or higher and 180° C. or lower, preferably 120° C. or higher and 180° C. or lower, and 140° C. or higher and 180° C. or lower. more preferred.
  • the heat resistant temperature index examples include glass transition point (Tg), softening point, melting point, thermal decomposition temperature, and 5% weight loss temperature.
  • Tg glass transition point
  • the glass transition point of the material of the layer can be used.
  • the layer is a mixed layer made of a plurality of materials, for example, the glass transition point of the most abundant material can be used. Alternatively, the lowest temperature among the glass transition points of the plurality of materials may be used.
  • the heat resistance temperature of the functional layer provided on the light emitting layer it is preferable to increase the heat resistance temperature of the functional layer provided on the light emitting layer. Further, it is more preferable to increase the heat resistance temperature of the functional layer provided on and in contact with the light emitting layer. Since the functional layer has high heat resistance, the light-emitting layer can be effectively protected, and damage to the light-emitting layer can be reduced.
  • the heat resistance temperature of the light-emitting layer it is preferable to increase the heat resistance temperature of the light-emitting layer. As a result, it is possible to prevent the light-emitting layer from being damaged by heating, thereby reducing the light-emitting efficiency and shortening the life of the light-emitting layer.
  • the reliability of the light-emitting device can be improved.
  • the width of the temperature range in the manufacturing process of the display device can be widened, and the manufacturing yield and reliability can be improved.
  • a light-emitting device that emits light of different colors, it is not necessary to separately form all the layers constituting the EL layer, and some of the layers can be formed in the same process.
  • the method for manufacturing a display device of one embodiment of the present invention after some layers forming the EL layer are formed in an island shape for each color, at least part of the mask layer is removed, and the remaining layer forming the EL layer is removed.
  • a layer (sometimes referred to as a common layer) and a common electrode (also referred to as an upper electrode) are formed in common (as one film) for the light emitting devices of each color.
  • a carrier injection layer and a common electrode can be formed in common for each color light emitting device.
  • the carrier injection layer is often a layer with relatively high conductivity among the EL layers. Therefore, the light-emitting device may be short-circuited when the carrier injection layer comes into contact with the side surface of a part of the EL layer formed like an island or the side surface of the pixel electrode. Note that even when the carrier injection layer is provided in an island shape and the common electrode is formed in common for the light emitting devices of each color, the common electrode and the side surface of the EL layer or the side surface of the pixel electrode are in contact with each other, so that light emission is prevented. The device may short out.
  • the display device of one embodiment of the present invention includes an insulating layer covering at least side surfaces of the island-shaped light-emitting layer. Further, the insulating layer preferably covers part of the top surface of the island-shaped light-emitting layer.
  • the end portion of the insulating layer preferably has a tapered shape with a taper angle of less than 90°.
  • discontinuity refers to a phenomenon in which a layer, film, or electrode is divided due to the shape of a formation surface (for example, a step).
  • the island-shaped light-emitting layer manufactured by the method for manufacturing a display device of one embodiment of the present invention is not formed using a fine metal mask, but is processed after the light-emitting layer is formed over the entire surface. formed by Therefore, it is possible to realize a high-definition display device or a display device with a high aperture ratio, which has hitherto been difficult to achieve. Furthermore, since the light-emitting layer can be separately formed for each color, a display device with extremely vivid, high-contrast, and high-quality display can be realized. Further, by providing the mask layer over the light-emitting layer, damage to the light-emitting layer during the manufacturing process of the display device can be reduced, and the reliability of the light-emitting device can be improved.
  • the spacing between adjacent light emitting devices, the spacing between adjacent EL layers, or the spacing between adjacent pixel electrodes is less than 10 ⁇ m, 5 ⁇ m or less, 3 ⁇ m or less, 2 ⁇ m or less, 1.5 ⁇ m or less, or 1 ⁇ m or less. , or can be narrowed down to 0.5 ⁇ m or less.
  • the interval between adjacent light emitting devices, the interval between adjacent EL layers, or the interval between adjacent pixel electrodes can be reduced to, for example, 500 nm or less, 200 nm or less. Below, it can be narrowed to 100 nm or less, and further to 50 nm or less. As a result, the area of the non-light-emitting region that can exist between the two light-emitting devices can be greatly reduced, and the aperture ratio can be brought close to 100%.
  • the aperture ratio is 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, further 90% or more and less than 100%. It can also be realized.
  • the reliability of the display device can be improved by increasing the aperture ratio of the display device. More specifically, when the lifetime of a display device using an organic EL device and having an aperture ratio of 10% is used as a reference, the life of the display device has an aperture ratio of 20% (that is, the aperture ratio is twice the reference). The life is about 3.25 times longer, and the life of a display device with an aperture ratio of 40% (that is, the aperture ratio is four times the reference) is about 10.6 times longer. As described above, the current density flowing through the organic EL device can be reduced as the aperture ratio is improved, so that the life of the display device can be extended. Since the aperture ratio of the display device of one embodiment of the present invention can be improved, the display quality of the display device can be improved. Further, as the aperture ratio of the display device is improved, the reliability (especially life) of the display device is significantly improved, which is an excellent effect.
  • the pattern of the light-emitting layer itself (which can be said to be a processing size) can also be made much smaller than when a fine metal mask is used.
  • the thickness of the light-emitting layer varies between the center and the edge. Become.
  • the manufacturing method described above since a film having a uniform thickness is processed, an island-shaped light-emitting layer can be formed with a uniform thickness. Therefore, almost the entire area of even a fine pattern can be used as a light emitting region. Therefore, a display device having both high definition and high aperture ratio can be manufactured. In addition, it is possible to reduce the size and weight of the display device.
  • the display device of one embodiment of the present invention has, for example, 2000 ppi or more, preferably 3000 ppi or more, more preferably 5000 ppi or more, still more preferably 6000 ppi or more, and 20000 ppi or less, or 30000 ppi or less. can be done.
  • FIG. 1A shows a top view of the display device 100.
  • the display device 100 has a display section in which a plurality of pixels 110 are arranged, and a connection section 140 outside the display section. A plurality of sub-pixels are arranged in a matrix in the display section.
  • FIG. 1A shows sub-pixels of 2 rows and 6 columns, which constitute the pixels 110 of 2 rows and 2 columns.
  • the connection portion 140 can also be called a cathode contact portion.
  • the top surface shape of the sub-pixel shown in FIG. 1A corresponds to the top surface shape of the light emitting region.
  • the top surface shape means a shape in plan view, that is, a shape seen from above.
  • top surface shapes of sub-pixels include triangles, quadrilaterals (including rectangles, rhombuses, and squares), polygons such as pentagons, polygons with rounded corners, ellipses, and circles.
  • the circuit layout forming the sub-pixels is not limited to the range of the sub-pixels shown in FIG. 1A, and may be arranged outside the sub-pixels.
  • the transistors included in the sub-pixel 11R may be located within the range of the sub-pixel 11G shown in FIG. 1A, or part or all of them may be located outside the range of the sub-pixel 11R.
  • FIG. 1A shows that the sub-pixels 11R, 11G, and 11B have the same or approximately the same aperture ratio (size, which can also be called the size of the light emitting region), one embodiment of the present invention is not limited to this.
  • the aperture ratios of the sub-pixels 11R, 11G, and 11B can be determined appropriately.
  • the sub-pixels 11R, 11G, and 11B may have different aperture ratios, and two or more of them may have the same or substantially the same aperture ratio.
  • a stripe arrangement is applied to the pixels 110 shown in FIG. 1A.
  • a pixel 110 shown in FIG. 1A is composed of three sub-pixels, a sub-pixel 11R, a sub-pixel 11G, and a sub-pixel 11B.
  • the sub-pixels 11R, 11G, and 11B exhibit different colors of light.
  • the sub-pixels 11R, 11G, and 11B include sub-pixels of three colors of red (R), green (G), and blue (B), and three colors of yellow (Y), cyan (C), and magenta (M). sub-pixels and the like.
  • the number of types of sub-pixels is not limited to three, and may be four or more.
  • the four sub-pixels are R, G, B, and white (W) sub-pixels, R, G, B, and Y sub-pixels, and R, G, B, infrared light ( IR), four sub-pixels, and so on.
  • the row direction is sometimes called the X direction
  • the column direction is sometimes called the Y direction.
  • the X and Y directions intersect, for example perpendicularly (see FIG. 1A).
  • FIG. 1A shows an example in which sub-pixels of different colors are arranged side by side in the X direction and sub-pixels of the same color are arranged side by side in the Y direction.
  • FIG. 1A shows an example in which the connecting portion 140 is positioned below the display portion when viewed from above
  • the connecting portion 140 may be provided at least one of the upper side, the right side, the left side, and the lower side of the display portion when viewed from above, and may be provided so as to surround the four sides of the display portion.
  • the shape of the upper surface of the connecting portion 140 may be strip-shaped, L-shaped, U-shaped, frame-shaped, or the like.
  • the number of connection parts 140 may be singular or plural.
  • FIG. 1B shows a cross-sectional view along the dashed-dotted line X1-X2 in FIG. 1A.
  • FIG. 1C shows a top view of layer 113Y.
  • 2A and 2B show enlarged views of a portion of the cross-sectional view shown in FIG. 1B. 3 to 6 show modifications of FIG. 7A, 8, and 9C, 9D show variations of FIG. 1B. 7B to 7E show cross-sectional views of modifications of the pixel electrode.
  • FIG. 7F shows a variation of FIG. 7A. 9A and 9B show cross-sectional views along the dashed-dotted line Y1-Y2 in FIG. 1A.
  • the sub-pixel 11R has a light-emitting device 130Y that emits yellow light and a colored layer 132R that transmits red light. As a result, light emitted from the light emitting device 130Y is extracted as red light to the outside of the display device through the colored layer 132R.
  • the sub-pixel 11G has a light-emitting device 130Y that emits yellow light and a colored layer 132G that transmits green light. As a result, light emitted from the light emitting device 130Y is extracted as green light to the outside of the display device through the colored layer 132G.
  • the sub-pixel 11B has a light-emitting device 130B that emits blue light. Light emitted from the light emitting device 130B is extracted as blue light to the outside of the display device.
  • the sub-pixel 11B may further have a colored layer that transmits blue light. Thereby, the color purity of the light exhibited by the sub-pixel 11B can be enhanced.
  • blue light includes, for example, light with a peak wavelength of 400 nm or more and less than 480 nm.
  • Green light includes, for example, light with a peak wavelength of 480 nm or more and less than 540 nm.
  • yellow light include light having a peak wavelength of 540 nm or more and less than 600 nm.
  • Red light includes, for example, light with a peak wavelength of 600 nm or more and 700 nm or less.
  • the light emission of the light-emitting device 130B is The peak wavelength is the shortest, the peak wavelength of the light extracted from the sub-pixel 11G is the next shortest, the emission peak wavelength of the light-emitting device 130Y is the next shortest, and the peak wavelength of the light extracted from the sub-pixel 11R is the longest. .
  • the colored layer is a colored layer that transmits light in a specific wavelength range.
  • a color filter or the like that transmits light in the red wavelength range can be used for the colored layer 132R.
  • a color filter or the like that transmits light in the green wavelength range can be used for the colored layer 132G.
  • a color filter or the like that transmits light in the blue wavelength range can be used as the colored layer of the sub-pixel 11B.
  • Materials that can be used for the colored layer include metal materials, resin materials, and resin materials containing pigments or dyes.
  • the display device 100 includes an insulating layer provided on a layer 101 including transistors, light emitting devices 130Y and 130B provided on the insulating layer, and a protective layer 131 covering these light emitting devices. is provided. Colored layers 132R and 132G are provided on the protective layer 131, and a substrate 120 is attached to the protective layer 131, the colored layer 132R, and the colored layer 132G with a resin layer 122. FIG. An insulating layer 125 and an insulating layer 127 on the insulating layer 125 are provided in a region between adjacent light emitting devices.
  • FIG. 1B shows a plurality of cross sections of the insulating layer 125 and the insulating layer 127, but when the display device 100 is viewed from above, the insulating layer 125 and the insulating layer 127 are each connected to one.
  • the display device 100 can be configured to have one insulating layer 125 and one insulating layer 127, for example.
  • the display device 100 may have a plurality of insulating layers 125 separated from each other, and may have a plurality of insulating layers 127 separated from each other.
  • a display device of one embodiment of the present invention is a top emission type in which light is emitted in a direction opposite to a substrate over which a light-emitting device is formed, and light is emitted toward a substrate over which a light-emitting device is formed.
  • a bottom emission type bottom emission type
  • a double emission type dual emission type in which light is emitted from both sides may be used.
  • a stacked-layer structure in which a plurality of transistors are provided over a substrate and an insulating layer is provided to cover the transistors can be applied.
  • An insulating layer over a transistor may have a single-layer structure or a stacked-layer structure.
  • FIG. 1B shows an insulating layer 255a, an insulating layer 255b over the insulating layer 255a, and an insulating layer 255c over the insulating layer 255b among the insulating layers over the transistor.
  • These insulating layers may have recesses between adjacent light emitting devices.
  • FIG. 1B and the like show an example in which a concave portion is provided in the insulating layer 255c.
  • the insulating layer 255c may not have recesses between adjacent light emitting devices. Note that the insulating layers (the insulating layers 255a to 255c) over the transistors may also be regarded as part of the layer 101 including the transistors.
  • various inorganic insulating films such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, and a nitride oxide insulating film can be preferably used.
  • an oxide insulating film or an oxynitride insulating film such as a silicon oxide film, a silicon oxynitride film, or an aluminum oxide film is preferably used.
  • a nitride insulating film or a nitride oxide insulating film such as a silicon nitride film or a silicon nitride oxide film is preferably used. More specifically, a silicon oxide film is preferably used for the insulating layers 255a and 255c, and a silicon nitride film is preferably used for the insulating layer 255b.
  • the insulating layer 255b preferably functions as an etching protection film.
  • oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • nitride oxide refers to a material whose composition contains more nitrogen than oxygen. point to the material.
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon nitride oxide refers to a material whose composition contains more nitrogen than oxygen. indicates
  • FIG. 1 A structural example of the layer 101 including a transistor will be described later in Embodiment 4.
  • FIG. 1 A structural example of the layer 101 including a transistor will be described later in Embodiment 4.
  • Light emitting device 130Y emits yellow (Y) light
  • light emitting device 130B emits blue (B) light.
  • an OLED Organic Light Emitting Diode
  • a QLED Quadantum-dot Light Emitting Diode
  • the light-emitting substance included in the light-emitting device include a substance that emits fluorescence (fluorescent material), a substance that emits phosphorescence (phosphorescence material), and a substance that exhibits thermally activated delayed fluorescence (thermally activated delayed fluorescence: TADF ) materials), and inorganic compounds (quantum dot materials, etc.).
  • LEDs such as micro LED (Light Emitting Diode), can also be used as a light emitting device.
  • the emission color of the light emitting device can be infrared, red, green, blue, cyan, magenta, yellow, white, or the like.
  • color purity can be enhanced by providing a light-emitting device with a microcavity structure.
  • Embodiment Mode 5 can be referred to for the structure and material of the light-emitting device.
  • one electrode functions as an anode and the other electrode functions as a cathode.
  • the case where the pixel electrode functions as an anode and the common electrode functions as a cathode may be taken as an example.
  • the light-emitting device 130Y included in the sub-pixel 11R includes the pixel electrode 111R on the insulating layer 255c, the island-shaped layer 113Y on the pixel electrode 111R, the common layer 114 on the island-shaped layer 113Y, and the common layer 114 on the common layer 114. and an electrode 115 .
  • the layer 113Y and the common layer 114 can be collectively called an EL layer.
  • the light-emitting device 130Y included in the sub-pixel 11G includes the pixel electrode 111G on the insulating layer 255c, the island-shaped layer 113Y on the pixel electrode 111G, the common layer 114 on the island-shaped layer 113Y, and the common layer 114 on the common layer 114. and an electrode 115 .
  • the light-emitting device 130B includes a pixel electrode 111B on the insulating layer 255c, an island-shaped layer 113B on the pixel electrode 111B, a common layer 114 on the island-shaped layer 113B, and a common electrode 115 on the common layer 114. have.
  • layer 113B and common layer 114 can be collectively referred to as EL layers.
  • a layer provided in an island shape for each light-emitting device is referred to as a layer 113Y or a layer 113B, and a layer shared by a plurality of light-emitting devices is referred to as a common layer 114.
  • the layers 113Y and 113B are sometimes referred to as an island-shaped EL layer, an island-shaped EL layer, or the like, without including the common layer 114 .
  • Layer 113Y and layer 113B are separated from each other.
  • leakage current between adjacent light-emitting devices can be suppressed.
  • unintended light emission due to crosstalk can be prevented, and a display device with extremely high contrast can be realized.
  • a display device with high current efficiency at low luminance can be realized.
  • Each end of the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B preferably has a tapered shape. Specifically, it is preferable that each end of the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B has a taper shape with a taper angle of less than 90°.
  • the layers 113Y and 113B provided along the side surfaces of the pixel electrodes also have tapered shapes (corresponding to sloped portions to be described later). By tapering the side surface of the pixel electrode, coverage of the EL layer provided along the side surface of the pixel electrode can be improved.
  • FIG. 1B and the like illustrate a configuration in which the angle formed by the side wall of the concave portion of the insulating layer 255c and the insulating layer 255b has the same taper angle as the taper shapes of the pixel electrodes 111R, 111G, and 111B.
  • the tapered shape of the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B may be different from the tapered shape of the recess formed in the insulating layer 255c.
  • FIG. 1B between the pixel electrode 111R and the layer 113Y, there is no insulating layer (also referred to as a partition wall, bank, spacer, etc.) that covers the edge of the upper surface of the pixel electrode 111R. Further, no insulating layer is provided between the pixel electrode 111G and the layer 113Y to cover the end of the upper surface of the pixel electrode 111G. Therefore, the interval between adjacent light emitting devices can be made very narrow. Therefore, a high-definition or high-resolution display device can be obtained. Moreover, a mask for forming the insulating layer is not required, and the manufacturing cost of the display device can be reduced.
  • a partition wall also referred to as a partition wall, bank, spacer, etc.
  • the viewing angle dependency of the display device of one embodiment of the present invention can be extremely reduced. By reducing the viewing angle dependency, it is possible to improve the visibility of the image on the display device.
  • the viewing angle (the maximum angle at which a constant contrast ratio is maintained when the screen is viewed obliquely) is 100° or more and less than 180°, preferably 150°. It can be in the range of 170° or more. It should be noted that the above viewing angle can be applied to each of the vertical and horizontal directions.
  • a single structure (structure having only one light emitting unit) or a tandem structure (structure having a plurality of light emitting units) may be applied to the light emitting device of this embodiment.
  • the light-emitting unit has at least one light-emitting layer.
  • Layer 113Y and layer 113B each have at least a light-emitting layer.
  • the layer 113Y may have, for example, a light-emitting layer that emits yellow light, a light-emitting layer that emits red light and a light-emitting layer that emits green light, or a light-emitting layer that emits yellow light. , a light-emitting layer that emits red light, and a light-emitting layer that emits green light.
  • a structure including a light-emitting layer that emits blue light can be applied to the layer 113B.
  • the layer 113Y may, for example, have a luminescent material that emits yellow light, a luminescent material that emits red light and a luminescent material that emits green light, or a luminescent material that emits yellow light.
  • a configuration having three materials, a luminescent material that emits red light, and a luminescent material that emits green light, can be applied.
  • a structure including a light-emitting material that emits blue light can be applied to the layer 113B.
  • the layer 113Y has, for example, a structure including a plurality of light-emitting units that emit yellow light, a structure including a light-emitting unit that emits red light and a light-emitting unit that emits green light, and a light-emitting unit that emits yellow light.
  • a structure having a plurality of light-emitting units, or a structure having a plurality of light-emitting units each having a light-emitting layer that emits yellow light, a light-emitting layer that emits red light, and a light-emitting layer that emits green light can be applied.
  • the layer 113B preferably has a structure including a plurality of light-emitting units that emit blue light. A charge generating layer is preferably provided between each light emitting unit.
  • the layers 113Y and 113B each have one or more of a hole injection layer, a hole transport layer, a hole blocking layer, a charge generation layer, an electron blocking layer, an electron transport layer, and an electron injection layer.
  • layers 113Y and 113B may each have a hole-injection layer, a hole-transport layer, a light-emitting layer, and an electron-transport layer, in that order. Moreover, you may have an electron block layer between a hole transport layer and a light emitting layer. Further, a hole blocking layer may be provided between the electron transport layer and the light emitting layer. Moreover, you may have an electron injection layer on the electron transport layer.
  • the layers 113Y and 113B may each have an electron injection layer, an electron transport layer, a light emitting layer, and a hole transport layer in this order.
  • a hole blocking layer may be provided between the electron transport layer and the light emitting layer.
  • you may have an electron block layer between a hole transport layer and a light emitting layer.
  • a hole injection layer may be provided on the hole transport layer.
  • each of the layers 113Y and 113B preferably has a light-emitting layer and a carrier-transporting layer (electron-transporting layer or hole-transporting layer) over the light-emitting layer.
  • each of the layers 113Y and 113B preferably has a light emitting layer and a carrier blocking layer (hole blocking layer or electron blocking layer) over the light emitting layer.
  • the layers 113Y and 113B each preferably have a light emitting layer, a carrier blocking layer over the light emitting layer, and a carrier transport layer over the carrier blocking layer.
  • one or both of the carrier-transporting layer and the carrier-blocking layer are provided over the light-emitting layer so that the light-emitting layer is exposed on the outermost surface. can be suppressed, and damage to the light-emitting layer can be reduced. This can improve the reliability of the light emitting device.
  • the heat resistance temperature of the compounds contained in the layers 113Y and 113B is preferably 100° C. or higher and 180° C. or lower, more preferably 120° C. or higher and 180° C. or lower, and more preferably 140° C. or higher and 180° C. or lower.
  • the glass transition point (Tg) of these compounds is preferably 100° C. or higher and 180° C. or lower, preferably 120° C. or higher and 180° C. or lower, and more preferably 140° C. or higher and 180° C. or lower.
  • the functional layer provided on the light-emitting layer has a high heat resistance temperature. Further, it is more preferable that the functional layer provided in contact with the light-emitting layer has a high heat resistance temperature. Since the functional layer has high heat resistance, the light-emitting layer can be effectively protected, and damage to the light-emitting layer can be reduced.
  • the light-emitting layer has a high heat-resistant temperature. As a result, it is possible to prevent the light-emitting layer from being damaged by heating, thereby reducing the light-emitting efficiency and shortening the life of the light-emitting layer.
  • the light-emitting layer includes a light-emitting substance (also referred to as a light-emitting material, a light-emitting organic compound, a guest material, or the like) and an organic compound (also referred to as a host material or the like). Since the light-emitting layer contains more organic compounds than light-emitting substances, the Tg of the organic compound can be used as an index of the heat-resistant temperature of the light-emitting layer.
  • At least one of the layers 113Y and 113B has a first light-emitting unit, a charge generation layer on the first light-emitting unit, and a second light-emitting unit on the charge generation layer. good too.
  • the second light-emitting unit preferably has a light-emitting layer and a carrier-transporting layer (electron-transporting layer or hole-transporting layer) on the light-emitting layer.
  • the second light emitting unit preferably has a light emitting layer and a carrier blocking layer (hole blocking layer or electron blocking layer) on the light emitting layer.
  • the second light-emitting unit preferably has a light-emitting layer, a carrier-blocking layer on the light-emitting layer, and a carrier-transporting layer on the carrier-blocking layer.
  • the light-emitting unit provided in the uppermost layer preferably has a light-emitting layer and one or both of a carrier transport layer and a carrier block layer over the light-emitting layer.
  • the common layer 114 has, for example, an electron injection layer or a hole injection layer.
  • the common layer 114 may have a laminate of an electron transport layer and an electron injection layer, or may have a laminate of a hole transport layer and a hole injection layer.
  • Common layer 114 is shared by light emitting devices 130Y and 130B.
  • FIG. 1B shows an example in which the edge of the layer 113Y is located outside the edge of the pixel electrode 111R.
  • the pixel electrode 111R and the layer 113Y will be described as an example, the same applies to the pixel electrode 111G and the layer 113Y and the pixel electrode 111B and the layer 113B.
  • the layer 113Y is formed to cover the edge of the pixel electrode 111R.
  • the entire upper surface of the pixel electrode can be used as a light-emitting region, and the edge of the island-shaped EL layer is located inside the edge of the pixel electrode. It becomes easy to increase the rate.
  • the side surface of the pixel electrode with the EL layer, contact between the pixel electrode and the common electrode 115 can be suppressed, so short-circuiting of the light-emitting device can be suppressed. Also, the distance between the light emitting region of the EL layer (that is, the region overlapping with the pixel electrode) and the edge of the EL layer can be increased. Since the edges of the EL layer may be damaged by processing, the reliability of the light-emitting device may be improved by using a region away from the edges of the EL layer as the light-emitting region.
  • Each of the layers 113Y and 113B preferably has a first region that is a light emitting region and a second region (dummy region) outside the first region.
  • the first region is located between the pixel electrode and the common electrode.
  • the first region is covered with a mask layer during the manufacturing process of the display device, and the damage received is extremely reduced. Therefore, it is possible to realize a light-emitting device with high luminous efficiency and long life.
  • the second region includes the end portion of the EL layer and its vicinity, and includes a portion that may be damaged due to exposure to plasma or the like during the manufacturing process of the display device. By not using the second region as the light emitting region, variations in the characteristics of the light emitting device can be suppressed.
  • a width L3 shown in FIGS. 1B and 1C corresponds to the width of the first region 113_1 (light emitting region) in the layer 113Y.
  • the width L1 and the width L2 shown in FIGS. 1B and 1C correspond to the width of the second region 113_2 (dummy region) in the layer 113Y.
  • the second region 113_2 is provided so as to surround the first region 113_1. Therefore, in cross-sectional views such as FIG. can be done.
  • the width L1 or the width L2 can be used, and for example, the shorter one of the width L1 and the width L2 may be used.
  • the widths L1 to L3 can be confirmed by a cross-sectional observation image or the like. Note that in this embodiment mode, a cross-sectional view in the X direction will be described as an example, but the widths of the light-emitting region and the dummy region can also be confirmed in a cross-sectional view in the Y direction.
  • the enlarged view shown in FIG. 2A shows the width L2 of the second region 113_2.
  • the second region 113_2 is a portion of the layer 113Y where at least one of the mask layer 118Y, the insulating layer 125, and the insulating layer 127 overlaps. Also, like the region 103 shown in FIG. 5B, the portion of the layer 113Y and the like located outside the edge of the upper surface of the pixel electrode serves as a dummy region.
  • the width of the second region 113_2 is 1 nm or more, preferably 5 nm or more, 50 nm or more, or 100 nm or more.
  • the narrower the width of the dummy region the wider the light-emitting region and the higher the aperture ratio of the pixel. Therefore, the width of the second region 113_2 is preferably 50% or less, more preferably 40% or less, 30% or less, 20% or less, or 10% or less of the width L3 of the first region 113_1.
  • the width of the second region 113_2 in a small and high-definition display device such as a wearable device display device is preferably 500 nm or less, more preferably 300 nm or less, 200 nm or less, or 150 nm or less.
  • the first region is a region where EL light emission is obtained.
  • both the first region (light emitting region) and the second region (dummy region) are regions where PL (Photoluminescence) light emission can be obtained. From these facts, it can be said that the first region and the second region can be distinguished by confirming EL emission and PL emission.
  • the common electrode 115 is shared by the light emitting devices 130Y and 130B.
  • a common electrode 115 shared by a plurality of light-emitting devices is electrically connected to the conductive layer 123 provided in the connecting portion 140 (see FIGS. 9A and 9B).
  • the conductive layer 123 is preferably formed using the same material and in the same process as the pixel electrodes 111R, 111G, and 111B.
  • FIG. 9A shows an example in which a common layer 114 is provided over the conductive layer 123 and the conductive layer 123 and the common electrode 115 are electrically connected through the common layer 114 .
  • the common layer 114 may not be provided in the connecting portion 140 .
  • conductive layer 123 and common electrode 115 are directly connected.
  • a mask also referred to as an area mask or a rough metal mask to distinguish from a fine metal mask
  • the common layer 114 and the common electrode 115 are formed into a region where a film is formed. can be changed.
  • mask layer 118Y is positioned on layer 113Y of light emitting device 130Y, and mask layer 118B is positioned on layer 113B of light emitting device 130B.
  • the mask layer is provided so as to surround the first region 113_1 (light emitting region). In other words, the mask layer has openings in portions overlapping the light emitting regions.
  • the top surface shape of the mask layer matches, roughly matches, or is similar to the second region 113_2 shown in FIG. 1C.
  • the mask layer 118B is part of the remaining mask layer provided in contact with the upper surface of the layer 113B when the layer 113B is processed.
  • the mask layer 118Y is part of the mask layer that was provided when the layer 113Y was formed.
  • part of the mask layer used to protect the EL layer may remain during manufacturing.
  • the same material or different materials may be used for the mask layers 118Y and 118B. Note that the mask layer 118Y and the mask layer 118B may be collectively referred to as the mask layer 118 below.
  • one end of the mask layer 118Y (the end opposite to the light emitting region side, the outer end) is aligned or substantially aligned with the end of the layer 113Y, and the mask layer 118Y is located on layer 113Y.
  • the other end of the mask layer 118Y (the end on the light emitting region side, the inner end) preferably overlaps the layer 113Y and the pixel electrode 111R (or the pixel electrode 111G).
  • the other end of the mask layer 118Y is likely to be formed on the flat or substantially flat surface of the layer 113Y.
  • the mask layer 118B remains, for example, between the insulating layer 125 and the upper surface of the EL layer (layer 113Y or layer 113B) processed into an island shape.
  • the mask layer will be described in detail in the second embodiment.
  • the ends are aligned or substantially aligned, and when the top surface shapes are matched or substantially matched, at least part of the outline overlaps between the stacked layers when viewed from the top.
  • the upper layer and the lower layer may be processed with the same mask pattern or partially with the same mask pattern.
  • the outlines do not overlap, and the top layer may be located inside the bottom layer, or the top layer may be located outside the bottom layer, and in this case also the edges are roughly aligned, or the shape of the top surface are said to roughly match.
  • Each side surface of layer 113Y and layer 113B is covered with an insulating layer 125 .
  • the insulating layer 127 overlaps (can be said to cover the side surfaces) the side surfaces of the layers 113Y and 113B with the insulating layer 125 interposed therebetween.
  • each of the layers 113Y and 113B is covered with a mask layer 118. As shown in FIG. The insulating layer 125 and the insulating layer 127 partially overlap the upper surfaces of the layers 113Y and 113B with the mask layer 118 interposed therebetween. Note that the upper surface of each of the layers 113Y and 113B is not limited to the upper surface of the flat portion overlapping the upper surface of the pixel electrode, and the inclined portion and the flat portion located outside the upper surface of the pixel electrode (see region 103 in FIG. 5A). ).
  • Part of the top surface and side surfaces of the layers 113Y and 113B are covered with at least one of the insulating layer 125, the insulating layer 127, and the mask layer 118, so that the common layer 114 (or the common electrode 115) can be used as a pixel.
  • Contact with the side surfaces of the electrodes 111R, 111G, and 111B and the layers 113Y and 113B can be suppressed, and short circuits of the light emitting device can be suppressed. This can improve the reliability of the light emitting device.
  • each thickness of the layers 113Y and 113B may be different.
  • the insulating layer 125 is preferably in contact with the side surfaces of the layer 113Y and the layer 113B (see the edge of the layer 113Y and its vicinity surrounded by broken lines in FIG. 2A). With the structure in which the insulating layer 125 is in contact with the layers 113Y and 113B, peeling of the layers 113Y and 113B can be prevented. Adhesion between the insulating layer 125 and the layer 113Y or the layer 113B has the effect of fixing or adhering the adjacent layer 113Y or the like by the insulating layer 125 . In addition, the fact that the insulating layer 125 and the insulating layer 255c are in contact with each other is also effective in preventing peeling of the layers 113Y and 113B. This can improve the reliability of the light emitting device. Moreover, the production yield of the light-emitting device can be increased.
  • the insulating layer 125 and the insulating layer 127 cover part of the top surface and side surfaces of the layers 113Y and 113B, whereby peeling of the EL layer can be further prevented and light emission can be prevented.
  • Device reliability can be improved.
  • the manufacturing yield of the light-emitting device can be further increased.
  • FIG. 1B shows an example in which a laminated structure of a layer 113Y, a mask layer 118Y, an insulating layer 125, and an insulating layer 127 is positioned on the edge of the pixel electrode 111R.
  • a laminated structure of layer 113Y, mask layer 118Y, insulating layer 125, and insulating layer 127 is positioned on the edge of pixel electrode 111G
  • layer 113B and mask layer 118B are positioned on the edge of pixel electrode 111B.
  • an insulating layer 125, and an insulating layer 127 are positioned.
  • FIG. 1B shows a configuration in which the edge of the pixel electrode 111R is covered with the layer 113Y, and the insulating layer 125 is in contact with the side surface of the layer 113Y.
  • the edge of the pixel electrode 111G is covered with the layer 113Y
  • the edge of the pixel electrode 111B is covered with the layer 113B
  • the insulating layer 125 is in contact with the side of the layer 113Y and the side of the layer 113B.
  • the insulating layer 127 is provided on the insulating layer 125 so as to fill the recesses of the insulating layer 125 .
  • the insulating layer 127 can overlap with part of the top surface and side surfaces of the layers 113Y and 113B with the insulating layer 125 interposed therebetween.
  • the insulating layer 127 preferably covers at least part of the side surfaces of the insulating layer 125 .
  • the space between the adjacent island-shaped layers can be filled; It is possible to reduce unevenness with a large difference in height and make the surface more flat. Therefore, coverage of the carrier injection layer, the common electrode, and the like can be improved.
  • Common layer 114 and common electrode 115 are provided on layer 113 Y, layer 113 B, mask layer 118 , insulating layer 125 and insulating layer 127 .
  • a region where the pixel electrode and the island-shaped EL layer are provided, a region where the pixel electrode and the island-shaped EL layer are not provided (region between the light emitting devices) There is a step due to Since the display device of one embodiment of the present invention includes the insulating layer 125 and the insulating layer 127 , the steps can be planarized, and coverage with the common layer 114 and the common electrode 115 can be improved. Therefore, it is possible to suppress poor connection due to disconnection. In addition, it is possible to prevent the common electrode 115 from being locally thinned due to the steps and increasing the electrical resistance.
  • the top surface of the insulating layer 127 preferably has a highly flat shape, but may have a convex portion, a convex curved surface, a concave curved surface, or a concave portion.
  • the upper surface of the insulating layer 127 preferably has a highly flat and smooth convex curved shape.
  • Insulating layer 125 can be an insulating layer comprising an inorganic material.
  • an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, or a nitride oxide insulating film can be used, for example.
  • the insulating layer 125 may have a single-layer structure or a laminated structure.
  • the oxide insulating film includes a silicon oxide film, an aluminum oxide film, a magnesium oxide film, an indium gallium zinc oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, and an oxide film.
  • a hafnium film, a tantalum oxide film, and the like are included.
  • the nitride insulating film include a silicon nitride film and an aluminum nitride film.
  • Examples of the oxynitride insulating film include a silicon oxynitride film, an aluminum oxynitride film, and the like.
  • the nitride oxide insulating film examples include a silicon nitride oxide film, an aluminum nitride oxide film, and the like.
  • aluminum oxide is preferable because it has a high etching selectivity with respect to the EL layer and has a function of protecting the EL layer during formation of the insulating layer 127 described later.
  • an inorganic insulating film such as an aluminum oxide film, a hafnium oxide film, or a silicon oxide film formed by an atomic layer deposition (ALD) method to the insulating layer 125, there are few pinholes and the EL layer can be used.
  • An insulating layer 125 having an excellent protective function can be formed.
  • the insulating layer 125 may have a layered structure of a film formed by an ALD method and a film formed by a sputtering method.
  • the insulating layer 125 may have a laminated structure of, for example, an aluminum oxide film formed by ALD and a silicon nitride film formed by sputtering.
  • the insulating layer 125 preferably functions as a barrier insulating layer against at least one of water and oxygen. Further, the insulating layer 125 preferably has a function of suppressing diffusion of at least one of water and oxygen. Further, the insulating layer 125 preferably has a function of capturing or fixing at least one of water and oxygen (also referred to as gettering).
  • a barrier insulating layer means an insulating layer having a barrier property.
  • barrier property refers to a function of suppressing diffusion of a corresponding substance (also referred to as low permeability).
  • the corresponding substance has a function of capturing or fixing (also called gettering).
  • the insulating layer 125 has a function as a barrier insulating layer or a gettering function to suppress entry of impurities (typically, at least one of water and oxygen) that can diffuse into each light-emitting device from the outside. is possible. With such a structure, a highly reliable light-emitting device and a highly reliable display device can be provided.
  • impurities typically, at least one of water and oxygen
  • the insulating layer 125 preferably has a low impurity concentration. Accordingly, it is possible to suppress deterioration of the EL layer due to entry of impurities from the insulating layer 125 into the EL layer. In addition, by reducing the impurity concentration in the insulating layer 125, the barrier property against at least one of water and oxygen can be improved.
  • the insulating layer 125 preferably has a sufficiently low hydrogen concentration or carbon concentration, or preferably both.
  • mask layer 118Y or mask layer 118B and insulating layer 125 may be recognized as one layer.
  • one layer is provided in contact with part of the top surface and the side surface of each of the layers 113Y and 113B, and the insulating layer 127 appears to cover at least part of the side surface of the one layer. may occur.
  • the insulating layer 127 provided on the insulating layer 125 has a function of planarizing unevenness with a large height difference of the insulating layer 125 formed between adjacent light emitting devices. In other words, the presence of the insulating layer 127 has the effect of improving the flatness of the surface on which the common electrode 115 is formed.
  • an insulating layer containing an organic material can be preferably used.
  • the organic material it is preferable to use a photosensitive organic resin, for example, it is preferable to use a photosensitive resin composition containing an acrylic resin.
  • acrylic resin does not only refer to polymethacrylate esters or methacrylic resins, but may refer to all acrylic polymers in a broad sense.
  • an acrylic resin, a polyimide resin, an epoxy resin, an imide resin, a polyamide resin, a polyimideamide resin, a silicone resin, a siloxane resin, a benzocyclobutene-based resin, a phenolic resin, precursors of these resins, or the like is used.
  • an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin may be used as the insulating layer 127 .
  • a photoresist may be used as the photosensitive resin.
  • the photosensitive organic resin either a positive material or a negative material may be used.
  • a material that absorbs visible light may be used for the insulating layer 127 . Since the insulating layer 127 absorbs light emitted from the light emitting device, leakage of light (stray light) from the light emitting device to an adjacent light emitting device via the insulating layer 127 can be suppressed. Thereby, the display quality of the display device can be improved. In addition, since the display quality can be improved without using a polarizing plate for the display device, the weight and thickness of the display device can be reduced.
  • Materials that absorb visible light include materials containing pigments such as black, materials containing dyes, light-absorbing resin materials (e.g., polyimide), and resin materials that can be used for color filters (color filter materials ).
  • resin materials that can be used for color filters color filter materials
  • by mixing color filter materials of three or more colors it is possible to obtain a black or nearly black resin layer.
  • FIG. 2A is an enlarged cross-sectional view of a region including the insulating layer 127 between the light-emitting device 130Y of the sub-pixel emitting red light and the light-emitting device 130Y of the sub-pixel emitting green light and its periphery.
  • the insulating layer 127 between two adjacent light emitting devices 130Y will be described below as an example, but the same applies to the insulating layer 127 between the light emitting device 130B and the light emitting device 130Y.
  • FIG. 2B is an enlarged view of the end portion of the insulating layer 127 on the layer 113Y and its vicinity shown in FIG. 2A.
  • a layer 113Y is provided over the pixel electrode 111R and a layer 113Y is provided over the pixel electrode 111G.
  • a mask layer 118Y is provided in contact with a portion of the top surface of layer 113Y.
  • An insulating layer 125 is provided in contact with the top and side surfaces of the mask layer 118Y, the side surfaces of the layer 113Y, and the top surface of the insulating layer 255c. Also, the insulating layer 125 partially covers the top surface of the layer 113Y.
  • An insulating layer 127 is provided in contact with the upper surface of the insulating layer 125 .
  • the insulating layer 127 overlaps with part of the top surface and the side surface of the layer 113Y with the insulating layer 125 interposed therebetween, and is in contact with at least part of the side surface of the insulating layer 125 .
  • a common layer 114 is provided over layer 113Y, mask layer 118Y, insulating layer 125, and insulating layer 127, and common electrode 115 is provided on common layer 114.
  • the insulating layer 127 is formed in the region between the two island-shaped EL layers (for example, the region between the two layers 113Y in FIG. 2A). At this time, at least part of the insulating layer 127 is arranged at a position sandwiched between the side edge of one EL layer and the side edge of the other EL layer.
  • the common layer 114 and the common electrode 115 formed over the island-shaped EL layer and the insulating layer 127 are divided and locally thin. can be prevented.
  • the insulating layer 127 preferably has a taper shape with a taper angle ⁇ 1 at the end portion in a cross-sectional view of the display device.
  • the taper angle ⁇ 1 is the angle between the side surface (or end) of the insulating layer 127 and the substrate surface.
  • the angle is not limited to the substrate surface, and may be the angle formed by the upper surface of the flat portion of the layer 113Y or the upper surface of the flat portion of the pixel electrode 111G and the side surface (or end) of the insulating layer 127.
  • the taper angle ⁇ 1 of the insulating layer 127 is less than 90°, preferably 60° or less, more preferably 45° or less, and even more preferably 20° or less.
  • the upper surface of the insulating layer 127 preferably has a convex shape.
  • the convex curved surface shape of the upper surface of the insulating layer 127 is preferably a shape that gently swells toward the center. Further, it is preferable that the convex curved surface portion in the central portion of the upper surface of the insulating layer 127 has a shape that is continuously connected to the tapered portion at the end portion.
  • the edge of insulating layer 127 is preferably located outside the edge of insulating layer 125 . Thereby, unevenness of the surface on which the common layer 114 and the common electrode 115 are formed can be reduced, and coverage of the common layer 114 and the common electrode 115 can be improved.
  • the insulating layer 125 preferably has a tapered shape with a taper angle ⁇ 2 at the end portion in a cross-sectional view of the display device.
  • the taper angle ⁇ 2 is the angle between the side surface of the insulating layer 125 and the substrate surface.
  • the angle is not limited to the substrate surface, and may be the angle formed by the upper surface of the flat portion of the layer 113Y or the upper surface of the flat portion of the pixel electrode 111G and the side surface of the insulating layer 125.
  • the taper angle ⁇ 2 of the insulating layer 125 is less than 90°, preferably 60° or less, more preferably 45° or less, and even more preferably 20° or less.
  • the mask layer 118Y preferably has a taper shape with a taper angle ⁇ 3 at the end portion in a cross-sectional view of the display device.
  • the taper angle ⁇ 3 is the angle between the side surface of the mask layer 118Y and the substrate surface.
  • the angle is not limited to the substrate surface, and may be the angle formed by the upper surface of the flat portion of the layer 113Y or the upper surface of the flat portion of the pixel electrode 111G and the side surface (or end) of the insulating layer 127.
  • the taper angle ⁇ 3 of the mask layer 118Y is less than 90°, preferably 60° or less, more preferably 45° or less, and even more preferably 20° or less.
  • the end of the mask layer 118B and the end of the mask layer 118Y be positioned outside the end of the insulating layer 125, respectively. Thereby, unevenness of the surface on which the common layer 114 and the common electrode 115 are formed can be reduced, and coverage of the common layer 114 and the common electrode 115 can be improved.
  • the insulating layer 125 and the mask layer 118 when the insulating layer 125 and the mask layer 118 are etched at the same time, the insulating layer 125 and the mask layer 118 below the edge of the insulating layer 127 disappear due to side etching. Cavities (also referred to as holes) may be formed. Due to the cavities, the surfaces on which the common layer 114 and the common electrode 115 are formed become uneven, and the common layer 114 and the common electrode 115 are likely to be disconnected. Therefore, by performing the etching treatment in two steps and performing heat treatment between the two etching treatments, even if a cavity is formed in the first etching treatment, the insulating layer 127 is deformed by the heat treatment. The cavity can be filled.
  • the taper angle ⁇ 2 and the taper angle ⁇ 3 may be different angles. Also, the taper angle ⁇ 2 and the taper angle ⁇ 3 may be the same angle. Also, the taper angles .theta.2 and .theta.3 may each be smaller than the taper angle .theta.1.
  • the insulating layer 127 may cover at least a portion of the sides of the mask layer 118Y.
  • the insulating layer 127 contacts and covers the sloped surface located at the edge of the mask layer 118Y formed by the first etching process, and the edge of the mask layer 118Y formed by the second etching process.
  • An example in which the inclined surface located at the part is exposed is shown.
  • the two inclined surfaces can sometimes be distinguished from each other by their different taper angles. Moreover, there is almost no difference in the taper angles of the side surfaces formed by the two etching processes, and it may not be possible to distinguish between them.
  • FIG. 3A and 3B show an example in which the insulating layer 127 covers the entire side surface of the mask layer 118Y. Specifically, in FIG. 3B, the insulating layer 127 contacts and covers both of the two inclined surfaces. This is preferable because unevenness of the surface on which the common layer 114 and the common electrode 115 are formed can be further reduced.
  • FIG. 3B shows an example in which the edge of the insulating layer 127 is located outside the edge of the mask layer 118Y. The edge of the insulating layer 127 may be located inside the edge of the mask layer 118Y, as shown in FIG. 2B, and may be aligned or substantially aligned with the edge of the mask layer 118Y. Also, as shown in FIG. 3B, insulating layer 127 may contact layer 113Y.
  • the taper angles ⁇ 1 to ⁇ 3 are preferably within the above ranges.
  • the insulating layer 127 has a concave surface shape (also referred to as a constricted portion, recess, dent, depression, etc.) on the side surface.
  • a concave surface shape also referred to as a constricted portion, recess, dent, depression, etc.
  • the side surface of the insulating layer 127 may have a concave curved shape.
  • FIG. 4A shows an example in which insulating layer 127 covers a portion of the side surface of mask layer 118Y, leaving the remaining portion of the side surface of mask layer 118Y exposed.
  • FIG. 4B is an example in which the insulating layer 127 contacts and covers the entire side surface of the mask layer 118Y.
  • one end of the insulating layer 127 preferably overlaps the top surface of the pixel electrode 111R, and the other end of the insulating layer 127 preferably overlaps the top surface of the pixel electrode 111G.
  • the edge of the insulating layer 127 can be formed on a planar or substantially planar region of the layer 113Y. Therefore, it becomes relatively easy to form the tapered shapes of the insulating layer 127, the insulating layer 125, and the mask layer 118, respectively.
  • film peeling between the layer 113Y and the pixel electrode 111R or the pixel electrode 111G can be suppressed.
  • the smaller the overlapping portion between the upper surface of the pixel electrode and the insulating layer 127 is, the wider the light emitting region of the light emitting device is and the higher the aperture ratio, which is preferable.
  • the insulating layer 127 does not have to overlap with the top surface of the pixel electrode. As shown in FIG. 5A, the insulating layer 127 does not overlap the top surface of the pixel electrode, one end of the insulating layer 127 overlaps the side surface of the pixel electrode 111R, and the other end of the insulating layer 127 overlaps the pixel electrode 111G. may overlap the sides of the Alternatively, as shown in FIG. 5B, the insulating layer 127 may be provided in a region sandwiched between the pixel electrodes 111R and 111G without overlapping the pixel electrodes.
  • the upper surface of the insulating layer 127 may have a flat portion.
  • the upper surface of the insulating layer 127 may have a concave surface shape.
  • the upper surface of the insulating layer 127 has a shape that gently bulges toward the center, that is, a convex surface, and a shape that is depressed at and near the center, that is, a concave surface.
  • the convex curved surface portion of the upper surface of the insulating layer 127 has a shape that is continuously connected to the tapered portion of the end portion. Even if the insulating layer 127 has such a shape, the common layer 114 and the common electrode 115 can be formed on the entire insulating layer 127 with good coverage.
  • a method of exposing using a multi-tone mask can be applied to provide a structure having a concave curved surface in the central portion of the insulating layer 127 as shown in FIG. 6B.
  • a multi-tone mask is a mask that can perform exposure at three exposure levels, an exposed portion, an intermediate exposed portion, and an unexposed portion, and is an exposure mask in which transmitted light has a plurality of intensities.
  • the insulating layer 127 having a plurality of (typically two) thickness regions can be formed with one photomask (single exposure and development steps).
  • the method for forming the concave curved surface in the central portion of the insulating layer 127 is not limited to the above.
  • an exposed portion and an intermediately exposed portion may be separately manufactured using two photomasks.
  • the viscosity of the resin material used for the insulating layer 127 may be adjusted.
  • the viscosity of the material used for the insulating layer 127 may be 10 cP or less, preferably 1 cP or more and 5 cP or less.
  • the central concave surface of the insulating layer 127 does not necessarily have to be continuous, and may be discontinued between adjacent light emitting devices. In this case, a part of the insulating layer 127 disappears at the central portion of the insulating layer 127 shown in FIG. 6B, and the surface of the insulating layer 125 is exposed. In the case of such a structure, the shape may be such that the common layer 114 and the common electrode 115 can be covered.
  • the common layer 114 and the common electrode 115 can be formed with high coverage by providing the insulating layer 127, the insulating layer 125, and the mask layer 118Y.
  • the protective layer 131 may have a single layer structure or a laminated structure of two or more layers.
  • the conductivity of the protective layer 131 does not matter. At least one of an insulating film, a semiconductor film, and a conductive film can be used as the protective layer 131 .
  • the common electrode 115 is prevented from being oxidized, impurities (moisture, oxygen, etc.) are prevented from entering the light-emitting device, and deterioration of the light-emitting device is suppressed. reliability can be improved.
  • an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, or a nitride oxide insulating film can be used. Specific examples of these inorganic insulating films are as described for the insulating layer 125 .
  • the protective layer 131 preferably includes a nitride insulating film or a nitride oxide insulating film, and more preferably includes a nitride insulating film.
  • the protective layer 131 includes In—Sn oxide (also referred to as ITO), In—Zn oxide, Ga—Zn oxide, Al—Zn oxide, or indium gallium zinc oxide (In—Ga—Zn oxide).
  • ITO In—Sn oxide
  • In—Zn oxide Ga—Zn oxide
  • Al—Zn oxide Al—Zn oxide
  • indium gallium zinc oxide In—Ga—Zn oxide
  • An inorganic film containing a material such as IGZO can also be used.
  • the inorganic film preferably has a high resistance, and specifically, preferably has a higher resistance than the common electrode 115 .
  • the inorganic film may further contain nitrogen.
  • the protective layer 131 When the light emitted from the light-emitting device is taken out through the protective layer 131, the protective layer 131 preferably has high transparency to visible light.
  • the protective layer 131 preferably has high transparency to visible light.
  • ITO, IGZO, and aluminum oxide are preferable because they are inorganic materials with high transparency to visible light.
  • the protective layer 131 for example, a stacked structure of an aluminum oxide film and a silicon nitride film over the aluminum oxide film, or a stacked structure of an aluminum oxide film and an IGZO film over the aluminum oxide film, or the like can be used. can be done. By using the stacked structure, entry of impurities (such as water and oxygen) into the EL layer can be suppressed.
  • impurities such as water and oxygen
  • the protective layer 131 may have an organic film.
  • protective layer 131 may have both an organic film and an inorganic film.
  • organic materials that can be used for the protective layer 131 include organic insulating materials that can be used for the insulating layer 127 .
  • the protective layer 131 may have a two-layer structure formed using different film formation methods. Specifically, the first layer of the protective layer 131 may be formed using the ALD method, and the second layer of the protective layer 131 may be formed using the sputtering method.
  • a light shielding layer may be provided on the surface of the substrate 120 on the resin layer 122 side.
  • various optical members can be arranged on the outside of the substrate 120 (the surface opposite to the resin layer 122 side). Examples of optical members include polarizing plates, retardation plates, light diffusion layers (diffusion films, etc.), antireflection layers, light collecting films, and the like.
  • an antistatic film that suppresses adhesion of dust, a water-repellent film that prevents adhesion of dirt, a hard coat film that suppresses the occurrence of scratches due to use, a shock absorption layer, etc. Layers may be arranged.
  • a glass layer or a silica layer (SiO x layer) as a surface protective layer, because surface contamination and scratching can be suppressed.
  • the surface protective layer DLC (diamond-like carbon), aluminum oxide (AlO x ), polyester-based material, polycarbonate-based material, or the like may be used.
  • a material having a high visible light transmittance is preferably used for the surface protective layer.
  • Glass, quartz, ceramics, sapphire, resin, metal, alloy, semiconductor, or the like can be used for the substrate 120 .
  • a material that transmits the light is used for the substrate on the side from which the light from the light-emitting device is extracted.
  • Using a flexible material for the substrate 120 can increase the flexibility of the display device.
  • a polarizing plate may be used as the substrate 120 .
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resins, acrylic resins, polyimide resins, polymethyl methacrylate resins, polycarbonate (PC) resins, and polyethersulfone (PES) resins.
  • polyamide resin nylon, aramid, etc.
  • polysiloxane resin cycloolefin resin
  • polystyrene resin polyamideimide resin
  • polyurethane resin polyvinyl chloride resin
  • polyvinylidene chloride resin polypropylene resin
  • PTFE polytetrafluoroethylene
  • ABS resin cellulose nanofiber, etc.
  • glass having a thickness that is flexible may be used.
  • a substrate having high optical isotropy is preferably used as the substrate of the display device.
  • a substrate with high optical isotropy has small birefringence (it can be said that the amount of birefringence is small).
  • the absolute value of the retardation (retardation) value of the substrate with high optical isotropy is preferably 30 nm or less, more preferably 20 nm or less, and even more preferably 10 nm or less.
  • Films with high optical isotropy include triacetylcellulose (TAC, also called cellulose triacetate) films, cycloolefin polymer (COP) films, cycloolefin copolymer (COC) films, and acrylic films.
  • TAC triacetylcellulose
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • the film when a film is used as the substrate, the film may absorb water, which may cause shape change such as wrinkles in the display device. Therefore, it is preferable to use a film having a low water absorption rate as the substrate. For example, it is preferable to use a film with a water absorption of 1% or less, more preferably 0.1% or less, and even more preferably 0.01% or less.
  • various curable adhesives such as photocurable adhesives such as ultraviolet curable adhesives, reaction curable adhesives, thermosetting adhesives, and anaerobic adhesives can be used.
  • These adhesives include epoxy resins, acrylic resins, silicone resins, phenol resins, polyimide resins, imide resins, PVC (polyvinyl chloride) resins, PVB (polyvinyl butyral) resins, EVA (ethylene vinyl acetate) resins, and the like.
  • a material with low moisture permeability such as epoxy resin is preferable.
  • a two-liquid mixed type resin may be used.
  • an adhesive sheet or the like may be used.
  • FIG. 7A shows a modification of FIG. 1B.
  • FIG. 7A shows an example in which the top and side surfaces of the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B are covered with a conductive layer 116R, a conductive layer 116G, and a conductive layer 116B, respectively.
  • the conductive layers 116R, 116G, 116B can also be considered part of the pixel electrode.
  • the side surface of the pixel electrode 111R and the layer 113Y are in contact.
  • the pixel electrode 111R has a laminated structure, there are a plurality of conductive layers in contact with the layer 113Y. As a result, there may be a portion where the adhesion between the pixel electrode 111R and the layer 113Y is low. This is the same between the pixel electrode 111G and the layer 113Y and between the pixel electrode 111B and the layer 113B.
  • galvanic corrosion may occur if the etchant touches the pixel electrodes 111R, 111G, and 111B. may occur.
  • the etchant can be prevented from coming into contact with the pixel electrodes 111R, 111G, and 111B, and galvanic Alteration due to corrosion or the like can be suppressed. Accordingly, it is possible to expand the range of options for the material of the pixel electrode 111R. Further, since the layer 113Y and the conductive layer 116R are in contact with each other, the adhesion is uniform.
  • the pixel electrodes 111R, 111G, and 111B are electrodes that reflect visible light (reflective electrodes), and the conductive layers 116R, 116G, and 116B are transparent to visible light. It is preferable to use an electrode (transparent electrode) having a
  • the pixel electrode 111 shown in FIG. 7B has a two-layer structure, and the conductive layer 116 has a single-layer structure.
  • the conductive layer 116 has a single-layer structure.
  • a two-layer structure of a titanium film and an aluminum film over the titanium film is used, and as the conductive layer 116, an oxide conductive layer (eg, In—Si—Sn oxide (also referred to as ITSO)) is used. It is preferable to use
  • the pixel electrode 111 shown in FIG. 7C has a three-layer structure, and the conductive layer 116 has a single-layer structure.
  • a three-layer structure of a titanium film, an aluminum film, and a titanium film as the pixel electrode 111 and use an oxide conductive layer (eg, ITSO) as the conductive layer 116 .
  • An aluminum film has a high reflectance and is suitable as a reflective electrode.
  • contact between the aluminum and the conductive oxide layer may cause electric corrosion. Therefore, a titanium film is preferably provided between the aluminum film and the oxide conductive layer.
  • the pixel electrode 111 shown in FIG. 7D has a two-layer structure, and the conductive layer 116 has a two-layer structure.
  • the pixel electrode 111 can have a two-layer structure of a titanium film and an aluminum film over the titanium film, and the conductive layer 116 can have a two-layer structure of a titanium film and an oxide conductive layer (eg, ITSO). preferable.
  • the pixel electrode 111 shown in FIG. 7E has a three-layer structure, and the conductive layer 116 has a two-layer structure.
  • the pixel electrode 111 can have a three-layer structure of a titanium film, an aluminum film, and a titanium film
  • the conductive layer 116 can have a two-layer structure of a titanium film and an oxide conductive layer (eg, ITSO). preferable.
  • the conductive layers 116R, 116G, and 116B may have different thicknesses. As shown in FIG. 7F, the conductive layer 116R is preferably thicker than the conductive layer 116G. Specifically, the film thickness of the conductive layer 116R is set to enhance red light, the film thickness of the conductive layer 116G is set to enhance green light, and the thickness of the conductive layer 116B is set to enhance blue light. It is preferable to set the film thickness. Thereby, a microcavity structure can be realized and the color purity in each light emitting device can be enhanced.
  • FIG. 1B shows an example in which colored layers 132R and 132G are provided directly on a light-emitting device 130Y with a protective layer 131 interposed therebetween.
  • 8A to 8C, 9C, and 9D show cross-sectional views along the dashed-dotted line X1-X2 in FIG. 1A.
  • a substrate 120 provided with a colored layer may be bonded to a protective layer 131 with a resin layer 122 .
  • the temperature of the heat treatment in the step of forming the colored layer can be increased.
  • the display may be provided with a lens array 133, as shown in FIGS. 8B and 8C.
  • a lens array 133 may be provided overlying the light emitting device.
  • FIG. 8B shows an example in which colored layers 132R and 132G are provided on a light-emitting device 130Y with a protective layer 131 interposed therebetween, an insulating layer 134 is provided on the colored layers 132R and 132G, and a lens array 133 is provided on the insulating layer 134. show.
  • Either or both of an inorganic insulating film and an organic insulating film can be used for the insulating layer 134 .
  • the insulating layer 134 may have a single-layer structure or a laminated structure.
  • a material that can be used for the protective layer 131 can be applied to the insulating layer 134, for example. Since the light emitted from the light-emitting device is extracted through the insulating layer 134, the insulating layer 134 preferably has high transparency to visible light.
  • FIG. 8B light emitted from the light-emitting device is transmitted through the colored layer and then through the lens array 133 to be taken out of the display device.
  • the lens array 133 may be provided over the light-emitting device and the colored layer may be provided over the lens array 133 .
  • FIG. 8C is an example in which the substrate 120 provided with the colored layer 132R, the colored layer 132G, and the lens array 133 is bonded onto the protective layer 131 with the resin layer 122.
  • FIG. 8C By providing the colored layer 132R, the colored layer 132G, and the lens array 133 over the substrate 120, the temperature of the heat treatment in these formation steps can be increased.
  • FIG. 8C shows an example in which colored layers 132R and 132G are provided in contact with the substrate 120, an insulating layer 134 is provided in contact with the colored layers 132R and 132G, and a lens array 133 is provided in contact with the insulating layer 134.
  • FIG. 8C light emitted from the light-emitting device is transmitted through the lens array 133 and then through the colored layer, and is taken out of the display device.
  • the lens array 133 may be provided in contact with the substrate 120
  • the insulating layer 134 may be provided in contact with the lens array 133
  • the colored layer may be provided in contact with the insulating layer 134 .
  • light emitted from the light-emitting device is transmitted through the colored layer and then through the lens array 133 to be extracted to the outside of the display device.
  • FIGS. 8A and 8C show examples in which a layer having a planarization function is used as the protective layer 131, but as shown in FIGS. 8A and 8C, the protective layer 131 may not have a planarization function.
  • the protective layer 131 shown in FIGS. 8A and 8C can be formed by using an inorganic film, for example.
  • the lens array 133 is provided on the light-emitting device 130Y via the protective layer 131, and the substrate 120 provided with the colored layers 132R and 132G is covered with the resin layer 122 on the lens array 133 and the protective layer 131.
  • the lens array 133 may be provided on the substrate 120 and the colored layer may be directly formed on the protective layer 131 .
  • one of the lens array and the colored layer may be provided on the protective layer 131 and the other may be provided on the substrate 120 .
  • the convex surface of the lens array 133 may face the substrate 120 side or the light emitting device side.
  • the lens array 133 can be formed using at least one of an inorganic material and an organic material.
  • a material containing resin can be used for the lens.
  • a material containing at least one of an oxide and a sulfide can be used for the lens.
  • a microlens array can be used as the lens array 133.
  • the lens array 133 may be formed directly on the substrate or the light-emitting device, or may be bonded with a separately formed lens array.
  • a colored layer 132B that transmits blue light may be provided overlapping the blue light emitting device 130B. For example, unnecessary wavelength light emitted from the blue light emitting device 130B can be blocked using the colored layer 132B that transmits blue light. With such a configuration, the color purity of light emitted from each light emitting device can be further increased.
  • the light-emitting device has a microcavity structure, external light reflection can be further reduced.
  • reflection of external light can be sufficiently suppressed without using an optical member such as a circularly polarizing plate in the display device.
  • an optical member such as a circularly polarizing plate in the display device.
  • the colored layers of different colors have overlapping portions.
  • a region where the colored layers of different colors overlap each other can function as a light shielding layer. This makes it possible to further reduce external light reflection.
  • FIG. 10A shows a top view of the display device 100 different from that in FIG. 1A.
  • a pixel 110 shown in FIG. 10A is composed of four types of sub-pixels, sub-pixels 11R, 11G, 11B, and 11S.
  • three may have a light-emitting device and the remaining one may have a light-receiving device.
  • a pn-type or pin-type photodiode can be used as the light receiving device.
  • a light-receiving device functions as a photoelectric conversion device (also referred to as a photoelectric conversion element) that detects light incident on the light-receiving device and generates an electric charge. The amount of charge generated from the light receiving device is determined based on the amount of light incident on the light receiving device.
  • the light receiving device can detect one or both of visible light and infrared light.
  • visible light for example, one or more of blue, purple, blue-violet, green, yellow-green, yellow, orange, red, etc. light can be detected.
  • infrared light it is possible to detect an object even in a dark place, which is preferable.
  • organic photodiode having a layer containing an organic compound as the light receiving device.
  • Organic photodiodes can be easily made thinner, lighter, and larger, and have a high degree of freedom in shape and design, so that they can be applied to various display devices.
  • an organic EL device is used as the light-emitting device and an organic photodiode is used as the light-receiving device.
  • An organic EL device and an organic photodiode can be formed on the same substrate. Therefore, an organic photodiode can be incorporated in a display device using an organic EL device.
  • the light-receiving device can be driven by applying a reverse bias between the pixel electrode and the common electrode, thereby detecting light incident on the light-receiving device, generating electric charge, and extracting it as a current.
  • a manufacturing method similar to that for the light-emitting device can also be applied to the light-receiving device.
  • the island-shaped active layer (also called photoelectric conversion layer) of the light receiving device is not formed using a fine metal mask, but is formed by forming a film that will become the active layer over the surface and then processing it. Therefore, the island-shaped active layer can be formed with a uniform thickness. Further, by providing the mask layer over the active layer, the damage to the active layer during the manufacturing process of the display device can be reduced, and the reliability of the light-receiving device can be improved.
  • Embodiment 6 can be referred to for the structure and material of the light receiving device.
  • FIG. 10B shows a cross-sectional view along dashed-dotted line X3-X4 in FIG. 10A. Note that FIG. 1B can be referred to for the cross-sectional view along the dashed-dotted line X1-X2 in FIG. 10A, and FIG. 9A or 9B can be referred to for the cross-sectional view along the dashed-dotted line Y1-Y2.
  • the display device 100 includes an insulating layer provided on a layer 101 including a transistor, a light-emitting device 130Y and a light-receiving device 150 provided on the insulating layer, and covering the light-emitting device and the light-receiving device.
  • a protective layer 131 is provided, and the substrate 120 is bonded by a resin layer 122 .
  • a colored layer 132R is provided on the protective layer 131 at a position overlapping with the light emitting device 130Y.
  • An insulating layer 125 and an insulating layer 127 on the insulating layer 125 are provided in a region between the adjacent light emitting device and light receiving device.
  • FIG. 10B shows an example in which the light emitting device 130Y emits light toward the substrate 120 side and light enters the light receiving device 150 from the substrate 120 side (see light Lem and light Lin).
  • the configurations of the sub-pixel 11R and the light-emitting device 130Y included in the sub-pixel 11R are as described above.
  • the light receiving device 150 has a pixel electrode 111S on the insulating layer 255c, a layer 155 on the pixel electrode 111S, a common layer 114 on the layer 155, and a common electrode 115 on the common layer 114.
  • Layer 155 includes at least the active layer.
  • layer 155 includes at least the active layer and preferably has multiple functional layers.
  • functional layers include carrier transport layers (hole transport layer and electron transport layer) and carrier block layers (hole block layer and electron block layer).
  • Layer 155 is a layer that is provided in the light receiving device 150 and not provided in the light emitting device. However, the functional layers other than the active layer included in layer 155 may have the same material as the functional layers other than the light-emitting layer included in layer 113B or layer 113Y.
  • the common layer 114 is a sequence of layers shared by the light-emitting and light-receiving devices.
  • a layer shared by the light-receiving device and the light-emitting device may have different functions in the light-emitting device and in the light-receiving device. Components are sometimes referred to herein based on their function in the light emitting device.
  • a hole-injecting layer functions as a hole-injecting layer in light-emitting devices and as a hole-transporting layer in light-receiving devices.
  • an electron-injecting layer functions as an electron-injecting layer in light-emitting devices and as an electron-transporting layer in light-receiving devices.
  • a layer shared by the light-receiving device and the light-emitting device may have the same function in the light-emitting device as in the light-receiving device.
  • a hole-transporting layer functions as a hole-transporting layer in both a light-emitting device and a light-receiving device
  • an electron-transporting layer functions as an electron-transporting layer in both a light-emitting device and a light-receiving device.
  • Mask layer 118 Y is positioned between layer 113 Y and insulating layer 125
  • mask layer 118 S is positioned between layer 155 and insulating layer 125 .
  • the mask layer 118Y is a portion of the mask layer provided on the layer 113Y when processing the layer 113Y remains.
  • the mask layer 118S is part of the remaining mask layer provided in contact with the upper surface of the layer 155 when processing the layer 155 including the active layer.
  • Mask layer 118B and mask layer 118S may have the same material or may have different materials.
  • FIG. 10A shows an example in which the aperture ratio of the sub-pixel 11S (which can also be referred to as the size, the size of the light-emitting region or the light-receiving region) is larger than that of the sub-pixels 11R, 11G, and 11B, but one embodiment of the present invention is not limited thereto. .
  • the aperture ratios of the sub-pixels 11R, 11G, 11B, and 11S can be determined appropriately.
  • the aperture ratios of the sub-pixels 11R, 11G, 11B, and 11S may be different, and two or more may be equal or substantially equal.
  • the sub-pixel 11S may have a higher aperture ratio than at least one of the sub-pixels 11R, 11G, and 11B.
  • the wide light receiving area of the sub-pixel 11S may make it easier to detect the object.
  • the aperture ratio of the sub-pixel 11S may be higher than that of the other sub-pixels depending on the definition of the display device, the circuit configuration of the sub-pixels, and the like.
  • the sub-pixel 11S may have a lower aperture ratio than at least one of the sub-pixels 11R, 11G, and 11B. If the light-receiving area of the sub-pixel 11S is narrow, the imaging range is narrowed, and blurring of the imaging result can be suppressed and the resolution can be improved. Therefore, high-definition or high-resolution imaging can be performed, which is preferable.
  • the sub-pixel 11S can have a detection wavelength, definition, and aperture ratio suitable for the application.
  • an island-shaped EL layer is provided for each light-emitting device, so that leakage current between subpixels can be suppressed. Thereby, crosstalk due to unintended light emission can be prevented, and a display device with extremely high contrast can be realized.
  • the edges and the vicinity thereof which may have been damaged during the manufacturing process of the display device, are used as dummy regions, and are not used as light-emitting regions, thereby preventing variations in the characteristics of the light-emitting device. can be suppressed.
  • the display device of one embodiment of the present invention can achieve both high definition and high display quality.
  • light-emitting devices having the same light-emitting layer are used for two subpixels, which are combined with a red colored layer and a green colored layer, respectively, so that the subpixels emit red light.
  • a pixel and a sub-pixel exhibiting green light are realized.
  • a light-emitting device that emits blue light is used for a sub-pixel that emits blue light. Accordingly, sub-pixels of three colors can be separately manufactured only by separately manufacturing light-emitting devices of two colors.
  • Embodiment 2 a method for manufacturing a display device of one embodiment of the present invention will be described with reference to FIGS. Regarding the material and formation method of each element, the description of the same parts as those described in the first embodiment may be omitted. Further, the details of the configuration of the light-emitting device will be described in Embodiment Mode 5.
  • 16A, and 17 show side by side a cross-sectional view taken along the dashed line X1-X2 shown in FIG. 1A and a cross-sectional view taken along the dashed line Y1-Y2.
  • 16B to 16E show enlarged views of the edge of the insulating layer 127 and its vicinity.
  • the thin films (insulating films, semiconductor films, conductive films, etc.) that make up the display device are formed by sputtering, chemical vapor deposition (CVD), vacuum deposition, pulsed laser deposition (PLD). ) method, Atomic Layer Deposition (ALD) method, or the like.
  • CVD methods include a plasma enhanced CVD (PECVD) method, a thermal CVD method, and the like. Also, one of the thermal CVD methods is the metal organic CVD (MOCVD) method.
  • the thin films (insulating film, semiconductor film, conductive film, etc.) constituting the display device can be applied by spin coating, dipping, spray coating, inkjet, dispensing, screen printing, offset printing, doctor knife method, slit coating, and roll coating. , curtain coating, or knife coating.
  • a vacuum process such as a vapor deposition method and a solution process such as a spin coating method or an inkjet method can be used for manufacturing a light-emitting device.
  • vapor deposition methods include physical vapor deposition (PVD) such as sputtering, ion plating, ion beam vapor deposition, molecular beam vapor deposition, and vacuum vapor deposition, and chemical vapor deposition (CVD).
  • the functional layers included in the EL layer, vapor deposition ( vacuum deposition method, etc.), coating method (dip coating method, die coating method, bar coating method, spin coating method, spray coating method, etc.), printing method (inkjet method, screen (stencil printing) method, offset (lithographic printing) method, It can be formed by a method such as a flexographic (letterpress printing) method, a gravure method, or a microcontact method.
  • a photolithography method or the like can be used when processing a thin film forming a display device.
  • the thin film may be processed by a nanoimprint method, a sandblast method, a lift-off method, or the like.
  • an island-shaped thin film may be directly formed by a film formation method using a shielding mask such as a metal mask.
  • the photolithography method there are typically the following two methods.
  • One is a method of forming a resist mask on a thin film to be processed, processing the thin film by etching or the like, and removing the resist mask.
  • the other is a method of forming a thin film having photosensitivity and then exposing and developing the thin film to process the thin film into a desired shape.
  • the light used for exposure can be, for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or a mixture thereof.
  • ultraviolet rays, KrF laser light, ArF laser light, or the like can also be used.
  • extreme ultraviolet (EUV: Extreme Ultra-violet) light or X-rays may be used.
  • An electron beam can also be used instead of the light used for exposure. The use of extreme ultraviolet light, X-rays, or electron beams is preferable because extremely fine processing is possible.
  • a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
  • a dry etching method, a wet etching method, a sandblasting method, or the like can be used for etching the thin film.
  • the insulating layer 255a, the insulating layer 255b, and the insulating layer 255c are formed in this order over the layer 101 including the transistor.
  • the pixel electrodes 111R, 111G, and 111B and the conductive layer 123 are formed over the insulating layer 255c.
  • a sputtering method or a vacuum deposition method can be used to form the conductive film that serves as the pixel electrode.
  • the surface to be treated can be changed from hydrophilic to hydrophobic, or the hydrophobicity of the surface to be treated can be increased.
  • adhesion between the pixel electrode and a film (here, the film 113b) formed in a later step can be improved, and film peeling can be suppressed.
  • the hydrophobic treatment may not be performed.
  • Hydrophobization treatment can be performed, for example, by modifying the pixel electrode with fluorine.
  • Fluorine modification can be performed, for example, by treatment with a fluorine-containing gas, heat treatment, plasma treatment in a fluorine-containing gas atmosphere, or the like.
  • the gas containing fluorine for example, fluorine gas can be used, and for example, fluorocarbon gas can be used.
  • fluorocarbon gas for example, carbon tetrafluoride (CF 4 ) gas, C 4 F 6 gas, C 2 F 6 gas, C 4 F 8 gas, C 5 F 8 gas, or other lower fluorocarbon gas can be used.
  • As the gas containing fluorine for example, SF6 gas, NF3 gas, CHF3 gas, etc. can be used.
  • helium gas, argon gas, hydrogen gas, or the like can be added to these gases as appropriate.
  • the surface of the pixel electrode is subjected to plasma treatment in a gas atmosphere containing a group 18 element such as argon, and then treated with a silylating agent to make the surface of the pixel electrode hydrophobic. be able to.
  • a silylating agent hexamethyldisilazane (HMDS), trimethylsilylimidazole (TMSI), or the like can be used.
  • the surface of the pixel electrode is also subjected to plasma treatment in a gas atmosphere containing a Group 18 element such as argon, and then to treatment using a silane coupling agent to make the surface of the pixel electrode hydrophobic. can do.
  • the surface of the pixel electrode By subjecting the surface of the pixel electrode to plasma treatment in a gas atmosphere containing a group 18 element such as argon, the surface of the pixel electrode can be damaged. This makes it easier for the methyl group contained in the silylating agent such as HMDS to bond to the surface of the pixel electrode. In addition, silane coupling by the silane coupling agent is likely to occur. As described above, the surface of the pixel electrode is subjected to plasma treatment in a gas atmosphere containing a Group 18 element such as argon, and then to treatment using a silylating agent or a silane coupling agent. The surface of the electrodes can be made hydrophobic.
  • the treatment using a silylating agent, silane coupling agent, or the like can be performed by applying the silylating agent, silane coupling agent, or the like using, for example, a spin coating method, a dipping method, or the like.
  • a vapor phase method is used to form a film containing a silylating agent or a film containing a silane coupling agent on a pixel electrode or the like.
  • the material containing the silylating agent or the material containing the silane coupling agent is volatilized so that the atmosphere contains the silylating agent, the silane coupling agent, or the like.
  • a substrate on which pixel electrodes and the like are formed is placed in the atmosphere.
  • a film containing a silylating agent, a silane coupling agent, or the like can be formed on the pixel electrode, and the surface of the pixel electrode can be made hydrophobic.
  • Film 113b which will later become the layer 113B, is formed on the pixel electrode (FIG. 11A).
  • Film 113b (later layer 113B) includes a luminescent material that emits blue light.
  • the film 113b is not formed over the conductive layer 123 in the cross-sectional view along the dashed-dotted line Y1-Y2.
  • the film 113b can be formed only in desired regions.
  • Employing a film formation process using an area mask and a processing process using a resist mask makes it possible to manufacture a light-emitting device in a relatively simple process.
  • the heat resistance temperature of the compounds contained in the film 113b is preferably 100° C. or higher and 180° C. or lower, preferably 120° C. or higher and 180° C. or lower, and more preferably 140° C. or higher and 180° C. or lower. This can improve the reliability of the light emitting device.
  • the upper limit of the temperature applied in the manufacturing process of the display device can be increased. Therefore, it is possible to widen the range of selection of materials and formation methods used for the display device, and it is possible to improve the manufacturing yield and reliability.
  • the film 113b can be formed by, for example, a vapor deposition method, specifically a vacuum vapor deposition method.
  • the film 113b may be formed by a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • a mask film 118b that will later become the mask layer 118B and a mask film 119b that will later become the mask layer 119B are sequentially formed over the film 113b and the conductive layer 123 (FIG. 11A).
  • the mask film may have a single-layer structure or a laminated structure of three or more layers.
  • a film having high resistance to the processing conditions of the film 113b specifically, a film having a high etching selectivity with respect to the film 113b is used.
  • a film having a high etching selectivity with respect to the mask film 118b is used for the mask film 119b.
  • the mask films 118b and 119b are formed at a temperature lower than the heat-resistant temperature of the film 113b.
  • the substrate temperature when forming the mask film 118b and the mask film 119b is typically 200° C. or less, preferably 150° C. or less, more preferably 120° C. or less, more preferably 100° C. or less, and still more preferably. is below 80°C.
  • the heat-resistant temperature of the films 113b and 113y can be any temperature that is an index of these heat-resistant temperatures, preferably the lowest temperature among them.
  • the substrate temperature when forming the mask film can be 100° C. or higher, 120° C. or higher, or 140° C. or higher.
  • the inorganic insulating film can be made denser and have higher barrier properties as the film formation temperature is higher. Therefore, by forming the mask film at such a temperature, the damage to the film 113b can be further reduced, and the reliability of the light emitting device can be improved.
  • a film that can be removed by a wet etching method is preferably used for the mask film 118b and the mask film 119b.
  • damage to the film 113b during processing of the mask films 118b and 119b can be reduced as compared with the case of using the dry etching method.
  • the sputtering method, the ALD method (including the thermal ALD method and the PEALD method), the CVD method, and the vacuum deposition method can be used to form the mask film 118b and the mask film 119b.
  • the sputtering method, the ALD method (including the thermal ALD method and the PEALD method), the CVD method, and the vacuum deposition method can be used to form the mask film 118b and the mask film 119b.
  • it may be formed using the wet film forming method described above.
  • the mask film 118b formed on and in contact with the film 113b is preferably formed using a formation method that causes less damage to the film 113b than the mask film 119b.
  • a formation method that causes less damage to the film 113b than the mask film 119b.
  • the mask films 118b and 119b for example, one or more of metal films, alloy films, metal oxide films, semiconductor films, organic insulating films, and inorganic insulating films can be used.
  • the mask film 118b and the mask film 119b are each made of gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, aluminum, yttrium, zirconium, tantalum, and the like.
  • a metallic material or an alloy material containing the metallic material can be used.
  • a metal film or an alloy film for one or both of the mask films 118b and 119b, because it is possible to suppress plasma damage to the film 113b and to suppress deterioration of the film 113b. Specifically, damage caused by plasma to the film 113b can be suppressed in a step using a dry etching method, an ashing step, or the like. In particular, it is preferable to use a metal film such as a tungsten film or an alloy film as the mask film 119b.
  • the mask film 118b and the mask film 119b are respectively formed of In—Ga—Zn oxide, indium oxide, In—Zn oxide, In—Sn oxide, indium titanium oxide (In—Ti oxide), and indium oxide.
  • element M is aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten , or one or more selected from magnesium
  • M is aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten , or one or more selected from magnesium
  • a film containing a material having a light shielding property against light can be used.
  • a film that reflects ultraviolet rays or a film that absorbs ultraviolet rays can be used.
  • the light shielding material various materials such as metals, insulators, semiconductors, and semi-metals that are light shielding against ultraviolet light can be used. Since the film is removed in the process, it is preferable that the film be processable by etching, and it is particularly preferable that the processability is good.
  • a semiconductor material such as silicon or germanium can be used as a material that has a high affinity with a semiconductor manufacturing process.
  • oxides or nitrides of the above semiconductor materials can be used.
  • non-metallic materials such as carbon or compounds thereof can be used.
  • metals such as titanium, tantalum, tungsten, chromium, aluminum, or alloys containing one or more of these.
  • oxides containing the above metals such as titanium oxide or chromium oxide, or nitrides such as titanium nitride, chromium nitride, or tantalum nitride can be used.
  • the mask film By using a film containing a material that blocks ultraviolet light as the mask film, irradiation of the EL layer with ultraviolet light in an exposure step or the like can be suppressed. By preventing the EL layer from being damaged by ultraviolet rays, the reliability of the light-emitting device can be improved.
  • a film containing a material having a light shielding property against ultraviolet rays can produce the same effect even if it is used as a material of the insulating film 125A, which will be described later.
  • Various inorganic insulating films that can be used for the protective layer 131 can be used as the mask film 118b and the mask film 119b.
  • an oxide insulating film is preferable because it has higher adhesion to the film 113b than a nitride insulating film.
  • inorganic insulating materials such as aluminum oxide, hafnium oxide, and silicon oxide can be used for the mask films 118b and 119b, respectively.
  • an aluminum oxide film can be formed using the ALD method. Use of the ALD method is preferable because damage to the base (especially the EL layer) can be reduced.
  • an inorganic insulating film eg, aluminum oxide film
  • an inorganic film eg, In—Ga—Zn oxide film
  • material film, silicon film, or tungsten film can be used.
  • the same inorganic insulating film can be used for both the mask film 118b and the insulating layer 125 to be formed later.
  • both the mask film 118b and the insulating layer 125 can be formed using an aluminum oxide film using the ALD method.
  • the same film formation conditions may be applied to the mask film 118b and the insulating layer 125, or different film formation conditions may be applied.
  • the mask film 118b can be an insulating layer having a high barrier property against at least one of water and oxygen.
  • the mask film 118b is a layer which will be mostly or wholly removed in a later process, it is preferable that the mask film 118b be easily processed. Therefore, it is preferable to form the mask film 118b under a condition in which the substrate temperature during film formation is lower than that of the insulating layer 125 .
  • An organic material may be used for one or both of the mask film 118b and the mask film 119b.
  • the organic material may be a material that is chemically stable with respect to at least the topmost film of the film 113b and that is soluble in a solvent.
  • materials that dissolve in water or alcohol can be preferably used.
  • it is preferable to dissolve the material in a solvent such as water or alcohol apply the material by a wet film forming method, and then perform heat treatment to evaporate the solvent. At this time, heat treatment is preferably performed in a reduced-pressure atmosphere because the solvent can be removed at a low temperature in a short time, so that thermal damage to the film 113b can be reduced.
  • the mask film 118b and the mask film 119b are each made of polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, alcohol-soluble polyamide resin, perfluoropolymer, or the like. You may use organic resins, such as a fluororesin.
  • an organic film e.g., PVA film
  • an inorganic film e.g., PVA film
  • a silicon nitride film can be used.
  • part of the mask film may remain as a mask layer in the display device of one embodiment of the present invention.
  • a resist mask 190B is formed on the mask film 119b (FIG. 11A).
  • the resist mask 190B can be formed by applying a photosensitive resin (photoresist) and performing exposure and development.
  • the resist mask 190B may be manufactured using either a positive resist material or a negative resist material.
  • the resist mask 190B is provided at a position overlapping with the pixel electrode 111B.
  • the resist mask 190B is preferably provided also at a position overlapping with the conductive layer 123 . Accordingly, damage to the conductive layer 123 during the manufacturing process of the display device can be suppressed. Note that the resist mask 190B does not have to be provided over the conductive layer 123 .
  • the resist mask 190B can be provided so as to cover from the end of the film 113b to the end of the conductive layer 123 (the end on the film 113b side) as shown in the cross-sectional view along Y1-Y2 in FIG. 11A. preferable.
  • the end portions of the mask layers 118B and 119B overlap the end portions of the film 113b.
  • the mask layers 118B and 119B are provided so as to cover the end of the film 113b and the end of the conductive layer 123 (the end on the side of the film 113b), the insulating layer 255c remains intact even after the film 113b is processed.
  • Exposure can be suppressed (see the cross-sectional view between Y1 and Y2 in FIG. 12B). Accordingly, it is possible to prevent the insulating layers 255a to 255c and part of the insulating layer included in the layer 101 including the transistor from being removed by etching or the like and exposing the conductive layer included in the layer 101 including the transistor. . Therefore, unintentional electrical connection of the conductive layer to another conductive layer can be suppressed. For example, short-circuiting between the conductive layer and the common electrode 115 can be suppressed.
  • a resist mask 190B is used to partially remove the mask film 119b to form a mask layer 119B (FIG. 11B).
  • the mask layer 119B remains on the pixel electrode 111B and the conductive layer 123 .
  • the resist mask 190B is removed (FIG. 11C).
  • part of the mask film 118b is removed to form a mask layer 118B (FIG. 12A).
  • the mask film 118b and the mask film 119b can each be processed by a wet etching method or a dry etching method.
  • the mask film 118b and the mask film 119b are preferably processed by anisotropic etching.
  • a wet etching method By using the wet etching method, damage to the film 113b during processing of the mask films 118b and 119b can be reduced as compared with the case of using the dry etching method.
  • a wet etching method for example, a developer, a tetramethylammonium hydroxide (TMAH) aqueous solution, dilute hydrofluoric acid, oxalic acid, phosphoric acid, acetic acid, nitric acid, or a mixed solution containing two or more of these can be used. preferable.
  • TMAH tetramethylammonium hydroxide
  • the range of processing methods to be selected is wider than in the processing of the mask film 118b. Specifically, deterioration of the film 113b can be further suppressed even when a gas containing oxygen is used as an etching gas in processing the mask film 119b.
  • a gas containing oxygen such as CF 4 , C 4 F 8 , SF 6 , CHF 3 , Cl 2 , H 2 O, BCl 3 , or He is used for etching. Gases are preferred.
  • the mask film 118b is processed by dry etching using CHF 3 and He, or CHF 3 and He and CH 4 . can be done.
  • the mask film 119b can be processed by wet etching using diluted phosphoric acid. Alternatively, it may be processed by a dry etching method using CH 4 and Ar. Alternatively, the mask film 119b can be processed by a wet etching method using diluted phosphoric acid.
  • mask film 119b When a tungsten film formed by sputtering is used as mask film 119b, mask film 119b is removed by dry etching using SF 6 , CF 4 and O 2 , or CF 4 and Cl 2 and O 2 . can be processed.
  • the resist mask 190B can be removed by, for example, ashing using oxygen plasma.
  • oxygen gas and a noble gas such as CF4 , C4F8 , SF6 , CHF3 , Cl2 , H2O , BCl3 , or He may be used.
  • the resist mask 190B may be removed by wet etching. At this time, since the mask film 118b is positioned on the top surface and the film 113b is not exposed, damage to the film 113b can be suppressed in the step of removing the resist mask 190B. In addition, it is possible to widen the range of selection of methods for removing the resist mask 190B.
  • the film 113b is processed to form a layer 113B.
  • a portion of film 113b is removed to form layer 113B (FIG. 12B).
  • a laminated structure of the layer 113B, the mask layer 118B, and the mask layer 119B remains on the pixel electrode 111B. Also, the pixel electrode 111R and the pixel electrode 111G are exposed.
  • the surface of the pixel electrode 111R and the surface of the pixel electrode 111G are exposed to an etching gas or an etching liquid.
  • the surface of the pixel electrode 111B is not exposed to etching gas, etching liquid, or the like.
  • the film 113b is preferably processed by anisotropic etching.
  • Anisotropic dry etching is particularly preferred.
  • wet etching may be used.
  • FIG. 12B shows an example of processing the film 113b by dry etching.
  • the etching gas is turned into plasma in the dry etching apparatus. Therefore, the surface of the display device being manufactured is exposed to plasma (plasma 121a).
  • plasma plasma 121a
  • a metal film or an alloy film for one or both of the mask layer 118B and the mask layer 119B, it is possible to suppress plasma damage to the remaining portion of the film 113b (the portion to be the layer 113B). This is preferable because deterioration of the layer 113B can be suppressed.
  • a gas containing oxygen may be used as the etching gas.
  • the etching gas contains oxygen, the etching rate can be increased. Therefore, etching can be performed under low power conditions while maintaining a sufficiently high etching rate. Therefore, damage to the film 113b can be suppressed. Furthermore, problems such as adhesion of reaction products that occur during etching can be suppressed.
  • H 2 , CF 4 , C 4 F 8 , SF 6 , CHF 3 , Cl 2 , H 2 O, BCl 3 , or noble gases such as He and Ar are used.
  • a gas containing such a material is preferably used as an etching gas.
  • a gas containing one or more of these and oxygen is preferably used as an etching gas.
  • oxygen gas may be used as the etching gas.
  • a gas containing H 2 and Ar or a gas containing CF 4 and He can be used as the etching gas.
  • a gas containing CF 4 , He, and oxygen can be used as the etching gas.
  • a gas containing H 2 and Ar and a gas containing oxygen can be used as the etching gas.
  • a dry etching apparatus having a high-density plasma source can be used as the dry etching apparatus.
  • a dry etching apparatus having a high-density plasma source can be, for example, an inductively coupled plasma (ICP) etching apparatus.
  • a capacitively coupled plasma (CCP) etching apparatus having parallel plate electrodes can be used.
  • a capacitively coupled plasma etching apparatus having parallel plate electrodes may be configured to apply a high frequency voltage to one electrode of the parallel plate electrodes. Alternatively, a plurality of different high-frequency voltages may be applied to one of the parallel plate electrodes. Alternatively, a high-frequency voltage having the same frequency may be applied to each of the parallel plate electrodes. Alternatively, high-frequency voltages having different frequencies may be applied to parallel plate electrodes.
  • FIG. 12B shows an example in which the edge of the layer 113B is located outside the edge of the pixel electrode 111B. With such a structure, the aperture ratio of the pixel can be increased.
  • the etching treatment may form a recess in a region of the insulating layer 255c that does not overlap with the layer 113B.
  • the subsequent steps can be performed without exposing the pixel electrode 111B. If the end of the pixel electrode 111B is exposed, corrosion may occur during an etching process or the like. A product generated by the corrosion of the pixel electrode 111B may be unstable. For example, in the case of wet etching, the product may dissolve in a solution, and in the case of dry etching, there is a concern that it may scatter in the atmosphere. Dissolution of the product into the solution or scattering into the atmosphere causes the product to adhere to, for example, the surface to be processed and the side surface of the layer 113B, adversely affecting the characteristics of the light-emitting device.
  • the adhesion between the layers in contact with each other may be lowered, and the layer 113B or the pixel electrode 111B may be easily peeled off.
  • the layer 113B to cover the top and side surfaces of the pixel electrode 111B, for example, the yield and characteristics of the light-emitting device can be improved.
  • the layer 113B covers the upper surface and the side surface of the pixel electrode 111B, so that the layer 113B has a light emitting region (a region located between the pixel electrode 111B and the common electrode 115).
  • a dummy area is provided outside.
  • the edge of the layer 113B may be damaged during processing of the film 113b.
  • the edge of the layer 113B may be exposed to plasma and damaged in a later step (see plasma 121b in FIG. 14A). Since the end portion of the layer 113B and the vicinity thereof become a dummy region and are not used for light emission, even if damage is applied thereto, the characteristics of the light emitting device are unlikely to be adversely affected.
  • the light emitting region of the layer 113B is covered with the mask layer, it is not exposed to the plasma and the damage caused by the plasma is sufficiently reduced.
  • the mask layer is preferably provided so as to cover not only the upper surface of the flat portion of the layer 113B that overlaps with the upper surface of the pixel electrode 111B, but also the inclined portion and the upper surface of the flat portion located outside the upper surface of the pixel electrode 111B. . In this manner, since the portion of the layer 113B that is less damaged during the manufacturing process is used as the light-emitting region, a long-life light-emitting device with high light-emitting efficiency can be realized.
  • the mask layers 118B and 119B are provided so as to cover the ends of the layer 113B and the conductive layer 123, and the upper surface of the insulating layer 255c. not exposed. Therefore, it is possible to prevent the insulating layers 255a to 255c and part of the insulating layer included in the layer 101 including the transistor from being removed by etching or the like and exposing the conductive layer included in the layer 101 including the transistor. Therefore, unintentional electrical connection of the conductive layer to another conductive layer can be suppressed.
  • the mask layer 119B is formed by forming the resist mask 190B over the mask film 119b and removing part of the mask film 119b using the resist mask 190B. After that, using mask layer 119B as a hard mask, layer 113B is formed by removing part of film 113b. Therefore, it can be said that the layer 113B is formed by processing the film 113b using the photolithography method. Note that part of the film 113b may be removed using the resist mask 190B. After that, the resist mask 190B may be removed.
  • the surface state of the pixel electrode may change to be hydrophilic.
  • adhesion between the pixel electrode and a film (here, the film 113y) formed in a later step can be enhanced, and film peeling can be suppressed.
  • the hydrophobic treatment may not be performed.
  • Film 113y that will later become the layer 113Y is formed on the pixel electrodes 111R and 111G and on the mask layer 119B (FIG. 12C).
  • Film 113y (later layer 113Y) contains a luminescent material that emits light with a longer wavelength than the luminescent material used for film 113b.
  • film 113y includes a luminescent material that emits red light and a luminescent material that emits green light.
  • film 113y includes a luminescent material that emits yellow light.
  • film 113y includes a luminescent material that emits red light, a luminescent material that emits green light, and a luminescent material that emits yellow light.
  • Membrane 113y can be formed by methods similar to those that can be used to form film 113b.
  • a mask film 118y that will later become the mask layer 118Y and a mask film 119y that will later become the mask layer 119Y are sequentially formed on the film 113y, and then a resist mask 190Y is formed (FIG. 12C).
  • the materials and formation methods of the mask films 118y and 119y are the same as the conditions applicable to the mask films 118b and 119b.
  • the material and formation method of the resist mask 190Y are the same as the conditions applicable to the resist mask 190B.
  • the resist mask 190Y is provided at a position overlapping with the pixel electrode 111R and at a position overlapping with the pixel electrode 111G. In addition, it is preferable that a region not overlapping with the resist mask 190Y exists between the pixel electrode 111R and the pixel electrode 111G.
  • a resist mask 190Y is used to partially remove the mask film 119y to form a mask layer 119Y (FIG. 13A).
  • the mask layer 119Y remains on the pixel electrode 111R and the pixel electrode 111G.
  • the resist mask 190Y is removed (FIG. 13B).
  • a portion of the mask film 118y is removed to form a mask layer 118Y (FIG. 13C).
  • the film 113y is processed to form a layer 113Y. For example, using mask layer 119Y and mask layer 118Y as a hard mask, a portion of film 113y is removed to form layer 113Y (FIG. 14A).
  • the surface of each pixel electrode is not exposed to an etching gas, an etching liquid, or the like. That is, in the light-emitting device of the first color to be formed, the surface of the pixel electrode is not exposed to the etching process, and in the light-emitting device of the second color to be formed, the surface of the pixel electrode is exposed in one etching process. .
  • the surface of the pixel electrode is exposed by two etching processes. In this embodiment mode, since light-emitting devices of two colors are produced separately, it is possible to suppress the pixel electrode from being damaged by etching. Thereby, the characteristics of the light emitting device of each color can be improved.
  • the layer 113Y may be formed after the layer 113Y is formed.
  • the layer 113B may be formed after the layer 113Y is formed.
  • FIG. 14A shows an example of processing the film 113y by dry etching.
  • the surface of the display device under fabrication is exposed to plasma (plasma 121b).
  • plasma plasma 121b
  • a metal film or an alloy film for one or both of the mask layer 118Y and the mask layer 119Y it is possible to suppress damage caused by plasma to the remaining portion of the film 113y (the layer 113Y), thereby deteriorating the layer 113Y. can be suppressed, which is preferable.
  • a laminated structure of the layer 113Y, the mask layer 118Y, and the mask layer 119Y remains on the pixel electrode 111R and the pixel electrode 111G. Also, the mask layer 119B is exposed.
  • side surfaces of the layers 113B and 113Y are preferably perpendicular or substantially perpendicular to the formation surface.
  • the angle formed by the surface to be formed and these side surfaces be 60° or more and 90°.
  • the distance between two adjacent layers 113B and 113Y formed by photolithography can be narrowed to 8 ⁇ m or less, 5 ⁇ m or less, 3 ⁇ m or less, 2 ⁇ m or less, or 1 ⁇ m or less.
  • the distance can be defined by, for example, the distance between two adjacent opposing ends of the layer 113B and the layer 113Y.
  • mask layers 119B and 119Y are preferably removed (FIG. 14B).
  • the mask layers 118B, 118Y, 119B, and 119Y may remain in the display device depending on subsequent steps.
  • removing the mask layers 119B and 119Y in advance suppresses the generation of leak current and the formation of capacitance due to the remaining mask layers 119B and 119Y. can.
  • the mask layers 119B and 119Y are removed, but the mask layers 119B and 119Y do not have to be removed.
  • the mask layers 119B and 119Y contain the above-described material that blocks ultraviolet light
  • the island-shaped EL layer can be protected from ultraviolet light by proceeding to the next step without removing the material. It is possible and preferable.
  • the same method as in the mask layer processing step can be used for the mask layer removing step.
  • damage to the layers 113B and 113Y can be reduced when removing the mask layer compared to the case of using the dry etching method.
  • the presence of the mask layers 119B and 119Y can suppress plasma damage to the EL layer. Therefore, in the steps up to the removal of the mask layers 119B and 119Y, the film can be processed using the dry etching method. On the other hand, in the step of removing the mask layers 119B and 119Y and in each step after removing the mask layers 119B and 119Y, there is no film that prevents the EL layer from being damaged by plasma. It is preferable to process the film by a method that does not require a chemical reaction.
  • the mask layer may be removed by dissolving it in a solvent such as water or alcohol.
  • a solvent such as water or alcohol.
  • Alcohols include ethyl alcohol, methyl alcohol, isopropyl alcohol (IPA), glycerin, and the like.
  • drying treatment may be performed to remove water contained in the layers 113B and 113Y and water adsorbed to the surfaces of the layers 113B and 113Y.
  • heat treatment can be performed in an inert gas atmosphere such as a nitrogen atmosphere or in a reduced-pressure atmosphere.
  • the heat treatment can be performed at a substrate temperature of 50° C. to 200° C., preferably 60° C. to 150° C., more preferably 70° C. to 120° C.
  • a reduced-pressure atmosphere is preferable because drying can be performed at a lower temperature.
  • an insulating film 125A that will later become the insulating layer 125 is formed so as to cover the pixel electrode, layer 113B, layer 113Y, mask layer 118B, and mask layer 118Y (FIG. 14B).
  • an insulating film 127a is formed in contact with the upper surface of the insulating film 125A.
  • the upper surface of the insulating film 125A preferably has high adhesion to the resin composition (for example, a photosensitive resin composition containing acrylic resin) used for the insulating film 127a.
  • the resin composition for example, a photosensitive resin composition containing acrylic resin
  • a silylating agent such as hexamethyldisilazane (HMDS).
  • an insulating film 127a is formed on the insulating film 125A (FIG. 14C).
  • the insulating film 125A and the insulating film 127a are preferably formed by a formation method that causes little damage to the layers 113B and 113Y.
  • the insulating film 125A is formed in contact with the side surfaces of the layers 113B and 113Y, it is preferably formed by a formation method that causes less damage to the layers 113B and 113Y than the insulating film 127a.
  • the insulating films 125A and 127a are formed at temperatures lower than the heat-resistant temperatures of the layers 113B and 113Y, respectively.
  • the insulating film 125A can have a low impurity concentration and a high barrier property against at least one of water and oxygen even if the film is thin by raising the substrate temperature when forming the insulating film 125A.
  • the substrate temperature when forming the insulating film 125A and the insulating film 127a is 60° C. or higher, 80° C. or higher, 100° C. or higher, or 120° C. or higher and 200° C. or lower, 180° C. or lower, 160° C. or lower, respectively. , 150° C. or lower, or 140° C. or lower.
  • the substrate temperature when forming the insulating film 125A and the insulating film 127a can be 100° C. or higher, 120° C. or higher, or 140° C. or higher, respectively.
  • the inorganic insulating film can be made denser and have higher barrier properties as the film formation temperature is higher. Therefore, by forming the insulating film 125A at such a temperature, the damage to the layers 113B and 113Y can be further reduced, and the reliability of the light emitting device can be improved.
  • the insulating film 125A is preferably formed using, for example, the ALD method.
  • the use of the ALD method is preferable because film formation damage can be reduced and a film with high coverage can be formed.
  • As the insulating film 125A for example, an aluminum oxide film is preferably formed using the ALD method.
  • the insulating film 125A may be formed using a sputtering method, a CVD method, or a PECVD method, which has a higher deposition rate than the ALD method. Accordingly, a highly reliable display device can be manufactured with high productivity.
  • the insulating film 127a is preferably formed using the wet film formation method described above.
  • the insulating film 127a is preferably formed, for example, by spin coating using a photosensitive resin, and more specifically, is preferably formed using a photosensitive resin composition containing an acrylic resin.
  • heat treatment (also referred to as pre-baking) is preferably performed after the insulating film 127a is formed.
  • the heat treatment is performed at a temperature lower than the heat-resistant temperatures of the layers 113B and 113Y.
  • the substrate temperature during the heat treatment is preferably 50° C. to 200° C., more preferably 60° C. to 150° C., and even more preferably 70° C. to 120° C.
  • the solvent contained in the insulating film 127a can be removed.
  • a portion of the insulating film 127a is irradiated with visible light or ultraviolet rays to expose a portion of the insulating film 127a (FIG. 15A).
  • a positive photosensitive resin composition containing an acrylic resin is used for the insulating film 127a
  • a region where the insulating layer 127 is not formed in a later step is irradiated with visible light or ultraviolet rays using a mask 132 .
  • the insulating layer 127 is formed around the conductive layer 123 and a region sandwiched between any two of the pixel electrodes 111R, 111G, and 111B. Therefore, as shown in FIG.
  • a portion of the insulating film 127a overlapping with the pixel electrode 111R, a portion overlapping with the pixel electrode 111G, a portion overlapping with the pixel electrode 111B, and a portion overlapping with the conductive layer 123 are irradiated with light 139. .
  • the width of the insulating layer 127 to be formed later can be controlled depending on the region to be exposed to light.
  • the insulating layer 127 is processed so as to have a portion overlapping with the upper surface of the pixel electrode (FIG. 2A). As shown in FIG. 5A or 5B, the insulating layer 127 may not have a portion that overlaps the top surface of the pixel electrode.
  • Light used for exposure preferably includes i-line (wavelength: 365 nm). Moreover, the light used for exposure may include at least one of g-line (wavelength: 436 nm) and h-line (wavelength: 405 nm).
  • FIG. 15A shows an example in which a positive photosensitive resin is used for the insulating film 127a and a region where the insulating layer 127 is not formed is irradiated with visible light or ultraviolet light, but the present invention is limited to this. not a thing
  • a negative photosensitive resin may be used for the insulating film 127a.
  • the region where the insulating layer 127 is formed is irradiated with visible light or ultraviolet light.
  • insulating layer 127b is formed in a region sandwiched between any two of the pixel electrodes 111 R, 111 G, and 111 B and a region surrounding the conductive layer 123 .
  • an acrylic resin is used for the insulating film 127a
  • an alkaline solution is preferably used as the developer, and for example, a tetramethylammonium hydroxide (TMAH) aqueous solution can be used.
  • TMAH tetramethylammonium hydroxide
  • a step of removing residues (so-called scum) during development may be performed.
  • the residue can be removed by ashing using oxygen plasma.
  • a step of removing residues may be performed.
  • etching may be performed to adjust the height of the surface of the insulating layer 127b.
  • the insulating layer 127b may be processed, for example, by ashing using oxygen plasma.
  • the entire substrate may be exposed, and the insulating layer 127b may be irradiated with visible light or ultraviolet light.
  • the energy density of the exposure is preferably greater than 0 mJ/cm 2 and less than or equal to 800 mJ/cm 2 , more preferably greater than 0 mJ/cm 2 and less than or equal to 500 mJ/cm 2 .
  • Such exposure after development can improve the transparency of the insulating layer 127b in some cases.
  • the insulating layer 127b may be deformed into a tapered shape at a low temperature.
  • the insulating layer 127b when the insulating layer 127b is not exposed to light, it may be easier to change the shape of the insulating layer 127b or deform the insulating layer 127 into a tapered shape in a later step. Therefore, it may be preferable not to expose the insulating layer 127b after development.
  • heat treatment also referred to as post-baking
  • the insulating layer 127b can be transformed into the insulating layer 127 having tapered side surfaces.
  • the heat treatment is performed at a temperature lower than the heat-resistant temperature of the EL layer.
  • the heat treatment can be performed at a substrate temperature of 50° C. to 200° C., preferably 60° C. to 150° C., more preferably 70° C. to 130° C.
  • the heating atmosphere may be an air atmosphere or an inert gas atmosphere.
  • the heating atmosphere may be an atmospheric pressure atmosphere or a reduced pressure atmosphere. A reduced-pressure atmosphere is preferable because drying can be performed at a lower temperature.
  • the substrate temperature is preferably higher than that in the heat treatment (prebaking) after the formation of the insulating film 127a.
  • the side surface of the insulating layer 127 may be concavely curved as shown in FIGS. 4A and 4B.
  • the higher the temperature or the longer the time the easier it is for the insulating layer 127 to change its shape, which may result in the formation of a concave curved surface.
  • the shape of the insulating layer 127 may easily change during post-baking.
  • etching is performed using the insulating layer 127 as a mask to partially remove the insulating film 125A and the mask layers 118B and 118Y.
  • openings are formed in the mask layers 118B and 118Y, respectively, and the upper surfaces of the layers 113B, 113Y, and the conductive layer 123 are exposed.
  • the etching process can be performed by dry etching or wet etching. Note that it is preferable to form the insulating film 125A using a material similar to that of the mask layers 118B and 118Y, because the etching treatment can be performed collectively.
  • chlorine-based gas When performing dry etching, it is preferable to use a chlorine-based gas.
  • Cl 2 , BCl 3 , SiCl 4 , CCl 4 or the like can be used alone or in combination of two or more gases. Further, one or more of gases such as oxygen gas, hydrogen gas, helium gas, and argon gas can be appropriately mixed with the chlorine-based gas.
  • gases such as oxygen gas, hydrogen gas, helium gas, and argon gas can be appropriately mixed with the chlorine-based gas.
  • the components contained in the etching gas, the components contained in the insulating film 125A, the components contained in the mask layers 118B and 118Y, and the like may be contained in the insulating layer 127 after the completion of the display device.
  • the etching treatment is preferably performed by wet etching.
  • wet etching can be performed using an alkaline solution or the like.
  • TMAH tetramethylammonium hydroxide
  • wet etching can be performed by a puddle method.
  • the display device of one embodiment of the present invention can have improved display quality.
  • heat treatment may be performed after part of the layers 113B and 113Y are exposed.
  • water contained in the EL layer, water adsorbed to the surface of the EL layer, and the like can be removed.
  • the shape of the insulating layer 127 might be changed by the heat treatment.
  • the insulating layer 127 may extend to cover at least one of the edges of the insulating layer 125, the edges of the mask layers 118B and 118Y, and the top surfaces of the layers 113B and 113Y.
  • insulating layer 127 may have the shape shown in FIGS. 3A and 3B.
  • heat treatment can be performed in an inert gas atmosphere or a reduced pressure atmosphere.
  • the heat treatment can be performed at a substrate temperature of 50° C. to 200° C., preferably 60° C. to 150° C., more preferably 70° C. to 120° C.
  • a reduced-pressure atmosphere is preferable because dehydration can be performed at a lower temperature.
  • the temperature range of the above heat treatment is preferably set as appropriate in consideration of the heat resistance temperature of the EL layer. In consideration of the heat resistance temperature of the EL layer, a temperature of 70° C. or more and 120° C. or less is particularly suitable in the above temperature range.
  • the insulating layer 125 and the mask layer are etched together after post-baking, the insulating layer 125 and the mask layer below the edge of the insulating layer 127 disappear due to side etching, forming a cavity.
  • the surfaces on which the common layer 114 and the common electrode 115 are formed become uneven, and the common layer 114 and the common electrode 115 are likely to be disconnected. Therefore, it is preferable to separately perform the etching treatment of the insulating layer 125 and the mask layer before and after the post-baking.
  • FIG. 16B shows an enlarged view of the edge of the layer 113Y and the insulating layer 127b shown in FIG. 15B and the vicinity thereof. That is, FIG. 16B shows the insulating layer 127b formed by development.
  • etching is performed using the insulating layer 127b as a mask to partially remove the insulating film 125A and partially reduce the film thickness of the mask layers 118B and 118Y.
  • the insulating layer 125 is formed under the insulating layer 127b.
  • the surfaces of the thin portions of the mask layers 118B and 118Y are exposed.
  • the etching treatment using the insulating layer 127b as a mask may be referred to as the first etching treatment.
  • the first etching process can be performed by dry etching or wet etching.
  • the side surface of the insulating layer 125 and the upper end portions of the side surfaces of the mask layers 118B and 118Y are relatively easily tapered by etching using the insulating layer 127b having tapered side surfaces as a mask. be able to.
  • the mask layers 118B and 118Y are not completely removed, and the etching process is stopped when the film thickness is reduced.
  • the etching process is stopped when the film thickness is reduced.
  • the film thickness of the mask layers 118B and 118Y is set to be thin, but the present invention is not limited to this.
  • the first etching process may be stopped before the insulating film 125A is processed into the insulating layer 125 in some cases. Specifically, the first etching process may be stopped only by partially thinning the insulating film 125A.
  • the boundary between the insulating film 125A and the mask layers 118B and 118Y becomes unclear, and it is impossible to determine whether the insulating layer 125 is formed. In some cases, it may not be possible to determine whether the mask layers 118B and 118Y have become thin.
  • FIG. 16C shows an example in which the shape of the insulating layer 127b does not change from that in FIG. 16B, but the present invention is not limited to this.
  • the edge of the insulating layer 127b may sag to cover the edge of the insulating layer 125 .
  • the edge of the insulating layer 127b may come into contact with the upper surfaces of the mask layers 118B and 118Y. As described above, when the insulating layer 127b after development is not exposed to light, the shape of the insulating layer 127b may easily change.
  • post-bake is performed. As shown in FIG. 16D, post-baking can transform the insulating layer 127b into an insulating layer 127 having tapered side surfaces. As described above, the shape of the insulating layer 127b may already change and have a tapered side surface when the first etching process is completed.
  • the mask layers 118B and 118Y are not completely removed, and the thin mask layers 118B and 118Y remain. 113Y can be prevented from being damaged and degraded. Therefore, the reliability of the light emitting device can be enhanced.
  • etching is performed using the insulating layer 127 as a mask to partially remove the mask layers 118B and 118Y.
  • openings are formed in the mask layers 118B and 118Y, respectively, and the upper surfaces of the layers 113B, 113Y, and the conductive layer 123 are exposed.
  • the etching treatment using the insulating layer 127 as a mask may be referred to as a second etching treatment.
  • an edge of the insulating layer 125 is covered with an insulating layer 127 .
  • the insulating layer 127 covers part of the end portion of the mask layer 118Y (specifically, the tapered portion formed by the first etching process), and is formed by the second etching process. An example in which the tapered portion is exposed is shown. That is, it corresponds to the structure shown in FIGS. 2A and 2B.
  • the insulating layer 127 may cover the entire edge of the mask layer 118Y.
  • the edge of the insulating layer 127 may sag to cover the edge of the mask layer 118Y.
  • the edge of the insulating layer 127 may be in contact with the upper surface of one or both of the layers 113B and 113Y. As described above, when the insulating layer 127b after development is not exposed to light, the shape of the insulating layer 127 may easily change.
  • the second etching treatment is preferably wet etching.
  • wet etching can be performed using an alkaline solution or the like.
  • a common layer 114 and a common electrode 115 are formed in this order on the insulating layer 127, layer 113B, and layer 113Y (FIG. 17A), and a protective layer 131 is formed (FIG. 17B).
  • a display device can be manufactured by bonding the substrate 120 onto the protective layer 131 using the resin layer 122 (FIG. 1B).
  • a structure having a colored layer on the substrate 120 side as shown in FIG. can do.
  • the common layer 114 can be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • a sputtering method or a vacuum deposition method can be used for forming the common electrode 115.
  • a film formed by an evaporation method and a film formed by a sputtering method may be stacked.
  • Methods for forming the protective layer 131 include a vacuum deposition method, a sputtering method, a CVD method, an ALD method, and the like.
  • the island-shaped layers 113B and 113Y are not formed using a fine metal mask, but are formed by forming a film over the entire surface. Since it is formed by processing later, the island-shaped layer can be formed with a uniform thickness. Then, a high-definition display device or a display device with a high aperture ratio can be realized. In addition, even if the definition or aperture ratio is high and the distance between subpixels is extremely short, it is possible to prevent the layers 113B and 113Y or the layers 113Y from contacting each other in adjacent subpixels. Therefore, it is possible to suppress the occurrence of leakage current between sub-pixels. Thereby, crosstalk due to unintended light emission can be prevented, and a display device with extremely high contrast can be realized.
  • sub-pixels of three colors can be separately manufactured only by separately manufacturing light-emitting devices of two colors. Therefore, in the sub-pixels of each color, it is possible to suppress the damage applied to the pixel electrode and suppress the deterioration of the characteristics of the light-emitting device. In addition, since the light-emitting layer can be processed twice by photolithography, a display device can be manufactured with high yield.
  • a layer containing a light-emitting material that emits blue light is formed in an island shape, and then a layer containing a light-emitting material that emits light with a wavelength longer than that of blue light is formed in an island shape.
  • the light emitting device of each color can emit light with high brightness.
  • the life of the light-emitting device for each color can be lengthened, and the reliability of the display device can be improved.
  • the display device of one embodiment of the present invention can achieve both high definition and high display quality.
  • the arrangement of sub-pixels includes, for example, a stripe arrangement, an S-stripe arrangement, a matrix arrangement, a delta arrangement, a Bayer arrangement, and a pentile arrangement.
  • the top surface shape of the sub-pixel shown in the drawings in this embodiment mode corresponds to the top surface shape of the light emitting region (or the light receiving region).
  • top surface shapes of sub-pixels include triangles, quadrilaterals (including rectangles and squares), polygons such as pentagons, polygons with rounded corners, ellipses, and circles.
  • circuit layout forming the sub-pixels is not limited to the range of the sub-pixels shown in the drawing, and may be arranged outside the sub-pixels.
  • a pixel 110 shown in FIG. 18A is composed of three sub-pixels, sub-pixels 110a, 110b, and 110c.
  • the pixel 110 shown in FIG. 18B includes a sub-pixel 110a having a substantially triangular or substantially trapezoidal top shape with rounded corners, a sub-pixel 110b having a substantially triangular or substantially trapezoidal top shape with rounded corners, and a substantially square or substantially square with rounded corners. and a sub-pixel 110c having a substantially hexagonal top surface shape. Also, the sub-pixel 110b has a larger light emitting area than the sub-pixel 110a. Thus, the shape and size of each sub-pixel can be determined independently. For example, sub-pixels with more reliable light emitting devices can be smaller in size.
  • FIG. 18C shows an example in which pixels 124a having sub-pixels 110a and 110b and pixels 124b having sub-pixels 110b and 110c are alternately arranged.
  • Pixels 124a and 124b shown in FIGS. 18D-18F have a delta arrangement applied.
  • Pixel 124a has two sub-pixels (sub-pixels 110a and 110b) in the upper row (first row) and one sub-pixel (sub-pixel 110c) in the lower row (second row).
  • Pixel 124b has one sub-pixel (sub-pixel 110c) in the upper row (first row) and two sub-pixels (sub-pixels 110a and 110b) in the lower row (second row).
  • FIG. 18D is an example in which each sub-pixel has a substantially square top surface shape with rounded corners
  • FIG. 18E is an example in which each sub-pixel has a circular top surface shape
  • FIG. which has a substantially hexagonal top shape with rounded corners.
  • each sub-pixel is located inside a close-packed hexagonal region.
  • Each sub-pixel is arranged so as to be surrounded by six sub-pixels when focusing on one sub-pixel.
  • sub-pixels that emit light of the same color are provided so as not to be adjacent to each other. For example, when focusing on a sub-pixel 110a, three sub-pixels 110b and three sub-pixels 110c are arranged alternately so as to surround the sub-pixel 110a.
  • FIG. 18G is an example in which sub-pixels of each color are arranged in a zigzag pattern. Specifically, when viewed from above, the positions of the upper sides of two sub-pixels (for example, sub-pixel 110a and sub-pixel 110b or sub-pixel 110b and sub-pixel 110c) aligned in the column direction are shifted.
  • the sub-pixel 110a is a sub-pixel R that emits red light
  • the sub-pixel 110b is a sub-pixel G that emits green light
  • the sub-pixel 110c is a sub-pixel that emits blue light.
  • Sub-pixel B is preferred. Note that the configuration of the sub-pixels is not limited to this, and the colors exhibited by the sub-pixels and the order in which the sub-pixels are arranged can be determined as appropriate.
  • the sub-pixel 110b may be a sub-pixel R that emits red light
  • the sub-pixel 110a may be a sub-pixel G that emits green light.
  • the top surface shape of the sub-pixel may be a polygonal shape with rounded corners, an elliptical shape, a circular shape, or the like.
  • the EL layer is processed into an island shape using a resist mask.
  • the resist film formed on the EL layer needs to be cured at a temperature lower than the heat resistance temperature of the EL layer. Therefore, depending on the heat resistance temperature of the EL layer material and the curing temperature of the resist material, curing of the resist film may be insufficient.
  • a resist film that is insufficiently hardened may take a shape away from the desired shape during processing.
  • the top surface shape of the EL layer may be a polygon with rounded corners, an ellipse, or a circle. For example, when a resist mask having a square top surface is formed, a resist mask having a circular top surface is formed, and the EL layer may have a circular top surface.
  • a technique for correcting the mask pattern in advance so that the design pattern and the transfer pattern match.
  • OPC Optical Proximity Correction
  • a pattern for correction is added to a corner portion of a figure on a mask pattern.
  • a pixel can have four types of sub-pixels.
  • a stripe arrangement is applied to the pixels 110 shown in FIGS. 19A to 19C.
  • FIG. 19A is an example in which each sub-pixel has a rectangular top surface shape
  • FIG. 19B is an example in which each sub-pixel has a top surface shape connecting two semicircles and a rectangle
  • FIG. This is an example where the sub-pixel has an elliptical top surface shape.
  • a matrix arrangement is applied to the pixels 110 shown in FIGS. 19D to 19F.
  • FIG. 19D is an example in which each subpixel has a square top surface shape
  • FIG. 19E is an example in which each subpixel has a substantially square top surface shape with rounded corners
  • FIG. which have a circular top shape.
  • 19G and 19H show an example in which one pixel 110 is configured in two rows and three columns.
  • the pixel 110 shown in FIG. 19G has three sub-pixels (sub-pixels 110a, 110b, 110c) in the upper row (first row) and one sub-pixel ( sub-pixel 110d).
  • pixel 110 has sub-pixel 110a in the left column (first column), sub-pixel 110b in the middle column (second column), and sub-pixel 110b in the right column (third column). It has pixels 110c and sub-pixels 110d over these three columns.
  • the pixel 110 shown in FIG. 19H has three sub-pixels (sub-pixels 110a, 110b, 110c) in the upper row (first row) and three sub-pixels 110d in the lower row (second row). have In other words, pixel 110 has sub-pixels 110a and 110d in the left column (first column), sub-pixels 110b and 110d in the center column (second column), and sub-pixels 110b and 110d in the middle column (second column).
  • a column (third column) has a sub-pixel 110c and a sub-pixel 110d.
  • FIG. 19I shows an example in which one pixel 110 is composed of 3 rows and 2 columns.
  • the pixel 110 shown in FIG. 19I has sub-pixels 110a in the upper row (first row) and sub-pixels 110b in the middle row (second row). It has a sub-pixel 110c and one sub-pixel (sub-pixel 110d) in the lower row (third row).
  • the pixel 110 has sub-pixels 110a and 110b in the left column (first column), sub-pixel 110c in the right column (second column), and sub-pixels 110c and 110c in the right column (second column). It has a pixel 110d.
  • the pixel 110 shown in FIGS. 19A-19I is composed of four sub-pixels, sub-pixels 110a, 110b, 110c and 110d.
  • Sub-pixels 110a, 110b, 110c, and 110d may each have a light-emitting device that emits light of a different color.
  • As the sub-pixels 110a, 110b, 110c, and 110d four-color sub-pixels of R, G, B, and white (W), four-color sub-pixels of R, G, B, and Y, or R, G, and B , infrared light (IR) sub-pixels, and the like.
  • the sub-pixel 110a is a sub-pixel R that emits red light
  • the sub-pixel 110b is a sub-pixel G that emits green light
  • the sub-pixel 110c is a sub-pixel that emits blue light.
  • the sub-pixel 110d be the sub-pixel B that emits white light, the sub-pixel Y that emits yellow light, or the sub-pixel IR that emits near-infrared light.
  • the pixel 110 shown in FIGS. 19G and 19H has a stripe arrangement of R, G, and B, so that the display quality can be improved.
  • the layout of R, G, and B is a so-called S-stripe arrangement, so the display quality can be improved.
  • Pixel 110 may also have sub-pixels with light-receiving devices.
  • any one of sub-pixels 110a to 110d may be a sub-pixel having a light receiving device.
  • the sub-pixel 110a is a sub-pixel R that emits red light
  • the sub-pixel 110b is a sub-pixel G that emits green light
  • the sub-pixel 110c is a sub-pixel that emits blue light.
  • the sub-pixel B is the sub-pixel B
  • the sub-pixel 110d is the sub-pixel S having the light-receiving device.
  • the pixel 110 shown in FIGS. 19G and 19H has a stripe arrangement of R, G, and B, so that the display quality can be improved.
  • the layout of R, G, and B is a so-called S-stripe arrangement, so the display quality can be improved.
  • the wavelength of light detected by the sub-pixel S having a light receiving device is not particularly limited.
  • the sub-pixel S can be configured to detect one or both of visible light and infrared light.
  • a pixel can be configured with five types of sub-pixels.
  • FIG. 19J shows an example in which one pixel 110 is composed of 2 rows and 3 columns.
  • the pixel 110 shown in FIG. 19J has three sub-pixels (sub-pixels 110a, 110b, and 110c) in the upper row (first row) and two sub-pixels ( sub-pixels 110d and 110e).
  • pixel 110 has sub-pixels 110a and 110d in the left column (first column), sub-pixel 110b in the center column (second column), and right column (third column). has sub-pixels 110c in the second and third columns, and sub-pixels 110e in the second and third columns.
  • FIG. 19K shows an example in which one pixel 110 is composed of 3 rows and 2 columns.
  • the pixel 110 shown in FIG. 19K has sub-pixels 110a in the upper row (first row) and sub-pixels 110b in the middle row (second row). It has a sub-pixel 110c and two sub-pixels (sub-pixels 110d and 110e) in the lower row (third row). In other words, pixel 110 has sub-pixels 110a, 110b, and 110d in the left column (first column) and sub-pixels 110c and 110e in the right column (second column).
  • the sub-pixel 110a is a sub-pixel R that emits red light
  • the sub-pixel 110b is a sub-pixel G that emits green light
  • the sub-pixel 110c is a sub-pixel that emits blue light.
  • the pixel 110 shown in FIG. 19J has a stripe arrangement of R, G, and B, so that the display quality can be improved.
  • the layout of R, G, and B is a so-called S-stripe arrangement, so the display quality can be improved.
  • each pixel 110 shown in FIGS. 19J and 19K it is preferable to apply a sub-pixel S having a light receiving device to at least one of the sub-pixels 110d and 110e.
  • the configurations of the light receiving devices may be different from each other.
  • at least a part of the wavelength regions of the light to be detected may be different.
  • one of the sub-pixel 110d and the sub-pixel 110e may have a light receiving device that mainly detects visible light, and the other may have a light receiving device that mainly detects infrared light.
  • one of the sub-pixel 110d and the sub-pixel 110e can be applied with a sub-pixel S having a light receiving device, and the other can be used as a light source. It is preferable to apply sub-pixels with light-emitting devices.
  • one of the sub-pixel 110d and the sub-pixel 110e is a sub-pixel IR that emits infrared light, and the other is a sub-pixel S that has a light receiving device that detects infrared light.
  • a pixel having sub-pixels R, G, B, IR, and S an image is displayed using the sub-pixels R, G, and B, and the sub-pixel IR is used as a light source at the sub-pixel S. Reflected infrared light can be detected.
  • various layouts can be applied to pixels each including a subpixel including a light-emitting device. Further, a structure in which a pixel includes both a light-emitting device and a light-receiving device can be applied to the display device of one embodiment of the present invention. Also in this case, various layouts can be applied.
  • the display device of this embodiment can be a high-definition display device. Therefore, the display device of the present embodiment includes, for example, display units of information terminals (wearable devices) such as wristwatch-type and bracelet-type devices, devices for VR such as head-mounted displays (HMD), and glasses. It can be used for the display part of a wearable device that can be worn on the head, such as a model AR device.
  • wearable devices such as wristwatch-type and bracelet-type devices
  • VR head-mounted displays (HMD)
  • glasses can be used for the display part of a wearable device that can be worn on the head, such as a model AR device.
  • the display device of this embodiment can be a high-resolution display device or a large-sized display device. Therefore, the display device of the present embodiment can be used, for example, in televisions, desktop or notebook personal computers, monitors for computers, digital signage, and relatively large screens such as large game machines such as pachinko machines. It can be used for display portions of digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, personal digital assistants, and sound reproducing devices, in addition to electronic devices equipped with
  • Display module A perspective view of the display module 280 is shown in FIG. 20A.
  • the display module 280 has a display device 100A and an FPC 290 .
  • the display device included in the display module 280 is not limited to the display device 100A, and may be any one of the display devices 100B to 100F, which will be described later.
  • the display module 280 has substrates 291 and 292 .
  • the display module 280 has a display section 281 .
  • the display unit 281 is an area for displaying an image in the display module 280, and is an area where light from each pixel provided in the pixel unit 284, which will be described later, can be visually recognized.
  • FIG. 20B shows a perspective view schematically showing the configuration on the substrate 291 side.
  • a circuit section 282 , a pixel circuit section 283 on the circuit section 282 , and a pixel section 284 on the pixel circuit section 283 are stacked on the substrate 291 .
  • a terminal portion 285 for connecting to the FPC 290 is provided on a portion of the substrate 291 that does not overlap with the pixel portion 284 .
  • the terminal portion 285 and the circuit portion 282 are electrically connected by a wiring portion 286 composed of a plurality of wirings.
  • the pixel section 284 has a plurality of periodically arranged pixels 284a.
  • An enlarged view of one pixel 284a is shown on the right side of FIG. 20B.
  • FIG. 20B shows, as an example, the case of having the same configuration as the pixel 110 shown in FIG. 1A.
  • the pixel circuit section 283 has a plurality of pixel circuits 283a arranged periodically.
  • One pixel circuit 283a is a circuit that controls driving of a plurality of elements included in one pixel 284a.
  • One pixel circuit 283a can have a structure in which three circuits for controlling light emission of one light-emitting device are provided.
  • the pixel circuit 283a can have at least one selection transistor, one current control transistor (drive transistor), and a capacitor for each light emitting device. At this time, a gate signal is inputted to the gate of the selection transistor, and a source signal is inputted to the source thereof. This realizes an active matrix display device.
  • the circuit section 282 has a circuit that drives each pixel circuit 283 a of the pixel circuit section 283 .
  • a circuit that drives each pixel circuit 283 a of the pixel circuit section 283 For example, it is preferable to have one or both of a gate line driver circuit and a source line driver circuit.
  • at least one of an arithmetic circuit, a memory circuit, a power supply circuit, and the like may be provided.
  • the FPC 290 functions as wiring for supplying a video signal, power supply potential, or the like to the circuit section 282 from the outside. Also, an IC may be mounted on the FPC 290 .
  • the aperture ratio (effective display area ratio) of the display portion 281 is can be very high.
  • the aperture ratio of the display section 281 can be 40% or more and less than 100%, preferably 50% or more and 95% or less, more preferably 60% or more and 95% or less.
  • the pixels 284a can be arranged at an extremely high density, and the definition of the display portion 281 can be extremely high.
  • the pixels 284a may be arranged with a resolution of 2000 ppi or more, preferably 3000 ppi or more, more preferably 5000 ppi or more, and still more preferably 6000 ppi or more, and 20000 ppi or less, or 30000 ppi or less. preferable.
  • a display module 280 has extremely high definition, it can be suitably used for a VR device such as an HMD or a glasses-type AR device. For example, even in the case of a configuration in which the display portion of the display module 280 is viewed through a lens, the display module 280 has an extremely high-definition display portion 281, so pixels cannot be viewed even if the display portion is enlarged with the lens. , a highly immersive display can be performed.
  • the display module 280 is not limited to this, and can be suitably used for electronic equipment having a relatively small display unit. For example, it can be suitably used for a display part of a wearable electronic device such as a wristwatch.
  • the display device 100A shown in FIG. 21A includes a substrate 301, a light emitting device 130Y that emits yellow light, a light emitting device 130B that emits blue light, a colored layer 132R that transmits red light, a colored layer 132G that transmits green light, It has a capacitor 240 and a transistor 310 .
  • Sub-pixel 11R shown in FIG. 20B has light-emitting device 130Y and colored layer 132R
  • sub-pixel 11G has light-emitting device 130Y and colored layer 132G
  • sub-pixel 11B has light-emitting device 130B.
  • light emitted from the light-emitting device 130Y is extracted as red light (R) to the outside of the display device 100A through the colored layer 132R.
  • light emitted from the light-emitting device 130Y is extracted as green light (G) to the outside of the display device 100A through the colored layer 132G.
  • light emitted from the light emitting device 130B is extracted as blue light (B) to the outside of the display device 100A.
  • the substrate 301 corresponds to the substrate 291 in FIGS. 20A and 20B.
  • a stacked structure from the substrate 301 to the insulating layer 255c corresponds to the layer 101 including the transistor in Embodiment 1.
  • a transistor 310 has a channel formation region in the substrate 301 .
  • the substrate 301 for example, a semiconductor substrate such as a single crystal silicon substrate can be used.
  • Transistor 310 includes a portion of substrate 301 , conductive layer 311 , low resistance region 312 , insulating layer 313 and insulating layer 314 .
  • the conductive layer 311 functions as a gate electrode.
  • An insulating layer 313 is located between the substrate 301 and the conductive layer 311 and functions as a gate insulating layer.
  • the low-resistance region 312 is a region in which the substrate 301 is doped with impurities and functions as either a source or a drain.
  • the insulating layer 314 is provided to cover the side surface of the conductive layer 311 .
  • a device isolation layer 315 is provided between two adjacent transistors 310 so as to be embedded in the substrate 301 .
  • An insulating layer 261 is provided to cover the transistor 310 and a capacitor 240 is provided over the insulating layer 261 .
  • the capacitor 240 has a conductive layer 241, a conductive layer 245, and an insulating layer 243 positioned therebetween.
  • the conductive layer 241 functions as one electrode of the capacitor 240
  • the conductive layer 245 functions as the other electrode of the capacitor 240
  • the insulating layer 243 functions as the dielectric of the capacitor 240 .
  • the conductive layer 241 is provided over the insulating layer 261 and embedded in the insulating layer 254 .
  • Conductive layer 241 is electrically connected to one of the source or drain of transistor 310 by plug 271 embedded in insulating layer 261 .
  • An insulating layer 243 is provided over the conductive layer 241 .
  • the conductive layer 245 is provided in a region overlapping with the conductive layer 241 with the insulating layer 243 provided therebetween.
  • a conductive layer surrounding the outside of the display portion 281 is preferably provided in at least one layer of the conductive layers included in the layer 101 including the transistor.
  • the conductive layer can also be called a guard ring.
  • An insulating layer 255a is provided to cover the capacitor 240, an insulating layer 255b is provided over the insulating layer 255a, and an insulating layer 255c is provided over the insulating layer 255b.
  • a light-emitting device 130Y and a light-emitting device 130B are provided on the insulating layer 255c.
  • FIG. 21A shows an example in which the light emitting device 130Y and the light emitting device 130B have the same structure as the laminated structure shown in FIG. 1B.
  • An insulator is provided in the region between adjacent light emitting devices.
  • an insulating layer 125 and an insulating layer 127 over the insulating layer 125 are provided in the region.
  • a mask layer 118Y is positioned on the layer 113Y of the light emitting device 130Y, and a mask layer 118B is positioned on the layer 113B of the light emitting device 130B.
  • the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B are composed of the plug 256 embedded in the insulating layer 243, the insulating layer 255a, the insulating layer 255b, and the insulating layer 255c, the conductive layer 241 embedded in the insulating layer 254, and the It is electrically connected to one of the source and drain of transistor 310 by plug 271 embedded in insulating layer 261 .
  • the height of the upper surface of the insulating layer 255c and the height of the upper surface of the plug 256 match or substantially match.
  • Various conductive materials can be used for the plug.
  • FIG. 21A and the like show examples in which the pixel electrode has a two-layer structure of a reflective electrode and a transparent electrode on the reflective electrode.
  • a protective layer 131 is provided on the light emitting device 130Y and the light emitting device 130B.
  • a colored layer 132 ⁇ /b>R and a colored layer 132 ⁇ /b>G are provided on the protective layer 131 , and the substrate 120 is bonded with the resin layer 122 .
  • Embodiment 1 can be referred to for details of the components from the light emitting device to the substrate 120 .
  • Substrate 120 corresponds to substrate 292 in FIG. 20A.
  • the display device shown in FIG. 21B is an example having a light emitting device 130Y and a light receiving device 150. In FIG. Although not shown, the display also has a light emitting device 130B.
  • the structure of the layer 101 including a transistor included in the display device shown in FIG. 21B is not limited to the structure shown in FIG. 21A, and any of the structures shown in FIGS. 22 to 26 may be applied.
  • the light receiving device 150 has a pixel electrode 111S, a layer 155, a common layer 114, and a common electrode 115 which are stacked.
  • Embodiments 1 and 6 can be referred to for details of the display device including the light receiving device.
  • a display device 100B shown in FIG. 22 has a structure in which a transistor 310A and a transistor 310B each having a channel formed in a semiconductor substrate are stacked.
  • the description of the same parts as those of the previously described display device may be omitted.
  • the display device 100B has a structure in which a substrate 301B provided with a transistor 310B, a capacitor 240, and a light emitting device and a substrate 301A provided with a transistor 310A are bonded together.
  • an insulating layer 345 on the lower surface of the substrate 301B.
  • an insulating layer 346 is preferably provided over the insulating layer 261 provided over the substrate 301A.
  • the insulating layers 345 and 346 are insulating layers that function as protective layers, and can suppress diffusion of impurities into the substrates 301B and 301A.
  • an inorganic insulating film that can be used for the protective layer 131 or the insulating layer 332 can be used.
  • the substrate 301B is provided with a plug 343 penetrating through the substrate 301B and the insulating layer 345 .
  • an insulating layer 344 covering the side surface of the plug 343 .
  • the insulating layer 344 is an insulating layer that functions as a protective layer and can suppress diffusion of impurities into the substrate 301B.
  • an inorganic insulating film that can be used for the protective layer 131 can be used.
  • a conductive layer 342 is provided under the insulating layer 345 on the back surface side (surface opposite to the substrate 120 side) of the substrate 301B.
  • the conductive layer 342 is preferably embedded in the insulating layer 335 .
  • the lower surfaces of the conductive layer 342 and the insulating layer 335 are preferably planarized.
  • the conductive layer 342 is electrically connected with the plug 343 .
  • the conductive layer 341 is provided on the insulating layer 346 on the substrate 301A.
  • the conductive layer 341 is preferably embedded in the insulating layer 336 . It is preferable that top surfaces of the conductive layer 341 and the insulating layer 336 be planarized.
  • the substrate 301A and the substrate 301B are electrically connected.
  • the conductive layer 341 and the conductive layer 342 are bonded together. can be improved.
  • the same conductive material is preferably used for the conductive layers 341 and 342 .
  • a metal film containing an element selected from Al, Cr, Cu, Ta, Ti, Mo, and W, or a metal nitride film (titanium nitride film, molybdenum nitride film, tungsten nitride film) containing the above elements as components etc. can be used.
  • copper is preferably used for the conductive layers 341 and 342 .
  • a Cu—Cu (copper-copper) direct bonding technique (a technique for achieving electrical continuity by connecting Cu (copper) pads) can be applied.
  • a display device 100 ⁇ /b>C shown in FIG. 23 has a configuration in which a conductive layer 341 and a conductive layer 342 are bonded via bumps 347 .
  • the conductive layers 341 and 342 can be electrically connected.
  • the bumps 347 can be formed using a conductive material containing, for example, gold (Au), nickel (Ni), indium (In), tin (Sn), or the like. Also, for example, solder may be used as the bumps 347 . Further, an adhesive layer 348 may be provided between the insulating layer 345 and the insulating layer 346 . Further, when the bump 347 is provided, the insulating layer 335 and the insulating layer 336 may not be provided.
  • Display device 100D A display device 100D shown in FIG. 24 is mainly different from the display device 100A in that the configuration of transistors is different.
  • the transistor 320 is a transistor (OS transistor) in which a metal oxide (also referred to as an oxide semiconductor) is applied to a semiconductor layer in which a channel is formed.
  • OS transistor a transistor in which a metal oxide (also referred to as an oxide semiconductor) is applied to a semiconductor layer in which a channel is formed.
  • the transistor 320 has a semiconductor layer 321 , an insulating layer 323 , a conductive layer 324 , a pair of conductive layers 325 , an insulating layer 326 , and a conductive layer 327 .
  • the substrate 331 corresponds to the substrate 291 in FIGS. 20A and 20B.
  • a stacked structure from the substrate 331 to the insulating layer 255c corresponds to the layer 101 including the transistor in Embodiment 1.
  • the substrate 331 an insulating substrate or a semiconductor substrate can be used.
  • An insulating layer 332 is provided over the substrate 331 .
  • the insulating layer 332 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing from the substrate 331 into the transistor 320 and oxygen from the semiconductor layer 321 toward the insulating layer 332 side.
  • a film into which hydrogen or oxygen is less likely to diffuse than a silicon oxide film such as an aluminum oxide film, a hafnium oxide film, or a silicon nitride film, can be used.
  • a conductive layer 327 is provided over the insulating layer 332 and an insulating layer 326 is provided to cover the conductive layer 327 .
  • the conductive layer 327 functions as a first gate electrode of the transistor 320, and part of the insulating layer 326 functions as a first gate insulating layer.
  • An oxide insulating film such as a silicon oxide film is preferably used for at least a portion of the insulating layer 326 that is in contact with the semiconductor layer 321 .
  • the upper surface of the insulating layer 326 is preferably planarized.
  • the semiconductor layer 321 is provided over the insulating layer 326 .
  • the semiconductor layer 321 preferably includes a metal oxide (also referred to as an oxide semiconductor) film having semiconductor characteristics.
  • a pair of conductive layers 325 is provided on and in contact with the semiconductor layer 321 and functions as a source electrode and a drain electrode.
  • An insulating layer 328 is provided to cover the top and side surfaces of the pair of conductive layers 325 , the side surface of the semiconductor layer 321 , and the like, and the insulating layer 264 is provided over the insulating layer 328 .
  • the insulating layer 328 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing into the semiconductor layer 321 from the insulating layer 264 or the like and oxygen from leaving the semiconductor layer 321 .
  • an insulating film similar to the insulating layer 332 can be used as the insulating layer 328.
  • An opening reaching the semiconductor layer 321 is provided in the insulating layer 328 and the insulating layer 264 .
  • the insulating layer 323 and the conductive layer 324 are buried in contact with the side surfaces of the insulating layer 264 , the insulating layer 328 , and the conductive layer 325 and the top surface of the semiconductor layer 321 .
  • the conductive layer 324 functions as a second gate electrode, and the insulating layer 323 functions as a second gate insulating layer.
  • the top surface of the conductive layer 324, the top surface of the insulating layer 323, and the top surface of the insulating layer 264 are planarized so that their heights are the same or substantially the same, and the insulating layers 329 and 265 are provided to cover them. ing.
  • the insulating layers 264 and 265 function as interlayer insulating layers.
  • the insulating layer 329 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing into the transistor 320 from the insulating layer 265 or the like.
  • an insulating film similar to the insulating layers 328 and 332 can be used.
  • a plug 274 electrically connected to one of the pair of conductive layers 325 is provided so as to be embedded in the insulating layers 265 , 329 , and 264 .
  • the plug 274 includes a conductive layer 274a that covers the side surfaces of the openings of the insulating layers 265, the insulating layers 329, the insulating layers 264, and the insulating layer 328 and part of the top surface of the conductive layer 325, and the conductive layer 274a. It is preferable to have a conductive layer 274b in contact with the top surface. At this time, a conductive material into which hydrogen and oxygen are difficult to diffuse is preferably used for the conductive layer 274a.
  • a display device 100E illustrated in FIG. 25 has a structure in which a transistor 320A and a transistor 320B each including an oxide semiconductor as a semiconductor in which a channel is formed are stacked.
  • the display device 100D can be referred to for the structure of the transistor 320A, the transistor 320B, and the periphery thereof.
  • transistors each including an oxide semiconductor are stacked here, the structure is not limited to this.
  • a structure in which three or more transistors are stacked may be employed.
  • a display device 100F illustrated in FIG. 26 has a structure in which a transistor 310 in which a channel is formed over a substrate 301 and a transistor 320 including a metal oxide in a semiconductor layer in which the channel is formed are stacked.
  • An insulating layer 261 is provided to cover the transistor 310 , and a conductive layer 251 is provided over the insulating layer 261 .
  • An insulating layer 262 is provided to cover the conductive layer 251 , and the conductive layer 252 is provided over the insulating layer 262 .
  • the conductive layers 251 and 252 each function as wirings.
  • An insulating layer 263 and an insulating layer 332 are provided to cover the conductive layer 252 , and the transistor 320 is provided over the insulating layer 332 .
  • An insulating layer 265 is provided to cover the transistor 320 and a capacitor 240 is provided over the insulating layer 265 . Capacitor 240 and transistor 320 are electrically connected by plug 274 .
  • the transistor 320 can be used as a transistor forming a pixel circuit. Further, the transistor 310 can be used as a transistor forming a pixel circuit or a transistor forming a driver circuit (a gate line driver circuit or a source line driver circuit) for driving the pixel circuit. Further, the transistors 310 and 320 can be used as transistors included in various circuits such as an arithmetic circuit and a memory circuit.
  • FIG. 27 shows a perspective view of the display device 100G
  • FIG. 28A shows a cross-sectional view of the display device 100G.
  • the display device 100G has a configuration in which a substrate 152 and a substrate 151 are bonded together.
  • the substrate 152 is indicated by dashed lines.
  • the display device 100G includes a display portion 162, a connection portion 140, a circuit 164, wirings 165, and the like.
  • FIG. 27 shows an example in which an IC 173 and an FPC 172 are mounted on the display device 100G. Therefore, the configuration shown in FIG. 27 can also be said to be a display module including the display device 100G, an IC (integrated circuit), and an FPC.
  • the connecting portion 140 is provided outside the display portion 162 .
  • the connection portion 140 can be provided along one side or a plurality of sides of the display portion 162 .
  • the number of connection parts 140 may be singular or plural.
  • FIG. 27 shows an example in which connecting portions 140 are provided so as to surround the four sides of the display portion.
  • the connection part 140 the common electrode of the light emitting device and the conductive layer are electrically connected, and a potential can be supplied to the common electrode.
  • a scanning line driver circuit can be used.
  • the wiring 165 has a function of supplying signals and power to the display portion 162 and the circuit 164 .
  • the signal and power are input to the wiring 165 from the outside through the FPC 172 or input to the wiring 165 from the IC 173 .
  • FIG. 27 shows an example in which an IC 173 is provided on the substrate 151 by a COG (Chip On Glass) method, a COF (Chip On Film) method, or the like.
  • a COG Chip On Glass
  • COF Chip On Film
  • the IC 173 for example, an IC having a scanning line driver circuit or a signal line driver circuit can be applied.
  • the display device 100G and the display module may be configured without an IC.
  • the IC may be mounted on the FPC by the COF method or the like.
  • part of the area including the FPC 172, part of the circuit 164, part of the display part 162, part of the connection part 140, and part of the area including the end of the display device 100G are cut off.
  • An example of a cross section is shown.
  • a display device 100G illustrated in FIG. 28A includes a transistor 201 and a transistor 205, a light-emitting device 130Y that emits yellow light, a light-emitting device 130B that emits blue light, and a colored layer that transmits red light, between a substrate 151 and a substrate 152. 132R, and a colored layer 132G that transmits green light.
  • the light-emitting devices 130Y and 130B each have a structure similar to the laminated structure shown in FIG. 1B, except that the structure of the pixel electrode is different.
  • Embodiment 1 can be referred to for details of the light-emitting device.
  • a light-emitting device 130Y overlapping the colored layer 132R has a conductive layer 112R, a conductive layer 126R on the conductive layer 112R, and a conductive layer 129R on the conductive layer 126R. All of the conductive layers 112R, 126R, and 129R can be called pixel electrodes, and some of them can also be called pixel electrodes.
  • a light-emitting device 130Y overlapping with the colored layer 132G has a conductive layer 112G, a conductive layer 126G over the conductive layer 112G, and a conductive layer 129G over the conductive layer 126G.
  • Light emitting device 130B has conductive layer 112B, conductive layer 126B over conductive layer 112B, and conductive layer 129B over conductive layer 126B.
  • the conductive layer 112R is connected to the conductive layer 222b included in the transistor 205 through an opening provided in the insulating layer 214.
  • FIG. The end of the conductive layer 126R is positioned outside the end of the conductive layer 112R.
  • the end of the conductive layer 126R and the end of the conductive layer 129R are aligned or substantially aligned.
  • a conductive layer functioning as a reflective electrode can be used for the conductive layers 112R and 126R
  • a conductive layer functioning as a transparent electrode can be used for the conductive layer 129R.
  • the conductive layers 112G, 126G, and 129G and the conductive layers 112B, 126B, and 129B are the same as the conductive layers 112R, 126R, and 129R, so detailed description thereof is omitted.
  • Conductive layers 112 R, 112 G, and 112 B are formed to cover openings provided in insulating layer 214 .
  • a layer 128 is embedded in the recesses of the conductive layers 112R, 112G, and 112B.
  • Layer 128 functions to planarize recesses in conductive layers 112R, 112G, and 112B.
  • Conductive layers 126R, 126G, and 126B electrically connected to the conductive layers 112R, 112G, and 112B are provided over the conductive layers 112R, 112G, and 112B and the layer 128.
  • FIG. Therefore, the regions overlapping the concave portions of the conductive layers 112R, 112G, and 112B can also be used as light emitting regions, and the aperture ratio of pixels can be increased.
  • Layer 128 may be an insulating layer or a conductive layer.
  • Various inorganic insulating materials, organic insulating materials, and conductive materials can be used as appropriate for layer 128 .
  • layer 128 is preferably formed using an insulating material, and particularly preferably formed using an organic insulating material.
  • an organic insulating material that can be used for the insulating layer 127 described above can be applied.
  • the top and side surfaces of the conductive layers 126R, 129R are covered with a layer 113Y.
  • the top and side surfaces of conductive layers 126G and 129G are covered by layer 113Y
  • the top and side surfaces of conductive layers 126B and 129B are covered by layer 113B. Therefore, the entire regions where the conductive layers 126R, 126G, and 126B are provided can be used as the light emitting regions of the light emitting devices 130Y and 130B, so the aperture ratio of pixels can be increased.
  • a portion of the upper surface and side surfaces of the layers 113B and 113Y are covered with insulating layers 125 and 127, respectively. Between layer 113B and insulating layer 125 is mask layer 118B. A mask layer 118Y is located between the layer 113Y and the insulating layer 125. As shown in FIG. A common layer 114 is provided over the layers 113B, 113Y, and the insulating layers 125 and 127, and a common electrode 115 is provided over the common layer 114. FIG. Each of the common layer 114 and the common electrode 115 is a series of films provided in common to a plurality of light emitting devices.
  • a protective layer 131 is provided on the light emitting devices 130Y and 130B.
  • the protective layer 131 and the substrate 152 are adhered via the adhesive layer 142 .
  • the substrate 152 is provided with a light shielding layer 117 and colored layers 132R and 132G.
  • a solid sealing structure, a hollow sealing structure, or the like can be applied to sealing the light-emitting device.
  • the space between substrates 152 and 151 is filled with an adhesive layer 142 to apply a solid sealing structure.
  • the space may be filled with an inert gas (such as nitrogen or argon) to apply a hollow sealing structure.
  • the adhesive layer 142 may be provided so as not to overlap the light emitting device.
  • the space may be filled with a resin different from the adhesive layer 142 provided in a frame shape.
  • the protective layer 131 is provided at least on the display section 162 and is preferably provided so as to cover the entire display section 162 .
  • the protective layer 131 is preferably provided so as to cover not only the display portion 162 but also the connection portion 140 and the circuit 164 .
  • the protective layer 131 is provided up to the end of the display device 100G.
  • the connecting portion 204 has a portion where the protective layer 131 is not provided in order to electrically connect the FPC 172 and the conductive layer 166 .
  • a connection portion 204 is provided in a region of the substrate 151 where the substrate 152 does not overlap.
  • the wiring 165 is electrically connected to the FPC 172 via the conductive layer 166 and the connecting layer 242 .
  • the conductive layer 166 includes a conductive film obtained by processing the same conductive film as the conductive layers 112R, 112G, and 112B and a conductive film obtained by processing the same conductive film as the conductive layers 126R, 126G, and 126B. , and a conductive film obtained by processing the same conductive film as the conductive layers 129R, 129G, and 129B.
  • the conductive layer 166 is exposed on the upper surface of the connecting portion 204 . Thereby, the connecting portion 204 and the FPC 172 can be electrically connected via the connecting layer 242 .
  • the conductive layer 166 can be exposed by removing a region of the protective layer 131 overlapping the conductive layer 166 using a mask.
  • a layered structure including at least one layer of an organic layer and a conductive layer may be provided over the conductive layer 166, and the protective layer 131 may be provided over the layered structure. Then, using a laser or a sharp edged tool (e.g., a needle or a cutter) on the laminated structure, a peeling starting point (a portion that triggers peeling) is formed, and the laminated structure and the protective layer thereon are formed. 131 may be selectively removed to expose conductive layer 166 .
  • the protective layer 131 can be selectively removed by pressing an adhesive roller against the substrate 151 and relatively moving the roller while rotating. Alternatively, an adhesive tape may be attached to the substrate 151 and removed.
  • the adhesion between the organic layer and the conductive layer or the adhesion between the organic layers is low, separation occurs at the interface between the organic layer and the conductive layer or within the organic layer. Accordingly, a region of the protective layer 131 overlapping with the conductive layer 166 can be selectively removed. Note that when an organic layer or the like remains over the conductive layer 166, it can be removed with an organic solvent or the like.
  • the organic layer for example, at least one organic layer (a layer that functions as a light-emitting layer, a carrier block layer, a carrier transport layer, or a carrier injection layer) used for either the layer 113B or the layer 113Y can be used. .
  • the organic layer may be formed at the same time when either the layer 113B or the layer 113Y is formed, or may be provided separately.
  • the conductive layer can be formed using the same process and the same material as the common electrode 115 .
  • an ITO film is preferably formed as the common electrode 115 and the conductive layer. Note that in the case where the common electrode 115 has a stacked-layer structure, at least one of the layers forming the common electrode 115 is provided as a conductive layer.
  • the top surface of the conductive layer 166 may be covered with a mask so that the protective layer 131 is not formed over the conductive layer 166 .
  • a mask for example, a metal mask (area metal mask) may be used, or an adhesive or adsorptive tape or film may be used.
  • connection portion 204 a region where the protective layer 131 is not provided is formed in the connection portion 204, and the conductive layer 166 and the FPC 172 can be electrically connected through the connection layer 242 in this region. .
  • a conductive layer 123 is provided over the insulating layer 214 in the connection portion 140 .
  • the conductive layer 123 includes a conductive film obtained by processing the same conductive film as the conductive layers 112R, 112G, and 112B and a conductive film obtained by processing the same conductive film as the conductive layers 126R, 126G, and 126B. , and a conductive film obtained by processing the same conductive film as the conductive layers 129R, 129G, and 129B.
  • the ends of the conductive layer 123 are covered with a mask layer 118B, an insulating layer 125 and an insulating layer 127.
  • a common layer 114 is provided over the conductive layer 123 , and a common electrode 115 is provided over the common layer 114 .
  • the conductive layer 123 and the common electrode 115 are electrically connected through the common layer 114 .
  • the common layer 114 may not be formed in the connecting portion 140 . In this case, the conductive layer 123 and the common electrode 115 are directly contacted and electrically connected.
  • the display device 100G is of a top emission type. Light emitted by the light emitting device is emitted to the substrate 152 side. A material having high visible light transmittance is preferably used for the substrate 152 .
  • the pixel electrode contains a material that reflects visible light, and the counter electrode (common electrode 115) contains a material that transmits visible light.
  • a stacked structure from the substrate 151 to the insulating layer 214 corresponds to the layer 101 including the transistor in Embodiment 1.
  • FIG. 1 A stacked structure from the substrate 151 to the insulating layer 214 corresponds to the layer 101 including the transistor in Embodiment 1.
  • Both the transistor 201 and the transistor 205 are formed over the substrate 151 . These transistors can be made with the same material and the same process.
  • An insulating layer 211 , an insulating layer 213 , an insulating layer 215 , and an insulating layer 214 are provided in this order over the substrate 151 .
  • Part of the insulating layer 211 functions as a gate insulating layer of each transistor.
  • Part of the insulating layer 213 functions as a gate insulating layer of each transistor.
  • An insulating layer 215 is provided over the transistor.
  • An insulating layer 214 is provided over the transistor and functions as a planarization layer. Note that the number of gate insulating layers and the number of insulating layers covering a transistor are not limited, and each may have a single layer or two or more layers.
  • a material into which impurities such as water and hydrogen are difficult to diffuse is preferably used for at least one insulating layer that covers the transistor. This allows the insulating layer to function as a barrier layer. With such a structure, diffusion of impurities from the outside into the transistor can be effectively suppressed, and the reliability of the display device can be improved.
  • An inorganic insulating film is preferably used for each of the insulating layers 211 , 213 , and 215 .
  • the inorganic insulating film for example, a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, an aluminum nitride film, or the like can be used.
  • a hafnium oxide film, an yttrium oxide film, a zirconium oxide film, a gallium oxide film, a tantalum oxide film, a magnesium oxide film, a lanthanum oxide film, a cerium oxide film, a neodymium oxide film, or the like may be used.
  • two or more of the insulating films described above may be laminated and used.
  • An organic insulating layer is suitable for the insulating layer 214 that functions as a planarization layer.
  • Materials that can be used for the organic insulating layer include acrylic resins, polyimide resins, epoxy resins, polyamide resins, polyimideamide resins, siloxane resins, benzocyclobutene-based resins, phenolic resins, precursors of these resins, and the like.
  • the insulating layer 214 may have a laminated structure of an organic insulating layer and an inorganic insulating layer. The outermost layer of the insulating layer 214 preferably functions as an etching protective layer.
  • the insulating layer 214 can be formed of recesses in the insulating layer 214 when the conductive layer 112R, the conductive layer 126R, or the conductive layer 129R is processed.
  • the insulating layer 214 may be provided with recesses during processing of the conductive layer 112R, the conductive layer 126R, or the conductive layer 129R.
  • the transistors 201 and 205 include a conductive layer 221 functioning as a gate, an insulating layer 211 functioning as a gate insulating layer, conductive layers 222a and 222b functioning as sources and drains, a semiconductor layer 231, and an insulating layer functioning as a gate insulating layer. It has a layer 213 and a conductive layer 223 that functions as a gate. Here, the same hatching pattern is applied to a plurality of layers obtained by processing the same conductive film.
  • the insulating layer 211 is located between the conductive layer 221 and the semiconductor layer 231 .
  • the insulating layer 213 is located between the conductive layer 223 and the semiconductor layer 231 .
  • the structure of the transistor included in the display device of this embodiment there is no particular limitation on the structure of the transistor included in the display device of this embodiment.
  • a planar transistor, a staggered transistor, an inverted staggered transistor, or the like can be used.
  • the transistor structure may be either a top-gate type or a bottom-gate type.
  • gates may be provided above and below a semiconductor layer in which a channel is formed.
  • a structure in which a semiconductor layer in which a channel is formed is sandwiched between two gates is applied to the transistors 201 and 205 .
  • a transistor may be driven by connecting two gates and applying the same signal to them.
  • the threshold voltage of the transistor may be controlled by applying a potential for controlling the threshold voltage to one of the two gates and applying a potential for driving to the other.
  • the crystallinity of the semiconductor material used for the transistor is not particularly limited, either. (semiconductors having A single crystal semiconductor or a crystalline semiconductor is preferably used because deterioration in transistor characteristics can be suppressed.
  • a semiconductor layer of a transistor preferably includes a metal oxide (also referred to as an oxide semiconductor).
  • the display device of this embodiment preferably uses a transistor including a metal oxide for a channel formation region (hereinafter referred to as an OS transistor).
  • crystalline oxide semiconductors examples include CAAC (c-axis-aligned crystalline)-OS, nc (nanocrystalline)-OS, and the like.
  • a transistor using silicon for a channel formation region may be used.
  • silicon examples include monocrystalline silicon, polycrystalline silicon, amorphous silicon, and the like.
  • a transistor including low-temperature polysilicon (LTPS) in a semiconductor layer hereinafter also referred to as an LTPS transistor
  • the LTPS transistor has high field effect mobility and good frequency characteristics.
  • a Si transistor such as an LTPS transistor
  • a circuit that needs to be driven at a high frequency for example, a source driver circuit
  • OS transistors have much higher field-effect mobility than transistors using amorphous silicon.
  • an OS transistor has extremely low source-drain leakage current (also referred to as an off-state current) in an off state, and can hold charge accumulated in a capacitor connected in series with the transistor for a long time. is. Further, by using the OS transistor, power consumption of the display device can be reduced.
  • the amount of current flowing through the light emitting device it is necessary to increase the amount of current flowing through the light emitting device.
  • the OS transistor when the transistor operates in the saturation region, the OS transistor can reduce the change in the source-drain current with respect to the change in the gate-source voltage as compared with the Si transistor. Therefore, by applying an OS transistor as a drive transistor included in a pixel circuit, the current flowing between the source and the drain can be finely determined according to the change in the voltage between the gate and the source. can be controlled. Therefore, the number of gradations in the pixel circuit can be increased.
  • the OS transistor flows a more stable current (saturation current) than the Si transistor even when the source-drain voltage gradually increases. be able to. Therefore, by using the OS transistor as the driving transistor, a stable current can be supplied to the light-emitting device even when the current-voltage characteristics of the EL device vary, for example. That is, when the OS transistor operates in the saturation region, even if the source-drain voltage is increased, the source-drain current hardly changes, so that the light emission luminance of the light-emitting device can be stabilized.
  • an OS transistor as a driving transistor included in a pixel circuit, it is possible to suppress black floating, increase emission luminance, provide multiple gradations, and suppress variations in light emitting devices. can be planned.
  • the semiconductor layer includes, for example, indium and M (M is gallium, aluminum, silicon, boron, yttrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, one or more selected from hafnium, tantalum, tungsten, and magnesium) and zinc.
  • M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide containing indium (In), gallium (Ga), and zinc (Zn) (also referred to as IGZO) is preferably used for the semiconductor layer.
  • an oxide containing indium, tin, and zinc is preferably used.
  • oxides containing indium, gallium, tin, and zinc are preferably used.
  • an oxide containing indium (In), aluminum (Al), and zinc (Zn) (also referred to as IAZO) is preferably used.
  • an oxide containing indium (In), aluminum (Al), gallium (Ga), and zinc (Zn) (also referred to as IAGZO) is preferably used.
  • the In atomic ratio in the In-M-Zn oxide is preferably equal to or higher than the M atomic ratio.
  • the transistors included in the circuit 164 and the transistors included in the display portion 162 may have the same structure or different structures.
  • the plurality of transistors included in the circuit 164 may all have the same structure, or may have two or more types.
  • the structures of the plurality of transistors included in the display portion 162 may all be the same, or may be of two or more types.
  • All of the transistors in the display portion 162 may be OS transistors, all of the transistors in the display portion 162 may be Si transistors, or some of the transistors in the display portion 162 may be OS transistors and the rest may be Si transistors. good.
  • LTPS transistors and OS transistors are combined in the display portion 162
  • a structure in which an LTPS transistor and an OS transistor are combined is sometimes called an LTPO.
  • an OS transistor is used as a transistor or the like that functions as a switch for controlling conduction or non-conduction between wirings
  • an LTPS transistor is used as a transistor or the like that controls current.
  • one of the transistors included in the display portion 162 functions as a transistor for controlling current flowing through the light-emitting device and can also be called a driving transistor.
  • One of the source and drain of the driving transistor is electrically connected to the pixel electrode of the light emitting device.
  • An LTPS transistor is preferably used as the driving transistor. This makes it possible to increase the current flowing through the light emitting device in the pixel circuit.
  • the other transistor included in the display portion 162 functions as a switch for controlling selection/non-selection of pixels and can also be called a selection transistor.
  • the gate of the selection transistor is electrically connected to the gate line, and one of the source and the drain is electrically connected to the source line (signal line).
  • An OS transistor is preferably used as the selection transistor.
  • the display device of one embodiment of the present invention can have high aperture ratio, high definition, high display quality, and low power consumption.
  • the display device of one embodiment of the present invention includes an OS transistor and a light-emitting device with an MML (metal maskless) structure.
  • MML metal maskless
  • leakage current that can flow through the transistor and leakage current that can flow between adjacent light-emitting devices also referred to as lateral leakage current, side leakage current, or the like
  • an observer can observe any one or more of sharpness of the image, sharpness of the image, high saturation, and high contrast ratio.
  • a layer provided between light-emitting devices (for example, an organic layer commonly used between light-emitting devices, also referred to as a common layer) is Due to the divided structure, side leaks can be eliminated or extremely reduced.
  • 28B and 28C show other configuration examples of the transistor.
  • the transistor 209 and the transistor 210 each include a conductive layer 221 functioning as a gate, an insulating layer 211 functioning as a gate insulating layer, a semiconductor layer 231 having a channel formation region 231i and a pair of low-resistance regions 231n, and one of the pair of low-resistance regions 231n.
  • a conductive layer 222a connected to a pair of low-resistance regions 231n, a conductive layer 222b connected to the other of a pair of low-resistance regions 231n, an insulating layer 225 functioning as a gate insulating layer, a conductive layer 223 functioning as a gate, and an insulating layer 215 covering the conductive layer 223 have
  • the insulating layer 211 is located between the conductive layer 221 and the channel formation region 231i.
  • the insulating layer 225 is located at least between the conductive layer 223 and the channel formation region 231i.
  • an insulating layer 218 may be provided to cover the transistor.
  • the transistor 209 illustrated in FIG. 28B shows an example in which the insulating layer 225 covers the top surface and side surfaces of the semiconductor layer 231 .
  • the conductive layers 222a and 222b are connected to the low-resistance region 231n through openings provided in the insulating layers 225 and 215, respectively.
  • One of the conductive layers 222a and 222b functions as a source and the other functions as a drain.
  • the insulating layer 225 overlaps with the channel formation region 231i of the semiconductor layer 231 and does not overlap with the low resistance region 231n.
  • the insulating layer 215 is provided to cover the insulating layer 225 and the conductive layer 223, and the conductive layers 222a and 222b are connected to the low resistance region 231n through openings in the insulating layer 215, respectively.
  • a colored layer 132R and a colored layer 132G are provided on the surface of the substrate 152 on the substrate 151 side.
  • a plurality of light-emitting devices 130Y included in the display device respectively overlap the colored layer 132R or the colored layer 132G.
  • a light shielding layer 117 is preferably provided on the surface. The light shielding layer 117 can be provided between adjacent light emitting devices, the connection portion 140, the circuit 164, and the like. Also, various optical members can be arranged outside the substrate 152 .
  • Materials that can be used for the substrate 120 can be used for the substrates 151 and 152, respectively.
  • the adhesive layer 142 a material that can be used for the resin layer 122 can be applied.
  • connection layer 242 an anisotropic conductive film (ACF), an anisotropic conductive paste (ACP), or the like can be used.
  • ACF anisotropic conductive film
  • ACP anisotropic conductive paste
  • Display device 100H A display device 100H shown in FIG. 29A is mainly different from the display device 100G in that it is a bottom emission type display device.
  • Light emitted by the light emitting device is emitted to the substrate 151 side.
  • a material having high visible light transmittance is preferably used for the substrate 151 .
  • the material used for the substrate 152 may or may not be translucent.
  • a light-blocking layer 117 is preferably formed between the substrate 151 and the transistor 201 and between the substrate 151 and the transistor 205 .
  • FIG. 29A shows an example in which the light-blocking layer 117 is provided over the substrate 151 , the insulating layer 153 is provided over the light-blocking layer 117 , and the transistors 201 and 205 are provided over the insulating layer 153 .
  • a colored layer 132 R and a colored layer 132 G are provided over the insulating layer 215 .
  • a light-emitting device 130Y overlapping the colored layer 132R has a conductive layer 112R, a conductive layer 126R on the conductive layer 112R, and a conductive layer 129R on the conductive layer 126R.
  • a light-emitting device 130Y overlapping with the colored layer 132G has a conductive layer 112G, a conductive layer 126G over the conductive layer 112G, and a conductive layer 129G over the conductive layer 126G.
  • a material having high visible light transmittance is used for each of the conductive layers 112R, 112G, 126R, 126G, 129R, and 129G.
  • a material that reflects visible light is preferably used for the common electrode 115 .
  • 28A and 29A show an example in which the upper surface of the layer 128 has a flat portion, but the shape of the layer 128 is not particularly limited.
  • a variation of layer 128 is shown in Figures 29B-29D.
  • the upper surface of the layer 128 can be configured to have a shape in which the center and the vicinity thereof are depressed in a cross-sectional view, that is, a shape having a concave curved surface.
  • the upper surface of the layer 128 can be configured to have a shape in which the center and the vicinity thereof bulge in a cross-sectional view, that is, have a convex curved surface.
  • the top surface of layer 128 may have one or both of convex and concave surfaces.
  • the number of convex curved surfaces and concave curved surfaces that the upper surface of the layer 128 has is not limited, and may be one or more.
  • the height of the top surface of the layer 128 and the height of the top surface of the conductive layer 112R may be the same or substantially the same, or may be different from each other.
  • the height of the top surface of layer 128 may be lower or higher than the height of the top surface of conductive layer 112R.
  • FIG. 29B can also be said to be an example in which the layer 128 is accommodated inside the recess of the conductive layer 112R.
  • the layer 128 may exist outside the recess of the conductive layer 112R, that is, the upper surface of the layer 128 may be wider than the recess.
  • Display device 100J A display device 100J shown in FIG. 30 is mainly different from the display device 100G in that a light receiving device 150 is provided.
  • the light receiving device 150 has a conductive layer 112S, a conductive layer 126S over the conductive layer 112S, and a conductive layer 129S over the conductive layer 126S.
  • the conductive layer 112S is connected to the conductive layer 222b included in the transistor 205 through an opening provided in the insulating layer 214.
  • Layer 155 has at least an active layer.
  • a portion of the top surface and side surfaces of layer 155 are covered with insulating layers 125 and 127 . Between layer 155 and insulating layer 125 is mask layer 118S.
  • a common layer 114 is provided over the layer 155 and the insulating layers 125 and 127 , and a common electrode 115 is provided over the common layer 114 .
  • the common layer 114 is a continuous film that is commonly provided for the light receiving device and the light emitting device.
  • Embodiments 1 and 6 can be referred to.
  • the light emitting device has an EL layer 763 between a pair of electrodes (lower electrode 761 and upper electrode 762).
  • EL layer 763 can be composed of multiple layers, such as layer 780 , light-emitting layer 771 , and layer 790 .
  • the light-emitting layer 771 includes at least a light-emitting substance (also referred to as a light-emitting material).
  • the layer 780 includes a layer containing a substance with high hole injection property (hole injection layer), a layer containing a substance with high hole transport property (positive hole-transporting layer) and a layer containing a highly electron-blocking substance (electron-blocking layer).
  • the layer 790 includes a layer containing a substance with high electron injection properties (electron injection layer), a layer containing a substance with high electron transport properties (electron transport layer), and a layer containing a substance with high hole blocking properties (positive layer). pore blocking layer).
  • a structure having layer 780, light-emitting layer 771, and layer 790 provided between a pair of electrodes can function as a single light-emitting unit, and the structure of FIG. 31A is referred to herein as a single structure.
  • FIG. 31B is a modification of the EL layer 763 included in the light emitting device shown in FIG. 31A. Specifically, the light-emitting device shown in FIG. It has a top layer 792 and a top electrode 762 on layer 792 .
  • layer 781 is a hole injection layer
  • layer 782 is a hole transport layer
  • layer 791 is an electron transport layer
  • layer 792 is an electron injection layer.
  • the layer 781 is an electron injection layer
  • the layer 782 is an electron transport layer
  • the layer 791 is a hole transport layer
  • the layer 792 is a hole injection layer.
  • FIGS. 31C and 31D a configuration in which a plurality of light-emitting layers (light-emitting layers 771 and 772) are provided between layers 780 and 790 is also a variation of the single structure.
  • FIGS. 31C and 31D show an example having two light-emitting layers, the number of light-emitting layers in a single-structure light-emitting device may be three or more.
  • the single structure light emitting device may have a buffer layer between the two light emitting layers.
  • the buffer layer can be formed using, for example, a material that can be used for the hole-transporting layer or the electron-transporting layer.
  • a structure in which a plurality of light-emitting units (light-emitting unit 763a and light-emitting unit 763b) are connected in series via a charge generation layer 785 (also referred to as an intermediate layer) is used herein.
  • This is called a tandem structure.
  • the tandem structure may also be called a stack structure.
  • FIGS. 31D and 31F are examples in which the display device has a layer 764 that overlaps the light emitting device.
  • Figure 31D is an example of layer 764 overlapping the light emitting device shown in Figure 31C
  • Figure 31F is an example of layer 764 overlapping the light emitting device shown in Figure 31E.
  • a conductive film that transmits visible light is used for the upper electrode 762 in order to extract light to the upper electrode 762 side.
  • the layer 764 one or both of a color conversion layer and a color filter (colored layer) can be used.
  • the light-emitting layers 771 and 772 may be made of light-emitting materials that emit light of the same color, or even the same light-emitting materials.
  • a light-emitting substance that emits blue light may be used for both the light-emitting layers 771 and 772 .
  • both the light-emitting layer 771 and the light-emitting layer 772 may be formed using a light-emitting substance that emits yellow light in the subpixel that emits red light and the subpixel that emits green light.
  • a red colored layer or a green colored layer as the layer 764 shown in FIG. 31D or 31F, yellow light emitted from the light emitting device can be extracted as red or green light.
  • light-emitting substances that emit light of different colors may be used for the light-emitting layers 771 and 772 .
  • one of the light-emitting layer 771 and the light-emitting layer 772 uses a light-emitting substance that emits red light, and the other one uses a light-emitting substance that emits green light. Substances may be used.
  • a light-emitting layer containing a light-emitting substance that emits red light there are three types of light-emitting layers: a light-emitting layer containing a light-emitting substance that emits red light, a light-emitting layer containing a light-emitting substance that emits green light, and a light-emitting layer that contains a light-emitting substance that emits yellow light. may be used.
  • a red colored layer or a green colored layer as the layer 764 shown in FIG. 31D or 31F, the light emitted from the light emitting device can be extracted as red or green light.
  • both the light-emitting layer 771 and the light-emitting layer 772 use a light-emitting substance that emits yellow light, or one of them emits red light.
  • a structure using a light-emitting substance and a light-emitting substance that emits green light is applied to the other.
  • a structure using a light-emitting substance that emits blue light is applied to both the light-emitting layers 771 and 772 . It can be said that the display device having such a configuration employs a tandem structure light emitting device and has an SBS structure. Therefore, it is possible to have both the merit of the tandem structure and the merit of the SBS structure. As a result, a highly reliable light-emitting device capable of emitting light with high brightness can be realized.
  • FIGS. 31E and 31F show examples in which the light-emitting unit 763a has one light-emitting layer 771 and the light-emitting unit 763b has one light-emitting layer 772, but the present invention is not limited to this.
  • Each of the light-emitting unit 763a and the light-emitting unit 763b may have two or more light-emitting layers.
  • FIG. 31E and FIG. 31F exemplify a light-emitting device having two light-emitting units
  • the present invention is not limited to this.
  • the light emitting device may have three or more light emitting units.
  • the layer 780 and the layer 790 may each independently have a laminated structure consisting of two or more layers.
  • light emitting unit 763a has layer 780a, light emitting layer 771 and layer 790a, and light emitting unit 763b has layer 780b, light emitting layer 772 and layer 790b.
  • layers 780a and 780b each comprise one or more of a hole injection layer, a hole transport layer, and an electron blocking layer.
  • layers 790a and 790b each include one or more of an electron injection layer, an electron transport layer, and a hole blocking layer. If the bottom electrode 761 is the cathode and the top electrode 762 is the anode, then layers 780a and 790a would have the opposite arrangement, and layers 780b and 790b would also have the opposite arrangement.
  • layer 780a has a hole-injection layer and a hole-transport layer over the hole-injection layer, and further includes a hole-transport layer. It may have an electron blocking layer on the layer.
  • Layer 790a also has an electron-transporting layer and may also have a hole-blocking layer between the light-emitting layer 771 and the electron-transporting layer.
  • Layer 780b also has a hole transport layer and may also have an electron blocking layer on the hole transport layer.
  • Layer 790b also has an electron-transporting layer, an electron-injecting layer on the electron-transporting layer, and may also have a hole-blocking layer between the light-emitting layer 771 and the electron-transporting layer. If the bottom electrode 761 is the cathode and the top electrode 762 is the anode, for example, layer 780a has an electron injection layer, an electron transport layer on the electron injection layer, and a positive electrode on the electron transport layer. It may have a pore blocking layer. Layer 790a also has a hole-transporting layer and may also have an electron-blocking layer between the light-emitting layer 771 and the hole-transporting layer.
  • Layer 780b also has an electron-transporting layer and may also have a hole-blocking layer on the electron-transporting layer.
  • Layer 790b also has a hole-transporting layer, a hole-injecting layer on the hole-transporting layer, and an electron-blocking layer between the light-emitting layer 771 and the hole-transporting layer. good too.
  • two light-emitting units are stacked with the charge generation layer 785 interposed therebetween.
  • Charge generation layer 785 has at least a charge generation region.
  • the charge-generating layer 785 has a function of injecting electrons into one of the two light-emitting units and holes into the other when a voltage is applied between the pair of electrodes.
  • a conductive film that transmits visible light is used for the electrode on the light extraction side of the lower electrode 761 and the upper electrode 762 .
  • a conductive film that reflects visible light is preferably used for the electrode on the side from which light is not extracted.
  • the display device has a light-emitting device that emits infrared light
  • a conductive film that transmits visible light and infrared light is used for the electrode on the side from which light is extracted
  • a conductive film is used for the electrode on the side that does not extract light.
  • a conductive film that reflects visible light and infrared light is preferably used.
  • a conductive film that transmits visible light may also be used for the electrode on the side from which light is not extracted.
  • the electrode is preferably placed between the reflective layer and the EL layer 763 . That is, the light emitted from the EL layer 763 may be reflected by the reflective layer and extracted from the display device.
  • metals, alloys, electrically conductive compounds, mixtures thereof, and the like can be appropriately used.
  • specific examples of such materials include aluminum, magnesium, titanium, chromium, manganese, iron, cobalt, nickel, copper, gallium, zinc, indium, tin, molybdenum, tantalum, tungsten, palladium, gold, platinum, silver, Examples include metals such as yttrium and neodymium, and alloys containing these in appropriate combinations.
  • the material includes indium tin oxide (also referred to as In—Sn oxide, ITO), In—Si—Sn oxide (also referred to as ITSO), indium zinc oxide (In—Zn oxide), and In -W-Zn oxide and the like can be mentioned.
  • the material includes an alloy containing aluminum (aluminum alloy) such as an alloy of aluminum, nickel, and lanthanum (Al-Ni-La), an alloy of silver and magnesium, and an alloy of silver, palladium and copper.
  • An alloy containing silver such as (Ag-Pd-Cu, also referred to as APC) can be mentioned.
  • elements belonging to Group 1 or Group 2 of the periodic table of elements not exemplified above e.g., lithium, cesium, calcium, strontium
  • europium e.g., europium
  • rare earth metals such as ytterbium
  • appropriate combinations of these alloy containing, graphene, and the like e.g., graphene, graphene, and the like.
  • the light-emitting device preferably employs a micro-optical resonator (microcavity) structure. Therefore, one of the pair of electrodes of the light-emitting device preferably has an electrode (semi-transmissive/semi-reflective electrode) that is transparent and reflective to visible light, and the other is an electrode that is reflective to visible light ( reflective electrode). Since the light-emitting device has a microcavity structure, the light emitted from the light-emitting layer can be resonated between both electrodes, and the light emitted from the light-emitting device can be enhanced.
  • microcavity micro-optical resonator
  • the semi-transmissive/semi-reflective electrode has a laminated structure of a conductive layer that can be used as a reflective electrode and a conductive layer that can be used as an electrode that transmits visible light (also referred to as a transparent electrode). can be done.
  • the light transmittance of the transparent electrode is set to 40% or more.
  • an electrode having a transmittance of 40% or more for visible light (light having a wavelength of 400 nm or more and less than 750 nm) as the transparent electrode of the light emitting device.
  • the visible light reflectance of the semi-transmissive/semi-reflective electrode is 10% or more and 95% or less, preferably 30% or more and 80% or less.
  • the visible light reflectance of the reflective electrode is 40% or more and 100% or less, preferably 70% or more and 100% or less.
  • the resistivity of these electrodes is preferably 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • a light-emitting device has at least a light-emitting layer. Further, in the light-emitting device, layers other than the light-emitting layer include a substance with high hole-injection property, a substance with high hole-transport property, a hole-blocking material, a substance with high electron-transport property, an electron-blocking material, and a layer with high electron-injection property.
  • layers other than the light-emitting layer include a substance with high hole-injection property, a substance with high hole-transport property, a hole-blocking material, a substance with high electron-transport property, an electron-blocking material, and a layer with high electron-injection property.
  • a layer containing a substance, a bipolar substance (substance with high electron-transport and hole-transport properties, also referred to as a bipolar material), or the like may be further included.
  • the light-emitting device has, in addition to the light-emitting layer, one or more of a hole injection layer, a hole transport layer, a hole blocking layer, a charge generation layer, an electron blocking layer, an electron transport layer, and an electron injection layer. can be configured.
  • Both low-molecular-weight compounds and high-molecular-weight compounds can be used in the light-emitting device, and inorganic compounds may be included.
  • Each of the layers constituting the light-emitting device can be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • the emissive layer has one or more emissive materials.
  • a substance emitting light of blue, purple, blue-violet, green, yellow-green, yellow, orange, red, or the like is used as appropriate.
  • a substance that emits near-infrared light can be used as the light-emitting substance.
  • Luminescent materials include fluorescent materials, phosphorescent materials, TADF materials, quantum dot materials, and the like.
  • fluorescent materials include pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzoquinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, and naphthalene derivatives. mentioned.
  • Examples of phosphorescent materials include organometallic complexes (especially iridium complexes) having a 4H-triazole skeleton, 1H-triazole skeleton, imidazole skeleton, pyrimidine skeleton, pyrazine skeleton, or pyridine skeleton, and phenylpyridine derivatives having an electron-withdrawing group.
  • organometallic complexes especially iridium complexes
  • platinum complexes, rare earth metal complexes, and the like, which serve as ligands, can be mentioned.
  • the light-emitting layer may contain one or more organic compounds (host material, assist material, etc.) in addition to the light-emitting substance (guest material).
  • One or both of a highly hole-transporting substance (hole-transporting material) and a highly electron-transporting substance (electron-transporting material) can be used as the one or more organic compounds.
  • a highly hole-transporting substance hole-transporting material
  • a highly electron-transporting substance electron-transporting material
  • the electron-transporting material a substance having a high electron-transporting property that can be used for the electron-transporting layer, which will be described later, can be used.
  • Bipolar materials or TADF materials may also be used as one or more organic compounds.
  • the light-emitting layer preferably includes, for example, a phosphorescent material and a combination of a hole-transporting material and an electron-transporting material that easily form an exciplex.
  • ExTET Exciplex-Triplet Energy Transfer
  • a combination that forms an exciplex that emits light that overlaps with the wavelength of the absorption band on the lowest energy side of the light-emitting substance energy transfer becomes smooth and light emission can be efficiently obtained. With this configuration, high efficiency, low-voltage driving, and long life of the light-emitting device can be realized at the same time.
  • the hole-injecting layer is a layer that injects holes from the anode to the hole-transporting layer, and contains a substance having a high hole-injecting property.
  • Substances with high hole-injection properties include aromatic amine compounds and composite materials containing a hole-transporting material and an acceptor material (electron-accepting material).
  • the hole-transporting material a substance having a high hole-transporting property that can be used for the hole-transporting layer, which will be described later, can be used.
  • oxides of metals belonging to groups 4 to 8 in the periodic table can be used.
  • Specific examples include molybdenum oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, tungsten oxide, manganese oxide, and rhenium oxide.
  • molybdenum oxide is particularly preferred because it is stable even in the atmosphere, has low hygroscopicity, and is easy to handle.
  • An organic acceptor material containing fluorine can also be used.
  • Organic acceptor materials such as quinodimethane derivatives, chloranil derivatives, and hexaazatriphenylene derivatives can also be used.
  • a material containing a hole-transporting material and an oxide of a metal belonging to Groups 4 to 8 in the above-described periodic table (typically molybdenum oxide) is used. may be used.
  • the hole-transporting layer is a layer that transports the holes injected from the anode through the hole-injecting layer to the light-emitting layer.
  • a hole-transporting layer is a layer containing a hole-transporting material.
  • the hole-transporting material a substance having a hole mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these can be used as long as they have a higher hole-transport property than electron-transport property.
  • hole-transporting materials include ⁇ -electron-rich heteroaromatic compounds (e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.), aromatic amines (compounds having an aromatic amine skeleton), and other substances with high hole-transporting properties. is preferred.
  • ⁇ -electron-rich heteroaromatic compounds e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.
  • aromatic amines compounds having an aromatic amine skeleton
  • other substances with high hole-transporting properties is preferred.
  • the electron blocking layer is provided in contact with the light emitting layer.
  • the electron blocking layer is a layer containing a material capable of transporting holes and blocking electrons.
  • a material having an electron blocking property can be used among the above hole-transporting materials.
  • the electron blocking layer has hole-transporting properties, it can also be called a hole-transporting layer. Moreover, the layer which has electron blocking property can also be called an electron blocking layer among hole transport layers.
  • the electron-transporting layer is a layer that transports electrons injected from the cathode through the electron-injecting layer to the light-emitting layer.
  • the electron-transporting layer is a layer containing an electron-transporting material.
  • an electron-transporting material a substance having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these substances can be used as long as they have a higher electron-transport property than hole-transport property.
  • electron-transporting materials include metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, metal complexes having a thiazole skeleton, oxadiazole derivatives, triazole derivatives, imidazole derivatives, ⁇ -electrons including oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives with quinoline ligands, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, and other nitrogen-containing heteroaromatic compounds
  • a substance having a high electron-transport property such as a deficient heteroaromatic compound can be used.
  • the hole blocking layer is provided in contact with the light emitting layer.
  • the hole-blocking layer is a layer containing a material that has electron-transport properties and can block holes.
  • a material having a hole-blocking property can be used among the above-described electron-transporting materials.
  • the hole blocking layer has electron transport properties, it can also be called an electron transport layer. Moreover, among the electron transport layers, a layer having hole blocking properties can also be referred to as a hole blocking layer.
  • the electron injection layer is a layer that injects electrons from the cathode to the electron transport layer, and is a layer that contains a substance with high electron injection properties.
  • Alkali metals, alkaline earth metals, or compounds thereof can be used as the substance with a high electron-injecting property.
  • a composite material containing an electron-transporting material and a donor material (electron-donating material) can also be used as the substance with high electron-injecting properties.
  • the LUMO level of the substance with high electron injection properties has a small difference (specifically, 0.5 eV or less) from the value of the work function of the material used for the cathode.
  • the electron injection layer includes, for example, lithium, cesium, ytterbium, lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF x , X is an arbitrary number), 8-(quinolinolato)lithium (abbreviation: Liq), 2-(2-pyridyl)phenoratritium (abbreviation: LiPP), 2-(2-pyridyl)-3-pyridinolatritium (abbreviation: LiPPy), 4-phenyl-2-(2-pyridyl)pheno Alkali metals such as latolithium (abbreviation: LiPPP), lithium oxide (LiO x ), cesium carbonate, alkaline earth metals, or compounds thereof can be used.
  • the electron injection layer may have a laminated structure of two or more layers. Examples of the laminated structure include a structure in which lithium fluoride is used for the first layer and ytterbium is provided for the second layer.
  • the electron injection layer may have an electron-transporting material.
  • a compound having a lone pair of electrons and an electron-deficient heteroaromatic ring can be used as the electron-transporting material.
  • a compound having at least one of a pyridine ring, diazine ring (pyrimidine ring, pyrazine ring, pyridazine ring), and triazine ring can be used.
  • the lowest unoccupied molecular orbital (LUMO) level of an organic compound having an unshared electron pair is preferably ⁇ 3.6 eV or more and ⁇ 2.3 eV or less.
  • CV cyclic voltammetry
  • photoelectron spectroscopy optical absorption spectroscopy
  • inverse photoelectron spectroscopy etc. are used to determine the highest occupied molecular orbital (HOMO: Highest Occupied Molecular Orbital) level and LUMO level of an organic compound. can be estimated.
  • BPhen 4,7-diphenyl-1,10-phenanthroline
  • NBPhen 2,9-di(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline
  • HATNA diquinoxalino [2,3-a:2′,3′-c]phenazine
  • TmPPPyTz 2,4,6-tris[3′-(pyridin-3-yl)biphenyl-3-yl]-1,3 , 5-triazine
  • the charge generation layer has at least a charge generation region, as described above.
  • the charge generation region preferably contains an acceptor material, for example, preferably contains a hole transport material and an acceptor material applicable to the hole injection layer described above.
  • the charge generation layer preferably has a layer containing a substance having a high electron injection property.
  • This layer can also be called an electron injection buffer layer.
  • the electron injection buffer layer is preferably provided between the charge generation region and the electron transport layer. Since the injection barrier between the charge generation region and the electron transport layer can be relaxed by providing the electron injection buffer layer, electrons generated in the charge generation region can be easily injected into the electron transport layer.
  • the electron injection buffer layer preferably contains an alkali metal or an alkaline earth metal, and can be configured to contain, for example, an alkali metal compound or an alkaline earth metal compound.
  • the electron injection buffer layer preferably has an inorganic compound containing an alkali metal and oxygen, or an inorganic compound containing an alkaline earth metal and oxygen. Lithium (Li 2 O), etc.) is more preferred.
  • the above materials applicable to the electron injection layer can be preferably used.
  • the charge generation layer preferably has a layer containing a substance having a high electron transport property. Such layers may also be referred to as electron relay layers.
  • the electron relay layer is preferably provided between the charge generation region and the electron injection buffer layer. If the charge generation layer does not have an electron injection buffer layer, the electron relay layer is preferably provided between the charge generation region and the electron transport layer.
  • the electron relay layer has a function of smoothly transferring electrons by preventing interaction between the charge generation region and the electron injection buffer layer (or electron transport layer).
  • a phthalocyanine-based material such as copper (II) phthalocyanine (abbreviation: CuPc), or a metal complex having a metal-oxygen bond and an aromatic ligand.
  • charge generation region electron injection buffer layer, and electron relay layer may not be clearly distinguished depending on their cross-sectional shape, characteristics, or the like.
  • the charge generation layer may contain a donor material instead of the acceptor material.
  • the charge-generating layer may have a layer containing an electron-transporting material and a donor material, which are applicable to the electron-injecting layer described above.
  • the light receiving device has a layer 765 between a pair of electrodes (lower electrode 761 and upper electrode 762).
  • Layer 765 has at least one active layer and may have other layers.
  • FIG. 32B is a modification of the layer 765 included in the light receiving device shown in FIG. 32A. Specifically, the light-receiving device shown in FIG. have.
  • the active layer 767 functions as a photoelectric conversion layer.
  • layer 766 comprises a hole transport layer and/or an electron blocking layer.
  • Layer 768 also includes one or both of an electron-transporting layer and a hole-blocking layer.
  • Either a low-molecular-weight compound or a high-molecular-weight compound can be used for the light-receiving device, and an inorganic compound may be included.
  • the layers constituting the light-receiving device can be formed by methods such as a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, and a coating method.
  • the active layer of the light receiving device contains a semiconductor.
  • the semiconductor include inorganic semiconductors such as silicon and organic semiconductors including organic compounds.
  • an organic semiconductor is used as the semiconductor included in the active layer.
  • the light-emitting layer and the active layer can be formed by the same method (for example, a vacuum deposition method), and a manufacturing apparatus can be shared, which is preferable.
  • Electron-accepting organic semiconductor materials such as fullerenes (eg, C 60 , C 70 , etc.) and fullerene derivatives can be used as n-type semiconductor materials for the active layer.
  • fullerene derivatives include [6,6]-Phenyl-C71-butylic acid methyl ester (abbreviation: PC70BM), [6,6]-Phenyl-C61-butylic acid methyl ester (abbreviation: PC60BM), 1′, 1′′,4′,4′′-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2′,3′,56,60:2′′,3′′][5,6]fullerene- C60 (abbreviation: ICBA) etc. are mentioned.
  • n-type semiconductor materials include perylenetetracarboxylic acid derivatives such as N,N′-dimethyl-3,4,9,10-perylenetetracarboxylic acid diimide (abbreviation: Me-PTCDI), and 2 ,2′-(5,5′-(thieno[3,2-b]thiophene-2,5-diyl)bis(thiophene-5,2-diyl))bis(methan-1-yl-1-ylidene) Dimalononitrile (abbreviation: FT2TDMN) can be mentioned.
  • Me-PTCDI N,N′-dimethyl-3,4,9,10-perylenetetracarboxylic acid diimide
  • FT2TDMN 2 ,2′-(5,5′-(thieno[3,2-b]thiophene-2,5-diyl)bis(thiophene-5,2-diyl))bis(methan-1-yl-1-ylid
  • Materials for the n-type semiconductor include metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, metal complexes having a thiazole skeleton, oxadiazole derivatives, triazole derivatives, imidazole derivatives, Oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, naphthalene derivatives, anthracene derivatives, coumarin derivatives, rhodamine derivatives, triazine derivatives, and quinones derivatives and the like.
  • Materials for the p-type semiconductor of the active layer include copper (II) phthalocyanine (CuPc), tetraphenyldibenzoperiflanthene (DBP), zinc phthalocyanine (ZnPc), and tin phthalocyanine. (SnPc), quinacridone, and electron-donating organic semiconductor materials such as rubrene.
  • Examples of p-type semiconductor materials include carbazole derivatives, thiophene derivatives, furan derivatives, and compounds having an aromatic amine skeleton.
  • materials for p-type semiconductors include naphthalene derivatives, anthracene derivatives, pyrene derivatives, triphenylene derivatives, fluorene derivatives, pyrrole derivatives, benzofuran derivatives, benzothiophene derivatives, indole derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, indolocarbazole derivatives, porphyrin derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, quinacridone derivatives, rubrene derivatives, tetracene derivatives, polyphenylenevinylene derivatives, polyparaphenylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, and polythiophene derivatives.
  • the HOMO level of the electron-donating organic semiconductor material is preferably shallower (higher) than the HOMO level of the electron-accepting organic semiconductor material.
  • the LUMO level of the electron-donating organic semiconductor material is preferably shallower (higher) than the LUMO level of the electron-accepting organic semiconductor material.
  • a spherical fullerene as the electron-accepting organic semiconductor material and an organic semiconductor material having a nearly planar shape as the electron-donating organic semiconductor material. Molecules with similar shapes tend to gather together, and when molecules of the same type aggregate, the energy levels of the molecular orbitals are close to each other, so the carrier transportability can be enhanced.
  • 6-diyl]-2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo[1,2-c:4,5-c′]dithiophene-1 ,3-diyl]]polymer (abbreviation: PBDB-T) or a polymer compound such as a PBDB-T derivative can be used.
  • a method of dispersing an acceptor material in PBDB-T or a PBDB-T derivative can be used.
  • the active layer is preferably formed by co-depositing an n-type semiconductor and a p-type semiconductor.
  • the active layer may be formed by laminating an n-type semiconductor and a p-type semiconductor.
  • three or more kinds of materials may be used for the active layer.
  • a third material may be mixed in addition to the n-type semiconductor material and the p-type semiconductor material.
  • the third material may be a low-molecular compound or a high-molecular compound.
  • the light-receiving device may further have, as layers other than the active layer, a layer containing a highly hole-transporting substance, a highly electron-transporting substance, a bipolar substance, or the like.
  • the layer is not limited to the above, and may further include a layer containing a highly hole-injecting substance, a hole-blocking material, a highly electron-injecting substance, an electron-blocking material, or the like.
  • materials that can be used in the above-described light-emitting device can be used.
  • polymer compounds such as poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) (PEDOT/PSS), molybdenum oxide, and iodide Inorganic compounds such as copper (CuI) can be used.
  • Inorganic compounds such as zinc oxide (ZnO) and organic compounds such as polyethyleneimine ethoxylate (PEIE) can be used as the electron-transporting material or the hole-blocking material.
  • the light receiving device may have, for example, a mixed film of PEIE and ZnO.
  • Display device having photodetection function In the display device of one embodiment of the present invention, light-emitting devices are arranged in matrix in the display portion, and an image can be displayed on the display portion. Further, light receiving devices are arranged in a matrix in the display section, and the display section has one or both of an imaging function and a sensing function in addition to an image display function.
  • the display part can be used for an image sensor or a touch sensor. That is, by detecting light on the display portion, an image can be captured, or proximity or contact of an object (a finger, hand, pen, or the like) can be detected.
  • the display device of one embodiment of the present invention can use a light-emitting device as a light source of a sensor.
  • the light-receiving device can detect the reflected light (or scattered light).
  • imaging or touch detection is possible.
  • a display device of one embodiment of the present invention includes a light-emitting device and a light-receiving device in a pixel.
  • a display device of one embodiment of the present invention uses an organic EL device as a light-emitting device and an organic photodiode as a light-receiving device.
  • An organic EL device and an organic photodiode can be formed on the same substrate. Therefore, an organic photodiode can be incorporated in a display device using an organic EL device.
  • a display device including a light-emitting device and a light-receiving device in a pixel
  • contact or proximity of an object can be detected while displaying an image.
  • some sub-pixels exhibit light as a light source, some other sub-pixels perform light detection, and the remaining sub-pixels Images can also be displayed.
  • the display device can capture an image using the light receiving device.
  • the display device of this embodiment can be used as a scanner.
  • an image sensor can be used to capture an image for personal authentication using a fingerprint, palm print, iris, pulse shape (including vein shape and artery shape), face, or the like.
  • an image sensor can be used to capture images around the eye, on the surface of the eye, or inside the eye (such as the fundus) of the user of the wearable device. Therefore, the wearable device can have a function of detecting any one or more selected from the user's blink, black eye movement, and eyelid movement.
  • the light receiving device can be used as a touch sensor (also referred to as a direct touch sensor) or a near touch sensor (also referred to as a hover sensor, hover touch sensor, non-contact sensor, or touchless sensor).
  • a touch sensor also referred to as a direct touch sensor
  • a near touch sensor also referred to as a hover sensor, hover touch sensor, non-contact sensor, or touchless sensor.
  • a touch sensor or near-touch sensor can detect the proximity or contact of an object (such as a finger, hand, or pen).
  • a touch sensor can detect an object by direct contact between the display device and the object. Also, the near-touch sensor can detect the object even if the object does not touch the display device. For example, it is preferable that the display device can detect the object when the distance between the display device and the object is 0.1 mm or more and 300 mm or less, preferably 3 mm or more and 50 mm or less. With this structure, the display device can be operated without direct contact with the object, in other words, the display device can be operated without contact. With the above configuration, the risk of staining or scratching the display device can be reduced, or the object can be displayed without directly touching the stain (for example, dust or virus) attached to the display device. It becomes possible to operate the device.
  • the stain for example, dust or virus
  • the display device of one embodiment of the present invention can have a variable refresh rate.
  • the power consumption can be reduced by adjusting the refresh rate (for example, in the range of 1 Hz to 240 Hz) according to the content displayed on the display device.
  • the drive frequency of the touch sensor or the near-touch sensor may be changed according to the refresh rate. For example, when the refresh rate of the display device is 120 Hz, the driving frequency of the touch sensor or the near-touch sensor can be higher than 120 Hz (typically 240 Hz). With this structure, low power consumption can be achieved and the response speed of the touch sensor or the near touch sensor can be increased.
  • the display device 100 shown in FIGS. 32C to 32E has a layer 353 having light receiving devices, a functional layer 355 and a layer 357 having light emitting devices between substrates 351 and 359 .
  • the functional layer 355 has circuitry for driving the light receiving device and circuitry for driving the light emitting device.
  • One or more of switches, transistors, capacitors, resistors, wirings, terminals, and the like can be provided in the functional layer 355 . Note that in the case of driving the light-emitting device and the light-receiving device by a passive matrix method, a structure in which the switch and the transistor are not provided may be employed.
  • a finger 352 touching the display device 100 reflects light emitted by a light-emitting device in a layer 357 having a light-emitting device, so that a light-receiving device in a layer 353 having a light-receiving device reflects the light. Detect light. Thereby, it is possible to detect that the finger 352 touches the display device 100 .
  • FIGS. 32D and 32E it may have a function of detecting or imaging an object that is close to (that is, is not in contact with) the display device.
  • FIG. 32D shows an example of detecting a finger of a person
  • FIG. 32E shows an example of detecting information around, on the surface of, or inside the human eye (number of blinks, eye movement, eyelid movement, etc.).
  • the electronic devices of this embodiment each include the display device of one embodiment of the present invention in a display portion.
  • the display device of one embodiment of the present invention can easily have high definition and high resolution. Therefore, it can be used for display portions of various electronic devices.
  • Examples of electronic devices include televisions, desktop or notebook personal computers, monitors for computers, digital signage, large game machines such as pachinko machines, and other electronic devices with relatively large screens. Examples include cameras, digital video cameras, digital photo frames, mobile phones, mobile game machines, mobile information terminals, and sound reproducing devices.
  • the display device of one embodiment of the present invention can have high definition, it can be suitably used for an electronic device having a relatively small display portion.
  • electronic devices include wristwatch-type and bracelet-type information terminals (wearable devices), VR devices such as head-mounted displays, glasses-type AR devices, and MR devices.
  • wearable devices include wristwatch-type and bracelet-type information terminals (wearable devices), VR devices such as head-mounted displays, glasses-type AR devices, and MR devices.
  • a wearable device that can be attached to a part is exemplified.
  • a display device of one embodiment of the present invention includes HD (1280 ⁇ 720 pixels), FHD (1920 ⁇ 1080 pixels), WQHD (2560 ⁇ 1440 pixels), WQXGA (2560 ⁇ 1600 pixels), 4K (2560 ⁇ 1600 pixels), 3840 ⁇ 2160) and 8K (7680 ⁇ 4320 pixels).
  • the resolution it is preferable to set the resolution to 4K, 8K, or higher.
  • the pixel density (definition) of the display device of one embodiment of the present invention is preferably 100 ppi or more, preferably 300 ppi or more, more preferably 500 ppi or more, more preferably 1000 ppi or more, more preferably 2000 ppi or more, and 3000 ppi or more.
  • the display device can support various screen ratios such as 1:1 (square), 4:3, 16:9, 16:10.
  • the electronic device of this embodiment includes sensors (force, displacement, position, velocity, acceleration, angular velocity, number of revolutions, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage , power, radiation, flow, humidity, gradient, vibration, odor or infrared sensing, detection or measurement).
  • the electronic device of this embodiment can have various functions. For example, functions to display various information (still images, moving images, text images, etc.) on the display, touch panel functions, functions to display calendars, dates or times, functions to execute various software (programs), wireless communication function, a function of reading a program or data recorded on a recording medium, and the like.
  • FIGS. 33A to 33D An example of a wearable device that can be worn on the head will be described with reference to FIGS. 33A to 33D.
  • These wearable devices have at least one of a function of displaying AR content, a function of displaying VR content, a function of displaying SR content, and a function of displaying MR content.
  • the electronic device has a function of displaying at least one content such as AR, VR, SR, and MR, it is possible to enhance the immersive feeling of the user.
  • Electronic device 700A shown in FIG. 33A and electronic device 700B shown in FIG. It has a control section (not shown), an imaging section (not shown), a pair of optical members 753 , a frame 757 and a pair of nose pads 758 .
  • the display device of one embodiment of the present invention can be applied to the display panel 751 . Therefore, the electronic device can display images with extremely high definition.
  • Each of the electronic devices 700A and 700B can project an image displayed on the display panel 751 onto the display area 756 of the optical member 753 . Since the optical member 753 has translucency, the user can see the image displayed in the display area superimposed on the transmitted image visually recognized through the optical member 753 . Therefore, the electronic device 700A and the electronic device 700B are electronic devices capable of AR display.
  • the electronic device 700A and the electronic device 700B may be provided with a camera capable of capturing an image of the front as an imaging unit. Further, the electronic devices 700A and 700B each include an acceleration sensor such as a gyro sensor to detect the orientation of the user's head and display an image corresponding to the orientation in the display area 756. You can also
  • the communication unit has a wireless communication device, and can supply a video signal or the like by the wireless communication device.
  • a connector to which a cable to which a video signal and a power supply potential are supplied may be provided.
  • the electronic device 700A and the electronic device 700B are provided with batteries, and can be charged wirelessly and/or wiredly.
  • the housing 721 may be provided with a touch sensor module.
  • the touch sensor module has a function of detecting that the outer surface of the housing 721 is touched.
  • the touch sensor module can detect a user's tap operation or slide operation and execute various processes. For example, it is possible to perform processing such as pausing or resuming a moving image by a tap operation, and fast-forward or fast-reverse processing can be performed by a slide operation. Further, by providing a touch sensor module for each of the two housings 721, the range of operations can be expanded.
  • Various touch sensors can be applied as the touch sensor module.
  • various methods such as a capacitance method, a resistive film method, an infrared method, an electromagnetic induction method, a surface acoustic wave method, and an optical method can be adopted.
  • a photoelectric conversion device (also referred to as a photoelectric conversion element) can be used as the light receiving device.
  • a photoelectric conversion device also referred to as a photoelectric conversion element
  • One or both of an inorganic semiconductor and an organic semiconductor can be used for the active layer of the photoelectric conversion device.
  • Electronic device 800A shown in FIG. 33C and electronic device 800B shown in FIG. It has a pair of imaging units 825 and a pair of lenses 832 .
  • the display device of one embodiment of the present invention can be applied to the display portion 820 . Therefore, the electronic device can display images with extremely high definition. This allows the user to feel a high sense of immersion.
  • the display unit 820 is provided inside the housing 821 at a position where it can be viewed through the lens 832 . By displaying different images on the pair of display portions 820, three-dimensional display using parallax can be performed.
  • Each of the electronic device 800A and the electronic device 800B can be said to be an electronic device for VR.
  • a user wearing electronic device 800 ⁇ /b>A or electronic device 800 ⁇ /b>B can view an image displayed on display unit 820 through lens 832 .
  • the electronic device 800A and the electronic device 800B each have a mechanism that can adjust the left and right positions of the lens 832 and the display unit 820 so that they are optimally positioned according to the position of the user's eyes. preferably. Further, it is preferable to have a mechanism for adjusting focus by changing the distance between the lens 832 and the display portion 820 .
  • Mounting portion 823 allows the user to mount electronic device 800A or electronic device 800B on the head.
  • the shape is illustrated as a temple of eyeglasses (also referred to as a temple), but the shape is not limited to this.
  • the mounting portion 823 may be worn by the user, and may be, for example, a helmet-type or band-type shape.
  • the imaging unit 825 has a function of acquiring external information. Data acquired by the imaging unit 825 can be output to the display unit 820 . An image sensor can be used for the imaging unit 825 . Also, a plurality of cameras may be provided so as to be able to deal with a plurality of angles of view such as telephoto and wide angle.
  • a distance measuring sensor capable of measuring the distance to an object
  • the imaging unit 825 is one aspect of the detection unit.
  • the detection unit for example, an image sensor or a distance image sensor such as LIDAR (Light Detection and Ranging) can be used.
  • LIDAR Light Detection and Ranging
  • the electronic device 800A may have a vibration mechanism that functions as bone conduction earphones.
  • a vibration mechanism that functions as bone conduction earphones.
  • one or more of the display portion 820, the housing 821, and the mounting portion 823 can be provided with the vibration mechanism.
  • the user can enjoy video and audio simply by wearing the electronic device 800A without the need for separate audio equipment such as headphones, earphones, or speakers.
  • Each of the electronic device 800A and the electronic device 800B may have an input terminal.
  • the input terminal can be connected to a cable that supplies a video signal from a video output device or the like, power for charging a battery provided in the electronic device, or the like.
  • An electronic device of one embodiment of the present invention may have a function of wirelessly communicating with the earphone 750 .
  • Earphone 750 has a communication unit (not shown) and has a wireless communication function.
  • the earphone 750 can receive information (eg, audio data) from the electronic device by wireless communication function.
  • information eg, audio data
  • electronic device 700A shown in FIG. 33A has a function of transmitting information to earphone 750 by a wireless communication function.
  • electronic device 800A shown in FIG. 33C has a function of transmitting information to earphone 750 by a wireless communication function.
  • the electronic device may have an earphone section.
  • Electronic device 700B shown in FIG. 33B has earphone section 727 .
  • the earphone section 727 and the control section can be configured to be wired to each other.
  • a part of the wiring connecting the earphone section 727 and the control section may be arranged inside the housing 721 or the mounting section 723 .
  • electronic device 800B shown in FIG. 33D has earphone section 827.
  • the earphone unit 827 and the control unit 824 can be configured to be wired to each other.
  • a part of the wiring connecting the earphone section 827 and the control section 824 may be arranged inside the housing 821 or the mounting section 823 .
  • the earphone section 827 and the mounting section 823 may have magnets. Accordingly, the earphone section 827 can be fixed to the mounting section 823 by magnetic force, which is preferable because it facilitates storage.
  • the electronic device may have an audio output terminal to which earphones, headphones, or the like can be connected. Also, the electronic device may have one or both of an audio input terminal and an audio input mechanism.
  • the voice input mechanism for example, a sound collecting device such as a microphone can be used.
  • the electronic device may function as a so-called headset.
  • the electronic device of one embodiment of the present invention includes both glasses type (electronic device 700A, electronic device 700B, etc.) and goggle type (electronic device 800A, electronic device 800B, etc.). preferred.
  • the electronic device of one embodiment of the present invention can transmit information to the earphone by wire or wirelessly.
  • An electronic device 6500 illustrated in FIG. 34A is a personal digital assistant that can be used as a smart phone.
  • An electronic device 6500 includes a housing 6501, a display portion 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like.
  • a display portion 6502 has a touch panel function.
  • the display device of one embodiment of the present invention can be applied to the display portion 6502 .
  • FIG. 34B is a schematic cross-sectional view including the end of housing 6501 on the microphone 6506 side.
  • a light-transmitting protective member 6510 is provided on the display surface side of the housing 6501, and a display panel 6511, an optical member 6512, a touch sensor panel 6513, and a printer are placed in a space surrounded by the housing 6501 and the protective member 6510.
  • a substrate 6517, a battery 6518, and the like are arranged.
  • a display panel 6511, an optical member 6512, and a touch sensor panel 6513 are fixed to the protective member 6510 with an adhesive layer (not shown).
  • a portion of the display panel 6511 is folded back in a region outside the display portion 6502, and the FPC 6515 is connected to the folded portion.
  • An IC6516 is mounted on the FPC6515.
  • the FPC 6515 is connected to terminals provided on the printed circuit board 6517 .
  • the flexible display of one embodiment of the present invention can be applied to the display panel 6511 . Therefore, an extremely lightweight electronic device can be realized. In addition, since the display panel 6511 is extremely thin, the thickness of the electronic device can be reduced and the large-capacity battery 6518 can be mounted. In addition, by folding back part of the display panel 6511 and arranging a connection portion with the FPC 6515 on the back side of the pixel portion, an electronic device with a narrow frame can be realized.
  • FIG. 34C shows an example of a television device.
  • a television set 7100 has a display portion 7000 incorporated in a housing 7101 .
  • a configuration in which a housing 7101 is supported by a stand 7103 is shown.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 .
  • the operation of the television apparatus 7100 shown in FIG. 34C can be performed using operation switches provided in the housing 7101 and a separate remote controller 7111 .
  • the display portion 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display portion 7000 with a finger or the like.
  • the remote controller 7111 may have a display section for displaying information output from the remote controller 7111 .
  • a channel and a volume can be operated with operation keys or a touch panel provided in the remote controller 7111 , and an image displayed on the display portion 7000 can be operated.
  • the television device 7100 is configured to include a receiver, a modem, and the like.
  • the receiver can receive general television broadcasts. Also, by connecting to a wired or wireless communication network via a modem, one-way (from the sender to the receiver) or two-way (between the sender and the receiver, or between the receivers, etc.) information communication. is also possible.
  • FIG. 34D shows an example of a notebook personal computer.
  • a notebook personal computer 7200 has a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • the display portion 7000 is incorporated in the housing 7211 .
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 .
  • FIGS. 34E and 34F An example of digital signage is shown in FIGS. 34E and 34F.
  • a digital signage 7300 illustrated in FIG. 34E includes a housing 7301, a display portion 7000, speakers 7303, and the like. Furthermore, it can have an LED lamp, an operation key (including a power switch or an operation switch), connection terminals, various sensors, a microphone, and the like.
  • FIG. 34F is a digital signage 7400 mounted on a cylindrical post 7401.
  • FIG. A digital signage 7400 has a display section 7000 provided along the curved surface of a pillar 7401 .
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 in FIGS. 34E and 34F.
  • the display portion 7000 As the display portion 7000 is wider, the amount of information that can be provided at one time can be increased. In addition, the wider the display unit 7000, the more conspicuous it is, and the more effective the advertisement can be, for example.
  • a touch panel By applying a touch panel to the display portion 7000, not only an image or a moving image can be displayed on the display portion 7000 but also the user can intuitively operate the display portion 7000, which is preferable. Further, when used for providing information such as route information or traffic information, usability can be enhanced by intuitive operation.
  • the digital signage 7300 or 7400 is preferably capable of cooperating with an information terminal 7311 or 7411 such as a smartphone possessed by the user through wireless communication.
  • advertisement information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411 .
  • display on the display portion 7000 can be switched.
  • the digital signage 7300 or the digital signage 7400 can execute a game using the screen of the information terminal 7311 or 7411 as an operation means (controller). This allows an unspecified number of users to simultaneously participate in and enjoy the game.
  • the electronic device shown in FIGS. 35A to 35G includes a housing 9000, a display unit 9001, a speaker 9003, operation keys 9005 (including a power switch or an operation switch), connection terminals 9006, sensors 9007 (force, displacement, position, speed , acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substances, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, smell, or infrared rays , detection or measurement), a microphone 9008, and the like.
  • the display device of one embodiment of the present invention can be applied to the display portion 9001 in FIGS. 35A to 35G.
  • the electronic device shown in FIGS. 35A-35G has various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a calendar, a function to display the date or time, a function to control processing by various software (programs), It can have a wireless communication function, a function of reading and processing programs or data recorded on a recording medium, and the like. Note that the functions of the electronic device are not limited to these, and can have various functions.
  • the electronic device may have a plurality of display units.
  • the electronic device is equipped with a camera, etc., and has the function of capturing still images or moving images and storing them in a recording medium (external or built into the camera), or the function of displaying the captured image on the display unit, etc. good.
  • FIG. 35A is a perspective view showing a mobile information terminal 9101.
  • the mobile information terminal 9101 can be used as a smart phone, for example.
  • the portable information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like.
  • the mobile information terminal 9101 can display text and image information on its multiple surfaces.
  • FIG. 35A shows an example in which three icons 9050 are displayed.
  • Information 9051 indicated by a dashed rectangle can also be displayed on another surface of the display portion 9001 . Examples of the information 9051 include e-mail, SNS (Social Networking Service), incoming call notification, e-mail or SNS title, sender name, date and time, remaining battery power, radio wave intensity, and the like. .
  • an icon 9050 or the like may be displayed at the position where the information 9051 is displayed.
  • FIG. 35B is a perspective view showing the mobile information terminal 9102.
  • the portable information terminal 9102 has a function of displaying information on three or more sides of the display portion 9001 .
  • information 9052, information 9053, and information 9054 are displayed on different surfaces.
  • the user can confirm the information 9053 displayed at a position where the mobile information terminal 9102 can be viewed from above the mobile information terminal 9102 while the mobile information terminal 9102 is stored in the chest pocket of the clothes.
  • the user can check the display without taking out the portable information terminal 9102 from the pocket, and can determine, for example, whether to receive a call.
  • 35C is a perspective view showing the tablet terminal 9103.
  • the tablet terminal 9103 can execute various applications such as mobile phone, e-mail, reading and creating text, playing music, Internet communication, and computer games.
  • the tablet terminal 9103 has a display portion 9001, a camera 9002, a microphone 9008, and a speaker 9003 on the front of the housing 9000, operation keys 9005 as operation buttons on the left side of the housing 9000, and connection terminals on the bottom. 9006.
  • FIG. 35D is a perspective view showing a wristwatch-type personal digital assistant 9200.
  • the mobile information terminal 9200 can be used as a smart watch (registered trademark), for example.
  • the display portion 9001 has a curved display surface, and display can be performed along the curved display surface.
  • the mobile information terminal 9200 can also make hands-free calls by mutual communication with a headset capable of wireless communication, for example.
  • the portable information terminal 9200 can transmit data to and from another information terminal through the connection terminal 9006, and can be charged. Note that the charging operation may be performed by wireless power supply.
  • FIGS. 35E-35G are perspective views showing a foldable personal digital assistant 9201.
  • FIG. 35E is a state in which the portable information terminal 9201 is unfolded
  • FIG. 35G is a state in which it is folded
  • FIG. 35F is a perspective view in the middle of changing from one of FIGS. 35E and 35G to the other.
  • the portable information terminal 9201 has excellent portability in the folded state, and has excellent display visibility due to a seamless wide display area in the unfolded state.
  • a display portion 9001 included in the portable information terminal 9201 is supported by three housings 9000 connected by hinges 9055 .
  • the display portion 9001 can be bent with a curvature radius of 0.1 mm or more and 150 mm or less.
  • 11B sub-pixel, 11G: sub-pixel, 11R: sub-pixel, 11S: sub-pixel, 100A: display device, 100B: display device, 100C: display device, 100D: display device, 100E: display device, 100F: display device, 100G: display device, 100H: display device, 100J: display device, 100: display device, 101: layer, 103: region, 110a: subpixel, 110b: subpixel, 110c: subpixel, 110d: subpixel, 110e: sub-pixel, 110: pixel, 111B: pixel electrode, 111G: pixel electrode, 111R: pixel electrode, 111S: pixel electrode, 111: pixel electrode, 112B: conductive layer, 112G: conductive layer, 112R: conductive layer, 112S: conductive Layer, 113_1: first region, 113_2: second region, 113B: layer, 113b: film, 113Y: layer, 113y: film, 114: common layer, 115: common electrode,

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

高精細な表示装置を提供する。 第1乃至第3の発光デバイス、第1乃至第2の着色層、及び、第1乃至第2の絶縁層を有し、第1の発光デバイスは、第1の画素電極、第1の発光層、及び共通電極を有し、第2の発光デバイスは、第2の画素電極、第2の発光層、及び共通電極を有し、第3の発光デバイスは、第3の画素電極、第3の発光層、及び共通電極を有し、第1の発光層と第2の発光層とは、同一の発光材料を有し、第3の発光デバイスは、第1乃至第2の発光デバイスよりも短波長の光を発し、第1の着色層は、第1の発光デバイスと重なり、第2の着色層は、第2の発光デバイスと重なり、かつ、第1の着色層とは異なる色の光を透過し、第1の絶縁層及び第2の絶縁層は、第1の発光層の上面の一部及び側面、並びに、第2の発光層の上面の一部及び側面と重なり、共通電極は、第2の絶縁層の上面を覆う、表示装置である。

Description

表示装置、表示モジュール、及び、電子機器
本発明の一態様は、表示装置、表示モジュール、及び、電子機器に関する。本発明の一態様は、表示装置の作製方法に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサ)、入出力装置(例えば、タッチパネル)、それらの駆動方法、またはそれらの製造方法を一例として挙げることができる。
近年、表示装置は様々な用途への応用が期待されている。例えば、大型の表示装置の用途としては、家庭用のテレビジョン装置(テレビまたはテレビジョン受信機ともいう)、デジタルサイネージ(Digital Signage:電子看板)、及び、PID(Public Information Display)等が挙げられる。また、携帯情報端末として、タッチパネルを備えるスマートフォン及びタブレット端末などの開発が進められている。
また、表示装置の高精細化が求められている。高精細な表示装置が要求される機器として、例えば、仮想現実(VR:Virtual Reality)、拡張現実(AR:Augmented Reality)、代替現実(SR:Substitutional Reality)、及び、複合現実(MR:Mixed Reality)向けの機器が、盛んに開発されている。
表示装置としては、例えば、発光デバイス(発光素子ともいう)を有する発光装置が開発されている。エレクトロルミネッセンス(Electroluminescence、以下ELと記す)現象を利用した発光デバイス(ELデバイス、EL素子ともいう)は、薄型軽量化が容易である、入力信号に対し高速に応答可能である、直流定電圧電源を用いて駆動可能である等の特徴を有し、表示装置に応用されている。
特許文献1には、有機ELデバイス(有機EL素子ともいう)を用いた、VR向けの表示装置が開示されている。
国際公開第2018/087625号
本発明の一態様は、高精細な表示装置を提供することを課題の一つとする。本発明の一態様は、高解像度の表示装置を提供することを課題の一つとする。本発明の一態様は、信頼性の高い表示装置を提供することを課題の一つとする。本発明の一態様は、高輝度での表示が可能な表示装置を提供することを課題の一つとする。
本発明の一態様は、高精細な表示装置の作製方法を提供することを課題の一つとする。本発明の一態様は、高解像度の表示装置の作製方法を提供することを課題の一つとする。本発明の一態様は、信頼性の高い表示装置の作製方法を提供することを課題の一つとする。本発明の一態様は、歩留まりの高い表示装置の作製方法を提供することを課題の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、第1の発光デバイス、第2の発光デバイス、第3の発光デバイス、第1の着色層、第2の着色層、第1の絶縁層、及び、第2の絶縁層を有し、第1の発光デバイスは、第1の画素電極と、第1の画素電極上の第1の発光層と、第1の発光層上の共通電極と、を有し、第2の発光デバイスは、第2の画素電極と、第2の画素電極上の第2の発光層と、第2の発光層上の共通電極と、を有し、第3の発光デバイスは、第3の画素電極と、第3の画素電極上の第3の発光層と、第3の発光層上の共通電極と、を有し、第1の発光層と第2の発光層とは、同一の発光材料を有し、第3の発光デバイスは、第1の発光デバイス及び第2の発光デバイスよりも短波長の光を発し、第1の着色層と第2の着色層とは、互いに異なる色の光を透過し、第1の着色層は、第1の発光デバイスと重なり、第2の着色層は、第2の発光デバイスと重なり、第1の絶縁層は、第1の発光層の上面の一部及び側面、並びに、第2の発光層の上面の一部及び側面を覆い、第2の絶縁層は、第1の絶縁層を介して、第1の発光層の上面の一部及び第2の発光層の上面の一部と重なり、第2の絶縁層は、第1の発光層の側面と第2の発光層の側面の間に位置する部分を有し、共通電極は、第2の絶縁層の上面を覆う、表示装置である。
本発明の一態様は、第1の発光デバイス、第2の発光デバイス、第3の発光デバイス、第1の着色層、第2の着色層、第1の絶縁層、及び、第2の絶縁層を有し、第1の発光デバイスは、第1の画素電極と、第1の画素電極上の第1の発光層と、第1の発光層上の第1の機能層と、第1の機能層上の共通電極と、を有し、第2の発光デバイスは、第2の画素電極と、第2の画素電極上の第2の発光層と、第2の発光層上の第2の機能層と、第2の機能層上の共通電極と、を有し、第3の発光デバイスは、第3の画素電極と、第3の画素電極上の第3の発光層と、第3の発光層上の第3の機能層と、第3の機能層上の共通電極と、を有し、第1の発光層と第2の発光層とは、同一の発光材料を有し、第1の発光デバイス、第2の発光デバイス、及び、第3の発光デバイスのうち、第3の発光デバイスは、最も短波長の光を発し、第1の着色層と第2の着色層とは、互いに異なる色の光を透過し、第1の着色層は、第1の発光デバイスと重なり、第2の着色層は、第2の発光デバイスと重なり、第1の絶縁層は、第1の発光層の上面の一部及び側面、第2の発光層の上面の一部及び側面、第1の機能層の上面の一部及び側面、並びに、第2の機能層の上面の一部及び側面を覆い、第2の絶縁層は、第1の絶縁層を介して、第1の発光層の上面の一部、第2の発光層の上面の一部、第1の機能層の上面の一部、及び、第2の機能層の上面の一部と重なり、第2の絶縁層は、第1の発光層の側面と第2の発光層の側面の間に位置する部分を有し、共通電極は、第2の絶縁層の上面を覆う、表示装置である。
第1の機能層、第2の機能層、及び第3の機能層は、それぞれ、正孔注入層、電子注入層、正孔輸送層、電子輸送層、正孔ブロック層、及び電子ブロック層のうち少なくとも一つを有することが好ましい。
第1の発光デバイス及び第2の発光デバイスは、黄色の光を発し、第3の発光デバイスは、青色の光を発し、第1の着色層は、赤色の光を透過し、第2の着色層は、緑色の光を透過することが好ましい。
上記の表示装置は、第3の発光デバイスと重なる位置に、青色の光を透過する第3の着色層を有することが好ましい。
断面視において、第2の絶縁層の端部は、テーパ角90°未満のテーパ形状を有することが好ましい。
第2の絶縁層は、第1の絶縁層の側面の少なくとも一部を覆うことが好ましい。
第2の絶縁層の端部は、第1の絶縁層の端部よりも外側に位置することが好ましい。
第2の絶縁層は、上面に凸曲面形状を有することが好ましい。
断面視において、第1の絶縁層の端部は、テーパ角90°未満のテーパ形状を有することが好ましい。
第1の絶縁層及び第2の絶縁層は、それぞれ、第1の画素電極の上面と重なる部分と、第2の画素電極の上面と重なる部分と、を有することが好ましい。
第1の発光層は、第1の画素電極の側面を覆い、第2の発光層は、第2の画素電極の側面を覆い、第3の発光層は、第3の画素電極の側面を覆うことが好ましい。
断面視において、第1の画素電極の端部、第2の画素電極の端部、及び第3の画素電極の端部は、それぞれ、テーパ角90°未満のテーパ形状を有することが好ましい。
第1の絶縁層は、無機絶縁層であり、第2の絶縁層は、有機絶縁層であることが好ましい。
第1の絶縁層は、酸化アルミニウムを有することが好ましい。
第1の発光デバイスは、第1の発光層と共通電極との間に共通層を有し、第2の発光デバイスは、第2の発光層と共通電極との間に共通層を有し、第3の発光デバイスは、第3の発光層と共通電極との間に共通層を有し、共通層は、第2の絶縁層と共通電極との間に位置することが好ましい。
また、本発明の一態様は、上記のいずれかの構成の表示装置を有し、フレキシブルプリント回路基板(Flexible Printed Circuit、以下、FPCと記す)もしくはTCP(Tape Carrier Package)等のコネクタが取り付けられた表示モジュール、またはCOG(Chip On Glass)方式もしくはCOF(Chip On Film)方式等により集積回路(IC)が実装された表示モジュール等の表示モジュールである。
また、本発明の一態様は、上記の表示モジュールと、筐体、バッテリ、カメラ、スピーカ、及びマイクのうち少なくとも一つと、を有する電子機器である。
本発明の一態様により、高精細な表示装置を提供できる。本発明の一態様により、高解像度の表示装置を提供できる。本発明の一態様により、信頼性の高い表示装置を提供できる。本発明の一態様により、高輝度での表示が可能な表示装置を提供できる。
本発明の一態様により、高精細な表示装置の作製方法を提供できる。本発明の一態様により、高解像度の表示装置の作製方法を提供できる。本発明の一態様により、信頼性の高い表示装置の作製方法を提供できる。本発明の一態様により、歩留まりの高い表示装置の作製方法を提供できる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1Aは、表示装置の一例を示す上面図である。図1Bは、表示装置の一例を示す断面図である。図1Cは、層113Yの一例を示す上面図である。
図2A及び図2Bは、表示装置の一例を示す断面図である。
図3A及び図3Bは、表示装置の一例を示す断面図である。
図4A及び図4Bは、表示装置の一例を示す断面図である。
図5A及び図5Bは、表示装置の一例を示す断面図である。
図6A及び図6Bは、表示装置の一例を示す断面図である。
図7A及び図7Fは、表示装置の一例を示す断面図である。図7B乃至図7Eは画素電極の一例を示す断面図である。
図8A乃至図8Cは、表示装置の一例を示す断面図である。
図9A乃至図9Dは、表示装置の一例を示す断面図である。
図10Aは、表示装置の一例を示す上面図である。図10Bは、表示装置の一例を示す断面図である。
図11A乃至図11Cは、表示装置の作製方法の一例を示す断面図である。
図12A乃至図12Cは、表示装置の作製方法の一例を示す断面図である。
図13A乃至図13Cは、表示装置の作製方法の一例を示す断面図である。
図14A乃至図14Cは、表示装置の作製方法の一例を示す断面図である。
図15A及び図15Bは、表示装置の作製方法の一例を示す断面図である。
図16A乃至図16Eは、表示装置の作製方法の一例を示す断面図である。
図17A及び図17Bは、表示装置の作製方法の一例を示す断面図である。
図18A乃至図18Gは、画素の一例を示す図である。
図19A乃至図19Kは、画素の一例を示す図である。
図20A及び図20Bは、表示装置の一例を示す斜視図である。
図21A及び図21Bは、表示装置の一例を示す断面図である。
図22は、表示装置の一例を示す断面図である。
図23は、表示装置の一例を示す断面図である。
図24は、表示装置の一例を示す断面図である。
図25は、表示装置の一例を示す断面図である。
図26は、表示装置の一例を示す断面図である。
図27は、表示装置の一例を示す斜視図である。
図28Aは、表示装置の一例を示す断面図である。図28B及び図28Cは、トランジスタの一例を示す断面図である。
図29A乃至図29Dは、表示装置の一例を示す断面図である。
図30は、表示装置の一例を示す断面図である。
図31A乃至図31Fは、発光デバイスの構成例を示す図である。
図32A及び図32Bは、受光デバイスの構成例を示す図である。図32C乃至図32Eは、表示装置の構成例を示す図である。
図33A乃至図33Dは、電子機器の一例を示す図である。
図34A乃至図34Fは、電子機器の一例を示す図である。
図35A乃至図35Gは、電子機器の一例を示す図である。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチングパターンを同じくし、特に符号を付さない場合がある。
また、図面において示す各構成の、位置、大きさ、及び、範囲などは、理解の簡単のため、実際の位置、大きさ、及び、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、及び、範囲などに限定されない。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。
本明細書等において、メタルマスク、またはFMM(ファインメタルマスク、高精細なメタルマスク)を用いて作製されるデバイスをMM(メタルマスク)構造のデバイスと呼称する場合がある。また、本明細書等において、メタルマスク、またはFMMを用いることなく作製されるデバイスをMML(メタルマスクレス)構造のデバイスと呼称する場合がある。
本明細書等では、発光波長が異なる発光デバイスで発光層を作り分ける構造をSBS(Side By Side)構造と呼ぶ場合がある。SBS構造は、発光デバイスごとに材料及び構成を最適化することができるため、材料及び構成の選択の自由度が高まり、輝度の向上及び信頼性の向上を図ることが容易となる。
本明細書等において、正孔または電子を、「キャリア」といって示す場合がある。具体的には、正孔注入層または電子注入層を「キャリア注入層」といい、正孔輸送層または電子輸送層を「キャリア輸送層」といい、正孔ブロック層または電子ブロック層を「キャリアブロック層」という場合がある。なお、上述のキャリア注入層、キャリア輸送層、及びキャリアブロック層は、それぞれ、断面形状、または特性などによって明確に区別できない場合がある。また、1つの層が、キャリア注入層、キャリア輸送層、及びキャリアブロック層のうち2つまたは3つの機能を兼ねる場合がある。
本明細書等において、発光デバイス(発光素子ともいう)は、一対の電極間にEL層を有する。EL層は、少なくとも発光層を有する。ここで、EL層が有する層(機能層ともいう)としては、発光層、キャリア注入層(正孔注入層及び電子注入層)、キャリア輸送層(正孔輸送層及び電子輸送層)、及び、キャリアブロック層(正孔ブロック層及び電子ブロック層)などが挙げられる。本明細書等において、受光デバイス(受光素子ともいう)は、一対の電極間に少なくとも光電変換層として機能する活性層を有する。本明細書等では、一対の電極の一方を画素電極と記し、他方を共通電極と記すことがある。
なお、本明細書等において、テーパ形状とは、構造の側面の少なくとも一部が、基板面または被形成面に対して傾斜して設けられている形状のことを指す。例えば、傾斜した側面と基板面または被形成面とがなす角(テーパ角ともいう)が90°未満である領域を有すると好ましい。なお、構造の側面、基板面、及び、被形成面は、必ずしも完全に平坦である必要はなく、微細な曲率を有する略平面状、または微細な凹凸を有する略平面状であってもよい。
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置について図1乃至図10を用いて説明する。
本発明の一態様の表示装置は、同一の発光材料を有する第1の発光デバイス及び第2の発光デバイスと、第1の発光デバイスと重なる第1の着色層と、第2の発光デバイスと重なり、かつ、第1の着色層とは異なる色の光を透過する第2の着色層と、第1の発光デバイス及び第2の発光デバイスよりも短波長の光を発する第3の発光デバイスと、を有する。
発光色がそれぞれ異なる複数の発光デバイスを有する表示装置を作製する場合、発光色が異なる発光層をそれぞれ島状に形成する必要がある。
例えば、メタルマスクを用いた真空蒸着法により、島状の発光層を成膜することができる。しかし、この方法では、メタルマスクの精度、メタルマスクと基板との位置ずれ、メタルマスクのたわみ、及び、蒸気の散乱などによる成膜される膜の輪郭の広がりなど、様々な影響により、島状の発光層の形状及び位置に設計からのずれが生じるため、表示装置の高精細化、及び高開口率化が困難である。また、蒸着の際に、層の輪郭がぼやけて、端部の厚さが薄くなることがある。つまり、島状の発光層は場所によって厚さにばらつきが生じることがある。また、大型、高解像度、または高精細な表示装置を作製する場合、メタルマスクの寸法精度の低さ、及び、熱等による変形により、製造歩留まりが低くなる懸念がある。
そこで、本発明の一態様の表示装置を作製する際には、メタルマスクなどのシャドーマスクを用いることなく、フォトリソグラフィ法により、発光層を微細なパターンに加工する。具体的には、副画素ごとに画素電極を形成した後、複数の画素電極にわたって発光層を成膜する。その後、当該発光層を、フォトリソグラフィ法を用いて加工し、1つの画素電極に対して1つの島状の発光層を形成する。これにより、発光層が副画素ごとに分割され、副画素ごとに島状の発光層を形成することができる。
例えば、表示装置が、青色の光を発する発光デバイス(単に青色の発光デバイスともいう)、緑色の光を発する発光デバイス、及び赤色の光を発する発光デバイスの3種類で構成される場合、発光層の成膜、及び、フォトリソグラフィによる加工を3回繰り返すことで、3種類の島状の発光層を形成することができる。
ここで、発光デバイスの特性において、画素電極とEL層との界面の状態は重要である。上記の島状の発光層を形成する工程において、形成順が2番目以降の色の発光デバイスにおける画素電極は、先の工程によりダメージを受けることがある。これにより、2番目以降に形成した色の発光デバイスの駆動電圧は高くなることがある。また、形成順が2番目よりも3番目のほうが、画素電極のダメージが大きくなり、発光デバイスの特性への影響もより大きくなる。
また、発光層の成膜、及び、フォトリソグラフィ法を用いた発光層の加工については、回数が少ない方が、製造コストの削減及び製造歩留まりの向上が可能であるため好ましい。
そこで、本発明の一態様の表示装置では、2つの副画素に、同じ発光層(同じ発光材料ともいえる)を有する発光デバイスを用い、それぞれ、赤色の着色層及び緑色の着色層と組み合わせることで、赤色の光を呈する副画素と緑色の光を呈する副画素とを実現する。赤色の光を呈する副画素及び緑色の光を呈する副画素には、例えば、黄色の光を発する発光デバイスを用いる。当該発光デバイスとしては、例えば、黄色の光を発する発光層(または発光材料)を有する構成、赤色の光を発する発光層(または発光材料)と緑色の光を発する発光層(または発光材料)との双方を有する構成、または、黄色の光を発する発光層(または発光材料)、赤色の光を発する発光層(または発光材料)、及び緑色の光を発する発光層(または発光材料)の3つを有する構成を適用する。青色の光を呈する副画素には、青色の光を発する発光デバイスを用いる。これにより、2色の発光デバイスを作り分けるのみで、3色の副画素を作り分けることができる。
したがって、各色の副画素において、画素電極に加わるダメージを抑制し、発光デバイスの特性の低下を抑制できる。
また、本発明の一態様の表示装置の作製方法では、フォトリソグラフィ法を用いた発光層の加工回数を2回とすることができるため、歩留まりよく表示装置を作製できる。
また、短波長の(つまり、エネルギーが高い)光を発する発光デバイスほど駆動電圧が高くなるため、青色の発光デバイスはより長波長の光を発する発光デバイスよりも駆動電圧が高くなりやすい。また、他の色に比べて青色の発光デバイスは信頼性が低くなりやすい。
そこで、本発明の一態様の表示装置を作製する際には、最も短波長の光を発する発光デバイス、例えば、青色の発光デバイスの発光層から成膜することが好ましい。
これにより、青色の発光デバイスにおいて画素電極とEL層の界面の状態を良好に保ち、青色の発光デバイスの駆動電圧が高くなることを抑制できる。また、青色の発光デバイスの寿命を長くし、信頼性を高めることができる。なお、青色よりも長波長の光を発する発光デバイスは、青色の発光デバイスに比べて、駆動電圧の上昇等の影響が小さいため、表示装置全体として、駆動電圧を低くでき、信頼性を高くすることができる。
なお、上記発光層を島状に加工する場合、発光層の直上でフォトリソグラフィ法を用いて加工する構造が考えられる。当該構造の場合、発光層にダメージ(加工によるダメージなど)が加わり、信頼性が著しく損なわれる場合がある。そこで、本発明の一態様の表示装置を作製する際には、発光層よりも上方に位置する機能層(例えば、キャリアブロック層、キャリア輸送層、またはキャリア注入層、より具体的には正孔ブロック層、電子輸送層、または電子注入層など)の上に、マスク層(犠牲層、保護層などともいう)などを形成し、発光層及び当該機能層を島状に加工する方法を用いることが好ましい。当該方法を適用することで、信頼性の高い表示装置を提供することができる。発光層とマスク層との間に他の機能層を有することで、表示装置の作製工程中に発光層が最表面に露出することを抑制し、発光層が受けるダメージを低減することができる。
EL層は、発光領域(発光エリアともいう)である第1の領域と、第1の領域の外側の第2の領域と、を有することが好ましい。第2の領域は、ダミー領域、またはダミーエリアということもできる。第1の領域は、画素電極と共通電極との間に位置する。第1の領域は、表示装置の作製工程中、マスク層に覆われており、受けるダメージが極めて低減されている。したがって、発光効率が高く、長寿命の発光デバイスを実現することができる。一方、第2の領域は、EL層の端部とその近傍を含み、表示装置の作製工程中に、プラズマに曝されることなどによって、ダメージを受けている可能性がある部分を含む。第2の領域を発光領域として用いないことで、発光デバイスの特性のばらつきを抑制することができる。
また、上記発光層を島状に加工する場合、発光層よりも下側に位置する層(例えば、キャリア注入層、キャリア輸送層、または、キャリアブロック層、より具体的には正孔注入層、正孔輸送層、電子ブロック層など)を、発光層と同じパターンで島状に加工することが好ましい。発光層よりも下側に位置する層を発光層と同じパターンで島状に加工することで、隣接する副画素の間に生じうるリーク電流(横方向リーク電流、横リーク電流、またはラテラルリーク電流と呼称する場合がある)を低減することが可能となる。例えば、隣接する副画素間で正孔注入層を共通して用いる場合、当該正孔注入層に起因して、横リーク電流が発生しうる。一方で本発明の一態様の表示装置においては、発光層と正孔注入層とを同じ島状の形状に加工することができるため、隣接する副画素間での横リーク電流は、実質的に発生しない、または横リーク電流を極めて小さくすることが出来る。
ここで、例えば、フォトリソグラフィ法を用いた加工を行う場合、レジストマスクの作製時の加熱、レジストマスクを加工及び除去する際の、エッチング液またはエッチングガスへの曝露によってEL層に様々なダメージが加わることがある。また、EL層上にマスク層を設ける場合、当該マスク層の成膜、加工、及び除去においても、EL層には、加熱、エッチング液、エッチングガス等による影響が生じることがある。
また、EL層を成膜した後に行われる各工程が、EL層の耐熱温度よりも高い温度で行われると、EL層の劣化が進み、発光デバイスの発光効率及び信頼性が低下する恐れがある。
そのため、本発明の一態様において、発光デバイスに含まれる化合物の耐熱温度は、それぞれ、100℃以上180℃以下であることが好ましく、120℃以上180℃以下が好ましく、140℃以上180℃以下がより好ましい。
耐熱温度の指標としては、例えば、ガラス転移点(Tg)、軟化点、融点、熱分解温度、及び、5%重量減少温度等が挙げられる。例えば、EL層を構成する各層の耐熱温度の指標として、当該層が有する材料のガラス転移点を用いることができる。また、当該層が複数の材料からなる混合層の場合、例えば、最も多く含まれる材料のガラス転移点を用いることができる。また、当該複数の材料のガラス転移点のうち最も低い温度を用いてもよい。
特に、発光層上に設けられる機能層の耐熱温度を高くすることが好ましい。また、発光層上に接して設けられる機能層の耐熱温度を高くすることがより好ましい。当該機能層の耐熱性が高いことで、発光層を効果的に保護することが可能となり、発光層が受けるダメージを低減することができる。
また、特に、発光層の耐熱温度を高くすることが好ましい。これにより、加熱により発光層がダメージを受けて発光効率が低下すること、及び、寿命が短くなることを抑制できる。
発光デバイスの耐熱温度を高めることで、発光デバイスの信頼性を高めることができる。また、表示装置の作製工程における温度範囲の幅を広くすることができ、製造歩留まりの向上及び信頼性の向上が可能となる。
それぞれ異なる色の光を発する発光デバイスにおいて、EL層を構成する全ての層を作り分ける必要はなく、一部の層は同一工程で成膜することができる。本発明の一態様の表示装置の作製方法では、EL層を構成する一部の層を色ごとに島状に形成した後、マスク層の少なくとも一部を除去し、EL層を構成する残りの層(共通層と呼ぶ場合がある)と、共通電極(上部電極ともいえる)と、を各色の発光デバイスに共通して(一つの膜として)形成する。例えば、キャリア注入層と、共通電極と、を各色の発光デバイスに共通して形成することができる。
一方で、キャリア注入層は、EL層の中では、比較的導電性が高い層であることが多い。そのため、キャリア注入層が、島状に形成されたEL層の一部の層の側面、または、画素電極の側面に接することで、発光デバイスがショートする恐れがある。なお、キャリア注入層を島状に設け、共通電極を各色の発光デバイスに共通して形成する場合にも、共通電極と、EL層の側面、または、画素電極の側面とが接することで、発光デバイスがショートする恐れがある。
そこで、本発明の一態様の表示装置は、少なくとも島状の発光層の側面を覆う絶縁層を有する。また、当該絶縁層は、島状の発光層の上面の一部を覆うことが好ましい。
これにより、島状に形成されたEL層の少なくとも一部の層、及び、画素電極が、キャリア注入層または共通電極と接することを抑制することができる。したがって、発光デバイスのショートを抑制し、発光デバイスの信頼性を高めることができる。
断面視において、当該絶縁層の端部は、テーパ角90°未満のテーパ形状を有することが好ましい。これにより、絶縁層上に設けられる共通層及び共通電極の段切れを防止することができる。したがって、段切れによる接続不良を抑制することができる。また、段差によって共通電極が局所的に薄膜化して電気抵抗が上昇することを抑制することができる。
なお、本明細書等において、段切れとは、層、膜、または電極が、被形成面の形状(例えば段差など)に起因して分断されてしまう現象を示す。
このように、本発明の一態様の表示装置の作製方法で作製される島状の発光層は、ファインメタルマスクを用いて形成されるのではなく、発光層を一面に成膜した後に加工することで形成される。したがって、これまで実現が困難であった高精細な表示装置または高開口率の表示装置を実現することができる。さらに、発光層を各色で作り分けることができるため、極めて鮮やかでコントラストが高く、表示品位の高い表示装置を実現できる。また、発光層上にマスク層を設けることで、表示装置の作製工程中に発光層が受けるダメージを低減し、発光デバイスの信頼性を高めることができる。
また、隣り合う発光デバイスの間隔について、例えばファインメタルマスクを用いた形成方法では10μm未満にすることは困難であるが、本発明の一態様のフォトリソグラフィ法を用いた方法によれば、ガラス基板上のプロセスにおいて、例えば、隣り合う発光デバイスの間隔、隣り合うEL層の間隔、または隣り合う画素電極間の間隔を、10μm未満、5μm以下、3μm以下、2μm以下、1.5μm以下、1μm以下、または、0.5μm以下にまで狭めることができる。また、例えばLSI向けの露光装置を用いることで、Si Wafer上のプロセスにおいて、隣り合う発光デバイスの間隔、隣り合うEL層の間隔、または隣り合う画素電極間の間隔を、例えば、500nm以下、200nm以下、100nm以下、さらには50nm以下にまで狭めることもできる。これにより、2つの発光デバイス間に存在しうる非発光領域の面積を大幅に縮小することができ、開口率を100%に近づけることが可能となる。例えば、本発明の一態様の表示装置においては、開口率を、40%以上、50%以上、60%以上、70%以上、80%以上、さらには90%以上であって、100%未満を実現することもできる。
なお、表示装置の開口率を高くすることで、表示装置の信頼性を向上させることができる。より具体的には、有機ELデバイスを用い、開口率が10%の表示装置の寿命を基準にした場合、開口率が20%(すなわち、基準に対して開口率が2倍)の表示装置の寿命は約3.25倍となり、開口率が40%(すなわち、基準に対して開口率が4倍)の表示装置の寿命は約10.6倍となる。このように、開口率の向上に伴い、有機ELデバイスに流れる電流密度を低くすることができるため、表示装置の寿命を向上させることが可能となる。本発明の一態様の表示装置においては、開口率を向上させることが可能であるため表示装置の表示品位を向上させることが可能となる。さらに、表示装置の開口率の向上に伴い、表示装置の信頼性(特に寿命)を格段に向上させるといった、優れた効果を奏する。
また、発光層自体のパターン(加工サイズともいえる)についても、ファインメタルマスクを用いた場合に比べて極めて小さくすることができる。また、例えば発光層の作り分けにメタルマスクを用いた場合では、発光層の中央と端で厚さのばらつきが生じるため、発光層の面積に対して、発光領域として使用できる有効な面積は小さくなる。一方、上記作製方法では、均一な厚さに成膜した膜を加工するため、島状の発光層を均一の厚さで形成することができる。したがって、微細なパターンであっても、そのほぼ全域を発光領域として用いることができる。そのため、高い精細度と高い開口率を兼ね備えた表示装置を作製することができる。また、表示装置の小型化及び軽量化を実現することができる。
具体的には、本発明の一態様の表示装置としては、例えば、2000ppi以上、好ましくは3000ppi以上、より好ましくは5000ppi以上、さらに好ましくは6000ppi以上であって、20000ppi以下、または30000ppi以下とすることができる。
本実施の形態では、本発明の一態様の表示装置の断面構造について主に説明し、本発明の一態様の表示装置の作製方法については、実施の形態2で詳述する。
図1Aに、表示装置100の上面図を示す。表示装置100は、複数の画素110が配置された表示部と、表示部の外側の接続部140と、を有する。表示部には、複数の副画素がマトリクス状に配置されている。図1Aでは、2行6列分の副画素を示しており、これらによって2行2列の画素110が構成される。接続部140は、カソードコンタクト部と呼ぶこともできる。
図1Aに示す副画素の上面形状は、発光領域の上面形状に相当する。なお、本明細書等において、上面形状とは、平面視における形状、つまり、上から見た形状のことをいう。
なお、副画素の上面形状としては、例えば、三角形、四角形(長方形、菱形、正方形を含む)、五角形などの多角形、これら多角形の角が丸い形状、楕円形、または円形などが挙げられる。
また、副画素を構成する回路レイアウトは、図1Aに示す副画素の範囲に限定されず、その外側に配置されていてもよい。例えば、副画素11Rが有するトランジスタは、図1Aに示す副画素11Gの範囲内に位置してもよく、一部または全てが副画素11Rの範囲外に位置してもよい。
図1Aでは、副画素11R、11G、11Bの開口率(サイズ、発光領域のサイズともいえる)を等しくまたは概略等しく示すが、本発明の一態様はこれに限定されない。副画素11R、11G、11Bの開口率は、それぞれ適宜決定することができる。副画素11R、11G、11Bの開口率は、それぞれ、異なっていてもよく、2つ以上が等しいまたは概略等しくてもよい。
図1Aに示す画素110には、ストライプ配列が適用されている。図1Aに示す画素110は、副画素11R、副画素11G、副画素11Bの、3つの副画素から構成される。副画素11R、11G、11Bは、それぞれ異なる色の光を呈する。副画素11R、11G、11Bとしては、赤色(R)、緑色(G)、青色(B)の3色の副画素、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色の副画素などが挙げられる。また、副画素の種類は3つに限られず、4つ以上としてもよい。4つの副画素としては、R、G、B、白色(W)の4色の副画素、R、G、B、Yの4色の副画素、及び、R、G、B、赤外光(IR)の4つの副画素、などが挙げられる。
本明細書等において、行方向をX方向、列方向をY方向という場合がある。X方向とY方向は交差し、例えば垂直に交差する(図1A参照)。図1Aでは、異なる色の副画素がX方向に並べて配置されており、同じ色の副画素が、Y方向に並べて配置されている例を示す。
図1Aでは、上面視で、接続部140が表示部の下側に位置する例を示すが、接続部140の位置は特に限定されない。接続部140は、上面視で、表示部の上側、右側、左側、下側の少なくとも一箇所に設けられていればよく、表示部の四辺を囲むように設けられていてもよい。接続部140の上面形状としては、帯状、L字状、U字状、または枠状等とすることができる。また、接続部140は、単数であっても複数であってもよい。
図1Bに、図1Aにおける一点鎖線X1−X2間の断面図を示す。図1Cに、層113Yの上面図を示す。図2A及び図2Bに、図1Bに示す断面図の一部の拡大図を示す。図3乃至図6には、図2の変形例を示す。図7A、図8、及び図9C、図9Dに、図1Bの変形例を示す。図7B乃至図7Eに、画素電極の変形例の断面図を示す。図7Fに、図7Aの変形例を示す。図9A及び図9Bに、図1Aにおける一点鎖線Y1−Y2間の断面図を示す。
副画素11Rは、黄色の光を発する発光デバイス130Yと、赤色の光を透過する着色層132Rと、を有する。これにより、発光デバイス130Yの発光は、着色層132Rを介して表示装置の外部に赤色の光として取り出される。
同様に、副画素11Gは、黄色の光を発する発光デバイス130Yと、緑色の光を透過する着色層132Gと、を有する。これにより、発光デバイス130Yの発光は、着色層132Gを介して表示装置の外部に緑色の光として取り出される。
また、副画素11Bは、青色の光を発する発光デバイス130Bを有する。発光デバイス130Bの発光は、表示装置の外部に青色の光として取り出される。なお、副画素11Bは、さらに、青色の光を透過する着色層を有していてもよい。これにより、副画素11Bが呈する光の色純度を高めることができる。
ここで、青色の光としては、例えば、ピーク波長400nm以上480nm未満の光が挙げられる。また、緑色の光としては、例えば、ピーク波長480nm以上540nm未満の光が挙げられる。また、黄色の光としては、例えば、ピーク波長540nm以上600nm未満の光が挙げられる。また、赤色の光としては、例えば、ピーク波長600nm以上700nm以下の光が挙げられる。
本発明の一態様の表示装置において、発光デバイス130Yと発光デバイス130Bの発光ピーク波長、及び、副画素11Rと副画素11Gから取り出される光のピーク波長の4つを比較すると、発光デバイス130Bの発光ピーク波長が最も短く、副画素11Gから取り出される光のピーク波長が次に短く、発光デバイス130Yの発光ピーク波長が次に短く、副画素11Rから取り出される光のピーク波長が最も長いという関係を有する。
着色層は特定の波長域の光を透過する有色層である。着色層132Rには、赤色の波長域の光を透過するカラーフィルタなどを用いることができる。着色層132Gには、緑色の波長域の光を透過するカラーフィルタなどを用いることができる。副画素11Bが有する着色層としては、青色の波長域の光を透過するカラーフィルタなどを用いることができる。着色層に用いることのできる材料としては、金属材料、樹脂材料、または、顔料もしくは染料が含まれた樹脂材料などが挙げられる。
図1Bに示すように、表示装置100には、トランジスタを含む層101上に絶縁層が設けられ、絶縁層上に発光デバイス130Y、130Bが設けられ、これらの発光デバイスを覆うように保護層131が設けられている。保護層131上には、着色層132R、132Gが設けられており、保護層131上、着色層132R上、着色層132G上には、樹脂層122によって基板120が貼り合わされている。また、隣り合う発光デバイスの間の領域には、絶縁層125と、絶縁層125上の絶縁層127と、が設けられている。
図1Bでは、絶縁層125及び絶縁層127の断面が複数示されているが、表示装置100を上面から見た場合、絶縁層125及び絶縁層127は、それぞれ1つに繋がっている。つまり、表示装置100は、例えば絶縁層125及び絶縁層127を1つずつ有する構成とすることができる。なお、表示装置100は、互いに分離された複数の絶縁層125を有してもよく、また互いに分離された複数の絶縁層127を有してもよい。
本発明の一態様の表示装置は、発光デバイスが形成されている基板とは反対方向に光を射出する上面射出型(トップエミッション型)、発光デバイスが形成されている基板側に光を射出する下面射出型(ボトムエミッション型)、両面に光を射出する両面射出型(デュアルエミッション型)のいずれであってもよい。
トランジスタを含む層101には、例えば、基板に複数のトランジスタが設けられ、これらのトランジスタを覆うように絶縁層が設けられた積層構造を適用することができる。トランジスタ上の絶縁層は、単層構造であってもよく、積層構造であってもよい。図1Bでは、トランジスタ上の絶縁層のうち、絶縁層255a、絶縁層255a上の絶縁層255b、及び、絶縁層255b上の絶縁層255cを示している。これらの絶縁層は、隣接する発光デバイスの間に凹部を有していてもよい。図1B等では、絶縁層255cに凹部が設けられている例を示す。なお、絶縁層255cは、隣接する発光デバイスの間に凹部を有していなくてもよい。なお、トランジスタ上の絶縁層(絶縁層255a乃至絶縁層255c)も、トランジスタを含む層101の一部とみなしてもよい。
絶縁層255a、絶縁層255b、及び絶縁層255cとしては、それぞれ、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜などの各種無機絶縁膜を好適に用いることができる。絶縁層255a及び絶縁層255cとしては、それぞれ、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜などの酸化絶縁膜または酸化窒化絶縁膜を用いることが好ましい。絶縁層255bとしては、窒化シリコン膜、窒化酸化シリコン膜などの窒化絶縁膜または窒化酸化絶縁膜を用いることが好ましい。より具体的には、絶縁層255a及び絶縁層255cとして酸化シリコン膜を用い、絶縁層255bとして窒化シリコン膜を用いることが好ましい。絶縁層255bは、エッチング保護膜としての機能を有することが好ましい。
なお、本明細書等において、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多い材料を指し、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多い材料を指す。例えば、酸化窒化シリコンと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。
トランジスタを含む層101の構成例は、実施の形態4で後述する。
発光デバイス130Yは、黄色(Y)の光を発し、発光デバイス130Bは、青色(B)の光を発する。
発光デバイスとしては、例えば、OLED(Organic Light Emitting Diode)、またはQLED(Quantum−dot Light Emitting Diode)を用いることが好ましい。発光デバイスが有する発光物質としては、例えば、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料)、及び、無機化合物(量子ドット材料等)が挙げられる。また、発光デバイスとして、マイクロLED(Light Emitting Diode)などのLEDを用いることもできる。
発光デバイスの発光色は、赤外、赤、緑、青、シアン、マゼンタ、黄、または白などとすることができる。また、発光デバイスにマイクロキャビティ構造を付与することにより色純度を高めることができる。
発光デバイスの構成及び材料については、実施の形態5を参照することができる。
発光デバイスが有する一対の電極のうち、一方の電極は陽極として機能し、他方の電極は陰極として機能する。以下では、画素電極が陽極として機能し、共通電極が陰極として機能する場合を例に挙げて説明する場合がある。
副画素11Rが有する発光デバイス130Yは、絶縁層255c上の画素電極111Rと、画素電極111R上の島状の層113Yと、島状の層113Y上の共通層114と、共通層114上の共通電極115と、を有する。発光デバイス130Yにおいて、層113Y、及び、共通層114をまとめてEL層と呼ぶことができる。
副画素11Gが有する発光デバイス130Yは、絶縁層255c上の画素電極111Gと、画素電極111G上の島状の層113Yと、島状の層113Y上の共通層114と、共通層114上の共通電極115と、を有する。
発光デバイス130Bは、絶縁層255c上の画素電極111Bと、画素電極111B上の島状の層113Bと、島状の層113B上の共通層114と、共通層114上の共通電極115と、を有する。発光デバイス130Bにおいて、層113B、及び、共通層114をまとめてEL層と呼ぶことができる。
本明細書等では、発光デバイスが有するEL層のうち、発光デバイスごとに島状に設けられた層を層113Yまたは層113Bと示し、複数の発光デバイスが共通して有する層を共通層114と示す。なお、本明細書等において、共通層114を含めず、層113Y及び層113Bを指して、島状のEL層、島状に形成されたEL層などと呼ぶ場合もある。
層113Y及び層113Bは、互いに離隔されている。EL層を発光デバイスごとに島状に設けることで、隣接する発光デバイス間のリーク電流を抑制することができる。これにより、クロストークに起因した意図しない発光を防ぐことができ、コントラストの極めて高い表示装置を実現できる。特に、低輝度における電流効率の高い表示装置を実現できる。
画素電極111R、画素電極111G、及び画素電極111Bのそれぞれの端部はテーパ形状を有することが好ましい。具体的には、画素電極111R、画素電極111G、及び画素電極111Bのそれぞれの端部はテーパ角90°未満のテーパ形状を有することが好ましい。これらの画素電極の端部がテーパ形状を有する場合、画素電極の側面に沿って設けられる層113Y及び層113Bも、テーパ形状を有する(後述する傾斜部に対応する)。画素電極の側面をテーパ形状とすることで、画素電極の側面に沿って設けられるEL層の被覆性を高めることができる。
また、図1B等において、絶縁層255cの凹部の側壁と絶縁層255bとがなす角が、画素電極111R、画素電極111G、及び画素電極111Bのテーパ形状と、同等のテーパ角を有する構成を例示したが、これに限定されない。例えば、画素電極111R、画素電極111G、及び画素電極111Bのテーパ形状と、絶縁層255cに形成される凹部とのテーパ形状とは、異なっていてもよい。
図1Bにおいて、画素電極111Rと層113Yとの間には、画素電極111Rの上面端部を覆う絶縁層(隔壁、バンク、スペーサなどともいう)が設けられていない。また、画素電極111Gと層113Yとの間には、画素電極111Gの上面端部を覆う絶縁層が設けられていない。そのため、隣り合う発光デバイスの間隔を極めて狭くすることができる。したがって、高精細、または、高解像度の表示装置とすることができる。また、当該絶縁層を形成するためのマスクも不要となり、表示装置の製造コストを削減することができる。
また、画素電極とEL層との間に、画素電極の端部を覆う絶縁層を設けない構成、別言すると、画素電極とEL層との間に絶縁層が設けられない構成とすることで、EL層からの発光を効率よく取り出すことができる。したがって、本発明の一態様の表示装置は、視野角依存性を極めて小さくすることができる。視野角依存性を小さくすることで、表示装置における画像の視認性を高めることができる。例えば、本発明の一態様の表示装置においては、視野角(斜め方向から画面を見たときの、一定のコントラスト比が維持される最大の角度)を100°以上180°未満、好ましくは150°以上170°以下の範囲とすることができる。なお、上記の視野角については、上下、及び左右のそれぞれに適用することができる。
本実施の形態の発光デバイスには、シングル構造(発光ユニットを1つだけ有する構造)を適用してもよく、タンデム構造(発光ユニットを複数有する構造)を適用してもよい。発光ユニットは、少なくとも1層の発光層を有する。
層113Y及び層113Bは、それぞれ、少なくとも発光層を有する。層113Yは、例えば、黄色の光を発する発光層を有する構成、または、赤色の光を発する発光層と緑色の光を発する発光層との双方を有する構成、または、黄色の光を発する発光層、赤色の光を発する発光層、及び、緑色の光を発する発光層の3つを有する構成を適用できる。層113Bは、青色の光を発する発光層を有する構成を適用できる。言い換えると、層113Yは、例えば、黄色の光を発する発光材料を有する構成、赤色の光を発する発光材料と緑色の光を発する発光材料との双方を有する構成、または、黄色の光を発する発光材料、赤色の光を発する発光材料、及び、緑色の光を発する発光材料の3つを有する構成を適用できる。層113Bは、青色の光を発する発光材料を有する構成を適用できる。
また、タンデム構造の発光デバイスを用いる場合、層113Yは、例えば、黄色の光を発する発光ユニットを複数有する構造、赤色の光を発する発光ユニットと緑色の光を発する発光ユニットとを有する構造、黄色の光を発する発光ユニットと赤色の光を発する発光ユニットと緑色の光を発する発光ユニットとを有する構造、赤色の光を発する発光層と緑色の光を発する発光層との双方を有する発光ユニットを複数有する構造、または、黄色の光を発する発光層、赤色の光を発する発光層、及び、緑色の光を発する発光層の3つを有する発光ユニットを複数有する構造を適用できる。また、黄色の光を発する発光層、赤色の光を発する発光層、及び緑色の光を発する発光層のうち少なくとも1つを有する2種類以上の発光ユニットを用いることもできる。層113Bは、青色の光を発する発光ユニットを複数有する構造であると好ましい。各発光ユニットの間には、電荷発生層を設けることが好ましい。タンデム構造を適用することで、高輝度発光が可能な発光デバイスを実現できる。
また、層113Y及び層113Bは、それぞれ、正孔注入層、正孔輸送層、正孔ブロック層、電荷発生層、電子ブロック層、電子輸送層、及び電子注入層のうち1つ以上を有してもよい。
例えば、層113Y及び層113Bは、それぞれ、正孔注入層、正孔輸送層、発光層、及び、電子輸送層をこの順で有していてもよい。また、正孔輸送層と発光層との間に電子ブロック層を有していてもよい。また、電子輸送層と発光層との間に正孔ブロック層を有していてもよい。また、電子輸送層上に電子注入層を有していてもよい。
また、例えば、層113Y及び層113Bは、それぞれ、電子注入層、電子輸送層、発光層、及び、正孔輸送層をこの順で有していてもよい。また、電子輸送層と発光層との間に正孔ブロック層を有していてもよい。また、正孔輸送層と発光層との間に電子ブロック層を有していてもよい。また、正孔輸送層上に正孔注入層を有していてもよい。
このように、層113Y及び層113Bは、それぞれ、発光層と、発光層上のキャリア輸送層(電子輸送層または正孔輸送層)と、を有することが好ましい。または、層113Y及び層113Bは、それぞれ、発光層と、発光層上のキャリアブロック層(正孔ブロック層または電子ブロック層)と、を有することが好ましい。または、層113Y及び層113Bは、それぞれ、発光層と、発光層上のキャリアブロック層と、キャリアブロック層上のキャリア輸送層と、を有することが好ましい。層113Y及び層113Bの表面は、表示装置の作製工程中に露出するため、キャリア輸送層及びキャリアブロック層の一方または双方を発光層上に設けることで、発光層が最表面に露出することを抑制し、発光層が受けるダメージを低減することができる。これにより、発光デバイスの信頼性を高めることができる。
層113Y及び層113Bに含まれる化合物の耐熱温度は、それぞれ、100℃以上180℃以下であることが好ましく、120℃以上180℃以下が好ましく、140℃以上180℃以下がより好ましい。例えば、これらの化合物のガラス転移点(Tg)は、それぞれ、100℃以上180℃以下であることが好ましく、120℃以上180℃以下が好ましく、140℃以上180℃以下がより好ましい。
特に、発光層上に設けられる機能層の耐熱温度は高いことが好ましい。また、発光層上に接して設けられる機能層の耐熱温度は高いことがより好ましい。当該機能層の耐熱性が高いことで、発光層を効果的に保護することが可能となり、発光層が受けるダメージを低減することができる。
また、発光層の耐熱温度は高いことが好ましい。これにより、加熱により発光層がダメージを受けて発光効率が低下すること、及び、寿命が短くなることを抑制できる。
発光層は、発光物質(発光材料、発光性の有機化合物、ゲスト材料などともいう)と、有機化合物(ホスト材料などともいう)と、を有する。発光層は、発光物質に比べて、有機化合物が多く含まれるため、当該有機化合物のTgを発光層の耐熱温度の指標に用いることができる。
また、例えば、層113Y及び層113Bの少なくとも一方は、第1の発光ユニットと、第1の発光ユニット上の電荷発生層と、電荷発生層上の第2の発光ユニットと、を有していてもよい。
第2の発光ユニットは、発光層と、発光層上のキャリア輸送層(電子輸送層または正孔輸送層)と、を有することが好ましい。または、第2の発光ユニットは、発光層と、発光層上のキャリアブロック層(正孔ブロック層または電子ブロック層)と、を有することが好ましい。または、第2の発光ユニットは、発光層と、発光層上のキャリアブロック層と、キャリアブロック層上のキャリア輸送層と、を有することが好ましい。第2の発光ユニットの表面は、表示装置の作製工程中に露出するため、キャリア輸送層及びキャリアブロック層の一方または双方を発光層上に設けることで、発光層が最表面に露出することを抑制し、発光層が受けるダメージを低減することができる。これにより、発光デバイスの信頼性を高めることができる。なお、発光ユニットを3つ以上有する場合は、最も上層に設けられる発光ユニットにおいて、発光層と、発光層上のキャリア輸送層及びキャリアブロック層の一方または双方と、を有することが好ましい。
共通層114は、例えば電子注入層、または正孔注入層を有する。または、共通層114は、電子輸送層と電子注入層とを積層して有していてもよく、正孔輸送層と正孔注入層とを積層して有していてもよい。共通層114は、発光デバイス130Y、130Bで共有されている。
図1Bでは、画素電極111Rの端部よりも層113Yの端部が外側に位置する例を示す。なお、画素電極111Rと層113Yを例に挙げて説明するが、画素電極111Gと層113Y、及び、画素電極111Bと層113Bにおいても同様のことがいえる。
図1Bにおいて、層113Yは、画素電極111Rの端部を覆うように形成されている。このような構成とすることで、画素電極の上面全体を発光領域とすることも可能となり、島状のEL層の端部が画素電極の端部よりも内側に位置する構成に比べて、開口率を高めることが容易となる。
また、画素電極の側面をEL層で覆うことで、画素電極と共通電極115とが接することを抑制できるため、発光デバイスのショートを抑制することができる。また、EL層の発光領域(すなわち、画素電極と重なる領域)と、EL層の端部との距離を大きくできる。EL層の端部は、加工によりダメージを受けている可能性があるため、EL層の端部から離れた領域を発光領域として用いることで、発光デバイスの信頼性を高められる場合がある。
層113Y及び層113Bは、それぞれ、発光領域である第1の領域と、第1の領域の外側の第2の領域(ダミー領域)と、を有することが好ましい。第1の領域は、画素電極と共通電極との間に位置する。第1の領域は、表示装置の作製工程中、マスク層に覆われており、受けるダメージが極めて低減されている。したがって、発光効率が高く、長寿命の発光デバイスを実現することができる。一方、第2の領域は、EL層の端部とその近傍を含み、表示装置の作製工程中に、プラズマに曝されるなどによって、ダメージを受けている可能性がある部分を含む。第2の領域を発光領域として用いないことで、発光デバイスの特性のばらつきを抑制することができる。
図1B及び図1Cに示す幅L3は、層113Yにおける第1の領域113_1(発光領域)の幅に相当する。また、図1B及び図1Cに示す幅L1及び幅L2は、層113Yにおける第2の領域113_2(ダミー領域)の幅に相当する。図1Cに示すように、第1の領域113_1を囲むように第2の領域113_2が設けられるため、図1Bなどの断面図において、第2の領域113_2の幅は左右の2箇所で確認することができる。第2の領域113_2の幅としては、幅L1または幅L2を用いることができ、例えば、幅L1と幅L2のうち短い方としてもよい。幅L1乃至幅L3は、断面観察像などで確認することができる。なお、本実施の形態では、X方向の断面図を例に説明するが、Y方向の断面図で発光領域とダミー領域の幅を確認することもできる。
図2Aに示す拡大図では、第2の領域113_2の幅L2を示している。第2の領域113_2は、層113Yにおいて、マスク層118Y、絶縁層125、及び絶縁層127の少なくとも一つが重なる部分である。また、図5Bに示す領域103のように、層113Y等において、画素電極の上面の端よりも外側に位置する部分はダミー領域となる。
第2の領域113_2の幅は、1nm以上、好ましくは5nm以上、50nm以上、または、100nm以上である。ダミー領域の幅が広いほど、発光領域の品質を均一にでき、発光デバイスの特性のばらつきを抑制でき、好ましい。一方で、ダミー領域の幅が狭いほど、発光領域が広くなり、画素の開口率を高めることができる。したがって、第2の領域113_2の幅は、第1の領域113_1の幅L3の50%以下が好ましく、より好ましくは、40%以下、30%以下、20%以下、または10%以下である。また、例えば、ウェアラブル機器向け表示装置のような、小型かつ高精細な表示装置における第2の領域113_2の幅は、500nm以下が好ましく、300nm以下、200nm以下、または150nm以下がより好ましい。
なお、島状のEL層において、第1の領域(発光領域)は、EL発光が得られる領域である。また、島状のEL層において、第1の領域(発光領域)及び第2の領域(ダミー領域)ともに、PL(Photoluminescence)発光が得られる領域である。これらのことから、EL発光及びPL発光を確認することで、第1の領域と第2の領域を区別できるといえる。
また、共通電極115は、発光デバイス130Y、130Bで共有されている。複数の発光デバイスが共通して有する共通電極115は、接続部140に設けられた導電層123と電気的に接続される(図9A及び図9B参照)。導電層123には、画素電極111R、111G、111Bと同じ材料及び同じ工程で形成された導電層を用いることが好ましい。
なお、図9Aでは、導電層123上に共通層114が設けられ、共通層114を介して、導電層123と共通電極115とが電気的に接続されている例を示す。接続部140には共通層114を設けなくてもよい。図9Bでは、導電層123と共通電極115とが直接、接続されている。例えば、成膜エリアを規定するためのマスク(ファインメタルマスクと区別して、エリアマスク、またはラフメタルマスクなどともいう)を用いることで、共通層114と、共通電極115とで成膜される領域を変えることができる。
また、図1Bでは、発光デバイス130Yが有する層113Y上には、マスク層118Yが位置し、発光デバイス130Bが有する層113B上には、マスク層118Bが位置する。マスク層は、第1の領域113_1(発光領域)を囲むように設けられる。言い換えると、マスク層は、発光領域と重なる部分に開口を有する。マスク層の上面形状は図1Cに示す第2の領域113_2と一致、概略一致、または類似する。マスク層118Bは、層113Bを加工する際に層113Bの上面に接して設けたマスク層の一部が残存しているものである。同様に、マスク層118Yは、層113Yの形成時に設けたマスク層の一部が残存しているものである。このように、本発明の一態様の表示装置は、その作製時にEL層を保護するために用いるマスク層が一部残存していてもよい。マスク層118Y及びマスク層118Bに同じ材料を用いてもよく、互いに異なる材料を用いてもよい。なお、以下において、マスク層118Y及びマスク層118Bをまとめて、マスク層118と呼ぶ場合がある。
図1Bにおいて、マスク層118Yの一方の端部(発光領域側とは反対側の端部、外側の端部)は、層113Yの端部と揃っている、または概略揃っており、マスク層118Yの他方の端部は、層113Y上に位置する。ここで、マスク層118Yの他方の端部(発光領域側の端部、内側の端部)は、層113Y及び画素電極111R(または画素電極111G)と重なることが好ましい。この場合、マスク層118Yの他方の端部が層113Yの平坦または概略平坦な面に形成されやすくなる。なお、マスク層118Bについても同様である。また、マスク層118は、例えば、島状に加工されたEL層(層113Yまたは層113B)の上面と、絶縁層125との間に残存する。マスク層については、実施の形態2で詳述する。
なお、端部が揃っている、または概略揃っている場合、及び、上面形状が一致または概略一致している場合、上面視において、積層した層と層との間で少なくとも輪郭の一部が重なっているといえる。例えば、上層と下層とが、同一のマスクパターン、または一部が同一のマスクパターンにより加工された場合を含む。ただし、厳密には輪郭が重なり合わず、上層が下層の内側に位置すること、または、上層が下層の外側に位置することもあり、この場合も端部が概略揃っている、または、上面形状が概略一致している、という。
層113Y及び層113Bのそれぞれの側面は、絶縁層125によって覆われている。絶縁層127は、絶縁層125を介して、層113Y及び層113Bのそれぞれの側面と重なる(側面を覆う、ともいえる)。
また、層113Y及び層113Bのそれぞれの上面の一部は、マスク層118によって覆われている。絶縁層125及び絶縁層127は、マスク層118を介して、層113Y及び層113Bのそれぞれの上面の一部と重なる。なお、層113Y及び層113Bのそれぞれの上面としては、画素電極の上面と重なる平坦部の上面のみに限られず、画素電極の上面の外側に位置する傾斜部及び平坦部(図5Aの領域103参照)の上面を含むことができる。
層113Y及び層113Bの上面の一部及び側面が、絶縁層125、絶縁層127、及びマスク層118の少なくとも一つによって覆われていることで、共通層114(または共通電極115)が、画素電極111R、111G、111B、及び、層113Y、113Bの側面と接することを抑制し、発光デバイスのショートを抑制することができる。これにより、発光デバイスの信頼性を高めることができる。
なお、図1Bでは、層113Y、113Bの膜厚を全て同じ厚さで示すが、本発明はこれに限られるものではない。層113Y、113Bのそれぞれの膜厚は異なっていてもよい。例えば、層113Y、113Bそれぞれの発する光を強める光路長に対応して膜厚を設定することが好ましい。これにより、マイクロキャビティ構造を実現し、それぞれの発光デバイスにおける色純度を高めることができる。
絶縁層125は、層113Y及び層113Bのそれぞれの側面と接することが好ましい(図2Aに示す層113Yの端部とその近傍における破線で囲った部分参照)。絶縁層125が層113Y及び層113Bと接する構成とすることで、層113Y及び層113Bの膜剥がれを防止することができる。絶縁層125と層113Yまたは層113Bとが密着することで、隣り合う層113Yなどが、絶縁層125によって固定される、または、接着される効果を奏する。また、絶縁層125と絶縁層255cが接していることも、層113Y及び層113Bの膜剥がれの防止に効果がある。これにより、発光デバイスの信頼性を高めることができる。また、発光デバイスの作製歩留まりを高めることができる。
また、図1Bに示すように、絶縁層125及び絶縁層127が、層113Y及び層113Bの上面の一部及び側面の双方を覆うことで、EL層の膜剥がれをより防ぐことができ、発光デバイスの信頼性を高めることができる。また、発光デバイスの作製歩留まりをより高めることができる。
図1Bでは、画素電極111Rの端部上に、層113Y、マスク層118Y、絶縁層125、及び、絶縁層127の積層構造が位置する例を示す。同様に、画素電極111Gの端部上に、層113Y、マスク層118Y、絶縁層125、及び、絶縁層127の積層構造が位置し、画素電極111Bの端部上に、層113B、マスク層118B、絶縁層125、及び、絶縁層127の積層構造が位置する。
図1Bでは、画素電極111Rの端部を層113Yが覆っており、絶縁層125が層113Yの側面と接する構成を示す。同様に、画素電極111Gの端部は層113Yで覆われており、画素電極111Bの端部は層113Bで覆われており、絶縁層125が層113Yの側面及び層113Bの側面と接している。
絶縁層127は、絶縁層125の凹部を充填するように、絶縁層125上に設けられる。絶縁層127は、絶縁層125を介して、層113Y及び層113Bのそれぞれの上面の一部及び側面と重なる構成とすることができる。絶縁層127は、絶縁層125の側面の少なくとも一部を覆うことが好ましい。
絶縁層125及び絶縁層127を設けることで、隣り合う島状の層の間を埋めることができるため、島状の層上に設ける層(例えばキャリア注入層、及び共通電極など)の被形成面の高低差の大きな凹凸を低減し、より平坦にすることができる。したがって、キャリア注入層及び共通電極などの被覆性を高めることができる。
共通層114及び共通電極115は、層113Y、層113B、マスク層118、絶縁層125、及び絶縁層127上に設けられる。絶縁層125及び絶縁層127を設ける前の段階では、画素電極及び島状のEL層が設けられる領域と、画素電極及び島状のEL層が設けられない領域(発光デバイス間の領域)と、に起因する段差が生じている。本発明の一態様の表示装置は、絶縁層125及び絶縁層127を有することで当該段差を平坦化させることができ、共通層114及び共通電極115の被覆性を向上させることができる。したがって、段切れによる接続不良を抑制することができる。また、段差によって共通電極115が局所的に薄膜化して電気抵抗が上昇することを抑制することができる。
絶縁層127の上面はより平坦性の高い形状を有することが好ましいが、凸部、凸曲面、凹曲面、または凹部を有していてもよい。例えば、絶縁層127の上面は、平坦性の高い、滑らかな凸曲面形状を有することが好ましい。
次に、絶縁層125及び絶縁層127の材料の例について説明する。
絶縁層125は、無機材料を有する絶縁層とすることができる。絶縁層125には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜等の無機絶縁膜を用いることができる。絶縁層125は単層構造であってもよく積層構造であってもよい。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化マグネシウム膜、インジウムガリウム亜鉛酸化物膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、及び酸化タンタル膜等が挙げられる。窒化絶縁膜としては、窒化シリコン膜及び窒化アルミニウム膜等が挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、及び酸化窒化アルミニウム膜等が挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、及び窒化酸化アルミニウム膜等が挙げられる。特に、酸化アルミニウムは、エッチングにおいて、EL層との選択比が高く、後述する絶縁層127の形成において、EL層を保護する機能を有するため、好ましい。特に原子層堆積(ALD:Atomic Layer Deposition)法により形成した酸化アルミニウム膜、酸化ハフニウム膜、または酸化シリコン膜等の無機絶縁膜を絶縁層125に適用することで、ピンホールが少なく、EL層を保護する機能に優れた絶縁層125を形成することができる。また、絶縁層125は、ALD法により形成した膜と、スパッタリング法により形成した膜と、の積層構造としてもよい。絶縁層125は、例えば、ALD法によって形成された酸化アルミニウム膜と、スパッタリング法によって形成された窒化シリコン膜と、の積層構造であってもよい。
絶縁層125は、水及び酸素の少なくとも一方に対するバリア絶縁層としての機能を有することが好ましい。また、絶縁層125は、水及び酸素の少なくとも一方の拡散を抑制する機能を有することが好ましい。また、絶縁層125は、水及び酸素の少なくとも一方を捕獲、または固着する(ゲッタリングともいう)機能を有することが好ましい。
なお、本明細書等において、バリア絶縁層とは、バリア性を有する絶縁層のことを示す。また、本明細書等において、バリア性とは、対応する物質の拡散を抑制する機能(透過性が低いともいう)とする。または、対応する物質を、捕獲、または固着する(ゲッタリングともいう)機能とする。
絶縁層125が、バリア絶縁層としての機能、またはゲッタリング機能を有することで、外部から各発光デバイスに拡散しうる不純物(代表的には、水及び酸素の少なくとも一方)の侵入を抑制することが可能な構成となる。当該構成とすることで、信頼性の高い発光デバイス、さらには、信頼性の高い表示装置を提供することができる。
また、絶縁層125は、不純物濃度が低いことが好ましい。これにより、絶縁層125からEL層に不純物が混入し、EL層が劣化することを抑制することができる。また、絶縁層125において、不純物濃度を低くすることで、水及び酸素の少なくとも一方に対するバリア性を高めることができる。例えば、絶縁層125は、水素濃度及び炭素濃度の一方、好ましくは双方が十分に低いことが望ましい。
なお、絶縁層125とマスク層118Y、118Bには同じ材料を用いることができる。この場合、マスク層118Yまたはマスク層118Bと、絶縁層125との境界が不明瞭となり区別できない場合がある。よって、マスク層118Yまたはマスク層118Bと、絶縁層125とが、1つの層として確認される場合がある。つまり、1つの層が、層113Y及び層113Bのそれぞれの上面の一部及び側面に接して設けられ、絶縁層127が、当該1つの層の側面の少なくとも一部を覆っているように観察される場合がある。
絶縁層125上に設けられる絶縁層127は、隣接する発光デバイス間に形成された絶縁層125の高低差の大きな凹凸を平坦化する機能を有する。換言すると、絶縁層127を有することで共通電極115を形成する面の平坦性を向上させる効果を奏する。
絶縁層127としては、有機材料を有する絶縁層を好適に用いることができる。有機材料としては、感光性の有機樹脂を用いることが好ましく、例えば、アクリル樹脂を含む感光性の樹脂組成物を用いることが好ましい。なお、本明細書などにおいて、アクリル樹脂とは、ポリメタクリル酸エステル、またはメタクリル樹脂だけを指すものではなく、広義のアクリル系ポリマー全体を指す場合がある。
また、絶縁層127として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、イミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シリコーン樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等を用いてもよい。また、絶縁層127として、ポリビニルアルコール(PVA)、ポリビニルブチラル、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂等の有機材料を用いてもよい。また、感光性の樹脂としてはフォトレジストを用いてもよい。感光性の有機樹脂として、ポジ型の材料及びネガ型の材料のどちらを用いてもよい。
絶縁層127には可視光を吸収する材料を用いてもよい。絶縁層127が発光デバイスからの発光を吸収することで、発光デバイスから絶縁層127を介して隣接する発光デバイスに光が漏れること(迷光)を抑制することができる。これにより、表示装置の表示品位を高めることができる。また、表示装置に偏光板を用いなくても、表示品位を高めることができるため、表示装置の軽量化及び薄型化を図ることができる。
可視光を吸収する材料としては、黒色などの顔料を含む材料、染料を含む材料、光吸収性を有する樹脂材料(例えばポリイミドなど)、及び、カラーフィルタに用いることのできる樹脂材料(カラーフィルタ材料)が挙げられる。特に、2色、または3色以上のカラーフィルタ材料を積層または混合した樹脂材料を用いると、可視光の遮蔽効果を高めることができるため好ましい。特に3色以上のカラーフィルタ材料を混合させることで、黒色または黒色近傍の樹脂層とすることが可能となる。
次に、図2A及び図2Bを用いて、絶縁層127とその近傍の構造について説明する。図2Aは、赤色の光を呈する副画素が有する発光デバイス130Yと緑色の光を呈する副画素が有する発光デバイス130Yとの間の絶縁層127とその周辺を含む領域の断面拡大図である。以下では隣接する2つの発光デバイス130Yの間の絶縁層127を例に挙げて説明するが、発光デバイス130Bと発光デバイス130Yの間の絶縁層127についても同様のことがいえる。また、図2Bは、図2Aに示す、層113Y上の絶縁層127の端部とその近傍の拡大図である。なお、図2Bでは、共通層114及び共通電極115の図示を省略している。以下では、層113Y上の絶縁層127の端部を例に挙げて説明する場合があるが、層113B上の絶縁層127の端部についても同様のことがいえる。
図2Aに示すように、画素電極111Rを覆って層113Yが設けられ、画素電極111Gを覆って層113Yが設けられる。層113Yの上面の一部に接してマスク層118Yが設けられる。マスク層118Yの上面及び側面、層113Yの側面、及び、絶縁層255cの上面に接して、絶縁層125が設けられる。また、絶縁層125は、層113Yの上面の一部を覆う。絶縁層125の上面に接して絶縁層127が設けられる。また、絶縁層127は、絶縁層125を介して、層113Yの上面の一部及び側面と重なり、絶縁層125の側面の少なくとも一部に接する。層113Y、マスク層118Y、絶縁層125、及び絶縁層127を覆って共通層114が設けられ、共通層114の上に共通電極115が設けられる。
また、絶縁層127は、2つの島状のEL層の間の領域(例えば、図2Aでは、2つの層113Yの間の領域)に形成される。このとき、絶縁層127の少なくとも一部が、一方のEL層の側面端部と、もう一方のEL層の側面端部に挟まれる位置に配置されることになる。このような絶縁層127を設けることで、島状のEL層及び絶縁層127上に形成される共通層114及び共通電極115に、分断箇所、及び局所的に膜厚が薄い箇所が形成されることを防ぐことができる。
絶縁層127は、図2Bに示すように、表示装置の断面視において、端部にテーパ角θ1のテーパ形状を有することが好ましい。テーパ角θ1は、絶縁層127の側面(または端部)と基板面のなす角である。ただし、基板面に限らず、層113Yの平坦部の上面、または画素電極111Gの平坦部の上面と、絶縁層127の側面(または端部)がなす角としてもよい。
絶縁層127のテーパ角θ1は、90°未満であり、60°以下が好ましく、45°以下がより好ましく、20°以下がさらに好ましい。絶縁層127の端部をこのような順テーパ形状にすることで、絶縁層127上に設けられる共通層114及び共通電極115を被覆性良く成膜でき、段切れ、または局所的な薄膜化などが生じることを抑制できる。これにより、共通層114及び共通電極115の面内均一性を向上させることができ、表示装置の表示品位を向上させることができる。
また、図2Aに示すように、表示装置の断面視において、絶縁層127の上面は凸曲面形状を有することが好ましい。絶縁層127の上面の凸曲面形状は、中心に向かってなだらかに膨らんだ形状であることが好ましい。また、絶縁層127上面の中央部の凸曲面部が、端部のテーパ部に連続的に接続される形状であることが好ましい。絶縁層127をこのような形状にすることで、絶縁層127上全体で、共通層114及び共通電極115を被覆性良く成膜することができる。
図2Bに示すように、絶縁層127の端部は、絶縁層125の端部よりも外側に位置することが好ましい。これにより、共通層114及び共通電極115を形成する面の凹凸を低減し、共通層114及び共通電極115の被覆性を高めることができる。
絶縁層125は、図2Bに示すように、表示装置の断面視において、端部にテーパ角θ2のテーパ形状を有することが好ましい。テーパ角θ2は、絶縁層125の側面と基板面のなす角である。ただし、基板面に限らず、層113Yの平坦部の上面、または画素電極111Gの平坦部の上面と、絶縁層125の側面がなす角としてもよい。
絶縁層125のテーパ角θ2は、90°未満であり、60°以下が好ましく、45°以下がより好ましく、20°以下がさらに好ましい。
マスク層118Yは、図2Bに示すように、表示装置の断面視において、端部にテーパ角θ3のテーパ形状を有することが好ましい。テーパ角θ3は、マスク層118Yの側面と基板面のなす角である。ただし、基板面に限らず、層113Yの平坦部の上面、または画素電極111Gの平坦部の上面と、絶縁層127の側面(または端部)がなす角としてもよい。
マスク層118Yのテーパ角θ3は、90°未満であり、60°以下が好ましく、45°以下がより好ましく、20°以下がさらに好ましい。マスク層118Yをこのような順テーパ形状にすることで、マスク層118Y上に設けられる、共通層114及び共通電極115を被覆性良く成膜することができる。
マスク層118Bの端部及びマスク層118Yの端部は、それぞれ、絶縁層125の端部よりも外側に位置することが好ましい。これにより、共通層114及び共通電極115を形成する面の凹凸を低減し、共通層114及び共通電極115の被覆性を高めることができる。
実施の形態2で詳述するが、絶縁層125とマスク層118のエッチング処理を一度に行うと、サイドエッチングにより、絶縁層127の端部の下の絶縁層125及びマスク層118が消失し、空洞(穴ともいえる)が形成される場合がある。当該空洞によって、共通層114及び共通電極115を形成する面に凹凸が生じ、共通層114及び共通電極115に段切れが生じやすくなる。そのため、エッチング処理を2回に分けて行い、2回のエッチングの間に加熱処理を行うことで、1回目のエッチング処理で空洞が形成されても、当該加熱処理によって絶縁層127が変形し、当該空洞を埋めることができる。また、2回目のエッチング処理では厚さが薄い膜をエッチングすることになるため、サイドエッチングされる量が少なくなり、空洞が形成されにくく、空洞が形成されるとしても極めて小さくできる。そのため、共通層114及び共通電極115を形成する面に凹凸が生じることを抑制でき、また、共通層114及び共通電極115が段切れすることを抑制できる。このようにエッチング処理を2回行うことから、テーパ角θ2とテーパ角θ3はそれぞれ異なる角度となる場合がある。また、テーパ角θ2とテーパ角θ3は同じ角度であってもよい。また、テーパ角θ2とテーパ角θ3はそれぞれテーパ角θ1よりも小さい角度となる場合がある。
絶縁層127は、マスク層118Yの側面の少なくとも一部を覆うことがある。例えば、図2Bでは、絶縁層127が、1回目のエッチング処理によって形成されたマスク層118Yの端部に位置する傾斜面を接して覆い、2回目のエッチング処理によって形成されたマスク層118Yの端部に位置する傾斜面は露出している例を示す。この2つの傾斜面はテーパ角が異なることから区別できることがある。また、2回のエッチング処理で形成される側面のテーパ角にほとんど差がなく、区別できないこともある。
また、図3A及び図3Bには、絶縁層127が、マスク層118Yの側面全体を覆う例を示す。具体的には、図3Bにおいて、絶縁層127は、上記の2つの傾斜面の双方に接して覆っている。これにより、共通層114及び共通電極115を形成する面の凹凸をより低減することができ好ましい。図3Bでは、絶縁層127の端部が、マスク層118Yの端部よりも外側に位置する例を示す。絶縁層127の端部は、図2Bに示すように、マスク層118Yの端部の内側に位置していてもよく、マスク層118Yの端部と揃っている、または概略揃っていてもよい。また、図3Bに示すように、絶縁層127は、層113Yと接することがある。
図3Bにおいても、テーパ角θ1乃至テーパ角θ3はそれぞれ、上記の範囲であると好ましい。
また、図4A及び図4Bには、絶縁層127が側面に凹曲面形状(くびれた部分、凹部、へこみ、くぼみなどともいう)を有する例を示す。絶縁層127の材料及び形成条件(加熱温度、加熱時間、及び加熱雰囲気など)によっては、絶縁層127の側面に凹曲面形状が形成される場合がある。
図4Aは、絶縁層127がマスク層118Yの側面の一部を覆い、マスク層118Yの側面の残りの部分が露出している例を示す。図4Bは、絶縁層127が、マスク層118Yの側面全体に接して覆っている例である。
また、図2乃至図4に示すように、絶縁層127の一方の端部が画素電極111Rの上面と重なり、絶縁層127の他方の端部が画素電極111Gの上面と重なることが好ましい。このような構造にすることで、絶縁層127の端部を層113Yの平坦または概略平坦な領域の上に形成することができる。よって、絶縁層127、絶縁層125、及びマスク層118のテーパ形状を形成することがそれぞれ比較的容易になる。また、層113Yと画素電極111Rまたは画素電極111Gとの間の膜剥がれを抑制することができる。一方で、画素電極の上面と絶縁層127とが重なる部分が小さいほど発光デバイスの発光領域が広くなり、開口率を高めることができ、好ましい。
なお、絶縁層127は、画素電極の上面と重ならなくてもよい。図5Aに示すように、絶縁層127は、画素電極の上面と重ならず、絶縁層127の一方の端部が画素電極111Rの側面と重なり、絶縁層127の他方の端部が画素電極111Gの側面と重なっていてもよい。また、図5Bに示すように、絶縁層127は、画素電極と重ならず、画素電極111Rと画素電極111Gとに挟まれた領域に、設けられていてもよい。図5A及び図5Bでは、層113Yの上面のうち、画素電極の上面の外側に位置する傾斜部及び平坦部(領域103)の上面の一部または全部が、マスク層118、絶縁層125、及び絶縁層127によって覆われている。このような構成であっても、マスク層118、絶縁層125、及び絶縁層127を設けない構成に比べて、共通層114及び共通電極115を形成する面の凹凸を低減し、共通層114及び共通電極115の被覆性を高めることができる。なお、領域103は、ダミー領域ということができる。
また、図6Aに示すように、表示装置の断面視において、絶縁層127の上面は平坦部を有していてもよい。
また、図6Bに示すように、表示装置の断面視において、絶縁層127の上面は凹曲面形状を有していてもよい。図6Bにおいて、絶縁層127の上面は、中心に向かってなだらかに膨らんだ形状、つまり凸曲面を有し、かつ、中央及びその近傍が窪んだ形状、つまり、凹曲面を有する。また、図6Bにおいて、絶縁層127上面の凸曲面部は、端部のテーパ部に連続的に接続される形状である。絶縁層127がこのような形状であっても、絶縁層127上全体で、共通層114及び共通電極115を被覆性良く成膜することができる。
図6Bに示すような絶縁層127の中央部に凹曲面を有する構成とするには、多階調マスク(代表的にはハーフトーンマスク、またはグレートーンマスク)を用いて露光する方法が適用できる。なお、多階調マスクとは、露光部分、中間露光部分、及び未露光部分の3つの露光レベルで露光を行うことが可能なマスクであり、透過した光が複数の強度となる露光マスクである。1枚のフォトマスク(一度の露光及び現像工程)により、複数(代表的には二種類)の厚さの領域を有する絶縁層127を形成することが可能である。
なお、絶縁層127の中央部に凹曲面を形成する方法としては、上記に限定されない。例えば、2枚のフォトマスクを用いて、露光部分と、中間露光部分と、を分けて作製してもよい。または、絶縁層127に用いる樹脂材料の粘度を調整してもよく、具体的には、絶縁層127に用いる材料の粘度を10cP以下、好ましくは1cP以上5cP以下としてもよい。
なお、図示していないが、絶縁層127の中央部の凹曲面は、必ずしも連続している必要はなく、隣接する発光デバイスの間で途切れていてもよい。この場合、図6Bに示す絶縁層127の中央部において、絶縁層127の一部が消失し、絶縁層125の表面が露出する構成となる。当該構成とする場合においては、共通層114及び共通電極115が被覆できるような形状とすればよい。
上記のように、図2乃至図6に示す各構成では、絶縁層127、絶縁層125、及びマスク層118Yを設けることにより、共通層114及び共通電極115を被覆性高く形成することができる。そして、共通層114及び共通電極115に分断された箇所、及び局所的に膜厚が薄い箇所が形成されることを防ぐことができる。よって、各発光デバイス間において、共通層114及び共通電極115に、分断された箇所に起因する接続不良、及び局所的に膜厚が薄い箇所に起因する電気抵抗の上昇が発生することを抑制できる。これにより、本発明の一態様に係る表示装置は、表示品位を向上させることができる。
発光デバイス130Y、130B上に保護層131を有することが好ましい。保護層131を設けることで、発光デバイスの信頼性を高めることができる。保護層131は単層構造でもよく、2層以上の積層構造であってもよい。
保護層131の導電性は問わない。保護層131としては、絶縁膜、半導体膜、及び、導電膜の少なくとも一種を用いることができる。
保護層131が無機膜を有することで、共通電極115の酸化を防止する、発光デバイスに不純物(水分及び酸素等)が入り込むことを抑制する、等により、発光デバイスの劣化を抑制し、表示装置の信頼性を高めることができる。
保護層131には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜等の無機絶縁膜を用いることができる。これらの無機絶縁膜の具体例は、絶縁層125の説明で挙げた通りである。特に、保護層131は、窒化絶縁膜または窒化酸化絶縁膜を有することが好ましく、窒化絶縁膜を有することがより好ましい。
また、保護層131には、In−Sn酸化物(ITOともいう)、In−Zn酸化物、Ga−Zn酸化物、Al−Zn酸化物、またはインジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOともいう)等を含む無機膜を用いることもできる。当該無機膜は、高抵抗であることが好ましく、具体的には、共通電極115よりも高抵抗であることが好ましい。当該無機膜は、さらに窒素を含んでいてもよい。
発光デバイスの発光を、保護層131を介して取り出す場合、保護層131は、可視光に対する透過性が高いことが好ましい。例えば、ITO、IGZO、及び、酸化アルミニウムは、それぞれ、可視光に対する透過性が高い無機材料であるため、好ましい。
保護層131としては、例えば、酸化アルミニウム膜と、酸化アルミニウム膜上の窒化シリコン膜と、の積層構造、または、酸化アルミニウム膜と、酸化アルミニウム膜上のIGZO膜と、の積層構造等を用いることができる。当該積層構造を用いることで、不純物(水及び酸素等)がEL層側に入り込むことを抑制できる。
さらに、保護層131は、有機膜を有していてもよい。例えば、保護層131は、有機膜と無機膜の双方を有していてもよい。保護層131に用いることができる有機材料としては、例えば、絶縁層127に用いることができる有機絶縁材料などが挙げられる。
保護層131は、異なる成膜方法を用いて形成された2層構造であってもよい。具体的には、ALD法を用いて保護層131の第1層目を形成し、スパッタリング法を用いて保護層131の第2層目を形成してもよい。
基板120の樹脂層122側の面には、遮光層を設けてもよい。また、基板120の外側(樹脂層122側とは反対の面)には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、基板120の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等の表面保護層を配置してもよい。例えば、表面保護層として、ガラス層またはシリカ層(SiO層)を設けることで、表面汚染及び傷の発生を抑制することができ、好ましい。また、表面保護層としては、DLC(ダイヤモンドライクカーボン)、酸化アルミニウム(AlO)、ポリエステル系材料、またはポリカーボネート系材料などを用いてもよい。なお、表面保護層には、可視光に対する透過率が高い材料を用いることが好ましい。また、表面保護層には、硬度が高い材料を用いることが好ましい。
基板120には、ガラス、石英、セラミックス、サファイア、樹脂、金属、合金、半導体などを用いることができる。発光デバイスからの光を取り出す側の基板には、該光を透過する材料を用いる。基板120に可撓性を有する材料を用いると、表示装置の可撓性を高めることができる。また、基板120として偏光板を用いてもよい。
基板120としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板120に、可撓性を有する程度の厚さのガラスを用いてもよい。
なお、表示装置に円偏光板を重ねる場合、表示装置が有する基板には、光学等方性の高い基板を用いることが好ましい。光学等方性が高い基板は、複屈折が小さい(複屈折量が小さい、ともいえる)。
光学等方性が高い基板のリタデーション(位相差)値の絶対値は、30nm以下が好ましく、20nm以下がより好ましく、10nm以下がさらに好ましい。
光学等方性が高いフィルムとしては、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、及びアクリルフィルム等が挙げられる。
また、基板としてフィルムを用いる場合、フィルムが吸水することで、表示装置にしわが発生するなどの形状変化が生じる恐れがある。そのため、基板には、吸水率の低いフィルムを用いることが好ましい。例えば、吸水率が1%以下のフィルムを用いることが好ましく、0.1%以下のフィルムを用いることがより好ましく、0.01%以下のフィルムを用いることがさらに好ましい。
樹脂層122としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
図7Aに、図1Bの変形例を示す。図7Aでは、画素電極111R、画素電極111G、画素電極111Bの上面及び側面がそれぞれ、導電層116R、導電層116G、導電層116Bによって覆われている例を示す。導電層116R、116G、116Bは、画素電極の一部とみなすこともできる。
図1Bでは、画素電極111Rの側面と層113Yとが接している。画素電極111Rが積層構造の場合、層113Yと接する導電層が複数存在することになる。これにより、画素電極111Rと層113Yとの密着性が低い部分が生じる恐れがある。これは、画素電極111Gと層113Yの間、画素電極111Bと層113Bの間においても同様である。
また、画素電極111R、111G、111Bの形成後に、導電層116R、116G、116Bとなる膜の一部をウェットエッチングにより除去する場合、エッチング液が画素電極111R、111G、111Bに触れると、ガルバニック腐食が発生する場合がある。
図7Aは、画素電極111R、111G、111Bの上面及び側面がそれぞれ、導電層116R、116G、116Bによって覆われているため、エッチング液が画素電極111R、111G、111Bに触れることを抑制でき、ガルバニック腐食等により変質することを抑制できる。これにより、画素電極111Rの材料の選択肢の幅を広げることができる。また、層113Yと導電層116Rとが接する構成であるため、密着性も均一となる。
トップエミッション型の表示装置の場合、画素電極111R、111G、111Bには、可視光に対する反射性を有する電極(反射電極)を用い、導電層116R、116G、116Bには、可視光に対する透過性を有する電極(透明電極)を用いることが好ましい。
図7Bに示す画素電極111は、2層構造であり、導電層116は単層構造である。例えば、画素電極111として、チタン膜と、チタン膜上のアルミニウム膜の2層構造を用い、導電層116として、酸化物導電層(例えば、In−Si−Sn酸化物(ITSOともいう))を用いることが好ましい。図7Cに示す画素電極111は、3層構造であり、導電層116は単層構造である。例えば、画素電極111として、チタン膜、アルミニウム膜、及び、チタン膜の3層構造を用い、導電層116として、酸化物導電層(例えば、ITSO)を用いることが好ましい。アルミニウム膜は、反射率が高く、反射電極として好適である。一方で、アルミニウムと酸化物導電層が接すると、電蝕が生じる恐れがある。そのため、アルミニウム膜と酸化物導電層との間に、チタン膜を設けることが好ましい。
図7Dに示す画素電極111は、2層構造であり、導電層116は2層構造である。例えば、画素電極111として、チタン膜と、チタン膜上のアルミニウム膜の2層構造を用い、導電層116として、チタン膜と酸化物導電層(例えば、ITSO)との2層構造を用いることが好ましい。図7Eに示す画素電極111は、3層構造であり、導電層116は2層構造である。例えば、画素電極111として、チタン膜、アルミニウム膜、及び、チタン膜の3層構造を用い、導電層116として、チタン膜と酸化物導電層(例えば、ITSO)との2層構造を用いることが好ましい。
なお、導電層116R、116G、116Bの厚さはそれぞれ異なっていてもよい。図7Fに示すように、導電層116Rの厚さは、導電層116Gの厚さよりも厚くすることが好ましい。具体的には、赤色の光を強めるように導電層116Rの膜厚を設定し、緑色の光を強めるように導電層116Gの膜厚を設定し、青色の光を強めるように導電層116Bの膜厚を設定することが好ましい。これにより、マイクロキャビティ構造を実現し、それぞれの発光デバイスにおける色純度を高めることができる。
図1Bでは、発光デバイス130Y上に、保護層131を介して、直接、着色層132R、132Gを設ける例を示す。このような構成とすることで、発光デバイスと着色層との位置合わせの精度を高めることができる。また、発光デバイスと着色層の位置を近づけることで、混色の抑制及び視野角特性の向上を図ることができ、好ましい。
図8A乃至図8C及び図9C、図9Dに、図1Aにおける一点鎖線X1−X2間の断面図を示す。
図8Aに示すように、着色層を設けた基板120を、樹脂層122により、保護層131に貼り合わせてもよい。基板120に、着色層を設けることで、着色層の形成工程における加熱処理の温度を高めることができる。
図8B及び図8Cに示すように、表示装置にはレンズアレイ133を設けてもよい。レンズアレイ133は、発光デバイスに重ねて設けることができる。
図8Bでは、発光デバイス130Y上に、保護層131を介して、着色層132R、132Gを設け、着色層132R、132G上に絶縁層134を設け、絶縁層134上にレンズアレイ133を設ける例を示す。発光デバイスを形成した基板に、直接、着色層132R、着色層132G、及び、レンズアレイ133を形成することで、発光デバイスと、着色層またはレンズアレイと、の位置合わせの精度を高めることができる。
絶縁層134には無機絶縁膜及び有機絶縁膜の一方または双方を用いることができる。絶縁層134は、単層構造であっても積層構造であってもよい。絶縁層134には、例えば、保護層131に用いることができる材料を適用できる。発光デバイスの発光は、絶縁層134を介して取り出されるため、絶縁層134は、可視光に対する透過性が高いことが好ましい。
図8Bでは、発光デバイスの発光は、着色層を透過した後、レンズアレイ133を透過して、表示装置の外部に取り出される。発光デバイスと着色層の位置を近づけることで、混色の抑制及び視野角特性の向上を図ることができ、好ましい。なお、発光デバイス上にレンズアレイ133を設け、レンズアレイ133上に着色層を設けてもよい。
図8Cは、着色層132R、着色層132G、及び、レンズアレイ133が設けられた基板120が、樹脂層122によって保護層131上に貼り合わされている例である。基板120に、着色層132R、着色層132G、及び、レンズアレイ133を設けることで、これらの形成工程における加熱処理の温度を高めることができる。
図8Cでは、基板120に接して着色層132R、132Gを設け、着色層132R、132Gに接して絶縁層134を設け、絶縁層134に接してレンズアレイ133を設ける例を示す。
図8Cでは、発光デバイスの発光は、レンズアレイ133を透過した後、着色層を透過して、表示装置の外部に取り出される。なお、基板120に接してレンズアレイ133を設け、レンズアレイ133に接して絶縁層134を設け、絶縁層134に接して着色層を設けてもよい。この場合、発光デバイスの発光は、着色層を透過した後、レンズアレイ133を透過して、表示装置の外部に取り出される。なお、図8B及び図8Cに示すように、レンズアレイ133と、隣接するレンズアレイ133との間に、着色層132Rと着色層132Gとが重なる領域が設けられると好適である。異なる色の着色層が重なる領域を設けることで、発光デバイスの発光の混色を抑制することができる。
図1B、図8B等では、保護層131として平坦化機能を有する層を用いる例を示すが、図8A、図8Cに示すように、保護層131は平坦化機能を有していなくてもよい。例えば、保護層131に有機膜を用いることで、保護層131の上面を平坦にすることができる。また、図8A、図8Cに示す保護層131は、例えば、無機膜を用いることで形成できる。
図9Cは、発光デバイス130Y上に、保護層131を介して、レンズアレイ133を設け、着色層132R及び着色層132Gが設けられた基板120が、樹脂層122によってレンズアレイ133上及び保護層131上に貼り合わされている例である。
図9Cとは異なり、レンズアレイ133を基板120に設け、着色層を保護層131上に直接形成してもよい。このように、レンズアレイ及び着色層の一方を保護層131上に設け、他方を基板120に設けてもよい。
レンズアレイ133は、凸面が基板120側を向いていてもよく、発光デバイス側を向いていてもよい。
レンズアレイ133は、無機材料及び有機材料の少なくとも一方を用いて形成することができる。例えば、樹脂を含む材料をレンズに用いることができる。また、酸化物及び硫化物の少なくとも一方を含む材料をレンズに用いることができる。レンズアレイ133としては、例えば、マイクロレンズアレイを用いることができる。レンズアレイ133は、基板上または発光デバイス上に直接形成してもよく、別途形成されたレンズアレイを貼り合わせてもよい。
図9Dに示すように、青色の発光デバイス130Bと重ねて、青色の光を透過する着色層132Bを設けてもよい。例えば、青色の発光デバイス130Bから射出される不要な波長の光を、青色の光を透過する着色層132Bを用いて、遮光することができる。このような構成とすることで、各発光デバイスから射出される光の色純度をさらに高めることができる。
発光デバイスと重ねて着色層を設けることで、外光反射を大きく低減でき、好ましい。また、発光デバイスがマイクロキャビティ構造を有することで、外光反射をより低減することができる。このように、着色層及びマイクロキャビティ構造の一方、好ましくは双方を適用することで、表示装置に円偏光板などの光学部材を用いなくても、外光反射を十分に抑制できる。表示装置に円偏光板を用いないことで、発光デバイスの発光が減衰されることを抑制でき、発光デバイスの光取り出し効率を高めることができる。これにより、表示装置の消費電力を低減することができる。
また、異なる色の着色層が互いに重なる部分を有することが好ましい。異なる色の着色層が互いに重なる領域は、遮光層として機能させることができる。これにより、さらに外光反射を低減することができる。
図10Aに、図1Aとは異なる表示装置100の上面図を示す。図10Aに示す画素110は、副画素11R、11G、11B、11Sの、4種類の副画素から構成される。
図10Aに示す画素110が有する4つの副画素のうち、3つを、発光デバイスを有する構成とし、残りの1つを、受光デバイスを有する構成としてもよい。
受光デバイスとしては、例えば、pn型またはpin型のフォトダイオードを用いることができる。受光デバイスは、受光デバイスに入射する光を検出し電荷を発生させる光電変換デバイス(光電変換素子ともいう)として機能する。受光デバイスに入射する光量に基づき、受光デバイスから発生する電荷量が決まる。
受光デバイスは、可視光及び赤外光の一方または双方を検出することができる。可視光を検出する場合、例えば、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの光のうち一つまたは複数を検出することができる。赤外光を検出する場合、暗い場所でも対象物の検出が可能となり、好ましい。
特に、受光デバイスとして、有機化合物を含む層を有する有機フォトダイオードを用いることが好ましい。有機フォトダイオードは、薄型化、軽量化、及び大面積化が容易であり、また、形状及びデザインの自由度が高いため、様々な表示装置に適用できる。
本発明の一態様では、発光デバイスとして有機ELデバイスを用い、受光デバイスとして有機フォトダイオードを用いる。有機ELデバイス及び有機フォトダイオードは、同一基板上に形成することができる。したがって、有機ELデバイスを用いた表示装置に有機フォトダイオードを内蔵することができる。
受光デバイスは、画素電極と共通電極との間に逆バイアスをかけて駆動することで、受光デバイスに入射する光を検出し、電荷を発生させ、電流として取り出すことができる。
受光デバイスについても、発光デバイスと同様の作製方法を適用することができる。受光デバイスが有する島状の活性層(光電変換層ともいう)は、ファインメタルマスクを用いて形成されるのではなく、活性層となる膜を一面に成膜した後に加工することで形成されるため、島状の活性層を均一の厚さで形成することができる。また、活性層上にマスク層を設けることで、表示装置の作製工程中に活性層が受けるダメージを低減し、受光デバイスの信頼性を高めることができる。
受光デバイスの構成及び材料については、実施の形態6を参照することができる。
図10Bに、図10Aにおける一点鎖線X3−X4間の断面図を示す。なお、図10Aにおける一点鎖線X1−X2間の断面図は、図1Bを参照でき、一点鎖線Y1−Y2間の断面図は、図9Aまたは図9Bを参照できる。
図10Bに示すように、表示装置100は、トランジスタを含む層101上に、絶縁層が設けられ、絶縁層上に発光デバイス130Y及び受光デバイス150が設けられ、発光デバイス及び受光デバイスを覆うように保護層131が設けられ、樹脂層122によって基板120が貼り合わされている。保護層131上には、発光デバイス130Yと重なる位置に着色層132Rが設けられている。また、隣り合う発光デバイスと受光デバイスの間の領域には、絶縁層125と、絶縁層125上の絶縁層127と、が設けられている。
図10Bでは、発光デバイス130Yが、基板120側に発光し、受光デバイス150には、基板120側から光が入射する例を示す(光Lem及び光Lin参照)。
副画素11R、及び、当該副画素11Rが有する発光デバイス130Yの構成は、前述の通りである。
受光デバイス150は、絶縁層255c上の画素電極111Sと、画素電極111S上の層155と、層155上の共通層114と、共通層114上の共通電極115と、を有する。層155は少なくとも活性層を含む。
ここで、層155は、少なくとも活性層を含み、好ましくは複数の機能層を有する。例えば、機能層として、キャリア輸送層(正孔輸送層及び電子輸送層)、及び、キャリアブロック層(正孔ブロック層及び電子ブロック層)などが挙げられる。また、活性層上に1層以上の層を有することが好ましい。活性層とマスク層との間に他の層を有することで、表示装置の作製工程中に活性層が最表面に露出することを抑制し、活性層が受けるダメージを低減することができる。これにより、受光デバイス150の信頼性を高めることができる。したがって、層155は、活性層と、活性層上のキャリアブロック層(正孔ブロック層または電子ブロック層)、もしくはキャリア輸送層(電子輸送層または正孔輸送層)と、を有することが好ましい。
層155は、受光デバイス150に設けられ、発光デバイスには設けられない層である。ただし、層155に含まれる活性層以外の機能層は、層113Bまたは層113Yに含まれる発光層以外の機能層と同じ材料を有する場合がある。一方、共通層114は、発光デバイスと受光デバイスが共有する一続きの層である。
ここで、受光デバイスと発光デバイスが共通で有する層は、発光デバイスにおける機能と受光デバイスにおける機能とが異なる場合がある。本明細書中では、発光デバイスにおける機能に基づいて構成要素を呼称することがある。例えば、正孔注入層は、発光デバイスにおいて正孔注入層として機能し、受光デバイスにおいて正孔輸送層として機能する。同様に、電子注入層は、発光デバイスにおいて電子注入層として機能し、受光デバイスにおいて電子輸送層として機能する。また、受光デバイスと発光デバイスが共通で有する層は、発光デバイスにおける機能と受光デバイスにおける機能とが同一である場合もある。正孔輸送層は、発光デバイス及び受光デバイスのいずれにおいても、正孔輸送層として機能し、電子輸送層は、発光デバイス及び受光デバイスのいずれにおいても、電子輸送層として機能する。
層113Yと絶縁層125との間にはマスク層118Yが位置し、層155と絶縁層125との間にはマスク層118Sが位置する。マスク層118Yは、層113Yを加工する際に層113Y上に設けたマスク層の一部が残存しているものである。また、マスク層118Sは、活性層を含む層である層155を加工する際に層155の上面に接して設けたマスク層の一部が残存しているものである。マスク層118Bとマスク層118Sは同じ材料を有していてもよく、異なる材料を有していてもよい。
図10Aでは、副画素11R、11G、11Bに比べて副画素11Sの開口率(サイズ、発光領域または受光領域のサイズともいえる)が大きい例を示すが、本発明の一態様はこれに限定されない。副画素11R、11G、11B、11Sの開口率は、それぞれ適宜決定することができる。副画素11R、11G、11B、11Sの開口率は、それぞれ、異なっていてもよく、2つ以上が等しいまたは概略等しくてもよい。
副画素11Sは、副画素11R、11G、11Bの少なくとも一つよりも開口率が高くてもよい。副画素11Sの受光面積が広いことで、対象物の検出をより容易にできる場合がある。例えば、表示装置の精細度、及び、副画素の回路構成等によっては、副画素11Sの開口率が、他の副画素の開口率に比べて高くなる場合がある。
また、副画素11Sは、副画素11R、11G、11Bの少なくとも一つよりも開口率が低くてもよい。副画素11Sの受光面積が狭いと、撮像範囲が狭くなり、撮像結果のボケの抑制、及び、解像度の向上が可能となる。そのため、高精細または高解像度の撮像を行うことができ、好ましい。
このように、副画素11Sは、用途に合った検出波長、精細度、及び、開口率とすることができる。
本発明の一態様の表示装置は、発光デバイスごとにEL層が島状に設けられていることで、副画素間にリーク電流が発生することを抑制することができる。これにより、意図しない発光に起因したクロストークを防ぐことができ、コントラストの極めて高い表示装置を実現できる。また、島状のEL層は、表示装置の作製工程中にダメージを受けている可能性のある端部とその近傍はダミー領域とし、発光領域としては用いないことで、発光デバイスの特性のばらつきを抑制することができる。また、隣り合う島状のEL層の間に、端部にテーパ形状を有する絶縁層を設けることで、共通電極の形成時に段切れが生じることを抑制し、また、共通電極に局所的に膜厚が薄い箇所が形成されることを防ぐことができる。これにより、共通層及び共通電極において、分断された箇所に起因する接続不良、及び局所的に膜厚が薄い箇所に起因する電気抵抗の上昇が発生することを抑制できる。これにより、本発明の一態様の表示装置は、高精細化と高い表示品位の両立が可能となる。
また、本発明の一態様の表示装置では、2つの副画素に、同じ発光層を有する発光デバイスを用い、それぞれ、赤色の着色層及び緑色の着色層と組み合わせることで、赤色の光を呈する副画素と緑色の光を呈する副画素とを実現する。そして、青色の光を呈する副画素には、青色の光を発する発光デバイスを用いる。これにより、2色の発光デバイスを作り分けるのみで、3色の副画素を作り分けることができる。作り分ける発光デバイスを2種類とすることで、3種類の発光デバイスを作り分ける場合に比べて、各色の副画素において、画素電極に加わるダメージを抑制し、発光デバイスの特性の低下を抑制できる。また、フォトリソグラフィ法を用いた発光層の加工回数を2回とすることができるため、歩留まりよく表示装置を作製できる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様の表示装置の作製方法について図11乃至図17を用いて説明する。なお、各要素の材料及び形成方法について、先に実施の形態1で説明した部分と同様の部分については説明を省略することがある。また、発光デバイスの構成の詳細については実施の形態5で説明する。
図11乃至図15、図16A、及び図17には、図1Aに示す一点鎖線X1−X2間の断面図と、一点鎖線Y1−Y2間の断面図と、を並べて示す。図16B乃至図16Eには、絶縁層127の端部とその近傍の拡大図を示す。
表示装置を構成する薄膜(絶縁膜、半導体膜、及び、導電膜等)は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法、及び、熱CVD法などがある。また、熱CVD法のひとつに、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法がある。
また、表示装置を構成する薄膜(絶縁膜、半導体膜、及び、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、またはナイフコート等の湿式の成膜方法により形成することができる。
特に、発光デバイスの作製には、蒸着法などの真空プロセス、及び、スピンコート法、インクジェット法などの溶液プロセスを用いることができる。蒸着法としては、スパッタリング法、イオンプレーティング法、イオンビーム蒸着法、分子線蒸着法、真空蒸着法などの物理蒸着法(PVD法)、及び、化学蒸着法(CVD法)等が挙げられる。特にEL層に含まれる機能層(正孔注入層、正孔輸送層、正孔ブロック層、発光層、電子ブロック層、電子輸送層、電子注入層、電荷発生層など)については、蒸着法(真空蒸着法等)、塗布法(ディップコート法、ダイコート法、バーコート法、スピンコート法、スプレーコート法等)、印刷法(インクジェット法、スクリーン(孔版印刷)法、オフセット(平版印刷)法、フレキソ(凸版印刷)法、グラビア法、または、マイクロコンタクト法等)などの方法により形成することができる。
また、表示装置を構成する薄膜を加工する際には、フォトリソグラフィ法等を用いることができる。または、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。また、メタルマスクなどの遮蔽マスクを用いた成膜方法により、島状の薄膜を直接形成してもよい。
フォトリソグラフィ法としては、代表的には以下の2つの方法がある。1つは、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう1つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。
フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線、KrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外(EUV:Extreme Ultra−violet)光、またはX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、サンドブラスト法などを用いることができる。
まず、トランジスタを含む層101上に、絶縁層255a、絶縁層255b、及び絶縁層255cをこの順で形成する。続いて、絶縁層255c上に、画素電極111R、111G、111B及び導電層123を形成する。(図11A)。画素電極となる導電膜の形成には、例えば、スパッタリング法または真空蒸着法を用いることができる。
続いて、画素電極の疎水化処理を行うことが好ましい。疎水化処理では、処理対象の表面を親水性から疎水性にすること、または、処理対象の表面の疎水性を高めることができる。画素電極の疎水化処理を行うことで、画素電極と、後の工程で形成される膜(ここでは膜113b)と、の密着性を高め、膜剥がれを抑制することができる。なお、疎水化処理は行わなくてもよい。
疎水化処理は、例えば画素電極へのフッ素修飾により行うことができる。フッ素修飾は例えば、フッ素を含むガスによる処理または加熱処理、フッ素を含むガス雰囲気中におけるプラズマ処理等により行うことができる。フッ素を含むガスとして、例えばフッ素ガスを用いることができ、例えばフルオロカーボンガスを用いることができる。フルオロカーボンガスとして、例えば四フッ化炭素(CF)ガス、Cガス、Cガス、Cガス、C等の低級フッ化炭素ガスを用いることができる。また、フッ素を含むガスとして、例えばSFガス、NFガス、CHFガス等を用いることができる。また、これらのガスに、ヘリウムガス、アルゴンガス、または水素ガス等を適宜添加することができる。
また、画素電極の表面に対して、アルゴン等の第18族元素を含むガス雰囲気中におけるプラズマ処理を行った後、シリル化剤を用いた処理を行うことで、画素電極の表面を疎水化することができる。シリル化剤として、ヘキサメチルジシラザン(HMDS)、トリメチルシリルイミダゾール(TMSI)等を用いることができる。さらに、画素電極の表面に対して、アルゴン等の第18族元素を含むガス雰囲気中におけるプラズマ処理を行った後、シランカップリング剤を用いた処理を行うことでも、画素電極の表面を疎水化することができる。
画素電極の表面に対して、アルゴン等の第18族元素を含むガス雰囲気中におけるプラズマ処理を行うことにより、画素電極の表面に対してダメージを与えることができる。これにより、HMDS等のシリル化剤に含まれるメチル基が、画素電極の表面に結合しやすくなる。また、シランカップリング剤によるシランカップリングが発生しやすくなる。以上により、画素電極の表面に対して、アルゴン等の第18族元素を含むガス雰囲気中におけるプラズマ処理を行った後、シリル化剤、またはシランカップリング剤を用いた処理を行うことで、画素電極の表面を疎水化することができる。
シリル化剤、またはシランカップリング剤等を用いた処理は、例えばスピンコート法、またはディップ法等を用いてシリル化剤、またはシランカップリング剤等を塗布することにより行うことができる。また、シリル化剤、またはシランカップリング剤等を用いた処理は、例えば気相法を用いて、画素電極上等にシリル化剤を有する膜、またはシランカップリング剤を有する膜等を形成することにより行うことができる。気相法では、まず、シリル化剤を有する材料、またはシランカップリング剤を有する材料等を揮発させることにより、シリル化剤、またはシランカップリング剤等を雰囲気中に含ませる。続いて、当該雰囲気中に、画素電極等が形成されている基板をおく。これにより、画素電極上に、シリル化剤、またはシランカップリング剤等を有する膜を形成することができ、画素電極の表面を疎水化することができる。
続いて、後に層113Bとなる膜113bを、画素電極上に形成する(図11A)。膜113b(後の層113B)は、青色の光を発する発光材料を含む。
図11Aに示すように、一点鎖線Y1−Y2間の断面図において、導電層123上には、膜113bを形成していない。例えば、エリアマスクを用いることで、膜113bを所望の領域にのみ成膜することができる。エリアマスクを用いた成膜工程と、レジストマスクを用いた加工工程と、を採用することで、比較的簡単なプロセスにて発光デバイスを作製することができる。
実施の形態1で説明した通り、本発明の一態様の表示装置では、発光デバイスに耐熱性の高い材料を用いる。具体的には、膜113bに含まれる化合物の耐熱温度は、それぞれ、100℃以上180℃以下であることが好ましく、120℃以上180℃以下が好ましく、140℃以上180℃以下がより好ましい。これにより、発光デバイスの信頼性を高めることができる。また、表示装置の作製工程においてかけられる温度の上限を高めることができる。したがって、表示装置に用いる材料及び形成方法の選択の幅を広げることができ、製造歩留まりの向上及び信頼性の向上が可能となる。
膜113bは、例えば、蒸着法、具体的には真空蒸着法により形成することができる。また、膜113bは、転写法、印刷法、インクジェット法、または塗布法等の方法で形成してもよい。
続いて、膜113b上、及び導電層123上に、後にマスク層118Bとなるマスク膜118bと、後にマスク層119Bとなるマスク膜119bと、を順に形成する(図11A)。
なお、本実施の形態では、マスク膜118bとマスク膜119bの2層構造でマスク膜を形成する例を示すが、マスク膜は単層構造であってもよく、3層以上の積層構造であってもよい。
膜113b上にマスク層を設けることで、表示装置の作製工程中に膜113bが受けるダメージを低減し、発光デバイスの信頼性を高めることができる。
マスク膜118bには、膜113bの加工条件に対する耐性の高い膜、具体的には、膜113bとのエッチングの選択比が大きい膜を用いる。マスク膜119bには、マスク膜118bとのエッチングの選択比が大きい膜を用いる。
また、マスク膜118b及びマスク膜119bは、膜113bの耐熱温度よりも低い温度で形成する。マスク膜118b及びマスク膜119bを形成する際の基板温度としては、それぞれ、代表的には、200℃以下、好ましくは150℃以下、より好ましくは120℃以下、より好ましくは100℃以下、さらに好ましくは80℃以下である。
耐熱温度の指標としては、例えば、ガラス転移点、軟化点、融点、熱分解温度、及び、5%重量減少温度等が挙げられる。膜113b、113y(つまり、層113B、113Y)の耐熱温度としては、これら耐熱温度の指標となるいずれかの温度、好ましくはこれらのうち最も低い温度とすることができる。
上述の通り、本発明の一態様の表示装置では、発光デバイスに耐熱性の高い材料を用いる。したがって、マスク膜を形成する際の基板温度を100℃以上、120℃以上、または140℃以上とすることもできる。例えば、無機絶縁膜は、成膜温度が高いほど緻密でバリア性の高い膜とすることができる。したがって、このような温度でマスク膜を成膜することで、膜113bが受けるダメージをより低減でき、発光デバイスの信頼性を高めることができる。
マスク膜118b及びマスク膜119bには、ウェットエッチング法により除去できる膜を用いることが好ましい。ウェットエッチング法を用いることで、ドライエッチング法を用いる場合に比べて、マスク膜118b及びマスク膜119bの加工時に、膜113bに加わるダメージを低減することができる。
マスク膜118b及びマスク膜119bの形成には、例えば、スパッタリング法、ALD法(熱ALD法、PEALD法を含む)、CVD法、真空蒸着法を用いることができる。また、前述の湿式の成膜方法を用いて形成してもよい。
なお、膜113b上に接して形成されるマスク膜118bは、マスク膜119bよりも、膜113bへのダメージが少ない形成方法を用いて形成されることが好ましい。例えば、スパッタリング法よりも、ALD法または真空蒸着法を用いて、マスク膜118bを形成することが好ましい。
マスク膜118b及びマスク膜119bとしては、それぞれ、例えば、金属膜、合金膜、金属酸化物膜、半導体膜、有機絶縁膜、及び、無機絶縁膜等のうち一種または複数種を用いることができる。
マスク膜118b及びマスク膜119bには、それぞれ、例えば、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタン、アルミニウム、イットリウム、ジルコニウム、及びタンタル等の金属材料、または該金属材料を含む合金材料を用いることができる。特に、アルミニウムまたは銀等の低融点材料を用いることが好ましい。マスク膜118b及びマスク膜119bの一方または双方に紫外線を遮蔽することが可能な金属材料を用いることで、膜113bに紫外線が照射されることを抑制でき、膜113bの劣化を抑制できるため、好ましい。
また、マスク膜118b及びマスク膜119bの一方または双方に、金属膜または合金膜を用いることで、プラズマによるダメージが膜113bに加わることを抑制でき、膜113bの劣化を抑制できるため、好ましい。具体的には、ドライエッチング法を用いる工程、及び、アッシングを行う工程などで、プラズマによるダメージが膜113bに加わることを抑制できる。特に、マスク膜119bとして、タングステン膜などの金属膜または合金膜を用いることが好ましい。
また、マスク膜118b及びマスク膜119bには、それぞれ、In−Ga−Zn酸化物、酸化インジウム、In−Zn酸化物、In−Sn酸化物、インジウムチタン酸化物(In−Ti酸化物)、インジウムスズ亜鉛酸化物(In−Sn−Zn酸化物)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、インジウムガリウムスズ亜鉛酸化物(In−Ga−Sn−Zn酸化物)、シリコンを含むインジウムスズ酸化物等の金属酸化物を用いることができる。
なお、上記ガリウムに代えて元素M(Mは、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムから選ばれた一種または複数種)を用いてもよい。
また、マスク膜として、光、特に紫外線に対して遮光性を有する材料を含む膜を用いることができる。例えば、紫外線に対して反射性を有する膜、または紫外線を吸収する膜を用いることができる。遮光性を有する材料としては、紫外線に対して遮光性のある金属、絶縁体、半導体、及び半金属など、様々な材料を用いることができるが、当該マスク膜の一部または全部は、後の工程で除去するため、エッチングによる加工が可能である膜であることが好ましく、特に加工性が良好であることが好ましい。
例えば、半導体の製造プロセスと親和性の高い材料として、シリコンまたはゲルマニウムなどの半導体材料を用いることができる。または、上記半導体材料の酸化物または窒化物を用いることができる。または、炭素などの非金属材料、またはその化合物を用いることができる。または、チタン、タンタル、タングステン、クロム、アルミニウムなどの金属、またはこれらの一以上を含む合金が挙げられる。または、酸化チタンもしくは酸化クロムなどの上記金属を含む酸化物、または窒化チタン、窒化クロム、もしくは窒化タンタルなどの窒化物を用いることができる。
マスク膜に、紫外線に対して遮光性を有する材料を含む膜を用いることで、露光工程などでEL層に紫外線が照射されることを抑制できる。EL層が紫外線によってダメージを受けることを抑制することで、発光デバイスの信頼性を高めることができる。
なお、紫外線に対して遮光性を有する材料を含む膜は、後述する絶縁膜125Aの材料として用いても、同様の効果を奏する。
また、マスク膜118b及びマスク膜119bとしては、それぞれ、保護層131に用いることができる各種無機絶縁膜を用いることができる。特に、酸化絶縁膜は、窒化絶縁膜に比べて膜113bとの密着性が高く好ましい。例えば、マスク膜118b及びマスク膜119bには、それぞれ、酸化アルミニウム、酸化ハフニウム、酸化シリコン等の無機絶縁材料を用いることができる。マスク膜118b及びマスク膜119bとして、例えば、ALD法を用いて、酸化アルミニウム膜を形成することができる。ALD法を用いることで、下地(特にEL層)へのダメージを低減できるため好ましい。
例えば、マスク膜118bとして、ALD法を用いて形成した無機絶縁膜(例えば、酸化アルミニウム膜)を用い、マスク膜119bとして、スパッタリング法を用いて形成した無機膜(例えば、In−Ga−Zn酸化物膜、シリコン膜、またはタングステン膜)を用いることができる。
なお、マスク膜118bと、後に形成する絶縁層125との双方に、同じ無機絶縁膜を用いることができる。例えば、マスク膜118bと絶縁層125との双方に、ALD法を用いて形成した酸化アルミニウム膜を用いることができる。ここで、マスク膜118bと、絶縁層125とで、同じ成膜条件を適用してもよく、互いに異なる成膜条件を適用してもよい。例えば、マスク膜118bを、絶縁層125と同様の条件で成膜することで、マスク膜118bを、水及び酸素の少なくとも一方に対するバリア性の高い絶縁層とすることができる。一方で、マスク膜118bは後の工程で大部分または全部を除去する層であるため、加工が容易であることが好ましい。そのため、マスク膜118bは、絶縁層125と比べて、成膜時の基板温度が低い条件で成膜することが好ましい。
マスク膜118b及びマスク膜119bの一方または双方に、有機材料を用いてもよい。例えば、有機材料として、少なくとも膜113bの最上部に位置する膜に対して化学的に安定な、溶媒に溶解しうる材料を用いてもよい。特に、水またはアルコールに溶解する材料を好適に用いることができる。このような材料の成膜の際には、水またはアルコール等の溶媒に溶解させた状態で、湿式の成膜方法で塗布した後に、溶媒を蒸発させるための加熱処理を行うことが好ましい。このとき、減圧雰囲気下での加熱処理を行うことで、低温且つ短時間で溶媒を除去できるため、膜113bへの熱的なダメージを低減することができ、好ましい。
マスク膜118b及びマスク膜119bには、それぞれ、ポリビニルアルコール(PVA)、ポリビニルブチラル、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、アルコール可溶性のポリアミド樹脂、または、パーフルオロポリマーなどのフッ素樹脂等の有機樹脂を用いてもよい。
例えば、マスク膜118bとして、蒸着法または上記湿式の成膜方法のいずれかを用いて形成した有機膜(例えば、PVA膜)を用い、マスク膜119bとして、スパッタリング法を用いて形成した無機膜(例えば、窒化シリコン膜)を用いることができる。
なお、実施の形態1で説明した通り、本発明の一態様の表示装置には、マスク膜の一部がマスク層として残存する場合がある。
続いて、マスク膜119b上にレジストマスク190Bを形成する(図11A)。レジストマスク190Bは、感光性の樹脂(フォトレジスト)を塗布し、露光及び現像を行うことで形成することができる。
レジストマスク190Bは、ポジ型のレジスト材料及びネガ型のレジスト材料のどちらを用いて作製してもよい。
レジストマスク190Bは、画素電極111Bと重なる位置に設ける。レジストマスク190Bは、導電層123と重なる位置にも設けることが好ましい。これにより、導電層123が表示装置の作製工程中にダメージを受けることを抑制できる。なお、導電層123上にレジストマスク190Bを設けなくてもよい。
また、レジストマスク190Bは、図11AのY1−Y2間の断面図に示すように、膜113bの端部から導電層123の端部(膜113b側の端部)までを覆うように設けることが好ましい。これにより、マスク膜118b及びマスク膜119bを加工した後でも、マスク層118B、119Bの端部と膜113bの端部とが重なる。また、マスク層118B、119Bが、膜113bの端部から導電層123の端部(膜113b側の端部)までを覆うように設けられるため、膜113bを加工した後でも、絶縁層255cが露出することを抑制することができる(図12BのY1−Y2間の断面図参照)。これにより、絶縁層255a乃至255c、及び、トランジスタを含む層101に含まれる絶縁層の一部がエッチング等により消失し、トランジスタを含む層101に含まれる導電層が露出することを防ぐことができる。そのため、当該導電層が、意図せず、他の導電層と電気的に接続されることを抑制できる。例えば、当該導電層と共通電極115との間のショートを抑制できる。
続いて、レジストマスク190Bを用いて、マスク膜119bの一部を除去し、マスク層119Bを形成する(図11B)。マスク層119Bは、画素電極111B上と、導電層123上と、に残存する。その後、レジストマスク190Bを除去する(図11C)。続いて、マスク層119Bをマスク(ハードマスクともいう)に用いて、マスク膜118bの一部を除去し、マスク層118Bを形成する(図12A)。
マスク膜118b及びマスク膜119bは、それぞれ、ウェットエッチング法またはドライエッチング法により加工することができる。マスク膜118b及びマスク膜119bの加工は、異方性エッチングにより行うことが好ましい。
ウェットエッチング法を用いることで、ドライエッチング法を用いる場合に比べて、マスク膜118b及びマスク膜119bの加工時に、膜113bに加わるダメージを低減することができる。ウェットエッチング法を用いる場合、例えば、現像液、水酸化テトラメチルアンモニウム(TMAH)水溶液、希フッ酸、シュウ酸、リン酸、酢酸、硝酸、またはこれらの2以上を含む混合溶液等を用いることが好ましい。
マスク膜119bの加工においては、膜113bが露出しないため、マスク膜118bの加工よりも、加工方法の選択の幅は広い。具体的には、マスク膜119bの加工の際に、エッチングガスに酸素を含むガスを用いた場合でも、膜113bの劣化をより抑制することができる。
また、マスク膜118bの加工においてドライエッチング法を用いる場合は、エッチングガスに酸素を含むガスを用いないことで、膜113bの劣化を抑制することができる。ドライエッチング法を用いる場合、例えば、CF、C、SF、CHF、Cl、HO、BCl、またはHe等の貴ガス(希ガスともいう)を含むガスをエッチングガスに用いることが好ましい。
例えば、マスク膜118bとして、ALD法を用いて形成した酸化アルミニウム膜を用いる場合、CHFとHe、または、CHFとHeとCHを用いて、ドライエッチング法によりマスク膜118bを加工することができる。また、マスク膜119bとして、スパッタリング法を用いて形成したIn−Ga−Zn酸化物膜を用いる場合、希釈リン酸を用いて、ウェットエッチング法によりマスク膜119bを加工することができる。または、CHとArを用いて、ドライエッチング法により加工してもよい。または、希釈リン酸を用いて、ウェットエッチング法によりマスク膜119bを加工することができる。また、マスク膜119bとして、スパッタリング法を用いて形成したタングステン膜を用いる場合、SF、CFとO、またはCFとClとOを用いて、ドライエッチング法によりマスク膜119bを加工することができる。
レジストマスク190Bは、例えば、酸素プラズマを用いたアッシング等により除去することができる。または、酸素ガスと、CF、C、SF、CHF、Cl、HO、BCl、またはHe等の貴ガスと、を用いてもよい。または、ウェットエッチングにより、レジストマスク190Bを除去してもよい。このとき、マスク膜118bが最表面に位置し、膜113bは露出していないため、レジストマスク190Bの除去工程において、膜113bにダメージが加わることを抑制することができる。また、レジストマスク190Bの除去方法の選択の幅を広げることができる。
続いて、膜113bを加工して、層113Bを形成する。例えば、マスク層119B及びマスク層118Bをハードマスクに用いて、膜113bの一部を除去し、層113Bを形成する(図12B)。
これにより、図12Bに示すように、画素電極111B上に、層113B、マスク層118B、及び、マスク層119Bの積層構造が残存する。また、画素電極111R及び画素電極111Gは露出する。
ここで、膜113bを加工する際、画素電極111Rの表面及び画素電極111Gの表面は、エッチングガスまたはエッチング液に曝される。一方、画素電極111Bの表面はエッチングガスまたはエッチング液等に曝されない。このように、最初に形成する色の発光デバイスでは、画素電極の表面がエッチング工程によるダメージを受けず、画素電極とEL層との界面の状態を良好に保つことができる。
膜113bの加工は、異方性エッチングにより行うことが好ましい。特に、異方性のドライエッチングが好ましい。または、ウェットエッチングを用いてもよい。
図12Bでは、ドライエッチング法により、膜113bを加工する例を示す。ドライエッチング装置内では、エッチングガスをプラズマ化する。そのため、作製中の表示装置の表面はプラズマに曝される(プラズマ121a)。ここで、マスク層118B及びマスク層119Bの一方または双方に、金属膜または合金膜を用いることで、膜113bの残存させる部分(層113Bとなる部分)にプラズマによるダメージが加わることを抑制でき、層113Bの劣化を抑制できるため、好ましい。特に、マスク層119Bとして、タングステン膜などの金属膜または合金膜を用いることが好ましい。
ドライエッチング法を用いる場合は、エッチングガスに酸素を含むガスを用いないことで、膜113bの劣化を抑制することができる。
また、エッチングガスに酸素を含むガスを用いてもよい。エッチングガスが酸素を含むことで、エッチングの速度を速めることができる。したがって、エッチング速度を十分な速さに維持しつつ、低パワーの条件でエッチングを行うことができる。そのため、膜113bに与えるダメージを抑制することができる。さらに、エッチング時に生じる反応生成物の付着等の不具合を抑制することができる。
ドライエッチング法を用いる場合、例えば、H、CF、C、SF、CHF、Cl、HO、BCl、またはHe、Ar等の貴ガスのうち、一種以上を含むガスをエッチングガスに用いることが好ましい。または、これらの一種以上と、酸素を含むガスをエッチングガスに用いることが好ましい。または、酸素ガスをエッチングガスに用いてもよい。具体的には、例えば、HとArを含むガス、または、CFとHeを含むガスをエッチングガスに用いることができる。また、例えば、CF、He、及び酸素を含むガスをエッチングガスに用いることができる。また、例えば、HとArを含むガス、及び酸素を含むガスをエッチングガスに用いることができる。
ドライエッチング装置としては、高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。または、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電圧を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電圧を印加する構成でもよい。
図12Bでは、層113Bの端部が、画素電極111Bの端部よりも外側に位置する例を示す。このような構成とすることで、画素の開口率を高くすることができる。なお、図12Bでは図示していないが、上記エッチング処理によって、絶縁層255cの層113Bと重畳しない領域に凹部が形成される場合がある。
また、層113Bが画素電極111Bの上面及び側面を覆うことにより、画素電極111Bを露出させずに、以降の工程を行うことができる。画素電極111Bの端部が露出していると、エッチング工程などにおいて腐食が生じる場合がある。画素電極111Bの腐食により生じた生成物は不安定な場合があり、例えばウェットエッチングの場合には溶液中に溶解し、ドライエッチングの場合には、雰囲気中に飛散する懸念がある。生成物の溶液中への溶解、または、雰囲気中への飛散により、例えば、被処理面、及び、層113Bの側面などに生成物が付着し、発光デバイスの特性に悪影響を及ぼす、または、複数の発光デバイスの間にリークパスを形成する可能性がある。また、画素電極111Bの端部が露出している領域では、互いに接する層同士の密着性が低下し、層113Bまたは画素電極111Bの膜剥がれが生じやすくなる恐れがある。
したがって、層113Bが画素電極111Bの上面及び側面を覆う構成とすることにより、例えば、発光デバイスの歩留まり及び特性を向上させることができる。
また、実施の形態1で説明した通り、層113Bが画素電極111Bの上面及び側面を覆うことにより、層113Bには、発光領域(画素電極111Bと共通電極115との間に位置する領域)の外側にダミー領域が設けられる。ここで、層113Bの端部は、膜113bの加工時にダメージが加わることがある。また、層113Bの端部は、後の工程でもプラズマに曝されてダメージが加わることがある(図14Aのプラズマ121b参照)。層113Bの端部及びその近傍は、ダミー領域となり発光に用いられないため、ダメージが加わっても、発光デバイスの特性に悪影響を及ぼしにくい。一方で、層113Bの発光領域はマスク層によって覆われているため、プラズマに曝されず、プラズマによるダメージが十分に低減されている。マスク層は、層113Bの、画素電極111Bの上面と重なる平坦部の上面のみに限られず、画素電極111Bの上面の外側に位置する傾斜部及び平坦部の上面までを覆うように設けることが好ましい。このように、層113Bのうち、作製工程中のダメージが抑制された部分を発光領域として用いるため、発光効率が高く、長寿命の発光デバイスを実現することができる。
また、接続部140に相当する領域では、導電層123上にマスク層118Bとマスク層119Bとの積層構造が残存する。
なお、前述の通り、図12BのY1−Y2間の断面図において、マスク層118B、119Bは、層113Bの端部と導電層123の端部を覆うように設けられ、絶縁層255cの上面が露出していない。したがって、絶縁層255a乃至255c、及び、トランジスタを含む層101に含まれる絶縁層の一部がエッチング等により除去され、トランジスタを含む層101に含まれる導電層が露出することを防ぐことができる。そのため、当該導電層が、意図せず、他の導電層と電気的に接続されることを抑制できる。
以上のように、本発明の一態様では、マスク膜119b上にレジストマスク190Bを形成し、レジストマスク190Bを用いて、マスク膜119bの一部を除去することにより、マスク層119Bを形成する。その後、マスク層119Bをハードマスクに用いて、膜113bの一部を除去することにより、層113Bを形成する。よって、フォトリソグラフィ法を用いて膜113bを加工することにより、層113Bが形成されるということができる。なお、レジストマスク190Bを用いて、膜113bの一部を除去してもよい。その後、レジストマスク190Bを除去してもよい。
次に、画素電極の疎水化処理を行うことが好ましい。膜113bの加工時に、画素電極の表面状態が親水性に変化する場合がある。画素電極の疎水化処理を行うことで、画素電極と後の工程で形成される膜(ここでは膜113y)との密着性を高め、膜剥がれを抑制することができる。なお、疎水化処理は行わなくてもよい。
続いて、後に層113Yとなる膜113yを、画素電極111R、111G上、及び、マスク層119B上に形成する(図12C)。膜113y(後の層113Y)は、膜113bに用いた発光材料よりも長波長の光を発する発光材料を含む。例えば、膜113yは、赤色の光を発する発光材料と緑色の光を発する発光材料とを含む。または、膜113yは、黄色の光を発する発光材料を含む。または、膜113yは、赤色の光を発する発光材料と緑色の光を発する発光材料と黄色の光を発する発光材料とを含む。
膜113yは、膜113bの形成に用いることができる方法と同様の方法で形成することができる。
続いて、膜113y上に、後にマスク層118Yとなるマスク膜118yと、後にマスク層119Yとなるマスク膜119yと、を順に形成し、その後、レジストマスク190Yを形成する(図12C)。マスク膜118y及びマスク膜119yの材料及び形成方法は、マスク膜118b及びマスク膜119bに適用できる条件と同様である。レジストマスク190Yの材料及び形成方法は、レジストマスク190Bに適用できる条件と同様である。
レジストマスク190Yは、画素電極111Rと重なる位置と、画素電極111Gと重なる位置と、に設ける。なお、画素電極111Rと画素電極111Gとの間に、レジストマスク190Yと重ならない領域が存在することが好ましい。
続いて、レジストマスク190Yを用いて、マスク膜119yの一部を除去し、マスク層119Yを形成する(図13A)。マスク層119Yは、画素電極111R上、及び画素電極111G上にそれぞれ残存する。その後、レジストマスク190Yを除去する(図13B)。続いて、マスク層119Yをマスクに用いて、マスク膜118yの一部を除去し、マスク層118Yを形成する(図13C)。続いて、膜113yを加工して、層113Yを形成する。例えば、マスク層119Y及びマスク層118Yをハードマスクに用いて、膜113yの一部を除去し、層113Yを形成する(図14A)。
ここで、膜113yを加工する際、各画素電極の表面はエッチングガスまたはエッチング液等に曝されない。つまり、1番目に形成する色の発光デバイスでは、画素電極の表面がエッチング工程に曝されず、2番目に形成する色の発光デバイスでは、画素電極の表面が1回のエッチング工程で曝される。ここで、3色の発光デバイスを作り分ける場合、3番目に形成する色の発光デバイスでは、画素電極の表面が2回のエッチング工程で曝されることとなる。本実施の形態では、2色の発光デバイスを作り分けるため、画素電極がエッチングによりダメージを受けることを抑制できる。これにより、各色の発光デバイスの特性を良好にすることができる。
なお、本実施の形態では、層113Bを形成した後に、層113Yを形成する例を示すが、層113Yを形成した後に、層113Bを形成してもよい。これにより、エッチング工程で晒される画素電極が画素電極111Bのみとなり、ダメージを受けない画素電極(画素電極111R、111G)の割合を増やすことができる。
図14Aでは、ドライエッチング法により、膜113yを加工する例を示す。作製中の表示装置の表面はプラズマに曝される(プラズマ121b)。ここで、マスク層118B及びマスク層119Bの一方または双方に、金属膜または合金膜を用いることで、層113Bにプラズマによるダメージが加わることを抑制でき、層113Bの劣化を抑制できるため、好ましい。また、マスク層118Y及びマスク層119Yの一方または双方に、金属膜または合金膜を用いることで、膜113yの残存させる部分(層113Y)にプラズマによるダメージが加わることを抑制でき、層113Yの劣化を抑制できるため、好ましい。特に、マスク層119Yとして、タングステン膜などの金属膜または合金膜を用いることが好ましい。
これにより、図14Aに示すように、画素電極111R上、及び、画素電極111G上のそれぞれに、層113Y、マスク層118Y、及び、マスク層119Yの積層構造が残存する。また、マスク層119Bは露出する。
なお、層113B及び層113Yの側面は、それぞれ、被形成面に対して垂直または概略垂直であることが好ましい。例えば、被形成面と、これらの側面との成す角度を、60°以上90度°とすることが好ましい。
上記のように、フォトリソグラフィ法を用いて形成した層113Bと層113Yのうち隣接する2つの間の距離は、8μm以下、5μm以下、3μm以下、2μm以下、または、1μm以下にまで狭めることができる。ここで、当該距離とは、例えば、層113Bと層113Yのうち、隣接する2つの対向する端部の間の距離で規定することができる。このように、島状のEL層の間の距離を狭めることで、高い精細度と、大きな開口率を有する表示装置を提供することができる。
続いて、マスク層119B、119Yを除去することが好ましい(図14B)。後の工程によっては、マスク層118B、118Y、119B、119Yが表示装置に残存する場合がある。この段階でマスク層119B、119Yを除去することで、マスク層119B、119Yが表示装置に残存することを抑制できる。例えば、マスク層119B、119Yに導電材料を用いる場合、マスク層119B、119Yを事前に除去しておくことで、残存したマスク層119B、119Yによるリーク電流の発生、及び、容量の形成などを抑制できる。
なお、本実施の形態では、マスク層119B、119Yを除去する場合を例に挙げて説明するが、マスク層119B、119Yは除去しなくてもよい。例えば、マスク層119B、119Yが、前述の、紫外線に対して遮光性を有する材料を含む場合は、除去せずに次の工程に進むことで、島状のEL層を紫外線から保護することができ、好ましい。
マスク層の除去工程には、マスク層の加工工程と同様の方法を用いることができる。特に、ウェットエッチング法を用いることで、ドライエッチング法を用いる場合に比べて、マスク層を除去する際に、層113B及び層113Yに加わるダメージを低減することができる。
マスク層119B、119Yに金属膜または合金膜を用いる場合、マスク層119B、119Yを有することで、EL層にプラズマによるダメージが加わることを抑制できる。したがって、マスク層119B、119Yを除去するまでの工程では、ドライエッチング法を用いて膜の加工を行うことができる。一方で、マスク層119B、119Yを除去する工程、及び、除去した後の各工程では、EL層にプラズマによるダメージが加わることを抑制する膜が無くなってしまうため、ウェットエッチング法など、プラズマを用いない方法により膜の加工を行うことが好ましい。
また、マスク層を、水またはアルコールなどの溶媒に溶解させることで除去してもよい。アルコールとしては、エチルアルコール、メチルアルコール、イソプロピルアルコール(IPA)、またはグリセリンなどが挙げられる。
マスク層を除去した後に、層113B及び層113Yに含まれる水、及び層113B及び層113Y表面に吸着する水を除去するため、乾燥処理を行ってもよい。例えば、窒素雰囲気などの不活性ガス雰囲気または減圧雰囲気下における加熱処理を行うことができる。加熱処理は、基板温度として50℃以上200℃以下、好ましくは60℃以上150℃以下、より好ましくは70℃以上120℃以下の温度で行うことができる。減圧雰囲気とすることで、より低温で乾燥が可能であるため好ましい。
続いて、画素電極、層113B、層113Y、マスク層118B、及びマスク層118Yを覆うように、後に絶縁層125となる絶縁膜125Aを形成する(図14B)。
後述するように、絶縁膜125Aの上面に接して、絶縁膜127aが形成される。このため、絶縁膜125Aの上面は、絶縁膜127aに用いる樹脂組成物(例えば、アクリル樹脂を含む感光性の樹脂組成物)に対する密着性が高いことが好ましい。当該密着性を向上させるため、表面処理を行って絶縁膜125Aの上面を疎水化すること(または疎水性を高めること)が好ましい。例えば、ヘキサメチルジシラザン(HMDS)などのシリル化剤を用いて処理を行うことが好ましい。このように絶縁膜125Aの上面を疎水化することにより、絶縁膜127aを密着性良く形成することができる。なお、表面処理としては、前述の疎水化処理を行ってもよい。
続いて、絶縁膜125A上に絶縁膜127aを形成する(図14C)。
絶縁膜125A及び絶縁膜127aは、層113B及び層113Yへのダメージが少ない形成方法で成膜されることが好ましい。特に、絶縁膜125Aは、層113B及び層113Yの側面に接して形成されるため、絶縁膜127aよりも、層113B及び層113Yへのダメージが少ない形成方法で成膜されることが好ましい。
また、絶縁膜125A及び絶縁膜127aは、それぞれ、層113B及び層113Yの耐熱温度よりも低い温度で形成する。また、絶縁膜125Aは成膜する際の基板温度を高くすることで、膜厚が薄くても、不純物濃度が低く、水及び酸素の少なくとも一方に対するバリア性の高い膜とすることができる。
絶縁膜125A及び絶縁膜127aを形成する際の基板温度としては、それぞれ、60℃以上、80℃以上、100℃以上、または、120℃以上、かつ、200℃以下、180℃以下、160℃以下、150℃以下、または140℃以下であることが好ましい。
上述の通り、本発明の一態様の表示装置では、発光デバイスに耐熱性の高い材料を用いる。したがって、絶縁膜125A及び絶縁膜127aを形成する際の基板温度を、それぞれ、100℃以上、120℃以上、または140℃以上とすることもできる。例えば、無機絶縁膜は、成膜温度が高いほど緻密でバリア性の高い膜とすることができる。したがって、このような温度で絶縁膜125Aを成膜することで、層113B及び層113Yが受けるダメージをより低減でき、発光デバイスの信頼性を高めることができる。
絶縁膜125Aとしては、上記の基板温度の範囲で、3nm以上、5nm以上、または、10nm以上、かつ、200nm以下、150nm以下、100nm以下、または、50nm以下の厚さの絶縁膜を形成することが好ましい。
絶縁膜125Aは、例えば、ALD法を用いて形成することが好ましい。ALD法を用いることで、成膜ダメージを小さくすることができ、また、被覆性の高い膜を成膜可能なため好ましい。絶縁膜125Aとしては、例えば、ALD法を用いて、酸化アルミニウム膜を形成することが好ましい。
そのほか、絶縁膜125Aは、ALD法よりも成膜速度が速いスパッタリング法、CVD法、または、PECVD法を用いて形成してもよい。これにより、信頼性の高い表示装置を生産性高く作製することができる。
絶縁膜127aは、前述の湿式の成膜方法を用いて形成することが好ましい。絶縁膜127aは、例えば、スピンコートにより、感光性の樹脂を用いて形成することが好ましく、より具体的には、アクリル樹脂を含む感光性の樹脂組成物を用いて形成することが好ましい。
また、絶縁膜127aの形成後に加熱処理(プリベークともいう)を行うことが好ましい。当該加熱処理は、層113B及び層113Yの耐熱温度よりも低い温度で形成する。加熱処理の際の基板温度としては、50℃以上200℃以下が好ましく、60℃以上150℃以下がより好ましく、70℃以上120℃以下がさらに好ましい。これにより、絶縁膜127a中に含まれる溶媒を除去することができる。
続いて、可視光線または紫外線を絶縁膜127aの一部に照射し、絶縁膜127aの一部を感光させる(図15A)。ここで、絶縁膜127aにアクリル樹脂を含むポジ型の感光性の樹脂組成物を用いる場合、後の工程で絶縁層127を形成しない領域に、マスク132を用いて可視光線または紫外線を照射する。絶縁層127は、画素電極111R、111G、111Bのいずれか2つに挟まれる領域、及び、導電層123の周囲に形成される。そのため、図15Aに示すように、絶縁膜127aの、画素電極111Rと重なる部分、画素電極111Gと重なる部分、画素電極111Bと重なる部分、及び、導電層123と重なる部分に、光139を照射する。
なお、ここで感光させる領域によって、後に形成する絶縁層127の幅を制御することができる。本実施の形態では、絶縁層127が画素電極の上面と重なる部分を有するように加工する(図2A)。図5Aまたは図5Bに示すように、絶縁層127は、画素電極の上面と重なる部分を有していなくてもよい。
露光に用いる光は、i線(波長365nm)を含むことが好ましい。また、露光に用いる光は、g線(波長436nm)、及びh線(波長405nm)の少なくとも一方を含んでいてもよい。
なお、図15Aにおいては、絶縁膜127aにポジ型の感光性の樹脂を用い、絶縁層127が形成されない領域に、可視光線または紫外線を照射する例を示したが、本発明はこれに限られるものではない。例えば、絶縁膜127aにネガ型の感光性の樹脂を用いる構成にしてもよい。この場合、絶縁層127が形成される領域に可視光線または紫外線を照射する。
続いて、図15Bに示すように、現像を行って、絶縁膜127aの露光させた領域を除去し、絶縁層127bを形成する。絶縁層127bは、画素電極111R、111G、111Bのいずれか2つに挟まれる領域と、導電層123を囲む領域に形成される。ここで、絶縁膜127aにアクリル樹脂を用いる場合、現像液として、アルカリ性の溶液を用いることが好ましく、例えば、水酸化テトラメチルアンモニウム(TMAH)水溶液を用いることができる。
なお、現像後には、現像時の残渣(いわゆるスカム)を除去する工程を行ってもよい。例えば、酸素プラズマを用いたアッシングを行うことで、残渣を除去することができる。以降に示す各現像工程の後にも、それぞれ、残渣を除去する工程を行ってもよい。
なお、絶縁層127bの表面の高さを調整するために、エッチングを行ってもよい。絶縁層127bは、例えば、酸素プラズマを用いたアッシングにより加工してもよい。
なお、現像後、かつ、ポストベークの前に、基板全体に露光を行い、可視光線または紫外光線を絶縁層127bに照射してもよい。当該露光のエネルギー密度は、0mJ/cmより大きく、800mJ/cm以下とすることが好ましく、0mJ/cmより大きく、500mJ/cm以下とすることがより好ましい。現像後にこのような露光を行うことで、絶縁層127bの透明度を向上させることができる場合がある。また、絶縁層127bを低い温度でテーパ形状に変形させることができる場合がある。
一方、絶縁層127bに対する露光を行わないことで、後の工程において、絶縁層127bの形状を変化させること、または、絶縁層127をテーパ形状に変形させることが容易となる場合がある。したがって、現像後に絶縁層127bに対して露光を行わないことが好ましい場合がある。
続いて、加熱処理(ポストベークともいう)を行う。図16Aに示すように、加熱処理を行うことで、絶縁層127bを、側面にテーパ形状を有する絶縁層127に変形させることができる。当該加熱処理は、EL層の耐熱温度よりも低い温度で行う。加熱処理は、基板温度として50℃以上200℃以下、好ましくは60℃以上150℃以下、より好ましくは70℃以上130℃以下の温度で行うことができる。加熱雰囲気は、大気雰囲気であってもよく、不活性ガス雰囲気であってもよい。また、加熱雰囲気は、大気圧雰囲気であってもよく、減圧雰囲気であってもよい。減圧雰囲気とすることで、より低温で乾燥が可能であるため好ましい。本工程の加熱処理は、絶縁膜127aの形成後の加熱処理(プリベーク)よりも、基板温度を高くすることが好ましい。これにより、絶縁層127と絶縁層125との密着性を向上させ、絶縁層127の耐食性も向上させることができる。
なお、絶縁層127の材料、並びに、ポストベークの温度、時間、及び雰囲気によっては、図4A及び図4Bに示すように、絶縁層127の側面に凹曲面形状が形成される場合がある。例えば、ポストベークの条件で、温度が高い、または、時間が長いほど、絶縁層127の形状が変化しやすく、凹曲面形状が形成される場合がある。また、前述の通り、現像後の絶縁層127bに露光を行わない場合には、ポストベーク時に、絶縁層127の形状が変化しやすいことがある。
続いて、図16Aに示すように、絶縁層127をマスクとして、エッチング処理を行って、絶縁膜125A、及び、マスク層118B、118Yの一部を除去する。これにより、マスク層118B、118Yそれぞれに開口が形成され、層113B、層113Y、及び導電層123の上面が露出する。
エッチング処理は、ドライエッチングまたはウェットエッチングによって行うことができる。なお、絶縁膜125Aを、マスク層118B、118Yと同様の材料を用いて成膜していた場合、エッチング処理を一括で行うことができるため、好ましい。
ドライエッチングを行う場合、塩素系のガスを用いることが好ましい。塩素系ガスとしては、Cl、BCl、SiCl、及びCClなどを、単独または2以上のガスを混合して用いることができる。また、上記塩素系ガスに、酸素ガス、水素ガス、ヘリウムガス、及びアルゴンガスなどのガスの1種以上を適宜混合することができる。ドライエッチングを用いることにより、マスク層118B、118Yの膜厚が薄い領域を、良好な面内均一性で形成することができる。
また、ドライエッチングを行う場合、ドライエッチングで生じた副生成物などが、絶縁層127bの上面及び側面などに堆積する場合がある。このため、エッチングガスに含まれる成分、絶縁膜125Aに含まれる成分、マスク層118B、118Yに含まれる成分などが、表示装置完成後の絶縁層127に含まれる場合がある。
また、エッチング処理をウェットエッチングで行うことが好ましい。ウェットエッチング法を用いることで、ドライエッチング法を用いる場合に比べて、層113B及び層113Yに加わるダメージを低減することができる。例えば、ウェットエッチングは、アルカリ溶液などを用いて行うことができる。例えば、酸化アルミニウム膜のウェットエッチングには、アルカリ溶液である水酸化テトラメチルアンモニウム(TMAH)水溶液を用いることが好ましい。この場合、パドル方式でウェットエッチングを行うことができる。
上記のように、絶縁層127、絶縁層125、マスク層118B、及び、マスク層118Yを設けることにより、各発光デバイス間において、共通層114及び共通電極115に、分断された箇所に起因する接続不良、及び局所的に膜厚が薄い箇所に起因する電気抵抗の上昇が発生することを抑制できる。これにより、本発明の一態様の表示装置は、表示品位を向上させることができる。
また、層113B及び層113Yの一部を露出した後、さらに加熱処理を行ってもよい。当該加熱処理により、EL層に含まれる水、及びEL層表面に吸着する水などを除去することができる。また、当該加熱処理により、絶縁層127の形状が変化することがある。具体的には、絶縁層127が、絶縁層125の端部、マスク層118B、118Yの端部、及び、層113B及び層113Yの上面のうち、少なくとも一つを覆うように広がることがある。例えば、絶縁層127が、図3A及び図3Bに示す形状となる場合がある。例えば、不活性ガス雰囲気または減圧雰囲気下における加熱処理を行うことができる。加熱処理は、基板温度として50℃以上200℃以下、好ましくは60℃以上150℃以下、さらに好ましくは70℃以上120℃以下の温度で行うことができる。減圧雰囲気とすることで、より低温で脱水が可能であるため好ましい。ただし、上記の加熱処理は、EL層の耐熱温度も考慮して温度範囲を適宜設定することが好ましい。なお、EL層の耐熱温度を考慮した場合、上記温度範囲のなかでも特に70℃以上120℃以下の温度が好適である。
ここで、ポストベーク後に、一括で絶縁層125とマスク層のエッチング処理を行うと、サイドエッチングにより、絶縁層127の端部の下の絶縁層125及びマスク層が消失し、空洞が形成される場合がある。当該空洞によって、共通層114及び共通電極115を形成する面に凹凸が生じ、共通層114及び共通電極115に段切れが生じやすくなる。そこで、絶縁層125とマスク層のエッチング処理を、ポストベークの前と後に分けて行うことが好ましい。
以下では、図16B乃至図16Eを用いて、絶縁層125とマスク層のエッチング処理を、ポストベークの前と後に分けて行う方法について説明する。
まず、図16Bに、図15Bに示す層113Yと、絶縁層127bの端部とその近傍の拡大図を示す。つまり、図16Bには、現像によって形成された絶縁層127bを示している。
次に、図16Cに示すように、絶縁層127bをマスクとして、エッチング処理を行って、絶縁膜125Aの一部を除去し、マスク層118B、118Yの一部の膜厚を薄くする。これにより、絶縁層127bの下に、絶縁層125が形成される。また、マスク層118B、118Yの膜厚が薄い部分の表面が露出する。なお、以下では、絶縁層127bをマスクに用いたエッチング処理を、第1のエッチング処理ということがある。
第1のエッチング処理は、ドライエッチングまたはウェットエッチングによって行うことができる。
図16Cに示すように、側面がテーパ形状である絶縁層127bをマスクとしてエッチングを行うことで、絶縁層125の側面、及びマスク層118B、118Yの側面上端部を比較的容易にテーパ形状にすることができる。
図16Cに示すように、第1のエッチング処理では、マスク層118B、118Yを完全に除去せず、膜厚が薄くなった状態でエッチング処理を停止する。このように、層113B及び層113Y上に、対応するマスク層118B、118Yを残存させておくことで、後の工程の処理で、層113B及び層113Yが損傷することを防ぐことができる。
なお、図16Cでは、マスク層118B、118Yの膜厚が薄くなる構成にしたが、本発明はこれに限られるものではない。例えば、絶縁膜125Aの膜厚及びマスク層118B、118Yの膜厚によっては、絶縁膜125Aが絶縁層125に加工される前に第1のエッチング処理を停止する場合もある。具体的には、絶縁膜125Aの一部の膜厚を薄くするのみで第1のエッチング処理を停止する場合もある。また、絶縁膜125Aを、マスク層118B、118Yと同様の材料で成膜した場合、絶縁膜125Aと、マスク層118B、118Yとの境界が不明瞭になり、絶縁層125が形成されたか判別できない場合、及び、マスク層118B、118Yの膜厚が薄くなったか判別できない場合がある。
また、図16Cでは、絶縁層127bの形状が、図16Bと変化していない例を示すが、本発明はこれに限られるものではない。例えば、絶縁層127bの端部が垂れて、絶縁層125の端部を覆う場合がある。また、例えば、絶縁層127bの端部が、マスク層118B、118Yの上面に接する場合がある。前述の通り、現像後の絶縁層127bに露光を行わない場合には、絶縁層127bの形状が変化しやすいことがある。
続いて、ポストベークを行う。図16Dに示すように、ポストベークを行うことで、絶縁層127bを、側面にテーパ形状を有する絶縁層127に変形させることができる。なお、前述の通り、第1のエッチング処理が終了した時点で、既に絶縁層127bの形状が変化し、側面にテーパ形状を有することがある。
第1のエッチング処理にて、マスク層118B、118Yを完全に除去せず、膜厚が薄くなった状態のマスク層118B、118Yを残存させておくことで、当該加熱処理において、層113B及び層113Yがダメージを受けて劣化することを防ぐことができる。したがって、発光デバイスの信頼性を高めることができる。
続いて、図16Eに示すように、絶縁層127をマスクとして、エッチング処理を行って、マスク層118B、118Yの一部を除去する。これにより、マスク層118B、118Yそれぞれに開口が形成され、層113B、層113Y、及び導電層123の上面が露出する。なお、以下では、絶縁層127をマスクに用いたエッチング処理を、第2のエッチング処理ということがある。
絶縁層125の端部は絶縁層127で覆われている。また、図16Eでは、マスク層118Yの端部の一部(具体的には、第1のエッチング処理により形成されたテーパ形状の部分)を絶縁層127が覆い、第2のエッチング処理により形成されたテーパ形状の部分は露出している例を示す。つまり、図2A及び図2Bに示す構造に相当する。
以上のように、ポストベークの前後にエッチングを行う方法を用いると、第1のエッチング処理で絶縁層125及びマスク層がサイドエッチングされて空洞が生じても、その後にポストベークを行うことで、絶縁層127が当該空洞を埋めることができる。その後、第2のエッチング処理ではより厚さが薄くなったマスク層をエッチングするため、サイドエッチングされる量が少なく、空洞が形成されにくくなり、空洞が形成されるとしても極めて小さくできる。そのため、共通層114及び共通電極115を形成する面をより平坦にできる。
なお、図3A、図4B、及び図5Bに示すように、絶縁層127は、マスク層118Yの端部全体を覆っていてもよい。例えば、絶縁層127の端部が垂れて、マスク層118Yの端部を覆う場合がある。また、例えば、絶縁層127の端部が、層113B及び層113Yの一方または双方の上面に接する場合がある。前述の通り、現像後の絶縁層127bに露光を行わない場合には、絶縁層127の形状が変化しやすいことがある。
第2のエッチング処理はウェットエッチングで行うことが好ましい。ウェットエッチング法を用いることで、ドライエッチング法を用いる場合に比べて、層113B及び層113Yに加わるダメージを低減することができる。ウェットエッチングは、アルカリ溶液などを用いて行うことができる。
続いて、絶縁層127、層113B、及び、層113Y上に、共通層114、共通電極115をこの順で形成し(図17A)、さらに、保護層131を形成する(図17B)。図1B等に示すような、保護層131上に着色層を有する構成を適用する場合には、その後、保護層131上に着色層132R、132Gを設ける。そして、樹脂層122を用いて、保護層131上に、基板120を貼り合わせることで、表示装置を作製することができる(図1B)。また、図8A等に示すような、基板120側に着色層を有する構成を適用する場合は、基板120に事前に着色層132R、132Gを設け、当該基板120を貼り合わせることで表示装置を作製することができる。
共通層114は、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
共通電極115の形成には、例えば、スパッタリング法または真空蒸着法を用いることができる。または、蒸着法で形成した膜と、スパッタリング法で形成した膜を積層させてもよい。
保護層131の成膜方法としては、真空蒸着法、スパッタリング法、CVD法、及び、ALD法等が挙げられる。
以上のように、本実施の形態の表示装置の作製方法では、島状の層113B及び島状の層113Yは、ファインメタルマスクを用いて形成されるのではなく、膜を一面に成膜した後に加工することで形成されるため、島状の層を均一の厚さで形成することができる。そして、高精細な表示装置または高開口率の表示装置を実現することができる。また、精細度または開口率が高く、副画素間の距離が極めて短くても、隣接する副画素において、層113Bと層113Y、または層113Y同士が互いに接することを抑制できる。したがって、副画素間にリーク電流が発生することを抑制できる。これにより、意図しない発光に起因したクロストークを防ぐことができ、コントラストの極めて高い表示装置を実現できる。
また、本実施の形態の表示装置の作製方法では、2色の発光デバイスを作り分けるのみで、3色の副画素を作り分けることができる。したがって、各色の副画素において、画素電極に加わるダメージを抑制し、発光デバイスの特性の低下を抑制できる。また、フォトリソグラフィ法を用いた発光層の加工回数を2回とすることができるため、歩留まりよく表示装置を作製できる。
また、本実施の形態の表示装置の作製方法では、青色の光を発する発光材料を有する層を島状に形成した後、青色よりも長波長の光を発する発光材料を有する層を島状に形成する。これにより、青色の発光デバイスの駆動電圧の上昇と寿命の低下を抑制できる。また、各色の発光デバイスで、高い輝度での発光を実現できる。また、各色の発光デバイスの駆動電圧が上昇することを抑制できる。また、各色の発光デバイスの寿命を長くし、表示装置の信頼性を高めることができる。
また、隣り合う島状のEL層の間に、端部にテーパ形状を有する絶縁層127を設けることで、共通電極115の形成時に段切れが生じることを抑制し、また、共通電極115に局所的に膜厚が薄い箇所が形成されることを防ぐことができる。これにより、共通層114及び共通電極115において、分断された箇所に起因する接続不良、及び局所的に膜厚が薄い箇所に起因する電気抵抗の上昇が発生することを抑制できる。したがって、本発明の一態様の表示装置は、高精細化と高い表示品位の両立が可能となる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、本発明の一態様の表示装置について図18及び図19を用いて説明する。
[画素のレイアウト]
本実施の形態では、主に、図1Aとは異なる画素レイアウトについて説明する。副画素の配列に特に限定はなく、様々な方法を適用することができる。副画素の配列としては、例えば、ストライプ配列、Sストライプ配列、マトリクス配列、デルタ配列、ベイヤー配列、ペンタイル配列などが挙げられる。
本実施の形態で図に示す副画素の上面形状は、発光領域(または受光領域)の上面形状に相当する。
なお、副画素の上面形状としては、例えば、三角形、四角形(長方形、正方形を含む)、五角形などの多角形、これら多角形の角が丸い形状、楕円形、または円形などが挙げられる。
また、副画素を構成する回路レイアウトは、図に示す副画素の範囲に限定されず、その外側に配置されていてもよい。
図18Aに示す画素110には、Sストライプ配列が適用されている。図18Aに示す画素110は、副画素110a、110b、110cの、3つの副画素から構成される。
図18Bに示す画素110は、角が丸い略三角形または略台形の上面形状を有する副画素110aと、角が丸い略三角形または略台形の上面形状を有する副画素110bと、角が丸い略四角形または略六角形の上面形状を有する副画素110cと、を有する。また、副画素110bは、副画素110aよりも発光面積が広い。このように、各副画素の形状及びサイズはそれぞれ独立に決定することができる。例えば、信頼性の高い発光デバイスを有する副画素ほど、サイズを小さくすることができる。
図18Cに示す画素124a、124bには、ペンタイル配列が適用されている。図18Cでは、副画素110a及び副画素110bを有する画素124aと、副画素110b及び副画素110cを有する画素124bと、が交互に配置されている例を示す。
図18D乃至図18Fに示す画素124a、124bは、デルタ配列が適用されている。画素124aは上の行(1行目)に、2つの副画素(副画素110a、110b)を有し、下の行(2行目)に、1つの副画素(副画素110c)を有する。画素124bは上の行(1行目)に、1つの副画素(副画素110c)を有し、下の行(2行目)に、2つの副画素(副画素110a、110b)を有する。
図18Dは、各副画素が、角が丸い略四角形の上面形状を有する例であり、図18Eは、各副画素が、円形の上面形状を有する例であり、図18Fは、各副画素が、角が丸い略六角形の上面形状を有する例である。
図18Fでは、各副画素が、最密に配列した六角形の領域の内側に配置されている。各副画素は、その1つの副画素に着目したとき、6つの副画素に囲まれるように、配置されている。また、同じ色の光を呈する副画素が隣り合わないように設けられている。例えば、副画素110aに着目したとき、これを囲むように3つの副画素110bと3つの副画素110cが、交互に配置されるように、それぞれの副画素が設けられている。
図18Gは、各色の副画素がジグザグに配置されている例である。具体的には、上面視において、列方向に並ぶ2つの副画素(例えば、副画素110aと副画素110b、または、副画素110bと副画素110c)の上辺の位置がずれている。
図18A乃至図18Gに示す各画素において、例えば、副画素110aを赤色の光を呈する副画素Rとし、副画素110bを緑色の光を呈する副画素Gとし、副画素110cを青色の光を呈する副画素Bとすることが好ましい。なお、副画素の構成はこれに限定されず、副画素が呈する色とその並び順は適宜決定することができる。例えば、副画素110bを赤色の光を呈する副画素Rとし、副画素110aを緑色の光を呈する副画素Gとしてもよい。
フォトリソグラフィ法では、加工するパターンが微細になるほど、光の回折の影響を無視できなくなるため、露光によりフォトマスクのパターンを転写する際に忠実性が損なわれ、レジストマスクを所望の形状に加工することが困難になる。そのため、フォトマスクのパターンが矩形であっても、角が丸まったパターンが形成されやすい。したがって、副画素の上面形状が、多角形の角が丸い形状、楕円形、または円形などになることがある。
さらに、本発明の一態様の表示装置の作製方法では、レジストマスクを用いてEL層を島状に加工する。EL層上に形成したレジスト膜は、EL層の耐熱温度よりも低い温度で硬化する必要がある。そのため、EL層の材料の耐熱温度及びレジスト材料の硬化温度によっては、レジスト膜の硬化が不十分になる場合がある。硬化が不十分なレジスト膜は、加工時に所望の形状から離れた形状をとることがある。その結果、EL層の上面形状が、多角形の角が丸い形状、楕円形、または円形などになることがある。例えば、上面形状が正方形のレジストマスクを形成しようとした場合に、円形の上面形状のレジストマスクが形成され、EL層の上面形状が円形になることがある。
なお、EL層の上面形状を所望の形状とするために、設計パターンと、転写パターンとが、一致するように、あらかじめマスクパターンを補正する技術(OPC(Optical Proximity Correction:光近接効果補正)技術)を用いてもよい。具体的には、OPC技術では、マスクパターン上の図形コーナー部などに補正用のパターンを追加する。
図19A乃至図19Iに示すように、画素は副画素を4種類有する構成とすることができる。
図19A乃至図19Cに示す画素110は、ストライプ配列が適用されている。
図19Aは、各副画素が、長方形の上面形状を有する例であり、図19Bは、各副画素が、2つの半円と長方形をつなげた上面形状を有する例であり、図19Cは、各副画素が、楕円形の上面形状を有する例である。
図19D乃至図19Fに示す画素110は、マトリクス配列が適用されている。
図19Dは、各副画素が、正方形の上面形状を有する例であり、図19Eは、各副画素が、角が丸い略正方形の上面形状を有する例であり、図19Fは、各副画素が、円形の上面形状を有する例である。
図19G及び図19Hでは、1つの画素110が、2行3列で構成されている例を示す。
図19Gに示す画素110は、上の行(1行目)に、3つの副画素(副画素110a、110b、110c)を有し、下の行(2行目)に、1つの副画素(副画素110d)を有する。言い換えると、画素110は、左の列(1列目)に、副画素110aを有し、中央の列(2列目)に副画素110bを有し、右の列(3列目)に副画素110cを有し、さらに、この3列にわたって、副画素110dを有する。
図19Hに示す画素110は、上の行(1行目)に、3つの副画素(副画素110a、110b、110c)を有し、下の行(2行目)に、3つの副画素110dを有する。言い換えると、画素110は、左の列(1列目)に、副画素110a及び副画素110dを有し、中央の列(2列目)に副画素110b及び副画素110dを有し、右の列(3列目)に副画素110c及び副画素110dを有する。図19Hに示すように、上の行と下の行との副画素の配置を揃える構成とすることで、製造プロセスで生じうるゴミなどを効率よく除去することが可能となる。したがって、表示品位の高い表示装置を提供することができる。
図19Iでは、1つの画素110が、3行2列で構成されている例を示す。
図19Iに示す画素110は、上の行(1行目)に、副画素110aを有し、中央の行(2行目)に、副画素110bを有し、1行目から2行目にわたって副画素110cを有し、下の行(3行目)に、1つの副画素(副画素110d)を有する。言い換えると、画素110は、左の列(1列目)に、副画素110a、110bを有し、右の列(2列目)に副画素110cを有し、さらに、この2列にわたって、副画素110dを有する。
図19A乃至図19Iに示す画素110は、副画素110a、110b、110c、110dの、4つの副画素から構成される。
副画素110a、110b、110c、110dは、それぞれ異なる色の光を発する発光デバイスを有する構成とすることができる。副画素110a、110b、110c、110dとしては、R、G、B、白色(W)の4色の副画素、R、G、B、Yの4色の副画素、または、R、G、B、赤外光(IR)の副画素などが挙げられる。
図19A乃至図19Iに示す各画素110において、例えば、副画素110aを赤色の光を呈する副画素Rとし、副画素110bを緑色の光を呈する副画素Gとし、副画素110cを青色の光を呈する副画素Bとし、副画素110dを白色の光を呈する副画素W、黄色の光を呈する副画素Y、または近赤外光を呈する副画素IRのいずれかとすることが好ましい。このような構成とする場合、図19G及び図19Hに示す画素110では、R、G、Bのレイアウトがストライプ配列となるため、表示品位を高めることができる。また、図19Iに示す画素110では、R、G、BのレイアウトがいわゆるSストライプ配列となるため、表示品位を高めることができる。
また、画素110は、受光デバイスを有する副画素を有していてもよい。
図19A乃至図19Iに示す各画素110において、副画素110a乃至副画素110dのいずれか一つを、受光デバイスを有する副画素としてもよい。
図19A乃至図19Iに示す各画素110において、例えば、副画素110aを赤色の光を呈する副画素Rとし、副画素110bを緑色の光を呈する副画素Gとし、副画素110cを青色の光を呈する副画素Bとし、副画素110dを、受光デバイスを有する副画素Sとすることが好ましい。このような構成とする場合、図19G及び図19Hに示す画素110では、R、G、Bのレイアウトがストライプ配列となるため、表示品位を高めることができる。また、図19Iに示す画素110では、R、G、BのレイアウトがいわゆるSストライプ配列となるため、表示品位を高めることができる。
受光デバイスを有する副画素Sが検出する光の波長は特に限定されない。副画素Sは、可視光及び赤外光の一方または双方を検出する構成とすることができる。
図19J及び図19Kに示すように、画素は副画素を5種類有する構成とすることができる。
図19Jでは、1つの画素110が、2行3列で構成されている例を示す。
図19Jに示す画素110は、上の行(1行目)に、3つの副画素(副画素110a、110b、110c)を有し、下の行(2行目)に、2つの副画素(副画素110d、110e)を有する。言い換えると、画素110は、左の列(1列目)に、副画素110a、110dを有し、中央の列(2列目)に副画素110bを有し、右の列(3列目)に副画素110cを有し、さらに、2列目から3列目にわたって、副画素110eを有する。
図19Kでは、1つの画素110が、3行2列で構成されている例を示す。
図19Kに示す画素110は、上の行(1行目)に、副画素110aを有し、中央の行(2行目)に、副画素110bを有し、1行目から2行目にわたって副画素110cを有し、下の行(3行目)に、2つの副画素(副画素110d、110e)を有する。言い換えると、画素110は、左の列(1列目)に、副画素110a、110b、110dを有し、右の列(2列目)に副画素110c、110eを有する。
図19J及び図19Kに示す各画素110において、例えば、副画素110aを赤色の光を呈する副画素Rとし、副画素110bを緑色の光を呈する副画素Gとし、副画素110cを青色の光を呈する副画素Bとすることが好ましい。このような構成とする場合、図19Jに示す画素110では、R、G、Bのレイアウトがストライプ配列となるため、表示品位を高めることができる。また、図19Kに示す画素110では、R、G、BのレイアウトがいわゆるSストライプ配列となるため、表示品位を高めることができる。
また、図19J及び図19Kに示す各画素110において、例えば、副画素110dと副画素110eのうち、少なくとも一方に、受光デバイスを有する副画素Sを適用することが好ましい。副画素110dと副画素110eの両方に受光デバイスを用いる場合、受光デバイスの構成が互いに異なっていてもよい。例えば、互いに検出する光の波長域が少なくとも一部が異なっていてもよい。具体的には、副画素110dと副画素110eのうち、一方は主に可視光を検出する受光デバイスを有し、他方は主に赤外光を検出する受光デバイスを有していてもよい。
また、図19J及び図19Kに示す各画素110において、例えば、副画素110dと副画素110eのうち、一方に、受光デバイスを有する副画素Sを適用し、他方に、光源として用いることが可能な発光デバイスを有する副画素を適用することが好ましい。例えば、副画素110dと副画素110eのうち、一方は赤外光を呈する副画素IRとし、他方は赤外光を検出する受光デバイスを有する副画素Sとすることが好ましい。
副画素R、G、B、IR、Sを有する画素では、副画素R、G、Bを用いて画像を表示しながら、副画素IRを光源として用いて、副画素Sにて副画素IRが発する赤外光の反射光を検出することができる。
以上のように、本発明の一態様の表示装置は、発光デバイスを有する副画素からなる構成の画素について、様々なレイアウトを適用することができる。また、本発明の一態様の表示装置は、画素に発光デバイスと受光デバイスとの双方を有する構成を適用することができる。この場合においても、様々なレイアウトを適用することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
本実施の形態では、本発明の一態様の表示装置について図20乃至図30を用いて説明する。
本実施の形態の表示装置は、高精細な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、腕時計型、及び、ブレスレット型などの情報端末機(ウェアラブル機器)の表示部、並びに、ヘッドマウントディスプレイ(HMD)などのVR向け機器、及び、メガネ型のAR向け機器などの頭部に装着可能なウェアラブル機器の表示部に用いることができる。
また、本実施の形態の表示装置は、高解像度な表示装置または大型な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、及び、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、及び、音響再生装置の表示部に用いることができる。
[表示モジュール]
図20Aに、表示モジュール280の斜視図を示す。表示モジュール280は、表示装置100Aと、FPC290と、を有する。なお、表示モジュール280が有する表示装置は表示装置100Aに限られず、後述する表示装置100B乃至表示装置100Fのいずれかであってもよい。
表示モジュール280は、基板291及び基板292を有する。表示モジュール280は、表示部281を有する。表示部281は、表示モジュール280における画像を表示する領域であり、後述する画素部284に設けられる各画素からの光を視認できる領域である。
図20Bに、基板291側の構成を模式的に示した斜視図を示している。基板291上には、回路部282と、回路部282上の画素回路部283と、画素回路部283上の画素部284と、が積層されている。また、基板291上の画素部284と重ならない部分に、FPC290と接続するための端子部285が設けられている。端子部285と回路部282とは、複数の配線により構成される配線部286により電気的に接続されている。
画素部284は、周期的に配列した複数の画素284aを有する。図20Bの右側に、1つの画素284aの拡大図を示している。画素284aには、先の実施の形態で説明した各種構成を適用することができる。図20Bでは、図1Aに示す画素110と同様の構成を有する場合を例に示す。
画素回路部283は、周期的に配列した複数の画素回路283aを有する。
1つの画素回路283aは、1つの画素284aが有する複数の素子の駆動を制御する回路である。1つの画素回路283aは、1つの発光デバイスの発光を制御する回路が3つ設けられる構成とすることができる。例えば、画素回路283aは、1つの発光デバイスにつき、1つの選択トランジスタと、1つの電流制御用トランジスタ(駆動トランジスタ)と、容量と、を少なくとも有する構成とすることができる。このとき、選択トランジスタのゲートにはゲート信号が、ソースにはソース信号が、それぞれ入力される。これにより、アクティブマトリクス型の表示装置が実現されている。
回路部282は、画素回路部283の各画素回路283aを駆動する回路を有する。例えば、ゲート線駆動回路、及び、ソース線駆動回路の一方または双方を有することが好ましい。このほか、演算回路、メモリ回路、及び電源回路等の少なくとも一つを有していてもよい。
FPC290は、外部から回路部282にビデオ信号または電源電位等を供給するための配線として機能する。また、FPC290上にICが実装されていてもよい。
表示モジュール280は、画素部284の下側に画素回路部283及び回路部282の一方または双方が重ねて設けられた構成とすることができるため、表示部281の開口率(有効表示面積比)を極めて高くすることができる。例えば表示部281の開口率は、40%以上100%未満、好ましくは50%以上95%以下、より好ましくは60%以上95%以下とすることができる。また、画素284aを極めて高密度に配置することが可能で、表示部281の精細度を極めて高くすることができる。例えば、表示部281には、2000ppi以上、好ましくは3000ppi以上、より好ましくは5000ppi以上、さらに好ましくは6000ppi以上であって、20000ppi以下、または30000ppi以下の精細度で、画素284aが配置されることが好ましい。
このような表示モジュール280は、極めて高精細であることから、HMDなどのVR向け機器またはメガネ型のAR向け機器に好適に用いることができる。例えば、レンズを通して表示モジュール280の表示部を視認する構成の場合であっても、表示モジュール280は極めて高精細な表示部281を有するためにレンズで表示部を拡大しても画素が視認されず、没入感の高い表示を行うことができる。また、表示モジュール280はこれに限られず、比較的小型の表示部を有する電子機器に好適に用いることができる。例えば腕時計などの装着型の電子機器の表示部に好適に用いることができる。
[表示装置100A]
図21Aに示す表示装置100Aは、基板301、黄色の光を発する発光デバイス130Y、青色の光を発する発光デバイス130B、赤色の光を透過する着色層132R、緑色の光を透過する着色層132G、容量240、及び、トランジスタ310を有する。
図20Bに示す副画素11Rは発光デバイス130Y及び着色層132Rを有し、副画素11Gは発光デバイス130Y及び着色層132Gを有し、副画素11Bは発光デバイス130Bを有する。副画素11Rにおいて、発光デバイス130Yの発光は、着色層132Rを介して表示装置100Aの外部に赤色の光(R)として取り出される。同様に、副画素11Gにおいて、発光デバイス130Yの発光は、着色層132Gを介して表示装置100Aの外部に緑色の光(G)として取り出される。副画素11Bにおいて、発光デバイス130Bの発光は、表示装置100Aの外部に青色の光(B)として取り出される。
基板301は、図20A及び図20Bにおける基板291に相当する。基板301から絶縁層255cまでの積層構造が、実施の形態1におけるトランジスタを含む層101に相当する。
トランジスタ310は、基板301にチャネル形成領域を有するトランジスタである。基板301としては、例えば単結晶シリコン基板などの半導体基板を用いることができる。トランジスタ310は、基板301の一部、導電層311、低抵抗領域312、絶縁層313、及び、絶縁層314を有する。導電層311は、ゲート電極として機能する。絶縁層313は、基板301と導電層311の間に位置し、ゲート絶縁層として機能する。低抵抗領域312は、基板301に不純物がドープされた領域であり、ソースまたはドレインの一方として機能する。絶縁層314は、導電層311の側面を覆って設けられる。
また、基板301に埋め込まれるように、隣接する2つのトランジスタ310の間に素子分離層315が設けられている。
また、トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に容量240が設けられている。
容量240は、導電層241と、導電層245と、これらの間に位置する絶縁層243を有する。導電層241は、容量240の一方の電極として機能し、導電層245は、容量240の他方の電極として機能し、絶縁層243は、容量240の誘電体として機能する。
導電層241は絶縁層261上に設けられ、絶縁層254に埋め込まれている。導電層241は、絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。絶縁層243は導電層241を覆って設けられる。導電層245は、絶縁層243を介して導電層241と重なる領域に設けられている。
なお、トランジスタを含む層101が有する導電層の階層の少なくとも一つにおいて、表示部281(または画素部284)の外側を囲む導電層を設けることが好ましい。当該導電層は、ガードリングと呼ぶこともできる。当該導電層を設けることで、ESD(静電気放電)またはプラズマを用いた工程による帯電により、トランジスタ及び発光デバイスなどの素子に高電圧がかかり、これらの素子が破壊してしまうことを抑制できる。
容量240を覆って、絶縁層255aが設けられ、絶縁層255a上に絶縁層255bが設けられ、絶縁層255b上に絶縁層255cが設けられている。絶縁層255c上に発光デバイス130Y、及び、発光デバイス130Bが設けられている。図21Aでは、発光デバイス130Y、及び、発光デバイス130Bが図1Bに示す積層構造と同じ構造を有する例を示す。隣り合う発光デバイスの間の領域には、絶縁物が設けられる。図21Aなどでは、当該領域に絶縁層125と、絶縁層125上の絶縁層127と、が設けられている。
発光デバイス130Yが有する層113Y上には、マスク層118Yが位置し、発光デバイス130Bが有する層113B上には、マスク層118Bが位置する。
画素電極111R、画素電極111G、及び画素電極111Bは、絶縁層243、絶縁層255a、絶縁層255b、及び絶縁層255cに埋め込まれたプラグ256、絶縁層254に埋め込まれた導電層241、及び、絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。絶縁層255cの上面の高さと、プラグ256の上面の高さは、一致または概略一致している。プラグには各種導電材料を用いることができる。図21A等では、画素電極が反射電極と、反射電極上の透明電極と、の2層構造である例を示す。
また、発光デバイス130Y、及び、発光デバイス130B上には保護層131が設けられている。保護層131上には、着色層132R及び着色層132Gが設けられ、樹脂層122によって基板120が貼り合わされている。発光デバイスから基板120までの構成要素についての詳細は、実施の形態1を参照することができる。基板120は、図20Aにおける基板292に相当する。
図21Bに示す表示装置は、発光デバイス130Y、及び、受光デバイス150を有する例である。図示しないが、当該表示装置は、発光デバイス130Bも有する。図21Bに示す表示装置が有するトランジスタを含む層101の構成は、図21Aに示す構成に限られず、図22乃至図26に示すいずれかの構成を適用してもよい。
受光デバイス150は、画素電極111Sと、層155と、共通層114と、共通電極115とを積層して有する。受光デバイスを有する表示装置の詳細については、実施の形態1及び実施の形態6を参照することができる。
[表示装置100B]
図22に示す表示装置100Bは、それぞれ半導体基板にチャネルが形成されるトランジスタ310Aと、トランジスタ310Bとが積層された構成を有する。なお、以降の表示装置の説明では、先に説明した表示装置と同様の部分については説明を省略することがある。
表示装置100Bは、トランジスタ310B、容量240、発光デバイスが設けられた基板301Bと、トランジスタ310Aが設けられた基板301Aとが、貼り合された構成を有する。
ここで、基板301Bの下面に絶縁層345を設けることが好ましい。また、基板301A上に設けられた絶縁層261の上に絶縁層346を設けることが好ましい。絶縁層345、346は、保護層として機能する絶縁層であり、基板301B及び基板301Aに不純物が拡散することを抑制できる。絶縁層345、346としては、保護層131または絶縁層332に用いることができる無機絶縁膜を用いることができる。
基板301Bには、基板301B及び絶縁層345を貫通するプラグ343が設けられる。ここで、プラグ343の側面を覆って絶縁層344を設けることが好ましい。絶縁層344は、保護層として機能する絶縁層であり、基板301Bに不純物が拡散することを抑制できる。絶縁層344としては、保護層131に用いることができる無機絶縁膜を用いることができる。
また、基板301Bの裏面(基板120側とは反対側の表面)側、絶縁層345の下に、導電層342が設けられる。導電層342は、絶縁層335に埋め込まれるように設けられることが好ましい。また、導電層342と絶縁層335の下面は平坦化されていることが好ましい。ここで、導電層342はプラグ343と電気的に接続されている。
一方、基板301Aには、絶縁層346上に導電層341が設けられている。導電層341は、絶縁層336に埋め込まれるように設けられることが好ましい。また、導電層341と絶縁層336の上面は平坦化されていることが好ましい。
導電層341と、導電層342とが接合されることで、基板301Aと基板301Bとが電気的に接続される。ここで、導電層342と絶縁層335で形成される面と、導電層341と絶縁層336で形成される面の平坦性を向上させておくことで、導電層341と導電層342の貼り合わせを良好にすることができる。
導電層341及び導電層342としては、同じ導電材料を用いることが好ましい。例えば、Al、Cr、Cu、Ta、Ti、Mo、Wから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。特に、導電層341及び導電層342に、銅を用いることが好ましい。これにより、Cu−Cu(カッパー・カッパー)直接接合技術(Cu(銅)のパッド同士を接続することで電気的導通を図る技術)を適用することができる。
[表示装置100C]
図23に示す表示装置100Cは、導電層341と導電層342を、バンプ347を介して接合する構成を有する。
図23に示すように、導電層341と導電層342の間にバンプ347を設けることで、導電層341と導電層342を電気的に接続することができる。バンプ347は、例えば、金(Au)、ニッケル(Ni)、インジウム(In)、錫(Sn)などを含む導電材料を用いて形成することができる。また例えば、バンプ347として半田を用いる場合がある。また、絶縁層345と絶縁層346の間に、接着層348を設けてもよい。また、バンプ347を設ける場合、絶縁層335及び絶縁層336を設けない構成にしてもよい。
[表示装置100D]
図24に示す表示装置100Dは、トランジスタの構成が異なる点で、表示装置100Aと主に相違する。
トランジスタ320は、チャネルが形成される半導体層に、金属酸化物(酸化物半導体ともいう)が適用されたトランジスタ(OSトランジスタ)である。
トランジスタ320は、半導体層321、絶縁層323、導電層324、一対の導電層325、絶縁層326、及び、導電層327を有する。
基板331は、図20A及び図20Bにおける基板291に相当する。基板331から絶縁層255cまでの積層構造が、実施の形態1におけるトランジスタを含む層101に相当する。基板331としては、絶縁性基板または半導体基板を用いることができる。
基板331上に、絶縁層332が設けられている。絶縁層332は、基板331から水または水素などの不純物がトランジスタ320に拡散すること、及び半導体層321から絶縁層332側に酸素が脱離することを防ぐバリア層として機能する。絶縁層332としては、例えば酸化アルミニウム膜、酸化ハフニウム膜、窒化シリコン膜などの、酸化シリコン膜よりも水素または酸素が拡散しにくい膜を用いることができる。
絶縁層332上に導電層327が設けられ、導電層327を覆って絶縁層326が設けられている。導電層327は、トランジスタ320の第1のゲート電極として機能し、絶縁層326の一部は、第1のゲート絶縁層として機能する。絶縁層326の少なくとも半導体層321と接する部分には、酸化シリコン膜等の酸化物絶縁膜を用いることが好ましい。絶縁層326の上面は、平坦化されていることが好ましい。
半導体層321は、絶縁層326上に設けられる。半導体層321は、半導体特性を有する金属酸化物(酸化物半導体ともいう)膜を有することが好ましい。一対の導電層325は、半導体層321上に接して設けられ、ソース電極及びドレイン電極として機能する。
一対の導電層325の上面及び側面、並びに半導体層321の側面等を覆って絶縁層328が設けられ、絶縁層328上に絶縁層264が設けられている。絶縁層328は、半導体層321に絶縁層264等から水または水素などの不純物が拡散すること、及び半導体層321から酸素が脱離することを防ぐバリア層として機能する。絶縁層328としては、上記絶縁層332と同様の絶縁膜を用いることができる。
絶縁層328及び絶縁層264に、半導体層321に達する開口が設けられている。当該開口の内部において、絶縁層264、絶縁層328、及び導電層325の側面、並びに半導体層321の上面に接する絶縁層323と、導電層324とが埋め込まれている。導電層324は、第2のゲート電極として機能し、絶縁層323は第2のゲート絶縁層として機能する。
導電層324の上面、絶縁層323の上面、及び絶縁層264の上面は、それぞれ高さが一致または概略一致するように平坦化処理され、これらを覆って絶縁層329及び絶縁層265が設けられている。
絶縁層264及び絶縁層265は、層間絶縁層として機能する。絶縁層329は、トランジスタ320に絶縁層265等から水または水素などの不純物が拡散することを防ぐバリア層として機能する。絶縁層329としては、上記絶縁層328及び絶縁層332と同様の絶縁膜を用いることができる。
一対の導電層325の一方と電気的に接続するプラグ274は、絶縁層265、絶縁層329、及び絶縁層264に埋め込まれるように設けられている。ここで、プラグ274は、絶縁層265、絶縁層329、絶縁層264、及び絶縁層328のそれぞれの開口の側面、及び導電層325の上面の一部を覆う導電層274aと、導電層274aの上面に接する導電層274bとを有することが好ましい。このとき、導電層274aとして、水素及び酸素が拡散しにくい導電材料を用いることが好ましい。
[表示装置100E]
図25に示す表示装置100Eは、それぞれチャネルが形成される半導体に酸化物半導体を有するトランジスタ320Aと、トランジスタ320Bとが積層された構成を有する。
トランジスタ320A、トランジスタ320B、及びその周辺の構成については、上記表示装置100Dを参照することができる。
なお、ここでは、酸化物半導体を有するトランジスタを2つ積層する構成としたが、これに限られない。例えば3つ以上のトランジスタを積層する構成としてもよい。
[表示装置100F]
図26に示す表示装置100Fは、基板301にチャネルが形成されるトランジスタ310と、チャネルが形成される半導体層に金属酸化物を含むトランジスタ320とが積層された構成を有する。
トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に導電層251が設けられている。また導電層251を覆って絶縁層262が設けられ、絶縁層262上に導電層252が設けられている。導電層251及び導電層252は、それぞれ配線として機能する。また、導電層252を覆って絶縁層263及び絶縁層332が設けられ、絶縁層332上にトランジスタ320が設けられている。また、トランジスタ320を覆って絶縁層265が設けられ、絶縁層265上に容量240が設けられている。容量240とトランジスタ320とは、プラグ274により電気的に接続されている。
トランジスタ320は、画素回路を構成するトランジスタとして用いることができる。また、トランジスタ310は、画素回路を構成するトランジスタ、または当該画素回路を駆動するための駆動回路(ゲート線駆動回路、ソース線駆動回路)を構成するトランジスタとして用いることができる。また、トランジスタ310及びトランジスタ320は、演算回路または記憶回路などの各種回路を構成するトランジスタとして用いることができる。
このような構成とすることで、発光デバイスの直下に画素回路だけでなく駆動回路等を形成することができるため、表示領域の周辺に駆動回路を設ける場合に比べて、表示装置を小型化することが可能となる。
[表示装置100G]
図27に、表示装置100Gの斜視図を示し、図28Aに、表示装置100Gの断面図を示す。
表示装置100Gは、基板152と基板151とが貼り合わされた構成を有する。図27では、基板152を破線で示している。
表示装置100Gは、表示部162、接続部140、回路164、配線165等を有する。図27では表示装置100GにIC173及びFPC172が実装されている例を示している。そのため、図27に示す構成は、表示装置100Gと、IC(集積回路)と、FPCと、を有する表示モジュールということもできる。
接続部140は、表示部162の外側に設けられる。接続部140は、表示部162の一辺または複数の辺に沿って設けることができる。接続部140は、単数であっても複数であってもよい。図27では、表示部の四辺を囲むように接続部140が設けられている例を示す。接続部140では、発光デバイスの共通電極と、導電層とが電気的に接続されており、共通電極に電位を供給することができる。
回路164としては、例えば走査線駆動回路を用いることができる。
配線165は、表示部162及び回路164に信号及び電力を供給する機能を有する。当該信号及び電力は、FPC172を介して外部から配線165に入力される、またはIC173から配線165に入力される。
図27では、COG(Chip On Glass)方式またはCOF(Chip On Film)方式等により、基板151にIC173が設けられている例を示す。IC173は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお、表示装置100G及び表示モジュールは、ICを設けない構成としてもよい。また、ICを、COF方式等により、FPCに実装してもよい。
図28Aに、表示装置100Gの、FPC172を含む領域の一部、回路164の一部、表示部162の一部、接続部140の一部、及び、端部を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
図28Aに示す表示装置100Gは、基板151と基板152の間に、トランジスタ201、トランジスタ205、黄色の光を発する発光デバイス130Y、青色の光を発する発光デバイス130B、赤色の光を透過する着色層132R、及び緑色の光を透過する着色層132G等を有する。
発光デバイス130Y、130Bは、画素電極の構成が異なる点以外は、それぞれ、図1Bに示す積層構造と同様の構造を有する。発光デバイスの詳細は実施の形態1を参照できる。
着色層132Rと重なる発光デバイス130Yは、導電層112Rと、導電層112R上の導電層126Rと、導電層126R上の導電層129Rと、を有する。導電層112R、126R、129Rの全てを画素電極と呼ぶこともでき、一部を画素電極と呼ぶこともできる。
着色層132Gと重なる発光デバイス130Yは、導電層112Gと、導電層112G上の導電層126Gと、導電層126G上の導電層129Gと、を有する。
発光デバイス130Bは、導電層112Bと、導電層112B上の導電層126Bと、導電層126B上の導電層129Bと、を有する。
導電層112Rは、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222bと接続されている。導電層112Rの端部よりも外側に導電層126Rの端部が位置している。導電層126Rの端部と導電層129Rの端部は、揃っている、または概略揃っている。例えば、導電層112R及び導電層126Rに反射電極として機能する導電層を用い、導電層129Rに、透明電極として機能する導電層を用いることができる。
導電層112G、126G、129G、及び、導電層112B、126B、129Bについては、導電層112R、126R、129Rと同様であるため詳細な説明は省略する。
導電層112R、112G、112Bは、絶縁層214に設けられた開口を覆うように形成される。導電層112R、112G、112Bの凹部には、層128が埋め込まれている。
層128は、導電層112R、112G、112Bの凹部を平坦化する機能を有する。導電層112R、112G、112B及び層128上には、導電層112R、112G、112Bと電気的に接続される導電層126R、126G、126Bが設けられている。したがって、導電層112R、112G、112Bの凹部と重なる領域も発光領域として使用でき、画素の開口率を高めることができる。
層128は、絶縁層であってもよく、導電層であってもよい。層128には、各種無機絶縁材料、有機絶縁材料、及び導電材料を適宜用いることができる。特に、層128は、絶縁材料を用いて形成されることが好ましく、有機絶縁材料を用いて形成されることが特に好ましい。層128には、例えば前述の絶縁層127に用いることができる有機絶縁材料を適用することができる。
導電層126R、129Rの上面及び側面は、層113Yによって覆われている。同様に、導電層126G、129Gの上面及び側面は、層113Yによって覆われており、導電層126B、129Bの上面及び側面は、層113Bによって覆われている。したがって、導電層126R、126G、126Bが設けられている領域全体を、発光デバイス130Y、130Bの発光領域として用いることができるため、画素の開口率を高めることができる。
層113B及び層113Yそれぞれの上面の一部及び側面は、絶縁層125、127によって覆われている。層113Bと絶縁層125との間にはマスク層118Bが位置する。また、層113Yと絶縁層125との間にはマスク層118Yが位置する。層113B、層113Y、及び、絶縁層125、127上に、共通層114が設けられ、共通層114上に共通電極115が設けられている。共通層114及び共通電極115は、それぞれ、複数の発光デバイスに共通して設けられるひと続きの膜である。
また、発光デバイス130Y、130B上には保護層131が設けられている。保護層131と基板152は接着層142を介して接着されている。基板152には、遮光層117及び着色層132R、132Gが設けられている。発光デバイスの封止には、固体封止構造または中空封止構造などが適用できる。図28Aでは、基板152と基板151との間の空間が、接着層142で充填されており、固体封止構造が適用されている。または、当該空間を不活性ガス(窒素またはアルゴンなど)で充填し、中空封止構造を適用してもよい。このとき、接着層142は、発光デバイスと重ならないように設けられていてもよい。また、当該空間を、枠状に設けられた接着層142とは異なる樹脂で充填してもよい。
保護層131は、少なくとも表示部162に設けられており、表示部162全体を覆うように設けられていることが好ましい。保護層131は、表示部162だけでなく、接続部140及び回路164を覆うように設けられていることが好ましい。また、保護層131は、表示装置100Gの端部にまで設けられていることが好ましい。一方で、接続部204には、FPC172と導電層166とを電気的に接続させるため、保護層131が設けられていない部分が生じる。
基板151の、基板152が重ならない領域には、接続部204が設けられている。接続部204では、配線165が導電層166及び接続層242を介してFPC172と電気的に接続されている。導電層166は、導電層112R、112G、112Bと同一の導電膜を加工して得られた導電膜と、導電層126R、126G、126Bと同一の導電膜を加工して得られた導電膜と、導電層129R、129G、129Bと同一の導電膜を加工して得られた導電膜と、の積層構造である例を示す。接続部204の上面では、導電層166が露出している。これにより、接続部204とFPC172とを接続層242を介して電気的に接続することができる。
例えば、保護層131を表示装置100Gの一面全体に成膜した後、マスクを用いて保護層131の導電層166と重なる領域を除去することで、導電層166を露出させることができる。
また、導電層166上に、少なくとも1層の有機層と導電層との積層構造を設け、当該積層構造上に、保護層131を設けてもよい。そして、当該積層構造に対して、レーザ、または、鋭利な刃物(例えば針またはカッター)を用いて、剥離の起点(剥離のきっかけとなる部分)を形成し、当該積層構造及びその上の保護層131を選択的に除去し、導電層166を露出させてもよい。例えば、粘着性のローラーを基板151に押し付け、ローラーを回転させながら相対的に移動させることで、保護層131を選択的に除去することができる。または、粘着性のテープを基板151に貼り付け、剥してもよい。有機層と導電層の密着性、または、有機層同士の密着性が低いため、有機層と導電層の界面、または、有機層中で分離が生じる。これにより、保護層131の導電層166と重なる領域を選択的に除去することができる。なお、導電層166上に有機層等が残存した場合は、有機溶剤等により除去することができる。
有機層としては、例えば、層113B、及び層113Yのいずれかに用いる少なくとも1層の有機層(発光層、キャリアブロック層、キャリア輸送層、またはキャリア注入層として機能する層)を用いることができる。有機層は、層113B、及び層113Yのいずれかの成膜時に同時に形成してもよく、別途設けてもよい。導電層は、共通電極115と同一工程及び同一材料で形成することができる。例えば、共通電極115及び導電層として、ITO膜を形成することが好ましい。なお、共通電極115に積層構造を用いる場合、導電層としては、共通電極115を構成する層のうち、少なくとも1層を設ける。
また、導電層166上に保護層131が成膜されないように、導電層166の上面をマスクで覆ってもよい。マスクとしては、例えば、メタルマスク(エリアメタルマスク)を用いてもよく、粘着性または吸着性を有するテープまたはフィルムを用いてもよい。当該マスクを配置した状態で保護層131を形成し、その後、マスクを取り除くことで、保護層131を形成した後でも、導電層166が露出した状態を保つことができる。
このような方法を用いて、接続部204に保護層131が設けられていない領域を形成し、当該領域において、導電層166とFPC172とを接続層242を介して電気的に接続することができる。
接続部140においては、絶縁層214上に導電層123が設けられている。導電層123は、導電層112R、112G、112Bと同一の導電膜を加工して得られた導電膜と、導電層126R、126G、126Bと同一の導電膜を加工して得られた導電膜と、導電層129R、129G、129Bと同一の導電膜を加工して得られた導電膜と、の積層構造である例を示す。導電層123の端部は、マスク層118B、絶縁層125、及び、絶縁層127によって覆われている。また、導電層123上には共通層114が設けられ、共通層114上には共通電極115が設けられている。導電層123と共通電極115は共通層114を介して電気的に接続される。なお、接続部140には、共通層114が形成されていなくてもよい。この場合、導電層123と共通電極115とが直接接して電気的に接続される。
表示装置100Gは、トップエミッション型である。発光デバイスが発する光は、基板152側に射出される。基板152には、可視光に対する透過性が高い材料を用いることが好ましい。画素電極は可視光を反射する材料を含み、対向電極(共通電極115)は可視光を透過する材料を含む。
基板151から絶縁層214までの積層構造が、実施の形態1におけるトランジスタを含む層101に相当する。
トランジスタ201及びトランジスタ205は、いずれも基板151上に形成されている。これらのトランジスタは、同一の材料及び同一の工程により作製することができる。
基板151上には、絶縁層211、絶縁層213、絶縁層215、及び絶縁層214がこの順で設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層213は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層215は、トランジスタを覆って設けられる。絶縁層214は、トランジスタを覆って設けられ、平坦化層としての機能を有する。なお、ゲート絶縁層の数及びトランジスタを覆う絶縁層の数は限定されず、それぞれ単層であっても2層以上であってもよい。
トランジスタを覆う絶縁層の少なくとも一層に、水及び水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア層として機能させることができる。このような構成とすることで、トランジスタに外部から不純物が拡散することを効果的に抑制でき、表示装置の信頼性を高めることができる。
絶縁層211、絶縁層213、及び絶縁層215としては、それぞれ、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などを用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。
平坦化層として機能する絶縁層214には、有機絶縁層が好適である。有機絶縁層に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。また、絶縁層214を、有機絶縁層と、無機絶縁層との積層構造にしてもよい。絶縁層214の最表層は、エッチング保護層としての機能を有することが好ましい。これにより、導電層112R、導電層126R、または導電層129Rなどの加工時に、絶縁層214に凹部が形成されることを抑制することができる。または、絶縁層214には、導電層112R、導電層126R、または導電層129Rなどの加工時に、凹部が設けられてもよい。
トランジスタ201及びトランジスタ205は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、ソース及びドレインとして機能する導電層222a及び導電層222b、半導体層231、ゲート絶縁層として機能する絶縁層213、並びに、ゲートとして機能する導電層223を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。絶縁層211は、導電層221と半導体層231との間に位置する。絶縁層213は、導電層223と半導体層231との間に位置する。
本実施の形態の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
トランジスタ201及びトランジスタ205には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御してもよい。
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、単結晶性半導体、または単結晶以外の結晶性を有する半導体(微結晶半導体、多結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。単結晶半導体または結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。つまり、本実施の形態の表示装置は、金属酸化物をチャネル形成領域に用いたトランジスタ(以下、OSトランジスタ)を用いることが好ましい。
結晶性を有する酸化物半導体としては、CAAC(c−axis−aligned crystalline)−OS、nc(nanocrystalline)−OS等が挙げられる。
または、シリコンをチャネル形成領域に用いたトランジスタ(Siトランジスタ)を用いてもよい。シリコンとしては、単結晶シリコン、多結晶シリコン、非晶質シリコン等が挙げられる。特に、半導体層に低温ポリシリコン(LTPS(Low Temperature Poly Silicon))を有するトランジスタ(以下、LTPSトランジスタともいう)を用いることができる。LTPSトランジスタは、電界効果移動度が高く、周波数特性が良好である。
LTPSトランジスタ等のSiトランジスタを適用することで、高周波数で駆動する必要のある回路(例えばソースドライバ回路)を表示部と同一基板上に作り込むことができる。これにより、表示装置に実装される外部回路を簡略化でき、部品コスト及び実装コストを削減することができる。
OSトランジスタは、非晶質シリコンを用いたトランジスタと比較して電界効果移動度が極めて高い。また、OSトランジスタは、オフ状態におけるソース−ドレイン間のリーク電流(オフ電流ともいう)が著しく小さく、当該トランジスタと直列に接続された容量に蓄積した電荷を長期間に亘って保持することが可能である。また、OSトランジスタを適用することで、表示装置の消費電力を低減することができる。
また、画素回路に含まれる発光デバイスの発光輝度を高くする場合、発光デバイスに流す電流量を大きくする必要がある。そのためには、画素回路に含まれている駆動トランジスタのソース−ドレイン間電圧を高くする必要がある。OSトランジスタは、Siトランジスタと比較して、ソース−ドレイン間において耐圧が高いため、OSトランジスタのソース−ドレイン間には高い電圧を印加することができる。したがって、画素回路に含まれる駆動トランジスタをOSトランジスタとすることで、発光デバイスに流れる電流量を大きくし、発光デバイスの発光輝度を高くすることができる。
また、トランジスタが飽和領域で動作する場合において、OSトランジスタは、Siトランジスタよりも、ゲート−ソース間電圧の変化に対して、ソース−ドレイン間電流の変化を小さくすることができる。このため、画素回路に含まれる駆動トランジスタとしてOSトランジスタを適用することによって、ゲート−ソース間電圧の変化によって、ソース−ドレイン間に流れる電流を細かく定めることができるため、発光デバイスに流れる電流量を制御することができる。このため、画素回路における階調数を多くすることができる。
また、トランジスタが飽和領域で動作するときに流れる電流の飽和特性において、OSトランジスタは、ソース−ドレイン間電圧が徐々に高くなった場合においても、Siトランジスタよりも安定した電流(飽和電流)を流すことができる。そのため、OSトランジスタを駆動トランジスタとして用いることで、例えば、ELデバイスの電流−電圧特性にばらつきが生じた場合においても、発光デバイスに安定した電流を流すことができる。つまり、OSトランジスタは、飽和領域で動作する場合において、ソース−ドレイン間電圧を高くしても、ソース−ドレイン間電流がほぼ変化しないため、発光デバイスの発光輝度を安定させることができる。
上記のとおり、画素回路に含まれる駆動トランジスタにOSトランジスタを用いることで、「黒浮きの抑制」、「発光輝度の上昇」、「多階調化」、「発光デバイスのばらつきの抑制」などを図ることができる。
半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。
特に、半導体層として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。または、インジウム、スズ、及び亜鉛を含む酸化物を用いることが好ましい。または、インジウム、ガリウム、スズ、及び亜鉛を含む酸化物を用いることが好ましい。または、インジウム(In)、アルミニウム(Al)、及び亜鉛(Zn)を含む酸化物(IAZOとも記す)を用いることが好ましい。または、インジウム(In)、アルミニウム(Al)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IAGZOとも記す)を用いることが好ましい。
半導体層がIn−M−Zn酸化物の場合、当該In−M−Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:1:1またはその近傍の組成、In:M:Zn=1:1:1.2またはその近傍の組成、In:M:Zn=1:3:2またはその近傍の組成、In:M:Zn=1:3:4またはその近傍の組成、In:M:Zn=2:1:3またはその近傍の組成、In:M:Zn=3:1:2またはその近傍の組成、In:M:Zn=4:2:3またはその近傍の組成、In:M:Zn=4:2:4.1またはその近傍の組成、In:M:Zn=5:1:3またはその近傍の組成、In:M:Zn=5:1:6またはその近傍の組成、In:M:Zn=5:1:7またはその近傍の組成、In:M:Zn=5:1:8またはその近傍の組成、In:M:Zn=6:1:6またはその近傍の組成、In:M:Zn=5:2:5またはその近傍の組成、等が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。
例えば、原子数比がIn:Ga:Zn=4:2:3またはその近傍の組成と記載する場合、Inを4としたとき、Gaが1以上3以下であり、Znが2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍の組成と記載する場合、Inを5としたときに、Gaが0.1より大きく2以下であり、Znが5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1:1:1またはその近傍の組成と記載する場合、Inを1としたときに、Gaが0.1より大きく2以下であり、Znが0.1より大きく2以下である場合を含む。
回路164が有するトランジスタと、表示部162が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路164が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、表示部162が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
表示部162が有するトランジスタの全てをOSトランジスタとしてもよく、表示部162が有するトランジスタの全てをSiトランジスタとしてもよく、表示部162が有するトランジスタの一部をOSトランジスタとし、残りをSiトランジスタとしてもよい。
例えば、表示部162にLTPSトランジスタとOSトランジスタとの双方を用いることで、消費電力が低く、駆動能力の高い表示装置を実現することができる。また、LTPSトランジスタと、OSトランジスタとを、組み合わせる構成をLTPOと呼称する場合がある。なお、より好適な例としては、配線間の導通、非導通を制御するためのスイッチとして機能するトランジスタ等にOSトランジスタを適用し、電流を制御するトランジスタ等にLTPSトランジスタを適用する構成が挙げられる。
例えば、表示部162が有するトランジスタの一は、発光デバイスに流れる電流を制御するためのトランジスタとして機能し、駆動トランジスタとも呼ぶことができる。駆動トランジスタのソース及びドレインの一方は、発光デバイスの画素電極と電気的に接続される。当該駆動トランジスタには、LTPSトランジスタを用いることが好ましい。これにより、画素回路において発光デバイスに流れる電流を大きくできる。
一方、表示部162が有するトランジスタの他の一は、画素の選択、非選択を制御するためのスイッチとして機能し、選択トランジスタとも呼ぶことができる。選択トランジスタのゲートはゲート線と電気的に接続され、ソース及びドレインの一方は、ソース線(信号線)と電気的に接続される。選択トランジスタには、OSトランジスタを適用することが好ましい。これにより、フレーム周波数を著しく小さく(例えば1fps以下)しても、画素の階調を維持することができるため、静止画を表示する際にドライバを停止することで、消費電力を低減することができる。
このように本発明の一態様の表示装置は、高い開口率と、高い精細度と、高い表示品位と、低い消費電力と、を兼ね備えることができる。
なお、本発明の一態様の表示装置は、OSトランジスタを有し、且つMML(メタルマスクレス)構造の発光デバイスを有する構成である。当該構成とすることで、トランジスタに流れうるリーク電流、及び隣接する発光デバイス間に流れうるリーク電流(横リーク電流、サイドリーク電流などともいう)を、極めて低くすることができる。また、上記構成とすることで、表示装置に画像を表示した場合に、観察者が画像のきれ、画像のするどさ、高い彩度、及び高いコントラスト比のいずれか一または複数を観測できる。なお、トランジスタに流れうるリーク電流、及び発光デバイス間の横リーク電流が極めて低い構成とすることで、黒表示時に生じうる光漏れ(いわゆる黒浮き)などが限りなく少ない表示とすることができる。
特に、MML構造の発光デバイスの中でも、先に示すSBS構造を適用することで、発光デバイスの間に設けられる層(例えば、発光デバイスの間で共通して用いる有機層、共通層ともいう)が分断された構成となるため、サイドリークをなくす、またはサイドリークを極めて少なくすることができる。
図28B及び図28Cに、トランジスタの他の構成例を示す。
トランジスタ209及びトランジスタ210は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、チャネル形成領域231i及び一対の低抵抗領域231nを有する半導体層231、一対の低抵抗領域231nの一方と接続する導電層222a、一対の低抵抗領域231nの他方と接続する導電層222b、ゲート絶縁層として機能する絶縁層225、ゲートとして機能する導電層223、並びに、導電層223を覆う絶縁層215を有する。絶縁層211は、導電層221とチャネル形成領域231iとの間に位置する。絶縁層225は、少なくとも導電層223とチャネル形成領域231iとの間に位置する。さらに、トランジスタを覆う絶縁層218を設けてもよい。
図28Bに示すトランジスタ209では、絶縁層225が半導体層231の上面及び側面を覆う例を示す。導電層222a及び導電層222bは、それぞれ、絶縁層225及び絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。導電層222a及び導電層222bのうち、一方はソースとして機能し、他方はドレインとして機能する。
一方、図28Cに示すトランジスタ210では、絶縁層225は、半導体層231のチャネル形成領域231iと重なり、低抵抗領域231nとは重ならない。例えば、導電層223をマスクとして絶縁層225を加工することで、図28Cに示す構造を作製できる。図28Cでは、絶縁層225及び導電層223を覆って絶縁層215が設けられ、絶縁層215の開口を介して、導電層222a及び導電層222bがそれぞれ低抵抗領域231nと接続されている。
基板152の基板151側の面には、着色層132R及び着色層132Gが設けられている。表示装置が有する複数の発光デバイス130Yは、それぞれ、着色層132Rまたは着色層132Gと重なる。当該面には、遮光層117を設けることが好ましい。遮光層117は、隣り合う発光デバイスの間、接続部140、及び、回路164などに設けることができる。また、基板152の外側には各種光学部材を配置することができる。
基板151及び基板152としては、それぞれ、基板120に用いることができる材料を適用することができる。
接着層142としては、樹脂層122に用いることができる材料を適用することができる。
接続層242としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
[表示装置100H]
図29Aに示す表示装置100Hは、ボトムエミッション型の表示装置である点で、表示装置100Gと主に相違する。
発光デバイスが発する光は、基板151側に射出される。基板151には、可視光に対する透過性が高い材料を用いることが好ましい。一方、基板152に用いる材料の透光性は問わない。
基板151とトランジスタ201との間、基板151とトランジスタ205との間には、遮光層117を形成することが好ましい。図29Aでは、基板151上に遮光層117が設けられ、遮光層117上に絶縁層153が設けられ、絶縁層153上にトランジスタ201、205などが設けられている例を示す。また、絶縁層215上に、着色層132R及び着色層132Gが設けられている。
着色層132Rと重なる発光デバイス130Yは、導電層112Rと、導電層112R上の導電層126Rと、導電層126R上の導電層129Rと、を有する。
着色層132Gと重なる発光デバイス130Yは、導電層112Gと、導電層112G上の導電層126Gと、導電層126G上の導電層129Gと、を有する。
導電層112R、112G、126R、126G、129R、129Gには、それぞれ、可視光に対する透過性が高い材料を用いる。共通電極115には可視光を反射する材料を用いることが好ましい。
また、図28A及び図29Aなどでは、層128の上面が平坦部を有する例を示すが、層128の形状は、特に限定されない。図29B乃至図29Dに、層128の変形例を示す。
図29B及び図29Dに示すように、層128の上面は、断面視において、中央及びその近傍が窪んだ形状、つまり、凹曲面を有する形状を有する構成とすることができる。
また、図29Cに示すように、層128の上面は、断面視において、中央及びその近傍が膨らんだ形状、つまり、凸曲面を有する形状を有する構成とすることができる。
また、層128の上面は、凸曲面及び凹曲面の一方または双方を有していてもよい。また、層128の上面が有する凸曲面及び凹曲面の数はそれぞれ限定されず、一つまたは複数とすることができる。
また、層128の上面の高さと、導電層112Rの上面の高さと、は、一致または概略一致していてもよく、互いに異なっていてもよい。例えば、層128の上面の高さは、導電層112Rの上面の高さより低くてもよく、高くてもよい。
また、図29Bは、導電層112Rの凹部の内部に層128が収まっている例ともいえる。一方、図29Dのように、導電層112Rの凹部の外側に層128が存在する、つまり、当該凹部よりも層128の上面の幅が広がって形成されていてもよい。
[表示装置100J]
図30に示す表示装置100Jは、受光デバイス150を有する点で、表示装置100Gと主に相違する。
受光デバイス150は、導電層112Sと、導電層112S上の導電層126Sと、導電層126S上の導電層129Sと、を有する。
導電層112Sは、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222bと接続されている。
導電層126Sの上面及び側面と導電層129Sの上面及び側面は、層155によって覆われている。層155は、少なくとも活性層を有する。
層155の上面の一部及び側面は、絶縁層125、127によって覆われている。層155と絶縁層125との間にはマスク層118Sが位置する。層155、及び、絶縁層125、127上に、共通層114が設けられ、共通層114上に共通電極115が設けられている。共通層114は、受光デバイスと発光デバイスに共通して設けられるひと続きの膜である。
表示装置100Jは、例えば、実施の形態3で説明した、図19A乃至図19Kに示す画素レイアウトを適用することができる。また、受光デバイスを有する表示装置の詳細については、実施の形態1及び実施の形態6を参照することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
本実施の形態では、本発明の一態様の表示装置に用いることができる発光デバイスについて説明する。
図31Aに示すように、発光デバイスは、一対の電極(下部電極761及び上部電極762)の間に、EL層763を有する。EL層763は、層780、発光層771、及び、層790などの複数の層で構成することができる。
発光層771は、少なくとも発光物質(発光材料ともいう)を有する。
下部電極761が陽極であり、上部電極762が陰極である場合、層780は、正孔注入性の高い物質を含む層(正孔注入層)、正孔輸送性の高い物質を含む層(正孔輸送層)、及び、電子ブロック性の高い物質を含む層(電子ブロック層)のうち一つまたは複数を有する。また、層790は、電子注入性の高い物質を含む層(電子注入層)、電子輸送性の高い物質を含む層(電子輸送層)、及び、正孔ブロック性の高い物質を含む層(正孔ブロック層)のうち一つまたは複数を有する。下部電極761が陰極であり、上部電極762が陽極である場合、層780と層790は互いに上記と逆の構成になる。
一対の電極間に設けられた層780、発光層771、及び層790を有する構成は単一の発光ユニットとして機能することができ、本明細書では図31Aの構成をシングル構造と呼ぶ。
また、図31Bは、図31Aに示す発光デバイスが有するEL層763の変形例である。具体的には、図31Bに示す発光デバイスは、下部電極761上の層781と、層781上の層782と、層782上の発光層771と、発光層771上の層791と、層791上の層792と、層792上の上部電極762と、を有する。
下部電極761が陽極であり、上部電極762が陰極である場合、例えば、層781を正孔注入層、層782を正孔輸送層、層791を電子輸送層、層792を電子注入層とすることができる。また、下部電極761が陰極であり、上部電極762が陽極である場合、層781を電子注入層、層782を電子輸送層、層791を正孔輸送層、層792を正孔注入層とすることができる。このような層構造とすることで、発光層771に効率よくキャリアを注入し、発光層771内におけるキャリアの再結合の効率を高めることができる。
なお、図31C及び図31Dに示すように、層780と層790との間に複数の発光層(発光層771、772)が設けられる構成もシングル構造のバリエーションである。なお、図31C及び図31Dでは、発光層を2層有する例を示すが、シングル構造の発光デバイスにおける発光層は、3層以上であってもよい。また、シングル構造の発光デバイスは、2つの発光層の間に、バッファ層を有していてもよい。バッファ層は、例えば、正孔輸送層または電子輸送層に用いることができる材料を用いて形成することができる。
また、図31E及び図31Fに示すように、複数の発光ユニット(発光ユニット763a及び発光ユニット763b)が電荷発生層785(中間層ともいう)を介して直列に接続された構成を本明細書ではタンデム構造と呼ぶ。なお、タンデム構造をスタック構造と呼んでもよい。タンデム構造とすることで、高輝度発光が可能な発光デバイスとすることができる。また、タンデム構造は、シングル構造と比べて、同じ輝度を得るために必要な電流を低減できるため、信頼性を高めることができる。
なお、図31D及び図31Fは、表示装置が、発光デバイスと重なる層764を有する例である。図31Dは、層764が、図31Cに示す発光デバイスと重なる例であり、図31Fは、層764が、図31Eに示す発光デバイスと重なる例である。図31D及び図31Fでは、上部電極762側に光を取り出すため、上部電極762には、可視光を透過する導電膜を用いる。
層764としては、色変換層及びカラーフィルタ(着色層)の一方または双方を用いることができる。
図31C乃至図31Fにおいて、発光層771及び発光層772に、同じ色の光を発する発光物質、さらには、同じ発光物質を用いてもよい。例えば、青色の光を呈する副画素においては、発光層771及び発光層772の双方に、青色の光を発する発光物質を用いてもよい。これにより、発光デバイスが発する青色の光を取り出すことができる。また、赤色の光を呈する副画素及び緑色の光を呈する副画素においては、発光層771及び発光層772の双方に、黄色の光を発する発光物質を用いてもよい。そして、図31Dまたは図31Fに示す層764として赤色の着色層または緑色の着色層を設けることで、発光デバイスが発する黄色の光を赤色または緑色の光として取り出すことができる。
また、図31C乃至図31Fにおいて、発光層771及び発光層772に、それぞれ異なる色の光を発する発光物質を用いてもよい。例えば、赤色の光を呈する副画素及び緑色の光を呈する副画素においては、発光層771及び発光層772のうち、一方に赤色の光を発する発光物質を用い、他方に緑色の光を発する発光物質を用いてもよい。また、発光層を3層用いる場合には、赤色の光を発する発光物質を有する発光層、緑色の光を発する発光物質を有する発光層、黄色の光を発する発光物質を有する発光層の3種類を用いてもよい。これらの場合も、図31Dまたは図31Fに示す層764として赤色の着色層または緑色の着色層を設けることで、発光デバイスが発する光を赤色または緑色の光として取り出すことができる。
また、各色の光を呈する副画素に、図31Eまたは図31Fに示す構成の発光デバイスを用いる場合、副画素によって、異なる発光物質を用いてもよい。例えば、赤色の光を呈する副画素及び緑色の光を呈する副画素においては、発光層771及び発光層772の双方に黄色の光を発する発光物質を用いる構成、または、一方に赤色の光を発する発光物質を用い、他方に緑色の光を発する発光物質を用いる構成を適用する。そして、青色の光を呈する副画素が有する発光デバイスにおいては、発光層771及び発光層772の双方に、青色の光を発する発光物質を用いる構成を適用する。このような構成の表示装置は、タンデム構造の発光デバイスが適用されており、かつ、SBS構造であるといえる。そのため、タンデム構造のメリットと、SBS構造のメリットの両方を併せ持つことができる。これにより、高輝度発光が可能であり、信頼性の高い発光デバイスを実現することができる。
なお、図31E及び図31Fにおいて、発光ユニット763aが1層の発光層771を有し、発光ユニット763bが1層の発光層772を有する例を示すが、これに限られない。発光ユニット763a及び発光ユニット763bは、それぞれ、2層以上の発光層を有していてもよい。
また、図31E及び図31Fでは、発光ユニットを2つ有する発光デバイスを例示したが、これに限られない。発光デバイスは、発光ユニットを3つ以上有していてもよい。
なお、図31C、図31Dにおいても、図31Bに示すように、層780と、層790とを、それぞれ独立に、2層以上の層からなる積層構造としてもよい。
また、図31E及び図31Fにおいて、発光ユニット763aは、層780a、発光層771、及び、層790aを有し、発光ユニット763bは、層780b、発光層772、及び、層790bを有する。
下部電極761が陽極であり、上部電極762が陰極である場合、層780a及び層780bは、それぞれ、正孔注入層、正孔輸送層、及び、電子ブロック層のうち一つまたは複数を有する。また、層790a及び層790bは、それぞれ、電子注入層、電子輸送層、及び、正孔ブロック層のうち一つまたは複数を有する。下部電極761が陰極であり、上部電極762が陽極である場合、層780aと層790aは互いに上記と逆の構成になり、層780bと層790bも互いに上記と逆の構成になる。
下部電極761が陽極であり、上部電極762が陰極である場合、例えば、層780aは、正孔注入層と、正孔注入層上の正孔輸送層と、を有し、さらに、正孔輸送層上の電子ブロック層を有していてもよい。また、層790aは、電子輸送層を有し、さらに、発光層771と電子輸送層との間の正孔ブロック層を有していてもよい。また、層780bは、正孔輸送層を有し、さらに、正孔輸送層上の電子ブロック層を有していてもよい。また、層790bは、電子輸送層と、電子輸送層上の電子注入層と、を有し、さらに、発光層771と電子輸送層との間の正孔ブロック層を有していてもよい。下部電極761が陰極であり、上部電極762が陽極である場合、例えば、層780aは、電子注入層と、電子注入層上の電子輸送層と、を有し、さらに、電子輸送層上の正孔ブロック層を有していてもよい。また、層790aは、正孔輸送層を有し、さらに、発光層771と正孔輸送層との間の電子ブロック層を有していてもよい。また、層780bは、電子輸送層を有し、さらに、電子輸送層上の正孔ブロック層を有していてもよい。また、層790bは、正孔輸送層と、正孔輸送層上の正孔注入層と、を有し、さらに、発光層771と正孔輸送層との間の電子ブロック層を有していてもよい。
また、タンデム構造の発光デバイスを作製する場合、2つの発光ユニットは、電荷発生層785を介して積層される。電荷発生層785は、少なくとも電荷発生領域を有する。電荷発生層785は、一対の電極間に電圧を印加したときに、2つの発光ユニットの一方に電子を注入し、他方に正孔を注入する機能を有する。
次に、発光デバイスに用いることができる材料について説明する。
下部電極761と上部電極762のうち、光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。また、表示装置が赤外光を発する発光デバイスを有する場合には、光を取り出す側の電極には、可視光及び赤外光を透過する導電膜を用い、光を取り出さない側の電極には、可視光及び赤外光を反射する導電膜を用いることが好ましい。
また、光を取り出さない側の電極にも可視光を透過する導電膜を用いてもよい。この場合、反射層と、EL層763との間に当該電極を配置することが好ましい。つまり、EL層763の発光は、当該反射層によって反射されて、表示装置から取り出されてもよい。
発光デバイスの一対の電極を形成する材料としては、金属、合金、電気伝導性化合物、及びこれらの混合物などを適宜用いることができる。当該材料としては、具体的には、アルミニウム、マグネシウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、ガリウム、亜鉛、インジウム、スズ、モリブデン、タンタル、タングステン、パラジウム、金、白金、銀、イットリウム、ネオジムなどの金属、及びこれらを適宜組み合わせて含む合金が挙げられる。また、当該材料としては、インジウムスズ酸化物(In−Sn酸化物、ITOともいう)、In−Si−Sn酸化物(ITSOともいう)、インジウム亜鉛酸化物(In−Zn酸化物)、及びIn−W−Zn酸化物などを挙げることができる。また、当該材料としては、アルミニウム、ニッケル、及びランタンの合金(Al−Ni−La)等のアルミニウムを含む合金(アルミニウム合金)、並びに、銀とマグネシウムの合金、及び、銀とパラジウムと銅の合金(Ag−Pd−Cu、APCとも記す)等の銀を含む合金が挙げられる。その他、当該材料としては、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム、セシウム、カルシウム、ストロンチウム)、ユウロピウム、イッテルビウムなどの希土類金属及びこれらを適宜組み合わせて含む合金、グラフェン等が挙げられる。
発光デバイスには、微小光共振器(マイクロキャビティ)構造が適用されていることが好ましい。したがって、発光デバイスが有する一対の電極の一方は、可視光に対する透過性及び反射性を有する電極(半透過・半反射電極)を有することが好ましく、他方は、可視光に対する反射性を有する電極(反射電極)を有することが好ましい。発光デバイスがマイクロキャビティ構造を有することで、発光層から得られる発光を両電極間で共振させ、発光デバイスから射出される光を強めることができる。
なお、半透過・半反射電極は、反射電極として用いることができる導電層と、可視光に対する透過性を有する電極(透明電極ともいう)として用いることができる導電層と、の積層構造とすることができる。
透明電極の光の透過率は、40%以上とする。例えば、発光デバイスの透明電極には、可視光(波長400nm以上750nm未満の光)の透過率が40%以上である電極を用いることが好ましい。半透過・半反射電極の可視光の反射率は、10%以上95%以下、好ましくは30%以上80%以下とする。反射電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、これらの電極の抵抗率は、1×10−2Ωcm以下が好ましい。
発光デバイスは少なくとも発光層を有する。また、発光デバイスは、発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子ブロック材料、電子注入性の高い物質、またはバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質、バイポーラ性材料とも記す)等を含む層をさらに有していてもよい。例えば、発光デバイスは、発光層の他に、正孔注入層、正孔輸送層、正孔ブロック層、電荷発生層、電子ブロック層、電子輸送層、及び電子注入層のうち1層以上を有する構成とすることができる。
発光デバイスには低分子化合物及び高分子化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。発光デバイスを構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
発光層は、1種または複数種の発光物質を有する。発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、または赤色などの発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。
発光物質としては、蛍光材料、燐光材料、TADF材料、及び量子ドット材料などが挙げられる。
蛍光材料としては、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、及びナフタレン誘導体などが挙げられる。
燐光材料としては、例えば、4H−トリアゾール骨格、1H−トリアゾール骨格、イミダゾール骨格、ピリミジン骨格、ピラジン骨格、またはピリジン骨格を有する有機金属錯体(特にイリジウム錯体)、電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体(特にイリジウム錯体)、白金錯体、及び希土類金属錯体等が挙げられる。
発光層は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料等)を有していてもよい。1種または複数種の有機化合物としては、正孔輸送性の高い物質(正孔輸送性材料)及び電子輸送性の高い物質(電子輸送性材料)の一方または双方を用いることができる。正孔輸送性材料としては、後述の、正孔輸送層に用いることができる正孔輸送性の高い物質を用いることができる。電子輸送性材料としては、後述の、電子輸送層に用いることができる電子輸送性の高い物質を用いることができる。また、1種または複数種の有機化合物として、バイポーラ性材料、またはTADF材料を用いてもよい。
発光層は、例えば、燐光材料と、励起錯体を形成しやすい組み合わせである正孔輸送性材料及び電子輸送性材料と、を有することが好ましい。このような構成とすることにより、励起錯体から発光物質(燐光材料)へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を効率よく得ることができる。発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光を得ることができる。この構成により、発光デバイスの高効率、低電圧駆動、長寿命を同時に実現できる。
正孔注入層は、陽極から正孔輸送層に正孔を注入する層であり、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、芳香族アミン化合物、及び、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料などが挙げられる。
正孔輸送性材料としては、後述の、正孔輸送層に用いることができる正孔輸送性の高い物質を用いることができる。
アクセプター性材料としては、例えば、元素周期表における第4族乃至第8族に属する金属の酸化物を用いることができる。具体的には、酸化モリブデン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化タングステン、酸化マンガン、及び、酸化レニウムが挙げられる。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。また、フッ素を含む有機アクセプター性材料を用いることもできる。また、キノジメタン誘導体、クロラニル誘導体、及び、ヘキサアザトリフェニレン誘導体などの有機アクセプター性材料を用いることもできる。
例えば、正孔注入性の高い物質として、正孔輸送性材料と、上述の元素周期表における第4族乃至第8族に属する金属の酸化物(代表的には酸化モリブデン)とを含む材料を用いてもよい。
正孔輸送層は、正孔注入層によって陽極から注入された正孔を、発光層に輸送する層である。正孔輸送層は、正孔輸送性材料を含む層である。正孔輸送性材料としては、1×10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものも用いることができる。正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、フラン誘導体など)、芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い物質が好ましい。
電子ブロック層は、発光層に接して設けられる。電子ブロック層は、正孔輸送性を有し、かつ、電子をブロックすることが可能な材料を含む層である。電子ブロック層には、上記正孔輸送性材料のうち、電子ブロック性を有する材料を用いることができる。
電子ブロック層は、正孔輸送性を有するため、正孔輸送層と呼ぶこともできる。また、正孔輸送層のうち、電子ブロック性を有する層を、電子ブロック層と呼ぶこともできる。
電子輸送層は、電子注入層によって陰極から注入された電子を、発光層に輸送する層である。電子輸送層は、電子輸送性材料を含む層である。電子輸送性材料としては、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものも用いることができる。電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他、含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い物質を用いることができる。
正孔ブロック層は、発光層に接して設けられる。正孔ブロック層は、電子輸送性を有し、かつ、正孔をブロックすることが可能な材料を含む層である。正孔ブロック層には、上記電子輸送性材料のうち、正孔ブロック性を有する材料を用いることができる。
正孔ブロック層は、電子輸送性を有するため、電子輸送層と呼ぶこともできる。また、電子輸送層のうち、正孔ブロック性を有する層を、正孔ブロック層と呼ぶこともできる。
電子注入層は、陰極から電子輸送層に電子を注入する層であり、電子注入性の高い物質を含む層である。電子注入性の高い物質としては、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。電子注入性の高い物質としては、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いることもできる。
また、電子注入性の高い物質のLUMO準位は、陰極に用いる材料の仕事関数の値との差が小さい(具体的には0.5eV以下である)ことが好ましい。
電子注入層には、例えば、リチウム、セシウム、イッテルビウム、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF、Xは任意数)、8−(キノリノラト)リチウム(略称:Liq)、2−(2−ピリジル)フェノラトリチウム(略称:LiPP)、2−(2−ピリジル)−3−ピリジノラトリチウム(略称:LiPPy)、4−フェニル−2−(2−ピリジル)フェノラトリチウム(略称:LiPPP)、リチウム酸化物(LiO)、炭酸セシウム等のようなアルカリ金属、アルカリ土類金属、またはこれらの化合物を用いることができる。また、電子注入層は、2以上の積層構造としてもよい。当該積層構造としては、例えば、1層目にフッ化リチウムを用い、2層目にイッテルビウムを設ける構成が挙げられる。
電子注入層は、電子輸送性材料を有していてもよい。例えば、非共有電子対を備え、電子不足型複素芳香環を有する化合物を、電子輸送性材料に用いることができる。具体的には、ピリジン環、ジアジン環(ピリミジン環、ピラジン環、ピリダジン環)、トリアジン環の少なくとも1つを有する化合物を用いることができる。
なお、非共有電子対を備える有機化合物の最低空軌道(LUMO:Lowest Unoccupied Molecular Orbital)準位は、−3.6eV以上−2.3eV以下であると好ましい。また、一般にCV(サイクリックボルタンメトリ)、光電子分光法、光吸収分光法、逆光電子分光法等により、有機化合物の最高被占有軌道(HOMO:Highest Occupied Molecular Orbital)準位及びLUMO準位を見積もることができる。
例えば、4,7−ジフェニル−1,10−フェナントロリン(略称:BPhen)、2,9−ジ(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)、ジキノキサリノ[2,3−a:2’,3’−c]フェナジン(略称:HATNA)、2,4,6−トリス[3’−(ピリジン−3−イル)ビフェニル−3−イル]−1,3,5−トリアジン(略称:TmPPPyTz)等を、非共有電子対を備える有機化合物に用いることができる。なお、NBPhenはBPhenと比較して、高いガラス転移点(Tg)を備え、耐熱性に優れる。
電荷発生層は、上述の通り、少なくとも電荷発生領域を有する。電荷発生領域は、アクセプター性材料を含むことが好ましく、例えば、上述の正孔注入層に適用可能な、正孔輸送性材料とアクセプター性材料とを含むことが好ましい。
また、電荷発生層は、電子注入性の高い物質を含む層を有することが好ましい。当該層は、電子注入バッファ層と呼ぶこともできる。電子注入バッファ層は、電荷発生領域と電子輸送層との間に設けられることが好ましい。電子注入バッファ層を設けることで、電荷発生領域と電子輸送層との間の注入障壁を緩和することができるため、電荷発生領域で生じた電子を電子輸送層に容易に注入することができる。
電子注入バッファ層は、アルカリ金属またはアルカリ土類金属を含むことが好ましく、例えば、アルカリ金属の化合物またはアルカリ土類金属の化合物を含む構成とすることができる。具体的には、電子注入バッファ層は、アルカリ金属と酸素とを含む無機化合物、または、アルカリ土類金属と酸素とを含む無機化合物を有することが好ましく、リチウムと酸素とを含む無機化合物(酸化リチウム(LiO)など)を有することがより好ましい。その他、電子注入バッファ層には、上述の電子注入層に適用可能な材料を好適に用いることができる。
電荷発生層は、電子輸送性の高い物質を含む層を有することが好ましい。当該層は、電子リレー層と呼ぶこともできる。電子リレー層は、電荷発生領域と電子注入バッファ層との間に設けられることが好ましい。電荷発生層が電子注入バッファ層を有さない場合、電子リレー層は、電荷発生領域と電子輸送層との間に設けられることが好ましい。電子リレー層は、電荷発生領域と電子注入バッファ層(または電子輸送層)との相互作用を防いで、電子をスムーズに受け渡す機能を有する。
電子リレー層としては、銅(II)フタロシアニン(略称:CuPc)などのフタロシアニン系の材料、または、金属−酸素結合と芳香族配位子を有する金属錯体を用いることが好ましい。
なお、上述の電荷発生領域、電子注入バッファ層、及び電子リレー層は、断面形状、または特性などによって明確に区別できない場合がある。
なお、電荷発生層は、アクセプター性材料の代わりに、ドナー性材料を有していてもよい。例えば、電荷発生層としては、上述の電子注入層に適用可能な、電子輸送性材料とドナー性材料とを含む層を有していてもよい。
発光ユニットを積層する際、2つの発光ユニットの間に電荷発生層を設けることで、駆動電圧の上昇を抑制することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態6)
本実施の形態では、本発明の一態様の表示装置に用いることができる受光デバイスと、受発光機能を有する表示装置と、について説明する。
[受光デバイス]
図32Aに示すように、受光デバイスは、一対の電極(下部電極761及び上部電極762)の間に層765を有する。層765は、少なくとも1層の活性層を有し、さらに他の層を有していてもよい。
また、図32Bは、図32Aに示す受光デバイスが有する層765の変形例である。具体的には、図32Bに示す受光デバイスは、下部電極761上の層766と、層766上の活性層767と、活性層767上の層768と、層768上の上部電極762と、を有する。
活性層767は、光電変換層として機能する。
下部電極761が陽極であり、上部電極762が陰極である場合、層766は、正孔輸送層、及び、電子ブロック層のうち一方または双方を有する。また、層768は、電子輸送層、及び、正孔ブロック層のうち一方または双方を有する。下部電極761が陰極であり、上部電極762が陽極である場合、層766と層768は互いに上記と逆の構成になる。
次に、受光デバイスに用いることができる材料について説明する。
受光デバイスには低分子化合物及び高分子化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。受光デバイスを構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
受光デバイスが有する活性層は、半導体を含む。当該半導体としては、シリコンなどの無機半導体、及び、有機化合物を含む有機半導体が挙げられる。本実施の形態では、活性層が有する半導体として、有機半導体を用いる例を示す。有機半導体を用いることで、発光層と、活性層と、を同じ方法(例えば、真空蒸着法)で形成することができ、製造装置を共通化できるため好ましい。
活性層が有するn型半導体の材料としては、フラーレン(例えばC60、C70等)、フラーレン誘導体等の電子受容性の有機半導体材料が挙げられる。フラーレン誘導体としては、例えば、[6,6]−Phenyl−C71−butyric acid methyl ester(略称:PC70BM)、[6,6]−Phenyl−C61−butyric acid methyl ester(略称:PC60BM)、1’,1’’,4’,4’’−Tetrahydro−di[1,4]methanonaphthaleno[1,2:2’,3’,56,60:2’’,3’’][5,6]fullerene−C60(略称:ICBA)などが挙げられる。
また、n型半導体の材料としては、例えば、N,N’−ジメチル−3,4,9,10−ペリレンテトラカルボン酸ジイミド(略称:Me−PTCDI)などのペリレンテトラカルボン酸誘導体、及び、2,2’−(5,5’−(チエノ[3,2−b]チオフェン−2,5−ジイル)ビス(チオフェン−5,2−ジイル))ビス(メタン−1−イル−1−イリデン)ジマロノニトリル(略称:FT2TDMN)が挙げられる。
また、n型半導体の材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、ナフタレン誘導体、アントラセン誘導体、クマリン誘導体、ローダミン誘導体、トリアジン誘導体、及び、キノン誘導体等が挙げられる。
活性層が有するp型半導体の材料としては、銅(II)フタロシアニン(Copper(II)phthalocyanine;CuPc)、テトラフェニルジベンゾペリフランテン(Tetraphenyldibenzoperiflanthene;DBP)、亜鉛フタロシアニン(Zinc Phthalocyanine;ZnPc)、スズフタロシアニン(SnPc)、キナクリドン、及び、ルブレン等の電子供与性の有機半導体材料が挙げられる。
また、p型半導体の材料としては、カルバゾール誘導体、チオフェン誘導体、フラン誘導体、芳香族アミン骨格を有する化合物等が挙げられる。さらに、p型半導体の材料としては、ナフタレン誘導体、アントラセン誘導体、ピレン誘導体、トリフェニレン誘導体、フルオレン誘導体、ピロール誘導体、ベンゾフラン誘導体、ベンゾチオフェン誘導体、インドール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、インドロカルバゾール誘導体、ポルフィリン誘導体、フタロシアニン誘導体、ナフタロシアニン誘導体、キナクリドン誘導体、ルブレン誘導体、テトラセン誘導体、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、及び、ポリチオフェン誘導体等が挙げられる。
電子供与性の有機半導体材料のHOMO準位は、電子受容性の有機半導体材料のHOMO準位よりも浅い(高い)ことが好ましい。電子供与性の有機半導体材料のLUMO準位は、電子受容性の有機半導体材料のLUMO準位よりも浅い(高い)ことが好ましい。
電子受容性の有機半導体材料として、球状のフラーレンを用い、電子供与性の有機半導体材料として、平面に近い形状の有機半導体材料を用いることが好ましい。似た形状の分子同士は集まりやすい傾向にあり、同種の分子が凝集すると、分子軌道のエネルギー準位が近いため、キャリア輸送性を高めることができる。
また、活性層に、ドナーとして機能するPoly[[4,8−bis[5−(2−ethylhexyl)−2−thienyl]benzo[1,2−b:4,5−b’]dithiophene−2,6−diyl]−2,5−thiophenediyl[5,7−bis(2−ethylhexyl)−4,8−dioxo−4H,8H−benzo[1,2−c:4,5−c’]dithiophene−1,3−diyl]]polymer(略称:PBDB−T)、または、PBDB−T誘導体などの高分子化合物を用いることができる。例えば、PBDB−TまたはPBDB−T誘導体にアクセプター材料を分散させる方法などが使用できる。
例えば、活性層は、n型半導体とp型半導体とを共蒸着して形成することが好ましい。または、活性層は、n型半導体とp型半導体とを積層して形成してもよい。
また、活性層には3種類以上の材料を用いてもよい。例えば、吸収波長域を拡大する目的で、n型半導体の材料と、p型半導体の材料と、に加えて、第3の材料を混合してもよい。このとき、第3の材料は、低分子化合物でも高分子化合物でもよい。
受光デバイスは、活性層以外の層として、正孔輸送性の高い物質、電子輸送性の高い物質、またはバイポーラ性の物質等を含む層をさらに有していてもよい。また、上記に限られず、正孔注入性の高い物質、正孔ブロック材料、電子注入性の高い物質、または電子ブロック材料などを含む層をさらに有していてもよい。受光デバイスが有する活性層以外の層には、例えば、上述の発光デバイスに用いることができる材料を用いることができる。
例えば、正孔輸送性材料または電子ブロック材料として、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)などの高分子化合物、及び、モリブデン酸化物、ヨウ化銅(CuI)などの無機化合物を用いることができる。また、電子輸送性材料または正孔ブロック材料として、酸化亜鉛(ZnO)などの無機化合物、ポリエチレンイミンエトキシレート(PEIE)などの有機化合物を用いることができる。受光デバイスは、例えば、PEIEとZnOとの混合膜を有していてもよい。
[光検出機能を有する表示装置]
本発明の一態様の表示装置は、表示部に、発光デバイスがマトリクス状に配置されており、当該表示部で画像を表示することができる。また、当該表示部には、受光デバイスがマトリクス状に配置されており、表示部は、画像表示機能に加えて、撮像機能及びセンシング機能の一方または双方を有する。表示部は、イメージセンサまたはタッチセンサに用いることができる。つまり、表示部で光を検出することで、画像を撮像すること、または、対象物(指、手、またはペンなど)の近接もしくは接触を検出することができる。
さらに、本発明の一態様の表示装置は、発光デバイスをセンサの光源として利用することができる。本発明の一態様の表示装置では、表示部が有する発光デバイスが発した光を対象物が反射(または散乱)した際、受光デバイスがその反射光(または散乱光)を検出できるため、暗い場所でも、撮像またはタッチ検出が可能である。
したがって、表示装置と別に受光部及び光源を設けなくてもよく、電子機器の部品点数を削減することができる。例えば、電子機器に設けられる生体認証装置、またはスクロールなどを行うための静電容量方式のタッチパネルなどを別途設ける必要がない。したがって、本発明の一態様の表示装置を用いることで、製造コストが低減された電子機器を提供することができる。
具体的には、本発明の一態様の表示装置は、画素に、発光デバイスと受光デバイスを有する。本発明の一態様の表示装置では、発光デバイスとして有機ELデバイスを用い、受光デバイスとして有機フォトダイオードを用いる。有機ELデバイス及び有機フォトダイオードは、同一基板上に形成することができる。したがって、有機ELデバイスを用いた表示装置に有機フォトダイオードを内蔵することができる。
画素に、発光デバイス及び受光デバイスを有する表示装置では、画素が受光機能を有するため、画像を表示しながら、対象物の接触または近接を検出することができる。例えば、表示装置が有する副画素全てで画像を表示するだけでなく、一部の副画素は、光源としての光を呈し、他の一部の副画素は光検出を行い、残りの副画素で画像を表示することもできる。
受光デバイスをイメージセンサに用いる場合、表示装置は、受光デバイスを用いて、画像を撮像することができる。例えば、本実施の形態の表示装置は、スキャナとして用いることができる。
例えば、イメージセンサを用いて、指紋、掌紋、虹彩、脈形状(静脈形状、動脈形状を含む)、または顔などを用いた個人認証のための撮像を行うことができる。
例えば、イメージセンサを用いて、ウェアラブル機器の使用者の、目の周辺、目の表面、または目の内部(眼底など)の撮像を行うことができる。したがって、ウェアラブル機器は、使用者の瞬き、黒目の動き、及び瞼の動きの中から選ばれるいずれか一または複数を検出する機能を備えることができる。
また、受光デバイスは、タッチセンサ(ダイレクトタッチセンサともいう)またはニアタッチセンサ(ホバーセンサ、ホバータッチセンサ、非接触センサ、タッチレスセンサともいう)などに用いることができる。
ここで、タッチセンサまたはニアタッチセンサは、対象物(指、手、またはペンなど)の近接もしくは接触を検出することができる。
タッチセンサは、表示装置と、対象物とが、直接接することで、対象物を検出できる。また、ニアタッチセンサは、対象物が表示装置に接触しなくても、当該対象物を検出することができる。例えば、表示装置と、対象物との間の距離が0.1mm以上300mm以下、好ましくは3mm以上50mm以下の範囲で表示装置が当該対象物を検出できる構成であると好ましい。当該構成とすることで、表示装置に対象物が直接触れずに操作することが可能となる、別言すると非接触(タッチレス)で表示装置を操作することが可能となる。上記構成とすることで、表示装置に汚れ、または傷がつくリスクを低減することができる、または対象物が表示装置に付着した汚れ(例えば、ゴミ、またはウィルスなど)に直接触れずに、表示装置を操作することが可能となる。
また、本発明の一態様の表示装置は、リフレッシュレートを可変にすることができる。例えば、表示装置に表示されるコンテンツに応じてリフレッシュレートを調整(例えば、1Hz以上240Hz以下の範囲で調整)して消費電力を低減させることができる。また、当該リフレッシュレートに応じて、タッチセンサ、またはニアタッチセンサの駆動周波数を変化させてもよい。例えば、表示装置のリフレッシュレートが120Hzの場合、タッチセンサ、またはニアタッチセンサの駆動周波数を120Hzよりも高い周波数(代表的には240Hz)とする構成とすることができる。当該構成とすることで、低消費電力が実現でき、かつタッチセンサ、またはニアタッチセンサの応答速度を高めることが可能となる。
図32C乃至図32Eに示す表示装置100は、基板351と基板359との間に、受光デバイスを有する層353、機能層355、及び、発光デバイスを有する層357を有する。
機能層355は、受光デバイスを駆動する回路、及び、発光デバイスを駆動する回路を有する。機能層355には、スイッチ、トランジスタ、容量、抵抗、配線、及び端子などのうち一つまたは複数を設けることができる。なお、発光デバイス及び受光デバイスをパッシブマトリクス方式で駆動させる場合には、スイッチ及びトランジスタを設けない構成としてもよい。
例えば、図32Cに示すように、発光デバイスを有する層357において発光デバイスが発した光を、表示装置100に接触した指352が反射することで、受光デバイスを有する層353における受光デバイスがその反射光を検出する。これにより、表示装置100に指352が接触したことを検出することができる。
また、図32D及び図32Eに示すように、表示装置に近接している(つまり、接触していない)対象物を検出または撮像する機能を有していてもよい。図32Dでは、人の指を検出する例を示し、図32Eでは人の目の周辺、表面、または内部の情報(瞬きの回数、眼球の動き、瞼の動きなど)を検出する例を示す。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態7)
本実施の形態では、本発明の一態様の電子機器について、図33乃至図35を用いて説明する。
本実施の形態の電子機器は、表示部に本発明の一態様の表示装置を有する。本発明の一態様の表示装置は、高精細化及び高解像度化が容易である。したがって、様々な電子機器の表示部に用いることができる。
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
特に、本発明の一態様の表示装置は、精細度を高めることが可能なため、比較的小さな表示部を有する電子機器に好適に用いることができる。このような電子機器としては、例えば、腕時計型及びブレスレット型の情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイなどのVR向け機器、メガネ型のAR向け機器、及び、MR向け機器など、頭部に装着可能なウェアラブル機器等が挙げられる。
本発明の一態様の表示装置は、HD(画素数1280×720)、FHD(画素数1920×1080)、WQHD(画素数2560×1440)、WQXGA(画素数2560×1600)、4K(画素数3840×2160)、8K(画素数7680×4320)といった極めて高い解像度を有していることが好ましい。特に4K、8K、またはそれ以上の解像度とすることが好ましい。また、本発明の一態様の表示装置における画素密度(精細度)は、100ppi以上が好ましく、300ppi以上が好ましく、500ppi以上がより好ましく、1000ppi以上がより好ましく、2000ppi以上がより好ましく、3000ppi以上がより好ましく、5000ppi以上がより好ましく、7000ppi以上がさらに好ましい。このように高い解像度及び高い精細度の一方または双方を有する表示装置を用いることで、携帯型または家庭用途などのパーソナルユースの電子機器において、臨場感及び奥行き感などをより高めることが可能となる。また、本発明の一態様の表示装置の画面比率(アスペクト比)については、特に限定はない。例えば、表示装置は、1:1(正方形)、4:3、16:9、16:10など様々な画面比率に対応することができる。
本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を検知、検出、または測定する機能を含むもの)を有していてもよい。
本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
図33A乃至図33Dを用いて、頭部に装着可能なウェアラブル機器の一例を説明する。これらウェアラブル機器は、ARのコンテンツを表示する機能、VRのコンテンツを表示する機能、SRのコンテンツを表示する機能、MRのコンテンツを表示する機能のうち少なくとも一つを有する。電子機器が、AR、VR、SR、及びMRなどの少なくとも一つのコンテンツを表示する機能を有することで、使用者の没入感を高めることが可能となる。
図33Aに示す電子機器700A、及び、図33Bに示す電子機器700Bは、それぞれ、一対の表示パネル751と、一対の筐体721と、通信部(図示しない)と、一対の装着部723と、制御部(図示しない)と、撮像部(図示しない)と、一対の光学部材753と、フレーム757と、一対の鼻パッド758と、を有する。
表示パネル751には、本発明の一態様の表示装置を適用することができる。したがって極めて精細度の高い表示が可能な電子機器とすることができる。
電子機器700A、及び、電子機器700Bは、それぞれ、光学部材753の表示領域756に、表示パネル751で表示した画像を投影することができる。光学部材753は透光性を有するため、使用者は光学部材753を通して視認される透過像に重ねて、表示領域に表示された画像を見ることができる。したがって、電子機器700A、及び、電子機器700Bは、それぞれ、AR表示が可能な電子機器である。
電子機器700A、及び、電子機器700Bには、撮像部として、前方を撮像することのできるカメラが設けられていてもよい。また、電子機器700A、及び、電子機器700Bは、それぞれ、ジャイロセンサなどの加速度センサを備えることで、使用者の頭部の向きを検知して、その向きに応じた画像を表示領域756に表示することもできる。
通信部は無線通信機を有し、当該無線通信機により映像信号等を供給することができる。なお、無線通信機に代えて、または無線通信機に加えて、映像信号及び電源電位が供給されるケーブルを接続可能なコネクタを備えていてもよい。
また、電子機器700A、及び、電子機器700Bには、バッテリが設けられており、無線及び有線の一方または双方によって充電することができる。
筐体721には、タッチセンサモジュールが設けられていてもよい。タッチセンサモジュールは、筐体721の外側の面がタッチされることを検出する機能を有する。タッチセンサモジュールにより、使用者のタップ操作またはスライド操作などを検出し、様々な処理を実行することができる。例えば、タップ操作によって動画の一時停止または再開などの処理を実行することが可能となり、スライド操作により、早送りまたは早戻しの処理を実行することなどが可能となる。また、2つの筐体721のそれぞれにタッチセンサモジュールを設けることで、操作の幅を広げることができる。
タッチセンサモジュールとしては、様々なタッチセンサを適用することができる。例えば、静電容量方式、抵抗膜方式、赤外線方式、電磁誘導方式、表面弾性波方式、光学方式等、種々の方式を採用することができる。特に、静電容量方式または光学方式のセンサを、タッチセンサモジュールに適用することが好ましい。
光学方式のタッチセンサを用いる場合には、受光デバイスとして、光電変換デバイス(光電変換素子ともいう)を用いることができる。光電変換デバイスの活性層には、無機半導体及び有機半導体の一方または双方を用いることができる。
図33Cに示す電子機器800A、及び、図33Dに示す電子機器800Bは、それぞれ、一対の表示部820と、筐体821と、通信部822と、一対の装着部823と、制御部824と、一対の撮像部825と、一対のレンズ832と、を有する。
表示部820には、本発明の一態様の表示装置を適用することができる。したがって極めて精細度の高い表示が可能な電子機器とすることができる。これにより、使用者に高い没入感を感じさせることができる。
表示部820は、筐体821の内部の、レンズ832を通して視認できる位置に設けられる。また、一対の表示部820に異なる画像を表示させることで、視差を用いた3次元表示を行うこともできる。
電子機器800A、及び、電子機器800Bは、それぞれ、VR向けの電子機器ということができる。電子機器800Aまたは電子機器800Bを装着した使用者は、レンズ832を通して、表示部820に表示される画像を視認することができる。
電子機器800A、及び、電子機器800Bは、それぞれ、レンズ832及び表示部820が、使用者の目の位置に応じて最適な位置となるように、これらの左右の位置を調整可能な機構を有していることが好ましい。また、レンズ832と表示部820との距離を変えることで、ピントを調整する機構を有していることが好ましい。
装着部823により、使用者は電子機器800Aまたは電子機器800Bを頭部に装着することができる。なお、図33Cなどにおいては、メガネのつる(テンプルなどともいう)のような形状として例示しているがこれに限定されない。装着部823は、使用者が装着できればよく、例えば、ヘルメット型またはバンド型の形状としてもよい。
撮像部825は、外部の情報を取得する機能を有する。撮像部825が取得したデータは、表示部820に出力することができる。撮像部825には、イメージセンサを用いることができる。また、望遠、広角などの複数の画角に対応可能なように複数のカメラを設けてもよい。
なお、ここでは撮像部825を有する例を示したが、対象物の距離を測定することのできる測距センサ(以下、検知部ともよぶ)を設ければよい。すなわち、撮像部825は、検知部の一態様である。検知部としては、例えばイメージセンサ、または、ライダー(LIDAR:Light Detection and Ranging)などの距離画像センサを用いることができる。カメラによって得られた画像と、距離画像センサによって得られた画像とを用いることにより、より多くの情報を取得し、より高精度なジェスチャー操作を可能とすることができる。
電子機器800Aは、骨伝導イヤフォンとして機能する振動機構を有していてもよい。例えば、表示部820、筐体821、及び装着部823のいずれか一または複数に、当該振動機構を有する構成を適用することができる。これにより、別途、ヘッドフォン、イヤフォン、またはスピーカなどの音響機器を必要とせず、電子機器800Aを装着しただけで映像と音声を楽しむことができる。
電子機器800A、及び、電子機器800Bは、それぞれ、入力端子を有していてもよい。入力端子には映像出力機器等からの映像信号、及び、電子機器内に設けられるバッテリを充電するための電力等を供給するケーブルを接続することができる。
本発明の一態様の電子機器は、イヤフォン750と無線通信を行う機能を有していてもよい。イヤフォン750は、通信部(図示しない)を有し、無線通信機能を有する。イヤフォン750は、無線通信機能により、電子機器から情報(例えば音声データ)を受信することができる。例えば、図33Aに示す電子機器700Aは、無線通信機能によって、イヤフォン750に情報を送信する機能を有する。また、例えば、図33Cに示す電子機器800Aは、無線通信機能によって、イヤフォン750に情報を送信する機能を有する。
また、電子機器がイヤフォン部を有していてもよい。図33Bに示す電子機器700Bは、イヤフォン部727を有する。例えば、イヤフォン部727と制御部とは、互いに有線接続されている構成とすることができる。イヤフォン部727と制御部とをつなぐ配線の一部は、筐体721または装着部723の内部に配置されていてもよい。
同様に、図33Dに示す電子機器800Bは、イヤフォン部827を有する。例えば、イヤフォン部827と制御部824とは、互いに有線接続されている構成とすることができる。イヤフォン部827と制御部824とをつなぐ配線の一部は、筐体821または装着部823の内部に配置されていてもよい。また、イヤフォン部827と装着部823とがマグネットを有していてもよい。これにより、イヤフォン部827を装着部823に磁力によって固定することができ、収納が容易となり好ましい。
なお、電子機器は、イヤフォンまたはヘッドフォンなどを接続することができる音声出力端子を有していてもよい。また、電子機器は、音声入力端子及び音声入力機構の一方または双方を有していてもよい。音声入力機構としては、例えば、マイクなどの集音装置を用いることができる。電子機器が音声入力機構を有することで、電子機器に、いわゆるヘッドセットとしての機能を付与してもよい。
このように、本発明の一態様の電子機器としては、メガネ型(電子機器700A、及び、電子機器700Bなど)と、ゴーグル型(電子機器800A、及び、電子機器800Bなど)と、のどちらも好適である。
また、本発明の一態様の電子機器は、有線または無線によって、イヤフォンに情報を送信することができる。
図34Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、及び光源6508等を有する。表示部6502はタッチパネル機能を備える。
表示部6502に、本発明の一態様の表示装置を適用することができる。
図34Bは、筐体6501のマイク6506側の端部を含む断面概略図である。
筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。
保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が接着層(図示しない)により固定されている。
表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。
表示パネル6511には本発明の一態様のフレキシブルディスプレイを適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
図34Cにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図34Cに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチ、及び、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者同士など)の情報通信を行うことも可能である。
図34Dに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図34E及び図34Fに、デジタルサイネージの一例を示す。
図34Eに示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
図34Fは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
図34E及び図34Fにおいて、表示部7000に、本発明の一態様の表示装置を適用することができる。
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
また、図34E及び図34Fに示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、使用者が所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数の使用者が同時にゲームに参加し、楽しむことができる。
図35A乃至図35Gに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を検知、検出、または測定する機能を含むもの)、マイクロフォン9008、等を有する。
図35A乃至図35Gにおいて、表示部9001に、本発明の一態様の表示装置を適用することができる。
図35A乃至図35Gに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画または動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
図35A乃至図35Gに示す電子機器の詳細について、以下説明を行う。
図35Aは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字及び画像情報をその複数の面に表示することができる。図35Aでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS(Social Networking Service)、電話などの着信の通知、電子メールまたはSNSなどの題名、送信者名、日時、時刻、バッテリの残量、電波強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
図35Bは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。使用者は、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
図35Cは、タブレット端末9103を示す斜視図である。タブレット端末9103は、一例として、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲーム等の種々のアプリケーションの実行が可能である。タブレット端末9103は、筐体9000の正面に表示部9001、カメラ9002、マイクロフォン9008、スピーカ9003を有し、筐体9000の左側面には操作用のボタンとしての操作キー9005、底面には接続端子9006を有する。
図35Dは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチ(登録商標)として用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うこと、及び、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
図35E乃至図35Gは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図35Eは携帯情報端末9201を展開した状態、図35Gは折り畳んだ状態、図35Fは図35Eと図35Gの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
11B:副画素、11G:副画素、11R:副画素、11S:副画素、100A:表示装置、100B:表示装置、100C:表示装置、100D:表示装置、100E:表示装置、100F:表示装置、100G:表示装置、100H:表示装置、100J:表示装置、100:表示装置、101:層、103:領域、110a:副画素、110b:副画素、110c:副画素、110d:副画素、110e:副画素、110:画素、111B:画素電極、111G:画素電極、111R:画素電極、111S:画素電極、111:画素電極、112B:導電層、112G:導電層、112R:導電層、112S:導電層、113_1:第1の領域、113_2:第2の領域、113B:層、113b:膜、113Y:層、113y:膜、114:共通層、115:共通電極、116B:導電層、116G:導電層、116R:導電層、116:導電層、117:遮光層、118B:マスク層、118b:マスク膜、118S:マスク層、118Y:マスク層、118y:マスク膜、119B:マスク層、119b:マスク膜、119Y:マスク層、119y:マスク膜、120:基板、121a:プラズマ、121b:プラズマ、122:樹脂層、123:導電層、124a:画素、124b:画素、125A:絶縁膜、125:絶縁層、126B:導電層、126G:導電層、126R:導電層、126S:導電層、127a:絶縁膜、127b:絶縁層、127:絶縁層、128:層、129B:導電層、129G:導電層、129R:導電層、129S:導電層、130B:発光デバイス、130Y:発光デバイス、131:保護層、132B:着色層、132G:着色層、132R:着色層、132:マスク、133:レンズアレイ、134:絶縁層、139:光、140:接続部、142:接着層、150:受光デバイス、151:基板、152:基板、153:絶縁層、155:層、162:表示部、164:回路、165:配線、166:導電層、172:FPC、173:IC、190B:レジストマスク、190Y:レジストマスク、201:トランジスタ、204:接続部、205:トランジスタ、209:トランジスタ、210:トランジスタ、211:絶縁層、213:絶縁層、214:絶縁層、215:絶縁層、218:絶縁層、221:導電層、222a:導電層、222b:導電層、223:導電層、225:絶縁層、231i:チャネル形成領域、231n:低抵抗領域、231:半導体層、240:容量、241:導電層、242:接続層、243:絶縁層、245:導電層、251:導電層、252:導電層、254:絶縁層、255a:絶縁層、255b:絶縁層、255c:絶縁層、256:プラグ、261:絶縁層、262:絶縁層、263:絶縁層、264:絶縁層、265:絶縁層、271:プラグ、274a:導電層、274b:導電層、274:プラグ、280:表示モジュール、281:表示部、282:回路部、283a:画素回路、283:画素回路部、284a:画素、284:画素部、285:端子部、286:配線部、290:FPC、291:基板、292:基板、301A:基板、301B:基板、301:基板、310A:トランジスタ、310B:トランジスタ、310:トランジスタ、311:導電層、312:低抵抗領域、313:絶縁層、314:絶縁層、315:素子分離層、320A:トランジスタ、320B:トランジスタ、320:トランジスタ、321:半導体層、323:絶縁層、324:導電層、325:導電層、326:絶縁層、327:導電層、328:絶縁層、329:絶縁層、331:基板、332:絶縁層、335:絶縁層、336:絶縁層、341:導電層、342:導電層、343:プラグ、344:絶縁層、345:絶縁層、346:絶縁層、347:バンプ、348:接着層、351:基板、352:指、353:層、355:機能層、357:層、359:基板、700A:電子機器、700B:電子機器、721:筐体、723:装着部、727:イヤフォン部、750:イヤフォン、751:表示パネル、753:光学部材、756:表示領域、757:フレーム、758:鼻パッド、761:下部電極、762:上部電極、763a:発光ユニット、763b:発光ユニット、763:EL層、764:層、765:層、766:層、767:活性層、768:層、771:発光層、772:発光層、780a:層、780b:層、780:層、781:層、782:層、785:電荷発生層、790a:層、790b:層、790:層、791:層、792:層、800A:電子機器、800B:電子機器、820:表示部、821:筐体、822:通信部、823:装着部、824:制御部、825:撮像部、827:イヤフォン部、832:レンズ、6500:電子機器、6501:筐体、6502:表示部、6503:電源ボタン、6504:ボタン、6505:スピーカ、6506:マイク、6507:カメラ、6508:光源、6510:保護部材、6511:表示パネル、6512:光学部材、6513:タッチセンサパネル、6515:FPC、6516:IC、6517:プリント基板、6518:バッテリ、7000:表示部、7100:テレビジョン装置、7101:筐体、7103:スタンド、7111:リモコン操作機、7200:ノート型パーソナルコンピュータ、7211:筐体、7212:キーボード、7213:ポインティングデバイス、7214:外部接続ポート、7300:デジタルサイネージ、7301:筐体、7303:スピーカ、7311:情報端末機、7400:デジタルサイネージ、7401:柱、7411:情報端末機、9000:筐体、9001:表示部、9002:カメラ、9003:スピーカ、9005:操作キー、9006:接続端子、9007:センサ、9008:マイクロフォン、9050:アイコン、9051:情報、9052:情報、9053:情報、9054:情報、9055:ヒンジ、9101:携帯情報端末、9102:携帯情報端末、9103:タブレット端末、9200:携帯情報端末、9201:携帯情報端末

Claims (18)

  1.  第1の発光デバイス、第2の発光デバイス、第3の発光デバイス、第1の着色層、第2の着色層、第1の絶縁層、及び、第2の絶縁層を有し、
     前記第1の発光デバイスは、第1の画素電極と、前記第1の画素電極上の第1の発光層と、前記第1の発光層上の共通電極と、を有し、
     前記第2の発光デバイスは、第2の画素電極と、前記第2の画素電極上の第2の発光層と、前記第2の発光層上の前記共通電極と、を有し、
     前記第3の発光デバイスは、第3の画素電極と、前記第3の画素電極上の第3の発光層と、前記第3の発光層上の前記共通電極と、を有し、
     前記第1の発光層と前記第2の発光層とは、同一の発光材料を有し、
     前記第3の発光デバイスは、前記第1の発光デバイス及び前記第2の発光デバイスよりも短波長の光を発し、
     前記第1の着色層と前記第2の着色層とは、互いに異なる色の光を透過し、
     前記第1の着色層は、前記第1の発光デバイスと重なり、
     前記第2の着色層は、前記第2の発光デバイスと重なり、
     前記第1の絶縁層は、前記第1の発光層の上面の一部及び側面、並びに、前記第2の発光層の上面の一部及び側面を覆い、
     前記第2の絶縁層は、前記第1の絶縁層を介して、前記第1の発光層の上面の一部及び前記第2の発光層の上面の一部と重なり、
     前記第2の絶縁層は、前記第1の発光層の側面と前記第2の発光層の側面の間に位置する部分を有し、
     前記共通電極は、前記第2の絶縁層の上面を覆う、表示装置。
  2.  第1の発光デバイス、第2の発光デバイス、第3の発光デバイス、第1の着色層、第2の着色層、第1の絶縁層、及び、第2の絶縁層を有し、
     前記第1の発光デバイスは、第1の画素電極と、前記第1の画素電極上の第1の発光層と、前記第1の発光層上の第1の機能層と、前記第1の機能層上の共通電極と、を有し、
     前記第2の発光デバイスは、第2の画素電極と、前記第2の画素電極上の第2の発光層と、前記第2の発光層上の第2の機能層と、前記第2の機能層上の前記共通電極と、を有し、
     前記第3の発光デバイスは、第3の画素電極と、前記第3の画素電極上の第3の発光層と、前記第3の発光層上の第3の機能層と、前記第3の機能層上の前記共通電極と、を有し、
     前記第1の発光層と前記第2の発光層とは、同一の発光材料を有し、
     前記第1の発光デバイス、前記第2の発光デバイス、及び、前記第3の発光デバイスのうち、前記第3の発光デバイスは、最も短波長の光を発し、
     前記第1の着色層と前記第2の着色層とは、互いに異なる色の光を透過し、
     前記第1の着色層は、前記第1の発光デバイスと重なり、
     前記第2の着色層は、前記第2の発光デバイスと重なり、
     前記第1の絶縁層は、前記第1の発光層の上面の一部及び側面、前記第2の発光層の上面の一部及び側面、前記第1の機能層の上面の一部及び側面、並びに、前記第2の機能層の上面の一部及び側面を覆い、
     前記第2の絶縁層は、前記第1の絶縁層を介して、前記第1の発光層の上面の一部、前記第2の発光層の上面の一部、前記第1の機能層の上面の一部、及び、前記第2の機能層の上面の一部と重なり、
     前記第2の絶縁層は、前記第1の発光層の側面と前記第2の発光層の側面の間に位置する部分を有し、
     前記共通電極は、前記第2の絶縁層の上面を覆う、表示装置。
  3.  請求項2において、
     前記第1の機能層、前記第2の機能層、及び前記第3の機能層は、それぞれ、正孔注入層、電子注入層、正孔輸送層、電子輸送層、正孔ブロック層、及び電子ブロック層のうち少なくとも一つを有する、表示装置。
  4.  請求項1乃至3のいずれか一において、
     前記第1の発光デバイス及び前記第2の発光デバイスは、黄色の光を発し、
     前記第3の発光デバイスは、青色の光を発し、
     前記第1の着色層は、赤色の光を透過し、
     前記第2の着色層は、緑色の光を透過する、表示装置。
  5.  請求項1乃至4のいずれか一において、
     前記第3の発光デバイスと重なる位置に、青色の光を透過する第3の着色層を有する、表示装置。
  6.  請求項1乃至5のいずれか一において、
     断面視において、前記第2の絶縁層の端部は、テーパ角90°未満のテーパ形状を有する、表示装置。
  7.  請求項1乃至6のいずれか一において、
     前記第2の絶縁層は、前記第1の絶縁層の側面の少なくとも一部を覆う、表示装置。
  8.  請求項1乃至7のいずれか一において、
     前記第2の絶縁層の端部は、前記第1の絶縁層の端部よりも外側に位置する、表示装置。
  9.  請求項1乃至8のいずれか一において、
     前記第2の絶縁層は、上面に凸曲面形状を有する、表示装置。
  10.  請求項1乃至9のいずれか一において、
     断面視において、前記第1の絶縁層の端部は、テーパ角90°未満のテーパ形状を有する、表示装置。
  11.  請求項1乃至10のいずれか一において、
     前記第1の絶縁層及び前記第2の絶縁層は、それぞれ、前記第1の画素電極の上面と重なる部分と、前記第2の画素電極の上面と重なる部分と、を有する、表示装置。
  12.  請求項1乃至11のいずれか一において、
     前記第1の発光層は、前記第1の画素電極の側面を覆い、
     前記第2の発光層は、前記第2の画素電極の側面を覆い、
     前記第3の発光層は、前記第3の画素電極の側面を覆う、表示装置。
  13.  請求項1乃至12のいずれか一において、
     断面視において、前記第1の画素電極の端部、前記第2の画素電極の端部、及び前記第3の画素電極の端部は、それぞれ、テーパ角90°未満のテーパ形状を有する、表示装置。
  14.  請求項1乃至13のいずれか一において、
     前記第1の絶縁層は、無機絶縁層であり、
     前記第2の絶縁層は、有機絶縁層である、表示装置。
  15.  請求項1乃至14のいずれか一において、
     前記第1の絶縁層は、酸化アルミニウムを有する、表示装置。
  16.  請求項1乃至15のいずれか一において、
     前記第1の発光デバイスは、前記第1の発光層と前記共通電極との間に共通層を有し、
     前記第2の発光デバイスは、前記第2の発光層と前記共通電極との間に前記共通層を有し、
     前記第3の発光デバイスは、前記第3の発光層と前記共通電極との間に前記共通層を有し、
     前記共通層は、前記第2の絶縁層と前記共通電極との間に位置する、表示装置。
  17.  請求項1乃至16のいずれか一に記載の表示装置と、
     コネクタ及び集積回路のうち少なくとも一方と、を有する、表示モジュール。
  18.  請求項17に記載の表示モジュールと、
     筐体、バッテリ、カメラ、スピーカ、及びマイクのうち少なくとも一つと、を有する、電子機器。
PCT/IB2022/059212 2021-10-07 2022-09-28 表示装置、表示モジュール、及び、電子機器 WO2023057855A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-165503 2021-10-07
JP2021165503 2021-10-07

Publications (1)

Publication Number Publication Date
WO2023057855A1 true WO2023057855A1 (ja) 2023-04-13

Family

ID=85803214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/059212 WO2023057855A1 (ja) 2021-10-07 2022-09-28 表示装置、表示モジュール、及び、電子機器

Country Status (1)

Country Link
WO (1) WO2023057855A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242604A (ja) * 2006-02-10 2007-09-20 Semiconductor Energy Lab Co Ltd 表示装置の作製方法
JP2008108482A (ja) * 2006-10-24 2008-05-08 Canon Inc 有機el表示装置
JP2015216113A (ja) * 2014-04-25 2015-12-03 株式会社半導体エネルギー研究所 発光装置、電子機器、及び照明装置
WO2020004086A1 (ja) * 2018-06-25 2020-01-02 ソニーセミコンダクタソリューションズ株式会社 有機el素子および有機el素子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242604A (ja) * 2006-02-10 2007-09-20 Semiconductor Energy Lab Co Ltd 表示装置の作製方法
JP2008108482A (ja) * 2006-10-24 2008-05-08 Canon Inc 有機el表示装置
JP2015216113A (ja) * 2014-04-25 2015-12-03 株式会社半導体エネルギー研究所 発光装置、電子機器、及び照明装置
WO2020004086A1 (ja) * 2018-06-25 2020-01-02 ソニーセミコンダクタソリューションズ株式会社 有機el素子および有機el素子の製造方法

Similar Documents

Publication Publication Date Title
WO2023057855A1 (ja) 表示装置、表示モジュール、及び、電子機器
WO2023047235A1 (ja) 表示装置の作製方法
WO2023094943A1 (ja) 表示装置、及び、表示装置の作製方法
WO2023139448A1 (ja) 表示装置、及び表示装置の作製方法
WO2023111754A1 (ja) 表示装置、及び、表示装置の作製方法
WO2023144643A1 (ja) 表示装置、及び表示装置の作製方法
WO2023119050A1 (ja) 表示装置
WO2023073489A1 (ja) 表示装置、表示モジュール、及び、電子機器
WO2023089439A1 (ja) 表示装置の作製方法
WO2023021365A1 (ja) 表示装置の作製方法、表示装置、表示モジュール、及び、電子機器
WO2023021360A1 (ja) 表示装置、及び電子機器
WO2023285906A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023012564A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023285907A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023012565A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023012578A1 (ja) 表示装置、および電子機器
WO2023002279A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023026126A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023126742A1 (ja) 表示装置、及び表示装置の作製方法
WO2023275654A1 (ja) 表示装置、表示モジュール、及び電子機器
JP2023056500A (ja) 表示装置、表示モジュール、及び、電子機器
WO2023084355A1 (ja) 表示装置、表示モジュール、及び、電子機器
WO2023100014A1 (ja) 表示装置
WO2023281347A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2023002297A1 (ja) 表示装置、及び表示装置の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878040

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552402

Country of ref document: JP