WO2023055090A1 - 경화성 조성물 - Google Patents

경화성 조성물 Download PDF

Info

Publication number
WO2023055090A1
WO2023055090A1 PCT/KR2022/014594 KR2022014594W WO2023055090A1 WO 2023055090 A1 WO2023055090 A1 WO 2023055090A1 KR 2022014594 W KR2022014594 W KR 2022014594W WO 2023055090 A1 WO2023055090 A1 WO 2023055090A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
polyol
less
curable composition
Prior art date
Application number
PCT/KR2022/014594
Other languages
English (en)
French (fr)
Inventor
이정현
강양구
김도연
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2023545359A priority Critical patent/JP2024505046A/ja
Priority to US18/276,358 priority patent/US20240132656A1/en
Priority to CN202280013088.3A priority patent/CN116806231A/zh
Priority to EP22876862.8A priority patent/EP4286440A4/en
Priority claimed from KR1020220123122A external-priority patent/KR20230045582A/ko
Publication of WO2023055090A1 publication Critical patent/WO2023055090A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4891Polyethers modified with higher fatty oils or their acids or by resin acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6662Compounds of group C08G18/42 with compounds of group C08G18/36 or hydroxylated esters of higher fatty acids of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/675Low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/68Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • This application relates to curable compositions.
  • Patent Document 1 a material in which a resin binder is filled with a filler having heat-dissipating properties is known (for example, Patent Document 1).
  • a silicone resin, a polyolefin resin, an acrylic resin, an epoxy resin, or the like is usually used as a resin binder.
  • the heat dissipation material is basically required to have excellent thermal conductivity, and additional functions are also required depending on the use. For example, depending on the application, it may be required that the heat dissipation material exhibit high thermal conductivity and low adhesion to a specific adherend.
  • the heat dissipation material when it is necessary to replace a part in contact with a heat dissipation material in a product or to change a location of a heat dissipation material in a process, the heat dissipation material needs to exhibit low adhesive strength.
  • materials showing low adhesive strength include materials to which a silicone resin is applied as a resin binder.
  • silicone resins are relatively expensive.
  • silicone resins contain components that cause contact failure and the like when applied to electronic/electrical products, their uses are limited.
  • the polyurethane material also applied in Patent Literature 1 can form a heat dissipation material having high thermal conductivity and has various other advantages, but is a material that exhibits high adhesive strength to most adherends.
  • plasticizers formulated in large amounts to control adhesive strength have problems such as damaging the inherent merits of the material itself or being eluted during use.
  • Patent Document 1 Korean Patent Publication No. 2016-0105354
  • the present application aims to provide a curable composition.
  • One object of the present application is to make the curable composition or its cured product exhibit high thermal conductivity and low adhesive strength to a predetermined adherend.
  • an object of the present application includes achieving the low adhesive force without using an adhesive force adjusting component such as a plasticizer or in a state where the use ratio is minimized.
  • Another object of the present application is to provide a product including the curable composition or a cured product thereof.
  • the corresponding physical property is a physical property measured at room temperature unless otherwise specified.
  • room temperature refers to a temperature in the range of about 10 ° C to 30 ° C or about 23 ° C or about 25 ° C as a natural temperature that is not heated and cooled.
  • the unit of temperature is °C.
  • normal pressure refers to natural pressure that is not pressurized and reduced, usually within the range of about 700 mHg to 800 mmHg as normal pressure.
  • resin composition refers to a composition containing a component known in the art as a resin or a composition that does not contain a resin but includes a component capable of forming a resin through a curing reaction or the like. Accordingly, the scope of the term resin or resin component in this specification includes components generally known as resins as well as components capable of forming resins through curing and/or polymerization reactions.
  • the resin composition may be a curable composition.
  • the resin composition of the present application is a curable resin composition
  • the resin composition may be a one-component or two-component resin composition.
  • the term one-component resin composition refers to a resin composition in which components participating in curing are physically in contact with each other
  • the term two-component resin composition refers to a resin composition in which at least some of the components participating in curing are physically separated. It may mean a resin composition that is divided and included.
  • the resin composition of the present application is a curable resin composition
  • the resin composition may be a room temperature curing type, a heat curing type, an energy ray curing type, and/or a moisture curing type.
  • room temperature curing type refers to a resin composition in which a curing reaction can be initiated and/or proceeded at room temperature
  • heat curing type refers to a resin composition in which a curing reaction can be initiated and/or proceeded by application of heat
  • the pre-curing type refers to a resin composition in which a curing reaction can be initiated and/or proceeded by irradiation with energy rays (eg, ultraviolet rays or electron beams, etc.)
  • moisture curing type refers to a resin composition in which the curing reaction is initiated and/or progressed in the presence of moisture. or a resin composition capable of being processed.
  • the resin composition of the present application may be a solvent type or a non-solvent type.
  • a non-solvent type may be appropriate when considering the application efficiency or the load on the environment.
  • the resin composition of the present application may be a polyurethane composition.
  • the resin composition may include polyurethane or a component capable of forming polyurethane.
  • the resin composition of the present application may exhibit low adhesive strength with respect to a specific adherend or form a cured body capable of exhibiting low adhesive strength.
  • the resin composition of this application may be a polyurethane composition.
  • Polyurethane is known as an adhesive material capable of exhibiting excellent adhesion to various adherends. Therefore, as a method of making the polyurethane composition exhibit low adhesive strength to an adherend, a method of introducing a component that lowers the adhesive strength, such as a plasticizer, is usually used. When components such as plasticizers are applied, the adhesive strength of the polyurethane material can be lowered, but the component deteriorates other physical properties that could be secured in the polyurethane or elutes out of the material during the use of the polyurethane material.
  • the low adhesive strength can be achieved with respect to the polyurethane material while not using or minimizing the amount of adhesive strength reducing components such as plasticizers. Therefore, in the present application, it is possible to provide a material that solves the problem of high adhesive strength that is not required depending on the use while taking the advantages of polyurethane material.
  • the resin composition or a cured product thereof may exhibit controlled adhesion to aluminum.
  • the upper limit of the adhesion to aluminum is 1 N/mm 2 , 0.9 N/mm 2 , 0.8 N/mm 2 , 0.7 N/ mm 2 , 0.6 N/mm 2 , 0.5 N/mm 2 , 0.4 N/mm 2 , 0.3 N/mm 2 , 0.2 N/mm 2 , 0.1 N/mm 2 , 0.09 N/mm 2 , 0.08 N/mm 2 , 0.07 N/mm 2 , 0.06 N/mm 2 , 0.04 N/ mm 2 or 0.03 N/mm 2 .
  • the lower limit of the adhesive strength to aluminum is not particularly limited.
  • the lower limit of the adhesion to aluminum is 0 N/mm 2 , 0.0001 N/mm 2 , 0.0005 N/mm 2 , 0.001 N/mm 2 , 0.005 N/mm 2 , 0.01 N/mm 2 , 0.015 N/ mm 2 , 0.02 N/mm 2 , 0.025 N/mm 2 or 0.03 N/mm 2 .
  • the resin composition may be a resin composition in which adhesive strength to aluminum is not substantially measured, or a resin composition capable of forming a cured body in which substantially no adhesive force is measured.
  • the adhesion to aluminum is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or exceeds or exceeds any one of the lower limits described above. and may be less than or equal to any one of the upper limits described above.
  • Adhesion to aluminum can be measured in the manner described in the Examples of this specification.
  • the resin composition or its cured product can exhibit controlled adhesive strength to polyester.
  • the upper limit of the adhesion to the polyester is 2,000 gf / 10mm, 1,800 gf / 10mm, 1,600 gf / 10mm, 1,400 gf / 10mm, 1,200 gf / 10mm, 1,000 gf / 10mm, 950 gf / 10mm, 900 gf/10mm, 850 gf/10mm, 800 gf/10mm, 750 gf/10mm, 700 gf/10mm, 650 gf/10mm, 600 gf/10mm, 550 gf/10mm, 500 gf/10mm, 450 gf/10mm, 400 gf/10mm, 350 gf/10mm, 300 gf/10mm, 250 gf/10mm, 200 gf/10mm, 150 gf/10mm, 100 gf/10mm, 90 gf/10mm, 80 gf/10mm, 70 gf/10mm, 60 It may be gf/10mm
  • the lower limit of the adhesive strength to the polyester is not particularly limited.
  • the lower limit of the adhesive strength to the polyester may be 0 gf/10mm. That is, the resin composition or its cured product may not substantially exhibit adhesive strength to polyester. Therefore, the adhesive strength of the resin composition or its cured product to polyester may be 0 gf/10 mm or more.
  • the lower limit of the adhesive strength for the polyester is 0 gf/10mm, 5 gf/10mm, 10 gf/10mm, 15 gf/10mm, 20 gf/10mm, 25 gf/10mm, 30 gf/10mm, 35 gf/10mm, 40 gf/10mm, 45 gf/10mm, 50 gf/10mm, 55 gf/10mm, 60 gf/10mm, 65 gf/10mm, 70 gf/10mm, 75 gf/10mm, 80 gf/10mm, 85 It may be gf/10mm, 90 gf/10mm or 95 gf/10mm.
  • Adhesion to the polyester is equal to or less than the upper limit of any one of the upper limits set forth above, or greater than or equal to the lower limit of any one of the lower limits set forth above, or greater than or equal to the lower limit of any one of the lower limits set forth above. While, it may be within a range of less than or less than any one of the upper limits described above. Adhesion to the polyester can be measured in the manner described in the examples herein.
  • the resin composition or a cured product thereof can exhibit excellent thermal conductivity while exhibiting the adhesive force with respect to a specific adherend (eg, aluminum and/or polyester).
  • a specific adherend eg, aluminum and/or polyester.
  • the lower limit of the thermal conductivity of the resin composition or its cured body is 1.2 W/mk, 1.4 W/mK, 1.6 W/mK, 1.8 W/mK, 2.0 W/mK, 2.2 W/mK, 2.4 W/mK. mK, 2.6 W/mK or 2.8 W/mK.
  • the upper limit of the thermal conductivity There is no particular limitation on the upper limit of the thermal conductivity.
  • the upper limit of the thermal conductivity of the resin composition or its cured body is 10 W/mK, 9 W/mK, 8 W/mK, 7 W/mK, 6 W/mK, 5 W/mK, 4 W/mK It can be as much as mK or 3 W/mK.
  • the thermal conductivity is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the thermal conductivity of such a resin composition or a cured product thereof can be measured by the method disclosed in Examples to be described later.
  • the resin composition or a cured product thereof may exhibit appropriate hardness. For example, if the hardness of the resin composition or its cured product is too high, problems may occur due to excessive brittleness. In addition, through the adjustment of the hardness of the resin composition or its cured product, it is possible to secure impact resistance and vibration resistance, and to secure the durability of the product according to the application purpose.
  • the upper limit of the Shore OO type hardness of the resin composition or its cured product may be 150, 140, 130, 120, 110, 100, 95, 90, 80, 70, 60, 50 or 45 .
  • the shore OO type hardness is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or equal to any one of the lower limits described above or greater, but may be within a range of less than or equal to any one of the upper limits described above.
  • the hardness of such a resin composition or a cured product thereof can be measured by the method disclosed in Examples to be described later.
  • the resin composition or a cured product thereof can exhibit appropriate flexibility.
  • applications can be greatly expanded by adjusting the flexibility of the resin composition or its cured product to a desired level.
  • the lower limit of the radius of curvature of the resin composition or its cured body may be about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12, and the upper limit may be 20, 19 , 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5 or 4.
  • the radius of curvature is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the radius of curvature of this resin composition or its cured body can be measured by the method disclosed in Examples below.
  • the unit of curvature radius in this specification is mm.
  • the resin composition of the present application may be insulating. That is, the resin composition can form a cured body having insulating properties and/or insulating properties.
  • the resin composition or its cured product has a breakdown voltage of about 3 kV/mm or more, about 5 kV/mm or more, about 7 kV/mm or more, 10 kV/mm or more, 15 It may be kV/mm or more or 20 kV/mm or more.
  • the higher the value of the dielectric breakdown voltage the better the insulation.
  • the upper limit is not particularly limited, but considering the composition of the resin composition, the dielectric breakdown voltage is about 50 kV/mm or less, 45 kV/mm or less.
  • the breakdown voltage as described above can be controlled by adjusting the insulating properties of the resin composition, and can be achieved, for example, by applying an insulating filler in the resin layer.
  • an insulating filler in the resin layer.
  • a ceramic filler is known as a component capable of securing insulation.
  • the resin composition or its cured product may have flame retardancy.
  • the resin composition or a cured product thereof may exhibit a V-0 grade in the UL 94 V Test (Vertical Burning Test). Accordingly, it is possible to secure stability against fire and other accidents that are of concern depending on the application of the resin composition.
  • the resin composition or its cured product may have a specific gravity of 5 or less.
  • the specific gravity may be 4.5 or less, 4 or less, 3.5 or less, or 3 or less in another example.
  • a resin layer exhibiting a specific gravity within this range is advantageous for providing a more lightweight product.
  • the lower limit of the specific gravity is not particularly limited.
  • the specific gravity may be about 1.5 or more or 2 or more.
  • Components added to the resin layer may be adjusted in order to show the specific gravity of the resin composition or the cured product thereof.
  • a filler capable of securing a desired characteristic eg, thermal conductivity
  • a desired characteristic eg, thermal conductivity
  • applying a filler having a low specific gravity itself or applying a filler having a surface treatment method, etc. may be used.
  • the resin composition may have a low shrinkage during curing or after curing. Through this, it is possible to prevent peeling or generation of gaps that may occur during the application process.
  • the shrinkage rate may be appropriately adjusted within a range capable of exhibiting the above-described effect, and may be, for example, less than 5%, less than 3%, or less than about 1%. Since the shrinkage rate is more advantageous as the value is lower, the lower limit is not particularly limited.
  • the resin composition or its cured product may have a low coefficient of thermal expansion (CTE). Through this, it is possible to prevent peeling or generation of voids that may occur during application or use.
  • the thermal expansion coefficient may be appropriately adjusted within a range capable of exhibiting the above-described effect, for example, less than 300 ppm/K, less than 250 ppm/K, less than 200 ppm/K, less than 150 ppm/K, or about 100 ppm/K. It may be less than ppm/K.
  • the lower limit of the coefficient of thermal expansion is not particularly limited, since the lower the value, the more advantageous the coefficient of thermal expansion is.
  • the resin composition or its cured product may also have a 5% weight loss temperature in thermogravimetric analysis (TGA) of 400°C or more, or a residual amount of 800°C or more of 70% by weight or more. Due to these properties, stability at high temperatures can be further improved.
  • the remaining amount at 800° C. may be about 75% by weight or more, about 80% by weight or more, about 85% by weight or more, or about 90% by weight or more in another example.
  • the remaining amount at 800 ° C. may be about 99% by weight or less in another example.
  • the thermogravimetric analysis (TGA) may measure the temperature within the range of 25°C to 800°C at a heating rate of 20°C/min under a nitrogen (N2) atmosphere of 60 cm 3 /min.
  • thermogravimetric analysis (TGA) result can also be achieved by adjusting the composition of the resin composition.
  • the remaining amount at 800°C usually depends on the type or ratio of the filler contained in the resin composition, and when an excessive amount of the filler is included, the remaining amount increases.
  • the resin composition of the present application may include a hydroxyl-functionalized component.
  • hydroxy functional component may refer to a compound having all hydroxyl groups present in the resin composition. Therefore, when one kind of compound having a hydroxyl group is present in the resin composition, the compound becomes the hydroxyl group functional component, and when two or more kinds of compounds having a hydroxyl group are present in the resin composition, a mixture of the two or more kinds of compounds It becomes the said hydroxy group functional component.
  • Examples of the compound having a hydroxy group forming the hydroxy functional component include oil-modified polyol compounds, general polyol compounds, and oil-modified alcohol compounds, but are not limited thereto.
  • the hydroxy functional component may include a polyol component.
  • the polyol component may mean any polyol compound present in the resin composition. Therefore, if the resin composition has only one type of polyol compound, the one type of polyol compound becomes the polyol component, and if it includes two or more types of polyol compounds, a mixture of the two or more types of polyol compounds may become the polyol component. there is.
  • polyol compound means a compound containing two or more hydroxyl groups. Such a polyol compound may also be referred to as a polyfunctional polyol compound. These polyol compounds may be monomolecular, oligomeric or macromolecular compounds.
  • the number of hydroxy groups included in the polyol compound is not particularly limited, but in one example, the lower limit of the number of hydroxy groups per molecule of the polyol compound may be 2 or 3, and the upper limit is 10 or 9 , 8, 7, 6, 5, 4, 3 or 2.
  • the number of hydroxy groups in the polyol compound is equal to or less than any one of the upper limits described above, is equal to or more than any one of the lower limits described above, or exceeds any one of the lower limits described above. or greater, but may be within a range of less than or equal to any one of the upper limits described above.
  • the number of hydroxy groups included in the polyol compound can usually be confirmed through 1 H NMR, and the number of hydroxy groups can be confirmed based on a peak present in the 3 ppm to 4 ppm region in 1 H NMR.
  • the polyol compound may be an oil-modified polyol compound.
  • oil-modified polyol compound refers to a compound containing two or more hydroxyl groups and at least one oil group at the terminal.
  • the oil group may be a straight-chain or branched-chain hydrocarbon group having 3 or more carbon atoms. Whether or not the polyol compound contains the hydrocarbon group can usually be confirmed through 1 H NMR, and the existence and number of the hydrocarbon group can be confirmed based on the peak present in the 4 ppm to 5 ppm region in 1 H NMR. can These polyol compounds may be monomolecular, oligomeric or macromolecular compounds.
  • the lower limit of the number of carbon atoms of the straight-chain or branched-chain hydrocarbon group of the oil group is 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 It may be 14, 15, 16 or 17, and the upper limit is 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24 , 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10.
  • the number of carbon atoms is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is more than or more than any one of the lower limits described above , It may be within a range that is less than or equal to any one of the upper limits described above.
  • the straight-chain or branched-chain hydrocarbon group may or may not contain a double bond.
  • the double bond may be a conjugated double bond or a cis double bond.
  • the hydrocarbon group may be connected to the polyol compound via a carbonyl group or a carbonyloxy group, in which case the hydrocarbon group may be an alkylcarbonyl group, an alkenylcarbonyl group, an alkynylcarbonyl group, an alkylcarbonyloxy group, an alkenyl group. It may be a carbonyloxy group or an alkynylcarbonyloxy group.
  • the lower limit of the number of carbon atoms in the alkyl group, alkenyl group or alkynyl group is 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, It may be about 14, 15, 16 or 17, and the upper limit is 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, It may be as many as 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10.
  • the number of carbon atoms is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above. While, it may be within a range of less than or less than any one of the upper limits described above.
  • the alkyl group, alkenyl group or alkynyl group may be straight-chain or branched-chain, and may be optionally substituted with one or more substituents.
  • substituents there is no particular limitation on the type of the substituent, and for example, a halogen atom such as fluorine may be exemplified as the substituent.
  • the hydrocarbon group may be included in a substituent represented by Formula 1 below.
  • R is the hydrocarbon group having 3 or more carbon atoms and being a straight or branched chain.
  • * indicates that the corresponding moiety is linked to a polyol compound.
  • the oxygen atom in the substituent of Formula 1 may be connected to the polyol compound.
  • hydrocarbon group represented by R in Formula 1 Specific types of the hydrocarbon group represented by R in Formula 1 are as described above. Therefore, the information on the number, type, type, and substituent of carbon atoms of the above-described hydrocarbon group may be applied in the same manner as above.
  • the number of hydrocarbon groups included in the polyol compound is not particularly limited.
  • the lower limit of the number of hydrocarbon groups included in the oil-modified polyol compound may be 1 or 2 per molecule, and the upper limit may be 10, 9, 8, 7, or 1 per molecule. It could be 6, 5, 4, 3 or even 2.
  • the number of the hydrocarbon groups is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or exceeds or exceeds any one of the lower limits described above. While, it may be within a range of less than or less than any one of the upper limits described above.
  • the polyol compound may have various forms as long as it includes the hydroxyl group and the hydrocarbon group.
  • the polyol compound may be a compound in which at least some of the hydrogen atoms of a hydrocarbon compound such as an alkane, alkene or alkyne are substituted with the hydroxyl group and/or the hydrocarbon group.
  • a hydrocarbon compound such as an alkane, alkene or alkyne
  • the number of carbon atoms in the hydrocarbon compound such as the alkane, alkene or alkyne may be, for example, 1 to 20, 1 to 16, 1 to 8, or 4 to 6.
  • Hydrocarbon compounds such as alkanes, alkenes or alkynes may be straight chain, branched chain or cyclic.
  • the hydroxyl group and/or hydrocarbon group may be substituted on the same carbon atom in the alkane, alkene or alkyne, or may be substituted on a different carbon atom.
  • the polyol compound may be a compound having a polyester skeleton or a polyether skeleton.
  • the polyol compound may be an oligomeric compound or a polymeric compound.
  • the polyol compound having a polyester skeleton is a so-called polyester polyol, and may be a polyol having a structure in which the hydrocarbon group is connected to the polyester polyol.
  • the polyol compound having a polyether backbone is a so-called polyether polyol, and may be a polyol having a structure in which the hydrocarbon group is connected to such a polyether polyol.
  • the polyester skeleton may be a so-called polycaprolactone skeleton
  • the polyether skeleton may be a so-called polyalkylene skeleton
  • the polyester skeleton may be a skeleton having a repeating unit represented by Formula 2 below.
  • X 1 and X 2 are each independently a single bond or an oxygen atom, L 1 may be an alkylene group, and n is an arbitrary number.
  • single bond means a case where no atom exists at the corresponding site.
  • the alkylene group may be, in one example, an alkylene group having 1 to 20 carbon atoms, 4 to 20 carbon atoms, 4 to 16 carbon atoms, 4 to 12 carbon atoms, or 4 to 8 carbon atoms, which may be linear or branched. .
  • alkylene group refers to a divalent substituent formed by leaving two hydrogen atoms from an alkane. It can also break away from the carbon atom.
  • the polyester skeleton may be a polycaprolactone skeleton.
  • L 1 of Chemical Formula 2 may be a straight-chain alkylene group having 5 carbon atoms.
  • n is an arbitrary number representing the number of repeating units, and may be, for example, a number within the range of 1 to 25.
  • n in Formula 2 may be 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 or 23, and the upper limit may be 25, 23, 21, 19, 17, 15, 13 , 11, 9, 7, 5 or 3 or so.
  • n is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above; It may be within a range of less than or equal to any one of the upper limits described.
  • the skeleton of Formula 2 is a skeleton of a polyester polyol, and may be a skeleton of a so-called carboxylic acid polyol or a caprolactone polyol.
  • a backbone may be formed in a known manner, and for example, the backbone of the carboxylic acid polyol may be formed by reacting a component including a carboxylic acid and a polyol (eg, diol or triol), and capro
  • the skeleton of the lactone polyol can be formed by reacting components including caprolactone and polyol (eg, diol or triol).
  • the carboxylic acid may be a dicarboxylic acid.
  • the hydroxyl group or the aforementioned hydrocarbon group may be present at the end of the skeleton of Chemical Formula 2.
  • the skeleton of Formula 2 may be represented by Formula 3 below.
  • X 1 , X 2 , L 1 and n are as defined in Formula 2, and R 1 may be a hydroxyl group or a substituent represented by Formula 4 below.
  • X 3 is a single bond or an oxygen atom, and R is the same as R in Formula 1 above.
  • the lower limit of the number of skeletons of Formula 2 or 3 included in the polyol compound may be 1 or 2, and the upper limit thereof is 10, 9, 8, 7, 6, 5, 4 It can be as many as 1, 3 or 2.
  • the number of backbones is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above , It may be within a range that is less than or equal to any one of the upper limits described above.
  • the polyol compound having a polyester backbone may have a straight chain or branched chain structure.
  • the straight chain structure is a structure in which a main chain including a skeleton of Formula 2 or 3 is present and no other polymer chain is connected to the main chain
  • a branched chain structure is a structure in which a main chain including a skeleton of Formula 2 or 3 is present.
  • a side chain a chain including a backbone of Formula 2 or 3 may be bonded.
  • the number of chains comprising the backbone of Formula 2 or 3 connected as side chains in the branched chain structure above is, for example, 1 to 5, 1 to 4, 1 to 3, 1 to 2 or one.
  • the polyol compound having a polyester skeleton may be a compound in which at least some hydrogen atoms of a hydrocarbon compound such as an alkane, alkene or alkyne are substituted with the hydroxyl group and/or the skeleton of Chemical Formula 3.
  • the number of carbon atoms in the hydrocarbon compound such as the alkane, alkene or alkyne may be, for example, 1 to 20, 1 to 16, 1 to 8, or 4 to 6.
  • Hydrocarbon compounds such as alkanes, alkenes or alkynes may be straight chain, branched chain or cyclic.
  • the hydroxyl group and/or the skeleton of Formula 3 may be substituted on the same carbon atom in the alkane, alkene or alkyne, or may be substituted on a different carbon atom.
  • the polyether skeleton may be a skeleton having a repeating unit represented by Formula 5 below.
  • X 4 and X 5 are each independently a single bond or an oxygen atom, L 2 may be an alkylene group, and m is an arbitrary number.
  • the alkylene group may be, in one example, an alkylene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, which may be linear or branched. there is.
  • m is an arbitrary number representing the number of repeating units, and may be, for example, a number within the range of 1 to 25.
  • the lower limit of m in Formula 5 may be 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 or 23, and the upper limit may be 25, 23, 21, 19, 17, 15, 13 , 11, 9, 7, 5 or 3 or so.
  • m is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the hydroxyl group or the aforementioned hydrocarbon group may be present at the end of the skeleton of Chemical Formula 5.
  • the skeleton of Formula 5 may be represented by Formula 6 below.
  • X 4 , X 5 , L 2 and m are as defined in Formula 5, and R 2 may be a hydroxy group or a substituent represented by Formula 7 below.
  • X 6 is a single bond or an oxygen atom, and R is the same as R in Formula 1 above.
  • the lower limit of the number of skeletons of Formula 5 or 6 included in the polyol compound may be one or two, and the upper limit thereof is 10, 9, 8, 7, 6, 5, or 4. It can be as many as 1, 3 or 2.
  • the number of backbones is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above , It may be within a range that is less than or equal to any one of the upper limits described above.
  • the polyol compound having a polyether backbone may have a straight chain or branched chain structure.
  • the straight chain structure is a structure in which a main chain including a skeleton of Formula 5 or 6 is present and no other polymer chain is connected to the main chain
  • a branched chain structure is a structure in which a main chain including a skeleton of Formula 5 or 6 is present.
  • a side chain a chain including a backbone of Formula 5 or 6 may be bonded.
  • the number of chains containing the backbone of Formula 5 or 6 connected as side chains in the branched chain structure above is, for example, 1 to 5, 1 to 4, 1 to 3, 1 to 2 or one.
  • the polyol compound having a polyether skeleton may be a compound in which at least a portion of hydrogen atoms of a hydrocarbon compound such as an alkane, alkene or alkyne is substituted with a hydroxyl group and/or a skeleton of Chemical Formula 5.
  • the number of carbon atoms in the hydrocarbon compound such as the alkane, alkene or alkyne may be, for example, 1 to 20, 1 to 16, 1 to 8, or 4 to 6.
  • Hydrocarbon compounds such as alkanes, alkenes or alkynes may be straight chain, branched chain or cyclic.
  • the hydroxy group and/or the skeleton of Formula 5 may be substituted on the same carbon atom in the alkane, alkene or alkyne, or may be substituted on a different carbon atom.
  • the compound described above is an oligomeric or polymeric compound
  • the compound may have an appropriate level of molecular weight.
  • the lower limit of the weight average molecular weight of the oligomeric or polymeric polyol compound is 100 g/mol, 200 g/mol, 300 g/mol, 400 g/mol, 500 g/mol, 600 g/mol, 700 It may be about g/mol, 800 g/mol or 900 g/mol, and the upper limit is 5000 g/mol, 4500 g/mol, 4000 g/mol, 3500 g/mol, 3000 g/mol, 2500 g/mol. , 2000 g/mol, 1500 g/mol, 1000 g/mol or 800 g/mol.
  • the weight average molecular weight is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or greater than any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described above.
  • oil-modified polyol compound as described above, desired physical properties can be more effectively secured.
  • the oil-modified polyol compound may be present in an appropriate ratio in the resin composition.
  • the lower limit of the content of the oil-modified polyol compound in the resin composition is 5% by weight, 10% by weight, 15% by weight, 20% by weight, 25% by weight, 30% by weight, 35% by weight, 40% by weight.
  • 45% by weight, 50% by weight, 55% by weight, 60% by weight, 65% by weight, 70% by weight, 75% by weight, 80% by weight, 85% by weight, 90% by weight or 95% by weight may be about, the upper limit thereof Silver 100 wt%, 95 wt%, 90 wt%, 85 wt%, 80 wt%, 75 wt%, 70 wt%, 65 wt%, 60 wt%, 55 wt%, 50 wt%, 45 wt%, 40 It may be as much as 35%, 30%, 25% or 20% by weight.
  • the content is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, and It may be within a range of less than or equal to any one of the upper limits.
  • the content of the oil-modified polyol compound is the content in the one-component resin composition when the resin composition is a one-component type, and the content in the part where the oil-modified polyol compound is present when the resin composition is a two-component type.
  • the content of the oil-modified polyol is based on the total weight of the main part. It may be a content of .
  • the resin composition includes a solvent and/or a filler
  • the content is based on weight excluding the solvent and filler.
  • the content of the oil-modified polyol compound may be an amount based on 100% by weight of all polyol components present in the resin composition.
  • the lower limit of the content of the oil-modified polyol compound relative to 100 parts by weight of the filler component is 1 part by weight, 3 parts by weight, 5 parts by weight, 7 parts by weight, 9 parts by weight It may be about 11 parts by weight or 13 parts by weight, and the upper limit thereof is 40 parts by weight, 35 parts by weight, 30 parts by weight, 25 parts by weight, 20 parts by weight, 15 parts by weight, 10 parts by weight, 8 parts by weight, It may be about 6 parts by weight, 4 parts by weight or 3 parts by weight.
  • the content is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the ratio to the filler component is the ratio to 100 parts by weight of the total filler components included in the resin composition when the resin composition is a one-component type, and in the case of a two-component type, the part containing the oil-modified polyol (the subject part or the curing agent) Part) relative to 100 parts by weight of all filler components present in the composition.
  • the hydroxy-functional component may, if necessary, also contain an alcohol compound as an additional component.
  • alcohol compound means a compound containing one hydroxyl group per molecule. These alcohol compounds may be monomolecular, oligomeric or macromolecular compounds.
  • an oil denatured alcohol compound can be used as an alcohol compound.
  • the term oil denatured alcohol compound refers to a compound that includes one hydroxyl group per molecule and at the same time includes at least one oil group, that is, a straight-chain or branched-chain hydrocarbon group having 3 or more carbon atoms at the terminal.
  • the method for confirming the number of hydroxyl groups and the number of hydrocarbon groups in the above is the same as in the case of the polyol compound.
  • These alcohol compounds may be monomolecular, oligomeric or macromolecular compounds.
  • the oil-denatured alcohol compound may have a form similar to that of the oil-denatured polyol compound, except that it contains one hydroxyl group per molecule. Therefore, the description of the oil-modified polyol compound may be equally applied to the oil-modified alcohol compound.
  • the lower limit of the number of carbon atoms of the straight-chain or branched-chain hydrocarbon group present in the oil-denatured alcohol compound is 4, 5, 6, 7, 8, 9, 10 , 11, 12, 13, 14, 15, 16, or 17, and the upper limit is 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27 , 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 It might even be a dog.
  • the number of carbon atoms is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above. While, it may be within a range of less than or less than any one of the upper limits described above.
  • the straight-chain or branched-chain hydrocarbon group may or may not contain a double bond.
  • the double bond may be a conjugated double bond or a cis double bond.
  • the hydrocarbon group may be linked to an alcohol compound via a carbonyl group or a carbonyloxy group, in which case the hydrocarbon group may be an alkylcarbonyl group, an alkenylcarbonyl group, an alkynylcarbonyl group, an alkylcarbonyloxy group, an alkenyl group. It may be a carbonyloxy group or an alkynylcarbonyloxy group.
  • the lower limit of the number of carbon atoms in the alkyl group, alkenyl group or alkynyl group is 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 It may be about 15, 16, or 17, and the upper limit is 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40 , 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10.
  • the number of carbon atoms is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above. While, it may be within a range of less than or less than any one of the upper limits described above.
  • the alkyl group, alkenyl group or alkynyl group may be straight-chain or branched-chain, and may be optionally substituted with one or more substituents.
  • substituents there is no particular limitation on the type of the substituent, and for example, a halogen atom such as fluorine may be exemplified as the substituent.
  • the hydrocarbon of the oil-denatured alcohol compound may also be included in the substituent of Formula 1 above.
  • the details of the substituent of Formula 1 are also the same as in the case of the oil-modified polyol compound.
  • the number of hydrocarbon groups included in the alcohol compound is not particularly limited, but in one example, the lower limit of the number of hydrocarbon groups included in the alcohol compound may be about 1 or 2 per molecule, and the upper limit is , It may be about 10, 9, 8, 7, 6, 5, 4, 3 or 2 per molecule.
  • the number of carbon atoms is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is more than or more than any one of the lower limits described above , It may be within a range that is less than or equal to any one of the upper limits described above.
  • the alcohol compound may have various forms as long as it includes the hydroxyl group and the hydrocarbon group.
  • the alcohol compound may be a compound in which at least a portion of hydrogen atoms of a hydrocarbon compound such as an alkane, alkene or alkyne is substituted with one hydroxyl group and/or the hydrocarbon group.
  • a hydrocarbon compound such as an alkane, alkene or alkyne
  • the number of carbon atoms in the hydrocarbon compound such as the alkane, alkene or alkyne may be, for example, 1 to 20, 1 to 16, 1 to 8, or 4 to 6.
  • Hydrocarbon compounds such as alkanes, alkenes or alkynes may be straight chain, branched chain or cyclic.
  • the hydroxyl group and/or hydrocarbon group may be substituted on the same carbon atom in the alkane, alkene or alkyne, or may be substituted on a different carbon atom.
  • the alcohol compound may be a compound having a polyester skeleton or a polyether skeleton.
  • the alcohol compound may be an oligomeric compound or a polymeric compound.
  • the polyester backbone may be a so-called polycaprolactone backbone
  • the polyether backbone may be a so-called polyalkylene backbone
  • the polyester skeleton may be a skeleton having a repeating unit represented by Chemical Formula 2.
  • Chemical Formula 2 the specific details of the repeating unit of Chemical Formula 2 are the same as those of the polyol compound.
  • the hydroxyl group or the aforementioned hydrocarbon group in the alcohol compound having the skeleton of Formula 2 may be present at the terminal of the skeleton of Formula 2, and in this case, the skeleton of Formula 2 is can be displayed as In this case, the specific details of the skeleton of Chemical Formula 3 are the same as those of the polyol compound.
  • the lower limit of the number of skeletons of Formula 2 or 3 of the alcohol compound may be 1 or 2 on the premise that the compound contains one hydroxyl group per molecule, and the upper limit is 10, 9, 8 It can be as many as 1, 7, 6, 5, 4, 3 or 2.
  • the number of backbones is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above , It may be within a range that is less than or equal to any one of the upper limits described above.
  • the alcohol compound having the polyester skeleton may also have a linear or branched chain structure.
  • the straight chain structure is a structure in which a main chain including a skeleton of Formula 2 or 3 is present and no other polymer chain is connected to the main chain
  • a branched chain structure is a structure in which a main chain including a skeleton of Formula 2 or 3 is present.
  • a side chain a chain including a backbone of Formula 2 or 3 may be bonded.
  • the number of chains comprising the backbone of Formula 2 or 3 connected as side chains in the branched chain structure above is, for example, 1 to 5, 1 to 4, 1 to 3, 1 to 2 or one.
  • the alcohol compound having the polyester skeleton may also be a compound in which at least some of the hydrogen atoms of a hydrocarbon compound such as an alkane, alkene or alkyne are substituted with the hydroxyl group and/or the skeleton of Formula 3.
  • the number of carbon atoms in the hydrocarbon compound such as the alkane, alkene or alkyne may be, for example, 1 to 20, 1 to 16, 1 to 8, or 4 to 6.
  • Hydrocarbon compounds such as alkanes, alkenes or alkynes may be straight chain, branched chain or cyclic.
  • the hydroxyl group and/or the skeleton of Formula 3 may be substituted on the same carbon atom in the alkane, alkene or alkyne, or may be substituted on a different carbon atom.
  • the polyether skeleton of the alcohol compound may also be a skeleton having a repeating unit represented by Chemical Formula 5 in one example. At this time, the specific details of Formula 5 are the same as those of the polyol compound.
  • the lower limit of the number of skeletons of Formula 5 or 6 included in the alcohol compound may be about 1 or 2, and the upper limit is 10, It can be as many as 9, 8, 7, 6, 5, 4, 3 or 2.
  • the number of backbones is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above , It may be within a range that is less than or equal to any one of the upper limits described above.
  • the alcohol compound having a polyether backbone may have a linear or branched chain structure.
  • the straight chain structure is a structure in which a main chain including a skeleton of Formula 5 or 6 is present and no other polymer chain is connected to the main chain
  • a branched chain structure is a structure in which a main chain including a skeleton of Formula 5 or 6 is present.
  • a side chain a chain including a backbone of Formula 5 or 6 may be bonded.
  • the number of chains containing the backbone of Formula 5 or 6 connected as side chains in the branched chain structure above is, for example, 1 to 5, 1 to 4, 1 to 3, 1 to 2 or one.
  • the alcohol compound having a polyether skeleton may be a compound in which at least some of the hydrogen atoms of a hydrocarbon compound such as an alkane, alkene or alkyne are substituted with a hydroxyl group and/or a skeleton of Formula 5.
  • the number of carbon atoms in the hydrocarbon compound such as the alkane, alkene or alkyne may be, for example, 1 to 20, 1 to 16, 1 to 8, or 4 to 6.
  • Hydrocarbon compounds such as alkanes, alkenes or alkynes may be straight chain, branched chain or cyclic.
  • the hydroxy group and/or the skeleton of Formula 5 may be substituted on the same carbon atom in the alkane, alkene or alkyne, or may be substituted on a different carbon atom.
  • the compound described above is an oligomeric or polymeric compound
  • the compound may have an appropriate level of molecular weight.
  • the lower limit of the weight average molecular weight of the oligomeric or polymeric alcohol compound is 10 g/mol, 200 g/mol, 300 g/mol, 400 g/mol, 500 g/mol, 600 g/mol, 700 It may be about g/mol, 800 g/mol, 900 g/mol, 1000 g/mol, 1200 g/mol, 1400 g/mol, 1600 g/mol or 1800 g/mol, the upper limit being 5000 g/mol. , 4500 g/mol, 4000 g/mol, 3500 g/mol, 3000 g/mol, 2500 g/mol, 2000 g/mol, 1500 g/mol, 1000 g/mol or 800 g/mol.
  • the weight average molecular weight is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or greater than any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described above.
  • the desired physical properties can be more effectively secured.
  • the lower limit of the content of the oil-modified alcohol compound relative to 100 parts by weight of the oil-modified polyol compound is 10 parts by weight, 20 parts by weight, 30 parts by weight, 40 parts by weight, 50 parts by weight, 60 parts by weight, 70 parts by weight, 80 parts by weight 90 parts by weight, 100 parts by weight, 110 parts by weight, 120 parts by weight, 130 parts by weight, 140 parts by weight, 150 parts by weight, 160 parts by weight, 170 parts by weight, 180 parts by weight, 190 parts by weight, 200 parts by weight, 210 parts by weight, 220 parts by weight, 230 parts by weight, 240 parts by weight, 250 parts by weight, 260 parts by weight, 270 parts by weight, 280 parts by weight, 290 parts by weight or 300 parts by weight may be about, and the upper limit is 1,000 parts by weight , 950 parts by weight, 900 parts by weight, 850 parts by weight, 800 parts by weight, 750 parts by weight, 700 parts by weight, 650 parts by weight, 600 parts by weight, 550 parts by weight
  • the ratio is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, and It may be within a range of less than or equal to any one of the upper limits.
  • the ratio of the oil-modified polyol compound may be changed in consideration of the overall composition or desired physical properties of the resin composition.
  • a component containing only the oil-modified polyol compound and the oil-modified alcohol compound may be referred to as an oil-modified component.
  • the lower limit of the weight average molecular weight of the entire oil-modified component is 10 g / mol, 200 g / mol, 300 g / mol, 400 g / mol, 500 g / mol, 600 g / mol, 700 g / mol, 800 g / mol It may be about g/mol, 900 g/mol, 1000 g/mol, 1200 g/mol, 1400 g/mol, 1600 g/mol or 1800 g/mol, the upper limit being 5,000 g/mol or 4500 g/mol.
  • the weight average molecular weight is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above , It may be within a range that is less than or equal to any one of the upper limits described above.
  • the oil-modified polyol compound or alcohol compound may be synthesized through a known synthesis method. That is, the compounds may be prepared by reacting a compound capable of introducing the hydrocarbon group corresponding to the oil-modified portion with a known polyol compound.
  • a compound capable of introducing the hydrocarbon group saturated or unsaturated fatty acids may be exemplified, and specifically, butyric acid, caproic acid, 2-ethyl hexanoic acid ), caprylic acid, isononanoic acid, capric acid, lauric acid, myristic acid, palmitic acid, Stearic acid, linoleic acid, or oleic acid may be exemplified, but is not limited thereto.
  • a mixture (oil-modified component) including the polyol compound and the alcohol compound may be prepared.
  • polyol compound reacting with the saturated or unsaturated fatty acid there is no particular limitation on the type of polyol compound reacting with the saturated or unsaturated fatty acid, and for example, an appropriate type of general polyol compound described later may be applied, but is not limited thereto.
  • the resin composition may further include a polyol compound different from the oil-modified polyol compound as a polyol compound.
  • the polyol compound does not contain the aforementioned oil group, that is, a straight-chain or branched-chain hydrocarbon group having 3 or more carbon atoms.
  • these polyol compounds may be referred to herein as general polyol compounds.
  • the lower limit of the number of carbon atoms of the hydrocarbon group not included in the general polyol compound is 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 It may be about 15, 16, or 17, and the upper limit is 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40 , 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10.
  • the number of carbon atoms is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above. While, it may be within a range of less than or less than any one of the upper limits described above.
  • the hydrocarbon group may be an alkyl group, an alkenyl group, or an alkynyl group having the number of carbon atoms.
  • the general polyol compound may include two or more hydroxyl groups per molecule, and the polyol compound may be a monomolecular, oligomeric or polymeric compound.
  • the number of hydroxy groups included in the general polyol compound is not particularly limited, but in one example, the lower limit of the number of hydroxy groups included in the general polyol compound may be about 2 or 3 per molecule, and the lower limit is 1 molecule It could be 10, 9, 8, 7, 6, 5, 4, 3 or 2 per.
  • the number of hydroxy groups is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or greater than any one of the lower limits described above , It may be within a range that is less than or equal to any one of the upper limits described above.
  • Common polyol compounds can take many forms.
  • the general polyol compound may be a polyester polyol.
  • polyester polyols so-called carboxylic acid polyols or caprolactone polyols can be used, for example.
  • the polyester polyol may be a skeleton having a repeating unit represented by Formula 8 below.
  • X 7 and X 8 are each independently a single bond or an oxygen atom, L 3 may be an alkylene group, and p is an arbitrary number.
  • the alkylene group may be, in one example, an alkylene group having 1 to 20 carbon atoms, 4 to 20 carbon atoms, 4 to 16 carbon atoms, 4 to 12 carbon atoms, or 4 to 8 carbon atoms, which may be linear or branched. there is.
  • L 3 in Chemical Formula 8 may be a straight-chain alkylene group having 5 carbon atoms.
  • p is an arbitrary number representing the number of repeating units, and may be, for example, a number within the range of 1 to 25.
  • the lower limit of p in Formula 8 may be 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 or 23, and the upper limit may be 25, 23, 21, 19, 17, 15, Maybe 13, 11, 9, 7, 5 or even 3.
  • p is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the polyester polyol having the skeleton of Formula 8 may be a so-called carboxylic acid polyol or caprolactone polyol.
  • a polyol compound can be formed by a known method.
  • the carboxylic acid polyol can be formed by reacting a component including a carboxylic acid and a polyol (eg, diol or triol), and caprolactone Polyols can be formed by reacting components including caprolactone and polyols (eg, diols or triols).
  • the carboxylic acid may be a dicarboxylic acid.
  • the hydroxyl group may be present at the end of the skeleton of Chemical Formula 8 or at another site of the polyester polyol.
  • the lower limit of the number of skeletons of Formula 8 included in the general polyol compound may be 1 or 2, and the upper limit thereof is 10, 9, 8, 7, 6, 5, 4, It could be 3, 2 or 1.
  • the number of backbones is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above , It may be within a range that is less than or equal to any one of the upper limits described above.
  • the polyol compound having a polyester backbone may have a straight chain or branched chain structure.
  • the straight chain structure is a structure in which a main chain including the backbone of Formula 8 is present and no other polymer chain is connected to the main chain
  • the branched chain structure is a structure in which a main chain including the backbone of Formula 8 is a side chain. It may be a form in which chains including the skeleton of Formula 8 are bonded.
  • the number of chains containing the backbone of Formula 8 connected as side chains in the branched chain structure is, for example, 1 to 5, 1 to 4, 1 to 3, 1 to 2, or 1 can be a dog
  • a polyol having an alkane diol unit, a polyol unit, and a dicarboxylic acid unit may be used as the general polyol compound.
  • Such polyols may be mixtures of the above alkane diols, polyols and dicarboxylic acids, or reactants thereof.
  • the alkane diol is 3-methyl-1,5-pentanediol (3-methyl-1,5-pentanediol), 1,9-nonanediol (1,9-nonanediol) or 1,6-hexanediol
  • Diol compounds having 1 to 20 carbon atoms, 4 to 20 carbon atoms, 4 to 16 carbon atoms, or 4 to 12 carbon atoms, such as 1,6-hexanediol may be exemplified.
  • the polyol includes 3 to 10, 3 to 9, 3 to 8, 3 to 7, 3 to 6, 3 to 5, or 3 to 6, such as trimethylolpropane.
  • Alkanes having 1 to 20 carbon atoms, 4 to 20 carbon atoms, 4 to 16 carbon atoms, or 4 to 12 carbon atoms substituted with four hydroxyl groups may be exemplified.
  • dicarboxylic acid adipic acid, terephthalic acid, isophthalic acid, or sebacic acid may be exemplified.
  • Polyol compounds of this kind are, for example, Kuraray's P-510, P-1010, P-2010, P-3010, P-4010, P-5010, P-6010, F-510, F-1010, F- 2010, F-3010, P-2011, P-520, P-2020, P-1012, P-2012, P-630, P-2030, P-2050 or N-2010.
  • a polyol having a weight average molecular weight in the range of 100 g/mol to 5,000 g/mol may be used.
  • the desired effect can be more effectively achieved through the application of such a polyol.
  • the lower limit of the weight ratio of the general polyol compound to 100 parts by weight of the oil-modified polyol compound is 1 part by weight, 3 parts by weight, 5 parts by weight, 7 parts by weight, 10 parts by weight, 15 parts by weight 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight, 40 parts by weight, 45 parts by weight, 50 parts by weight, 55 parts by weight, 60 parts by weight, 65 parts by weight, 70 parts by weight, 75 parts by weight , 80 parts by weight, 85 parts by weight, 90 parts by weight, 95 parts by weight or may be about 100 parts by weight, and the upper limit is 200 parts by weight, 190 parts by weight, 180 parts by weight, 170 parts by weight, 160 parts by weight, 150 parts by weight 140 parts by weight, 130 parts by weight, 120 parts by weight, 110 parts by weight, 100 parts by weight, 90 parts by weight, 80 parts by weight, 70 parts by weight, 60 parts by weight, 50 parts by weight, 40 parts by weight, 30 parts by weight, It
  • the ratio is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, and It may be within a range of less than or equal to any one of the upper limits.
  • the lower limit of the content ratio of the general polyol compound to 100 parts by weight of the total of the oil-modified polyol and the oil-modified alcohol is 1 part by weight, 5 parts by weight, 10 parts by weight, 15 parts by weight It may be about 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight or 40 parts by weight, and the upper limit thereof is 200 parts by weight, 190 parts by weight, 180 parts by weight, 170 parts by weight, 160 parts by weight, 150 parts by weight, 140 parts by weight, 130 parts by weight, 120 parts by weight, 110 parts by weight, 100 parts by weight, 90 parts by weight, 80 parts by weight, 70 parts by weight, 60 parts by weight, 50 parts by weight, 40 parts by weight, 30 parts by weight part, 20 parts by weight or 10 parts by weight.
  • the ratio is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the ratio may be changed in consideration of the composition or intended use of the entire resin composition.
  • the resin composition may include, as an additional component, a curing agent that reacts with the polyol compound and/or alcohol compound.
  • polyisocyanate means a compound having two or more isocyanate groups.
  • the lower limit of the number of isocyanate groups of the polyisocyanate may be 2 or 3, and the upper limit is 10, 9, 8, 7, 6, 5, 4, 3 or 2 may be of a degree.
  • the number of the isocyanate groups is less than or equal to or less than any one of the upper limits described above, is equal to or more than the lower limit of any one of the lower limits described above, or exceeds or exceeds the lower limit of any one of the lower limits described above. While, it may be within a range of less than or less than any one of the upper limits described above.
  • the type of polyisocyanate used as the curing agent is not particularly limited, but non-aromatic polyisocyanate containing no aromatic group may be used to secure desired physical properties.
  • polyisocyanate compound examples include aliphatic polyisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate methyl, ethylene diisocyanate, propylene diisocyanate or tetramethylene diisocyanate; alicyclic polyisocyanates such as transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, bis(isocyanatemethyl)cyclohexane diisocyanate, or dicyclohexylmethane diisocyanate; Alternatively, one or more of the above carbodiimide-modified polyisocyanates or isocyanurate-modified polyisocyanates may be used.
  • aliphatic polyisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate
  • polyisocyanate the addition reaction product of the above-mentioned diisocyanate and polyol (for example, trimethylol propane etc.) can also be used. Also, a mixture of two or more of the compounds listed above may be used.
  • the application rate of the polyisocyanate may be adjusted in consideration of the number of hydroxy groups present in the hydroxy functional component included in the resin composition and physical properties after curing.
  • the polyisocyanate has an equivalent ratio (OH/NCO) of the number of hydroxy groups present in the hydroxy functional component present in the resin composition (OH) and the number of isocyanate groups present in the polyisocyanate (NCO) It may be included in the resin composition so that it can be within the range of 50 to 1,000.
  • the equivalent ratio OH/NCO can be calculated according to the following general formula 1.
  • D 1 is the density of the main part
  • D 2 is the density of the curing agent part
  • W 1 is the weight ratio of the polyol compound or alcohol compound present in the main part
  • OH% is the W 1
  • W 2 is the weight ratio of polyisocyanate present in the curing agent part
  • NCO% is the isocyanate included in the polyisocyanate having the weight ratio of W 2
  • the ratio of the groups, DN is 42 Da as the dalton mass of the isocyanate group
  • DO is 17 Da as the dalton mass of the hydroxy group.
  • W 1 is the weight% (based on the total weight of the main part) of each polyol compound or alcohol compound present in the main part, and the OH% of the compound is the number of hydroxyl groups included in 1 mole of each polyol compound or alcohol compound.
  • a % it is obtained by dividing the product of the number of moles of hydroxy groups included in a single polyol compound or alcohol compound by the molar mass of the hydroxy group by the molar mass of the single polyol compound or alcohol compound and then multiplying by 100.
  • W 2 is the weight% (based on the total weight of the curing agent part) of each polyisocyanate present in the curing agent part
  • the NCO% of the compound is the % of NCO groups included in 1 mole of each polyisocyanate compound, It is obtained by dividing the product of the number of moles of NCO groups included in a single polyisocyanate compound by the molar mass of the NCO group by the molar mass of the single polyisocyanate compound and then multiplying by 100.
  • the dalton mass is a constant.
  • the lower limit of the equivalence ratio is 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240 . It may be about 180, 170, 160, 150, 140, 130, 120, 110 or 100.
  • the equivalent ratio is equal to or less than any one of the upper limits described above, or more than or more than any one of the lower limits described above, or more than or more than any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the resin composition may further include a filler component.
  • filler component means a component made of a filler, that is, a component containing only a filler.
  • the filler component may include two or more types of fillers having different average particle diameters.
  • the filler component includes three or more types of fillers having different average particle diameters, or consists of 3 to 6 types, 3 to 5 types, 3 to 4 types, or 3 types of fillers with different average particle diameters. can That is, in one example, the filler component may include only 3 to 6 types, 3 to 5 types, 3 to 4 types, or 3 types of fillers having different average particle diameters.
  • the filler component may exhibit at least two peaks in a volume curve of a particle size distribution measured using laser diffraction.
  • the filler component may exhibit 3 or more peaks, 3 to 6 peaks, 3 to 5 peaks, 3 to 4 peaks, or 3 peaks in the volume curve of the particle size distribution.
  • the range of filler components exhibiting three peaks does not include filler components exhibiting one, two, or four or more peaks.
  • the average particle diameter of the filler of the present application means the particle diameter at which the volume accumulation is 50% in the volume curve of the particle size distribution measured by laser diffraction, and may be referred to as the median diameter. That is, in the present application, the particle size distribution is obtained on a volume basis through the laser diffraction method, and the particle diameter at the point where the cumulative value is 50% in the cumulative curve with the total volume as 100% is the average particle diameter, and this average particle diameter Silver, in another example, may be called a median particle size or a D50 particle size.
  • the two types of fillers having different average particle diameters may mean fillers having different particle diameters at the point where the cumulative value becomes 50% in the volume curve of the particle size distribution.
  • the volume curve of the particle size distribution measured using the laser diffraction method for the filler component is equal to the type of the mixed filler. peak appears. Therefore, for example, when a filler component is formed by mixing three types of fillers having different average particle diameters, the volume curve of the particle size distribution measured using the laser diffraction method for the filler component shows three peaks.
  • the filler component of the resin composition of the present application may be a thermally conductive filler component.
  • thermally conductive filler component means a filler component that functions to exhibit the above-described thermal conductivity of the resin composition or its cured product.
  • the filler component may include at least a first filler having an average particle diameter of 60 ⁇ m to 200 ⁇ m, a second filler having an average particle diameter of 10 ⁇ m to 30 ⁇ m, and a third filler having an average particle diameter of 5 ⁇ m or less. there is.
  • the lower limit of the average particle diameter of the first filler may be about 62 ⁇ m, 62 ⁇ m, 64 ⁇ m, 66 ⁇ m or about 68 ⁇ m, and the upper limit thereof is 200 ⁇ m, 195 ⁇ m, 190 ⁇ m, 185 ⁇ m, 180 ⁇ m, 175 ⁇ m.
  • the average particle diameter of the first filler is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or equal to any one of the lower limits described above. or greater, but may be within a range of less than or equal to any one of the upper limits described above.
  • the lower limit of the average particle diameter of the second filler may be about 10 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, or 20 ⁇ m, and the upper limit is 29 ⁇ m. , 28 ⁇ m, 27 ⁇ m, 26 ⁇ m, 25 ⁇ m, 24 ⁇ m, 23 ⁇ m, 22 ⁇ m, 21 ⁇ m or about 20 ⁇ m.
  • the average particle diameter of the second filler is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or equal to any one of the lower limits described above. or greater, but may be within a range of less than or equal to any one of the upper limits described above.
  • the lower limit of the third filler may be about 0.01 ⁇ m, 0.1 ⁇ m, about 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, or 2 ⁇ m, and the upper limit thereof is about 5 ⁇ m, 4.5 ⁇ m, about 4 ⁇ m, 3.5 ⁇ m, 3 ⁇ m, or 2.5 ⁇ m. Alternatively, it may be on the order of 2 ⁇ m.
  • the average particle diameter of the third filler is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or equal to any one of the lower limits described above. or greater, but may be within a range of less than or equal to any one of the upper limits described above.
  • a ratio (D1/D3) between the average particle diameter (D1) of the first filler and the average particle diameter (D3) of the third filler may be in the range of 25 to 300.
  • the third filler may be a filler having the smallest average particle diameter among fillers included in the filler component when the filler component includes two or more types of fillers having different average particle diameters
  • the first filler may be a filler in which the filler components are different from each other.
  • the filler may have the largest average particle size among the fillers included in the filler component. In this state, the particle size ratio may be satisfied.
  • the lower limit of the ratio (D1/D3) is 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120 , 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230 or 235
  • the upper limit is 300, 290, 280, 270, 260, 250, 240, 220, 200, 180, 160, 140, 120, 100, 95, 90, 85, 80, 75, 70, 65 or 60 degrees.
  • the ratio is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the lower limit of the ratio (D1/D2) of the average particle diameter (D1) of the first filler to the average particle diameter (D2) of the second filler is about 3, 3.1, 3.2, 3.3, 3.4, or 3.5, or 20 , 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5 or 4.
  • the ratio is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the filler for example, aluminum oxide (alumina: Al 2 O 3 ), aluminum nitride (AlN), boron nitride (BN), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), beryllium oxide (BeO), oxide Ceramic fillers such as zinc (ZnO), magnesium oxide (MgO), aluminum hydroxide (Al(OH) 3 ), magnesium hydroxide (Mg(OH) 2 ), calcium carbonate (CaCO 3 ) and/or Boehmite can be used Such a filler is advantageous in satisfying the thermal conductivity within the above-mentioned range, and additionally, the above-described insulation may be satisfied through the application of a ceramic filler.
  • AlN aluminum nitride
  • BN boron nitride
  • Si 3 N 4 silicon carbide
  • BeO beryllium oxide
  • oxide Ceramic fillers such as zinc (ZnO), magnesium oxide (MgO), aluminum hydroxide (Al(OH) 3
  • the upper limit of the proportion of the filler component in the resin composition is 99% by weight, 98% by weight, 97% by weight, 96% by weight, 95% by weight, 94.5% by weight, 94% by weight, 93.5% by weight, 93% by weight, 92.5% by weight, 92% by weight, 91.5% by weight, 91% by weight, 90.5% by weight, 90.0% by weight, 89.5% by weight, 89.0% by weight, 88.5% by weight or 88.0% by weight, and the lower limit is about 70% by weight.
  • the ratio is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the content of the filler component is the ratio based on the total weight of the resin composition when the resin composition is a one-component resin composition, and the sum of the main part and the curing agent part of the two-component resin composition when the resin composition is a two-component main composition. It may be a ratio based on weight, or a ratio based on the total weight of the subject or curing agent part alone.
  • the resin composition is composed of a two-component resin composition
  • the filler component may include various types of fillers, if necessary, in addition to the thermally conductive filler.
  • a carbon filler such as graphite, fumed silica, or clay may be applied.
  • the resin composition may further include necessary components in addition to the components described above.
  • the resin composition may further include a plasticizer.
  • a plasticizer As described above, in the present application, it is possible to secure low adhesion to a specific material without applying a plasticizer, but a small amount of plasticizer may be applied if necessary.
  • the type of plasticizer that can be applied is not particularly limited, and examples thereof include dioctyl phthalate (DOP), dibutyl phthalate (DBP), butylbenzyl phthalate (BBP), and diisononyl phthalate.
  • DOP dioctyl phthalate
  • DBP dibutyl phthalate
  • BBP butylbenzyl phthalate
  • diisononyl phthalate diisononyl phthalate.
  • diisononyl phthalate, DINP diisononyl phthalate
  • PET polyethylene terephthalate
  • phthalate-based plasticizers dioctyl adipate (DOA), or diisononyl adipate (diisononyl adipate, DINA)
  • DOA dioctyl adipate
  • diisononyl adipate diisononyl adipate
  • adipate-based plasticizers a fatty acid-based plasticizer, a phosphoric acid-based plasticizer, or a polyester-based plasticizer may be applied.
  • the lower limit of the weight ratio of the plasticizer to 100 parts by weight of the oil-modified polyol compound is 0.5 parts by weight, 1.5 parts by weight, 2 parts by weight, 3 parts by weight, 4 parts by weight, 5 parts by weight, 6 parts by weight, 7 parts by weight, 8 parts by weight, 9 parts by weight, 10 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight, 40 parts by weight, 45 parts by weight It may be about 50 parts by weight, 100 parts by weight, 150 parts by weight, 200 parts by weight, 250 parts by weight or 300 parts by weight, and the upper limit thereof is 500 parts by weight, 450 parts by weight, 400 parts by weight, 350 parts by weight, 300 parts by weight.
  • the ratio is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the lower limit of the ratio of the plasticizer to 100 parts by weight of the sum of the oil-modified polyol and the oil-modified alcohol (oil-modified component) is 0.5 parts by weight, 1.5 parts by weight, 2 parts by weight, 5 parts by weight, 10 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 50 parts by weight, 60 parts by weight, 70 parts by weight, 80 parts by weight, 90 parts by weight, 100 parts by weight, 110 parts by weight It may be about 120 parts by weight, 130 parts by weight or 140 parts by weight, and the upper limit is 400 parts by weight, 350 parts by weight, 300 parts by weight, 250 parts by weight, 200 parts by weight, 150 parts by weight, 100 parts by weight, 90 parts by weight 80 parts by weight, 70 parts by weight, 60 parts by weight, 50 parts by weight, 40 parts by weight, 30 parts by weight, 20 parts by weight, 19 parts by weight, 18 parts by weight, 17 parts by weight, 16 parts by weight, 15 parts by
  • the ratio is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the ratio may be changed in consideration of the composition or intended use of the entire resin composition.
  • the resin composition may include additional components as needed.
  • additional components are catalysts that assist or accelerate the curing reaction, viscosity modifiers (e.g., thixotropy imparting agents, diluent, etc.), a dispersing agent, a surface treatment agent, or a coupling agent.
  • the resin composition may further include a flame retardant or a flame retardant aid.
  • a flame retardant may be used without particular limitation, and for example, a solid filler type flame retardant or a liquid flame retardant may be applied.
  • the flame retardant examples include organic flame retardants such as melamine cyanurate and inorganic flame retardants such as magnesium hydroxide.
  • organic flame retardants such as melamine cyanurate
  • inorganic flame retardants such as magnesium hydroxide.
  • a liquid type flame retardant material TEP, Triethyl phosphate or TCPP, tris(1,3-chloro-2-propyl)phosphate, etc.
  • TEP Triethyl phosphate or TCPP, tris(1,3-chloro-2-propyl)phosphate, etc.
  • silane coupling agent capable of acting as a flame retardant synergist may be added.
  • the resin composition may be a one-component composition or a two-component composition.
  • each of the above-described components of the resin composition may be separately included in a physically separated main part and a curing agent part.
  • the present application relates to a composition in which the resin composition is a two-component resin composition (two-component composition).
  • Such a two-component composition may include at least a main component part and a curing agent part, and the main component and curing agent part may be physically separated from each other. When these physically separated main body and curing agent parts are mixed, a curing reaction is initiated, resulting in the formation of polyurethane.
  • the main part may include at least the hydroxy functional component (particularly, the oil-modified polyol compound), and the curing agent part may include at least the polyisocyanate.
  • the resin composition includes the general polyol compound described above, this compound may be included in the main part, for example.
  • the filler component may be included in any one of the subject and curing agent parts, or may be included in both of the subject and curing agent parts. When the filler component is included in both the main agent and the curing agent part, the same amount of the filler component may be included in the main agent and the curing agent part.
  • a volume ratio (P/N) of the volume (P) of the main part to the volume (N) of the curing agent part may be in the range of about 0.8 to 1.2.
  • This two-component composition or its cured product also has the above-described adhesion to aluminum and polyester, thermal conductivity, hardness, radius of curvature, insulation, flame retardancy, specific gravity, shrinkage, coefficient of thermal expansion, and/or 5% weight in thermogravimetric analysis (TGA). Loss (5% weight loss), temperature, etc. can be indicated.
  • This application also relates to a product containing the resin composition or a cured product thereof.
  • the resin composition of the present application or a cured product thereof may be usefully applied as a heat dissipation material.
  • the product may include a heating component.
  • the term heating component refers to a component that emits heat during use, and the type is not particularly limited. Representative heating components include various electric/electronic products including battery cells, battery modules, or battery packs.
  • the product of the present application may include, for example, the heat-generating component and the resin composition (or the two-component composition) or a cured product thereof existing adjacent to the heat-generating component.
  • a specific method of configuring the product of the present application is not particularly limited, and if the resin composition or the two-component composition or the cured product of the present application is applied as a heat dissipation material, the product may be configured in various known ways.
  • the present application it is possible to provide a resin composition or a cured product thereof that exhibits low adhesive strength to a predetermined adherend while exhibiting high thermal conductivity.
  • the low adhesive strength may be achieved without using an adhesive force adjusting component such as a plasticizer or by minimizing the use ratio thereof.
  • the present application may also provide a product including the curable composition or a cured product thereof.
  • the cured body mentioned below is formed by mixing the main agent and curing agent part of the resin composition of the examples prepared in a two-component type to satisfy the OH / NCO equivalent ratio described in each example, and then maintaining at room temperature for about 24 hours. .
  • the thermal conductivity of the resin composition or its cured product was measured by a hot-dist method according to ISO 22007-2 standards. Specifically, a mixture of a volume ratio of 1:1 of the subject part and the curing agent part of Examples or Comparative Examples composed of a two-component type was placed in a mold having a thickness of about 7 mm, and thermal conductivity was measured in the through plane direction using a hot disk device. was measured.
  • Hot Disk equipment is a device that can check thermal conductivity by measuring temperature change (electrical resistance change) while the sensor in which the nickel wire has a double spiral structure is heated. Thermal conductivity was measured according to.
  • Adhesion to polyester was evaluated for specimens prepared by attaching a PET (polyethylene terephthalate) film and an aluminum plate.
  • a film having a width of about 10 mm and a length of about 200 mm was used as the PET film, and an aluminum plate having a width and a length of about 100 mm was used as the aluminum plate.
  • a specimen was prepared by applying a resin composition to the entire surface of the aluminum plate and maintaining the PET film on the resin composition at room temperature (about 25° C.) for about 24 hours. At this time, about 100 mm of the entire width and length of the PET film was attached to the aluminum plate through the resin composition. The adhesive force was measured while the PET film was peeled from the aluminum plate in the longitudinal direction while the aluminum plate of the specimen was fixed.
  • a resin composition (a mixture of a subject part and a curing agent part in a volume ratio of 1:1) is applied to the aluminum plate to have a thickness of about 2 mm after curing, and then the PET film is adhered to the layer of the resin composition. and maintained at room temperature (about 25° C.) for about 24 hours to cure the resin composition.
  • the peeling was performed at a peeling speed of about 0.5 mm/min and a peeling angle of 180 degrees until the PET film was completely peeled off.
  • An uncured resin composition (a mixture of a main part and a curing agent part) is coated on the center of an aluminum substrate having a width of 2 cm and a length of 7 cm, respectively, to a size of about 2 cm in width and 2 cm in length, and then on the coating layer again.
  • the two aluminum substrates were attached to form an angle of 90 degrees to each other.
  • the lower aluminum substrate was pressed at a speed of 0.5 mm/min to measure the force while the lower aluminum substrate was separated, and the maximum force measured in the process was expressed as the area of the specimen.
  • the adhesive strength to aluminum was obtained by dividing.
  • adhesion to aluminum was evaluated according to the following criteria.
  • Adhesion to aluminum is 0.1 N/mm 2 or less
  • the hardness of the cured product of the resin composition was measured according to ASTM D 2240 and JIS K 6253 standards. It was performed using an ASKER, durometer hardness device, and the initial hardness was measured by applying a load of 1 Kg or more (about 1.5 Kg) to the surface of the sample (resin layer) in a flat state, and after 15 seconds, the hardness was confirmed as a stabilized measurement value. evaluated.
  • the radius of curvature of the cured body was evaluated using a cured body having a width, length, and thickness of 1 cm, 10 cm, and 2 mm, respectively.
  • the radius of curvature is the minimum radius of a cylinder at which cracks do not occur in the hardened body when the hardened body is attached to cylinders having various radii and bent along the longitudinal direction.
  • the weight average molecular weight (Mw) was measured using GPC (Gel permeation chromatography). Specifically, for the weight average molecular weight (Mw), put the sample to be analyzed in a 5 mL vial, dilute with a THF (tetrahydrofuran) solvent to a concentration of about 1 mg/mL, and then prepare a standard sample for calibration and an analysis sample. It can be filtered and measured through a syringe filter (pore size: 0.45 ⁇ m). ChemStation of Agilent technologies was used as an analysis program, and the weight average molecular weight (Mw) can be obtained by comparing the elution time of the sample with the calibration curve.
  • GPC Gel permeation chromatography
  • Standard samples using polystyrene (MP: 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485)
  • a mixture of an oil-modified polyol compound represented by Formula A below and an oil-modified polyol compound represented by Formula B below was prepared in the following manner.
  • Trimethylolpropane and linoleic acid an unsaturated fatty acid, were mixed in a weight ratio of about 1:3.48 (trimethylolpropane:linoleic acid) in a flask.
  • a catalyst Ti(II) 2-ethylhexanoate (Sigma-Aldrich) was added to the mixture in an amount of about 0.5 parts by weight based on a total of 100 parts by weight, and stirred and maintained at 150 ° C. for 30 minutes under an inert gas purge condition.
  • xylene an azeotropic solution
  • the temperature was raised to 190° C.
  • the mixture was reacted for 15 hours or more, and the pressure was reduced to 40 Torr or less for 2 hours or more to remove xylene and unreacted substances.
  • the target product was obtained by filtering through a filter.
  • the weight average molecular weight of the target material confirmed through GPC analysis was about 1307 g/mol.
  • a target product was synthesized in the same manner as in Preparation Example 1B, except that when trimethylolpropane and unsaturated fatty acid linoleic acid were mixed, the weight ratio (trimethylolpropane:linoleic acid) was about 1:3.34.
  • the weight average molecular weight of the target product confirmed through GPC analysis was about 1268 g/mol.
  • a target product was synthesized in the same manner as in Preparation Example 1B, except that when trimethylolpropane and unsaturated fatty acid linoleic acid were mixed, the weight ratio (trimethylolpropane:linoleic acid) was about 1:3.14.
  • the weight average molecular weight of the target material confirmed through GPC analysis was about 1210 g/mol.
  • a target product was synthesized in the same manner as in Preparation Example 1B, except that when trimethylolpropane and linoleic acid, an unsaturated fatty acid, were mixed, the weight ratio (trimethylolpropane:linoleic acid) was about 1:2.79.
  • the weight average molecular weight of the target material confirmed through GPC analysis was about 1113 g/mol.
  • a mixture of an oil-modified polyol represented by the following formula (C) and an oil-modified alcohol represented by the formula (D) was prepared in the following manner.
  • each n is about 4
  • R 1 is a substituent represented by Formula C-1 below
  • R 2 is a substituent represented by Formula C-2 below.
  • each n is about 4
  • R 1 is a substituent represented by Formula C-1 below
  • R 2 is a substituent represented by Formula C-2 below.
  • n is about 4.
  • a compound of formula E (PPG, manufacturer: Perstorp, product name: Polyol3380) and linoleic acid, an unsaturated fatty acid, were mixed in a flask at a weight ratio of 1:0.83 (compound of formula E:linoleic acid).
  • each n is about 4, and R 1 is a substituent represented by Formula E-1 below.
  • n is about 4.
  • a catalyst Te(II) 2-ethylhexanoate (Sigma-Aldrich) was added to the mixture in an amount of about 0.5 parts by weight based on 100 parts by weight of the total mixture, and then stirred and maintained at 150 ° C. for 30 minutes under an inert gas purge condition. made it Subsequently, a small amount of xylene, an azeotrope solution, was added, the temperature was raised to 190° C., and the mixture was reacted for 6 hours or more, and the pressure was reduced to 40 Torr or less for 1 hour or more to remove xylene and unreacted materials. Then, the reactant was cooled and filtered through a filter to obtain a target product.
  • Ti(II) 2-ethylhexanoate Sigma-Aldrich
  • the polyol compound of Formula C and the alcohol compound of Formula D were present in the object in a weight ratio (C:D) of about 25:75.
  • the weight average molecular weight of the polyol compound of Formula C in the target object was about 600 g/mol
  • the weight average molecular weight of the compound of Formula D was about 2000 g/mol
  • the weight of the mixture (target object) The average molecular weight was about 1263 g/mol.
  • the main part was prepared by mixing the target object obtained in Preparation Example 1B, a general polyol (Perstorp, Capa3091), and a filler component in a weight ratio of 10.5:1.5:88 (Preparation Example 1: general polyol:filler component).
  • a filler component a first alumina filler having an average particle diameter of about 70 ⁇ m, a second alumina filler having an average particle diameter of about 20 ⁇ m, and a third alumina filler having an average particle diameter of about 1 ⁇ m were mixed and prepared.
  • the weight ratio during the mixing was about 6:2:2 (first alumina filler:second alumina filler:third alumina filler).
  • Polyisocyanate (Tolonate HDT-LV2, manufactured by Vencorex) was used as a curing agent.
  • a curing agent part was prepared by mixing the polyisocyanate and the filler component in a weight ratio of 10:90 (polyisocyanate:filler component:).
  • the filler component in the above the same filler component as in the main part was used.
  • a resin composition (curable composition) was prepared by preparing the subject part and the curing agent part, respectively, and the subject and the curing agent part were mixed and maintained at room temperature to form a cured body.
  • the equivalent ratio (OH/NCO) of the hydroxyl group (OH) present in the main part and the isocyanate group (NCO) present in the curing agent part was about 180.
  • a resin composition (curable composition) was prepared by preparing the main part and the curing agent part in the same manner as in Example 1, and after mixing the main part and the curing agent part, a cured body was formed by maintaining the main part and the curing agent part at room temperature, but the mixing was performed in the main part.
  • the equivalence ratio (OH/NCO) of the hydroxy group (OH) present and the isocyanate group (NCO) present in the curing agent part was set to about 260.
  • Preparation Example 1B First general polyol: The main part was prepared by mixing with a second common polyol: filler component). The same filler component as in Example 1 was used.
  • Polyisocyanate (Tolonate HDT-LV2, manufactured by Vencorex) was used as a curing agent.
  • a curing agent part was prepared by mixing the polyisocyanate and the filler component in a weight ratio of 10:90 (polyisocyanate:filler component:).
  • the filler component the same filler component as that in Example 1 was used.
  • a resin composition (curable composition) was prepared by preparing the subject part and the curing agent part, respectively, and the subject and the curing agent part were mixed and maintained at room temperature to form a cured body.
  • the equivalent ratio (OH/NCO) of the hydroxyl group (OH) present in the main part and the isocyanate group (NCO) present in the curing agent part was about 180.
  • Preparation Example 1C The subject part of Preparation Example 1C, a general polyol (Perstorp, Capa3091), and a filler component were mixed in a weight ratio of 11.2:0.6:88.2 (Preparation Example 1C: general polyol:filler component) to prepare a main part.
  • Preparation Example 1C general polyol:filler component
  • Polyisocyanate (Tolonate HDT-LV2, manufactured by Vencorex) was used as a curing agent.
  • a curing agent part was prepared by mixing the polyisocyanate and the filler component in a weight ratio of 10:90 (polyisocyanate:filler component:). In the above, the same filler component as in Example 1 was used.
  • a resin composition (curable composition) was prepared by preparing the subject part and the curing agent part, respectively, and the subject and the curing agent part were mixed and maintained at room temperature to form a cured body.
  • the equivalent ratio (OH/NCO) of the hydroxy group (OH) present in the main part and the isocyanate group (NCO) present in the curing agent part was about 260.
  • Preparation Example 1B First general polyol: 2 common polyol:filler component
  • Polyisocyanate (Tolonate HDT-LV2, manufactured by Vencorex) was used as a curing agent.
  • a curing agent part was prepared by mixing the polyisocyanate and the filler component in a weight ratio of 10:90 (polyisocyanate:filler component:). In the above, the same filler component as in Example 1 was used.
  • a resin composition (curable composition) was prepared by preparing the subject part and the curing agent part, respectively, and the subject and the curing agent part were mixed and maintained at room temperature to form a cured body.
  • the equivalent ratio (OH/NCO) of the hydroxyl group (OH) present in the main part and the isocyanate group (NCO) present in the curing agent part was about 220.
  • the main part was prepared by mixing the target object, plasticizer (diisononyl adipate, DINA), and filler component of Preparation Example 2 in a weight ratio of 6:6:88 (Preparation Example 2: plasticizer: filler component).
  • plasticizer diisononyl adipate, DINA
  • filler component filler component of Preparation Example 2 in a weight ratio of 6:6:88
  • filler component in the above the same as in Example 1 was used.
  • Polyisocyanate (Tolonate HDT-LV2, manufactured by Vencorex) was used as a curing agent.
  • a curing agent part was prepared by mixing the polyisocyanate and the filler component in a weight ratio of 10:90 (polyisocyanate:filler component:). In the above, the same filler component as in Example 1 was used.
  • a resin composition (curable composition) was prepared by preparing the subject part and the curing agent part, respectively, and the subject and the curing agent part were mixed and maintained at room temperature to form a cured body.
  • the equivalent ratio (OH/NCO) of the hydroxyl group (OH) present in the main part and the isocyanate group (NCO) present in the curing agent part was about 100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 출원은 수지 조성물 및 그 용도에 대한 것이다. 본 출원에서는, 높은 열전도도를 나타내면서도, 소정 피착체에 대해서 낮은 접착력을 나타내는 수지 조성물 또는 그 경화체를 제공할 수 있다. 또한, 본 출원에서는 상기 낮은 접착력을 가소제 등의 접착력 조절 성분을 사용하지 않거나, 그 사용 비율을 최소화한 상태에서 달성할 수 있다. 본 출원은 또한 상기 경화성 조성물 또는 그 경화체를 포함하는 제품을 제공할 수 있다.

Description

경화성 조성물
본 출원은 경화성 조성물에 관한 것이다.
배터리 등과 같이 열의 관리가 필요한 전기 또는 전자 기기가 늘어나면서 방열 소재의 중요성이 커지고 있다.
방열 소재로 다양한 종류가 알려져 있다. 종래의 방열 소재 중 하나로서, 수지 바인더에 방열성이 있는 필러를 충진한 소재가 알려져 있다(예를 들면, 특허 문헌 1).
위와 같은 방열 소재에서 수지 바인더로는 통상 실리콘 수지, 폴리올레핀 수지, 아크릴 수지 또는 에폭시 수지 등이 사용된다.
방열 소재는, 기본적으로 열전도도가 우수할 것이 요구되며, 용도에 따라서 추가적인 기능도 요구된다. 예를 들면, 용도에 따라서는 방열 소재가 높은 열전도도와 함께 특정 피착체에 대해서 낮은 접착력을 나타낼 것이 요구될 수 있다.
예를 들면, 제품 내에서 방열 소재와 접하는 부품의 교체가 필요하거나, 공정 과정에서 방열 소재의 위치 등을 변경할 필요가 있는 경우에 상기 방열 소재는 낮은 접착력을 나타내는 것이 필요하다.
공지의 방열 소재 중에서 낮은 접착력을 보이는 소재는 수지 바인더로서 실리콘 수지를 적용한 소재가 있다. 그렇지만, 실리콘 수지는 상대적으로 고가이다. 또한, 실리콘 수지는 전자/전기 제품에 적용되었을 때에 접점 불량 등을 유발하는 성분을 포함하고 있기 때문에, 용도가 제한된다.
특허문헌 1에서도 적용한 폴리우레탄 소재는, 높은 열전도도를 가지는 방열 소재를 형성할 수 있고, 기타 다양한 장점을 가지고 있지만, 대부분의 피착체에 대해서 높은 접착력을 나타내는 소재이다.
높은 접착력을 나타내는 소재의 접착력을 낮추는 방법으로는, 소위 가소제로 공지된 성분을 배합하는 방법이 있다. 그렇지만, 접착력의 제어를 위해 다량 배합된 가소제는 소재 자체의 고유한 장점을 훼손하거나, 사용 과정에서 용출되는 등의 문제를 가지고 있다.
[선행기술문헌]
(특허문헌 1) 한국공개특허공보 제2016-0105354호
본 출원은 경화성 조성물을 제공하는 것을 목적으로 한다. 본 출원의 하나의 목적은 상기 경화성 조성물 또는 그 경화체가 높은 열전도도를 나타내면서도, 소정 피착체에 대해서 낮은 접착력을 나타내도록 하는 것이다. 또한, 본 출원의 목적에는 상기 낮은 접착력을 가소제 등의 접착력 조절 성분을 사용하지 않거나, 그 사용 비율을 최소화한 상태에서 달성하는 것이 포함된다.
본 출원은 또한 상기 경화성 조성물 또는 그 경화체를 포함하는 제품을 제공하는 것을 하나의 목적으로 한다.
본 명세서에서 언급하는 물성 중에서 측정 온도가 그 결과에 영향을 미치는 경우에는, 특별히 달리 규정하지 않는 한, 해당 물성은 상온에서 측정한 물성이다. 용어 상온은 가온 및 감온되지 않은 자연 그대로의 온도로서 통상 약 10℃ 내지 30℃의 범위 내의 한 온도 또는 약 23℃ 또는 약 25℃ 정도의 온도를 의미한다. 또한, 본 명세서에서 특별히 달리 언급하지 않는 한, 온도의 단위는 ℃이다.
본 명세서에서 언급하는 물성 중에서 측정 압력이 그 결과에 영향을 미치는 경우에는, 특별히 달리 규정하지 않는 한, 해당 물성은 상압에서 측정한 물성이다. 용어 상압은 가압 및 감압되지 않은 자연 그대로의 압력으로서 통상 약 700 mHg 내지 800 mmHg의 범위 내를 상압으로 지칭한다.
본 출원은 수지 조성물에 대한 것이다. 용어 수지 조성물은, 업계에서 수지로 알려진 성분을 포함하는 조성물 또는 수지를 포함하고 있지 않지만, 경화 반응 등을 통해서 수지를 형성할 수 있는 성분을 포함하는 조성물을 의미한다. 따라서, 본 명세서에서 용어 수지 또는 수지 성분의 범위에는, 일반적으로 수지로서 알려진 성분은 물론 경화 및/또는 중합 반응을 거쳐서 수지를 형성할 수 있는 성분도 포함된다.
상기 수지 조성물은 경화성 조성물일 수 있다.
본 출원의 수지 조성물이 경화성 수지 조성물인 경우에 상기 수지 조성물은, 1액형 또는 2액형 수지 조성물일 수 있다. 용어 1액형 수지 조성물은, 경화에 참여하는 성분들이 물리적으로 서로 접촉하고 있는 상태로 포함되어 있는 수지 조성물을 의미하고, 용어 2액형 수지 조성물은, 경화에 참여하는 성분들 중 적어도 일부가 물리적으로 분리되어 나누어져 포함되어 있는 수지 조성물을 의미할 수 있다.
본 출원의 수지 조성물이 경화성 수지 조성물인 경우에 상기 수지 조성물은, 상온 경화형, 가열 경화형, 에너지선 경화형 및/또는 습기 경화형일 수 있다. 용어 상온 경화형은, 경화 반응이 상온에서 개시 및/또는 진행될 수 있는 수지 조성물을 지칭하고, 용어 가열 경화형은, 경화 반응이 열의 인가에 의해 개시 및/또는 진행될 수 있는 수지 조성물을 지칭하며, 용어 에너지선 경화형은, 경화 반응이 에너지선(예를 들면, 자외선이나 전자선 등)의 조사에 의해 개시 및/또는 진행될 수 있는 수지 조성물을 지칭하고, 용어 습기 경화형은 경화 반응이 수분의 존재 하에서 개시 및/또는 진행될 수 있는 수지 조성물을 지칭한다.
본 출원의 수지 조성물은 용제형이거나 무용제형일 수 있다. 적용 효율 측면이나 환경으로의 부하 등을 고려할 때에 무용제형인 것이 적절할 수 있다.
본 출원의 수지 조성물은 폴리우레탄 조성물일 수 있다. 이러한 경우에 상기 수지 조성물은, 폴리우레탄을 포함하거나, 폴리우레탄을 형성할 수 있는 성분을 포함할 수 있다.
본 출원의 수지 조성물은 특정 피착체에 대해서 낮은 접착력을 나타내거나, 혹은 낮은 접착력을 나타낼 수 있는 경화체를 형성할 수 있다. 이러한 본 출원의 수지 조성물은 폴리우레탄 조성물일 수 있다. 폴리우레탄은 다양한 피착체에 대해서 우수한 접착성을 나타낼 수 있는 접착 소재로 알려져 있다. 따라서, 폴리우레탄 조성물이 피착체에 대해서 낮은 접착력을 나타내도록 하는 방법으로는 통상 가소제 등의 접착력을 저하시키는 성분을 도입하는 방법이 사용된다. 이러한 가소제 등의 성분을 적용하면, 폴리우레탄 소재의 접착력은 낮출 수 있지만, 해당 성분이 폴리우레탄에서 확보될 수 있었던 다른 물성을 저하시키거나, 폴리우레탄 소재의 사용 과정에서 소재 외부로 용출되는 등의 문제가 발생할 수 있다. 그렇지만, 본 출원에서는 가소제 등의 접착력 저하 성분을 사용하지 않거나, 그 사용량을 최소화하면서도 상기 낮은 접착력을 폴리우레탄 소재에 대해서 달성할 수 있다. 따라서, 본 출원에서는 폴리우레탄 소재의 장점은 취하면서도 용도에 따라서 요구되지 않는 높은 접착력 문제를 해결한 소재를 제공할 수 있다.
상기 수지 조성물 또는 그 경화체는, 알루미늄에 대하여 제어된 접착력을 나타낼 수 있다. 예를 들면, 상기 알루미늄에 대한 접착력의 상한은, 1 N/mm2, 0.9 N/mm2, 0.8 N/mm2, 0.7 N/mm2, 0.6 N/mm2, 0.5 N/mm2, 0.4 N/mm2, 0.3 N/mm2, 0.2 N/mm2, 0.1 N/mm2, 0.09 N/mm2, 0.08 N/mm2, 0.07 N/mm2, 0.06 N/mm2, 0.04 N/mm2 또는 0.03 N/mm2일 수 있다. 상기 알루미늄에 대한 접착력의 하한은 특별히 제한되지 않는다. 일 예시에서 상기 알루미늄에 대한 접착력의 하한은 0 N/mm2, 0.0001 N/mm2, 0.0005 N/mm2, 0.001 N/mm2, 0.005 N/mm2, 0.01 N/mm2, 0.015 N/mm2, 0.02 N/mm2, 0.025 N/mm2 또는 0.03 N/mm2 정도일 수 있다. 즉, 상기 수지 조성물은, 알루미늄에 대해서 접착력이 실질적으로 측정되지 않는 수지 조성물이거나, 실질적으로 측정되지 않는 경화체를 형성할 수 있는 수지 조성물일 수 있다. 상기 알루미늄에 대한 접착력은, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수 있다. 상기 알루미늄에 대한 접착력은 본 명세서의 실시예에 기재된 방식으로 측정할 수 있다.
상기 수지 조성물 또는 그 경화체는, 폴리에스테르에 대하여 제어된 접착력을 나타낼 수 있다. 예를 들어, 상기 폴리에스테르에 대한 접착력의 상한은, 2,000 gf/10mm, 1,800 gf/10mm, 1,600 gf/10mm, 1,400 gf/10mm, 1,200 gf/10mm, 1,000 gf/10mm, 950 gf/10mm, 900 gf/10mm, 850 gf/10mm, 800 gf/10mm, 750 gf/10mm, 700 gf/10mm, 650 gf/10mm, 600 gf/10mm, 550 gf/10mm, 500 gf/10mm, 450 gf/10mm, 400 gf/10mm, 350 gf/10mm, 300 gf/10mm, 250 gf/10mm, 200 gf/10mm, 150 gf/10mm, 100 gf/10mm, 90 gf/10mm, 80 gf/10mm, 70 gf/10mm, 60 gf/10mm, 50 gf/10mm, 40 gf/10mm, 30 gf/10mm, 20 gf/10mm 또는 10 gf/10mm일 수도 있다. 본 출원에서 상기 폴리에스테르에 대한 접착력의 하한은 특별히 제한되지 않는다. 일 예시에서 상기 폴리에스테르에 대한 접착력의 하한은 0 gf/10mm일 수 있다. 즉, 상기 수지 조성물 또는 그 경화체는, 폴리에스테르에 대해서 접착력을 실질적으로 나타내지 않을 수 있다. 따라서, 상기 수지 조성물 또는 그 경화체의 폴리에스테르에 대한 접착력은 0 gf/10mm 이상일 수 있다. 예를 들면, 상기 폴리에스테르에 대해서 접착력의 하한은, 0 gf/10mm, 5 gf/10mm, 10 gf/10mm, 15 gf/10mm, 20 gf/10mm, 25 gf/10mm, 30 gf/10mm, 35 gf/10mm, 40 gf/10mm, 45 gf/10mm, 50 gf/10mm, 55 gf/10mm, 60 gf/10mm, 65 gf/10mm, 70 gf/10mm, 75 gf/10mm, 80 gf/10mm, 85 gf/10mm, 90 gf/10mm 또는 95 gf/10mm일 수도 있다. 상기 폴리에스테르에 대해서 접착력은 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다. 상기 폴리에스테르에 대한 접착력은 본 명세서의 실시예에 기재된 방식으로 측정할 수 있다.
상기 수지 조성물 또는 그 경화체는, 특정 피착체(예를 들면, 알루미늄 및/또는 폴리에스테르)에 대해서 상기 접착력을 나타내면서, 우수한 열전도 특성을 나타낼 수 있다. 예를 들면, 상기 수지 조성물 또는 그 경화체의 열전도도의 하한은, 1.2 W/mk, 1.4 W/mK, 1.6 W/mK, 1.8 W/mK, 2.0 W/mK, 2.2 W/mK, 2.4 W/mK, 2.6 W/mK 또는 2.8 W/mK 정도일 수도 있다. 상기 열전도도의 상한에는 특별한 제한은 없다. 예를 들면, 상기 수지 조성물 또는 그 경화체의 열전도도의 상한은, 10 W/mK, 9 W/mK, 8 W/mK, 7 W/mK, 6 W/mK, 5 W/mK, 4 W/mK 또는 3 W/mK 정도일 수도 있다. 상기 열전도도는 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다. 이러한 수지 조성물 또는 그 경화체의 열전도도는 후술하는 실시예에 개시된 방법으로 측정할 수 있다.
상기 수지 조성물 또는 그 경화체는, 적절한 경도를 나타낼 수 있다. 예를 들어, 수지 조성물 또는 그 경화체의 경도가 지나치게 높으면, 지나치게 브리틀(brittle)하게 되어 문제가 발생할 수 있다. 또한, 수지 조성물 또는 그 경화체의 경도의 조절을 통해, 적용 용도에 따라서, 내충격성 및 내진동성을 확보하고, 제품의 내구성을 확보할 수 있다.
예를 들어, 상기 수지 조성물 또는 그 경화체의 쇼어(shore) OO 타입 경도의 상한은, 150, 140, 130, 120, 110, 100, 95, 90, 80, 70, 60, 50 또는 45일 수 있고, 그 하한은, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80 또는 85 정도일 수 있다. 상기 쇼어(shore) OO 타입 경도는 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다. 이러한 수지 조성물 또는 그 경화체의 경도는 후술하는 실시예에 개시된 방법으로 측정할 수 있다.
상기 수지 조성물 또는 그 경화체는, 또한 적절한 유연성을 나타낼 수 있다. 예를 들어, 수지 조성물 또는 그 경화체의 유연성을 원하는 수준으로 조절함으로써 적용 용도를 크게 확대할 수 있다. 예를 들면, 수지 조성물 또는 그 경화체의 곡률 반경의 하한은, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 또는 12 정도일 수 있고, 그 상한은, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5 또는 4 정도일 수도 있다. 상기 곡률 반경은 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다. 이러한 수지 조성물 또는 그 경화체의 곡률 반경은 후술하는 실시예에 개시된 방법으로 측정할 수 있다. 또한, 특별히 달리 규정하지 않는 한, 본 명세서에서 곡률 반경의 단위는 mm이다.
본 출원의 수지 조성물은 절연성일 수 있다. 즉 수지 조성물은 절연성을 가지거나 및/또는 절연성을 가지는 경화체를 형성할 수 있다. 예를 들어, 수지 조성물 또는 그 경화체는, ASTM D149에 준거하여 측정한 절연파괴전압이 약 3 kV/mm 이상, 약 5 kV/mm 이상, 약 7 kV/mm 이상, 10 kV/mm 이상, 15 kV/mm 이상 또는 20 kV/mm 이상일 수 있다. 상기 절연파괴전압은 그 수치가 높을수록 우수한 절연성을 가지는 것을 보이는 것으로 상한은 특별히 제한되는 것은 아니나, 수지 조성물의 조성 등을 고려하면, 상기 절연파괴전압은, 약 50 kV/mm 이하, 45 kV/mm 이하, 40 kV/mm 이하, 35 kV/mm 이하, 30 kV/mm 이하 정도일 수 있다. 상기와 같은 절연파괴전압은 수지 조성물의 절연성을 조절하여 제어할 수 있으며, 예를 들면, 수지층 내에 절연성 필러를 적용함으로써 달성할 수 있다. 일반적으로 필러 중에서 세라믹 필러는 절연성을 확보할 수 있는 성분으로 알려져 있다.
수지 조성물 또는 그 경화체는 난연성을 가질 수 있다. 예를 들어, 상기 수지 조성물 또는 그 경화체는, UL 94 V Test (Vertical Burning Test)에서 V-0 등급을 나타낼 수 있다. 이에 따라서 수지 조성물의 적용 용도에 따라서 우려되는 화재 및 기타 사고에 대한 안정성을 확보할 수 있다.
수지 조성물 또는 그 경화체는 비중이 5 이하일 수 있다. 상기 비중은 다른 예시에서 4.5 이하, 4 이하, 3.5 이하 또는 3 이하일 수 있다. 이러한 범위의 비중을 나타내는 수지층은 보다 경량화된 제품을 제공하는 것에 유리하다. 상기 비중의 하한은 특별히 제한되지 않는다. 예를 들면, 상기 비중은 약 1.5 이상 또는 2 이상일 수 있다. 수지 조성물 또는 그 경화체가 상기 비중을 나타내기 위하여 수지층에 첨가되는 성분이 조절될 수 있다. 예를 들어, 필러의 첨가 시에 가급적 낮은 비중에서도 목적하는 특성(예를 들면, 열전도성)이 확보될 수 있는 필러, 즉 자체적으로 비중이 낮은 필러를 적용하거나, 표면 처리가 이루어진 필러를 적용하는 방식 등이 사용될 수 있다.
수지 조성물은, 경화 과정 또는 경화된 후에 낮은 수축률을 가질 수 있다. 이를 통해 적용 과정에서 발생할 수 있는 박리나 공극의 발생 등을 방지할 수 있다. 상기 수축률은 전술한 효과를 나타낼 수 있는 범위에서 적절하게 조절될 수 있고, 예를 들면, 5% 미만, 3% 미만 또는 약 1% 미만일 수 있다. 상기 수축률은 그 수치가 낮을수록 유리하므로, 그 하한은 특별히 제한되지 않는다.
수지 조성물 또는 그 경화체는 낮은 열팽창 계수(CTE)를 가질 수 있다. 이를 통해 적용 내지 사용 과정에서 발생할 수 있는 박리나 공극의 발생 등을 방지할 수 있다. 상기 열팽창 계수는 전술한 효과를 나타낼 수 있는 범위에서 적절하게 조절될 수 있고, 예를 들면, 300 ppm/K 미만, 250 ppm/K 미만, 200 ppm/K 미만, 150 ppm/K 미만 또는 약 100 ppm/K 미만일 수 있다. 상기 열팽창계수는 그 수치가 낮을수록 유리하므로, 그 하한은 특별히 제한되지 않는다.
수지 조성물 또는 그 경화체는, 또한 열중량분석(TGA)에서의 5% 중량 손실(5% weight loss) 온도가 400℃ 이상이거나, 800℃ 잔량이 70 중량% 이상일 수 있다. 이러한 특성에 의해 고온에서의 안정성이 보다 개선될 수 있다. 상기 800℃ 잔량은 다른 예시에서 약 75 중량% 이상, 약 80 중량% 이상, 약 85 중량% 이상 또는 약 90 중량% 이상일 수 있다. 상기 800℃ 잔량은 다른 예시에서 약 99 중량% 이하일 수 있다. 상기 열중량 분석(TGA)은, 60 cm3/분의 질소(N2) 분위기 하에서 20℃/분의 승온 속도로 25℃ 내지 800℃의 범위 내에서 측정할 수 있다. 상기 열중량분석(TGA) 결과도 수지 조성물의 조성의 조절을 통해 달성할 수 있다. 예를 들어, 800℃ 잔량은, 통상 그 수지 조성물에 포함되는 필러의 종류 내지 비율에 의해 좌우되고, 과량의 필러를 포함하면, 상기 잔량은 증가한다.
본 출원의 수지 조성물은, 히드록시 작용성 성분(hydroxyl-functionalized component)을 포함할 수 있다. 용어 히드록시 작용성 성분은, 수지 조성물에 존재하는 모든 히드록시기를 가지는 화합물을 의미할 수 있다. 따라서, 수지 조성물에 히드록시기를 가지는 화합물이 1종 존재할 경우에 그 화합물이 상기 히드록시기 작용성 성분이 되고, 상기 수지 조성물에 히드록시기를 가지는 화합물이 2종 이상 존재하는 경우에 그 2종 이상의 화합물의 혼합물이 상기 히드록시기 작용성 성분이 된다.
상기 히드록시 작용성 성분을 형성하는 히드록시기를 가지는 화합물로는, 오일 변성 폴리올 화합물, 일반 폴리올 화합물 및 오일 변성 알코올 화합물 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
상기 히드록시 작용성 성분은, 폴리올 성분을 포함할 수 있다. 상기 폴리올 성분은, 수지 조성물 내에 존재하는 모든 폴리올 화합물을 의미할 수 있다. 따라서, 수지 조성물이 폴리올 화합물을 1종만 가진다면, 그 1종의 폴리올 화합물이 상기 폴리올 성분이 되고, 2종 이상의 폴리올 화합물을 포함한다면, 그 2종 이상의 폴리올 화합물의 혼합물이 상기 폴리올 성분이 될 수 있다.
본 명세서에서 용어 폴리올 화합물은, 히드록시기를 2개 이상 포함하는 화합물을 의미한다. 이러한 폴리올 화합물은 다관능성 폴리올 화합물로 불릴 수도 있다. 이러한 폴리올 화합물은, 단분자성, 올리고머성 또는 고분자성 화합물일 수 있다. 폴리올 화합물이 포함하는 상기 히드록시기의 수는 특별히 제한되지 않지만, 일 예시에서 폴리올 화합물이 가지는 1분자 당 상기 히드록시기의 수의 하한은, 2개 또는 3개일 수 있고, 그 상한은, 10개, 9개, 8개, 7개, 6개, 5개, 4개, 3개 또는 2개 정도일 수도 있다. 상기 폴리올 화합물의 히드록시기의 수는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
폴리올 화합물이 포함하는 히드록시기의 수는 통상 1H NMR을 통해서 확인할 수 있는데, 1H NMR에서 3 ppm 내지 4 ppm 영역에 존재하는 피크(peak)를 토대로 상기 히드록시기의 수를 확인할 수 있다
상기 폴리올 화합물은, 오일 변성 폴리올 화합물일 수 있다. 용어 오일 변성 폴리올 화합물은, 2개 이상의 히드록시기를 포함하며, 동시에 오일기를 말단에 적어도 하나 포함하는 화합물을 의미한다. 상기 오일기는, 탄소 원자수가 3개 이상인 직쇄 또는 분지쇄 탄화수소기일 수 있다. 폴리올 화합물이 상기 탄화수소기를 포함하는 것인지 여부는 통상 1H NMR을 통해서 확인할 수 있는데, 1H NMR에서 4 ppm 내지 5 ppm 영역에 존재하는 피크(peak)를 토대로 상기 탄화수소기의 존재 여부 및 수를 확인할 수 있다. 이러한 폴리올 화합물은, 단분자성, 올리고머성 또는 고분자성 화합물일 수 있다. 이러한 오일 변성 폴리올 화합물을 적용하는 것에 의해서 폴리우레탄 소재로 형성되면서, 또한 가소제 등 접착력 저하 성분을 사용하지 않거나 그 사용량을 최소화하면서도 특정 소재에 대해서 낮은 접착력을 확보할 수 있다.
상기 오일기인 직쇄 또는 분지쇄 탄화수소기의 탄소 원자의 수의 하한은, 3개, 가 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개, 13개, 14개, 15개, 16개 또는 17개일 수 있고, 그 상한은, 50개, 49개, 48개, 47개, 46개, 45개, 44개, 43개, 42개, 41개, 40개, 39개, 38개, 37개, 36개, 35개, 34개, 33개, 32개, 31개, 30개, 29개, 28개, 27개, 26개, 25개, 24개, 23개, 22개, 21개, 20개, 19개, 18개, 17개, 16개, 15개, 14개, 13개, 12개, 11개 또는 10개 정도일 수도 있다. 상기 탄소 원자의 수는 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 직쇄 또는 분지쇄 탄화수소기는 이중 결합을 포함하거나, 또는 포함하지 않을 수 있다. 이중 결합을 포함하는 경우에 이 이중 결합은 공액형 이중 결합이거나, cis 이중 결합일 수 있다.
상기 탄화수소기의 구체적인 종류로는, 알킬기, 알케닐기 또는 알키닐기를 예시할 수 있다. 일 예시에서 상기 탄화수소기는 카보닐기 또는 카보닐옥시기를 매개로 폴리올 화합물에 연결되어 있을 수 있고, 이 경우 상기 탄화수소기는 알킬카보닐기, 알케닐카보닐기, 알키닐카보닐기, 알킬카보닐옥시기, 알케닐카보닐옥시기 또는 알키닐카보닐옥시기일 수 있다. 상기에서 알킬기, 알케닐기 또는 알키닐기의 탄소 원자 수의 하한은, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개, 13개, 14개, 15개, 16개 또는 17개 정도일 수 있고, 그 상한은, 50개, 49개, 48개, 47개, 46개, 45개, 44개, 43개, 42개, 41개, 40개, 39개, 38개, 37개, 36개, 35개, 34개, 33개, 32개, 31개, 30개, 29개, 28개, 27개, 26개, 25개, 24개, 23개, 22개, 21개, 20개, 19개, 18개, 17개, 16개, 15개, 14개, 13개, 12개, 11개 또는 10개 정도일 수 있다. 상기 탄소 원자의 수는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 알킬기, 알케닐기 또는 알키닐기는 직쇄 또는 분지쇄일 수 있고, 임의로 하나 이상의 치환기로 치환되어 있을 수도 있다. 치환기가 존재하는 경우에 치환기의 종류에는 특별한 제한은 없으며, 예를 들면, 불소 등의 할로겐 원자가 치환기로 예시될 수 있다.
하나의 예시에서 상기 탄화수소기는, 하기 화학식 1의 치환기에 포함되어 있을 수 있다.
[화학식 1]
Figure PCTKR2022014594-appb-img-000001
화학식 1에서 R은 탄소 원자수가 3개 이상이고, 직쇄 또는 분지쇄인 상기 탄화수소기이다. 화학식 1에서 * 표시는 해당 부분이 폴리올 화합물에 연결되는 것을 의미한다. 따라서, 상기 화학식 1의 치환기에서 산소 원자가 폴리올 화합물에 연결될 수 있다.
화학식 1에서 R인 탄화수소기의 구체적인 종류는 전술한 바와 같다. 따라서, 상기 기술한 탄화수소기의 탄소 원자의 수, 종류, 형태 및 치환기 등에 대한 내용은 상기와 동일하게 적용될 수 있다.
상기 폴리올 화합물이 포함하는 상기 탄화수소기의 수는 특별히 제한되지 않는다. 일 예시에서 상기 오일 변성 폴리올 화합물에 포함되는 상기 탄화수소기의 수의 하한은, 1분자 당 1개 또는 2개일 수 있고, 그 상한은, 1 분자당 10개, 9개, 8개, 7개, 6개, 5개, 4개, 3개 또는 2개 정도일 수도 있다. 상기 탄화수소기의 수는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
폴리올 화합물은 상기 히드록시기 및 탄화수소기를 포함하는 한 다양한 형태를 가질 수 있다.
일 예시에서 상기 폴리올 화합물은, 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물의 수소 원자의 적어도 일부가 상기 히드록시기 및/또는 탄화수소기로 치환된 형태의 화합물일 수 있다. 상기 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물의 탄소 원자의 수는 예를 들면, 1개 내지 20개, 1개 내지 16개, 1개 내지 8개 또는 4개 내지 6개일 수 있다.
이러한 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물은 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 히드록시기 및/또는 탄화수소기는, 상기 알칸, 알켄 또는 알킨에서 동일한 탄소 원자에 치환되어 있거나, 혹은 다른 탄소 원자에 치환되어 있을 수도 있다.
다른 예시에서 상기 폴리올 화합물은, 폴리에스테르 골격 또는 폴리에테르 골격을 가지는 화합물일 수 있다. 이러한 경우에 상기 폴리올 화합물은 올리고머성 화합물이거나, 고분자성 화합물일 수 있다.
일 예시에서 상기 폴리에스테르 골격을 가지는 폴리올 화합물은 소위 폴리에스테르 폴리올이고, 이러한 폴리에스테르 폴리올에 상기 탄화수소기가 연결된 구조를 가지는 폴리올일 수 있다.
상기 폴리에테르 골격을 가지는 폴리올 화합물은, 소위 폴리에테르 폴리올이고, 이러한 폴리에테르 폴리올에 상기 탄화수소기가 연결된 구조를 가지는 폴리올일 수 있다.
하나의 예시에서 상기 폴리에스테르 골격은 소위 폴리카프로락톤 골격이고, 상기 폴리에테르 골격은 소위 폴리알킬렌 골격일 수 있다.
상기 폴리에스테르 골격은, 일 예시에서 하기 화학식 2로 표시되는 반복 단위를 가지는 골격일 수 있다.
[화학식 2]
Figure PCTKR2022014594-appb-img-000002
화학식 2에서 X1 및 X2는 각각 독립적으로 단일 결합 또는 산소 원자이고, L1은 알킬렌기일 수 있으며, n은 임의의 수이다.
본 명세서에서 용어 단일 결합은, 해당 부위에 원자가 존재하지 않는 경우를 의미한다.
화학식 2에서 알킬렌기는, 일 예시에서 탄소수 1 내지 20, 탄소수 4 내지 20, 탄소수 4 내지 16, 탄소수 4 내지 12 또는 탄소수 4 내지 8의 알킬렌기일 수 있으며, 이는 직쇄형 또는 분지쇄형일 수 있다.
본 명세서에서 용어 알킬렌기는 알칸에서 2개의 수소 원자가 이탈하여 형성된 2가 치환기를 의미하는데, 이 때 상기 2개의 수소 원자는, 알칸의 다른 탄소 원자에서 각각 1개씩 이탈할 수도 있고, 알칸은 하나의 탄소 원자에서 이탈할 수도 있다.
후술하는 바와 같이 일 예시에서 상기 폴리에스테르 골격은, 폴리카프로락톤 골격일 수 있는데, 이 경우에 상기 화학식 2의 L1은 탄소수 5의 직쇄형 알킬렌기일 수 있다.
화학식 2에서 n은 반복 단위의 수를 나타내는 임의의 수로서, 예를 들면, 1 내지 25의 범위 내의 수일 수 있다.
화학식 2의 n의 하한은, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 또는 23 정도일 수 있고, 상한은 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5 또는 3 정도일 수도 있다. 상기 n은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 화학식 2의 골격은 폴리에스테르 폴리올의 골격으로서, 소위 카르복실산 폴리올의 골격 또는 카프로락톤 폴리올의 골격일 수 있다. 이러한 골격은 공지의 방식으로 형성할 수 있으며, 예를 들면, 상기 카르복실산 폴리올의 골격은 카르복실산과 폴리올(ex. 디올 또는 트리올 등)을 포함하는 성분을 반응시켜서 형성할 수 있고, 카프로락톤 폴리올의 골격은 카프로락톤과 폴리올(ex. 디올 또는 트리올 등)을 포함하는 성분을 반응시켜서 형성할 수 있다. 상기 카르복실산은 디카르복실산일 수 있다.
상기 화학식 2의 골격을 가지는 폴리올 화합물에서 히드록시기 또는 전술한 탄화수소기는 상기 화학식 2의 골격의 말단에 존재할 수 있다.
이러한 경우에 상기 화학식 2의 골격은, 하기 화학식 3으로 표시될 수 있다.
[화학식 3]
Figure PCTKR2022014594-appb-img-000003
화학식 3에서 X1, X2, L1 및 n은, 화학식 2에서 정의된 바와 같고, R1은, 히드록시기 또는 하기 화학식 4의 치환기일 수 있다.
[화학식 4]
Figure PCTKR2022014594-appb-img-000004
화학식 4에서 X3는 단일 결합 또는 산소 원자이고, R은 상기 화학식 1의 R과 같다.
화학식 3에서 R1이 히드록시기인 경우에 X1은 단일 결합이고, R1이 상기 화학식 4의 치환기인 경우에 X1 및 X3 중 어느 하나는 단일 결합이고, 다른 하나는 산소 원자이다.
폴리올 화합물에 포함되는 상기 화학식 2 또는 3의 골격의 수의 하한은, 1개 또는 2개 정도일 수 있고, 그 상한은, 10개, 9개, 8개, 7개, 6개, 5개, 4개, 3개 또는 2개 정도일 수 있다. 상기 골격의 수는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 폴리에스테르 골격을 가지는 폴리올 화합물은 직쇄 또는 분지쇄 구조를 가질 수 있다.
상기에서 직쇄 구조는 상기 화학식 2 또는 3의 골격을 포함하는 주쇄가 존재하고, 상기 주쇄에 다른 고분자 사슬은 연결되어 있지 않은 구조이며, 분지쇄 구조는 상기 화학식 2 또는 3의 골격을 포함하는 주쇄에 측쇄로서 또한 상기 화학식 2 또는 3의 골격을 포함하는 사슬이 결합되어 있는 형태일 수 있다. 상기에서 분지쇄 구조에서 측쇄로서 연결되는 상기 화학식 2 또는 3의 골격을 포함하는 사슬의 수는 예를 들면 1개 내지 5개, 1개 내지 4개, 1개 내지 3개, 1개 내지 2개 또는 1개일 수 있다.
일 예시에서 상기 폴리에스테르 골격을 가지는 폴리올 화합물은, 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물의 수소 원자의 적어도 일부가 상기 히드록시기 및/또는 상기 화학식 3의 골격으로 치환된 형태의 화합물일 수 있다. 상기 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물의 탄소 원자의 수는 예를 들면, 1개 내지 20개, 1개 내지 16개, 1개 내지 8개 또는 4개 내지 6개일 수 있다.
이러한 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물은 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 히드록시기 및/또는 화학식 3의 골격은, 상기 알칸, 알켄 또는 알킨에서 동일한 탄소 원자에 치환되어 있거나, 혹은 다른 탄소 원자에 치환되어 있을 수도 있다.
상기 폴리에테르 골격은, 일 예시에서 하기 화학식 5로 표시되는 반복 단위를 가지는 골격일 수 있다.
[화학식 5]
Figure PCTKR2022014594-appb-img-000005
화학식 5에서 X4 및 X5는 각각 독립적으로 단일 결합 또는 산소 원자이고, L2는 알킬렌기일 수 있으며, m은 임의의 수이다.
상기 화학식 5에서 알킬렌기는, 일 예시에서 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기일 수 있으며, 이는 직쇄형 또는 분지쇄형일 수 있다.
상기 화학식 5에서 m은 반복 단위의 수를 나타내는 임의의 수로서, 예를 들면, 1 내지 25의 범위 내의 수일 수 있다.
화학식 5의 m의 하한은, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 또는 23 정도일 수 있고, 상한은 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5 또는 3 정도일 수도 있다. 상기 m은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
화학식 5의 골격을 가지는 폴리올 화합물에서 히드록시기 또는 전술한 탄화수소기는 상기 화학식 5의 골격의 말단에 존재할 수 있다.
이러한 경우에 상기 화학식 5의 골격은, 하기 화학식 6으로 표시될 수 있다.
[화학식 6]
Figure PCTKR2022014594-appb-img-000006
화학식 6에서 X4, X5, L2 및 m은, 화학식 5에서 정의된 바와 같고, R2는, 히드록시기 또는 하기 화학식 7의 치환기일 수 있다.
[화학식 7]
Figure PCTKR2022014594-appb-img-000007
화학식 7에서 X6는 단일 결합 또는 산소 원자이고, R은 상기 화학식 1의 R과 같다.
화학식 6에서 R2가 히드록시기인 경우에 X4는 단일 결합이고, R2가 상기 화학식 7의 치환기인 경우에 X4 및 X6 중 어느 하나는 단일 결합이고, 다른 하나는 산소 원자이다.
폴리올 화합물에 포함되는 상기 화학식 5 또는 6의 골격의 수의 하한은, 1개 또는 2개 정도일 수 있고, 그 상한은, 10개, 9개, 8개, 7개, 6개, 5개, 4개, 3개 또는 2개 정도일 수 있다. 상기 골격의 수는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 폴리에테르 골격을 가지는 폴리올 화합물은 직쇄 또는 분지쇄 구조를 가질 수 있다.
상기에서 직쇄 구조는 상기 화학식 5 또는 6의 골격을 포함하는 주쇄가 존재하고, 상기 주쇄에 다른 고분자 사슬은 연결되어 있지 않은 구조이며, 분지쇄 구조는 상기 화학식 5 또는 6의 골격을 포함하는 주쇄에 측쇄로서 또한 상기 화학식 5 또는 6의 골격을 포함하는 사슬이 결합되어 있는 형태일 수 있다. 상기에서 분지쇄 구조에서 측쇄로서 연결되는 상기 화학식 5 또는 6의 골격을 포함하는 사슬의 수는 예를 들면 1개 내지 5개, 1개 내지 4개, 1개 내지 3개, 1개 내지 2개 또는 1개일 수 있다.
일 예시에서 상기 폴리에테르 골격을 가지는 폴리올 화합물은, 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물의 수소 원자의 적어도 일부가 히드록시기 및/또는 상기 화학식 5의 골격으로 치환된 형태의 화합물일 수 있다. 상기 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물의 탄소 원자의 수는 예를 들면, 1개 내지 20개, 1개 내지 16개, 1개 내지 8개 또는 4개 내지 6개일 수 있다.
이러한 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물은 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 히드록시기 및/또는 화학식 5의 골격은, 상기 알칸, 알켄 또는 알킨에서 동일한 탄소 원자에 치환되어 있거나, 혹은 다른 탄소 원자에 치환되어 있을 수도 있다.
상기 기술한 폴리올 화합물이 올리고머성 또는 고분자성 화합물인 경우에 해당 화합물은, 적정 수준의 분자량을 가질 수 있다.
예를 들면, 올리고머성 또는 고분자성인 상기 폴리올 화합물의 중량평균분자량의 하한은, 100 g/mol, 200g/mol, 300 g/mol, 400 g/mol, 500 g/mol, 600 g/mol, 700 g/mol, 800 g/mol 또는 900 g/mol 정도일 수 있고, 그 상한은, 5000 g/mol, 4500 g/mol, 4000 g/mol, 3500 g/mol, 3000 g/mol, 2500 g/mol, 2000 g/mol, 1500 g/mol, 1000 g/mol 또는 800 g/mol 정도일 수도 있다. 상기 중량평균분자량은 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
이상 기술한 바와 같은 오일 변성 폴리올 화합물을 적용하는 것에 의해서 목적하는 물성을 보다 효과적으로 확보할 수 있다.
상기 오일 변성 폴리올 화합물은 수지 조성물 내에서 적정 비율로 존재할 수 있다. 예를 들면, 수지 조성물 내에서 상기 오일 변성 폴리올 화합물의 함량의 하한은, 5 중량%, 10 중량%, 15 중량%, 20 중량%, 25 중량%, 30 중량%, 35 중량%, 40 중량%, 45 중량%, 50 중량%, 55 중량%, 60 중량%, 65 중량%, 70 중량%, 75 중량%, 80 중량%, 85 중량%, 90 중량% 또는 95 중량% 정도일 수 있고, 그 상한은 100 중량%, 95 중량%, 90 중량%, 85 중량%, 80 중량%, 75 중량%, 70 중량%, 65 중량%, 60 중량%, 55 중량%, 50 중량%, 45 중량%, 40 중량%, 35 중량%, 30 중량%, 25 중량% 또는 20 중량% 정도일 수 있다. 상기 함량은 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 오일 변성 폴리올 화합물의 함량은, 수지 조성물이 1액형인 경우에 해당 1액형 수지 조성물 내에서의 함량이고, 2액형 조성물인 경우에는 상기 오일 변성 폴리올 화합물이 존재하는 파트 내에서의 함량이다. 예를 들어, 2액형 수지 조성물이 물리적으로 분리된 주제 파트와 경화제 파트를 포함하고, 상기 오일 변성 폴리올 화합물이 주제 파트에 포함되는 경우에는 상기 오일 변성 폴리올의 함량은, 주제 파트의 전체 중량을 기준으로 한 함량일 수 있다. 또한, 수지 조성물이 용제 및/또는 필러를 포함하는 경우에 상기 함량은 상기 용제 및 필러의 함량을 제외한 중량을 기준으로 한 함량이다.
다른 예시에서 상기 오일 변성 폴리올 화합물의 함량은, 수지 조성물 내에 존재하는 모든 폴리올 성분 100 중량%를 기준으로 한 함량일 수 있다.
다른 예시에서 수지 조성물이 후술하는 필러 성분을 포함하는 경우에 상기 오일 변성 폴리올 화합물의 상기 필러 성분 100 중량부 대비 함량의 하한은, 1 중량부, 3 중량부, 5 중량부, 7 중량부, 9 중량부, 11 중량부 또는 13 중량부 정도일 수 있고, 그 상한은, 40 중량부, 35 중량부, 30 중량부, 25 중량부, 20 중량부, 15 중량부, 10 중량부, 8 중량부, 6 중량부, 4 중량부 또는 3 중량부 정도일 수도 있다. 상기 함량은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 필러 성분에 대한 비율은 수지 조성물이 1액형인 경우에 해당 수지 조성물에 포함되어 있는 전체 필러 성분 100 중량부 대비 비율이며, 2액형인 경우에 오일 변성 폴리올이 포함되어 있는 파트(주제 파트 또는 경화제 파트) 내에 존재하는 전체 필러 성분 100 중량부 대비 비율이다.
히드록시 작용성 성분은, 필요한 경우에 또한 추가 성분으로서 알코올 화합물을 포함할 수 있다. 용어 알코올 화합물은, 히드록시기를 분자당 1개 포함하는 화합물을 의미한다. 이러한 알코올 화합물은, 단분자성, 올리고머성 또는 고분자성 화합물일 수 있다.
알코올 화합물로도, 오일 변성 알코올 화합물을 사용할 수 있다. 용어 오일 변성 알코올 화합물은, 분자당 1개의 히드록시기를 포함하며, 동시에 상기 오일기, 즉 탄소 원자수가 3개 이상인 직쇄 또는 분지쇄 탄화수소기를 말단에 적어도 하나 포함하는 화합물을 의미한다. 상기에서 히드록시기의 수와 탄화수소기의 수 등을 확인하는 방법은 상기 폴리올 화합물의 경우와 동일하다. 이러한 알코올 화합물은, 단분자성, 올리고머성 또는 고분자성 화합물일 수 있다. 이러한 오일 변성 알코올 화합물을 상기 기술한 오일 변성 폴리올 화합물과 함께 적용하는 것에 의해서 폴리우레탄 소재로 형성되면서, 또한 가소제 등 접착력 저하 성분을 사용하지 않거나 그 사용량을 최소화하면서도 특정 소재에 대해서 낮은 접착력을 확보할 수 있다.
상기 오일 변성 알코올 화합물은, 히드록시기를 분자당 1개 포함하는 것을 제외하면, 상기 오일 변성 폴리올 화합물과 유사한 형태를 가질 수 있다. 따라서, 상기 오일 변성 폴리올 화합물에 대해서 설명한 내용은 상기 오일 변성 알코올 화합물에 대해서도 동일하게 적용될 수 있다.
즉, 예를 들면, 상기 오일 변성 알코올 화합물에 존재하는 상기 직쇄 또는 분지쇄 탄화수소기의 탄소 원자의 수의 하한은, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개, 13개, 14개, 15개, 16개 또는 17개 정도일 수 있고, 그 상한은, 50개, 49개, 48개, 47개, 46개, 45개, 44개, 43개, 42개, 41개, 40개, 39개, 38개, 37개, 36개, 35개, 34개, 33개, 32개, 31개, 30개, 29개, 28개, 27개, 26개, 25개, 24개, 23개, 22개, 21개, 20개, 19개, 18개, 17개, 16개, 15개, 14개, 13개, 12개, 11개 또는 10개 정도일 수도 있다. 상기 탄소 원자의 수는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 직쇄 또는 분지쇄 탄화수소기는 이중 결합을 포함하거나, 또는 포함하지 않을 수 있다. 이중 결합을 포함하는 경우에 이 이중 결합은 공액형 이중 결합이거나, cis 이중 결합일 수 있다.
상기 탄화수소기의 구체적인 종류로는, 알킬기, 알케닐기 또는 알키닐기를 예시할 수 있다. 일 예시에서 상기 탄화수소기는 카보닐기 또는 카보닐옥시기를 매개로 알코올 화합물에 연결되어 있을 수 있고, 이 경우 상기 탄화수소기는 알킬카보닐기, 알케닐카보닐기, 알키닐카보닐기, 알킬카보닐옥시기, 알케닐카보닐옥시기 또는 알키닐카보닐옥시기일 수 있다.
상기 알킬기, 알케닐기 또는 알키닐기의 탄소 원자 수의 하한은, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개, 13개, 14개, 15개, 16개 또는 17개 정도일 수 있고, 그 상한은, 50개, 49개, 48개, 47개, 46개, 45개, 44개, 43개, 42개, 41개, 40개, 39개, 38개, 37개, 36개, 35개, 34개, 33개, 32개, 31개, 30개, 29개, 28개, 27개, 26개, 25개, 24개, 23개, 22개, 21개, 20개, 19개, 18개, 17개, 16개, 15개, 14개, 13개, 12개, 11개 또는 10개 정도일 수 있다. 상기 탄소 원자의 수는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 알킬기, 알케닐기 또는 알키닐기는 직쇄 또는 분지쇄일 수 있고, 임의로 하나 이상의 치환기로 치환되어 있을 수도 있다. 치환기가 존재하는 경우에 치환기의 종류에는 특별한 제한은 없으며, 예를 들면, 불소 등의 할로겐 원자가 치환기로 예시될 수 있다.
하나의 예시에서 상기 오일 변성 알코올 화합물의 탄화수소기도 전술한 화학식 1의 치환기에 포함되어 있을 수 있다. 이 때 화학식 1의 치환기에 대한 세부적인 사항도 오일 변성 폴리올 화합물의 경우와 같다.
상기 알코올 화합물이 포함하는 상기 탄화수소기의 수는 특별히 제한되지 않지만, 일 예시에서 상기 알코올 화합물이 포함하는 상기 탄화수소기의 수의 하한은, 1분자 당 1개 또는 2개 정도일 수 있고, 그 상한은, 1 분자당 10개, 9개, 8개, 7개, 6개, 5개, 4개, 3개 또는 2개 정도일 수도 있다. 상기 탄소 원자의 수는 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
알코올 화합물은 상기 히드록시기 및 탄화수소기를 포함하는 한 다양한 형태를 가질 수 있다.
일 예시에서 상기 알코올 화합물은, 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물의 수소 원자의 적어도 일부가 하나의 히드록시기 및/또는 상기 탄화수소기로 치환된 형태의 화합물일 수 있다. 상기 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물의 탄소 원자의 수는 예를 들면, 1개 내지 20개, 1개 내지 16개, 1개 내지 8개 또는 4개 내지 6개일 수 있다.
이러한 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물은 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 히드록시기 및/또는 탄화수소기는, 상기 알칸, 알켄 또는 알킨에서 동일한 탄소 원자에 치환되어 있거나, 혹은 다른 탄소 원자에 치환되어 있을 수도 있다.
다른 예시에서 상기 알코올 화합물은, 폴리에스테르 골격 또는 폴리에테르 골격을 가지는 화합물일 수 있다. 이러한 경우에 상기 알코올 화합물은 올리고머성 화합물이거나, 고분자성 화합물일 수 있다.
폴리올 화합물의 경우와 유사하게, 상기 폴리에스테르 골격은 소위 폴리카프로락톤 골격이고, 상기 폴리에테르 골격은 소위 폴리알킬렌 골격일 수 있다.
상기 폴리에스테르 골격은, 일 예시에서 상기 화학식 2로 표시되는 반복 단위를 가지는 골격일 수 있다. 이 때 화학식 2의 반복 단위에 대한 구체적인 내용은 상기 폴리올 화합물의 경우와 동일하다.
따라서, 오일 변성 알코올 화합물의 경우에도 상기 화학식 2의 골격을 가지는 알코올 화합물에서 히드록시기 또는 전술한 탄화수소기는 상기 화학식 2의 골격의 말단에 존재할 수 있고, 이러한 경우에 상기 화학식 2의 골격은, 상기 화학식 3으로 표시될 수 있다. 이 때 화학식 3의 골격에 대한 구체적인 내용은 상기 폴리올 화합물의 경우와 동일하다.
알코올 화합물의 상기 화학식 2 또는 3의 골격의 수의 하한은, 상기 화합물이 분자 당 하나의 히드록시기를 포함하는 것을 전제로 1개 또는 2개 정도일 수 있고, 그 상한은, 10개, 9개, 8개, 7개, 6개, 5개, 4개, 3개 또는 2개 정도일 수 있다. 상기 골격의 수는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 폴리에스테르 골격을 가지는 알코올 화합물도 직쇄 또는 분지쇄 구조를 가질 수 있다.
상기에서 직쇄 구조는 상기 화학식 2 또는 3의 골격을 포함하는 주쇄가 존재하고, 상기 주쇄에 다른 고분자 사슬은 연결되어 있지 않은 구조이며, 분지쇄 구조는 상기 화학식 2 또는 3의 골격을 포함하는 주쇄에 측쇄로서 또한 상기 화학식 2 또는 3의 골격을 포함하는 사슬이 결합되어 있는 형태일 수 있다. 상기에서 분지쇄 구조에서 측쇄로서 연결되는 상기 화학식 2 또는 3의 골격을 포함하는 사슬의 수는 예를 들면 1개 내지 5개, 1개 내지 4개, 1개 내지 3개, 1개 내지 2개 또는 1개일 수 있다.
일 예시에서 상기 폴리에스테르 골격을 가지는 알코올 화합물도, 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물의 수소 원자의 적어도 일부가 상기 히드록시기 및/또는 상기 화학식 3의 골격으로 치환된 형태의 화합물일 수 있다. 상기 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물의 탄소 원자의 수는 예를 들면, 1개 내지 20개, 1개 내지 16개, 1개 내지 8개 또는 4개 내지 6개일 수 있다.
이러한 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물은 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 히드록시기 및/또는 화학식 3의 골격은, 상기 알칸, 알켄 또는 알킨에서 동일한 탄소 원자에 치환되어 있거나, 혹은 다른 탄소 원자에 치환되어 있을 수도 있다.
상기 알코올 화합물의 폴리에테르 골격도, 일 예시에서 상기 화학식 5로 표시되는 반복 단위를 가지는 골격일 수 있다. 이 때 화학식 5에 대한 구체적인 내용은 상기 폴리올 화합물의 경우와 동일하다
화학식 5의 골격을 가지는 알코올 화합물에서도 히드록시기 또는 전술한 탄화수소기는 상기 화학식 5의 골격의 말단에 존재할 수 있고, 이는 화학식 6으로 골격일 수 있다. 이 때 화학식 6에 대한 구체적인 내용은 상기 폴리올 화합물의 경우와 동일하다.
상기 알코올 화합물이, 분자 당 하나의 히드록시기를 가지는 것을 전제로 상기 알코올 화합물이 포함하는 상기 화학식 5 또는 6의 골격의 수의 하한은, 1개 또는 2개 정도일 수 있고, 그 상한은, 10개, 9개, 8개, 7개, 6개, 5개, 4개, 3개 또는 2개 정도일 수 있다. 상기 골격의 수는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 폴리에테르 골격을 가지는 알코올 화합물은 직쇄 또는 분지쇄 구조를 가질 수 있다.
상기에서 직쇄 구조는 상기 화학식 5 또는 6의 골격을 포함하는 주쇄가 존재하고, 상기 주쇄에 다른 고분자 사슬은 연결되어 있지 않은 구조이며, 분지쇄 구조는 상기 화학식 5 또는 6의 골격을 포함하는 주쇄에 측쇄로서 또한 상기 화학식 5 또는 6의 골격을 포함하는 사슬이 결합되어 있는 형태일 수 있다. 상기에서 분지쇄 구조에서 측쇄로서 연결되는 상기 화학식 5 또는 6의 골격을 포함하는 사슬의 수는 예를 들면 1개 내지 5개, 1개 내지 4개, 1개 내지 3개, 1개 내지 2개 또는 1개일 수 있다.
일 예시에서 상기 폴리에테르 골격을 가지는 알코올 화합물은, 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물의 수소 원자의 적어도 일부가 히드록시기 및/또는 상기 화학식 5의 골격으로 치환된 형태의 화합물일 수 있다. 상기 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물의 탄소 원자의 수는 예를 들면, 1개 내지 20개, 1개 내지 16개, 1개 내지 8개 또는 4개 내지 6개일 수 있다.
이러한 알칸, 알켄 또는 알킨과 같은 탄화수소 화합물은 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 히드록시기 및/또는 화학식 5의 골격은, 상기 알칸, 알켄 또는 알킨에서 동일한 탄소 원자에 치환되어 있거나, 혹은 다른 탄소 원자에 치환되어 있을 수도 있다.
상기 기술한 알코올 화합물이 올리고머성 또는 고분자성 화합물인 경우에 해당 화합물은, 적정 수준의 분자량을 가질 수 있다.
예를 들면, 올리고머성 또는 고분자성 상기 알코올 화합물의 중량평균분자량의 하한은, 10 g/mol, 200g/mol, 300 g/mol, 400 g/mol, 500 g/mol, 600 g/mol, 700 g/mol, 800 g/mol, 900 g/mol, 1000 g/mol, 1200 g/mol, 1400 g/mol, 1600 g/mol 또는 1800 g/mol 정도일 수 있고, 그 상한은, 5000 g/mol, 4500 g/mol, 4000 g/mol, 3500 g/mol, 3000 g/mol, 2500 g/mol, 2000 g/mol, 1500 g/mol, 1000 g/mol 또는 800 g/mol 정도일 수도 있다. 상기 중량평균분자량은 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
이상 기술한 바와 같은 오일 변성 알코올 화합물을 적용하는 것에 의해서 목적하는 물성을 보다 효과적으로 확보할 수 있다.
상기 오일 변성 알코올 화합물의 상기 오일 변성 폴리올 화합물 100 중량부 대비 함량의 하한은, 10 중량부, 20 중량부, 30 중량부, 40 중량부, 50 중량부, 60 중량부, 70 중량부, 80 중량부, 90 중량부, 100 중량부, 110 중량부, 120 중량부, 130 중량부, 140 중량부, 150 중량부, 160 중량부, 170 중량부, 180 중량부, 190 중량부, 200 중량부, 210 중량부, 220 중량부, 230 중량부, 240 중량부, 250 중량부, 260 중량부, 270 중량부, 280 중량부, 290 중량부 또는 300 중량부 정도일 수 있고, 그 상한은, 1,000 중량부, 950 중량부, 900 중량부, 850 중량부, 800 중량부, 750 중량부, 700 중량부, 650 중량부, 600 중량부, 550 중량부, 500 중량부, 450 중량부, 400 중량부, 350 중량부, 300 중량부, 250 중량부, 200 중량부, 150 중량부, 100 중량부, 90 중량부, 80 중량부, 70 중량부 또는 60 중량부 정도일 수도 있다. 상기 비율은 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 오일 변성 폴리올 화합물의 비율은 수지 조성물의 전체적인 조성이나 목적하는 물성을 고려하여 변경될 수 있다.
상기 히드록시 작용성 성분의 폴리올 성분 중에서 상기 오일 변성 폴리올 화합물과 오일 변성 알코올 화합물만을 포함하는 성분은 오일 변성 성분으로 불릴 수 있다. 이러한 경우, 이러한 오일 변성 성분 전체의 중량평균분자량의 하한은 10 g/mol, 200g/mol, 300 g/mol, 400 g/mol, 500 g/mol, 600 g/mol, 700 g/mol, 800 g/mol, 900 g/mol, 1000 g/mol, 1200 g/mol, 1400 g/mol, 1600 g/mol 또는 1800 g/mol 정도일 수 있고, 그 상한은, 5,000 g/mol, 4500 g/mol, 4000 g/mol, 3500 g/mol, 3000 g/mol, 2500 g/mol, 2000 g/mol, 1500 g/mol, 1000 g/mol 또는 800 g/mol 정도일 수도 있다. 상기 중량평균분자량은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 오일 변성 폴리올 화합물 또는 알코올 화합물은 공지의 합성 방법을 통해서 합성할 수 있다. 즉, 상기 화합물들은, 상기 오일 변성 부분에 해당하는 상기 탄화수소기를 도입할 수 있는 화합물을 공지의 폴리올 화합물과 반응시켜서 제조할 수 있다. 이 때 상기 탄화수소기를 도입할 수 있는 화합물로는, 포화 또는 불포화 지방산이 예시될 수 있고, 구체적으로는 부티르산(butyric acid), 카프로산(caproic acid), 2-에틸헥사노산(2-ethyl hexanoic acid), 카프릴산(caprylic acid), 이소노나노산(isononanoic acid), 카프르산(capric acid), 라우르산(lauric acid), 미리스트산(myristic acid), 팔미트산(palmitic acid), 스테아르산(stearic acid), 리놀레산(linoleic acid) 또는 올레산(oleic acid) 등이 예시될 수 있으나, 이에 제한되는 것은 아니다. 상기 과정에서 지방산과 폴리올 화합물의 반응 비율을 조절하는 것에 의해서 경우에 따라서는 상기 폴리올 화합물과 알코올 화합물을 포함하는 혼합물(오일 변성 성분)이 제조될 수도 있다.
또한, 상기 포화 또는 불포화 지방산과 반응하는 폴리올 화합물의 종류에도 특별한 제한은 없으며, 예를 들면, 후술하는 일반 폴리올 화합물 중 적정한 종류를 적용할 수 있으나, 이에 제한되는 것은 아니다.
수지 조성물은, 폴리올 화합물로서, 상기 오일 변성 폴리올 화합물과는 다른 폴리올 화합물을 추가로 포함할 수 있다. 이러한 경우에 상기 폴리올 화합물은 전술한 오일기, 즉 탄소 원자수가 3개 이상인 직쇄 또는 분지쇄 탄화수소기를 포함하지 않는다. 편의상 이러한 폴리올 화합물은 본 명세서에서 일반 폴리올 화합물로 부를 수 있다.
일반 폴리올 화합물이 포함하지 않는 상기 탄화수소기의 탄소 원자의 수의 하한은, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개, 13개, 14개, 15개, 16개 또는 17개 정도일 수 있고, 그 상한은, 50개, 49개, 48개, 47개, 46개, 45개, 44개, 43개, 42개, 41개, 40개, 39개, 38개, 37개, 36개, 35개, 34개, 33개, 32개, 31개, 30개, 29개, 28개, 27개, 26개, 25개, 24개, 23개, 22개, 21개, 20개, 19개, 18개, 17개, 16개, 15개, 14개, 13개, 12개, 11개 또는 10개 정도일 수 있다. 상기 탄소 원자의 수는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다. 하나의 예시에서 상기 탄화수소기는 상기 탄소 원자의 수를 가지는 알킬기, 알케닐기 또는 알키닐기일 수 있다.
상기 일반 폴리올 화합물은, 분자 당 히드록시기를 2개 이상 포함할 수 있으며, 이러한 폴리올 화합물은, 단분자성, 올리고머성 또는 고분자성 화합물일 수 있다. 일반 폴리올 화합물이 포함하는 상기 히드록시기의 수는 특별히 제한되지 않지만, 일 예시에서 일반 폴리올 화합물이 포함하는 히드록시기의 수의 하한은, 1분자 당 2개 또는 3개 정도일 수 있고, 그 하한은, 1분자당 10개, 9개, 8개, 7개, 6개, 5개, 4개, 3개 또는 2개 정도일 수도 있다. 상기 히드록시기의 수는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
일반 폴리올 화합물은 다양한 형태를 가질 수 있다.
하나의 예시에서 상기 일반 폴리올 화합물은, 폴리에스테르 폴리올일 수 있다. 폴리에스테르 폴리올로는 예를 들면, 소위 카르복실산 폴리올 또는 카프로락톤 폴리올이 사용될 수 있다.
하나의 예시에서 상기 폴리에스테르 폴리올은 하기 화학식 8로 표시되는 반복 단위를 가지는 골격일 수 있다.
[화학식 8]
Figure PCTKR2022014594-appb-img-000008
화학식 8에서 X7 및 X8는 각각 독립적으로 단일 결합 또는 산소 원자이고, L3는 알킬렌기일 수 있으며, p는 임의의 수이다.
상기 화학식 8에서 알킬렌기는, 일 예시에서 탄소수 1 내지 20, 탄소수 4 내지 20, 탄소수 4 내지 16, 탄소수 4 내지 12 또는 탄소수 4 내지 8의 알킬렌기일 수 있으며, 이는 직쇄형 또는 분지쇄형일 수 있다.
상기 폴리에스테르 폴리올이, 폴리카프로락톤 폴리올인 경우에 상기 화학식 8의 L3는 탄소수 5의 직쇄형 알킬렌기일 수 있다.
또한, 상기 화학식 8에서 p은 반복 단위의 수를 나타내는 임의의 수로서, 예를 들면, 1 내지 25의 범위 내의 수일 수 있다.
상기 화학식 8의 p의 하한은, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 또는 23 정도일 수 있고, 상한은 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5 또는 3 정도일 수도 있다. 상기 p는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 화학식 8의 골격을 가지는 폴리에스테르 폴리올은, 소위 카르복실산 폴리올 또는 카프로락톤 폴리올일 수 있다. 이러한 폴리올 화합물은 공지의 방식으로 형성할 수 있으며, 예를 들면, 상기 카르복실산 폴리올은 카르복실산과 폴리올(ex. 디올 또는 트리올 등)을 포함하는 성분을 반응시켜서 형성할 수 있고, 카프로락톤 폴리올은 카프로락톤과 폴리올(ex. 디올 또는 트리올 등)을 포함하는 성분을 반응시켜서 형성할 수 있다. 상기 카르복실산은 디카르복실산일 수 있다.
상기 화학식 8의 골격을 가지는 폴리올 화합물에서 히드록시기는, 상기 화학식 8의 골격의 말단에 존재하거나, 혹은 폴리에스테르 폴리올의 다른 부위에 존재할 수 있다.
일반 폴리올 화합물이 포함하는 상기 화학식 8의 골격의 수의 하한은, 1개 또는 2개일 수 있고, 그 상한은, 10개, 9개, 8개, 7개, 6개, 5개, 4개, 3개, 2개 또는 1개 정도일 수 있다. 상기 골격의 수는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 폴리에스테르 골격을 가지는 폴리올 화합물은 직쇄 또는 분지쇄 구조를 가질 수 있다.
상기에서 직쇄 구조는 상기 화학식 8의 골격을 포함하는 주쇄가 존재하고, 상기 주쇄에 다른 고분자 사슬은 연결되어 있지 않은 구조이며, 분지쇄 구조는 상기 화학식 8의 골격을 포함하는 주쇄에 측쇄로서 또한 상기 화학식 8의 골격을 포함하는 사슬이 결합되어 있는 형태일 수 있다. 상기에서 분지쇄 구조에서 측쇄로서 연결되는 상기 화학식 8의 골격을 포함하는 사슬의 수는 예를 들면 1개 내지 5개, 1개 내지 4개, 1개 내지 3개, 1개 내지 2개 또는 1개일 수 있다.
상기 일반 폴리올 화합물로는 다른 예시에서 알칸 디올 단위, 폴리올 단위 및 디카복실산 단위를 가지는 폴리올을 사용할 수도 있다. 이러한 폴리올은 상기 알칸 디올, 폴리올 및 디카복실산의 혼합물이거나, 혹은 그들의 반응물일 수 있다. 이 때 상기 알칸 디올로는 3-메틸-1,5-펜탄디올(3-methyl-1,5-pentanediol), 1,9-노난디올(1,9-nonanediol) 또는 1,6-헥산디올(1,6-hexanediol) 등의 탄소수 1 내지 20, 탄소수 4 내지 20, 탄소수 4 내지 16 또는 탄소수 4 내지 12의 디올 화합물이 예시될 수 있다. 또한, 상기 폴리올로는 트리메틸롤프로판과 같이 3개 내지 10개, 3개 내지 9개, 3개 내지 8개, 3개 내지 7개, 3개 내지 6개, 3개 내지 5개 또는 3개 내지 4개의 히드록시기로 치환된 탄소수 1 내지 20, 탄소수 4 내지 20, 탄소수 4 내지 16 또는 탄소수 4 내지 12의 알칸이 예시될 수 있다. 또한, 상기 디카복실산으로는 아디프산, 테레프탈산, 이소프탈산 또는 세바스산 등이 예시될 수 있다. 이러한 종류의 폴리올 화합물은 예를 들면, Kuraray사의 P-510, P-1010, P-2010, P-3010, P-4010, P-5010, P-6010, F-510, F-1010, F-2010, F-3010, P-2011, P-520, P-2020, P-1012, P-2012, P-630, P-2030, P-2050 또는 N-2010 등의 제품명으로 공지되어 있다.
상기 일반 폴리올로는, 중량평균분자량이 100 g/mol 내지 5,000 g/mol의 범위 내에 있는 폴리올을 사용할 수 있다. 이러한 폴리올의 적용을 통해 목적하는 효과를 보다 효과적으로 달성할 수 있다.
상기 일반 폴리올 화합물은 포함되는 경우에 상기 일반 폴리올 화합물의 상기 오일 변성 폴리올 화합물 100 중량부 대비 중량 비율의 하한은, 1 중량부, 3 중량부, 5 중량부, 7 중량부, 10 중량부, 15 중량부, 20 중량부, 25 중량부, 30 중량부, 35 중량부, 40 중량부, 45 중량부, 50 중량부, 55 중량부, 60 중량부, 65 중량부, 70 중량부, 75 중량부, 80 중량부, 85 중량부, 90 중량부, 95 중량부 또는 100 중량부 정도일 수 있고, 그 상한은, 200 중량부, 190 중량부, 180 중량부, 170 중량부, 160 중량부, 150 중량부, 140 중량부, 130 중량부, 120 중량부, 110 중량부, 100 중량부, 90 중량부, 80 중량부, 70 중량부, 60 중량부, 50 중량부, 40 중량부, 30 중량부, 20 중량부 또는 10 중량부 정도일 수도 있다. 상기 비율은 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
다른 예시에서 상기 일반 폴리올 화합물이 포함되는 경우에 상기 오일 변성 폴리올과 오일 변성 알코올의 합계 100 중량부 대비 상기 일반 폴리올 화합물의 함량 비율의 하한은, 1 중량부, 5 중량부, 10 중량부, 15 중량부, 20 중량부, 25 중량부, 30 중량부, 35 중량부 또는 40 중량부 정도일 수 있고, 그 상한은, 200 중량부, 190 중량부, 180 중량부, 170 중량부, 160 중량부, 150 중량부, 140 중량부, 130 중량부, 120 중량부, 110 중량부, 100 중량부, 90 중량부, 80 중량부, 70 중량부, 60 중량부, 50 중량부, 40 중량부, 30 중량부, 20 중량부 또는 10 중량부 정도일 수도 있다. 상기 비율은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 비율은 전체 수지 조성물의 조성이나 목적하는 용도를 고려하여 변경될 수도 있다.
수지 조성물은 추가 성분으로서, 상기 폴리올 화합물 및/또는 알코올 화합물과 반응하는 경화제를 포함할 수 있다.
경화제로는 다양한 종류가 적용될 수 있지만, 수지 조성물인 폴리우레탄 조성물인 경우에 상기 경화제로는 폴리이소시아네이트를 적용할 수 있다. 용어 폴리이소시아네이트는, 이소시아네이트기를 2개 이상 가지는 화합물을 의미한다. 폴리이소시아네이트가 가지는 이소시아네이트기의 수의 하한은, 2개 또는 3개 정도일 수 있고, 상한은, 10개, 9개, 8개, 7개, 6개, 5개, 4개, 3개 또는 2개 정도일 수 있다. 상기 이소시아네이트기의 수는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
경화제로 사용되는 폴리이소시아네이트의 종류는 특별히 제한되지 않으나, 목적하는 물성의 확보를 위해 방향족기를 포함하지 않는 비방향족 폴리이소시아네이트를 사용할 수 있다.
폴리이소시아네이트 화합물로는, 예를 들어, 헥사메틸렌 디이소시아네이트, 트리메틸헥사메틸렌 디이소시아네이트, 리신 디이소시아네이트, 노르보르난 디이소시아네이트 메틸, 에틸렌 디이소시아네이트, 프로필렌 디이소시아네이트 또는 테트라메틸렌 디이소시아네이트 등의 지방족 폴리이소시아네이트; 트랜스사이클로헥산-1,4-디이소시아네이트, 이소포론 디이소시아네이트, 비스(이소시아네이트메틸)사이클로헥산 디이소시아네이트 또는 디사이클로헥실메탄 디이소시아네이트 등의 지환족 폴리이소시아네이트; 또는 상기 중 어느 하나 이상의 카르보디이미드 변성 폴리이소시아네이트나 이소시아누레이트 변성 폴리이소시아네이트 등이 사용될 수 있다. 또한, 폴리이소시아네이트로는, 상기 기술한 디이소시아네이트와 폴리올(예를 들면, 트리메틸롤프로판 등)과의 부가 반응물을 사용할 수도 있다. 또한, 상기 나열된 화합물 중 2 이상의 혼합물이 사용될 수 있다.
상기 폴리이소시아네이트의 적용 비율은, 수지 조성물에 포함되어 있는 상기 히드록시 작용성 성분에 존재하는 히드록시기의 수와 경화 후 물성을 고려하여 조절될 수 있다.
예를 들면, 상기 폴리이소시아네이트는, 상기 수지 조성물에 존재하는 히드록시 작용성 성분에 존재하는 히드록시기의 수(OH)와 상기 폴리이소시아네이트에 존재하는 이소시아네이트기의 수(NCO)의 당량비(OH/NCO)가 50 내지 1,000의 범위 내가 될 수 있도록 수지 조성물에 포함될 수 있다.
상기 당량비(OH/NCO)를 계산하는 방식은 공지이다.
예를 들면, 상기 수지 조성물이 2액형이고, 히드록시 작용성 성분이 주제 파트에 포함되고, 상기 폴리이소시아네이트가 경화제 파트에 포함된다면, 당량비 OH/NCO는 하기 일반식 1에 따라 계산할 수 있다.
[일반식 1]
Figure PCTKR2022014594-appb-img-000009
일반식 1에서 D1은 상기 주제 파트의 밀도이고, D2는 상기 경화제 파트의 밀도이며, W1은 상기 주제 파트 내에 존재하는 폴리올 화합물 또는 알코올 화합물의 중량 비율이며, OH%는 상기 W1의 중량 비율을 가지는 폴리올 화합물 또는 알코올 화합물이 포함하는 히드록시기의 비율이고, W2는 상기 경화제 파트 내에 존재하는 폴리이소시아네이트의 중량 비율이고, NCO%는 상기 W2의 중량 비율을 가지는 폴리이소시아네이트가 포함하는 이소시아네이트기의 비율이며, DN은 이소시아네이트기의 달톤 질량으로서 42Da이고, DO는 히드록시기의 달톤 질량으로서 17Da이다.
상기 W1은 주제 파트에 존재하는 각 폴리올 화합물 또는 알코올 화합물의 주제 파트 내에서의 중량%(주제 파트 전체 중량 기준)이고, 해당 화합물의 OH%는 각 폴리올 화합물 또는 알코올 화합물 1몰이 포함하는 히드록시기의 %로서, 단일 폴리올 화합물 또는 알코올 화합물이 포함하는 히드록시기의 몰수와 상기 히드록시기의 몰질량의 곱을 상기 단일 폴리올 화합물 또는 알코올 화합물의 몰질량으로 나눈 후 100을 곱하여 구하여 진다.
상기에서 W2는 경화제 파트에 존재하는 각 폴리이소시아네이트의 경화제 파트 내에서의 중량%(경화제 파트 전체 중량 기준)이고, 해당 화합물의 NCO%는 각 폴리이소시아네이트 화합물 1몰이 포함하는 NCO기의 %로서, 단일 폴리이소시아네이트 화합물이 포함하는 NCO기의 몰수와 상기 NCO기의 몰질량의 곱을 상기 단일 폴리이소시아네이트 화합물의 몰질량으로 나눈 후 100을 곱하여 구하여 진다.
또한, 상기 일반식 1에서 달톤질량은, 상수이다.
상기 당량비(OH/NCO)의 하한은, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250 또는 260 정도일 수 있고, 그 상한은, 1000, 900, 800, 700, 600, 500, 400, 300, 290, 280, 270, 260, 250, 240, 230, 220, 210, 200, 190, 180, 170, 160, 150, 140, 130, 120, 110 또는 100 정도일 수도 있다. 상기 당량비는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 수지 조성물은, 필러 성분을 추가로 포함할 수 있다. 용어 필러 성분은, 필러로 이루어진 성분, 즉 필러만을 포함하는 성분을 의미한다.
하나의 예시에서 필러 성분은, 서로 평균 입경이 다른 2종 이상의 필러를 포함할 수 있다. 일 예시에서 상기 필러 성분은, 서로 평균 입경이 다른 3종 이상의 필러를 포함하거나, 서로 평균 입경이 다른 3종 내지 6종, 3종 내지 5종, 3종 내지 4종 또는 3종의 필러로 이루어질 수 있다. 즉, 일 예시에서 상기 필러 성분은, 상기 서로 평균 입경이 다른 3종 내지 6종, 3종 내지 5종, 3종 내지 4종 또는 3종의 필러만을 포함할 수도 있다.
다른 예시에서 상기 필러 성분은, 레이저 회절법(laser Diffraction)을 사용하여 측정되는 입도 분포의 체적 곡선에서 적어도 2개의 피크를 나타낼 수 있다. 일 예시에서 상기 필러 성분은, 상기 입도 분포의 체적 곡선에서 3개 이상의 피크를 나타내거나, 3개 내지 6개, 3개 내지 5개, 3개 내지 4개 또는 3개의 피크를 나타낼 수 있다. 예를 들어, 3개의 피크를 나타내는 필러 성분의 범위에는 1개, 2개 또는 4개 이상의 피크를 나타내는 필러 성분은 포함되지 않는다.
본 출원의 필러의 평균 입경은, 레이저 회절법(laser Diffraction)으로 측정한 입도 분포의 체적 곡선에서 체적 누적이 50%가 되는 입자 직경을 의미하고, 이는 메디안 직경으로 불리울 수도 있다. 즉, 본 출원에서는, 상기 레이저 회절법을 통해 체적 기준으로 입도 분포를 구하고, 전 체적을 100%로 한 누적 곡선에서 누적치가 50%가 되는 지점의 입자 지름을 상기 평균 입경으로 하며, 이러한 평균 입경은, 다른 예시에서 메디안 입경 또는 D50 입경으로 불릴 수 있다.
따라서, 상기에서 상이한 평균 입경을 가지는 2종의 필러란, 상기 입도 분포의 체적 곡선에서 누적치가 50%가 되는 지점에서의 입자 지름이 상이한 필러를 의미할 수 있다.
통상 필러 성분을 형성하기 위해서 서로 평균 입경이 다른 2종 이상의 필러를 혼합하는 경우에 상기 필러 성분에 대하여 레이저 회절법(laser Diffraction)을 사용하여 측정한 입도 분포의 체적 곡선에서는 혼합된 필러의 종류만큼의 피크가 나타난다. 따라서, 예를 들어, 서로 평균 입경이 다른 3종의 필러를 혼합하여 필러 성분을 구성한 경우에 그 필러 성분에 대하여 레이저 회절법을 사용하여 측정한 입도 분포의 체적 곡선은 3개의 피크를 나타낸다.
본 출원의 수지 조성물의 상기 필러 성분은 열전도성 필러 성분일 수 있다. 용어 열전도성 필러 성분은, 상기 수지 조성물 또는 그 경화체가 전술한 열전도도를 나타내도록 기능하는 필러 성분을 의미한다.
하나의 예시에서 상기 필러 성분은 적어도 평균 입경이 60 μm 내지 200 μm인 제 1 필러, 평균 입경이 10 μm 내지 30 μm의 범위 내인 제 2 필러 및 평균 입경이 5 μm 이하인 제 3 필러를 포함할 수 있다.
상기 제 1 필러의 평균 입경의 하한은, 62 μm, 62 μm, 64 μm, 66 μm 또는 약 68 μm 정도일 수 있고, 그 상한은, 200 μm, 195 μm, 190 μm, 185 μm, 180 μm, 175 μm, 170 μm, 165 μm, 160 μm, 155 μm, 150 μm, 145 μm, 140 μm, 135 μm, 130 μm, 125 μm, 약 120 μm, 115 μm, 110 μm, 105 μm, 100 μm, 95 μm, 90 μm, 85 μm, 80 μm 또는 약 75 μm 정도일 수 있다. 상기 제 1 필러의 평균 입경은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 제 2 필러의 평균 입경의 하한은, 10 μm, 12 μm, 13 μm, 14 μm, 15 μm, 16 μm, 17 μm, 18 μm, 19 μm 또는 20 μm 정도일 수 있고, 그 상한은, 29 μm, 28 μm, 27 μm, 26 μm, 25 μm, 24 μm, 23 μm, 22 μm, 21 μm 또는 약 20 μm 정도일 수 있다. 상기 제 2 필러의 평균 입경은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 제 3 필러의 하한은, 0.01 μm, 0.1 μm, 약 0.5 μm, 1μm, 1.5μm 또는 2μm 정도일 수 있고, 그 상한은, 5 μm, 4.5 μm, 약 4 μm, 3.5 μm, 3 μm, 2.5 μm 또는 2 μm 정도일 수도 있다. 상기 제 3 필러의 평균 입경은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 필러 성분에서 제 1 필러의 평균 입경(D1)과 제 3 필러의 평균 입경(D3)의 비율(D1/D3)은, 25 내지 300의 범위 내에 있을 수 있다.
일 예시에서 상기 제 3 필러는 필러 성분이 서로 평균 입경이 다른 2종 이상의 필러를 포함할 때에 필러 성분에 포함되는 필러 중에서 평균 입경이 가장 작은 필러일 수 있고, 상기 제 1 필러는 필러 성분이 서로 평균 입경이 다른 2종 이상의 필러를 포함할 때에 필러 성분에 포함되는 필러 중에서 평균 입경이 가장 큰 필러일 수 있다. 이러한 상태에서 상기 입경 비율이 만족될 수 있다.
상기 비율(D1/D3)의 하한은, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230 또는 235 정도일 수 있고, 그 상한은, 300, 290, 280, 270, 260, 250, 240, 220, 200, 180, 160, 140, 120, 100, 95, 90, 85, 80, 75, 70, 65 또는 60 정도일 수 있다. 상기 비율은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 필러 성분에서 상기 제 1 필러의 평균 입경(D1)과 제 2 필러의 평균 입경(D2)의 비율(D1/D2)의 하한은, 3, 3.1, 3.2, 3.3, 3.4 또는 3.5 정도이거나, 20, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5 또는 4 정도일 수도 있다. 상기 비율은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
필러로는 예를 들면, 산화알루미늄(알루미나: Al2O3), 질화알루미늄(AlN), 질화붕소(BN), 질화규소(Si3N4), 탄화규소(SiC) 산화베릴륨(BeO), 산화아연(ZnO), 산화마그네슘(MgO), 수산화알루미늄(Al(OH)3), 수산화마그네슘(Mg(OH)2), 탄산칼슘(CaCO3) 및/또는 보헤마이트(Boehmite) 등과 같은 세라믹 필러를 사용할 수 있다. 이러한 필러는 전술한 범위의 열전도도를 충족시키는 것에 유리하고, 추가로 세라믹 필러의 적용을 통해서 전술한 절연성 등도 충족시킬 수 있다.
상기 필러 성분의 상기 수지 조성물 내에서의 비율의 상한은 99 중량%, 98 중량%, 97 중량%, 96 중량%, 95 중량%, 94.5 중량%, 94 중량%, 93.5 중량%, 93 중량%, 92.5 중량%, 92 중량%, 91.5 중량%, 91 중량%, 90.5 중량%, 90.0 중량%, 89.5 중량%, 89.0 중량%, 88.5 중량% 또는 88.0 중량% 정도일 수 있고, 그 하한은, 약 70 중량%, 71 중량%, 72 중량%, 73 중량%, 74 중량%, 약 75 중량%, 76 중량%, 77 중량%, 78 중량%, 79 중량%, 80 중량%, 81 중량%, 82 중량%, 83 중량%, 84 중량%, 85 중량%, 86 중량%, 87 중량% 또는 88 중량% 정도일 수 있다. 상기 비율은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 필러 성분의 함량은, 수지 조성물이 1액형 수지 조성물인 경우에 해당 수지 조성물의 전체 중량을 기준으로 한 비율이고, 2액형 주시 조성물인 경우에 상기 2액형 수지 조성물의 주제 파트와 경화제 파트의 합계 중량을 기준으로 한 비율이거나, 혹은 상기 주제 또는 경화제 파트 단독의 전체 중량을 기준으로 한 비율일 수 있다.
수지 조성물이 2액형 수지 조성물로 조성되는 경우에 필러 성분은 최종 경화체에 적용하고자 하는 필러 성분을 실질적으로 동일한 양으로 분할하여 주제 및 경화제 파트 각각에 도입하는 것이 적절할 수 있다.
필러 성분은, 상기 열전도성 필러 외에도, 필요한 경우에 다양한 종류의 필러를 포함할 수 있는데, 예를 들면, 그래파이트(graphite) 등과 같은 탄소 필러나 퓸드 실리카 또는 클레이 등이 적용될 수도 있다.
수지 조성물은 상기 기술한 성분 외에도 필요한 성분을 추가로 포함할 수 있다.
일 예시에서 상기 수지 조성물은 가소제를 추가로 포함할 수 있다. 전술한 바와 같이 본 출원에서는 가소제를 적용하지 않고도 특정 소재에 대해서 낮은 접착력을 확보할 수 있지만, 필요한 경우에 소량의 가소제를 적용할 수도 있다.
적용될 수 있는 가소제의 종류에는 특별한 제한은 없으며, 예를 들면, 디옥틸 프탈레이트(dioctyl phthalate, DOP), 디부틸 프탈레이트(dibutyl phthalate, DBP), 부틸벤질 프탈레이트(butylbenzyl phthalate, BBP), 디이소 노닐 프탈레이트(diisononyl phthalate, DINP) 또는 폴리에틸렌테레프탈레이트 (polyethyleneterephthalate, PET) 등의 프탈레이트계 가소제나, 디옥틸 아디페이트 (dioctyl adipate, DOA) 또는 디이소노닐 아디페이트 (diisononyl adipate, DINA) 등의 아디페이트계 가소제, 지방산계 가소제, 인산계 가소제 또는 폴리에스터계 가소제 등이 적용될 수 있다.
가소제가 포함되는 경우에 그 비율은 목적에 따라서 조절될 수 있다. 예를 들면, 상기 가소제는, 포함되는 경우에 상기 오일 변성 폴리올 화합물 100 중량부 대비 상기 가소제의 중량 비율의 하한은, 0.5 중량부, 1.5 중량부, 2 중량부, 3 중량부, 4 중량부, 5 중량부, 6 중량부, 7 중량부, 8 중량부, 9 중량부, 10 중량부, 15 중량부, 20 중량부, 25 중량부, 30 중량부, 35 중량부, 40 중량부, 45 중량부, 50 중량부, 100 중량부, 150 중량부, 200 중량부, 250 중량부 또는 300 중량부 정도일 수 있고, 그 상한은, 500 중량부, 450 중량부, 400 중량부, 350 중량부, 300 중량부, 250 중량부, 200 중량부, 150 중량부, 100 중량부, 90 중량부, 80 중량부, 70 중량부, 60 중량부, 50 중량부, 40 중량부, 30 중량부, 20 중량부, 19 중량부, 18 중량부, 17 중량부, 16 중량부, 15 중량부, 14 중량부, 13 중량부, 12 중량부, 11 중량부, 10 중량부, 9 중량부, 8 중량부, 7 중량부, 6 중량부, 5 중량부, 4 중량부, 3 중량부, 2 중량부 또는 1 중량부 정도일 수도 있다. 상기 비율은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
다른 예시에서 상기 가소제는, 포함되는 경우에 상기 오일 변성 폴리올과 오일 변성 알코올의 합계(오일 변성 성분) 100 중량부 대비 상기 가소제의 비율의 하한은, 0.5 중량부, 1.5 중량부, 2 중량부, 5 중량부, 10 중량부, 15 중량부, 20 중량부, 25 중량부, 30 중량부, 50 중량부, 60 중량부, 70 중량부, 80 중량부, 90 중량부, 100 중량부, 110 중량부, 120 중량부, 130 중량부 또는 140 중량부 정도일 수 있고, 그 상한은, 400 중량부, 350 중량부, 300 중량부, 250 중량부, 200 중량부, 150 중량부, 100 중량부, 90 중량부, 80 중량부, 70 중량부, 60 중량부, 50 중량부, 40 중량부, 30 중량부, 20 중량부, 19 중량부, 18 중량부, 17 중량부, 16 중량부, 15 중량부, 14 중량부, 13 중량부, 12 중량부, 11 중량부, 10 중량부, 9 중량부, 8 중량부, 7 중량부, 6 중량부, 5 중량부, 4 중량부, 3 중량부, 2 중량부 또는 1 중량부 정도일 수도 있다. 상기 비율은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 비율은 전체 수지 조성물의 조성이나 목적하는 용도를 고려하여 변경될 수도 있다.
수지 조성물은 상기 성분들 외에도 필요에 따라서 추가 성분을 포함할 수 있다. 추가 성분의 예로는, 경화 반응을 보조 또는 촉진하는 촉매, 점도의 조절, 예를 들면 점도를 높이거나 혹은 낮추기 위한 또는 전단력에 따른 점도의 조절을 위한 점도 조절제(예를 들면, 요변성 부여제, 희석제 등), 분산제, 표면 처리제 또는 커플링제 등을 추가로 포함하고 있을 수 있다.
수지 조성물은 난연제 또는 난연 보조제 등을 추가로 포함할 수 있다. 이 경우 특별한 제한 없이 공지의 난연제가 사용될 수 있으며, 예를 들면, 고상의 필러 형태의 난연제나 액상 난연제 등이 적용될 수 있다.
난연제로는, 예를 들면, 멜라민 시아누레이트(melamine cyanurate) 등과 같은 유기계 난연제나 수산화 마그네슘 등과 같은 무기계 난연제 등이 있다. 수지층에 충전되는 필러의 양이 많은 경우 액상 타입의 난연 재료(TEP, Triethyl phosphate 또는 TCPP, tris(1,3-chloro-2-propyl)phosphate 등)를 사용할 수도 있다. 또한, 난연상승제의 작용을 할 수 있는 실란 커플링제가 추가될 수도 있다.
수지 조성물은, 전술한 바와 같이 1액형 조성물이거나, 2액형 조성물일 수 있다. 2액형 조성물인 경우에 수지 조성물의 전술한 각 성분들은, 물리적으로 분리된 주제 파트와 경화제 파트에 나뉘어져 포함될 수 있다.
본 출원은 일 예시에서 상기 수지 조성물이 2액형 수지 조성물로 조성된 조성물(2액형 조성물)에 대한 것이다.
이러한 2액형 조성물은, 적어도 주제 파트와 경화제 파트를 포함할 수 있고, 상기 주제 및 경화제 파트는 서로 물리적으로 분리되어 있을 수 있다. 이와 같이 물리적으로 분리된 주제 및 경화제 파트가 혼합되면, 경화 반응이 개시되고, 그 결과 폴리우레탄이 형성될 수 있다.
2액형 조성물에서 주제 파트는 적어도 상기 히드록시 작용성 성분(특히 오일 변성 폴리올 화합물)을 포함할 수 있으며, 경화제 파트는 적어도 상기 폴리이소시아네이트를 포함할 수 있다.
수지 조성물에 전술한 일반 폴리올 화합물이 포함되는 경우에 이 화합물은 예를 들면 상기 주제 파트에 포함될 수 있다.
또한, 필러 성분은 상기 주제 및 경화제 파트 중 어느 하나에 포함되어 있거나, 상기 주제 및 경화제 파트 모두에 포함되어 있을 수 있다. 필러 성분이 주제 및 경화제 파트에 모두 포함되는 경우에 주제 및 경화제 파트에 동량의 필러 성분이 포함될 수 있다.
기타 성분인 촉매, 가소제, 난연제 등은 필요에 따라서 상기 주제 및/또는 경화제 파트에 포함될 수 있다.
또한, 상기 2액형 조성물에서 상기 주제 파트의 부피(P)의 상기 경화제 파트의 부피(N)에 대한 부피 비율(P/N)은, 약 0.8 내지 1.2의 범위 내에 있을 수 있다.
이러한 2액형 조성물 또는 그 경화체도 전술한 알루미늄 및 폴리에스테르에 대한 접착력, 열전도도, 경도, 곡률 반경, 절연성, 난연성, 비중, 수축률, 열팽창 계수 및/또는 열중량분석(TGA)에서의 5% 중량 손실(5% weight loss) 온도 등을 나타낼 수 있다.
본 출원은 또한, 상기 수지 조성물 또는 그 경화체를 포함하는 제품에 대한 것이다. 본 출원의 수지 조성물 또는 그 경화체는 방열 소재로서 유용하게 적용될 수 있다. 따라서, 상기 제품은 발열 부품을 포함할 수 있다. 용어 발열 부품은 사용 과정에서 열을 방생시키는 부품을 의미하고, 그 종류는 특별히 제한되지 않는다. 대표적인 발열 부품으로는 배터리셀, 배터리 모듈 또는 배터리 팩 등을 포함하는 다양한 전기/전자 제품이 있다.
본 출원의 제품은, 예를 들면, 상기 발열 부품과 상기 발열 부품과 인접하여 존재하는 상기 수지 조성물(또는 상기 2액형 조성물)이나 그 경화체를 포함할 수 있다.
본 출원의 제품을 구성하는 구체적인 방법은 특별히 제한되지 않으며, 본 출원의 수지 조성물 또는 2액형 조성물 또는 그 경화체가 방열 소재로 적용된다면, 공지된 다양한 방식으로 상기 제품을 구성할 수 있다.
본 출원에서는, 높은 열전도도를 나타내면서도, 소정 피착체에 대해서 낮은 접착력을 나타내는 수지 조성물 또는 그 경화체를 제공할 수 있다. 또한, 본 출원에서는 상기 낮은 접착력을 가소제 등의 접착력 조절 성분을 사용하지 않거나, 그 사용 비율을 최소화한 상태에서 달성할 수 있다. 본 출원은 또한 상기 경화성 조성물 또는 그 경화체를 포함하는 제품을 제공할 수 있다.
도 1 및 2는 제조예에서 얻은 오일 변성 성분에 대한 분석 결과이다.
이하 실시예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
하기에서 언급하는 경화체는, 모두 2액형으로 제조된 실시예의 수지 조성물의 주제 및 경화제 파트를 각 실시예에서 기재하는 OH/NCO 당량비가 만족되도록 혼합한 후, 상온에서 24 시간 정도 유지하여 형성한 것이다.
1. 열전도도
수지 조성물 또는 그 경화체의 열전도도는 ISO 22007-2 규격에 따라 핫 디스크(Hot-Dist) 방식으로 측정하였다. 구체적으로 2액형으로 조성된 실시예 또는 비교예의 주제 파트 및 경화제 파트의 부피 비율 1:1의 혼합물을 약 7 mm 정도의 두께의 몰드에 위치시키고, Hot Disk 장비를 사용하여 through plane 방향으로 열전도도를 측정하였다. 상기 규격(ISO 22007-2)에 규정된 것과 같이 Hot Disk 장비는 니켈선이 이중 스파이럴 구조로 되어 있는 센서가 가열되면서 온도 변화(전기 저항 변화)를 측정하여 열전도도을 확인할 수 있는 장비이고, 이러한 규격에 따라서 열전도도를 측정하였다.
2. 폴리에스테르에 대한 접착력 측정
폴리에스테르에 대한 접착력은, PET(polyethylene terephthalate) 필름과 알루미늄판을 부착시켜서 제조된 시편에 대해서 평가하였다. 상기 PET 필름으로는 폭이 10 mm 정도이고, 길이가 200 mm 정도인 필름을 사용하였고, 알루미늄판으로는 폭 및 길이가 각각 100 mm인 알루미늄판을 사용하였다. 상기 알루미늄판의 표면에 전체적으로 수지 조성물을 도포하고, 상기 수지 조성물상에 상기 PET 필름을 부착한 상태로 상온(약 25℃)에서 약 24 시간 유지하여 시편을 제조하였다. 이 때 상기 PET 필름의 폭 전체와 길이 부분 중 100 mm 정도가 상기 수지 조성물을 매개로 상기 알루미늄판에 부착되도록 하였다. 상기 시편의 알루미늄판을 고정한 상태로 상기 알루미늄판으로부터 상기 PET 필름을 길이 방향으로 박리하면서 상기 접착력을 측정하였다. 상기 부착은, 수지 조성물(주제 파트 및 경화제 파트의 부피 비율 1:1의 혼합물)을 상기 알루미늄판에 경화 후 두께가 약 2 mm 정도가 되도록 도포한 후에 상기 PET 필름을 상기 수지 조성물의 층상에 밀착시키고, 상온(약 25℃)에서 약 24 시간 유지하여 상기 수지 조성물을 경화시켜서 수행하였다. 상기 박리는 약 0.5 mm/min의 정도의 박리 속도 및 180도의 박리 각도로 PET 필름이 완전히 박리될 때까지 수행하였다.
3. 알루미늄에 대한 접착력 측정
가로 및 세로의 길이가 각각 2 cm 및 7 cm인 알루미늄 기판의 중앙에 가로 2 cm 및 세로 2 cm 정도가 되도록 미경화된 수지 조성물(주제 파트 및 경화제 파트의 혼합물)을 코팅하고, 다시 상기 코팅층 위에 가로 및 세로의 길이가 각각 2 cm 및 7 cm인 알루미늄 기판을 부착하고, 그 상태를 유지하여 상기 수지 조성물을 경화시켰다. 상기에서 2개의 알루미늄 기판은 서로 90도의 각도를 이루도록 부착하였다. 이후, 상부의 알루미늄 기판을 고정한 상태로 하부의 알루미늄 기판을 0.5 mm/min의 속도로 눌러서 상기 하부 알루미늄 기판이 분리되는 동안의 힘을 측정하고, 그 과정에서 측정되는 최대치의 힘을 시편의 면적으로 나누어서 알루미늄에 대한 접착력을 구하였다.
상기 측정 결과에 따라서 하기 기준으로 알루미늄에 대한 접착력을 평가하였다.
<평가 기준>
상: 알루미늄에 대한 접착력이 0.1 N/mm2 이하
중: 알루미늄에 대한 접착력이 0.1 N/mm2 초과 및 0.4 N/mm2 이하
하: 알루미늄에 대한 접착력이 0.4 N/mm2 초과
4. 경도의 측정
수지 조성물의 경화체의 경도는, ASTM D 2240, JIS K 6253 규격에 따라 측정하였다. ASKER, durometer hardness 기기를 사용하여 수행하였으며, 평평한 상태의 샘플(수지층)의 표면에 1 Kg 이상의 하중(약 1.5 Kg)을 가하여 초기 경도를 측정하고, 15초 후에 안정화된 측정값으로 확인하여 경도를 평가하였다.
5. 곡률 반경의 측정
경화체의 곡률 반경은, 가로, 세로 및 두께가 각각 1cm, 10cm 및 2mm인 경화체를 사용하여 평가하였다. 상기 곡률 반경은, 상기 경화체를 다양한 반경을 가진 원통에 부착시키고 세로 방향을 따라서 굽혔을 때, 상기 경화체에 크랙(crack)이 발생되지 않는 원통의 최소 반경이다.
6. 중량평균분자량의 측정
중량평균분자량(Mw)은 GPC(Gel permeation chromatography)를 사용하여 측정하였다. 구체적으로, 중량평균분자량(Mw)은 5 mL 바이알(vial)에 분석 대상 시료를 넣고, 약 1 mg/mL의 농도가 되도록 THF(tetrahydrofuran) 용제로 희석한 후, Calibration용 표준 시료와 분석 시료를 syringe filter(pore size: 0.45 μm)를 통해 여과시키고 측정할 수 있다. 분석 프로그램으로는 Agilent technologies社의 ChemStation을 사용하였고, 시료의 elution time을 calibration curve와 비교하여 중량평균분자량(Mw)을 구할 수 있다.
<GPC 측정 조건>
기기: Agilent technologies社의 1200 series
컬럼: Agilent technologies社의 TL Mix. A & B 사용
용제: THF(tetrahydrofuran)
컬럼온도: 35℃
샘플 농도: 1 mg/mL, 200 ㎕ 주입
표준 시료: 폴리스티렌(MP: 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485) 사용
제조예 1.
제조예 1A.
하기 화학식 A로 표시되는 오일 변성 폴리올 화합물과 하기 화학식 B로 표시되는 오일 변성 폴리올 화합물의 혼합물은 하기와 같은 방식으로 제조하였다.
[화학식 A]
Figure PCTKR2022014594-appb-img-000010
[화학식 B]
Figure PCTKR2022014594-appb-img-000011
트리메틸롤프로판과 불포화 지방산인 리놀레산(Linoleic acid)을 플라스크에서 약 1:3.48의 중량비율(트리메틸롤프로판:리놀레산)로 혼합하였다. 상기 혼합물에 촉매(Tin(II) 2-ethylhexanoate(Sigma-Aldrich社))를 전체 100 중량부를 대비 약 0.5 중량부로 첨가하고, 불활성 기체 퍼지(purge) 조건에서 150℃로 30분간 교반하여 유지시켰다. 이어서, 공비 용액인 크실렌(xylene)을 소량 투입하고 190℃로 승온하여 15시간 이상 반응시키고, 40 Torr 이하로 2 시간 이상 감압하여 크실렌 및 미반응물을 제거하였다. 반응물을 냉각 후 필터로 여과하여 목적물을 얻었다.
얻어진 목적물에 대한 GPC 분석 결과로부터 상기 목적물 내에는 상기 화학식 A 및 B의 오일 변성 폴리올이 약 1:2(A:B)의 중량 비율로 존재하는 것을 확인할 수 있었다.
GPC 분석을 통해서 확인한 상기 목적물의 중량평균분자량은 약 1307 g/mol 수준이었다.
제조예 1B.
트리메틸롤프로판과 불포화 지방산인 리놀레산(Linoleic acid)을 혼합 할 때에 중량비율(트리메틸롤프로판:리놀레산)을 약 1:3.34로 한 것을 제외하고는 제조예 1B와 동일하게 목적물을 합성하였다.
얻어진 목적물에 대한 GPC 분석 결과로부터 상기 목적물 내에는 상기 화학식 A 및 B의 오일 변성 폴리올이 약 1:1.5(A:B)의 중량 비율로 존재하는 것을 확인할 수 있었다.
*GPC 분석을 통해서 확인한 상기 목적물의 중량평균분자량은 약 1268 g/mol 수준이었다.
제조예 1C.
트리메틸롤프로판과 불포화 지방산인 리놀레산(Linoleic acid)을 혼합 할 때에 중량비율(트리메틸롤프로판:리놀레산)을 약 1:3.14로 한 것을 제외하고는 제조예 1B와 동일하게 목적물을 합성하였다.
얻어진 목적물에 대한 GPC 분석 결과로부터 상기 목적물 내에는 상기 화학식 A 및 B의 오일 변성 폴리올이 약 1:1(A:B)의 중량 비율로 존재하는 것을 확인할 수 있었다.
GPC 분석을 통해서 확인한 상기 목적물의 중량평균분자량은 약 1210 g/mol 수준이었다.
제조예 1D.
트리메틸롤프로판과 불포화 지방산인 리놀레산(Linoleic acid)을 혼합 할 때에 중량비율(트리메틸롤프로판:리놀레산)을 약 1:2.79로 한 것을 제외하고는 제조예 1B와 동일하게 목적물을 합성하였다.
얻어진 목적물에 대한 GPC 분석 결과로부터 상기 목적물 내에는 상기 화학식 A 및 B의 오일 변성 폴리올이 약 2:1(A:B)의 중량 비율로 존재하는 것을 확인할 수 있었다.
GPC 분석을 통해서 확인한 상기 목적물의 중량평균분자량은 약 1113 g/mol 수준이었다.
도 1은 제조예 상기 제조예 1D에 대한 GPC 분석 결과이다.
제조예 2.
하기 화학식 C로 표시되는 오일 변성 폴리올과 화학식 D로 표시되는 오일 변성 알코올의 혼합물은 하기와 같은 방식으로 제조하였다.
[화학식 C]
Figure PCTKR2022014594-appb-img-000012
화학식 C에서 n은 각각 약 4이고, R1은 하기 화학식 C-1의 치환기이며, R2는 하기 화학식 C-2의 치환기이다.
[화학식 D]
Figure PCTKR2022014594-appb-img-000013
화학식 D에서 n은 각각 약 4이고, R1은 하기 화학식 C-1의 치환기이며, R2는 하기 화학식 C-2의 치환기이다.
[화학식 C-1]
Figure PCTKR2022014594-appb-img-000014
화학식 C-1에서 n은 약 4이다.
[화학식 C-2]
Figure PCTKR2022014594-appb-img-000015
화학식 C-2에서 * 표시는 해당 부위가 화학식 C 또는 D에 연결되는 것을 의미한다.
하기 화학식 E의 화합물(PPG, 제조사: Perstorp, 제품명: Polyol3380) 및 불포화 지방산인 리놀레산을 1:0.83의 중량비(화학식 E의 화합물:리놀레산)로 플라스크에서 혼합하였다.
[화학식 E]
Figure PCTKR2022014594-appb-img-000016
화학식 E에서 n은 각각 약 4이고, R1은 하기 화학식 E-1의 치환기이다.
[화학식 E-1]
Figure PCTKR2022014594-appb-img-000017
화학식 E-1에서 n은 약 4이다.
상기 혼합물에 촉매(Tin(II) 2-ethylhexanoate(Sigma-Aldrich社))를 전체 혼합물 100 중량부를 기준으로 약 0.5 중량부로 첨가한 후에 불활성 기체 퍼지(purge) 조건에서 150℃로 30분간 교반하여 유지시켰다. 이어서 공비 용액인 크실렌(xylene)을 소량 투입하고, 190℃로 승온하여 6시간 이상 반응시키고, 40 Torr 이하로 1 시간 이상 감압하여 크실렌 및 미반응물을 제거하였다. 이어서 반응물을 냉각 후 필터로 여과하여 목적물을 얻었다.
얻어진 목적물에 대한 GPC 분석 결과 목적물 내에는 화학식 C의 폴리올 화합물과 화학식 D의 알코올 화합물이 약 25:75의 중량 비율(C:D)로 존재하였다.
또한, GPC 분석 결과 상기 목적물 내의 화학식 C의 폴리올 화합물의 중량평균분자량은 약 600 g/mol 수준이었고, 화학식 D의 화합물의 중량평균분자량은 약 2000 g/mol의 수준이고, 혼합물(목적물)의 중량평균분자량은, 약 1263 g/mol이였다.
도 2는 상기 목적물에 대한 GPC 분석 결과이다.
실시예 1.
주제 파트의 제조
제조예 1B에서 얻은 목적물, 일반 폴리올(Perstorp, Capa3091) 및 필러 성분을 10.5:1.5:88의 중량 비율(제조예 1:일반 폴리올:필러 성분)로 혼합하여 주제 파트를 제조하였다. 상기에서 필러 성분으로는, 평균 입경이 약 70 μm인 제 1 알루미나 필러, 평균 입경이 약 20 μm인 제 2 알루미나 필러 및 평균 입경이 약 1 μm인 제 3 알루미나 필러를 혼합하여 제조하였다. 상기 혼합 시의 중량 비율은 6:2:2(제1알루미나필러:제2알루미나필러:제3알루미나필러) 정도로 하였다.
경화제 파트의 제조
경화제로서 폴리이소시아네이트(Vencorex社제, Tolonate HDT-LV2)를 사용하였다. 상기 폴리이소시아네이트 및 필러 성분을 10:90의 중량 비율(폴리이소시아네이트:필러 성분:)로 혼합하여 경화제 파트를 제조하였다. 상기에서 필러 성분으로는, 주제 파트에서와 동일한 필러 성분을 사용하였다.
수지 조성물의 제조
상기 주제 파트와 경화제 파트를 각각 준비하여 수지 조성물(경화성 조성물)을 제조하고, 상기 주제 및 경화제 파트를 혼합 후에 상온에서 유지하여 경화체를 형성하였다. 상기에서 혼합은, 상기 주제 파트 내에 존재하는 히드록시기(OH)와 상기 경화제 파트에 존재하는 이소시아네이트기(NCO)의 당량비(OH/NCO)가 약 180이 되도록 하였다.
실시예 2.
실시예 1과 동일한 방식으로 주제 파트와 경화제 파트를 각각 준비하여 수지 조성물(경화성 조성물)을 제조하고, 상기 주제 및 경화제 파트를 혼합 후에 상온에서 유지하여 경화체를 형성하되, 상기 혼합을 상기 주제 파트 내에 존재하는 히드록시기(OH)와 상기 경화제 파트에 존재하는 이소시아네이트기(NCO)의 당량비(OH/NCO)가 약 260이 되도록 하였다.
실시예 3.
주제 파트의 제조
제조예 1B에서 얻은 목적물, 제 1 일반 폴리올(Perstorp, Capa2043), 제 2 일반 폴리올(Perstorp, Capa3091) 및 필러 성분을 10.5:0.5:0.5:88.5의 중량 비율(제조예 1B:제 1 일반 폴리올:제 2 일반 폴리올:필러 성분)로 혼합하여 주제 파트를 제조하였다. 상기 필러 성분은 실시예 1과 동일한 것을 사용하였다.
경화제 파트의 제조
경화제로서 폴리이소시아네이트(Vencorex社제, Tolonate HDT-LV2)를 사용하였다. 상기 폴리이소시아네이트 및 필러 성분을 10:90의 중량 비율(폴리이소시아네이트:필러 성분:)로 혼합하여 경화제 파트를 제조하였다. 상기 필러 성분으로는, 실시예 1의 것과 동일한 것을 사용하였다.
수지 조성물의 제조
상기 주제 파트와 경화제 파트를 각각 준비하여 수지 조성물(경화성 조성물)을 제조하고, 상기 주제 및 경화제 파트를 혼합 후에 상온에서 유지하여 경화체를 형성하였다. 상기에서 혼합은, 상기 주제 파트 내에 존재하는 히드록시기(OH)와 상기 경화제 파트에 존재하는 이소시아네이트기(NCO)의 당량비(OH/NCO)가 약 180이 되도록 하였다.
실시예 4.
주제 파트의 제조
제조예 1C의 목적물, 일반 폴리올(Perstorp, Capa3091) 및 필러 성분을 11.2:0.6:88.2의 중량 비율(제조예 1C:일반 폴리올:필러 성분)로 혼합하여 주제 파트를 제조하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
경화제 파트의 제조
경화제로서 폴리이소시아네이트(Vencorex社제, Tolonate HDT-LV2)를 사용하였다. 상기 폴리이소시아네이트 및 필러 성분을 10:90의 중량 비율(폴리이소시아네이트:필러 성분:)로 혼합하여 경화제 파트를 제조하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
수지 조성물의 제조
상기 주제 파트와 경화제 파트를 각각 준비하여 수지 조성물(경화성 조성물)을 제조하고, 상기 주제 및 경화제 파트를 혼합 후에 상온에서 유지하여 경화체를 형성하였다. 상기에서 혼합은, 상기 주제 파트 내에 존재하는 히드록시기(OH)와 상기 경화제 파트에 존재하는 이소시아네이트기(NCO)의 당량비(OH/NCO)가 약 260이 되도록 하였다.
실시예 5.
주제 파트의 제조
제조예 1B의 목적물, 제 1 일반 폴리올(Perstorp, Capa2043), 제 2 일반 폴리올(Perstorp, Capa3091) 및 필러 성분을 8.1:2.9:0.6:88.4의 중량 비율(제조예 1B:제 1 일반 폴리올:제 2 일반 폴리올:필러 성분)로 혼합하여 주제 파트를 제조하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
경화제 파트의 제조
경화제로서 폴리이소시아네이트(Vencorex社제, Tolonate HDT-LV2)를 사용하였다. 상기 폴리이소시아네이트 및 필러 성분을 10:90의 중량 비율(폴리이소시아네이트:필러 성분:)로 혼합하여 경화제 파트를 제조하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
수지 조성물의 제조
상기 주제 파트와 경화제 파트를 각각 준비하여 수지 조성물(경화성 조성물)을 제조하고, 상기 주제 및 경화제 파트를 혼합 후에 상온에서 유지하여 경화체를 형성하였다. 상기에서 혼합은, 상기 주제 파트 내에 존재하는 히드록시기(OH)와 상기 경화제 파트에 존재하는 이소시아네이트기(NCO)의 당량비(OH/NCO)가 약 220이 되도록 하였다.
실시예 6.
주제 파트의 제조
제조예 2의 목적물, 가소제(diisononyl adipate, DINA) 및 필러 성분을 6:6:88의 중량 비율(제조예 2:가소제:필러 성분)로 혼합하여 주제 파트를 제조하였다. 상기에서 필러 성분으로는, 실시예 1과 동일한 것을 사용하였다.
경화제 파트의 제조
경화제로서 폴리이소시아네이트(Vencorex社제, Tolonate HDT-LV2)를 사용하였다. 상기 폴리이소시아네이트 및 필러 성분을 10:90의 중량 비율(폴리이소시아네이트:필러 성분:)로 혼합하여 경화제 파트를 제조하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
수지 조성물의 제조
상기 주제 파트와 경화제 파트를 각각 준비하여 수지 조성물(경화성 조성물)을 제조하고, 상기 주제 및 경화제 파트를 혼합 후에 상온에서 유지하여 경화체를 형성하였다. 상기에서 혼합은, 상기 주제 파트 내에 존재하는 히드록시기(OH)와 상기 경화제 파트에 존재하는 이소시아네이트기(NCO)의 당량비(OH/NCO)가 약 100이 되도록 하였다.
실시예 7.
주제 파트의 제조 시에 제조예 1C의 목적물 대신 제조예 1B의 목적물을 사용하고, 주제 및 경화제 파트를 혼합을 상기 주제 파트 내에 존재하는 히드록시기(OH)와 상기 경화제 파트에 존재하는 이소시아네이트기(NCO)의 당량비(OH/NCO)가 약 260이 되도록 한 것을 제외하면, 실시예 2와 동일하게 수지 조성물을 제조하였다.
상기 각 실시예에 대해서 정리한 물성 평가 결과는 하기 표 1과 같다.
폴리에스테르에 대한 접착력(gf/cm) Al 접착력 Shore OO 경도 열전도도(W/mK)
실시예1 0 92 2.571
실시예2 8 90 2.482
실시예3 9 94 2.662
실시예4 0 90 2.866
실시예5 0 90 2.781
실시예6 0 0 2.712
실시예7 0 0 2.492

Claims (18)

  1. 폴리올 성분 및 필러를 포함하고,
    폴리에스테르 표면에 대한 접착력이 100 gf/cm 이하인 경화체를 형성하는 경화성 조성물.
  2. 제 1 항에 있어서, 알루미늄에 대한 접착력이 0.1 N/mm2 이하인 경화체를 형성하는 경화성 조성물.
  3. 제 1 항 또는 제 2 항에 있어서, 쇼어 OO 경도가 95 이하인 경화체를 형성하는 경화성 조성물.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 폴리올 성분은 탄소 원자수가 3개 이상인 직쇄 또는 분지쇄 탄화수소기를 말단에 적어도 하나 포함하는 폴리올 화합물을 포함하는 경화성 조성물.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 폴리올 성분은, 하기 화학식 1의 치환기를 말단에 적어도 하나 포함하는 폴리올 화합물을 포함하는 경화성 조성물:
    [화학식 1]
    Figure PCTKR2022014594-appb-img-000018
    화학식 1에서 R은 탄소 원자수가 3개 이상인 직쇄 또는 분지쇄인 탄화수소기이다.
  6. 제 4 항 또는 제 5 항에 있어서, 폴리올 화합물은, 폴리에스테르 골격 또는 폴리에테르 골격을 가지는 경화성 조성물.
  7. 제 4 항 또는 제 5 항에 있어서, 폴리올 화합물은, 폴리카프로락톤 골격 또는 폴리알킬렌 골격을 가지는 경화성 조성물.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서, 폴리올 성분은 중량평균분자량이 100 g/mol 내지 5000 g/mol의 범위 내에 있는 폴리올 화합물을 포함하는 경화성 조성물.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서, 탄소 원자수가 3개 이상인 직쇄 또는 분지쇄 탄화수소기 및 하나의 히드록시를 포함하는 화합물을 추가로 포함하는 경화성 조성물.
  10. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서, 탄소 원자수가 3개 이상인 직쇄 또는 분지쇄 탄화수소기를 가지지 않는 폴리올을 추가로 포함하는 경화성 조성물.
  11. 제 10 항에 있어서, 탄소 원자수가 3개 이상인 직쇄 또는 분지쇄 탄화수소기를 가지지 않는 폴리올은, 중량평균분자량이 100 g/mol 내지 5,000 g/mol의 범위 내에 있는 경화성 조성물.
  12. 제 10 항에 있어서, 탄소 원자수가 3개 이상인 직쇄 또는 분지쇄 탄화수소기를 가지지 않는 폴리올은 2관능 이상의 다관능성 폴리올인 경화성 조성물.
  13. 제 10 항에 있어서, 탄소 원자수가 3개 이상인 직쇄 또는 분지쇄 탄화수소기를 가지지 않는 폴리올은, 폴리카프로락톤 폴리올 또는 알칸디올 단위, 폴리올 단위 및 디카복실산 단위를 가지는 폴리올인 경화성 조성물.
  14. 제 1 항 내지 제 13 항 중 어느 한 항에 있어서, 폴리이소시아네이트를 추가로 포함하는 경화성 조성물.
  15. 제 1 항 내지 제 14 항 중 어느 한 항에 있어서, 가소제를 추가로 포함하는 경화성 조성물.
  16. 제 1 항 내지 제 15 항 중 어느 한 항에 있어서, 필러는, 수산화 알루미늄, 수산화 마그네슘, 수산화 칼슘, 하이드로마그네사이트, 마그네시아, 알루미나, 질화 알루미늄, 질화 붕소, 질화 규소, 탄화 규소, 산화 아연 또는 산화 베릴륨인 경화성 조성물.
  17. 폴리올 성분 및 필러를 포함하는 주제 파트; 및
    경화제 성분 및 필러를 포함하는 경화제 파트를 포함하고,
    폴리에스테르 표면에 대한 접착력이 100 gf/cm 이하인 경화체를 형성하는 2액형 조성물.
  18. 발열 부품 및 상기 발열 부품과 인접하여 존재하는, 제 1 항 내지 제 16 항 중 어느 한 항의 경화성 조성물 또는 제 17 항의 2액형 조성물의 경화체를 포함하는 제품.
PCT/KR2022/014594 2021-09-28 2022-09-28 경화성 조성물 WO2023055090A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023545359A JP2024505046A (ja) 2021-09-28 2022-09-28 硬化性組成物
US18/276,358 US20240132656A1 (en) 2021-09-28 2022-09-28 Curable Composition
CN202280013088.3A CN116806231A (zh) 2021-09-28 2022-09-28 可固化组合物
EP22876862.8A EP4286440A4 (en) 2021-09-28 2022-09-28 HARDENABLE COMPOSITION

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0128387 2021-09-28
KR20210128387 2021-09-28
KR10-2022-0123122 2022-09-28
KR1020220123122A KR20230045582A (ko) 2021-09-28 2022-09-28 경화성 조성물

Publications (1)

Publication Number Publication Date
WO2023055090A1 true WO2023055090A1 (ko) 2023-04-06

Family

ID=85783180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014594 WO2023055090A1 (ko) 2021-09-28 2022-09-28 경화성 조성물

Country Status (3)

Country Link
US (1) US20240132656A1 (ko)
JP (1) JP2024505046A (ko)
WO (1) WO2023055090A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167384A (ja) * 2007-12-18 2009-07-30 Dai Ichi Kogyo Seiyaku Co Ltd 2液反応型ポリウレタン樹脂組成物及び該樹脂組成物を用いた電気電子部品
KR20100019442A (ko) * 2007-05-16 2010-02-18 바이엘 머티리얼사이언스 아게 산성화된 폴리에스테르 폴리우레탄 분산액
KR20160105354A (ko) 2015-02-27 2016-09-06 주식회사 엘지화학 배터리 모듈
JP2017101195A (ja) * 2015-12-04 2017-06-08 サンユレック株式会社 ポリウレタン樹脂組成物
KR20200114001A (ko) * 2019-03-27 2020-10-07 주식회사 엘지화학 수지 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100019442A (ko) * 2007-05-16 2010-02-18 바이엘 머티리얼사이언스 아게 산성화된 폴리에스테르 폴리우레탄 분산액
JP2009167384A (ja) * 2007-12-18 2009-07-30 Dai Ichi Kogyo Seiyaku Co Ltd 2液反応型ポリウレタン樹脂組成物及び該樹脂組成物を用いた電気電子部品
KR20160105354A (ko) 2015-02-27 2016-09-06 주식회사 엘지화학 배터리 모듈
JP2017101195A (ja) * 2015-12-04 2017-06-08 サンユレック株式会社 ポリウレタン樹脂組成物
KR20200114001A (ko) * 2019-03-27 2020-10-07 주식회사 엘지화학 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZORAN S. PETROVIC, IVANA CVETKOVIC, DOOPYO HONG, XIANMEI WAN, WEI ZHANG, TIM ABRAHAM, JEFF MALSAM: "Polyester Polyols and Polyurethanes from Ricinoleic Acid", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 108, 15 April 2008 (2008-04-15), US , pages 1184 - 1190, XP002623190, ISSN: 0021-8995, DOI: 10.1002/APP.27783 *

Also Published As

Publication number Publication date
US20240132656A1 (en) 2024-04-25
JP2024505046A (ja) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2016032299A1 (ko) 단량체 염을 이용한 폴리이미드 제조방법
WO2015194901A1 (en) Inorganic filler, epoxy resin composition including the same and light emitting element including insulating layer using the composition
WO2021049863A1 (ko) 경화성 조성물
WO2022265240A1 (ko) 트리사이클로데칸 디메탄올 조성물 및 이의 제조방법
WO2017086567A1 (ko) 플렉서블 터치스크린 패널 모듈 및 이를 포함하는 플렉서블 디스플레이 장치
WO2021118250A1 (ko) 점착제층
WO2021034099A1 (ko) 수지 조성물
WO2023132737A1 (ko) 경화성 조성물
WO2023055090A1 (ko) 경화성 조성물
WO2023055087A1 (ko) 경화성 조성물
WO2023055092A1 (ko) 경화성 조성물
WO2023055095A1 (ko) 경화성 조성물
WO2021002660A1 (ko) 에어로겔 함유 분무용 조성물과 그 제조방법
WO2021054771A1 (ko) 말단이 불포화기로 캡핑된 인 함유 수지, 이의 제조방법 및 상기 말단이 불포화기로 캡핑된 인 함유 수지를 포함하는 수지 조성물
WO2023055084A1 (ko) 경화성 조성물
WO2023055086A1 (ko) 경화성 조성물
WO2023055082A1 (ko) 경화성 조성물
WO2024058586A1 (ko) 경화성 조성물
WO2024058583A1 (ko) 경화성 조성물
WO2024058649A1 (ko) 경화성 조성물
WO2024058581A1 (ko) 경화성 조성물
WO2021075899A1 (ko) 경화성 조성물
WO2020116951A1 (ko) 점착제 조성물, 표면 보호 필름 및 유기 발광 전자 장치 제조 방법
WO2021066604A1 (ko) 표면 보호 필름, 표면 보호 필름의 제조 방법 및 유기 발광 전자 장치의 제조 방법
WO2023054961A1 (ko) 경화성 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545359

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280013088.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18276358

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022876862

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022876862

Country of ref document: EP

Effective date: 20230829

NENP Non-entry into the national phase

Ref country code: DE