WO2023055050A1 - 고순도 n-아실 유도체의 제조방법 - Google Patents

고순도 n-아실 유도체의 제조방법 Download PDF

Info

Publication number
WO2023055050A1
WO2023055050A1 PCT/KR2022/014515 KR2022014515W WO2023055050A1 WO 2023055050 A1 WO2023055050 A1 WO 2023055050A1 KR 2022014515 W KR2022014515 W KR 2022014515W WO 2023055050 A1 WO2023055050 A1 WO 2023055050A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
formula
group
metal hydroxide
solvent
Prior art date
Application number
PCT/KR2022/014515
Other languages
English (en)
French (fr)
Inventor
임홍산
이영찬
조재하
전기쁨
국진철
Original Assignee
주식회사 팜한농
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팜한농 filed Critical 주식회사 팜한농
Priority to CN202280063521.4A priority Critical patent/CN118043307A/zh
Publication of WO2023055050A1 publication Critical patent/WO2023055050A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/22Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C235/16Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring

Definitions

  • the present invention relates to a method for preparing a high-purity N-acyl derivative.
  • N-acyl derivatives of methyl N-(2,6-dimethylphenyl)-D-alaninate are commercially available as fungicides among crop protection agents. important as
  • N-acyl derivatives are synthesized via an alkyl D-alaninate such as methyl N-(2,6-dimethylphenyl)-D-alaninate.
  • this synthesis method inevitably generates impurities that cause genotoxicity in the final N-acyl derivative.
  • impurities are difficult to remove by general purification methods such as crystallization or recrystallization because of the physical properties of the final product having a liquid state.
  • the inventors of the present invention have studied a method for easily removing the subcomponent, and as a result, after the reaction, the subcomponent can be removed by decomposing the subcomponent using a base and washing it with water. It was discovered that a high-purity manufacturing method applicable to mass production could be developed without the addition of, and the present invention was completed.
  • the present invention provides a method for removing subcomponents in Metalaxyl-M, which may cause genotoxicity, and a method for preparing N-acyl derivatives using the same.
  • An exemplary embodiment of the present specification provides a method for removing a compound represented by Chemical Formula 1 including the steps of stirring a metal hydroxide compound into a composition containing Chemical Formula 1 and a water-soluble solvent.
  • R2 and R3 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; or a methyl group;
  • R4 and R5 are the same as or different from each other, and are each independently a methyl group.
  • Another exemplary embodiment of the present specification is a) stirring by adding a metal hydroxide compound to a composition including Formula 1, Formula 2, and a water-soluble solvent; b) adding an organic solvent and a strong acid to the stirred composition to adjust the pH, stirring to separate the layers, and then removing the water layer; c) adding water to the composition from which the water layer was removed, stirring, separating the layers, and then removing the water layer; and d) distilling the composition from which the water layer is removed under reduced pressure to remove the organic solvent.
  • R2 and R3 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; or a methyl group;
  • R4 and R5 are the same as or different from each other, and are each independently a methyl group.
  • the production method of one embodiment of the present specification can prepare an N-acyl derivative having a low content of impurities that cause genotoxicity.
  • the manufacturing method of one embodiment of the present specification can produce a high-purity N-acyl derivative.
  • An exemplary embodiment of the present specification provides a method for removing a compound represented by Chemical Formula 1 including the steps of stirring a metal hydroxide compound into a composition containing Chemical Formula 1 and a water-soluble solvent.
  • R2 and R3 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; or a methyl group;
  • R4 and R5 are the same as or different from each other, and are each independently a methyl group.
  • Formula 1 is a subcomponent (impurity) that causes genotoxicity generated during the manufacturing process of N-acyl derivatives, and has genotoxicity and clastogenicity, causing mutations in DNA constituting genes. As this is the expression of a genetic disorder, it can appear as a disaster in later generations, so it must be removed through a purification process or managed at a very low level. Accordingly, in the present invention, the content of the compound of Formula 1 produced when an N-acyl derivative (eg, Metalaxyl-M) is synthesized is minimized by removing the subcomponent represented by Formula 1.
  • an N-acyl derivative eg, Metalaxyl-M
  • the water-soluble solvent may include at least 20% by weight or more of water.
  • the water-soluble solvent containing 20% by weight or more of water is used, the effect of dissolving the metal hydroxide and reacting with the subcomponent to remove it can be exhibited.
  • the water content of the aqueous solution is 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 100% by weight. % can be used.
  • the solvent may further include any one or more solvents selected from the group consisting of tetrahydrofuran (THF), methanol, and acetone.
  • THF tetrahydrofuran
  • methanol methanol
  • acetone acetone
  • the metal hydroxide compound may be M(OH)n (n is an integer of 1 to 2).
  • n is an integer of 1 to 2.
  • the M may be any one group 1 or group 2 metal selected from the group consisting of Li, K, Ca, and Ba.
  • the weight ratio of the water-soluble solvent and the metal hydroxide compound may be 30:0.4 to 30:2.0.
  • the weight ratio of the water-soluble solvent and the metal hydroxide compound satisfies the above range, good effects may be exhibited.
  • the step may be performed at a temperature of pH 10 to pH 12 and 0 to 10 °C.
  • a temperature of pH 10 to pH 12 and 0 to 10 °C When the pH value and the reaction temperature range are satisfied, there are advantages in removing subcomponents and good R/S-ratio.
  • An exemplary embodiment of the present specification includes a) stirring by adding a metal hydroxide compound to a composition including Formula 1, Formula 2, and a water-soluble solvent; b) adding an organic solvent and a strong acid to the stirred composition to adjust the pH, stirring to separate the layers, and then removing the water layer; c) adding water to the composition from which the water layer was removed, stirring, separating the layers, and then removing the water layer; and d) distilling the composition from which the water layer is removed under reduced pressure to remove the organic solvent.
  • R2 and R3 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; or a methyl group;
  • R4 and R5 are the same as or different from each other, and are each independently a methyl group.
  • an organic solvent and a strong acid are added to the stirred composition to adjust the pH, followed by stirring to separate the layers, and then removing the water layer.
  • the organic solvent is not particularly limited as long as it can be used for layer separation, but is preferably toluene, THF, benzene, normal heptane, octane, hexamethylene, or isoprene. etc. can be used.
  • the strong acid is not particularly limited as long as it reacts with a metal hydroxide compound to adjust the pH, but preferably hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, hydroiodic acid, perchloric acid, and the like can be used.
  • impurities present in the water layer may be removed by removing the water layer after layer separation.
  • step c) of the method for producing an N-acyl derivative according to an embodiment of the present specification water is added to the composition from which the water layer is removed, stirred, separated, and then the water layer is removed.
  • impurities present in the water layer may be additionally removed by re-injecting water and performing layer separation again.
  • step d) of the method for preparing an N-acyl derivative according to an embodiment of the present specification the organic solvent is removed by distilling the composition from which the water layer is removed under reduced pressure. As the organic solvent is removed in this way, an N-acyl derivative can finally be obtained.
  • the N-acyl derivative prepared by the method for producing an N-acyl derivative according to an embodiment of the present specification may include a small amount of Formula 1 with maximum removal.
  • the total amount of Formula 2) may be 0.0018 (GC area)% or less, preferably 0.015 (GC area)% or less, more preferably 0.010 (GC area)% or less, and most preferably 0.006 (GC area)% or less, so the content of impurities that cause genotoxicity can be minimized.
  • R-form: S-form of Formula 2 may be 96:4 to 99.9:0.1, preferably Preferably, it may be 97:3 to 99:1.
  • the present invention provides a pharmaceutical or agricultural product containing the compounds prepared by the above-described manufacturing method. At this time, not only the state containing the N-acyl derivative in the composition as it is, but also pharmaceuticals or agricultural products containing derivatives modified for each use, that is, modified through an essential chemical reaction, are included.
  • the agricultural products may be various agricultural chemicals such as herbicides, crop protection agents, and fungicides.
  • Methyl L-lactate (104.11 g, 1.0 mol) was put into a reactor containing 433.5 g of toluene at room temperature, triethylamine (131.5 g, 1.3 mol) was added, and the internal temperature was cooled to -10 to -5 ° C. did While maintaining the internal temperature at 0 ° C to 10 ° C, methanesulfonyl chloride (118.0 g, 1.03 mol) was slowly added, and after the addition was completed, the mixture was stirred for 3 hours while maintaining the internal temperature at 10 ° C to 15 ° C.
  • 2,6-dimethylaniline (66.5 g, 0.549 mol) was added to the prepared methyl (s) -2-((methylsulfonyl)oxy)propanoate (20.00 g, 0.11 mol), and the internal temperature was 120 ° C. The temperature was raised to 135 ° C. and stirred. After confirming that the unreacted methyl (s)-2-((methylsulfonyl)oxy)propanoate remaining in the reaction mixture was less than 0.1 area% (GC analysis result), the internal temperature was cooled to 0 ° C and stirred for 1 hour then filtered. The solid was washed with 20 g of toluene.
  • H 2 O (65.6 mL) was added, After checking pH 7 to pH 8 by adding 1N NaOH dropwise, the layers were separated and the aqueous layer was discarded. H 2 O (20 mL) was added to the separated organic layer, and the layers were separated after stirring, and the aqueous layer was discarded.
  • Toluene is removed from the organic layer by distillation under reduced pressure at 70°C.
  • Toluene is removed from the organic layer by distillation under reduced pressure at 70°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 화학식 1과 수용성 용매를 포함하는 조성물에 수산화 금속화합물을 투입하는 단계를 포함하는 화학식 1의 화합물의 제거방법 및 상기 제거방법을 이용한 N-아실 유도체의 제조방법에 관한 것이다.

Description

고순도 N-아실 유도체의 제조방법
본 출원은 2021년 9월 29일자 한국 특허출원 제10-2021-0129221호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 고순도 N-아실 유도체의 제조방법에 관한 것이다.
메틸 N-(2,6-디메틸페닐)-D-알라니네이트 (Methyl N-(2,6-dimethylphenyl)-D-alaninate)의 N-아실(N-acyl) 유도체는 작물보호제중 살균제로써 상업적으로 중요하다.
N-아실 유도체의 제조 방법은 메틸 N-(2,6-디메틸페닐)-D-알라니네이트와 같은 알킬 D-알라니네이트를 거쳐서 합성하는 것이 일반적으로 알려져있다.
다만, 이러한 합성법으로는 최종 N-아실 유도체에서 유전독성을 유발하는 불순물이 생성될 수 밖에 없다. 그러나, 이 불순물은 액체 성상을 지닌 최종물의 물성 때문에 결정화 또는 재결정과 같은 일반적인 정제방법으로는 제거가 어렵다.
그러므로, 이러한 유전독성을 유발하는 불순물의 함량을 줄일 수 있는 구체적인 방법에 대한 연구가 필요한 실정이다.
[선행기술문헌]
[특허문헌]
대한민국 등록특허 제10-1502592호
최근 유전독성 문제로 Metalaxyl-M 내의 부성분 1종[1-methoxy-1-oxopropan-2-yl N-(2,6-dimethylphenyl)-N-(2-methoxyacetyl)alaninate (CGA 226048)]의 규격을 강화하고 있으나, 이러한 부성분은 원료 정제, 중간체의 증류, 결정화, 재결정 등의 일반적인 방법으로는 제거가 어렵다.
이에 본 발명의 발명자들은 상기 부성분을 쉽게 제거할 수 있는 방법을 연구한 결과, 반응 후에 해당 부성분을 염기를 사용해서 분해하여 물로 씻어내는 방법으로 제거할 수 있으며, 이를 이용하면 원료 정제, 증류공정 등의 추가 없이 대량생산에 적용이 가능한 고순도 제조 방법을 개발할 수 있다는 것을 발견하여, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명은 유전독성 문제를 일으킬 수 있는, Metalaxyl-M 내의 부성분을 제거하는 방법 및 이를 이용한 N-아실 유도체의 제조방법을 제공하는 것이다.
본 명세서의 일 실시상태는 하기 화학식 1과 수용성 용매를 포함하는 조성물에 수산화 금속화합물을 투입하여 교반하는 단계;를 포함하는 하기 화학식 1의 화합물의 제거방법을 제공한다.
[화학식 1]
Figure PCTKR2022014515-appb-img-000001
상기 화학식 1에서,
R2 및 R3은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 메틸기이고,
R4 및 R5는 서로 같거나 상이하고, 각각 독립적으로 메틸기이다.
본 명세서의 다른 일 실시상태는 a) 하기 화학식 1, 하기 화학식 2 및 수용성 용매를 포함하는 조성물에 수산화 금속화합물을 투입하여 교반하는 단계; b) 상기 교반된 조성물에 유기용매 및 강산을 투입하여 pH를 조절한 후 교반하여 층분리한 후 물층을 제거하는 단계; c) 상기 물층이 제거된 조성물에 다시 물을 투입하여 교반한 후 층분리한 후 물층을 제거하는 단계; 및 d) 상기 물층이 제거된 조성물을 감압증류하여 유기용매를 제거하는 단계;를 포함하는 N-아실 유도체의 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2022014515-appb-img-000002
[화학식 2]
Figure PCTKR2022014515-appb-img-000003
상기 화학식 1 내지 2에서,
R2 및 R3은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 메틸기이고,
R4 및 R5는 서로 같거나 상이하고, 각각 독립적으로 메틸기이다.
본 명세서의 일 실시상태의 제조방법은 유전독성을 유발하는 불순물의 함유량이 낮은 N-아실 유도체를 제조할 수 있다.
본 명세서의 일 실시상태의 제조방법은 고순도의 N-아실 유도체를 제조할 수 있다.
이하에서 본 명세서에 대하여 상세히 설명한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서의 일 실시상태는 하기 화학식 1과 수용성 용매를 포함하는 조성물에 수산화 금속화합물을 투입하여 교반하는 단계;를 포함하는 하기 화학식 1의 화합물의 제거방법을 제공한다.
[화학식 1]
Figure PCTKR2022014515-appb-img-000004
상기 화학식 1에서,
R2 및 R3은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 메틸기이고,
R4 및 R5는 서로 같거나 상이하고, 각각 독립적으로 메틸기이다.
상기 화학식 1은, N-아실 유도체의 제조과정에서 생성되는 유전독성을 유발하는 부성분(불순물)으로서, 유전독성(genotoxicity) 및 염색체이상유발성(clastogenicity)를 지녀 유전자를 이루는 DNA의 변이에 원인이 되며, 이는 유전적 장애의 발현으로써 후세대에 재해로 나타날 수 있으므로 정제과정을 거쳐 제거하거나 매우 낮은 수치로 관리되어야 한다. 이에, 본 발명에서는 상기 화학식 1로 표시되는 부성분을 제거하여, N-아실 유도체(예를 들어, Metalaxyl-M)을 합성했을 때 생성되는 상기 화학식 1의 화합물의 함량을 최소화 하는 것이다.
이를 위하여, 본 발명의 일 실시상태에 있어서, 상기 수용성 용매는 적어도 20 중량% 이상의 물을 포함할 수 있다. 본 발명은 물을 20 중량% 이상으로 포함하는 수용성 용매를 사용함에 따라서, 금속 수산화염을 녹여서 부성분과 반응해서 제거하는 효과를 나타낼 수 있다. 상기 수용성 용액 중 물의 함량은 20 중량% 이상, 30 중량% 이상, 40 중량% 이상, 50 중량% 이상, 60 중량% 이상, 70 중량% 이상, 80 중량% 이상, 90 중량% 이상, 또는 100중량%가 되도록 사용할 수 있다.
또한, 본 발명의 일 실시상태에 있어서, 상기 용매는 테트라하이드로퓨란(THF), 메탄올 및 아세톤으로 이루어지는 군에서 선택되는 어느 하나 이상의 용매를 더 포함할 수 있다.
또한, 본 발명의 일 실시상태에 있어서, 상기 수산화 금속화합물은 M(OH)n (n은 1 내지 2의 정수)를 사용할 수 있다. 상기 수산화 금속화합물을 사용함에 따라서 부성분 제거 및 R/S-ratio 양호한 효과를 나타낼 수 있다. 이때, 상기 M은 Li, K, Ca 및 Ba로 이루어지는 군에서 선택되는 어느 하나의 1족 또는 2족의 금속일 수 있다.
또한, 본 발명의 일 실시상태에 있어서, 상기 수용성 용매와 수산화 금속화합물의 중량비는 30:0.4 내지 30:2.0일 수 있다. 상기 수용성 용매와 수산화 금속화합물의 중량비가 상기 범위를 만족하는 경우 양호한 효과를 나타낼 수 있다.
또한, 본 발명의 일 실시상태에 있어서, 상기 단계는 pH 10 내지 pH 12 및 0 내지 10℃의 온도에서 반응을 수행할 수 있다. 상기 pH 값과 반응온도 범위를 만족하는 경우, 부성분 제거 및 R/S-ratio 양호한 장점이 있다.
본 명세서의 일 실시상태는 a) 하기 화학식 1, 하기 화학식 2 및 수용성 용매를 포함하는 조성물에 수산화 금속화합물을 투입하여 교반하는 단계; b) 상기 교반된 조성물에 유기용매 및 강산을 투입하여 pH를 조절한 후 교반하여 층분리한 후 물층을 제거하는 단계; c) 상기 물층이 제거된 조성물에 다시 물을 투입하여 교반한 후 층분리한 후 물층을 제거하는 단계; 및 d) 상기 물층이 제거된 조성물을 감압증류하여 유기용매를 제거하는 단계;를 포함하는 N-아실 유도체의 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2022014515-appb-img-000005
[화학식 2]
Figure PCTKR2022014515-appb-img-000006
상기 화학식 1 내지 2에서,
R2 및 R3은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 메틸기이고,
R4 및 R5는 서로 같거나 상이하고, 각각 독립적으로 메틸기이다.
본 명세서의 일 실시예에 따른 N-아실 유도체의 제조방법의 a) 단계에 있어서, 상기 수용성 용매, 상기 수산화 금속 화합물에 대한 내용은 앞서 살펴본 화학식 1의 화합물의 제거방법과 동일하다.
본 명세서의 일 실시예에 따른 N-아실 유도체의 제조방법의 b) 단계에서는, 상기 교반된 조성물에 유기용매 및 강산을 투입하여 pH를 조절한 후 교반하여 층분리한 후 물층을 제거한다. 상기 유기용매로는 층분리에 사용할 수 있는 유기용매라면 특별한 제한은 없으나, 바람직하게는 톨루엔, THF, 벤젠, 노멀 헵탄(normal heptane), 옥탄(octane), 헥사메틸렌(hexamethylene), 이소프렌(isoprene) 등을 사용할 수 있다. 상기 강산으로는 수산화 금속화합물과 반응하여 pH를 조절할 수 있는 것이라면 특별한 제한은 없으나, 바람직하게는 염산, 황산, 질산, 브로민화 수소산, 아이오딘화 수소산, 과염소산 등을 사용할 수 있다. 상기 a) 단계에서는 이렇게 층분리를 한 후 물층을 제거하여, 물층에 존재하는 불순물을 제거할 수 있다.
본 명세서의 일 실시예에 따른 N-아실 유도체의 제조방법의 c) 단계에서는, 상기 물층이 제거된 조성물에 다시 물을 투입하여 교반한 후 층분리한 후 물층을 제거한다. 상기 c) 단계에서는 물을 다시 투입한 후 층분리를 다시 진행하여, 물층에 존재하는 불순물을 추가로 제거할 수 있다.
본 명세서의 일 실시예에 따른 N-아실 유도체의 제조방법의 d) 단계에서는, 상기 물층이 제거된 조성물을 감압증류하여 유기용매를 제거한다. 이렇게 유기용매를 제거함에 따라서, 최종적으로 N-아실 유도체를 수득할 수 있다.
본 명세서의 일 실시예에 따른 N-아실 유도체의 제조방법에 의하여 제조된 N-아실 유도체는 상기 화학식 1이 최대한 제거되어 미량 포함될 수 있는데, 이러한 화학식 1의 함량은 조성물 전체(즉, 화학식 1과 화학식 2의 총량)를 기준으로 0.0018 (GC area)% 이하일 수 있으며, 바람직하게는 0.015 (GC area)% 이하일 수 있으며, 더욱 바람직하게는 0.010 (GC area)% 이하일 수 있으며, 가장 바람직하게는 0.006 (GC area)% 이하 일 수 있어, 유전독성을 유발하는 불순물의 함유량을 최소화할 수 있다.
또한, 본 명세서의 일 실시예에 따른 N-아실 유도체의 제조방법에 의하여 제조된 N-아실 유도체는 상기 화학식 2의 R-form: S-form 가 96:4 내지 99.9:0.1일 수 있으며, 바람직하게는 97:3 내지 99:1일 수 있다.
본 발명에서는 상술한 제조방법에 의하여 제조된 화합물들을 포함하는 의약품 또는 농업용품을 제공한다. 이때, 조성물 내 N-아실 유도체를 그대로 포함하는 상태뿐 아니라, 각각의 용도에 맞게 변경된, 즉 필수적인 화학반응을 통해 변경된 유도체를 포함하는 의약품 또는 농업용품도 포함된다.
본 명세서에 있어서, 상기 농업용품은 제초제, 작물보호제, 살균제 등 다양한 농업용 화학물품일 수 있다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것일 뿐, 본 명세서를 한정하기 위한 것은 아니다.
실시예
[메타락실-M(Metalaxyl-M)의 합성예]
메틸 L-락테이트(104.11g, 1.0 mol)를 상온에서 톨루엔 433.5g이 들어있는 반응기에 투입 후 트리에틸아민(131.5 g, 1.3 mol)을 첨가하고, 내부 온도를 -10 내지 -5℃로 냉각하였다. 내부온도를 0℃ 내지 10℃로 유지하면서 메탄술포닐 클로라이드(118.0 g, 1.03 mol)를 천천히 첨가하고, 첨가가 완료된 후 내부 온도를 10℃ 내지 15℃로 유지하면서 3시간 동안 교반하였다. 반응 혼합물 내에 잔류한 미반응 메틸-L-락테이트가 0.5 면적%(GC분석 결과)이하임을 확인한 후 반응 혼합물 내부 온도를 -10℃ 내지 -5℃로 냉각하여 석출된 고체를 여과하고 톨루엔 149.9 g으로 고체를 세척한다. 유기층을 10℃ 내지 15℃로 유지하면서 2N 염산(HCl) 수용액 93.7 g을 첨가하여 교반한 뒤, 층분리하여 얻은 유기층에 물 104.1 g을 첨가하고 교반하였다. 그 후, 유기층을 분리하고 감압농축하여 메틸 (s)-2-((메틸설포닐)옥시)프로파노에이트를 순도 98.4 GC면적%, 수율 91.0%(165.8 g, 0.91mol)로 얻었다.
제조된 메틸 (s)-2-((메틸설포닐)옥시)프로파노에이트 (20.00 g, 0.11 mol)에 2,6-디메틸아닐린(66.5 g, 0.549 mol)를 첨가하고, 내부 온도를 120℃ 내지 135 ℃로 승온하여 교반했다. 반응 혼합물 내에 잔류한 미반응 메틸 (s)-2-((메틸설포닐)옥시)프로파노에이트가 0.1면적%(GC 분석 결과) 이하임을 확인한 후 내부온도를 0℃로 냉각하여 1시간 동안 교반 후 여과했다. 톨루엔 20 g으로 고체를 세척하였다. 이 여액을 1N HCl 수용액(20 mL)로 2회 수세하여 얻어진 유기층을 증류수(20 mL)로 2회 수세한 다음에 감압농축하여 메틸 N-(2,6-디메틸페닐)-D-알라니네이트를 순도 99.4 GC면적%, 수율 74%(16.4 g, 0.081 mol)로 얻었다.
여기에 NaHCO3(7.3 g, 0.087 mol)과 톨루엔(42.7 g)을 첨가 후 -5℃내지 0℃로 냉각한 다음에 메톡시아세틸 클로라이드(9.4 g, 0.087 mol)를 적가했다. 적가 완료 후 내부온도 10℃내지 15℃를 유지하도록 2시간 교반했다. 반응 혼합물 내에 잔류한 미반응 메틸 N-(2,6-디메틸페닐)-D-알라니네이트가 0.06면적%(GC 분석 결과) 이하임을 확인한 후, H2O(65.6 mL)를 첨가한 뒤에, 1N NaOH를 적가하여 pH 7 내지 pH 8을 확인 후 층분리하여, 수층을 폐기했다. 분리된 유기층에 H2O(20 mL)를 첨가하고, 교반 후 층분리하여, 수층을 폐기했다. 분리된 유기층을 여과하여 이물질을 제거한 후에 감압 농축하여 메틸 N-(2,6-디메틸페닐)-N-(메톡시아세틸)-D-알라니네이트를 순도 99.4 GC면적%, 수율 93%(20.6 g, 0.074 mol)로 얻었다. 이때, 수득된 메틸 N-(2,6-디메틸페닐)-N-(메톡시아세틸)-D-알라니네이트의 전체 GC 면적을 기준으로, 부성분(CGA226048)은 0.12 면적%였다.
[실시예 1]
메타락실-M 25 g(자체 제조, 순도 98%up(GC), 0.089 mol)과 물 40 g을 플라스크에 주입하고 내부 온도를 5 내지 7℃로 냉각한다. 온도를 유지한 상태에서 LiOH 0.5 g을 투입한다. 같은 온도에서 2시간 교반하였다.
상기 교반된 반응 혼합물(reaction mixture) 2방울을 아세토니트릴 1.5 ml에 녹여 분석을 진행하였다. 후술하는 GCㅡmethod에 따른 GC chromatography로 부성분(CGA226048) 제거하고, 후술하는 HPLC method에 따른 HPLC chromatography로 R/S-form ratio를 확인한 후에 반응기에 톨루엔 20 g을 넣고 10℃ 이하에서 염산을 이용해 pH 6.5로 조절한다. 30분 교반하고 층분리 후 물층은 폐기한다. 유기층에 물 20 g을 투입해 30분 교반하고 층분리 후 물층은 폐기한다.
유기층은 70℃에서 감압 증류를 통해 톨루엔을 제거한다. 부성분(CGA226048) 0.006%(GC area)이하이며 R-form: S-form = 97: 3 비율의 메타락실-M 24.3g(purity 99.8%up)을 수득한다.
[실시예 2]
메타락실-M 25 g(자체 제조, 순도 98%up(GC), 0.089 mol)과 물 40 g을 플라스크에 주입하고 내부 온도를 5 내지 7℃로 냉각한다. 온도를 유지한 상태에서 Ca(OH)2 0.5 g을 투입한다. 같은 온도에서 2시간 교반하였다.
상기 반응 혼합물 2방울을 아세토니트릴 1.5 ml에 녹여 분석을 진행한다. 부성분(CGA226048) 제거 및 R/S-form ratio를 확인한 후에 반응기에 톨루엔 20 g을 넣고 10℃ 이하에서 염산을 이용해 pH 6.5로 조절한다. 30분 교반하고 층분리 후 물층은 폐기한다. 유기층에 물 20g을 투입해 30분 교반하고 층분리 후 물층은 폐기한다.
유기층은 70℃에서 감압 증류를 통해 톨루엔을 제거한다. 부성분(CGA226048) 0.006%(GC area) 이하이며 R-form: S-form = 97: 3 비율의 메타락실-M 24.3g(purity 99.8%up)을 수득한다.
[실시예 3]
메타락실-M 15 g(자체 제조, 순도 98%up(GC), 0.054 mol)과 톨루엔/물을 각각 20 g을 플라스크에 주입하고 내부 온도를 5 내지 7℃로 냉각한다. 온도를 유지한 상태에서 KOH 0.03 g을 투입한다. 같은 온도에서 2시간 교반하였다.
상기 반응 혼합물 2방울을 아세토니트릴 1.5 ml에 녹여 분석을 진행한다. 부성분(CGA226048) 0.012%(GC area)이며 R-form: S-form = 96.4: 3.6 비율이었다.
[실시예 4]
메타락실-M 15 g(자체 제조, 순도 98%up(GC), 0.054 mol)과 THF/물을 각각 20 g을 플라스크에 주입하고 내부 온도를 5 내지 7℃로 냉각한다. 온도를 유지한 상태에서 KOH 0.03 g을 투입한다. 같은 온도에서 2시간 교반하였다.
상기 반응 혼합물 2방울을 아세토니트릴 1.5 ml에 녹여 분석을 진행한다. 부성분(CGA226048) 0.016%(GC area)이며 R-form: S-form = 96.4: 3.6 비율이었다.
[비교예 1]
메타락실-M 15 g(자체 제조, 순도 98%up(GC), 0.054 mol)과 메탄올/물 각각 20 g을 플라스크에 투입하고 내부 온도를 5 내지 7℃로 냉각한다. 상온에서 NaOH 0.03 g을 투입한다. 같은 온도에서 2시간 교반하였다.
상기 반응 혼합물 2방울을 아세토니트릴 1.5 ml에 녹여 분석을 진행한다. 부성분(CGA226048)은 제거되었으나(trace), 신규 부성분이 생성되어 규격을 만족하지 못해 이후 공정을 진행하지 않았다.
[비교예 2]
메타락실-M 15 g(자체 제조, 순도 98%up(GC), 0.054 mol)과 메탄올 40 g을 플라스크에 주입하고 내부 온도를 5 내지 7℃로 냉각한다. 온도를 유지한 상태에서 NaOMe 0.03 g을 투입한다. 같은 온도에서 2시간 교반하였다.
상기 반응 혼합물 2방울을 아세토니트릴 1.5 ml에 녹여 분석을 진행한다. 부성분(CGA226048)이 제거되었으나(trace) R-form: S-form = 57: 43 비율로 변화되어 규격을 만족하지 못해 이후 공정을 진행하지 않았다.
[비교예 3]
메타락실-M 15 g(자체 제조, 순도 98%up(GC), 0.054 mol)과 메탄올 40 g을 플라스크에 주입하고 내부 온도를 5 내지 7℃로 냉각한다. 온도를 유지한 상태에서 K2CO3 6.0 g을 투입한다. 같은 온도에서 1시간 교반하였다.
상기 반응 혼합물 2방울을 아세토니트릴 1.5 ml에 녹여 분석을 진행한다. 부성분(CGA226048)은 제거되었으나(trace) R-form: S-form = 52: 48 비율로 변화되어 규격을 만족하지 못해 이후 공정은 진행하지 않았다.
[비교예 4]
메타락실-M 15 g(자체 제조, 순도 98%up(GC), 0.054 mol)과 메탄올/톨루엔을 각각 20 g을 플라스크에 주입하고 내부 온도를 5 내지 7℃로 냉각한다. 온도를 유지한 상태에서 K2CO3 6.0 g을 투입한다. 같은 온도에서 1시간 교반하였다.
상기 반응 혼합물 2방울을 아세토니트릴 1.5 ml에 녹여 분석을 진행한다. 부성분(CGA226048)은 제거되지 않음을 확인하고 이후 공정을 진행하지 않았다.
[비교예 5]
메타락실-M 15 g(자체 제조, 순도 98%up(GC), 0.054 mol)과 메탄올 40 g을 플라스크에 주입하고 내부 온도를 5 내지 7℃로 냉각한다. 온도를 유지한 상태에서 TEA 6.0 g을 투입한다. 같은 온도에서 1시간 교반하였다.
상기 반응 혼합물 2방울을 아세토니트릴 1.5 ml에 녹여 분석을 진행한다. 부성분(CGA226048)은 제거되지 않음을 확인하고 이후 공정을 진행하지 않았다.
[비교예 6]
메타락실-M 15 g(자체 제조, 순도 98%up(GC), 0.054 mol)과 아세톤/물/톨루엔 각 10 g을 플라스크에 주입하고 내부 온도를 5 내지 7℃로 냉각한다. 온도를 유지한 상태에서 Ba(OH)2 6.0 g을 투입한다. 같은 온도에서 1시간 교반하였다.
상기 반응 혼합물 2방울을 아세토니트릴 1.5 ml에 녹여 분석을 진행한다. 부성분(CGA226048)은 제거되지 않음을 확인하고 이후 공정은 진행하지 않았다.
측정방법
1. GC Method (In process control)
Instrument: Agilent 7890A system, 7693 Autosampler, G4513 Injector
Column: HP-5, 30 m * 0.320 mm, 0.25 μm (Agilent, USA)
Oven temperature
Rate ℃/min Value ℃ Hold Time min Run Time min
Initial 55 5 5
Ramp 1 15 150 0 11.3
Ramp 2 5 180 0 17.3
Ramp 3 1 200 0 37.3
Ramp 4 50 320 15 54.7
Injector temperature: 180℃
Detector temperature: 340℃
Injector temperature: 180℃
Detector temperature: 340℃
Gas Flow rate: Column(N2): 1 mL/min
Split ratio: 10: 1
Injection volume: 1.0 uL
2. HPLC Method(R/S ratio analysis)
Instrument: Agilent 1260 HPLC System
Column: CHIRALCEL OD-H, 25 ㎝ * 4.6 ㎜, Partical Size = 5 ㎛,
DAICEL Corporation, Japan)
Pump flow: 1.0 mL/min
Mobil Phase: n-Hexane: Isopropyl alcohol = 50: 50 (Isocratic)
Run Time: 30 min
Column Temperature: 40℃
UV Detector: 230 nm (B.W.=4, Ref=off)
실험예 1
실시예 1 내지 4 및 비교예 1 내지 6의 합성의 각 단계에서 시료를 채취했고, 상기 측정방법에 기재된 바와 같이, GC/FID(Gas Chromatography with Flame Ionization Detector)분석으로 부성분(CGA226048)의 제거를 측정하였으며, HPLC 분석을 통해 R/S-form ratio를 확인하였다. 그 결과를 하기 표 1에 정리했다. 이때, 부성분 및 R/S -form ratio는 전체 GC/HPLC area를 기준으로 area%를 의미한다.
  Base Solvent CGA226048
(GC area%)
R/S ratio 비고
실시예 1 LiOH water 0.006 97.0/3.0  
실시예 2 Ca(OH)2 water 0.006 97.0/3.0  
실시예 3 KOH toluene/water 0.012 96.4/3.6  
실시예 4 KOH THF/water 0.016 96.4/3.6  
비교예 1 NaOH MeOH Trace - 6분대 불순물 생성됨
비교예 2 NaOMe MeOH Trace 57.0/43.0  
비교예 3 K2CO3 MeOH Trace 52.0/48.0  
비교예 4 K2CO3 MeOH/Toluene 제거안됨 96.4/3.5  
비교예 5 TEA MeOH 제거안됨 -  
비교예 6 Ba(OH)2 Acetone/water/toluene 제거안됨 5.1/94.9  
상기 표 2를 통해, 용매에 물을 포함하여 사용하고, OH를 포함하는 금속염을 사용하여 제조했을 때 부성분(CGA226048)의 제거가 잘 되었으며, 특히 실시예 1 내지 2의 경우 부성분(CGA226048)의 제거가 가장 잘되고 R/S-form ratio도 규격을 만족하는 메타락실-M을 얻을 수 있다는 것을 알 수 있었다.

Claims (13)

  1. 하기 화학식 1과 수용성 용매를 포함하는 조성물에 수산화 금속화합물을 투입하여 교반하는 단계;를 포함하는 하기 화학식 1의 화합물의 제거방법:
    [화학식 1]
    Figure PCTKR2022014515-appb-img-000007
    상기 화학식 1에서,
    R2 및 R3은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 메틸기이고,
    R4 및 R5는 서로 같거나 상이하고, 각각 독립적으로 메틸기이다.
  2. 제1항에 있어서, 상기 수용성 용매는 적어도 20 중량% 이상의 물을 포함하는 것인, 화학식 1의 화합물의 제거방법.
  3. 제1항에 있어서, 상기 용매는 테트라하이드로퓨란(THF), 메탄올 및 아세톤으로 이루어지는 군에서 선택되는 어느 하나 이상의 용매를 더 포함하는 것인, 화학식 1의 화합물의 제거방법.
  4. 제1항에 있어서, 상기 수산화 금속화합물은 M(OH)n (n은 1 내지 2의 정수)이고,
    상기 M은 Li, K, Ca 및 Ba로 이루어지는 군에서 선택되는 어느 하나의 1족 또는 2족의 금속인, 화학식 1의 화합물의 제거방법.
  5. 제1항에 있어서, 상기 수용성 용매와 수산화 금속화합물의 중량비는 30:0.4 내지 30:2.0인, 화학식 1의 화합물의 제거방법.
  6. 제1항에 있어서, 상기 단계는 pH 10 내지 pH 12 및 0 내지 10℃의 온도에서 반응을 수행하는, 화학식 1의 화합물의 제거방법.
  7. a) 하기 화학식 1, 하기 화학식 2 및 수용성 용매를 포함하는 조성물에 수산화 금속화합물을 투입하여 교반하는 단계;
    b) 상기 교반된 조성물에 유기용매 및 강산을 투입하여 pH를 조절한 후 교반하여 층분리한 후 물층을 제거하는 단계;
    c) 상기 물층이 제거된 조성물에 다시 물을 투입하여 교반한 후 층분리한 후 물층을 제거하는 단계; 및
    d) 상기 물층이 제거된 조성물을 감압증류하여 유기용매를 제거하는 단계;
    를 포함하는 N-아실 유도체의 제조방법:
    [화학식 1]
    Figure PCTKR2022014515-appb-img-000008
    [화학식 2]
    Figure PCTKR2022014515-appb-img-000009
    상기 화학식 1 내지 2에서,
    R2 및 R3은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 메틸기이고,
    R4 및 R5는 서로 같거나 상이하고, 각각 독립적으로 메틸기이다.
  8. 제7항에 있어서, 상기 수용성 용매는 적어도 20 중량% 이상의 물을 포함하는 것인, N-아실 유도체의 제조방법.
  9. 제7항에 있어서, 상기 용매는 테트라하이드로퓨란(THF), 메탄올 및 아세톤으로 이루어지는 군에서 선택되는 어느 하나 이상의 용매를 더 포함하는 것인, N-아실 유도체의 제조방법.
  10. 제7항에 있어서, 상기 수산화 금속화합물은 M(OH)n (n은 1 내지 2의 정수)이고,
    상기 M은 Li, K, Ca 및 Ba로 이루어지는 군에서 선택되는 어느 하나의 1족 또는 2족의 금속인, N-아실 유도체의 제조방법.
  11. 제7항에 있어서, 상기 수용성 용매와 수산화 금속화합물의 중량비는 30:0.4 내지 30:2.0인, N-아실 유도체의 제조방법.
  12. 제7항에 있어서, 상기 화학식 1의 함량이 조성물 전체를 기준으로 0.0018 (GC area)% 이하인, N-아실 유도체의 제조방법.
  13. 제7항에 있어서, 상기 화학식 2의 R-form: S-form 가 96:4 내지 99.9:0.1인, N-아실 유도체의 제조방법.
PCT/KR2022/014515 2021-09-29 2022-09-28 고순도 n-아실 유도체의 제조방법 WO2023055050A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280063521.4A CN118043307A (zh) 2021-09-29 2022-09-28 用于制备高纯度n-酰基衍生物的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0129221 2021-09-29
KR1020210129221A KR20230046122A (ko) 2021-09-29 2021-09-29 고순도 n-아실 유도체의 제조방법

Publications (1)

Publication Number Publication Date
WO2023055050A1 true WO2023055050A1 (ko) 2023-04-06

Family

ID=85783172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014515 WO2023055050A1 (ko) 2021-09-29 2022-09-28 고순도 n-아실 유도체의 제조방법

Country Status (3)

Country Link
KR (1) KR20230046122A (ko)
CN (1) CN118043307A (ko)
WO (1) WO2023055050A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2455574A1 (fr) * 1979-05-03 1980-11-28 Ciba Geigy Ag Derives de n-(alcoxy-, alcoxycarbonyl- ou alcoylthiocarbonylalcoyl)-n-carbonyloxy-acetyl- ou propionyl-aniline utiles en tant que phytofongicides, et leur procede de preparation
CN1843121A (zh) * 2006-04-05 2006-10-11 湖南化工研究院 含乙烯基肟醚基的氨基甲酸酯类杀菌化合物
CN109061154A (zh) * 2018-09-21 2018-12-21 中国烟草总公司郑州烟草研究院 一种检测甲霜灵的荧光微球免疫层析试纸条及其制备方法和应用
CN112690275A (zh) * 2020-12-30 2021-04-23 江苏耘农化工有限公司 一种精甲霜灵与噁霉灵复合水剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502592B1 (ko) 2013-04-12 2015-03-16 주식회사 삼삼 실리카 및 마그네시아 추출을 위한 슬래그의 처리방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2455574A1 (fr) * 1979-05-03 1980-11-28 Ciba Geigy Ag Derives de n-(alcoxy-, alcoxycarbonyl- ou alcoylthiocarbonylalcoyl)-n-carbonyloxy-acetyl- ou propionyl-aniline utiles en tant que phytofongicides, et leur procede de preparation
CN1843121A (zh) * 2006-04-05 2006-10-11 湖南化工研究院 含乙烯基肟醚基的氨基甲酸酯类杀菌化合物
CN109061154A (zh) * 2018-09-21 2018-12-21 中国烟草总公司郑州烟草研究院 一种检测甲霜灵的荧光微球免疫层析试纸条及其制备方法和应用
CN112690275A (zh) * 2020-12-30 2021-04-23 江苏耘农化工有限公司 一种精甲霜灵与噁霉灵复合水剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EUROPEAN FOOD SAFETY AUTHORITY: "Conclusion on the peer review of the pesticide risk assessment of the active substance metalaxyl-M", THE EFSA JOURNAL, vol. 13, no. 3, 1 March 2015 (2015-03-01), Parma, IT , pages 3999, XP093053900, ISSN: 1831-4732, DOI: 10.2903/j.efsa.2015.3999 *

Also Published As

Publication number Publication date
CN118043307A (zh) 2024-05-14
KR20230046122A (ko) 2023-04-05

Similar Documents

Publication Publication Date Title
WO2010027150A2 (en) New preparation of hydroxychloroquine
WO2010030132A2 (ko) 아데포비어 디피복실의 정제방법
EP2118052A2 (en) Novel prodrugs
EP0499926B1 (de) 2-Substituierte Chinoline, Verfahren zu ihrer Herstellung sowie ihre Verwendung in Arzneimitteln
WO2017119666A1 (ko) 극성 비양자성 용매를 이용한 n-[4-(1-아미노에틸)-페닐]-술폰아미드 유도체의 카이랄 분할 방법
US4900752A (en) Pyranobenzoxadiazole derivatives
WO2023055050A1 (ko) 고순도 n-아실 유도체의 제조방법
WO2013183800A1 (ko) 결정형 t-부틸 2-[(4R,6S)-6-포밀-2,2-디메틸-1,3-디옥산-4-일]아세테이트 및 이의 제조 방법
CN115819319A (zh) 一种酰胺类化合物、其制备方法及其应用
WO2011096729A2 (en) Novel method of preparing secondary amine compound using microflow reactor
WO2022131696A1 (ko) N-(1-메틸-1h-테트라졸-5-일)-2-(((2-메틸-2h-테트라졸-5-일)메톡시)메틸)-6-(트리플루오로메틸)니코틴아마이드의 제조 방법
WO2022080812A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조 방법
WO2017023124A1 (ko) 크로마놀 유도체의 신규한 제조방법
WO2017090991A1 (ko) 벤조피란 유도체의 정제방법, 이의 결정형 및 상기 결정형의 제조방법
WO2020159343A1 (ko) 중동호흡기증후군 치료 또는 예방용 약학 조성물
WO2015060657A1 (en) A method for preparing an intermediate of iopromide
WO2021107476A1 (en) Polymorphs of 1-(4-benzyloxy-benzyl)-3-methyl-thiourea
WO2011105649A1 (ko) 새로운 중간체를 이용하는 피타바스타틴 헤미칼슘의 신규한 제조방법
WO2014175563A1 (en) Novel method of preparing 4-(4-aminophenyl)-3-morpholinone
WO2023013974A1 (ko) Parp 저해제인 루카파립과 그 중간체의 신규한 제조방법
WO2023277587A1 (ko) N-아실 유도체의 제조방법, 조성물 및 이를 포함하는 의약품 또는 농업용품
KR20010023266A (ko) (S)-N-t-부틸-1,2,3,4-테트라히드로이소퀴놀린-3-카르복시아미드 제조방법
WO2023013973A1 (ko) 신규한 루카파립의 제조방법
JP5279449B2 (ja) 5−{4−[2−(5−エチル−2−ピリジル)エトキシ]ベンジル}−2,4−チアゾリジンジオン塩酸塩の製造方法
WO2023058875A1 (ko) 데커신 유도체의 신규 합성방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE