WO2023054144A1 - 車両用制御装置、車両用制御プログラム、及び、車両制御方法 - Google Patents

車両用制御装置、車両用制御プログラム、及び、車両制御方法 Download PDF

Info

Publication number
WO2023054144A1
WO2023054144A1 PCT/JP2022/035290 JP2022035290W WO2023054144A1 WO 2023054144 A1 WO2023054144 A1 WO 2023054144A1 JP 2022035290 W JP2022035290 W JP 2022035290W WO 2023054144 A1 WO2023054144 A1 WO 2023054144A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
wheel
vehicle
angle
steering wheel
Prior art date
Application number
PCT/JP2022/035290
Other languages
English (en)
French (fr)
Inventor
陽介 大森
Original Assignee
株式会社アドヴィックス
株式会社J-QuAD DYNAMICS
株式会社デンソー
株式会社アイシン
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス, 株式会社J-QuAD DYNAMICS, 株式会社デンソー, 株式会社アイシン, 株式会社ジェイテクト filed Critical 株式会社アドヴィックス
Priority to CN202280064971.5A priority Critical patent/CN117999209A/zh
Publication of WO2023054144A1 publication Critical patent/WO2023054144A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/01Fittings or systems for preventing or indicating unauthorised use or theft of vehicles operating on vehicle systems or fittings, e.g. on doors, seats or windscreens
    • B60R25/02Fittings or systems for preventing or indicating unauthorised use or theft of vehicles operating on vehicle systems or fittings, e.g. on doors, seats or windscreens operating on the steering mechanism
    • B60R25/021Fittings or systems for preventing or indicating unauthorised use or theft of vehicles operating on vehicle systems or fittings, e.g. on doors, seats or windscreens operating on the steering mechanism restraining movement of the steering column or steering wheel hub, e.g. restraining means controlled by ignition switch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/20Connecting steering column to steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/08Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in a single plane transverse to the longitudinal centre line of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering

Definitions

  • the present disclosure relates to a vehicle control device, a vehicle control program, and a vehicle control method.
  • Patent Document 1 discloses a control device that turns a vehicle by generating a braking force difference or a driving force difference between the left and right wheels when an abnormality occurs in a steering device that adjusts the steering of the left and right wheels. An example is given.
  • a vehicle control device applied to a vehicle is provided in one aspect of the present disclosure.
  • the vehicle includes a plurality of wheels, a plurality of vehicle devices configured to adjust the amount of lateral movement of the vehicle, an operating state in which the steering wheel cannot be rotated, and a rotation of the steering wheel.
  • a steering wheel lock mechanism that is selectively switched to a permissible non-operating state; and a steering shaft that is connected to a front wheel of the plurality of wheels and operates in response to rotation of the steering wheel to steer the front wheel.
  • the plurality of vehicle devices include a front wheel steering device that applies a steering force to the steering shaft for steering the front wheels, and a device other than the front wheel steering device.
  • the vehicle control device includes a steering wheel lock control unit that switches a state of the steering wheel lock mechanism from the non-operating state to the operating state when an abnormality occurs in the front wheel steering device, and the steering wheel. an other device control unit that adjusts the amount of lateral movement of the vehicle by operating the other device when the lock mechanism is in the operating state.
  • the vehicle includes a plurality of wheels, a plurality of vehicle devices configured to adjust the amount of lateral movement of the vehicle, an operating state in which the steering wheel cannot be rotated, and a rotation of the steering wheel.
  • a steering wheel lock mechanism that is selectively switched to a permissible non-operating state; and a steering shaft that is connected to a front wheel of the plurality of wheels and operates in response to rotation of the steering wheel to steer the front wheel.
  • the plurality of vehicle devices include a front wheel steering device that applies a steering force to the steering shaft for steering the front wheels, and a device other than the front wheel steering device.
  • the vehicle control program includes steering wheel lock processing for switching the state of the steering wheel lock mechanism from the non-operating state to the operating state when an abnormality occurs in the front wheel steering device; and another device control process for adjusting the lateral movement amount of the vehicle by operating the other device when the mechanism is in the operating state.
  • a further aspect of the present disclosure provides a vehicle control method.
  • the vehicle includes a plurality of wheels, a plurality of vehicle devices configured to adjust the amount of lateral movement of the vehicle, an operating state in which the steering wheel cannot be rotated, and a rotation of the steering wheel.
  • a steering wheel lock mechanism that is selectively switched to a permissible non-operating state; and a steering shaft that is connected to a front wheel of the plurality of wheels and operates in response to rotation of the steering wheel to steer the front wheel.
  • the plurality of vehicle devices include a front wheel steering device that applies a steering force to the steering shaft for steering the front wheels, and a device other than the front wheel steering device.
  • the control method includes switching the state of the steering wheel lock mechanism from the non-operating state to the operating state when an abnormality occurs in the front wheel steering device, and switching the steering wheel lock mechanism to the operating state. and adjusting the amount of lateral movement of the vehicle by activating the other device in the event of a failure.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle equipped with a control device that is a first embodiment of a vehicle control device.
  • 2 is a cross-sectional view illustrating the steering wheel lock mechanism of the vehicle of FIG. 1.
  • FIG. 3 is a cross-sectional view illustrating the steering wheel lock mechanism of the vehicle of FIG. 1.
  • FIG. 4 is a flow chart for explaining the processing routine of the automatic steering function executed by the control device of FIG.
  • FIG. 5 is a time chart showing the behavior of the vehicle when the processing routine for the automatic steering function of FIG. 4 is executed.
  • FIG. 6 is a diagram showing a schematic configuration of a vehicle equipped with a control device that is a second embodiment of the vehicle control device.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle equipped with a control device that is a first embodiment of a vehicle control device.
  • 2 is a cross-sectional view illustrating the steering wheel lock mechanism of the vehicle of FIG. 1.
  • FIG. 3 is a cross
  • FIG. 7 is a flow chart for explaining the processing routine of the automatic steering function executed by the control device of FIG.
  • FIG. 8 is a diagram illustrating the principle of adjusting the steering angle of the front wheels by steering the rear wheels.
  • FIG. 9 is a time chart showing the behavior of the vehicle caused by the execution of the automatic steering function processing routine of FIG. 7 when an abnormality occurs in the front wheel steering device while the vehicle is traveling straight ahead.
  • FIG. 10 is a schematic diagram showing how the front wheels and rear wheels are steered by executing the automatic steering function processing routine of FIG. 7 when an abnormality occurs in the front wheel steering device while the vehicle is traveling straight.
  • FIG. 11 is a schematic diagram showing how the front and rear wheels are steered by executing the automatic steering function processing routine of FIG.
  • FIG. 12 is a time chart showing behavior of the vehicle caused by execution of the processing routine for the automatic steering function of FIG. 7 when an abnormality occurs in the front wheel steering device while the vehicle is turning.
  • FIG. 13 is a schematic diagram showing how the front and rear wheels are steered by executing the automatic steering function processing routine of FIG. 7 when an abnormality occurs in the front wheel steering device while the vehicle is turning.
  • FIG. 14 is a schematic diagram showing a modification of the second embodiment.
  • FIG. 15 is a schematic diagram showing a further modification of the second embodiment.
  • FIG. 1 A first embodiment of a vehicle control device, a vehicle control program, and a vehicle control method will be described below with reference to FIGS. 1 to 5.
  • FIG. 1 A first embodiment of a vehicle control device, a vehicle control program, and a vehicle control method will be described below with reference to FIGS. 1 to 5.
  • FIG. 1 A first embodiment of a vehicle control device, a vehicle control program, and a vehicle control method will be described below with reference to FIGS. 1 to 5.
  • FIG. 1 shows a vehicle 10 equipped with a control device 100, which is the vehicle control device of this embodiment.
  • the vehicle 10 has a steering wheel 11 , an input shaft 12 , an output shaft 13 , two front wheels 16 and two rear wheels 18 .
  • the vehicle 10 also includes two vehicle devices that are configured to adjust the yaw rate YR, which is the amount of lateral movement of the vehicle 10 .
  • One of the two vehicle devices is the front wheel steering device 40 and the other is the steering angle adjusting device 30 .
  • the steering angle adjusting device 30 corresponds to "another device".
  • the input shaft 12 is connected to the output shaft 13 via the steering angle adjusting device 30 .
  • the output shaft 13 is connected to the steered shaft 14 .
  • Pinion teeth 13 a formed on the output shaft 13 mesh with rack teeth 14 a formed on the steering shaft 14 . Therefore, the output shaft 13 and the steering shaft 14 operate in conjunction with each other. That is, when the output shaft 13 rotates, the steered shaft 14 moves linearly.
  • Both ends of the steering shaft 14 are connected to left and right front wheels 16 via tie rods 15 .
  • the two front wheels 16 are steered by the operation of the steering shaft 14 according to the motion of the input shaft 12 and the like accompanying the rotation of the steering wheel 11 .
  • the steering angle adjusting device 30 separates power transmission between the steering wheel 11 and the steering shaft 14 . That is, the steering angle adjusting device 30 has an electric motor 32 and a speed reduction mechanism 34 .
  • the electric motor 32 has a housing 32a and a drive shaft 32b protruding from the housing 32a. A stator and a rotor are accommodated in the housing 32a. The stator is fixed to the housing 32a so as to be rotatable together. The rotor is connected to the drive shaft 32b so as to be rotatable together. When the electric motor 32 is driven to rotate the drive shaft 32 b , the output shaft 13 rotates relative to the input shaft 12 .
  • the steering angle ratio Z which is the ratio of the steering angle ⁇ f of the front wheels 16 to the steering angle ⁇ h, which is the rotation angle of the steering wheel 11, changes. Therefore, by changing the steering angle ratio Z by operating the steering angle adjusting device 30 under the condition that the steering angle ⁇ h is fixed, the steering angle ⁇ f of the front wheels 16 is changed.
  • the steering angle ⁇ h is determined as an angle from the neutral position of the steering wheel 11 corresponding to the straight running state of the vehicle 10, and takes a positive or negative value depending on the turning direction of the steering wheel 11.
  • the steering angle ⁇ f of the front wheels 16 is determined as the angle from the neutral position of the front wheels 16 corresponding to the straight running state of the vehicle 10 , and takes positive and negative values depending on the steering direction of the front wheels 16 .
  • the front wheel steering device 40 has an electric motor 42 and a transmission mechanism 44 .
  • a drive shaft of the electric motor 42 is connected to the steering shaft 14 via a transmission mechanism 44 .
  • the transmission mechanism 44 converts rotary motion of the drive shaft of the electric motor 42 into linear motion of the steered shaft 14 . Therefore, when the steering shaft 14 linearly moves in response to the driving of the electric motor 42, the two front wheels 16 are steered.
  • the electric motor 42 applies a steering force, which is a force for steering the front wheels 16 , to the steering shaft 14 .
  • the vehicle 10 has a steering wheel lock mechanism 20.
  • the steering wheel lock mechanism 20 switches between an operating state that disables rotation of the steering wheel 11 and a non-operating state that allows rotation of the steering wheel 11 .
  • the steering wheel lock mechanism 20 disables rotation of the steering wheel 11 by restricting rotation of the input shaft 12 .
  • FIG. 2 shows the relationship between the steering wheel lock mechanism 20 and the input shaft 12 when the steering angle ⁇ h is 0 (zero).
  • FIG. 3 shows the relationship between the steering wheel lock mechanism 20 and the input shaft 12 when the steering angle ⁇ h is not 0 (zero).
  • the steering wheel lock mechanism 20 includes a lock pin 22 and an actuator 24.
  • the lock pin 22 is arranged radially outside the input shaft 12 .
  • a tip portion 22 a of the lock pin 22 faces the peripheral surface of the input shaft 12 .
  • the lock pin 22 selectively moves in an approaching direction W ⁇ b>1 toward the input shaft 12 and a separating direction W ⁇ b>2 away from the input shaft 12 . That is, when the lock pin 22 is moved in the approach direction W1 by driving the actuator 24, the tip portion 22a of the lock pin 22 is pressed against the input shaft 12 as indicated by the solid line in FIG. On the other hand, when the lock pin 22 is moved in the separation direction W2 by driving the actuator 24, the lock pin 22 is separated from the input shaft 12 as indicated by the chain double-dashed line in FIG.
  • the state of the steering wheel lock mechanism 20 in which the lock pin 22 is pressed against the input shaft 12 by driving the actuator 24 is the "operating state”.
  • the state of the steering wheel lock mechanism 20 in which the lock pin 22 is separated from the input shaft 12 is the “non-operating state.”
  • the input shaft 12 is provided with two lock recesses 12a capable of accommodating the tip portions 22a of the lock pins 22.
  • the lock recess 12 a is recessed radially inward from the peripheral surface of the input shaft 12 .
  • the two lock recesses 12 a are arranged at the same position as the lock pin 22 in the direction along the central axis of the input shaft 12 .
  • the position of the input shaft 12 with which the lock pin 22 contacts when the steering angle ⁇ h is 0 (zero) is defined as a reference position 12s.
  • the two lock recesses 12a are arranged such that the reference position 12s is positioned between the two lock recesses 12a.
  • the distance from one locking recess 12a to the reference position 12s is the same as the distance from the other locking recess 12a to the reference position 12s.
  • the tip portion 22a of the lock pin 22 can be accommodated in the lock recess 12a.
  • the steering angle ⁇ h when the lock pin 22 and the lock recess 12a face each other is referred to as "lock angle ⁇ hQ".
  • the vehicle 10 has an information detection system.
  • the information detection system has a steering angle sensor 81, an output shaft sensor 82, a current sensor 83 and a temperature sensor 84, for example.
  • the information detection system has, for example, a vehicle speed sensor 85, a yaw rate sensor 86, a GPS receiver 87, and a peripheral monitoring device 88.
  • a steering angle sensor 81 detects a steering angle ⁇ h of the steering wheel 11 .
  • the output shaft sensor 82 detects the rotation angle ⁇ u of the output shaft 13 .
  • a current sensor 83 detects a current value MA flowing through the electric motor 42 of the front wheel steering device 40 .
  • a temperature sensor 84 detects the temperature MT of the electric motor 42 of the front wheel steering device 40 .
  • a vehicle speed sensor 85 detects a vehicle speed V, which is the running speed of the vehicle 10 .
  • a yaw rate sensor 86 detects a yaw rate YR of the vehicle 10 .
  • the GPS receiver 87 receives signals regarding the current position coordinates G of the vehicle 10 from GPS satellites.
  • Perimeter monitoring equipment 88 includes an imaging device such as a camera, and a radar.
  • the surroundings monitoring device 88 acquires surroundings monitoring information J of the vehicle 10 , such as a captured image of the surroundings of the vehicle 10 and presence or absence of obstacles around the vehicle 10 .
  • a device such as a sensor that constitutes an information detection system outputs a signal to the control device 100 according to information that it has detected or acquired.
  • the vehicle 10 is equipped with a notification device 90.
  • the notification device 90 is a device that notifies the occupants of the vehicle 10 of an abnormality in the front wheel steering device 40 .
  • Examples of the notification device 90 include a lamp, a display screen, and a speaker.
  • the control device 100 includes processing circuitry 110 .
  • the processing circuitry 110 includes a CPU 111 and a memory 112 .
  • Various control programs executed by the CPU 111 are stored in the memory 112 . That is, the CPU 111 corresponds to the "execution device" that executes the control program.
  • the control device 100 has an automatic driving function.
  • the automatic driving function is a function of autonomously driving the vehicle 10 without the vehicle operation by the driver of the vehicle 10 .
  • the control device 100 has an automatic steering function, which is one of the automatic driving functions.
  • the automatic steering function is a function for autonomously turning the vehicle 10 without the driver operating the steering wheel 11 .
  • the processing circuit 110 By executing the control program for the automatic steering function by the CPU 111, the processing circuit 110 functions as a request generation section, an abnormality determination section, a front wheel steering control section, a steering wheel lock control section, and other device control section.
  • the request generation unit derives the basic request values necessary for turning the vehicle 10 .
  • the request generator derives a required steering angle ⁇ f*, which is the required value of the steering angle ⁇ f of the front wheels 16, and a required yaw rate YR*, which is the required value of the yaw rate YR of the vehicle 10, as basic required values.
  • a method for deriving the required steering angle ⁇ f* and the required yaw rate YR* will be described later.
  • the abnormality determination unit determines whether or not an abnormality has occurred in the front wheel steering device 40 .
  • a steering force required to be applied to the front wheels 16 to adjust the steering angle ⁇ f of the front wheels 16 based on the required steering angle ⁇ f* is referred to as a required steering force F1.
  • a steering force corresponding to the maximum output of the electric motor 42 of the front wheel steering device 40 is called a maximum steering force F2.
  • the maximum steering force F2 determines whether or not there is an abnormality in the front wheel steering device 40 according to the magnitude relationship between the maximum steering force F2 and the required steering force F1.
  • the front wheel steering control unit turns the vehicle 10 by activating the front wheel steering device 40 when there is no abnormality in the front wheel steering device 40 . That is, the front wheel steering control unit drives the electric motor 42 of the front wheel steering device 40 so that the steering angle ⁇ f of the front wheels 16 becomes the required steering angle ⁇ f*. On the other hand, the front wheel steering control unit stops energizing the electric motor 42 of the front wheel steering device 40 when an abnormality occurs in the front wheel steering device 40 .
  • the steering wheel lock control unit switches the state of the steering wheel lock mechanism 20 from the non-operating state to the operating state when an abnormality occurs in the front wheel steering device 40 . On the other hand, if the front wheel steering device 40 does not malfunction, the steering wheel lock control unit puts the steering wheel lock mechanism 20 into the non-operating state.
  • the other device control section adjusts the yaw rate YR of the vehicle 10 by activating devices other than the front wheel steering device 40 when the steering wheel lock mechanism 20 is in an operating state. That is, the other device control section operates the steering angle adjusting device 30 so that the steering angle ⁇ h is the lock angle ⁇ hQ and the steering angle ⁇ f of the front wheels 16 is the required steering angle ⁇ f*. Adjust Z.
  • the other device control unit performs processing for disabling the rotation of the steering wheel 11 by rotating the steering wheel 11 until the steering angle ⁇ h reaches the lock angle ⁇ hQ, and processing for disabling the rotation of the steering wheel 11.
  • a process for turning the front wheels 16 so that the turning angle ⁇ f becomes the required turning angle ⁇ f* is executed.
  • the latter of these processes is the process of adjusting the yaw rate YR of the vehicle 10 through the operation of the steering angle adjusting device 30 when the steering wheel lock mechanism 20 is activated and the steering wheel 11 cannot be rotated. corresponds to
  • a processing routine executed by the processing circuit 110 of the control device 100 when the vehicle 10 is turned by the automatic steering function will be described with reference to FIG.
  • the processing circuit 110 executes this processing routine by the CPU 111 executing the control program stored in the memory 112 of the processing circuit 110 . Therefore, it can be said that the CPU 111, which is an execution device, executes each process that constitutes this process routine.
  • step S10 the processing circuit 110 derives the requested yaw rate YR* and the requested turning angle ⁇ f* as requested basic values by functioning as a request generation unit.
  • the process of step S10 executed by the processing circuit 110 as the request generator is also called "request generation process”.
  • the processing circuit 110 determines the next target trajectory of the vehicle 10 based on, for example, the map data provided from the navigation device, the current position coordinates G of the vehicle 10, and the perimeter monitoring information J. derive Then, the control device 100 derives the required yaw rate YR* and the required turning angle ⁇ f* based on the current running information of the vehicle 10 such as the vehicle speed V and the yaw rate YR and the derived target trajectory.
  • the processing circuit 110 shifts the process to step S20.
  • the processing circuit 110 derives the required steering force F1.
  • the processing circuit 110 can calculate the required steering force F1 using, for example, the following relational expression (Equation 1).
  • Equation 1 "Kf" is the cornering power of the front wheels 16, and " ⁇ *" is the required value of the vehicle body slip angle.
  • Lf is the distance between the center of gravity of the vehicle 10 and the axle of the front wheels 16, and "LN” is the sum of the caster and pneumatic trails.
  • the processing circuit 110 When deriving the required steering force F1, the processing circuit 110 substitutes the latest vehicle speed V for "V” in the relational expression (Equation 1), and calculates the required yaw rate YR* and the required steering angle derived in step S10. ⁇ f* is substituted for “YR*” and “ ⁇ f*” in the relational expression (Equation 1).
  • absolute values are used for parameters that have positive and negative values, such as the required steering angle ⁇ f*.
  • the processing circuit 110 derives the maximum steering force F2.
  • the control device 100 calculates the maximum steering force F2 using, for example, a relational expression (Equation 2).
  • Equation 2 "I” is the maximum current value that can be applied to the electric motor 42 of the front wheel steering device 40 at present, and "LS" is the grounding point of the front wheel 16 and the tie rod 15. is a parameter related to the positional relationship of Also, "D” is a transform coefficient. Therefore, the larger the maximum value I of the current value, the larger the value derived as the maximum steering force F2.
  • step S40 the processing circuit 110 functions as an abnormality determination unit to determine whether or not the required steering force F1 derived in step S20 is equal to or less than the maximum steering force F2 calculated in step S30. . If the required steering force F1 is equal to or less than the maximum steering force F2, it is assumed that the front wheel steering device 40 is not abnormal. On the other hand, if the required steering force F1 is greater than the maximum steering force F2, it is assumed that the front wheel steering device 40 is malfunctioning. In this embodiment, the processing of step S40 executed by the processing circuit 110 as the abnormality determination unit corresponds to "abnormality determination processing".
  • step S40 if the required steering force F1 is equal to or less than the maximum steering force F2 (YES), the processing circuit 110 proceeds to step S50.
  • step S50 the processing circuit 110 functions as a front wheel steering control unit to control the front wheel steering device 40 based on the required steering angle ⁇ f*. Specifically, the processing circuit 110 controls the electric motor 42 of the front wheel steering device 40 so that the steering angle ⁇ f of the front wheels 16 becomes the required steering angle ⁇ f*.
  • the processing of step S50 executed by the processing circuit 110 as the front wheel steering control section is also called "front wheel steering processing".
  • step S50 When the front wheels 16 are steered by the front wheel steering device 40 in step S50, the rotation angle of the electric motor 32 of the steering angle adjusting device 30 is held. Therefore, the steering wheel 11 rotates as the front wheels 16 are steered. Therefore, the steering angle ⁇ f of the front wheels 16 and the steering angle ⁇ h of the steering wheel 11 are maintained to be the same.
  • the processing circuit 110 After executing the process of step S50, the processing circuit 110 once terminates this process routine. After that, when a predetermined control cycle has passed, the processing circuit 110 starts executing this processing routine.
  • step S40 if the required steering force F1 is greater than the maximum steering force F2 (NO), the processing circuit 110 proceeds to step S100.
  • step S100 the control device 100 causes the notification device 90 to notify the occupant that the front wheel steering device 40 is abnormal.
  • step S102 the processing circuit 110 stops energizing the electric motor 42 of the front wheel steering device 40 by functioning as a front wheel steering control section. Then, the processing circuit 110 shifts the process to step S110.
  • step S110 the processing circuit 110 functions as a steering wheel lock control unit to switch the state of the steering wheel lock mechanism 20 from the non-operating state to the operating state.
  • the lock pin 22 moves in the approach direction W ⁇ b>1 and the tip 22 a comes into contact with the input shaft 12 .
  • the process of step S110 executed by the processing circuit 110 as the steering wheel lock control section corresponds to "steering wheel lock process".
  • the tip portion 22a of the lock pin 22 is not accommodated in the lock recess 12a until the steering angle ⁇ h of the steering wheel 11 reaches the lock angle ⁇ hQ. Rotation of the steering wheel 11 is permitted.
  • the processing circuit 110 proceeds to step S160.
  • the processing circuit 110 derives the required yaw rate YR* and the required steering angle ⁇ f* by functioning as a request generation unit, as in the processing at step S10. Subsequently, in step S170, the processing circuit 110 functions as the other device control unit to adjust the steering angle ratio Z based on the required steering angle ⁇ f* derived in step S160. That is, the processing circuit 110 controls the electric motor 32 of the steering angle adjustment device 30 so that the steering angle ⁇ f of the front wheels 16 becomes the required steering angle ⁇ f*. At this time, the processing circuit 110 determines the direction in which the front wheels 16 are to be steered based on the positive/negative sign of the required steering angle ⁇ f* derived in step S160.
  • Processing circuitry 110 determines the direction of rotation of drive shaft 32b in electric motor 32 with respect to housing 32a to steer front wheels 16 in this direction.
  • the processing of step S170 executed by the processing circuit 110 as the other device control section corresponds to "other device control processing".
  • step S180 the processing circuit 110 determines whether or not the termination condition is satisfied.
  • the termination condition is that both the vehicle 10 is not turning and a request to stop the automatic steering function is satisfied. If it can be determined that the vehicle 10 is running straight based on the yaw rate YR, or if the vehicle 10 stops, it can be considered that the vehicle 10 is not turning. If the end condition is not satisfied (S180: NO), the processing circuit 110 shifts the process to step S160. On the other hand, if the termination condition is satisfied (S180: YES), the processing circuit 110 terminates this processing routine.
  • the vehicle 10 is traveling straight at timing t11.
  • a turning request is generated and the required yaw rate YR* and the required turning angle ⁇ f* are 0 (zero). be larger than Note that in FIG. 5, the required yaw rate YR* and the required turning angle ⁇ f* are greatly changed in one step at timing t12 for the convenience of understanding the description of the specification.
  • the steering angle adjustment device 30 is operated to start changing the steering angle ratio Z (S170).
  • the front wheels 16 are in contact with the ground, in order to steer the front wheels 16 , a force that resists the frictional force acting on the front wheels 16 is required according to the weight of the vehicle 10 . Due to this frictional force, the driving force of the electric motor 32 acts not to rotate the drive shaft 32b of the electric motor 32 but to rotate the housing 32a to which no resistance is applied immediately after the steering angle ratio Z starts to be changed. That is, the frictional force acting on the front wheel 16 impedes the rotation of the drive shaft 32b of the electric motor 32 via the output shaft 13. As shown in FIG.
  • the housing 32a and the steering wheel 11 rotate without rotating the drive shaft 32b. Therefore, when the change of the steering angle ratio Z is started at timing t12, the steering angle ⁇ h of the steering wheel 11 starts to change as shown in FIG. 16 steering angle ⁇ f does not change. Due to the relative rotation relationship between the housing 32a and the drive shaft 32b in the electric motor 32, the steering wheel 11 rotates in the direction opposite to the direction of rotation corresponding to the required steering angle ⁇ f*. As shown in FIG. 5(d), the rotation of the steering wheel 11 turns the steering angle ⁇ h to the lock angle ⁇ hQ at timing t13. Then, in the steering wheel lock mechanism 20, the tip 22a of the lock pin 22 is accommodated in the lock recess 12a. As a result, the steering wheel 11 cannot be rotated.
  • the steering angle ratio Z continues to be changed by operating the steering angle adjusting device 30 .
  • the driving force of the electric motor 32 rotates the drive shaft 32b instead of the housing 32a. That is, the driving force of the electric motor 32 resists the frictional force of the front wheels 16 and rotates the drive shaft 32b and, in turn, the output shaft 13, while receiving a reaction force from the fixed housing 32a. Therefore, as shown in FIG. 5B, after timing t13 when the steering wheel 11 becomes unable to rotate, the steering angle ⁇ f of the front wheels 16 starts to change due to the operation of the steering angle adjusting device 30 .
  • the steering angle ⁇ f of the front wheels 16 becomes the required steering angle ⁇ f*.
  • the yaw rate YR of the vehicle 10 changes after timing t13. After timing t14, the vehicle 10 turns according to the required yaw rate YR*.
  • the steering angle ⁇ f of the front wheels 16 is adjusted by the operation of the steering angle adjusting device 30 while the steering wheel 11 remains unrotatable (S170). That is, by disabling the rotation of the steering wheel 11, the drive shaft 32b of the electric motor 32 in the steering angle adjusting device 30 and the front wheels 16 are operated in conjunction with each other. As a result, the front wheels 16 can be directly operated by the steering angle adjustment device 30 in the same manner as the front wheels 16 are operated by the front wheel steering device 40 . Therefore, even if the front wheel steering device 40 cannot be used, the vehicle 10 can be turned without being affected by the self-aligning torque.
  • the example shown in FIG. 5 is an example when it is determined that an abnormality has occurred in the front wheel steering device 40 before the vehicle 10 starts turning.
  • an abnormality may occur in the front wheel steering device 40 while the vehicle 10 is turning.
  • the turning state of the vehicle 10 can be maintained. That is, when it is determined that an abnormality has occurred in the front wheel steering device 40 while the vehicle 10 is turning (S40: YES), the state of the steering wheel lock mechanism 20 changes from the non-operating state to the operating state. Switched (S110). Then, the steering angle ratio Z is changed by operating the steering angle adjusting device 30 (S170).
  • the steering wheel 11 rotates with the steering angle ⁇ h toward the lock angle ⁇ hQ in relation to the frictional force acting on the front wheels 16 .
  • the steering angle ⁇ h reaches the lock angle ⁇ hQ, the steering wheel 11 cannot be rotated.
  • the steering angle ⁇ f of the front wheels 16 can be freely adjusted by operating the steering angle adjusting device 30 thereafter.
  • FIG. 6 A second embodiment of a vehicle control device, a vehicle control program, and a vehicle control method will be described below with reference to FIGS. 6 to 13.
  • FIG. 6 a vehicle device mounted on a vehicle is different from that in the first embodiment, and accompanying this, the details of other device control processing are different from those in the first embodiment.
  • Other parts are basically the same as in the first embodiment. In the following, different parts from the first embodiment will be mainly described, and descriptions of the same contents as those of the first embodiment will be simplified or omitted as appropriate.
  • FIG. 6 portions having the same or substantially the same functions as in FIG. 1 are denoted by the same reference numerals as in FIG.
  • the devices constituting the information detection system are collectively denoted by a uniform reference numeral 80. As shown in FIG.
  • the vehicle 10A does not have a steering angle adjusting device. Therefore, the steering wheel 11 and the input shaft 12 are directly connected to the output shaft 13 . That is, the steering angle ⁇ h of the steering wheel 11 and the steering angle ⁇ f of the front wheels 16 are the same.
  • the vehicle 10A includes a rear shaft 181 and a rear wheel steering device 120. Both ends of the rear shaft 181 are connected to the left and right rear wheels 18 via connecting parts 183 .
  • the rear wheel steering device 120 has an electric motor 122 and a transmission mechanism 124 .
  • a drive shaft of the electric motor 122 is connected to the rear shaft 181 via the transmission mechanism 124 .
  • the transmission mechanism 124 converts rotary motion of the drive shaft of the electric motor 122 into linear motion of the rear shaft 181 .
  • the rear shaft 181 linearly moves to steer the rear wheels 18 .
  • the rear wheel steering device 120 adjusts the steering angle ⁇ r of the rear wheels 18 .
  • the vehicle 10A includes a front wheel steering device 40 and a rear wheel steering device 120 as vehicle devices configured to adjust the yaw rate YR, which is the amount of lateral movement of the vehicle 10A.
  • the rear wheel steering device 120 corresponds to "another device”.
  • the control device 100 uses the steering wheel lock mechanism 20 and the rear wheel steering device 120 when turning the vehicle 10A under the condition that the front wheel steering device 40 is abnormal. Therefore, the processing circuit 110 of the control device 100 executes the following other device control processing after executing the steering wheel lock processing similar to that of the first embodiment. That is, the processing circuit 110 executes the first process and the second process as the other device control process by functioning as the other device control section.
  • the other device control unit steers the front wheels 16 by steering the rear wheels 18 with the rear wheel steering device 120 when the steering wheel lock mechanism 20 is activated.
  • the steering angle ⁇ f of the front wheels 16 is set to the lock steering angle ⁇ fQ.
  • the lock steering angle ⁇ fQ is the steering angle ⁇ f of the front wheels 16 when the steering angle ⁇ h of the steering wheel 11 becomes the lock angle ⁇ hQ.
  • the steering angle ⁇ f of the front wheels 16 and the steering angle ⁇ h of the steering wheel 11 are the same. Therefore, the lock steering angle ⁇ fQ is the same as the lock angle ⁇ hQ.
  • the other device control unit operates the rear wheel steering device 120 to steer the rear wheels 18 when the steering wheel 11 cannot rotate due to the execution of the first process. Accordingly, the vehicle 10A turns.
  • the processing circuit 110 sequentially executes a plurality of processes from steps S10 to S110 shown in FIG.
  • the processing circuit 110 shifts the processing to step S220.
  • step S220 the processing circuit 110 determines whether or not the absolute value of the steering angle ⁇ f of the front wheels 16 is less than the absolute value of the lock steering angle ⁇ fQ. If the absolute value of the steering angle ⁇ f is less than the absolute value of the lock steering angle ⁇ fQ (S220: YES), the processing circuit 110 proceeds to step S230. On the other hand, if the absolute value of the steering angle ⁇ f is greater than or equal to the lock steering angle ⁇ fQ (S220: NO), the processing circuit 110 proceeds to step S250.
  • step S230 the processing circuit 110 steers the rear wheels 18 in the same direction as the required steering angle ⁇ f* of the front wheels 16 by functioning as the other device control unit. That is, the processing circuit 110 determines the steering direction determined as the required steering angle ⁇ f* based on the sign of the required steering angle ⁇ f* derived in step S10. Processing circuitry 110 then controls electric motor 122 of rear wheel steering device 120 to steer rear wheels 18 in the same direction. At this time, the processing circuit 110 sets the steering angle ⁇ r of the rear wheels 18 to a predetermined first steering angle. For reasons described later, the front wheels 16 can be steered in the direction of the required steering angle ⁇ f* by steering the rear wheels 18 in the same direction as the required steering angle ⁇ f*.
  • the above-mentioned first steering angle is predetermined, for example, through experiments or simulations, as an optimum value for promoting steering of the front wheels 16 .
  • the processing circuit 110 steers the rear wheels 18 until the steering angle ⁇ r of the rear wheels 18 reaches the first steering angle, the process proceeds to step S240.
  • step S240 the processing circuit 110 determines whether or not the steering angle ⁇ f of the front wheels 16 has reached the lock steering angle ⁇ fQ by functioning as the other device control unit.
  • the processing circuit 110 makes the determination in step S240 by comparing the absolute value of the steering angle ⁇ f and the absolute value of the lock steering angle ⁇ fQ. Since the steering wheel lock mechanism 20 is in an operating state, it can be determined that the steering wheel 11 cannot be rotated when the steering angle ⁇ f reaches the lock steering angle ⁇ fQ. Therefore, when the steering angle ⁇ f has not reached the lock steering angle ⁇ fQ (S240: NO), the processing circuit 110 repeats the determination in step S240 until the steering angle ⁇ f reaches the lock steering angle ⁇ fQ. On the other hand, when the steering angle ⁇ f reaches the lock steering angle ⁇ fQ (S240: YES), the processing circuit 110 proceeds to step S250.
  • step S250 the processing circuit 110 steers the rear wheels 18 in a direction opposite to the required steering angle ⁇ f* of the front wheels 16 by functioning as a control unit for other devices. That is, the processing circuit 110 determines the steering direction determined as the required steering angle ⁇ f* based on the sign of the required steering angle ⁇ f* derived in step S10, as in the processing of step S230. do.
  • the processing circuitry 110 then controls the electric motor 122 of the rear wheel steering device 120 to steer the rear wheels 18 in the opposite direction. Specifically, the processing circuit 110 controls the electric motor 122 so that the steering angle ⁇ r of the rear wheels 18 becomes the second steering angle. This second steering angle has the following value.
  • step S10 when the steering angle ⁇ f of the front wheels 16 is the lock steering angle ⁇ fQ in the same direction as the required steering angle ⁇ f*, the rear wheels 18 required to achieve the required yaw rate YR* derived in step S10 is the steering angle ⁇ r.
  • the processing circuit 110 shifts the process to step S260.
  • the processing of steps S230 to S250 executed by the processing circuit 110 functioning as the other device control section corresponds to "other device control processing".
  • the processing of steps S230 and S240 corresponds to "first processing”
  • the processing of step S250 corresponds to "second processing”.
  • step S250 may serve as both the first process and the second process of the other device control process. That is, if the absolute value of the steering angle ⁇ f is greater than or equal to the lock steering angle ⁇ fQ in step S220 (NO), the processing circuit 110 executes the processing of step S250 without performing the processing of steps S230 and S240. will do. In this case, the steering angle ⁇ f of the front wheels 16 has not reached the lock steering angle ⁇ fQ at the start of step S250. If the processing of step S250 is performed in this situation, the front wheels 16 are steered so that the steering angle ⁇ f of the front wheels 16 becomes the lock steering angle ⁇ fQ, as will be described later in detail. As a result, the rotation of the steering wheel 11 is disabled. After that, a series of operations occur in which the vehicle 10A turns according to the required yaw rate YR*. In this case, the process of step S250 serves as both the first process and the second process.
  • step S260 the processing circuit 110 derives the required yaw rate YR* and the required steering angle ⁇ f*, as in step S160.
  • step S270 the processing circuit 110 functions as the other device control unit to adjust the steering angle ⁇ r of the rear wheels 18 based on the required yaw rate YR* derived in step S260. That is, the processing circuit 110 controls the electric motor 122 of the rear wheel steering device 120 so that the yaw rate YR becomes the required yaw rate YR*.
  • step S280 processing circuit 110 determines whether or not the termination condition is satisfied.
  • the processing contents of step S280 are the same as the processing of step S180 shown in FIG. Therefore, the description after step S280 is omitted.
  • the steering angle ⁇ f of the front wheels 16 is adjusted by utilizing the self-aligning torque acting on the front wheels 16 as the rear wheels 18 are steered. Incidentally, by steering the front wheels 16 and the rear wheels 18 in the same direction, the vehicle 10A can be driven straight.
  • FIG. 9 is a case where an abnormality occurs in the front wheel steering device 40 while the vehicle 10A is traveling straight.
  • the vehicle 10A is traveling straight at timing t21.
  • a turning request is generated and the requested yaw rate YR* becomes greater than 0 (zero), as indicated by the chain double-dashed line in FIG. 9(a).
  • an abnormality occurs in the front wheel steering device 40 and the front wheel steering device 40 cannot be operated (S40: NO).
  • the state of the steering wheel lock mechanism 20 is switched from the non-operating state to the operating state at timing t22 (S110).
  • the steering angle ⁇ f of the front wheels 16 at time t22 is 0 (zero)
  • the absolute value of the steering angle ⁇ f is the lock steering angle ⁇ fQ. Less than absolute value. Therefore, at timing t22 when the steering wheel lock mechanism 20 is switched to the operating state, the rotation of the steering wheel 11 and the steering of the front wheels 16 are still permitted.
  • the rear wheels 18 are steered in the direction opposite to the required steering angle ⁇ f* of the front wheels 16 (S250).
  • the yaw rate YR of the vehicle 10A gradually approaches the required yaw rate YR*.
  • the yaw rate YR of the vehicle 10A becomes the required yaw rate YR*.
  • the vehicle 10A turns according to the required yaw rate YR*.
  • the vehicle 10A can turn without being affected by the self-aligning torque.
  • the example shown in FIG. 12 is a case where an abnormality occurs in the front wheel steering device 40 while the vehicle 10A is turning.
  • the vehicle 10A is turning at timing t31.
  • the front wheel steering device 40 is normal, and by operating the front wheel steering device 40, the steering of the front wheels 16 is adjusted so that the steering angle ⁇ f of the front wheels 16 becomes the required steering angle ⁇ f*. be.
  • the steering angle ⁇ r of the rear wheels 18 is 0 (zero).
  • S40 NO
  • the state of the steering wheel lock mechanism 20 is switched from the non-operating state to the operating state at timing t32 (S110).
  • the steering angle ⁇ f of the front wheels 16 at time t32 is greater than the lock steering angle ⁇ fQ, and the steering angle ⁇ f is not the lock steering angle ⁇ fQ. . Therefore, at timing t32 when the steering wheel lock mechanism 20 is switched to the operating state, the rotation of the steering wheel 11 and the steering of the front wheels 16 are still permitted.
  • the vehicle 10A is turning, and the steering angle ⁇ f is greater than the lock steering angle ⁇ fQ (S220: NO). Therefore, as shown in (c) of FIG. 12 and FIG. 13 , after timing t32, the rear wheels 18 are steered in the direction opposite to the required steering angle ⁇ f* of the front wheels 16 . As a result, the front wheels 16 move in the same direction as the rear wheels 18 as indicated by arrows K in FIGS. Steering is performed, and the absolute value of the steering angle ⁇ f of the front wheels 16 decreases. Then, at timing t33, the steering angle ⁇ f of the front wheels 16 reaches the lock steering angle ⁇ fQ.
  • the tip 22a of the lock pin 22 is accommodated in the lock recess 12a.
  • the steering of the front wheels 16 and the rotation of the steering wheel 11 become impossible.
  • the turning of the vehicle 10A is continued according to the requested yaw rate YR*.
  • the vehicle 10A can turn without being affected by the self-aligning torque.
  • the yaw rate YR of the vehicle 10A is adjusted by the rear wheels 18 after disabling the steering of the front wheels 16. Disabling the steering of the front wheels 16 eliminates the influence of self-aligning torque. Therefore, even if the front wheel steering device 40 cannot be used, the vehicle 10A can be turned without being affected by the self-aligning torque.
  • the termination condition described above is not limited to the example of the above embodiment, as long as the other device control process can be terminated at an appropriate timing. Even if the end condition is changed from the example of the above embodiment, it is preferable to set the condition such that the other device control process is ended after the vehicle 10, 10A has finished turning. If the vehicle 10 or 10A is traveling straight ahead, if the automatic driving by the automatic driving function is switched to the manual driving by the driver's operation, the driver is less burdened with the driving operation.
  • the method for determining whether or not an abnormality has occurred in the front wheel steering device 40 is not limited to the methods described in the above embodiments. For example, if the temperature MT of the electric motor 42 is higher than a prescribed threshold value, it may be determined that the front wheel steering device 40 is abnormal. Regardless of the abnormality determination method, in other words, regardless of how the abnormality is defined, if the front wheel steering device 40 cannot be used normally, the steering wheel lock mechanism 20 is switched to the operating state to prevent the operation of the front wheel steering device other than the front wheel steering device 40.
  • the yaw rate YR of the vehicles 10, 10A may be adjusted by the vehicle device.
  • the notification device 90 notifies of an abnormality in the front wheel steering device 40 .
  • the automatic driving function is stopped at the stage where the vehicle 10 or 10A has finished turning, and if the driver is notified of the completion, the notification device 90 will notify the driver. is not necessary.
  • the steering wheel lock mechanism 20 is switched to the non-operating state.
  • the front wheel steering device 40 may be accidentally determined to be abnormal. In this case, even if the yaw rate YR of the vehicles 10 and 10A is once adjusted by a vehicle device other than the front wheel steering device 40 as in the above embodiment, the front wheel steering device 40 can be used again thereafter. . If the steering wheel lock mechanism 20 is switched to the inoperative state, the front wheels 16 can be steered by the front wheel steering device 40 as usual.
  • the configuration of the rear wheel steering device 120 is not limited to the above example.
  • the rear wheel steering device 120 may be configured to adjust the steering angle ⁇ r of the rear wheels 18 .
  • the vehicle 10A may be provided with the following two devices instead of the rear wheel steering device 120.
  • the two devices are a front wheel drive device 130 capable of adjusting the difference in driving force applied to the left front wheel 16A and the right front wheel 16B, and a drive device 130 applied to the left rear wheel 18A and the right rear wheel 18B. It is a rear wheel drive device 140 that can adjust the force difference.
  • the front wheel drive device 130 and the rear wheel drive device 140 are vehicle devices configured to adjust the yaw rate YR of the vehicle 10A. Even when these driving devices are provided, the same principle as in the second embodiment can be used to turn the vehicle 10A without using the front wheel steering device 40.
  • FIG. For example, when an abnormality occurs in the front wheel steering device 40 while the vehicle 10A is traveling straight ahead, after switching the steering wheel lock mechanism 20 to the operating state, the front wheel drive device 130 is used as the first processing of the other device control processing.
  • the left front wheel 16A and the right front wheel 16B are provided with a difference in driving force. As a result, the front wheels 16 are steered so that the steering angle ⁇ f of the front wheels 16A and 16B becomes the lock steering angle ⁇ fQ.
  • the rear wheel drive device 140 may be used to provide a difference in driving force between the left rear wheel 18A and the right rear wheel 18B.
  • the rear wheel drive device 140 is used to provide a difference in driving force between the left rear wheel 18A and the right rear wheel 18B. This adjusts the yaw rate YR of the vehicle 10A.
  • the rear wheel drive device 140 can be used to provide a difference in driving force between the left rear wheel 18A and the right rear wheel 18B. good.
  • the first process and the second process can be combined.
  • the same reference numerals as in FIG. 6 denote the same or substantially the same functions as in FIG. This also applies to FIG. 15 to be referred to later.
  • the vehicle 10A may be provided with only the rear wheel drive device 140 out of the front wheel drive device 130 and the rear wheel drive device 140 . As long as the rear wheel drive device 140 is provided, the turning of the vehicle 10A similar to that of the second embodiment can be realized as described above.
  • the vehicle 10A may be provided with the following two devices instead of the rear wheel steering device 120 . That is, the two devices are a front wheel braking device 150 that can adjust the difference in braking force applied to the left front wheel 16A and the right front wheel 16B, and a braking device that applies the left rear wheel 18A and the right rear wheel 18B. It is a rear wheel braking device 160 that can adjust the power difference.
  • the front wheel braking device 150 and the rear wheel braking device 160 are vehicle devices configured to adjust the yaw rate YR of the vehicle 10A. Even when these braking devices are provided, the same turning of the vehicle 10A as in the second embodiment can be realized, as in the modification of the drive device described above. That is, in place of the difference in driving force between the left and right wheels in the modification of the drive system described above, the difference in braking force between the left and right wheels may be provided.
  • the vehicle 10A may include a plurality of vehicle devices other than the front wheel steering device 40.
  • the vehicle 10A may include a rear wheel steering device 120, a front wheel drive device 130, and a rear wheel drive device 140.
  • the vehicle 10A may include a rear wheel steering device 120, a front wheel braking device 150, and a rear wheel braking device 160.
  • the vehicle 10A may include a rear wheel steering device 120, a front wheel drive device 130, a rear wheel drive device 140, a front wheel brake device 150, and a rear wheel brake device 160.
  • the configuration of the front wheel steering device 40 is not limited to the example of the above embodiment.
  • the front wheel steering device 40 may be connected to the output shaft 13 .
  • the steering force may be applied to the steering shaft 14 via the output shaft 13 .
  • the front wheel steering device 40 may be configured to apply a steering force to the steering shaft 14 .
  • the steering wheel lock mechanism 20 is not limited to the example of the above embodiment.
  • the number, positions, etc. of the locking recesses 12a may be changed from the example of the above embodiment. That is, the lock angle ⁇ hQ may be changed.
  • the number and positions of the lock recesses 12a are not limited.
  • the steering wheel lock mechanism 20 does not have to use the lock recess 12 a and the lock pin 22 .
  • the steering wheel lock mechanism 20 may be configured to switch between an operating state that disables rotation of the steering wheel 11 and a non-operating state that allows rotation of the steering wheel 11 .
  • the configuration of the steering angle adjusting device 30 is not limited to the example of the first embodiment.
  • the steering angle adjusting device 30 may be configured to adjust the steering angle ratio Z by relatively rotating the input shaft 12 and the output shaft 13 .
  • Vehicle devices that can adjust the amount of lateral movement of the vehicle 10, 10A and that can be employed as vehicle devices other than the front wheel steering device 40 are those described in the above embodiment and the above modifications. Not limited. Any mechanism may be used as long as it can adjust the amount of lateral movement of the vehicles 10 and 10A when the steering wheel lock mechanism 20 is activated and the steering wheel 11 cannot be rotated.
  • the content of the other device control process may be adjusted according to the vehicle device to be adopted. In the other device control process, it is sufficient if the vehicle 10, 10A can be turned appropriately when the rotation of the steering wheel 11 becomes impossible.
  • the lateral position, turning curvature, lateral velocity, and lateral acceleration of the vehicles 10 and 10A may be used as the amount of lateral movement of the vehicles 10 and 10A, in addition to the yaw rate.
  • the processing circuit 110 of the control device 100 is not limited to having a CPU and a ROM and executing software processing. That is, the processing circuit 110 may have any one of the following configurations (a) to (c).
  • the processing circuit 110 includes one or more processors that execute various processes according to computer programs.
  • the processor includes a CPU and memory such as RAM and ROM.
  • the memory stores program code or instructions configured to cause the CPU to perform processes.
  • Memory, or computer-readable media includes any available media that can be accessed by a general purpose or special purpose computer.
  • the processing circuit 110 includes one or more dedicated hardware circuits that perform various types of processing.
  • Dedicated hardware circuits may include, for example, application specific integrated circuits, ie ASICs or FPGAs.
  • ASIC is an abbreviation for "Application Specific Integrated Circuit”.
  • FPGA is an abbreviation for "Field Programmable Gate Array”.
  • the processing circuit 110 includes a processor that executes part of various processes according to a computer program, and a dedicated hardware circuit that executes the rest of the various processes.
  • At least one of A and B means “only A, only B, or both A and B”. That is, regarding a plurality of elements (A, B, ...) listed via “and”, “at least one of the plurality of elements” means “any one element selected from a plurality of elements only or any two or more elements selected from a plurality of elements”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Regulating Braking Force (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Controls (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

車両(10)は、当該車両(10)の左右への移動量を調整できるように構成された複数の車両装置と、ステアリングホイールロック機構(20)と、を備える。複数の車両装置は、前輪転舵装置(40)と、前輪転舵装置(40)以外の他装置と、を含む。車両の制御装置(100)は、前輪転舵装置(40)に異常が発生している場合、ステアリングホイールロック機構(20)の状態を非作動状態から作動状態に切り替える。制御装置(100)は、ステアリングホイール(11)の回転が不能になった場合に、他装置を作動させることによって車両(10)の左右への移動量を調整する。

Description

車両用制御装置、車両用制御プログラム、及び、車両制御方法
 本開示は、車両用制御装置、車両用制御プログラム、及び、車両制御方法に関する。
 特許文献1には、左右の車輪の転舵を調整する転舵装置に異常が発生した場合には、左右の車輪で制動力差又は駆動力差を発生させることにより、車両を旋回させる制御装置の一例が記載されている。
独国特許出願公開第102016223766号明細書
 車両が旋回している場合、セルフアライニングトルクが車輪に発生する。そのため、上記のように左右の車輪で制動力差又は駆動力差を発生させて車両を旋回させる場合、セルフアライニングトルクの発生によって、要求に沿って車両を旋回させることができないおそれがある。すなわち、転舵装置を利用できない場合に車両を旋回させることについて改善の余地がある。
 本開示の一態様では、車両に適用される車両用制御装置が提供される。前記車両は、複数の車輪と、前記車両の左右への移動量を調整できるように構成された複数の車両装置と、ステアリングホイールの回転を不能とする作動状態、及び、前記ステアリングホイールの回転を許容する非作動状態に選択的に切り替わるステアリングホイールロック機構と、前記複数の車輪のうちの前輪に連結し、前記ステアリングホイールの回転に応じて作動することによって前記前輪を転舵させる転舵シャフトと、を備える。前記複数の車両装置が、前記前輪を転舵させるための転舵力を前記転舵シャフトに付与する前輪転舵装置と、前記前輪転舵装置以外の他装置と、を含む。前記車両用制御装置は、前記前輪転舵装置に異常が発生している場合に、前記ステアリングホイールロック機構の状態を前記非作動状態から前記作動状態に切り替えるステアリングホイールロック制御部と、前記ステアリングホイールロック機構が前記作動状態になった場合に、前記他装置を作動させることによって前記車両の左右への移動量を調整する他装置制御部と、を備える。
 本開示の他の態様では、車両の実行装置が実行する車両用制御プログラムが提供される。前記車両は、複数の車輪と、前記車両の左右への移動量を調整できるように構成された複数の車両装置と、ステアリングホイールの回転を不能とする作動状態、及び、前記ステアリングホイールの回転を許容する非作動状態に選択的に切り替わるステアリングホイールロック機構と、前記複数の車輪のうちの前輪に連結し、前記ステアリングホイールの回転に応じて作動することによって前記前輪を転舵させる転舵シャフトと、を備える。前記複数の車両装置が、前記前輪を転舵させるための転舵力を前記転舵シャフトに付与する前輪転舵装置と、前記前輪転舵装置以外の他装置と、を含む。前記車両用制御プログラムは、前記前輪転舵装置に異常が発生している場合に、前記ステアリングホイールロック機構の状態を前記非作動状態から前記作動状態に切り替えるステアリングホイールロック処理と、前記ステアリングホイールロック機構が前記作動状態になった場合に、前記他装置を作動させることによって前記車両の左右への移動量を調整する他装置制御処理と、を前記実行装置に実行させる。
 本開示のさらなる態様では、車両の制御方法が提供される。前記車両は、複数の車輪と、前記車両の左右への移動量を調整できるように構成された複数の車両装置と、ステアリングホイールの回転を不能とする作動状態、及び、前記ステアリングホイールの回転を許容する非作動状態に選択的に切り替わるステアリングホイールロック機構と、前記複数の車輪のうちの前輪に連結し、前記ステアリングホイールの回転に応じて作動することによって前記前輪を転舵させる転舵シャフトと、を備える。前記複数の車両装置が、前記前輪を転舵させるための転舵力を前記転舵シャフトに付与する前輪転舵装置と、前記前輪転舵装置以外の他装置と、を含む。前記制御方法は、前記前輪転舵装置に異常が発生している場合に、前記ステアリングホイールロック機構の状態を前記非作動状態から前記作動状態に切り替えることと、前記ステアリングホイールロック機構が前記作動状態になった場合に、前記他装置を作動させることによって前記車両の左右への移動量を調整することと、を含む。
図1は、車両用制御装置の第1実施形態である制御装置を備える車両の概略構成を示す図である。 図2は、図1の車両のステアリングホイールロック機構を説明する断面図である。 図3は、図1の車両のステアリングホイールロック機構を説明する断面図である。 図4は、図1の制御装置で実行される自動操舵機能の処理ルーチンを説明するフローチャートである。 図5は、図4の自動操舵機能の処理ルーチンが実行される際の車両の挙動を示すタイムチャートである。 図6は、車両用制御装置の第2実施形態である制御装置を備える車両の概略構成を示す図である。 図7は、図6の制御装置で実行される自動操舵機能の処理ルーチンを説明するフローチャートである。 図8は、後輪を転舵させることによって前輪の転舵角を調整する原理を説明する図である。 図9は、車両の直進中に前輪転舵装置に異常が発生した場合における、図7の自動操舵機能の処理ルーチンの実行によって生じる車両の挙動を示すタイムチャートである。 図10は、車両の直進中に前輪転舵装置に異常が発生した場合における、図7の自動操舵機能の処理ルーチンの実行によって生じる前輪及び後輪の転舵の様子を示す模式図である。 図11は、車両の直進中に前輪転舵装置に異常が発生した場合における、図7の自動操舵機能の処理ルーチンの実行によって生じる前輪及び後輪の転舵の様子を示す模式図である。 図12は、車両の旋回中に前輪転舵装置に異常が発生した場合における、図7の自動操舵機能の処理ルーチンの実行によって生じる車両の挙動を示すタイムチャートである。 図13は、車両の旋回中に前輪転舵装置に異常が発生した場合における、図7の自動操舵機能の処理ルーチンの実行によって生じる前輪及び後輪の転舵の様子を示す模式図である。 図14は、第2実施形態の変更例を表した概略図である。 図15は、第2実施形態のさらなる変更例を表した概略図である。
 (第1実施形態)
 以下、車両用制御装置、車両用制御プログラム、及び、車両制御方法の第1実施形態を図1~図5に従って説明する。
 図1には、本実施形態の車両用制御装置である制御装置100を備える車両10が図示されている。
 <車両の全体構成>
 図1に示すように、車両10は、ステアリングホイール11、入力軸12、出力軸13、2つの前輪16及び2つの後輪18を備えている。また、車両10は、当該車両10の左右への移動量であるヨーレートYRを調整できるように構成された2つの車両装置を備えている。2つの車両装置のうち、一方は前輪転舵装置40であり、他方は舵角調整装置30である。本実施形態では、舵角調整装置30が「他装置」に対応する。
 ステアリングホイール11は入力軸12に連結しているため、ステアリングホイール11と入力軸12とは一体で回転する。入力軸12は舵角調整装置30を介して出力軸13に連結している。出力軸13は転舵シャフト14に連結している。出力軸13に形成されているピニオン歯13aは、転舵シャフト14に形成されているラック歯14aと噛み合っている。そのため、出力軸13と転舵シャフト14とは連動して動作する。すなわち、出力軸13が回転動作すると転舵シャフト14は直線動作する。転舵シャフト14の両端は、タイロッド15を介して左右の前輪16に連結している。ステアリングホイール11の回転に伴う入力軸12等の動作に応じて転舵シャフト14が作動することにより、2つの前輪16が転舵する。
 舵角調整装置30は、ステアリングホイール11と転舵シャフト14との間の動力伝達を分離している。すなわち、舵角調整装置30は電気モータ32及び減速機構34を備えている。電気モータ32は、ハウジング32aと、ハウジング32aから突出している駆動軸32bとを有している。ハウジング32a内には、ステータとロータとが収容されている。ステータは、一体回転可能な状態でハウジング32aに固定されている。ロータは、一体回転可能な状態で駆動軸32bに連結されている。電気モータ32の駆動によって駆動軸32bが回転すると、出力軸13が入力軸12に対して相対回転する。それに伴って、ステアリングホイール11の回転角である操舵角θhに対する前輪16の転舵角θfの比である舵角比Zが変わる。そのため、操舵角θhが固定されている状況下で舵角調整装置30の作動によって舵角比Zを変更することにより、前輪16の転舵角θfが変わる。
 なお、操舵角θhは、車両10の直進状態に対応するステアリングホイール11の中立位置からの角度として定められ、ステアリングホイール11の旋回方向に応じて正負の値をとる。同様に、前輪16の転舵角θfは、車両10の直進状態に対応する前輪16の中立位置からの角度として定められ、前輪16の転舵方向に応じて正負の値をとる。
 前輪転舵装置40は、電気モータ42及び伝達機構44を備えている。電気モータ42の駆動軸は、伝達機構44を介して転舵シャフト14に連結している。伝達機構44は、電気モータ42の駆動軸の回転動作を転舵シャフト14の直線動作に変換する。そのため、電気モータ42の駆動に応じて転舵シャフト14が直線動作すると、2つの前輪16が転舵する。つまり、電気モータ42は、転舵シャフト14に対して前輪16を転舵させる力である転舵力を付与する。
 車両10は、ステアリングホイールロック機構20を備えている。ステアリングホイールロック機構20は、ステアリングホイール11の回転を不能とする作動状態、及び、ステアリングホイール11の回転を許容する非作動状態に切り替わるものである。本実施形態では、ステアリングホイールロック機構20は、入力軸12の回転を規制することによってステアリングホイール11の回転を不能にする。
 図2及び図3には、こうしたステアリングホイールロック機構20の概略構成が図示されている。図2には、操舵角θhが0(零)であるときのステアリングホイールロック機構20と入力軸12との関係が図示されている。図3には、操舵角θhが0(零)ではないときのステアリングホイールロック機構20と入力軸12との関係が図示されている。
 ステアリングホイールロック機構20は、ロックピン22及びアクチュエータ24を備えている。ロックピン22は、入力軸12よりも径方向の外側に配置されている。そして、ロックピン22の先端部22aが入力軸12の周面に対向している。アクチュエータ24が駆動すると、ロックピン22は、入力軸12に接近する方向である接近方向W1、及び、入力軸12から離間する方向である離間方向W2に選択的に移動する。すなわち、アクチュエータ24の駆動によってロックピン22が接近方向W1に移動すると、図2に実線で示すようにロックピン22の先端部22aが入力軸12に押し付けられる。一方、アクチュエータ24の駆動によってロックピン22が離間方向W2に移動すると、図2に二点鎖線で示すようにロックピン22が入力軸12から離間する。
 本実施形態では、アクチュエータ24の駆動によってロックピン22を入力軸12に押し付けているステアリングホイールロック機構20の状態が「作動状態」である。一方、ロックピン22が入力軸12から離間しているステアリングホイールロック機構20の状態が「非作動状態」である。
 入力軸12には、ロックピン22の先端部22aを収容可能な2つのロック凹部12aが設けられている。ロック凹部12aは、入力軸12の周面から径方向の内側へ向けて窪んでいる。2つのロック凹部12aは、入力軸12の中心軸線に沿う方向においてロックピン22と同じ位置にそれぞれ配置されている。操舵角θhが0(零)である場合にロックピン22が接触する入力軸12の位置を基準位置12sとする。2つのロック凹部12aの間に基準位置12sが位置するように2つのロック凹部12aがそれぞれ配置されている。そして、一方のロック凹部12aから基準位置12sまでの距離は、他方のロック凹部12aから基準位置12sまでの距離と同じである。
 図2に示すように、操舵角θhが0(零)である状況下では、ステアリングホイールロック機構20を作動状態にしてもロックピン22の先端部22aはロック凹部12aに収容されない。そのため、入力軸12及びステアリングホイール11の回転が許容される。しかし、ステアリングホイールロック機構20が作動状態である状況下で操舵角θhが0(零)から変わり、ロックピン22とロック凹部12aとが向かい合うようになると、図3に示すようにロックピン22の先端部22aがロック凹部12aに収容される。これにより、ロックピン22によって入力軸12及びステアリングホイール11の回転が不能となる。本実施形態では、操舵角θhが0(零)から正側に変わる場合であっても、操舵角θhが0(零)から負側に変わる場合であっても、ロックピン22の先端部22aをロック凹部12aに収容できる。なお、ロックピン22とロック凹部12aとが向かい合うときの操舵角θhを「ロック角θhQ」という。
 図1に示すように、車両10は情報検出系を備えている。情報検出系は、例えば、操舵角センサ81、出力軸センサ82、電流センサ83及び温度センサ84を有している。また、情報検出系は、例えば、車速センサ85、ヨーレートセンサ86、GPS受信機87及び周辺監視機器88を有している。操舵角センサ81はステアリングホイール11の操舵角θhを検出する。出力軸センサ82は出力軸13の回転角θuを検出する。電流センサ83は、前輪転舵装置40の電気モータ42に流れる電流値MAを検出する。温度センサ84は、前輪転舵装置40の電気モータ42の温度MTを検出する。車速センサ85は車両10の走行速度である車速Vを検出する。ヨーレートセンサ86は車両10のヨーレートYRを検出する。GPS受信機87は、車両10の現在位置座標Gに関する信号をGPS衛星から受信する。周辺監視機器88は、カメラなどの撮像装置、及びレーダを含んでいる。周辺監視機器88は、例えば、車両10の周囲の撮像画像、車両10の周囲の障害物の有無といった、車両10の周辺監視情報Jを取得する。情報検出系を構成するセンサなどの機器は、自身が検出したり取得したりした情報に応じた信号を制御装置100に出力する。
 車両10は、報知装置90を備えている。報知装置90は、前輪転舵装置40の異常を車両10の乗員に報知する装置である。報知装置90としては、例えば、ランプ、表示画面、スピーカを挙げることができる。
 <制御装置の全体構成>
 制御装置100は、処理回路110を備えている。処理回路110は、CPU111及びメモリ112を含んでいる。メモリ112には、CPU111が実行する各種の制御プログラムが記憶されている。すなわち、CPU111が、制御プログラムを実行する「実行装置」に対応する。
 制御装置100は、自動運転機能を有している。自動運転機能とは、車両10の運転者の車両操作無しで車両10を自律的に走行させる機能である。制御装置100は、自動運転機能の1つである自動操舵機能を有している。自動操舵機能は、運転者がステアリングホイール11を操作しなくても車両10を自律的に旋回させる機能である。
 こうした自動操舵機能用の制御プログラムをCPU111が実行することにより、処理回路110は、要求生成部、異常判定部、前輪転舵制御部、ステアリングホイールロック制御部及び他装置制御部として機能する。
 要求生成部は、車両10の旋回に必要になる要求基本値を導出する。要求生成部は、要求基本値として、前輪16の転舵角θfの要求値である要求転舵角θf*と、車両10のヨーレートYRの要求値である要求ヨーレートYR*とを導出する。要求転舵角θf*及び要求ヨーレートYR*の導出手法については後述する。
 異常判定部は、前輪転舵装置40に異常が生じているか否かを判定する。要求転舵角θf*に基づいて前輪16の転舵角θfを調整する上で前輪16に付与する必要がある転舵力を要求転舵力F1という。前輪転舵装置40の電気モータ42の最大出力に対応する転舵力を最大転舵力F2という。例えば、経年劣化などに起因して電気モータ42で内部異常が生じると、当該電気モータ42に通電できる電流値が小さくなり、最大転舵力F2が小さくなることがある。最大転舵力F2が小さくなると、最大転舵力F2を要求転舵力F1以上にできなくなることがある。そこで、異常判定部は、最大転舵力F2と要求転舵力F1との大小関係に応じて前輪転舵装置40の異常の有無を判定する。
 前輪転舵制御部は、前輪転舵装置40に異常が発生していない場合に前輪転舵装置40を作動させることによって、車両10を旋回させる。すなわち、前輪転舵制御部は、前輪16の転舵角θfが要求転舵角θf*となるように、前輪転舵装置40の電気モータ42を駆動させる。一方、前輪転舵制御部は、前輪転舵装置40に異常が発生している場合、前輪転舵装置40の電気モータ42への通電を停止させる。
 ステアリングホイールロック制御部は、前輪転舵装置40に異常が発生している場合に、ステアリングホイールロック機構20の状態を非作動状態から作動状態に切り替える。一方、ステアリングホイールロック制御部は、前輪転舵装置40に異常が発生していない場合、ステアリングホイールロック機構20の状態を非作動状態にする。
 他装置制御部は、ステアリングホイールロック機構20が作動状態である場合に、前輪転舵装置40以外の他装置を作動させることによって車両10のヨーレートYRを調整する。すなわち、他装置制御部は、操舵角θhがロック角θhQであり、且つ前輪16の転舵角θfが要求転舵角θf*となるように、舵角調整装置30を作動させて舵角比Zを調整する。
 本実施形態において、他装置制御部は、操舵角θhがロック角θhQとなるまでステアリングホイール11を回転させることによってステアリングホイール11の回転を不能とするための処理と、ステアリングホイール11の回転が不能になった後で、転舵角θfが要求転舵角θf*となるように前輪16を転舵させるための処理とを実行する。これらのうちの後者の処理は、ステアリングホイールロック機構20が作動状態となってステアリングホイール11の回転が不能になった場合に、舵角調整装置30の作動を通じて車両10のヨーレートYRを調整する処理に相当する。
 <車両に自立的に旋回させる際の処理手順>
 図4を参照し、自動操舵機能によって車両10を旋回させる際に制御装置100の処理回路110が実行する処理ルーチンについて説明する。処理回路110のメモリ112に記憶されている制御プログラムをCPU111が実行することにより、処理回路110が本処理ルーチンを実行する。したがって、本処理ルーチンを構成する各処理を、実行装置であるCPU111が実行するともいえる。
 本処理ルーチンにおいて、ステップS10では、処理回路110は、要求生成部として機能することにより、要求ヨーレートYR*及び要求転舵角θf*を要求基本値として導出する。要求生成部として処理回路110が実行するステップS10の処理を、「要求生成処理」ともいう。
 要求生成処理の一例について説明する。処理回路110は、要求基本値を導出するにあたり、例えば、ナビゲーション装置から提供された地図データ、車両10の現在位置座標G、及び周辺監視情報Jに基づいて、車両10のこの後の目標軌道を導出する。そして、制御装置100は、車速V及びヨーレートYRなどのような車両10の現状の走行情報と、導出した目標軌道とを基に、要求ヨーレートYR*及び要求転舵角θf*を導出する。
 要求基本値を導出すると、処理回路110は、処理をステップS20に移行する。ステップS20において、処理回路110は、要求転舵力F1を導出する。処理回路110は、例えば、以下の関係式(式1)を用いて要求転舵力F1を算出できる。関係式(式1)において、「Kf」は前輪16のコーナーリングパワーであり、「β*」は車体スリップ角の要求値である。「Lf」は、車両10の重心と前輪16の車軸との距離であり、「LN」は、キャスタートレールとニューマチックトレールとの和である。そして、要求転舵力F1を導出するに際し、処理回路110は、関係式(式1)における「V」に最新の車速Vを代入し、ステップS10で導出した要求ヨーレートYR*及び要求転舵角θf*を関係式(式1)における「YR*」及び「θf*」に代入する。なお、要求転舵力F1の導出に必要な上記のパラメータのうち、例えば要求転舵角θf*のように正負の値があるものについては、絶対値を利用するものとする。
 F1=Kf・(β*+Lf/V・YR*-θf*)・LN…(式1)
 続いて、ステップS30において、処理回路110は、最大転舵力F2を導出する。制御装置100は、例えば、関係式(式2)を用いて最大転舵力F2を算出する。関係式(式2)において、「I」は、現状で前輪転舵装置40の電気モータ42に通電可能な電流値の最大値であり、「LS」は、前輪16の接地点とタイロッド15との位置関係に関連したパラメータである。また、「D」は変換係数である。このため、電流値の最大値Iが大きいほど大きい値が最大転舵力F2として導出される。
 F2=I・D・LS…(式2)
 次のステップS40において、処理回路110は、異常判定部として機能することにより、ステップS20で導出した要求転舵力F1がステップS30で算出した最大転舵力F2以下であるか否かを判定する。要求転舵力F1が最大転舵力F2以下である場合は、前輪転舵装置40に異常が生じていないと見なす。一方、要求転舵力F1が最大転舵力F2よりも大きい場合は、前輪転舵装置40に異常が生じていると見なす。本実施形態では、異常判定部として処理回路110が実行するステップS40の処理が、「異常判定処理」に対応する。
 ステップS40において、要求転舵力F1が最大転舵力F2以下である場合(YES)、処理回路110は、処理をステップS50に移行する。ステップS50において、処理回路110は、前輪転舵制御部として機能することにより、要求転舵角θf*に基づいて前輪転舵装置40を制御する。具体的には、処理回路110は、前輪16の転舵角θfが要求転舵角θf*になるように前輪転舵装置40の電気モータ42を制御する。前輪転舵制御部として処理回路110が実行するステップS50の処理を、「前輪転舵処理」ともいう。
 なお、ステップS50において前輪転舵装置40によって前輪16を転舵させる場合、舵角調整装置30の電気モータ32の回転角が保持される。そのため、前輪16の転舵に連動してステアリングホイール11が回転する。したがって、前輪16の転舵角θfとステアリングホイール11の操舵角θhとは同一に維持された状態にある。ステップS50の処理を実行すると、処理回路110は本処理ルーチンを一旦終了する。その後、所定の制御サイクルが経過すると、処理回路110は本処理ルーチンの実行を開始する。
 一方、ステップS40において、要求転舵力F1が最大転舵力F2よりも大きい場合(NO)、処理回路110は処理をステップS100に移行する。ステップS100において、制御装置100は、前輪転舵装置40に異常が発生していることを報知装置90から乗員に報知させる。
 続いて、ステップS102において、処理回路110は、前輪転舵制御部として機能することにより、前輪転舵装置40の電気モータ42への通電を停止する。そして、処理回路110は、処理をステップS110に移行する。
 ステップS110において、処理回路110は、ステアリングホイールロック制御部として機能することにより、ステアリングホイールロック機構20の状態を非作動状態から作動状態に切り替える。これにより、ロックピン22が接近方向W1に移動し、その先端部22aが入力軸12に接触する。本実施形態では、ステアリングホイールロック制御部として処理回路110が実行するステップS110の処理が、「ステアリングホイールロック処理」に対応する。上記のとおり、ステアリングホイールロック機構20が作動状態になった場合でも、ステアリングホイール11の操舵角θhがロック角θhQになるまでは、ロックピン22の先端部22aがロック凹部12aに収容されないため、ステアリングホイール11の回転が許容される。ステアリングホイールロック機構20が作動状態に切り替わると、処理回路110は処理をステップS160に移行する。
 ステップS160において、処理回路110は、要求生成部として機能することにより、上記ステップS10の処理と同様に要求ヨーレートYR*及び要求転舵角θf*を導出する。続いて、ステップS170において、処理回路110は、他装置制御部として機能することにより、ステップS160で導出した要求転舵角θf*に基づいて舵角比Zを調整する。すなわち、処理回路110は、前輪16の転舵角θfが要求転舵角θf*になるように、舵角調整装置30の電気モータ32を制御する。その際、処理回路110は、ステップS160で導出した要求転舵角θf*の正負の符号に基づいて、前輪16を転舵させる向きを判断する。そして、処理回路110は、この向きに前輪16が転舵するように、電気モータ32における、ハウジング32aに対する駆動軸32bの回転方向を決定する。本実施形態では、他装置制御部として処理回路110が実行するステップS170の処理が、「他装置制御処理」に対応する。
 その後、ステップS180において、処理回路110は、終了条件が成立しているか否かを判定する。終了条件は、車両10が旋回中ではないこと、及び、自動操舵機能の停止が要求されたことの双方が満たされることである。ヨーレートYRを基に車両10が直進走行していると判断できたり、車両10が停止したりした場合には、車両10が旋回中ではないと見なせる。終了条件が成立していない場合(S180:NO)、処理回路110は処理をステップS160に移行する。一方、終了条件が成立すると(S180:YES)、処理回路110は本処理ルーチンを終了する。
 <第1実施形態における作用及び効果>
 図5を参照し、前輪転舵装置40に異常が発生した状態で車両10を旋回させる場合について説明する。
 図5に示す例では、タイミングt11において車両10が直進している。図5の(a)及び(b)の二点鎖線で示すように、タイミングt11よりも後のタイミングt12において、旋回要求が生じて要求ヨーレートYR*及び要求転舵角θf*が0(零)よりも大きくなる。なお、図5では、明細書の説明理解の便宜上、要求ヨーレートYR*及び要求転舵角θf*をタイミングt12において1段階で大きく変化させている。
 タイミングt12で旋回要求があった際、最大転舵力F2が要求転舵力F1未満であるとすると(S40:NO)、ステアリングホイールロック機構20の状態が非作動状態から作動状態に切り替わる(S110)。ここで、図5の(d)に示すように、タイミングt12の時点でのステアリングホイール11の操舵角θhは0(零)であり、操舵角θhはロック角θhQではない。そのため、ステアリングホイールロック機構20を作動状態にしても、ステアリングホイール11の回転は未だ許容されている。
 ステアリングホイールロック機構20が作動状態に切り替わると、図5の(c)に示すように、舵角調整装置30の作動によって舵角比Zの変更が開始される(S170)。ここで、前輪16は地面に接しているため、前輪16を転舵させる上では、車両10の重量に応じて前輪16に作用する摩擦力に抗した力が必要になる。この摩擦力との兼ね合いで、舵角比Zの変更の開始直後では、電気モータ32の駆動力が、電気モータ32の駆動軸32bではなく、抵抗のかからないハウジング32aを回転させるように作用する。つまり、前輪16に作用する上記の摩擦力は、出力軸13を介して電気モータ32の駆動軸32bの回転を妨げる。この結果として、駆動軸32bが回転することなく、ハウジング32a及びステアリングホイール11が回転する。したがって、タイミングt12で舵角比Zの変更を開始すると、図5の(d)に示すようにステアリングホイール11の操舵角θhが変化し始める一方で、図5の(b)に示すように前輪16の転舵角θfは変化しない。なお、電気モータ32におけるハウジング32aと駆動軸32bとの相対回転の関係性により、ステアリングホイール11は、要求転舵角θf*に対応する回転方向に対して逆向きに回転する。図5の(d)に示すように、ステアリングホイール11の回転によって、タイミングt13で操舵角θhがロック角θhQになる。すると、ステアリングホイールロック機構20においてロックピン22の先端部22aがロック凹部12aに収容される。これにより、ステアリングホイール11の回転は不能となる。
 ステアリングホイール11が回転不能になった後も、舵角調整装置30の作動による舵角比Zの変更は継続される。ステアリングホイール11の回転が不能になると、電気モータ32の駆動力は、ハウジング32aではなく駆動軸32bを回転させるようになる。すなわち、固定状態にあるハウジング32aから反力を受ける格好で、電気モータ32の駆動力は、前輪16に係る摩擦力に抗して駆動軸32b、ひいては出力軸13を回転させるようになる。したがって、図5の(b)に示すように、ステアリングホイール11の回転が不能となったタイミングt13以降では、舵角調整装置30の作動によって前輪16の転舵角θfが変化し始める。そして、タイミングt14で、前輪16の転舵角θfは要求転舵角θf*になる。上記した前輪16の転舵を通じて、タイミングt13以降では車両10のヨーレートYRが変化する。そして、タイミングt14以降、車両10は要求ヨーレートYR*に従って旋回する。
 この後においては、ステアリングホイール11の回転を不能とした状態のまま、舵角調整装置30の作動によって前輪16の転舵角θfが調整される(S170)。すなわち、ステアリングホイール11の回転を不能とすることで、舵角調整装置30における電気モータ32の駆動軸32bと前輪16とを連動して動作させる。これにより、前輪転舵装置40によって前輪16を操作するのと同様に、舵角調整装置30によって前輪16を直接的に操作できる。したがって、前輪転舵装置40を利用できない場合でも、セルフアライニングトルクの影響を受けることなく車両10を旋回させることができる。
 なお、図5に示す例は、車両10の旋回開始前で前輪転舵装置40に異常が発生していると判定された場合の一例である。しかし、車両10の旋回中に前輪転舵装置40に異常が発生することもある。本実施形態では、このような場合でも車両10の旋回状態を維持できる。すなわち、車両10が旋回している最中で前輪転舵装置40に異常が発生していると判定されると(S40:YES)、ステアリングホイールロック機構20の状態が非作動状態から作動状態に切り替えられる(S110)。その上で舵角調整装置30の作動によって舵角比Zが変更される(S170)。これにより、前輪16に作用する上記摩擦力との関連で操舵角θhがロック角θhQに向かってステアリングホイール11が回転する。そして、操舵角θhがロック角θhQになると、ステアリングホイール11の回転が不能となる。このようにステアリングホイール11の回転が不能となれば、それ以降は舵角調整装置30の作動によって前輪16の転舵角θfを自在に調整できる。
 (第2実施形態)
 以下、車両用制御装置、車両用制御プログラム、及び、車両制御方法の第2実施形態を図6~図13に従って説明する。この第2実施形態では、車両が搭載している車両装置が第1実施形態とは異なり、それに付随して他装置制御処理の内容が第1実施形態とは異なる。それ以外の部分は基本的には第1実施形態と同じである。以下では、第1実施形態とは異なる部分を主として説明し、第1実施形態と重複した内容については説明を適宜簡略、又は、割愛する。なお、図6において、図1と同一又は実質同一に機能する箇所には、図1と同一の符号を付している。また、図6では、情報検出系を構成する機器を一まとめにして統一の符号80を付している。
 図6に示すように、車両10Aは、舵角調整装置を備えていない。そのため、ステアリングホイール11及び入力軸12は出力軸13に直結している。すなわち、ステアリングホイール11の操舵角θhと前輪16の転舵角θfとは同じになる。
 車両10Aは、リアシャフト181及び後輪転舵装置120を備えている。リアシャフト181の両端は、連結部品183を介して左右の後輪18に連結している。後輪転舵装置120は、電気モータ122及び伝達機構124を備えている。電気モータ122の駆動軸は、伝達機構124を介してリアシャフト181に連結している。伝達機構124は、電気モータ122の駆動軸の回転動作をリアシャフト181の直線動作に変換する。電気モータ122の駆動に応じてリアシャフト181が直線動作することで後輪18が転舵する。このように、後輪転舵装置120は、後輪18の転舵角θrを調整するものである。すなわち、車両10Aは、当該車両10Aの左右への移動量であるヨーレートYRを調整できるように構成された車両装置として、前輪転舵装置40と後輪転舵装置120とを備えている。本実施形態では、後輪転舵装置120が「他装置」に対応する。
 本実施形態において、制御装置100は、前輪転舵装置40に異常が発生している状況下で車両10Aを旋回させる場合、ステアリングホイールロック機構20及び後輪転舵装置120を利用する。そのために、制御装置100の処理回路110は、第1実施形態と同様のステアリングホイールロック処理の実行後、つぎのような他装置制御処理を行う。すなわち、処理回路110は、他装置制御部として機能することにより、他装置制御処理として第1処理と第2処理とを実行する。
 他装置制御部は、第1処理において、ステアリングホイールロック機構20が作動状態となった場合に、後輪転舵装置120によって後輪18を転舵させることによって前輪16を転舵させる。これにより、前輪16の転舵角θfをロック転舵角θfQにする。ロック転舵角θfQとは、ステアリングホイール11の操舵角θhがロック角θhQとなるときの前輪16の転舵角θfである。上記のとおり、前輪16の転舵角θfとステアリングホイール11の操舵角θhは同じである。したがって、ロック転舵角θfQは、ロック角θhQと同じである。
 他装置制御部は、第2処理において、第1処理の実行によってステアリングホイール11の回転が不能になった場合に、後輪転舵装置120を作動させて後輪18を転舵させる。これにより、車両10Aが旋回する。
 <車両に自立的に旋回させる際の処理手順>
 図7を参照し、自動旋回機能によって車両10Aを旋回させる際に制御装置100の処理回路110が実行する処理ルーチンについて説明する。
 本処理ルーチンを開始すると、処理回路110は、図4に示したステップS10~S110までの複数の処理を順次実行する。ステップS110の処理を実行することによってステアリングホイールロック機構20の状態を非作動状態から作動状態に切り替えると、処理回路110は処理をステップS220に移行する。
 ステップS220において、処理回路110は、前輪16の転舵角θfの絶対値がロック転舵角θfQの絶対値未満であるか否かを判定する。転舵角θfの絶対値がロック転舵角θfQの絶対値未満である場合(S220:YES)、処理回路110は処理をステップS230に移行する。一方、転舵角θfの絶対値がロック転舵角θfQの絶対値以上である場合(S220:NO)、処理回路110は、処理をステップS250に移行する。
 ステップS230において、処理回路110は、他装置制御部として機能することにより、前輪16の要求転舵角θf*と同じ方向に後輪18を転舵させる。すなわち、処理回路110は、ステップS10で導出した要求転舵角θf*の正負の符号に基づいて、要求転舵角θf*として定められている転舵の方向を判断する。そして、処理回路110は、この方向と同じ方向に後輪18が転舵するように後輪転舵装置120の電気モータ122を制御する。このとき、処理回路110は後輪18の転舵角θrを予め定められた第1転舵角とする。なお、後述の理由に因り、後輪18を要求転舵角θf*と同じ方向に転舵することにより、前輪16を要求転舵角θf*の方向に転舵させることができる。上記の第1転舵角は、前輪16の転舵を促進するのに最適な値として、例えば実験又はシミュレーションで予め定めてある。処理回路110は、後輪18の転舵角θrが第1転舵角になるまで後輪18を転舵させると、処理をステップS240に移行する。
 ステップS240において、処理回路110は、他装置制御部として機能することにより、前輪16の転舵角θfがロック転舵角θfQになったか否かを判定する。処理回路110は、転舵角θfの絶対値とロック転舵角θfQの絶対値とを比較することによってステップS240の判定を行う。ステアリングホイールロック機構20が作動状態であるため、転舵角θfがロック転舵角θfQになると、ステアリングホイール11の回転が不能になったと判断できる。そのため、転舵角θfがロック転舵角θfQに至っていない場合(S240:NO)、処理回路110は、転舵角θfがロック転舵角θfQになるまでステップS240の判定を繰り返し実行する。一方、転舵角θfがロック転舵角θfQに至った場合(S240:YES)、処理回路110は処理をステップS250に移行する。
 ステップS250において、処理回路110は、他装置制御部として機能することにより、前輪16の要求転舵角θf*とは逆方向に後輪18を転舵させる。すなわち、処理回路110は、ステップS230の処理と同様、ステップS10で導出した要求転舵角θf*の正負の符号に基づいて、要求転舵角θf*として定められている転舵の方向を判断する。そして、処理回路110は、この方向と逆方向に後輪18が転舵するように後輪転舵装置120の電気モータ122を制御する。詳細には、処理回路110は、後輪18の転舵角θrが第2転舵角になるように電気モータ122を制御する。この第2転舵角は、つぎのような値である。すなわち、前輪16の転舵角θfが、要求転舵角θf*と同方向のロック転舵角θfQであるときに、ステップS10で導出した要求ヨーレートYR*を実現するのに必要な後輪18の転舵角θrである。転舵角θrが第2転舵角になると、処理回路110は、処理をステップS260に移行する。
 本実施形態では、他装置制御部として機能する処理回路110が実行するステップS230~ステップS250の処理が、「他装置制御処理」に対応する。特に、ステップS230,S240の処理が「第1処理」に対応し、ステップS250の処理が「第2処理」に対応する。
 ここで、ステップS250の処理は、他装置制御処理の第1処理と第2処理とを兼ねることもある。すなわち、ステップS220において転舵角θfの絶対値がロック転舵角θfQの絶対値以上である場合(NO)、処理回路110は、ステップS230,S240の処理を経ずにステップS250の処理を実行することになる。この場合、ステップS250の開始時点で前輪16の転舵角θfはロック転舵角θfQになっていない。この状況でステップS250の処理を行うと、詳しくは後述するが、前輪16の転舵角θfがロック転舵角θfQとなるように前輪16が転舵する。これにより、ステアリングホイール11の回転が不能になる。そして、その後においては車両10Aが要求ヨーレートYR*に応じて旋回するという一連の作動が生じる。このケースでは、ステップS250の処理が、第1処理と第2処理とを兼ねることになる。
 ステップS250の処理を実行すると、処理回路110は処理をステップS260に移行する。ステップS260において、処理回路110は、上記ステップS160と同様に要求ヨーレートYR*及び要求転舵角θf*を導出する。続いて、ステップS270において、処理回路110は、他装置制御部として機能することにより、ステップS260で導出した要求ヨーレートYR*に基づいて後輪18の転舵角θrを調整する。すなわち、処理回路110は、ヨーレートYRが要求ヨーレートYR*になるように後輪転舵装置120の電気モータ122を制御する。そして、ステップS280において、処理回路110は、終了条件が成立したか否かを判定する。なお、ステップS280の処理内容は図4に示したステップS180の処理と同等である。そのため、ステップS280以降の説明については説明を割愛する。
 <第2実施形態における作用及び効果>
 本実施形態では、他装置制御処理が実行されると、後輪18を転舵させることによって前輪16の転舵角θfが調整される。その原理について先ず説明する。車両10Aが直進しているものとする。このとき、図8に実線で示すように、後輪18を右方向に転舵したとする。すると、図8の矢印Nで示すように、車両10Aは左方向に旋回しようとする。このとき、前輪16には、セルフアライニングトルクが作用する。この結果として、図8に実線で示すように、前輪16は後輪18と同相の右方向に転舵する。本実施形態では、このような、後輪18を転舵させることに伴い前輪16に作用するセルフアライニングトルクを利用して、前輪16の転舵角θfを調整する。ちなみに、前輪16と後輪18とを同方向に転舵させることで、車両10Aを直進させることができる。
 上記の原理を踏まえ、前輪転舵装置40に異常が発生した状態で車両10Aを旋回させる場合について説明する。
 図9に示す例は、車両10Aが直進している状況下で前輪転舵装置40に異常が発生した場合である。当該例では、タイミングt21において、車両10Aが直進している。このタイミングt21よりも後のタイミングt22において、図9の(a)の二点鎖線で示すように、旋回要求が生じて要求ヨーレートYR*が0(零)よりも大きくなる。図9に示す例では、前輪転舵装置40に異常が発生して当該前輪転舵装置40を作動させることができない(S40:NO)。そのため、タイミングt22でステアリングホイールロック機構20の状態が非作動状態から作動状態に切り替えられる(S110)。ここで、図9の(b)に示すように、タイミングt22の時点での前輪16の転舵角θfは0(零)であり、当該転舵角θfの絶対値はロック転舵角θfQの絶対値よりも小さい。したがって、ステアリングホイールロック機構20を作動状態に切り替えたタイミングt22の時点では、ステアリングホイール11の回転及び前輪16の転舵が未だ許容されている。
 ステアリングホイールロック機構20を作動状態に切り替えたタイミングt22の後の暫くの期間、図9の(c)、及び、図10に示すように、前輪16の要求転舵角θf*と同じ方向へと後輪18が転舵する(S230)。すると、上記のセルフアライニングトルクに応じた前輪16の動作に伴い、図9の(b)、及び、図10に実線で示すように、前輪16が後輪18と同じ方向に転舵していく。そして、タイミングt23で前輪16の転舵角θfがロック転舵角θfQに至ると(S240:YES)、ステアリングホイールロック機構20においてロックピン22の先端部22aがロック凹部12aに収容される。これにより、前輪16の転舵及びステアリングホイール11の回転が不能となる。
 このタイミングt23の後、図9の(c)、及び、図11に示すように、前輪16の要求転舵角θf*とは反対方向へと後輪18が転舵される(S250)。これに伴い、図9の(a)に示すように、車両10AのヨーレートYRは、徐々に要求ヨーレートYR*に近いていく。そして、やがてタイミングt24で車両10AのヨーレートYRは要求ヨーレートYR*になる。そして、車両10Aは要求ヨーレートYR*に応じて旋回する。このとき、前輪16の転舵は不能となっていることから、セルフアライニングトルクの影響を受けることなく車両10Aは旋回できる。
 図12に示す例は、車両10Aが旋回している状況下で前輪転舵装置40に異常が発生した場合である。当該例では、図12の(a)に示すように、タイミングt31において車両10Aが旋回している。この時点では前輪転舵装置40は正常であり、前輪転舵装置40を作動させることによって、前輪16の転舵角θfが要求転舵角θf*となるように前輪16の転舵が調整される。また、このとき、後輪18の転舵角θrは0(零)である。タイミングt31よりも後のタイミングt32において、前輪転舵装置40に異常が発生して当該前輪転舵装置40を作動させることができなくなる(S40:NO)。この場合、タイミングt32でステアリングホイールロック機構20の状態が非作動状態から作動状態に切り替えられる(S110)。ここで、図12の(b)に示すように、タイミングt32の時点での前輪16の転舵角θfはロック転舵角θfQよりも大きく、当該転舵角θfはロック転舵角θfQではない。したがって、ステアリングホイールロック機構20を作動状態に切り替えたタイミングt32の時点では、ステアリングホイール11の回転及び前輪16の転舵が未だ許容されている。
 タイミングt32では車両10Aは旋回中であり、転舵角θfはロック転舵角θfQよりも大きい(S220:NO)。そのため、図12の(c)、及び、図13に示すように、タイミングt32の後では、前輪16の要求転舵角θf*とは反対方向へと後輪18が転舵される。すると、上記のセルフアライニングトルクに応じた前輪16の動作に伴い、図12の(b)、及び、図13の矢印Kで示すように、前輪16が後輪18と同じ方向に向かうように転舵し、前輪16の転舵角θfの絶対値が小さくなっていく。そして、タイミングt33で前輪16の転舵角θfがロック転舵角θfQに至る。すると、ステアリングホイールロック機構20において、ロックピン22の先端部22aがロック凹部12aに収容される。その結果、前輪16の転舵及びステアリングホイール11の回転が不能となる。この後では、後輪18の転舵角θrを調整することにより、要求ヨーレートYR*に従って車両10Aの旋回を継続する。このとき、前輪16の転舵は不能となっていることから、セルフアライニングトルクの影響を受けることなく車両10Aは旋回できる。
 このように、本実施形態では、前輪転舵装置40に異常が発生した場合、前輪16の転舵を不能とした上で、後輪18によって車両10AのヨーレートYRを調整する。前輪16の転舵を不能としておけば、セルフアライニングトルクの影響を受けずに済む。したがって、前輪転舵装置40を利用できない場合でも、セルフアライニングトルクの影響を受けることなく車両10Aを旋回させることができる。
 (変更例)
 上記複数の実施形態は、以下のように変更して実施することができる。上記複数の実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ・上記の終了条件は、適切なタイミングで他装置制御処理を終了させることができるものであれば、上記実施形態の例に限定されない。なお、終了条件を上記実施形態の例から変更する場合でも、車両10,10Aの旋回が終わった後に他装置制御処理が終了するような条件とすることが好ましい。車両10,10Aの直進中に自動運転機能による自動走行から運転者の操作による手動走行に切り替わるのであれば、運転者に運転操作の負担がかかり難い。
 ・前輪転舵装置40に異常が発生しているか否かの判定手法は、上記複数の実施形態で説明した手法に限定されない。例えば、電気モータ42の温度MTが規定の閾値よりも高いことをもって、前輪転舵装置40に異常が発生していると判定してもよい。異常の判定手法、換言すると、異常の定義の仕方に拘わらず、前輪転舵装置40を通常通りに使用できない場合には、ステアリングホイールロック機構20を作動状態に切り替えて前輪転舵装置40以外の車両装置によって車両10,10AのヨーレートYRを調整すればよい。
 ・前輪転舵装置40に異常が生じた場合にその旨を報知装置90から報知させることは必須ではない。例えば、前輪転舵装置40に異常が生じた場合には、車両10,10Aの旋回が終了した段階で自動運転機能を停止させてその終了の旨を運転者に伝えれば、報知装置90による報知は必ずしも必要ない。
 ・上記実施形態のように前輪転舵装置40以外の車両装置によって車両10,10AのヨーレートYRを調整した後、例えば車両10,10Aの旋回の終了後にステアリングホイールロック機構20を非作動状態に切り替えてもよい。例えば前輪転舵装置40が偶発的に異常と判定されることもあり得る。この場合、一旦は上記実施形態のように前輪転舵装置40以外の車両装置によって車両10,10AのヨーレートYRを調整したとしても、その後、前輪転舵装置40を再度利用することが可能になる。ステアリングホイールロック機構20を非作動状態に切り替えれば、通常通り前輪転舵装置40によって前輪16を転舵させることができる。
 ・第2実施形態に関して、後輪転舵装置120の構成は、上記の例に限定されない。後輪転舵装置120は、後輪18の転舵角θrを調整できる構成であればよい。
 ・図14に示すように、第2実施形態に関して、車両10Aは、後輪転舵装置120に代えて、次の2つの装置を備えていてもよい。すなわち、2つの装置は、左の前輪16Aと右の前輪16Bとに付与する駆動力の差を調整できる前輪駆動装置130、及び、左の後輪18Aと右の後輪18Bとに付与する駆動力の差を調整できる後輪駆動装置140である。前輪駆動装置130及び後輪駆動装置140は、車両10AのヨーレートYRを調整できるように構成された車両装置である。これらの駆動装置を備えている場合でも、第2実施形態と同様の原理を利用して、前輪転舵装置40を利用することなく車両10Aを旋回させることができる。例えば、車両10Aの直進中に前輪転舵装置40に異常が発生した場合、ステアリングホイールロック機構20を作動状態に切り替えた後、他装置制御処理の第1処理として、前輪駆動装置130を利用して左の前輪16Aと右の前輪16Bとに駆動力の差を持たせる。そして、このことによって、これらの前輪16A,16Bの転舵角θfがロック転舵角θfQとなるように前輪16を転舵させる。なお、第1処理として、後輪駆動装置140を利用して左の後輪18Aと右の後輪18Bとに駆動力の差を持たせてもよい。そのことによって、2つの前輪16A,16Bに作用するセルフアライニングトルクを利用してこれらの前輪16A,16Bの転舵角θfがロック転舵角θfQとなるように前輪16を転舵させてもよい。この後、他装置制御処理の第2処理として、後輪駆動装置140を利用して左の後輪18Aと右の後輪18Bとに駆動力の差を持たせる。このことによって車両10AのヨーレートYRを調整する。車両10Aの旋回中に前輪転舵装置40に異常が生じた場合には、後輪駆動装置140を利用して左の後輪18Aと右の後輪18Bとに駆動力の差を持たせればよい。このことにより第1処理と第2処理とを兼ねることができる。なお、図14において、図6と同一、又は、実質同一に機能する箇所には、図6と同一の符号を付している。この点、この後参照する図15についても同様である。
 ・上記変更例に関して、車両10Aは、前輪駆動装置130と後輪駆動装置140のうち、後輪駆動装置140のみを備えていてもよい。後輪駆動装置140さえ備えていれば、上記のとおり、第2実施形態と同様の車両10Aの旋回を実現できる。
 ・図15に示すように、第2実施形態に関して、車両10Aは、後輪転舵装置120に代えて、次の2つの装置を備えていてもよい。すなわち、2つの装置は、左の前輪16Aと右の前輪16Bとに付与する制動力の差を調整できる前輪制動装置150、及び、左の後輪18Aと右の後輪18Bとに付与する制動力の差を調整できる後輪制動装置160である。前輪制動装置150及び後輪制動装置160は、車両10AのヨーレートYRを調整できるように構成された車両装置である。これらの制動装置を備えている場合でも、上記の駆動装置の変更例と同様、第2実施形態と同様の車両10Aの旋回を実現できる。すなわち、上記の駆動装置の変更例において左右の車輪に駆動力の差を持たせていたのに代えて、左右の車輪に制動力の差を持たせればよい。
 ・車両10Aは、前輪転舵装置40以外の車両装置を複数備えていてもよい。例えば、車両10Aは、後輪転舵装置120、前輪駆動装置130及び後輪駆動装置140を備えていてもよい。また例えば、車両10Aは、後輪転舵装置120、前輪制動装置150及び後輪制動装置160を備えていてもよい。また例えば、車両10Aは、後輪転舵装置120、前輪駆動装置130、後輪駆動装置140、前輪制動装置150及び後輪制動装置160を備えていてもよい。そして、これらを組み合わせて利用して、第2実施形態と同様の車両10Aの旋回を実現してもよい。
 ・前輪転舵装置40の構成は、上記実施形態の例に限定されない。例えば、前輪転舵装置40は、出力軸13に連結していてもよい。そして、出力軸13を介して転舵力を転舵シャフト14に付与できるようになっていてもよい。前輪転舵装置40は、転舵シャフト14に転舵力を付与できるように構成されていればよい。
 ・ステアリングホイールロック機構20は、上記実施形態の例に限定されない。例えば、ロック凹部12aの数、位置等を上記実施形態の例から変更してもよい。すなわちロック角θhQを変更してもよい。適切な操舵角θhでステアリングホイール11の回転を不能にできるのであれば、ロック凹部12aの数、位置等は問わない。ステアリングホイールロック機構20は、ロック凹部12aとロックピン22を利用したものでなくてもよい。ステアリングホイールロック機構20は、ステアリングホイール11の回転を不能にする作動状態、及び、ステアリングホイール11の回転を許容する非作動状態に切り替わる構成であればよい。
 ・舵角調整装置30の構成は、第1実施形態の例に限定されない。舵角調整装置30は、入力軸12、及び、出力軸13を相対回転させることで舵角比Zを調整できる構成であればよい。
 ・車両10,10Aの左右への移動量を調整可能な車両装置であって前輪転舵装置40以外の車両装置として採用できるものは、上記実施形態、及び、上記変更例に記載してものに限定されない。ステアリングホイールロック機構20が作動状態になってステアリングホイール11の回転が不能となった場合に車両10,10Aの左右への移動量を調整できるのであれば、どのようなものでもよい。採用する車両装置に応じて、他装置制御処理の内容を調整すればよい。他装置制御処理では、ステアリングホイール11の回転が不能になった場合に車両10,10Aを適切に旋回させることができればよい。
 ・車両10,10Aの左右への移動量は、ヨーレートの他、車両10,10Aの、横位置、旋回曲率、横速度、横加速度を用いても良い。
 ・制御装置100の処理回路110は、CPUとROMとを備えて、ソフトウェア処理を実行するものに限らない。すなわち、処理回路110は、以下(a)~(c)の何れかの構成であればよい。
 (a)処理回路110は、コンピュータプログラムに従って各種処理を実行する一つ以上のプロセッサを備えている。プロセッサは、CPU並びに、RAM及びROMなどのメモリを含んでいる。メモリは、処理をCPUに実行させるように構成されたプログラムコード又は指令を格納している。メモリ、すなわちコンピュータ可読媒体は、汎用又は専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含んでいる。
 (b)処理回路110は、各種処理を実行する一つ以上の専用のハードウェア回路を備えている。専用のハードウェア回路としては、例えば、特定用途向け集積回路、すなわちASIC又はFPGAを挙げることができる。なお、ASICは、「Application Specific Integrated Circuit」の略記である。FPGAは、「Field Programmable Gate Array」の略記である。
 (c)処理回路110は、各種処理の一部をコンピュータプログラムに従って実行するプロセッサと、各種処理のうちの残りの処理を実行する専用のハードウェア回路とを備えている。
 ・本開示において、「A及びBのうちの少なくとも1つ」は、「Aのみ、Bのみ、又は、A及びBの両方」を意味する。すなわち、「及び」を介して列記される複数の要素(A,B・・・)に関し、「複数の要素のうちの少なくとも1つ」は、「複数の要素から選択される任意の1つの要素のみ、又は、複数の要素から選択される任意の2つ以上の要素」を意味する。

Claims (6)

  1.  車両に適用される車両用制御装置であって、
     前記車両は、
      複数の車輪と、
      前記車両の左右への移動量を調整できるように構成された複数の車両装置と、
      ステアリングホイールの回転を不能とする作動状態、及び、前記ステアリングホイールの回転を許容する非作動状態に選択的に切り替わるステアリングホイールロック機構と、
      前記複数の車輪のうちの前輪に連結し、前記ステアリングホイールの回転に応じて作動することによって前記前輪を転舵させる転舵シャフトと、を備え、
     前記複数の車両装置が、前記前輪を転舵させるための転舵力を前記転舵シャフトに付与する前輪転舵装置と、前記前輪転舵装置以外の他装置と、を含み、
     前記車両用制御装置は、
      前記前輪転舵装置に異常が発生している場合に、前記ステアリングホイールロック機構の状態を前記非作動状態から前記作動状態に切り替えるステアリングホイールロック制御部と、
      前記ステアリングホイールロック機構が前記作動状態になった場合に、前記他装置を作動させることによって前記車両の左右への移動量を調整する他装置制御部と、を備える
     車両用制御装置。
  2.  前記他装置は、
      前記ステアリングホイールと一体に回転する入力軸と、前記転舵シャフトの動作と連動して回転する出力軸との間に相対回転を生じさせることで、前記ステアリングホイールの回転角に対する前記前輪の転舵角の比である舵角比を調整する舵角調整装置、
      前記複数の車輪のうちの後輪の転舵角を調整する後輪転舵装置、
      前記複数の車輪のうちの左輪と右輪との制動力差を調整可能に構成された制動装置、及び、
      前記左輪と前記右輪との駆動力差を調整可能に構成された駆動装置、のうちの少なくとも1つを含む
     請求項1に記載の車両用制御装置。
  3.  前記他装置は、前記ステアリングホイールと前記転舵シャフトとの間の動力伝達を分離する舵角調整装置を含み、前記舵角調整装置は、前記ステアリングホイールと一体に回転する入力軸と、前記転舵シャフトの動作と連動して回転する出力軸との間に相対回転を生じさせることで、前記ステアリングホイールの回転角である操舵角に対する前記前輪の転舵角の比である舵角比を調整するものであり、
     前記ステアリングホイールロック機構は、前記作動状態である場合には、前記操舵角が予め設定されたロック角になると前記ステアリングホイールの回転を不能とする一方、前記非作動状態である場合には、前記操舵角が前記ロック角になっても前記ステアリングホイールの回転を許容するものであり、
     前記車両用制御装置は、前記前輪の転舵角の要求値である要求転舵角を算出する要求生成部をさらに備え、
     前記他装置制御部は、前記ステアリングホイールロック機構が前記作動状態である場合に、前記前輪の転舵角が前記要求転舵角となるように、前記舵角調整装置を作動させて前記舵角比を調整する
     請求項1に記載の車両用制御装置。
  4.  前記転舵シャフトは、前記ステアリングホイールの回転に連動して動作するようになっており、
     前記他装置は、前記複数の車輪のうちの後輪の転舵角を調整する後輪転舵装置、前記複数の車輪のうちの左輪と右輪との制動力差を調整可能に構成された制動装置、及び、前記左輪と前記右輪との駆動力差を調整可能に構成された駆動装置のうちの少なくとも1つを含み、
     前記ステアリングホイールロック機構は、前記作動状態である場合には、前記ステアリングホイールの回転角である操舵角が予め設定されたロック角になると前記ステアリングホイールの回転を不能とする一方、前記非作動状態である場合には、前記操舵角が前記ロック角になっても前記ステアリングホイールの回転を許容するものであり、
     前記操舵角が前記ロック角となるときの前記前輪の転舵角はロック転舵角であり、
     前記他装置制御部は、
      前記ステアリングホイールロック機構が前記作動状態となった場合に、前記他装置を作動させることによって前記前輪の転舵角を前記ロック転舵角にして前記ステアリングホイールの回転を不能とする第1処理と、
      前記第1処理の実行によって前記ステアリングホイールの回転が不能になった場合に、前記他装置を作動させることによって前記車両を旋回させる第2処理と、を実行する
     請求項1に記載の車両用制御装置。
  5.  車両の実行装置が実行する車両用制御プログラムであって、
     前記車両は、
      複数の車輪と、
      前記車両の左右への移動量を調整できるように構成された複数の車両装置と、
      ステアリングホイールの回転を不能とする作動状態、及び、前記ステアリングホイールの回転を許容する非作動状態に選択的に切り替わるステアリングホイールロック機構と、
      前記複数の車輪のうちの前輪に連結し、前記ステアリングホイールの回転に応じて作動することによって前記前輪を転舵させる転舵シャフトと、を備え、
     前記複数の車両装置が、前記前輪を転舵させるための転舵力を前記転舵シャフトに付与する前輪転舵装置と、前記前輪転舵装置以外の他装置と、を含み、
     前記車両用制御プログラムは、
      前記前輪転舵装置に異常が発生している場合に、前記ステアリングホイールロック機構の状態を前記非作動状態から前記作動状態に切り替えるステアリングホイールロック処理と、
      前記ステアリングホイールロック機構が前記作動状態になった場合に、前記他装置を作動させることによって前記車両の左右への移動量を調整する他装置制御処理と、を前記実行装置に実行させる
     車両用制御プログラム。
  6.  車両の制御方法であって、
     前記車両は、
      複数の車輪と、
      前記車両の左右への移動量を調整できるように構成された複数の車両装置と、
      ステアリングホイールの回転を不能とする作動状態、及び、前記ステアリングホイールの回転を許容する非作動状態に選択的に切り替わるステアリングホイールロック機構と、
      前記複数の車輪のうちの前輪に連結し、前記ステアリングホイールの回転に応じて作動することによって前記前輪を転舵させる転舵シャフトと、を備え、
     前記複数の車両装置が、前記前輪を転舵させるための転舵力を前記転舵シャフトに付与する前輪転舵装置と、前記前輪転舵装置以外の他装置と、を含み、
     前記制御方法は、
      前記前輪転舵装置に異常が発生している場合に、前記ステアリングホイールロック機構の状態を前記非作動状態から前記作動状態に切り替えることと、
      前記ステアリングホイールロック機構が前記作動状態になった場合に、前記他装置を作動させることによって前記車両の左右への移動量を調整することと、を含む
     制御方法。
PCT/JP2022/035290 2021-09-30 2022-09-22 車両用制御装置、車両用制御プログラム、及び、車両制御方法 WO2023054144A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280064971.5A CN117999209A (zh) 2021-09-30 2022-09-22 车辆用控制装置、车辆用控制程序以及车辆控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-161132 2021-09-30
JP2021161132A JP2023050828A (ja) 2021-09-30 2021-09-30 車両用制御装置、及び、車両用制御プログラム

Publications (1)

Publication Number Publication Date
WO2023054144A1 true WO2023054144A1 (ja) 2023-04-06

Family

ID=85780697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035290 WO2023054144A1 (ja) 2021-09-30 2022-09-22 車両用制御装置、車両用制御プログラム、及び、車両制御方法

Country Status (3)

Country Link
JP (1) JP2023050828A (ja)
CN (1) CN117999209A (ja)
WO (1) WO2023054144A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203801A (ja) * 2006-01-31 2007-08-16 Toyota Motor Corp 車両の操舵装置
JP2010159002A (ja) * 2009-01-09 2010-07-22 Toyota Motor Corp 車両の操舵装置
JP2012232676A (ja) * 2011-05-02 2012-11-29 Toyota Motor Corp 車両の挙動制御装置
JP2014073827A (ja) * 2012-09-11 2014-04-24 Nsk Ltd 電動パワーステアリング装置
JP2016215938A (ja) * 2015-05-25 2016-12-22 株式会社ジェイテクト 車両用操舵装置
WO2017138617A1 (ja) * 2016-02-12 2017-08-17 日本精工株式会社 車両用ステアリング制御装置
JP2018161917A (ja) * 2017-03-24 2018-10-18 アイシン精機株式会社 車両
JP2022063482A (ja) * 2020-10-12 2022-04-22 株式会社アドヴィックス 車両の制御装置および車両の制御プログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203801A (ja) * 2006-01-31 2007-08-16 Toyota Motor Corp 車両の操舵装置
JP2010159002A (ja) * 2009-01-09 2010-07-22 Toyota Motor Corp 車両の操舵装置
JP2012232676A (ja) * 2011-05-02 2012-11-29 Toyota Motor Corp 車両の挙動制御装置
JP2014073827A (ja) * 2012-09-11 2014-04-24 Nsk Ltd 電動パワーステアリング装置
JP2016215938A (ja) * 2015-05-25 2016-12-22 株式会社ジェイテクト 車両用操舵装置
WO2017138617A1 (ja) * 2016-02-12 2017-08-17 日本精工株式会社 車両用ステアリング制御装置
JP2018161917A (ja) * 2017-03-24 2018-10-18 アイシン精機株式会社 車両
JP2022063482A (ja) * 2020-10-12 2022-04-22 株式会社アドヴィックス 車両の制御装置および車両の制御プログラム

Also Published As

Publication number Publication date
CN117999209A (zh) 2024-05-07
JP2023050828A (ja) 2023-04-11

Similar Documents

Publication Publication Date Title
JP4617946B2 (ja) 車両用操舵装置
US10807637B2 (en) Steering control device
JP2007326415A (ja) 車両用操舵装置
JP2002002519A (ja) 車両の操舵制御装置
CN109533007B (zh) 线控转向系统诊断
US8938335B2 (en) Control unit for vehicle steering system
EP3486140B1 (en) Vision based active steering system
US20130218418A1 (en) Vehicle steering system
US20180029593A1 (en) Driving control system for vehicle
CN113753123A (zh) 车辆控制装置以及车辆控制方法
JP2002302054A (ja) 動力車両の重畳型ステアリングシステム
CN111132890B (zh) 用于双轮辙车辆的转向装置和用于运行双轮辙车辆的方法
JP7115269B2 (ja) 車両の制御装置
WO2023054144A1 (ja) 車両用制御装置、車両用制御プログラム、及び、車両制御方法
JP2007039017A (ja) 車両操作支援装置
JP4636331B2 (ja) 車両用操舵装置
CN110356468B (zh) 四轮转向操纵装置
US20230122952A1 (en) Differential braking to increase evasive maneuver lateral capability
US11952059B2 (en) Steering control device
WO2020184300A1 (ja) 車輪制御システムおよび車輪制御方法
JP2010076734A (ja) 障害物回避支援装置
US20230278624A1 (en) Motion control device for vehicle, computer-readable medium that stores motion control program, and motion control method for vehicle
US20230331258A1 (en) Vehicle control interface, vehicle, and control method for vehicle
JP2002370658A (ja) 操舵反力制御装置
JP4747958B2 (ja) パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280064971.5

Country of ref document: CN