WO2023054071A1 - リアクトル、コンバータ、及び電力変換装置 - Google Patents

リアクトル、コンバータ、及び電力変換装置 Download PDF

Info

Publication number
WO2023054071A1
WO2023054071A1 PCT/JP2022/035030 JP2022035030W WO2023054071A1 WO 2023054071 A1 WO2023054071 A1 WO 2023054071A1 JP 2022035030 W JP2022035030 W JP 2022035030W WO 2023054071 A1 WO2023054071 A1 WO 2023054071A1
Authority
WO
WIPO (PCT)
Prior art keywords
core portion
middle core
core
winding
reactor
Prior art date
Application number
PCT/JP2022/035030
Other languages
English (en)
French (fr)
Inventor
和宏 稲葉
将也 村下
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2023054071A1 publication Critical patent/WO2023054071A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Definitions

  • the present disclosure relates to reactors, converters, and power converters.
  • This application claims priority based on Japanese Patent Application No. 2021-159001 filed in Japan on September 29, 2021, and incorporates all the contents described in the Japanese application.
  • a reactor is a component of a converter installed in a vehicle such as a hybrid vehicle.
  • Patent Literature 1 discloses a reactor including a coil and a core formed by combining two core pieces. Each core piece includes a coil placement portion that is placed inside the coil and an exposed portion that is placed outside the coil. The coil placement portion and the exposed portion are integrally molded. Both core pieces are combined so that the end surfaces of the coil arrangement portions of the core pieces face each other.
  • the reactor of the present disclosure is A coil having a winding portion and a magnetic core having a middle core portion,
  • the winding portion is arranged on the middle core portion,
  • the middle core portion has a first middle core portion and a second middle core portion divided in a direction along the axis of the winding portion, the relative magnetic permeability of the second middle core portion is higher than the relative magnetic permeability of the first middle core portion;
  • the center position of the winding portion in the direction along the axis is located in a region closer to the second middle core portion than the center position of the middle core portion in the direction along the axis.
  • FIG. 1 is a schematic perspective view showing a reactor according to Embodiment 1.
  • FIG. FIG. 2 is a schematic plan view showing the reactor according to Embodiment 1.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG.
  • FIG. 4 is a schematic plan view showing a reactor according to Embodiment 2.
  • FIG. 5 is a schematic plan view showing a reactor according to Embodiment 3.
  • FIG. FIG. 6 is a configuration diagram schematically showing the power supply system of the hybrid vehicle.
  • FIG. 7 is a circuit diagram showing an outline of an example of a power converter including a converter.
  • One object of the present disclosure is to provide a reactor with large inductance. Another object of the present disclosure is to provide a converter including the reactor. Furthermore, another object of the present disclosure is to provide a power converter including the above converter.
  • the reactor of the present disclosure can increase inductance.
  • a reactor is A coil having a winding portion and a magnetic core having a middle core portion, The winding portion is arranged on the middle core portion, The middle core portion has a first middle core portion and a second middle core portion divided in a direction along the axis of the winding portion, the relative magnetic permeability of the second middle core portion is higher than the relative magnetic permeability of the first middle core portion; The center position of the winding portion in the direction along the axis is located in a region closer to the second middle core portion than the center position of the middle core portion in the direction along the axis.
  • the reactor of the present disclosure can increase the inductance compared to the case where the center position of the winding portion is the same as the center position of the middle core portion.
  • the reason for this is that the center position of the winding portion is positioned closer to the second middle core portion than the center position of the middle core portion, thereby increasing the inductance.
  • a difference between the relative magnetic permeability of the second middle core portion and the relative magnetic permeability of the first middle core portion may be 50 or more.
  • a distance between the center position of the winding portion and the center position of the middle core portion may be 1% or more of the axial length of the winding portion.
  • the reactor according to (3) above is The distance may be 1.0 mm or more.
  • a relative magnetic permeability of the first middle core portion may be 5 or more and 50 or less.
  • a relative magnetic permeability of the second middle core portion may be 50 or more and 500 or less.
  • the first middle core portion is composed of a compact made of a composite material in which soft magnetic powder is dispersed in a resin
  • the second middle core portion may be composed of a green compact made of raw material powder containing soft magnetic powder.
  • the relative magnetic permeability of a composite material compact is smaller than that of a powder compact.
  • the first middle core portion is composed of a molded body of composite material
  • the second middle core portion is composed of a compacted body. Therefore, the relative magnetic permeability of the second middle core portion is higher than that of the first middle core portion.
  • the middle core portion has a gap portion between the first middle core portion and the second middle core portion, The gap portion may be located inside the winding portion.
  • the configuration of (8) above can reduce loss caused by leakage magnetic flux from the gap portion.
  • the reason for this is that the gap is located inside the winding portion, so that the leakage magnetic flux from the gap portion is reduced compared to the case where the gap portion is located outside the winding portion.
  • the magnetic core is composed of a first core and a second core,
  • the first core has the first middle core portion
  • the second core may have the second middle core portion.
  • the configuration of (9) above is excellent in assembling workability of the magnetic core.
  • the converter of the present disclosure includes the reactor of the present disclosure, the inductance of the reactor is large.
  • a power conversion device according to an embodiment of the present disclosure, The converter according to (10) above is provided.
  • the power conversion device of the present disclosure includes the converter of the present disclosure, the inductance of the reactor is large.
  • FIG. A reactor 1a includes a coil 2 and a magnetic core 3 .
  • the coil 2 has windings 20 .
  • the magnetic core 3 has a middle core portion 31 .
  • the wound portion 20 is arranged on the middle core portion 31 .
  • the middle core portion 31 has a first middle core portion 31a and a second middle core portion 31b.
  • One of the characteristics of the reactor 1a of Embodiment 1 is that it satisfies the following requirements (a) and (b).
  • (a) The relative magnetic permeability of the second middle core portion 31b is higher than that of the first middle core portion 31a.
  • Reactor 1 a can increase inductance compared to the case where center position C ⁇ b>20 of winding portion 20 is the same as center position C ⁇ b>31 of middle core portion 31 .
  • the configuration of the reactor 1a will be described in detail below.
  • the coil 2 has one winding portion 20, as shown in FIGS.
  • the winding portion 20 is a portion where the winding is spirally wound.
  • a known winding can be used for the winding.
  • the winding is a coated rectangular wire having a conductor wire and an insulating coating covering the conductor wire.
  • the conductor wire is a rectangular wire made of copper.
  • the insulating coating is made of enamel.
  • the coil 2 is an edgewise coil formed by edgewise winding a coated rectangular wire.
  • the shape of the winding part 20 is cylindrical.
  • the shape of the winding portion 20 may be a polygonal tubular shape or a cylindrical shape.
  • a polygonal cylindrical shape means that the contour shape of the end surface of the wound portion 20 when viewed from the direction along the axis is polygonal.
  • the direction along the axis of winding 20 is the direction from the first end to the second end of winding 20 .
  • a polygonal shape is, for example, a quadrangular shape, a hexagonal shape, or an octagonal shape.
  • a square shape includes a rectangular shape.
  • a rectangular shape includes a square shape.
  • the term “cylindrical” means that the contour shape of the end face is circular.
  • the circular shape includes not only a true circular shape but also an elliptical shape.
  • the shape of the winding portion 20 is a rectangular tube.
  • the coil 2 has a terminal portion 21.
  • the terminal portions 21 are portions from which the windings are drawn out from both ends of the winding portion 20 .
  • the terminal portion 21 has a first terminal portion 21a and a second terminal portion 21b.
  • the first terminal portion 21 a is pulled out from the first end portion of the winding portion 20 to the outer peripheral side of the winding portion 20 .
  • the second terminal portion 21 b is pulled out from the second end portion of the winding portion 20 to the outer peripheral side of the winding portion 20 .
  • the insulating coating is peeled off to expose the conductor wire.
  • a bus bar (not shown) is connected to the first terminal portion 21a and the second terminal portion 21b.
  • the coil 2 is connected to an external device (not shown) by a busbar.
  • the external device is, for example, a power source that supplies power to the coil 2 .
  • the length L20 of the winding portion 20 shown in FIG. 2 is not particularly limited, it is, for example, 10 mm or more and 60 mm or less, and further 20 mm or more and 50 mm or less.
  • the length here refers to the length along the axis of the winding portion 20 .
  • the length L20 of the winding portion 20 varies depending on the thickness or number of turns of the winding. The number of turns is, for example, 10 to 60 turns, and further 20 to 50 turns.
  • the magnetic core 3 has a middle core portion 31, a side core portion 33, and an end core portion 35, as shown in FIGS.
  • the magnetic core 3 is configured in a ⁇ shape as a whole in a plan view.
  • the magnetic core 3 includes a first core 3a and a second core 3b.
  • the magnetic core 3 is configured by combining a first core 3a and a second core 3b.
  • the first core 3 a and the second core 3 b are combined in the direction along the axis of the winding portion 20 .
  • the boundary between the middle core portion 31 and the end core portion 35 and the boundary between the side core portion 33 and the end core portion 35 are indicated by two-dot chain lines.
  • the first core 3a and the second core 3b will be described later.
  • the X direction is the direction along the axis of the winding portion 20 .
  • the Y direction is the direction in which the middle core portion 31 and the side core portion 33 are arranged side by side.
  • the Y direction is a direction orthogonal to the X direction and is the direction from the middle core portion 31 toward the side core portion 33 .
  • the Z direction is a direction orthogonal to both the X direction and the Y direction, and is the direction away from the central axis of the winding portion 20 .
  • the side where the end portion 21 of the coil 2 is located is the upper side, and the opposite side is the lower side.
  • the planar view described above refers to a state in which the reactor 1a is viewed from above, that is, from the Z direction.
  • the shape of the magnetic core 3 is ⁇ when viewed from the Z direction as shown in FIG.
  • a ⁇ -shaped closed magnetic circuit is formed in the magnetic core 3 .
  • the magnetic flux generated by the coil 2 passes from the middle core portion 31, through one end core portion 35 of the two end core portions 35, each side core portion 33, the remaining end core portions 35, and returns to the middle core portion 31. It is a closed magnetic circuit.
  • Middle core portion 31 has a portion arranged inside winding portion 20 .
  • the middle core portion 31 is a portion of the magnetic core 3 sandwiched between the first end core portion 35a and the second end core portion 35b.
  • the first end core portion 35a and the second end core portion 35b will be described later.
  • the number of middle core portions 31 is one.
  • the middle core portion 31 extends along the X direction.
  • the direction along the axis of the middle core portion 31 coincides with the direction along the axis of the winding portion 20 .
  • both ends of the middle core portion 31 protrude from both end surfaces of the wound portion 20 .
  • This projecting portion is also part of the middle core portion 31 .
  • the shape of the middle core portion 31 is not particularly limited as long as it corresponds to the inner shape of the winding portion 20 .
  • the shape of the middle core portion 31 is substantially rectangular parallelepiped.
  • the corners of the outer peripheral surface of the middle core portion 31 may be rounded along the inner peripheral surface of the wound portion 20 when viewed from the X direction.
  • the middle core portion 31 is divided in the X direction and has a first middle core portion 31a and a second middle core portion 31b.
  • the first middle core portion 31a and the second middle core portion 31b are arranged in the X direction.
  • the middle core portion 31 has a first end located in the first direction of the X direction and a second end located in the second direction of the X direction.
  • the first direction of the X direction is the direction from the first middle core portion 31a to the second middle core portion 31b, that is, the direction from the first end of the wound portion 20 to the second end.
  • the second direction of the X direction is the direction from the second middle core portion 31b to the first middle core portion 31a, that is, the direction from the second end of the wound portion 20 to the first end.
  • the first end of middle core portion 31 is arranged inside the first end of winding portion 20 .
  • the second end of middle core portion 31 is arranged inside the second end of winding portion 20 .
  • the end face of the first middle core portion 31a and the end face of the second middle core portion 31b face each other in the X direction.
  • a boundary between the first middle core portion 31 a and the second middle core portion 31 b is positioned inside the winding portion 20 .
  • the second middle core portion 31b is positioned side by side in the X direction with respect to the first middle core portion 31a.
  • the first middle core portion 31a is positioned on the left side of the paper surface
  • the second middle core portion 31b is positioned on the left side of the paper surface.
  • the length L31 of the middle core portion 31 shown in FIG. 2 is longer than the length L20 of the winding portion 20.
  • the length L31 of the middle core portion 31 is the length along the X direction.
  • the length L31 of the middle core portion 31 is equivalent to the distance between the facing surfaces of the first end core portion 35a and the second end core portion 35b.
  • the length L31 of the middle core portion 31 is, for example, 105% or more and 120% or less of the length L20 of the winding portion 20 .
  • the length L31 may be 105% or more and 115% or less, and further 105% or more and 110% or less of the length L20.
  • the difference between the length L31 and the length L20 is, for example, 1.0 mm or more and 6.0 mm or less.
  • the length L31 of the middle core portion 31 is longer than the length L20 of the winding portion 20 by 1.0 mm or more and 6.0 mm or less.
  • the difference between the length L31 and the length L20 may be 1.5 mm or more and 5.0 mm or less, and may be 2.0 mm or more and 4.0 mm or less.
  • the lengths of the first middle core portion 31a and the second middle core portion 31b may be appropriately set.
  • the length here refers to the length along the X direction.
  • the length L1a of the first middle core portion 31a and the length L1b of the second middle core portion 31b are different.
  • Length L1a is longer than L1b.
  • the length L1a may be shorter than the length L1b, or the length L1a and the length L1b may be the same.
  • the middle core portion 31 has a gap portion 3g.
  • the gap portion 3g is provided between the first middle core portion 31a and the second middle core portion 31b.
  • Gap portion 3 g is positioned inside winding portion 20 . Positioning the gap portion 3g inside the winding portion 20 reduces leakage magnetic flux from the gap portion 3g as compared with the case where the gap portion 3g is positioned outside the winding portion 20 . Therefore, it is possible to reduce the loss caused by the leakage magnetic flux from the gap portion 3g.
  • the length Lg of the gap portion 3g along the X direction may be appropriately set so as to obtain a predetermined inductance.
  • the length Lg of the gap portion 3g is, for example, 0.1 mm or more and 2 mm or less, 0.3 mm or more and 1.5 mm or less, and further 0.5 mm or more and 1 mm or less.
  • the gap portion 3g may be an air gap.
  • a non-magnetic material made of, for example, resin or ceramics may be arranged in the gap portion 3g.
  • the length L31 of the middle core portion 31 includes the length Lg of the gap portion 3g.
  • the length L31 of the middle core portion 31 is the sum of the length L1a of the first middle core portion 31a, the length L1b of the second middle core portion 31b, and the length Lg of the gap portion 3g.
  • the gap portion 3g may be omitted.
  • the end face of the first middle core portion 31a and the end face of the second middle core portion 31b are in contact with each other, and there is substantially no gap between the first middle core portion 31a and the second middle core portion 31b.
  • the end core portion 35 is a portion arranged outside the winding portion 20 .
  • the end core portion 35 has a first end core portion 35a and a second end core portion 35b.
  • the number of end core portions 35 is two.
  • the two end core portions 35 are spaced apart in the X direction.
  • the second end core portion 35b is located apart from the first end core portion 35a in the X direction.
  • the first end core portion 35 a faces the first end surface of the winding portion 20 .
  • the first end face is the end face of the first end of the winding portion 20 .
  • a first end of the middle core portion 31, specifically, an end of the first middle core portion 31a is connected to the first end core portion 35a.
  • the second end core portion 35b faces the second end face of the winding portion 20. As shown in FIG.
  • the second end face is the end face of the second end of the winding portion 20 .
  • a second end of the middle core portion 31, specifically, an end of the second middle core portion 31b is connected to
  • each of the first end core portion 35a and the second end core portion 35b is not particularly limited as long as it forms a predetermined magnetic path.
  • the shape of each of the first end core portion 35a and the second end core portion 35b is substantially rectangular parallelepiped.
  • the side core portion 33 is a portion arranged outside the winding portion 20 .
  • the number of side core portions 33 is two.
  • Each of the side core portions 33 extends in the X direction.
  • the direction along the axis of each of the side core portions 33 is parallel to the direction along the axis of the middle core portion 31 .
  • the two side core portions 33 are spaced apart in the Y direction.
  • the two side core portions 33 are arranged side by side with the middle core portion 31 interposed therebetween. That is, the middle core portion 31 is arranged between the two side core portions 33 .
  • One side core portion 33 of the two side core portions 33 is positioned in the first direction of the Y direction.
  • the side core portion 33 faces the first side surface of the outer peripheral surface of the winding portion 20 .
  • the first side surface is a surface of the winding portion 20 that faces the first direction in the Y direction.
  • the side core portion 33 is positioned on the upper side of the paper surface.
  • the remaining side core portions 33 of the two side core portions 33 are positioned in the second Y direction.
  • the side core portion 33 faces the second side surface of the outer peripheral surface of the winding portion 20 .
  • the second side surface is a surface of the winding portion 20 that faces the second Y direction.
  • the side core portion 33 is positioned on the lower side of the paper surface.
  • the side core portion 33 has a first end located in the first direction of the X direction and a second end located in the second direction of the X direction. A first end of the side core portion 33 is connected to the first end core portion 35a.
  • a second end of the side core portion 33 is connected to the second end core portion 35b.
  • Each cross-sectional area of the side core portions 33 may be the same or different.
  • the cross-sectional areas of the two side core portions 33 are the same.
  • the total cross-sectional area of the two side core portions 33 is the same as the cross-sectional area of the middle core portion 31 .
  • the cross-sectional area here refers to the area of a cross section orthogonal to the X direction.
  • Each of the side core portions 33 should have a length that connects the first end core portion 35a and the second end core portion 35b.
  • the shape of the side core portion 33 is not particularly limited. In this embodiment, each side core portion 33 has a substantially rectangular parallelepiped shape.
  • the first core 3a has a first middle core portion 31a.
  • the second core 3b has a second middle core portion 31b.
  • the shape of each of the first core 3a and the second core 3b can be selected from various combinations.
  • the magnetic core 3 is an ET type in which an E-shaped first core 3a and a T-shaped second core 3b are combined.
  • the first core 3a has a first middle core portion 31a, a first end core portion 35a, and two side core portions 33. As shown in FIG.
  • the first middle core portion 31a, the first end core portion 35a, and the two side core portions 33 are integrally molded. Since the first core 3a is an integral molded body, each core portion constituting the first core 3a is made of the same material. That is, the magnetic properties and mechanical properties of the respective core portions forming the first core 3a are substantially the same.
  • the first middle core portion 31a extends in the X direction from the middle portion of the first end core portion 35a in the Y direction toward the second middle core portion 31b.
  • Each of the side core portions 33 extends in the X direction from both ends of the first end core portion 35a in the Y direction toward the second end core portion 35b.
  • the shape of the first core 3a is an E shape when viewed from the Z direction.
  • the second core 3b has a second middle core portion 31b and a second end core portion 35b.
  • the second middle core portion 31b and the second end core portion 35b are integrally molded. Since the second core 3b is an integral molded body, each core portion constituting the second core 3b is made of the same material. That is, the magnetic properties and mechanical properties of the respective core portions forming the second core 3b are substantially the same.
  • the second middle core portion 31b extends in the X direction from the middle portion of the second end core portion 35b in the Y direction toward the first middle core portion 31a.
  • the shape of the second core 3b is T-shaped when viewed from the Z direction.
  • the magnetic core 3 is composed of two pieces, a first core 3a and a second core 3b. That is, the number of divisions of the magnetic core 3 is two.
  • the number of divisions of the magnetic core 3 and the positions at which the magnetic core 3 is divided are not particularly limited.
  • the magnetic core 3 may be composed of three or more pieces.
  • the first end core portion 35a, the second end core portion 35b, the first middle core portion 31a, the second middle core portion 31b, and the two side core portions 33 are individually configured, and these are combined to configure the magnetic core 3. may
  • the number of core pieces to be combined is only two, so the magnetic core 3 can be easily assembled.
  • the relative permeability of the second core 3b is higher than that of the first core 3a. That is, in the middle core portion 31, the second middle core portion 31b has a higher relative magnetic permeability than the first middle core portion 31a.
  • the difference between the relative permeability of the second middle core portion 31b and the relative permeability of the first middle core portion 31a is preferably 50 or more, for example.
  • the upper limit of the difference in relative magnetic permeability is practically about 500, for example.
  • the difference in relative magnetic permeability may be 50 or more and 500 or less, and further 100 or more and 400 or less.
  • the relative magnetic permeability of each of the first core 3a and the second core 3b may be appropriately set so as to obtain a predetermined inductance while satisfying the above relationship.
  • the relative magnetic permeability of the first middle core portion 31a is, for example, 5 or more and 50 or less.
  • the relative magnetic permeability of the second middle core portion 31b is, for example, 50 or more and 500 or less. If the relative permeability of the first core 3a is within the range of 5 or more and 50 or less and the relative permeability of the second core 3b is within the range of 50 or more and 500 or less, it is easy to obtain a predetermined inductance.
  • the relative magnetic permeability of the first middle core portion 31a may be 10 or more and 45 or less, further 15 or more and 40 or less.
  • the relative magnetic permeability of the second middle core portion 31b is preferably 100 or more and 500 or less.
  • the number of second middle core portions 31b may be 100 or more and 450 or less, and further 150 or more and 400 or less
  • the relative permeability can be obtained as follows. A ring-shaped measurement sample is cut out from each of the first middle core portion 31a and the second middle core portion 31b. Each measurement sample is wound with 300 turns on the primary side and 20 turns on the secondary side.
  • the magnetization curve here means a so-called DC magnetization curve.
  • the first middle core portion 31a and the second middle core portion 31b are made of soft magnetic material.
  • the shaped bodies are, for example, compacts or composite shaped bodies.
  • the first middle core portion 31a and the second middle core portion 31b are formed of moldings made of different materials.
  • the term "materials different from each other" refers not only to the case where the materials of the individual components of the compacts constituting the first middle core portion 31a and the second middle core portion 31b are different, but also to the case where the materials of the individual components are the same. , including cases where the contents of the constituent elements are different.
  • first middle core portion 31a and the second middle core portion 31b are composed of a compacted body, if at least one of the material and the content of the soft magnetic powder constituting the compacted body is different, they are different from each other. Material. Further, even if the first middle core portion 31a and the second middle core portion 31b are formed of composite material compacts, if at least one of the material and the content of the soft magnetic powder constituting the composite material is different, the materials are different from each other. is.
  • the powder compact is formed by compression molding raw material powder containing soft magnetic powder.
  • the compacted body has a larger content of soft magnetic powder than the compacted body of the composite material. Therefore, the powder compact has higher magnetic properties than the composite material compact. Magnetic properties are, for example, relative magnetic permeability and saturation magnetic flux density.
  • the powder compact may contain, for example, at least one of a binder resin and a molding aid.
  • the content of the soft magnetic powder in the powder compact is, for example, 85% by volume or more and 99.99% by volume or less when the powder compact is 100% by volume.
  • Composite molded bodies are made by dispersing soft magnetic powder in resin.
  • a molded body of composite material is obtained by filling a mold with a fluid material in which soft magnetic powder is dispersed in unsolidified resin and solidifying the resin.
  • the soft magnetic powder content of the composite material compact can be easily adjusted. Therefore, it is easy to adjust the magnetic properties of the molded body of the composite material.
  • the content of the soft magnetic powder in the composite material compact is, for example, 20% by volume or more and 80% by volume or less when the composite material compact is 100% by volume.
  • the particles that make up the soft magnetic powder are at least one selected from the group consisting of soft magnetic metal particles, soft magnetic metal particles with an insulating coating on the outer periphery of the soft magnetic metal particles, and soft magnetic non-metal particles.
  • Soft magnetic metals are, for example, pure iron or iron-based alloys.
  • the iron-based alloy is, for example, Fe (iron)--Si (silicon) alloy or Fe--Ni (nickel) alloy.
  • the insulating coating is, for example, phosphate.
  • a soft magnetic non-metal is, for example, ferrite.
  • the resin of the molded composite material may be either a thermosetting resin or a thermoplastic resin.
  • Thermosetting resins are, for example, unsaturated polyester resins, epoxy resins, urethane resins, or silicone resins.
  • the thermoplastic resin is, for example, polyphenylene sulfide resin, polytetrafluoroethylene resin, liquid crystal polymer, polyamide resin, polybutylene terephthalate resin, or acrylonitrile-butadiene-styrene resin.
  • Polyamide resins are, for example, nylon 6, nylon 66, or nylon 9T.
  • the resin of the molded composite material may be, for example, BMC (Bulk molding compound), millable silicone rubber, or millable urethane rubber.
  • BMC is, for example, a mixture of unsaturated polyester and calcium carbonate or glass fibers.
  • the molded body of the composite material may contain filler in addition to the soft magnetic powder and resin.
  • the filler is, for example, ceramic filler made of alumina or silica.
  • the content of the filler is, for example, 0.2% by mass or more and 20% by mass or less, further 0.3% by mass or more and 15% by mass or less, or 0.5% by mass or more and 10% by mass, when the molded article of the composite material is 100% by volume. % by mass or less.
  • the content of the soft magnetic powder in the powder compact or composite material compact is considered equivalent to the area ratio of the soft magnetic powder in the cross section of the compact.
  • the content of the soft magnetic powder is obtained as follows. A cross section of the compact is observed with a scanning electron microscope (SEM) to obtain an observed image. The magnification of the SEM is, for example, 200 times or more and 500 times or less. The number of acquired observation images is set to 10 or more. The total area of the observation image shall be 0.1 cm 2 or more. One observation image may be acquired for one cross section, or a plurality of observation images may be acquired for one cross section. Image processing is performed on each of the acquired observation images to extract the contours of the particles of the soft magnetic powder. Image processing is, for example, binarization processing. The total area of the particles of the soft magnetic powder is calculated in each observation image, and the area ratio of the particles of the soft magnetic powder in each observation image is obtained. The average value of the area ratios in all observed images is regarded as the content of the soft magnetic powder.
  • the first core 3a having the first middle core portion 31a is a composite material molding.
  • a second core 3b having a second middle core portion 31b is a powder compact.
  • the magnetic properties of the magnetic core 3 as a whole can be adjusted by forming the first core 3a from a molded body of a composite material and by forming the second core 3b from a compacted body.
  • the first middle core portion 31a is composed of a composite material molded body and the second middle core portion 31b is composed of a compacted body
  • each of the first middle core portion 31a and the second middle core portion 31b Relative permeability easily satisfies the above relationship.
  • the relative magnetic permeability of the first middle core portion 31a is about 20 or more and 30 or less.
  • the relative magnetic permeability of the second middle core portion 31b is about 150 or more and 250 or less.
  • the difference between the relative magnetic permeability of the second middle core portion 31b and the relative magnetic permeability of the first middle core portion 31a is about 120 or more and 230 or less.
  • the center position C20 of the winding portion 20 is located in a region closer to the second middle core portion 31b than the center position C31 of the middle core portion 31 is. That is, the center position C20 of the winding portion 20 is closer to the second core 3b than the center position C31 of the middle core portion 31 is.
  • the center position C20 of the winding portion 20 is the center of the winding portion 20 in the X direction, and is a position that bisects the length L20 of the winding portion 20 .
  • a center position C31 of the middle core portion 31 is the center of the middle core portion 31 in the X direction, and is a position that bisects the length L31 of the middle core portion 31 . Further, the fact that the center position C20 of the winding portion 20 is positioned closer to the second middle core portion 31b than the center position C31 of the middle core portion 31 means that the center position C20 of the winding portion 20 and the center position C31 of the middle core portion 31 is greater than the error range.
  • the distance D is the distance in the X direction from the center position C31 to the center position C20. A range in which the distance D is less than 1% of the length L20 of the wound portion 20 is regarded as an error range.
  • the distance D is preferably 1% or more of the length L20 of the winding portion 20, for example.
  • the upper limit of the distance D is half the difference between the length L31 of the middle core portion 31 and the length L20 of the winding portion 20 .
  • the distance D may be 1% or more and 15% or less, further 1.5% or more and 10% or less of the length L20 of the winding portion 20 .
  • a specific numerical value of the distance D is, for example, 0.5 mm or more and 3.0 mm or less, and further 1.0 mm or more and 2.0 mm or less. It is particularly preferable that the distance D is 1.0 mm or more.
  • the reactor 1a also includes a resin molded member 4 and a holding member 5 as other components.
  • the resin molded member 4 is indicated by a chain double-dashed line.
  • the resin molded member 4 is omitted.
  • the holding member 5 is omitted.
  • FIG. 3 shows a cross section of the reactor 1a cut along a plane perpendicular to the Z direction at an intermediate position of the magnetic core 3 in the Z direction. An intermediate position of the magnetic core 3 in the Z direction passes through the central axis of the winding portion 20 .
  • the resin mold member 4 covers at least part of the outer peripheral surface of the magnetic core 3 .
  • the resin mold member 4 integrates the combined first core 3a and second core 3b.
  • the resin mold member 4 integrates the coil 2 and the magnetic core 3 .
  • the resin mold member 4 is also filled between the inner peripheral surface of the winding portion 20 and the middle core portion 31, as shown in FIG. Therefore, the resin molded member 4 holds the coil 2 positioned with respect to the magnetic core 3 .
  • electrical insulation between the coil 2 and the magnetic core 3 can be ensured by the resin molded member 4 .
  • the resin forming the resin molded member 4 for example, the same resin as the resin of the above-described molded composite material can be used.
  • the resin molded member 4 may cover the outer peripheral surface of the wound portion 20 .
  • the resin molded member 4 may be formed such that at least one of the upper and lower surfaces of the wound portion 20 is exposed.
  • the resin of the resin molded member 4 passes between the inner peripheral surface of the winding portion 20 and the middle core portion 31, and also fills the gap portion 3g.
  • the gap portion 3g is made of the resin of the resin mold member 4. As shown in FIG.
  • a holding member 5 is arranged between the coil 2 and the magnetic core 3 .
  • a holding member 5 determines the relative positions of the coil 2 and the magnetic core 3 .
  • the holding member 5 can ensure electrical insulation between the coil 2 and the magnetic core 3 .
  • the holding member 5 has a first holding member 5a and a second holding member 5b.
  • the first holding member 5a is an annular member facing the first end surface of the winding portion 20 .
  • the first holding member 5a is arranged between the first end surface of the winding portion 20 and the first end core portion 35a.
  • the second holding member 5b is an annular member that faces the second end surface of the winding portion 20 .
  • the second holding member 5b is arranged between the second end surface of the winding portion 20 and the second end core portion 35b.
  • the resin forming the holding member 5 for example, the same resin as the resin of the molded composite material described above can be used.
  • the thickness of the first holding member 5a and the thickness of the second holding member 5b may be the same or different.
  • the thickness of the first holding member 5a may be thicker than the thickness of the second holding member 5b.
  • the thickness of the first holding member 5a is the distance between the surface facing the first end face of the winding portion 20 and the surface facing the first end core portion 35a.
  • the thickness of the second holding member 5b is the distance between the surface facing the second end surface of the winding portion 20 and the surface facing the second end core portion 35b.
  • the first holding member 5a may be configured to be thicker than the second holding member 5b.
  • the reactor 1a of Embodiment 1 can increase the inductance compared to a reference reactor in which the center position C20 of the winding portion 20 is the same as the center position C31 of the middle core portion 31.
  • the reason for this is that the center position C20 of the winding portion 20 is positioned closer to the second middle core portion 31b than the center position C31 of the middle core portion 31, so that the second middle core portion arranged inside the winding portion 20 This is because the ratio of 31b increases. Since the magnetic flux passing through the second middle core portion 31b having a high relative magnetic permeability increases, the inductance increases.
  • the inductance of the reactor 1a is increased more than that of the reference reactor only by shifting the position of the winding portion 20 so as to approach the second core 3b without changing the number of turns of the winding portion 20 and the size of the magnetic core 3. do. Since the inductance increases, the reactor 1a can ensure the same inductance as the reference reactor even if the number of turns of the winding portion 20 is reduced or the size of the magnetic core 3 is reduced. Therefore, the reactor 1a can be miniaturized while ensuring a predetermined inductance.
  • the difference between the relative permeability of the second middle core portion 31b and the relative permeability of the first middle core portion 31a is 50 or more, it is easy to increase the inductance.
  • the distance D between the center position C20 of the winding portion 20 and the center position C31 of the middle core portion 31 is 1% or more of the length L20 of the winding portion 20, it is easy to increase the inductance. In particular, when the distance D is 1.0 mm or more, the inductance can be effectively increased.
  • FIG. 2 A reactor 1b according to the second embodiment will be described with reference to FIG.
  • the reactor 1b of the second embodiment differs from the reactor 1a of the first embodiment in that the magnetic core 3 is of EE type.
  • the following description will focus on the differences from the first embodiment. Configurations similar to those of the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the resin molded member 4 and the holding member 5 described in the first embodiment are omitted.
  • the magnetic core 3 is configured by combining a first core 3a and a second core 3b in the X direction, as in the first embodiment.
  • the shape of the magnetic core 3 is ⁇ when viewed from the Z direction as shown in FIG.
  • two-dot chain lines indicate the boundary between the middle core portion 31 and the end core portion 35 and the boundary between the side core portion 33 and the end core portion 35 .
  • each of the two side core portions 33 is divided in the X direction.
  • the side core portion 33 has a first side core portion 33a and a second side core portion 33b.
  • the first side core portion 33a and the second side core portion 33b are arranged in the X direction.
  • the first side core portion 33a is positioned in the first direction of the X direction.
  • An end portion of the first side core portion 33a is connected to the first end core portion 35a.
  • the second side core portion 33b is positioned in the second direction of the X direction.
  • An end portion of the second side core portion 33b is connected to the second end core portion 35b.
  • the end surface of the first side core portion 33a and the end surface of the second side core portion 33b are in contact with each other.
  • the lengths of the first side core portion 33a and the second side core portion 33b may be appropriately set.
  • the length here refers to the length along the X direction.
  • the first side core portion 33a is longer than the second side core portion 33b.
  • the first side core portion 33a may be shorter than the second side core portion 33b.
  • the length of the first side core portion 33a and the length of the second side core portion 33b may be the same.
  • the first core 3a has a first middle core portion 31a, a first end core portion 35a, and two first side core portions 33a.
  • the first middle core portion 31a, the first end core portion 35a, and the two first side core portions 33a are integrally molded.
  • Each of the first side core portions 33a extends in the X direction from both ends of the first end core portion 35a in the Y direction toward the second side core portions 33b.
  • the shape of the first core 3a is an E shape when viewed from the Z direction.
  • the second core 3b has a second middle core portion 31b, a second end core portion 35b, and two second side core portions 33b.
  • the second middle core portion 31b, the second end core portion 35b, and the two second side core portions 33b are integrally formed.
  • Each of the second side core portions 33b extends in the X direction from both ends of the second end core portion 35b in the Y direction toward the first side core portions 33a.
  • the shape of the second core 3b is an E shape when viewed from the Z direction.
  • the relationship between the relative permeability of the first core 3a and the relative permeability of the second core 3b is the same as in the first embodiment. That is, the relative magnetic permeability of the second middle core portion 31b is higher than that of the first middle core portion 31a. Further, the point that the center position C20 of the winding portion 20 is positioned closer to the second middle core portion 31b than the center position C31 of the middle core portion 31 is the same as in the first embodiment.
  • the reactor 1b of the second embodiment can increase the inductance, like the reactor 1a of the first embodiment.
  • FIG. 3 A reactor 1c according to the third embodiment will be described with reference to FIG.
  • the reactor 1c of the third embodiment differs from the reactor 1a of the first embodiment in that the coil 2 has two winding portions 20 and the magnetic core 3 is UU-shaped.
  • the following description will focus on the differences from the first embodiment. Configurations similar to those of the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the resin molded member 4 and the holding member 5 described in the first embodiment are omitted.
  • the coil 2 has two turns 20 .
  • the two winding parts 20 are arranged in parallel so that their axes are parallel to each other.
  • Each winding portion 20 has a rectangular tubular shape.
  • Each length L20 of the winding portion 20 is the same.
  • Each of the windings 20 has the same number of turns.
  • the two winding parts 20 shown in FIG. 5 are configured by spirally winding separate winding wires.
  • the second terminal portions 21 b drawn out from the second end portions of the wound portions 20 are electrically connected to each other by the connecting member 23 .
  • the connecting member 23 is made of, for example, the same member as the winding.
  • a bus bar (not shown) is connected to the first end portion 21a drawn out from the first end portion of each winding portion 20 .
  • the two windings 20 may consist of one continuous winding.
  • the two winding portions 20 are formed by, for example, forming one winding portion 20 from the first end, and then forming the winding at the second end of the winding portion 20 in a U shape. It is bent into a shape and folded back to form the remaining winding 20 from the second end.
  • the magnetic core 3 is configured by combining a first core 3a and a second core 3b in the X direction, as in the first embodiment.
  • the shape of the magnetic core 3 is an O shape when viewed from the Z direction as shown in FIG.
  • the magnetic core 3 has two middle core portions 31 and two end core portions 35 .
  • the direction in which the two middle core portions 31 are arranged is defined as the Y direction.
  • a two-dot chain line indicates the boundary between the middle core portion 31 and the end core portion 35 .
  • Each of the two middle core portions 31 extends in the X direction.
  • the two middle core portions 31 are arranged in parallel so that their axes are parallel to each other.
  • Each of the middle core portions 31 has a portion arranged inside each of the two wound portions 20 .
  • Each shape of the middle core portion 31 is substantially rectangular parallelepiped.
  • Each of the middle core portions 31 is divided in the X direction and has a first middle core portion 31a and a second middle core portion 31b.
  • Each of the first middle core portions 31a is positioned in the first direction of the X direction.
  • Each of the second middle core portions 31b is positioned in the second direction of the X direction.
  • the length L31 of the two middle core portions 31 is the same. Length L31 of middle core portion 31 is longer than length L20 of winding portion 20 . In FIG. 5, the length L1a of each of the first middle core portions 31a is longer than the length L1b of each of the second middle core portions 31b. Moreover, each of the middle core portions 31 has a gap portion 3g. The gap portion 3g is provided between the first middle core portion 31a and the second middle core portion 31b.
  • the end core portion 35 has a first end core portion 35a and a second end core portion 35b.
  • the first end core portion 35 a is positioned in the first direction of the X direction and faces the first end surface of each winding portion 20 .
  • Each end of the first middle core portion 31a is connected to the first end core portion 35a. That is, the first end core portion 35a connects the ends of the first middle core portion 31a.
  • the second end core portion 35b is positioned in the second direction of the X direction and faces the second end surface of each winding portion 20 .
  • Each end of the second middle core portion 31b is connected to the second end core portion 35b. That is, the second end core portion 35b connects the ends of the second middle core portion 31b.
  • Each of the first end core portion 35a and the second end core portion 35b has a substantially rectangular parallelepiped shape.
  • the first core 3a has a first middle core portion 31a of each of the two middle core portions 31 and a first end core portion 35a.
  • the two first middle core portions 31a and the first end core portion 35a are integrally molded.
  • Each of the first middle core portions 31a extends in the X direction from both ends of the first end core portion 35a in the Y direction toward each of the second middle core portions 31b.
  • the shape of the first core 3a is U-shaped when viewed from the Z direction.
  • the second core 3b has a second middle core portion 31b of each of the two middle core portions 31 and a second end core portion 35b.
  • the two second middle core portions 31b and the second end core portion 35b are integrally molded.
  • Each of the second middle core portions 31b extends in the X direction from both ends of the second end core portion 35b in the Y direction toward each of the first middle core portions 31a.
  • the shape of the second core 3b is U-shaped when viewed from the Z direction.
  • the relationship between the relative permeability of the first core 3a and the relative permeability of the second core 3b is the same as in the first embodiment. That is, the relative magnetic permeability of the second middle core portion 31b is higher than that of the first middle core portion 31a. Further, similarly to the first embodiment, the center position C20 of each winding portion 20 is positioned closer to the second middle core portion 31b than the center position C31 of each middle core portion 31 is.
  • the reactor 1c of the third embodiment can increase the inductance, like the reactor 1a of the first embodiment.
  • Embodiment 4 [Converter/power converter]
  • the reactors of Embodiments 1 to 3 can be used for applications that satisfy the following energization conditions.
  • the energization conditions are, for example, a maximum DC current of approximately 100 A or more and 1000 A or less, an average voltage of approximately 100 V or more and 1000 V or less, and a working frequency of approximately 5 kHz or more and 100 kHz or less.
  • Reactors 1a, 1b, and 1c of Embodiments 1 to 3 are typically used as components of converters mounted in vehicles such as electric vehicles and hybrid vehicles, and components of power converters equipped with these converters. Available.
  • a vehicle 1200 such as a hybrid vehicle or an electric vehicle is driven by a main battery 1210, a power conversion device 1100 connected to the main battery 1210, and power supplied from the main battery 1210 as shown in FIG. and a motor 1220 that Motor 1220 is typically a three-phase AC motor. Motor 1220 drives wheels 1250 during running, and functions as a generator during regeneration.
  • vehicle 1200 includes engine 1300 in addition to motor 1220 .
  • FIG. 6 shows an inlet as the charging point of vehicle 1200, it may be provided with a plug.
  • a power conversion device 1100 has a converter 1110 connected to a main battery 1210, and an inverter 1120 connected to the converter 1110 for mutual conversion between direct current and alternating current.
  • Converter 1110 shown in this example boosts the input voltage of main battery 1210 from approximately 200 V to 300 V to approximately 400 V to 700 V and supplies power to inverter 1120 when vehicle 1200 is running.
  • converter 1110 steps down the input voltage output from motor 1220 via inverter 1120 to a DC voltage suitable for main battery 1210 to charge main battery 1210 .
  • the input voltage is a DC voltage.
  • Inverter 1120 converts the direct current boosted by converter 1110 into a predetermined alternating current and supplies power to motor 1220 when vehicle 1200 is running, and converts the alternating current output from motor 1220 into direct current during regeneration and outputs the direct current to converter 1110. are doing.
  • the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112 that controls the operation of the switching elements 1111, and a reactor 1115, as shown in FIG. 7, and converts the input voltage by repeating ON/OFF. Conversion of the input voltage means stepping up and down in this case.
  • a power device such as a field effect transistor or an insulated gate bipolar transistor is used for the switching element 1111 .
  • the reactor 1115 has a function of smoothing the change when the current increases or decreases due to the switching operation by using the property of the coil that prevents the change of the current to flow in the circuit.
  • the reactor according to any one of Embodiments 1 to 3 is provided. By providing a reactor with a large inductance, the size of the reactor can be reduced, so power conversion device 1100 and converter 1110 can be reduced in size.
  • vehicle 1200 is connected to power feed device converter 1150 connected to main battery 1210, sub-battery 1230 serving as a power source for auxiliary equipment 1240, and main battery 1210 to supply the high voltage of main battery 1210.
  • An accessory power supply converter 1160 for converting to low voltage is provided.
  • Converter 1110 typically performs DC-DC conversion, but power supply device converter 1150 and auxiliary power supply converter 1160 perform AC-DC conversion. Some power supply converters 1150 perform DC-DC conversion.
  • Reactors of power supply device converter 1150 and auxiliary power supply converter 1160 having the same configuration as the reactors of any one of the first to third embodiments and having appropriately changed size or shape can be used. Further, the reactor according to any one of Embodiments 1 to 3 can be used for a converter that converts input power and that only boosts or only steps down.
  • test Example 1 sample No. 1-1 and sample No. 10, the inductance was analyzed by CAE (Computer Aided Engineering). Sample no. In 1-1, the center position C20 of the winding portion 20 is located in a region closer to the second middle core portion 31b than the center position C31 of the middle core portion 31 is. Sample no. 10, the center position C20 of the winding portion 20 is the same position as the center position C31 of the middle core portion 31 .
  • the structure of the reactor sample used in Test Example 1 was set as follows.
  • sample No. 1-1 the distance D between the center position C20 of the winding portion 20 and the center position C31 of the middle core portion 31 was set to 1.0 mm. That is, sample no. The distance D at 1-1 is 2.6% of the length L20 of the winding portion 20. FIG. Sample no. At 10, the distance D is zero.
  • the inductance was obtained when a direct current was passed through the coil.
  • JMAG-Designer 19.0 manufactured by JSOL Co., Ltd. which is commercially available electromagnetic field analysis software, was used for the inductance analysis.
  • the current was varied from 0A to 300A.
  • Table 1 shows each inductance when the current values are 0A, 100A, 200A and 300A.
  • Table 1 shows sample no.
  • the inductance at each current value in Sample No. 1-1 was measured. Inductance at each current value in 10 is expressed as a percentage of 100.
  • sample no Based on the inductance at each current value in sample No. 10. 1-1 shows the rate of increase in inductance at each current value. The rate of increase is the sample no. From the inductance of sample No. 1-1.
  • Sample No. 10 is the value obtained by subtracting the inductance of 10. It is a ratio divided by 10 inductance.
  • sample No. The reactor of 1-1 is the sample No.
  • the inductance is large compared to the reactor of No. 10.
  • the inductance at each current value from 0 A to 300 A in Sample No. 1-1 is 10 at each current value.

Abstract

巻回部を有するコイルと、ミドルコア部を有する磁性コアとを備え、前記巻回部は、前記ミドルコア部に配置され、前記ミドルコア部は、前記巻回部の軸に沿った方向に分割された第一ミドルコア部と第二ミドルコア部とを有し、前記第二ミドルコア部の比透磁率が前記第一ミドルコア部の比透磁率よりも大きく、前記巻回部の軸に沿った方向の中心位置は、前記ミドルコア部の軸に沿った方向の中心位置よりも前記第二ミドルコア部に近い領域に位置する、リアクトル。

Description

[規則26に基づく補充 31.10.2022] リアクトル、コンバータ、及び電力変換装置
 本開示は、リアクトル、コンバータ、および電力変換装置に関する。
 本出願は、2021年09月29日付の日本国出願の特願2021-159001に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
 ハイブリッド自動車などの車両に搭載されるコンバータの構成部品にリアクトルがある。特許文献1は、コイルと、2つのコア片を組み合わせたコアとを備えるリアクトルを開示する。各コア片は、コイルの内側に配置されるコイル配置部と、コイルの外側に配置される露出部とを備える。コイル配置部と露出部とは一体に成形されている。両コア片は、各コア片のコイル配置部の端面同士が向かい合うように組み合わされる。
特開2014-239120号公報
 本開示のリアクトルは、
 巻回部を有するコイルと、ミドルコア部を有する磁性コアとを備え、
 前記巻回部は、前記ミドルコア部に配置され、
 前記ミドルコア部は、前記巻回部の軸に沿った方向に分割された第一ミドルコア部と第二ミドルコア部とを有し、
 前記第二ミドルコア部の比透磁率が前記第一ミドルコア部の比透磁率よりも大きく、
 前記巻回部の軸に沿った方向の中心位置は、前記ミドルコア部の軸に沿った方向の中心位置よりも前記第二ミドルコア部に近い領域に位置する。
図1は、実施形態1に係るリアクトルを示す概略斜視図である。 図2は、実施形態1に係るリアクトルを示す概略平面図である。 図3は、図1のIII-III断面図である。 図4は、実施形態2に係るリアクトルを示す概略平面図である。 図5は、実施形態3に係るリアクトルを示す概略平面図である。 図6は、ハイブリッド自動車の電源系統を模式的に示す構成図である。 図7は、コンバータを備える電力変換装置の一例の概略を示す回路図である。
 [本開示が解決しようとする課題]
 リアクトルに要求される性能の1つは、インダクタンスが大きいことである。インダクタンスが大きいほど、大きな磁気エネルギーを蓄えることができる。
 本開示は、インダクタンスが大きいリアクトルを提供することを目的の一つとする。また、本開示は、上記リアクトルを備えるコンバータを提供することを別の目的の一つとする。更に、本開示は、上記コンバータを備える電力変換装置を提供することを他の目的の一つとする。
 [本開示の効果]
 本開示のリアクトルは、インダクタンスを大きくすることができる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の実施形態に係るリアクトルは、
 巻回部を有するコイルと、ミドルコア部を有する磁性コアとを備え、
 前記巻回部は、前記ミドルコア部に配置され、
 前記ミドルコア部は、前記巻回部の軸に沿った方向に分割された第一ミドルコア部と第二ミドルコア部とを有し、
 前記第二ミドルコア部の比透磁率が前記第一ミドルコア部の比透磁率よりも大きく、
 前記巻回部の軸に沿った方向の中心位置は、前記ミドルコア部の軸に沿った方向の中心位置よりも前記第二ミドルコア部に近い領域に位置する。
 本開示のリアクトルは、巻回部の上記中心位置がミドルコア部の上記中心位置と同じ位置である場合に比較して、インダクタンスを大きくすることができる。その理由は、巻回部の上記中心位置がミドルコア部の上記中心位置よりも第二ミドルコア部に近い領域に位置することで、インダクタンスが増加するからである。
 (2)上記(1)に記載のリアクトルは、
 前記第二ミドルコア部の比透磁率と前記第一ミドルコア部の比透磁率との差が50以上であってもよい。
 上記(2)の構成は、インダクタンスの増加を図り易い。
 (3)上記(1)または(2)に記載のリアクトルは、
 前記巻回部の前記中心位置と前記ミドルコア部の前記中心位置との距離が、前記巻回部の軸に沿った長さの1%以上であってもよい。
 上記(3)の構成は、インダクタンスの増加を図り易い。
 (4)上記(3)に記載のリアクトルは、
 前記距離が1.0mm以上であってもよい。
 上記(4)の構成は、インダクタンスを効果的に増加することができる。
 (5)上記(1)から(4)のいずれかに記載のリアクトルは、
 前記第一ミドルコア部の比透磁率が5以上50以下であってもよい。
 上記(5)の構成は、所定のインダクタンスを得易い。
 (6)上記(1)から(5)のいずれかに記載のリアクトルは、
 前記第二ミドルコア部の比透磁率が50以上500以下であってもよい。
 上記(6)の構成は、所定のインダクタンスを得易い。
 (7)上記(1)から(6)のいずれかに記載のリアクトルにおいて、
 前記第一ミドルコア部は、樹脂中に軟磁性粉末が分散された複合材料の成形体で構成され、
 前記第二ミドルコア部は、軟磁性粉末を含む原料粉末の圧粉成形体で構成されていてもよい。
 一般的に、複合材料の成形体の比透磁率は、圧粉成形体の比透磁率に比較して小さい。上記(7)の構成は、第一ミドルコア部が複合材料の成形体で構成され、第二ミドルコア部が圧粉成形体で構成されている。そのため、第二ミドルコア部の比透磁率が第一ミドルコア部の比透磁率よりも大きくなる。
 (8)上記(1)から(7)のいずれかに記載のリアクトルにおいて、
 前記ミドルコア部は、前記第一ミドルコア部と前記第二ミドルコア部との間にギャップ部を有し、
 前記ギャップ部は、前記巻回部の内側に位置してもよい。
 上記(8)の構成は、ギャップ部からの漏れ磁束に起因する損失を低減することができる。その理由は、ギャップ部が巻回部の内側に位置することで、ギャップ部が巻回部の外側に位置する場合に比較して、ギャップ部からの漏れ磁束が減少するからである。
 (9)上記(1)から(8)のいずれかに記載のリアクトルにおいて、
 前記磁性コアは、第一コアと第二コアとで構成され、
 前記第一コアは、前記第一ミドルコア部を有し、
 前記第二コアは、前記第二ミドルコア部を有してもよい。
 上記(9)の構成は、磁性コアの組立作業性に優れる。
 (10)本開示の実施形態に係るコンバータは、
 上記(1)から(9)のいずれか1つに記載のリアクトルを備える。
 本開示のコンバータは、本開示のリアクトルを備えることから、リアクトルのインダクタンスが大きい。
 (11)本開示の実施形態に係る電力変換装置は、
 上記(10)に記載のコンバータを備える。
 本開示の電力変換装置は、本開示のコンバータを備えることから、リアクトルのインダクタンスが大きい。
 [本開示の実施形態の詳細]
 本開示の実施形態の具体例を、以下に図面を参照しつつ説明する。図中の同一符号は同一名称物を示す。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 [実施形態1]
 〔リアクトル〕
 図1から図3を参照して、実施形態1のリアクトル1aを説明する。リアクトル1aは、コイル2と磁性コア3とを備える。コイル2は巻回部20を有する。磁性コア3は、ミドルコア部31を有する。巻回部20はミドルコア部31に配置される。ミドルコア部31は、第一ミドルコア部31aと第二ミドルコア部31bとを有する。
 実施形態1のリアクトル1aの特徴の一つは、以下の要件(a)、(b)を満たす点にある。
 (a)第二ミドルコア部31bの比透磁率が第一ミドルコア部31aの比透磁率よりも大きい。
 (b)図2に示すように、巻回部20の中心位置C20がミドルコア部31の中心位置C31よりも第二ミドルコア部31bに近い領域に位置する。
 リアクトル1aは、巻回部20の中心位置C20がミドルコア部31の中心位置C31と同じ位置である場合に比較して、インダクタンスを大きくすることができる。以下、リアクトル1aの構成を詳細に説明する。
 <コイル>
 コイル2は、図1、図2に示すように、1つの巻回部20を有する。巻回部20は、巻線が螺旋状に巻回された部分である。巻線は公知の巻線を利用できる。巻線は、導体線と、導体線を覆う絶縁被覆とを有する被覆平角線である。導体線は銅製の平角線である。絶縁被覆はエナメルからなる。本実施形態では、コイル2は被覆平角線をエッジワイズ巻きすることによって形成されたエッジワイズコイルである。
 巻回部20の形状は筒状である。巻回部20の形状は多角筒状でもよいし、円筒状でもよい。多角筒状とは、巻回部20の軸に沿った方向から見た端面の輪郭形状が、多角形状であるものをいう。巻回部20の軸に沿った方向は、巻回部20の第一の端部から第二の端部に向かう方向である。多角形状は、例えば、四角形状、六角形状、八角形状である。四角形状には、矩形状が含まれる。矩形状には、正方形状が含まれる。円筒状とは、上記端面の輪郭形状が、円形状であるものをいう。円形状には、真円形状のみならず、楕円形状も含まれる。本実施形態では、巻回部20の形状が矩形筒状である。
 コイル2は端末部21を有する。端末部21は、巻回部20の両端部から巻線が引き出された部分である。端末部21は第一端末部21aと第二端末部21bとを有する。第一端末部21aは、巻回部20第一の端部から巻回部20の外周側に引き出されている。第二端末部21bは、巻回部20の第二の端部から巻回部20の外周側に引き出されている。第一端末部21aおよび第二端末部21bでは、絶縁被覆が剥がされて導体線が露出している。第一端末部21aおよび第二端末部21bには、例えば、図示しないバスバが接続される。コイル2は、図示しない外部機器とバスバによって接続される。外部機器は、コイル2に電力を供給する電源などである。
 図2に示す巻回部20の長さL20は、特に限定されないが、例えば10mm以上60mm以下、更に20mm以上50mm以下である。ここでいう長さは、巻回部20の軸に沿った長さをいう。巻回部20の長さL20は、巻線の厚さまたはターン数によって変わる。ターン数は、例えば10ターン以上60ターン以下、更に20ターン以上50ターン以下である。
 <磁性コア>
 磁性コア3は、図1、図2に示すように、ミドルコア部31と、サイドコア部33と、エンドコア部35とを有する。磁性コア3は、平面視において全体としてθ状に構成される。本実施形態では、磁性コア3は、第一コア3aと第二コア3bとを備える。磁性コア3は、第一コア3aと第二コア3bとが組み合わされて構成される。第一コア3aと第二コア3bとは、巻回部20の軸に沿った方向に組み合わされる。図2では、ミドルコア部31とエンドコア部35との境界、およびサイドコア部33とエンドコア部35との境界を二点鎖線で示している。第一コア3aと第二コア3bについては後述する。
 以下の説明では、X方向、Y方向およびZ方向を次のように定義する。X方向は、巻回部20の軸に沿った方向である。Y方向は、ミドルコア部31とサイドコア部33とが並列される方向である。Y方向は、X方向に直交する方向であって、ミドルコア部31からサイドコア部33に向かう方向である。Z方向は、X方向とY方向の双方に直交する方向であって、巻回部20の中心軸から離れる方向である。Z方向において、コイル2の端末部21が位置する側を上側、その反対側を下側とする。上記した平面視とは、リアクトル1aを上側、即ちZ方向から見た状態のことをいう。
 磁性コア3の形状は、図2に示すようにZ方向から見て、θ状である。コイル2を通電すると、磁性コア3にはθ状の閉磁路が形成される。この閉磁路は、コイル2によって発生した磁束が、ミドルコア部31から、2つのエンドコア部35のうちの1つのエンドコア部35、各サイドコア部33、残りのエンドコア部35を通り、ミドルコア部31に戻る閉磁路である。
 (ミドルコア部)
 ミドルコア部31は、巻回部20の内側に配置される部分を有する。ミドルコア部31は、磁性コア3のうち、第一エンドコア部35aと第二エンドコア部35bとの間に挟まれる部分である。第一エンドコア部35aおよび第二エンドコア部35bについては後述する。ミドルコア部31の数は1つである。ミドルコア部31はX方向に沿って延びている。ミドルコア部31の軸に沿った方向は巻回部20の軸に沿った方向と一致する。本実施形態では、ミドルコア部31の両端部が巻回部20の両端面から突出している。この突出する部分もミドルコア部31の一部である。
 ミドルコア部31の形状は、巻回部20の内側形状に対応した形状であれば特に限定されない。本実施形態では、ミドルコア部31の形状は略直方体状である。X方向から見て、ミドルコア部31の外周面の角部は、巻回部20の内周面に沿うように丸められていてもよい。
 ミドルコア部31は、X方向に分割されており、第一ミドルコア部31aと第二ミドルコア部31bとを有する。第一ミドルコア部31aと第二ミドルコア部31bとは、X方向に並ぶ。ミドルコア部31は、X方向の第一方向に位置する第一の端部と、X方向の第二方向に位置する第二の端部とを有する。X方向の第一方向は、第一ミドルコア部31aから第二ミドルコア部31bに向かう方向、即ち巻回部20の第一の端部から第二の端部に向かう方向である。X方向の第二方向は、第二ミドルコア部31bから第一ミドルコア部31aに向かう方向、即ち巻回部20の第二の端部から第一の端部に向かう方向である。ミドルコア部31における第一の端部は、巻回部20の第一の端部の内側に配置される。ミドルコア部31における第二の端部は、巻回部20の第二の端部の内側に配置される。第一ミドルコア部31aの端面と第二ミドルコア部31bの端面とは、X方向に向かい合う。第一ミドルコア部31aと第二ミドルコア部31bとの境界は巻回部20の内側に位置する。第二ミドルコア部31bは、第一ミドルコア部31aに対してX方向に並んで位置する。図2では、紙面左側に第一ミドルコア部31aが位置すると共に、紙面左側に第二ミドルコア部31bが位置している。
 図2に示すミドルコア部31の長さL31は巻回部20の長さL20よりも長い。ミドルコア部31の長さL31はX方向に沿った長さである。ミドルコア部31の長さL31は、第一エンドコア部35aと第二エンドコア部35bとの互いに向かい合う面間の距離と同等である。ミドルコア部31の長さL31は、例えば、巻回部20の長さL20の105%以上120%以下である。長さL31は、長さL20の105%以上115%以下、更に105%以上110%以下でもよい。また、長さL31と長さL20との差は、例えば1.0mm以上6.0mm以下である。つまり、ミドルコア部31の長さL31は、巻回部20の長さL20よりも1.0mm以上6.0mm以下長い。長さL31と長さL20との差は、1.5mm以上5.0mm以下、更に2.0mm以上4.0mm以下でもよい。
 第一ミドルコア部31aおよび第二ミドルコア部31bの各々の長さは、適宜設定すればよい。ここでいう長さは、X方向に沿った長さをいう。本実施形態では、第一ミドルコア部31aの長さL1aと第二ミドルコア部31bの長さL1bとが異なる。長さL1aがL1bよりも長い。本実施形態とは異なり、長さL1aが長さL1bよりも短くてもよいし、長さL1aと長さL1bとが同じであってもよい。
 本実施形態では、ミドルコア部31がギャップ部3gを有する。ギャップ部3gは、第一ミドルコア部31aと第二ミドルコア部31bとの間に設けられている。ギャップ部3gは、巻回部20の内側に位置する。ギャップ部3gが巻回部20の内側に位置することで、ギャップ部3gが巻回部20の外側に位置する場合に比較して、ギャップ部3gからの漏れ磁束が減少する。そのため、ギャップ部3gからの漏れ磁束に起因する損失を低減することができる。ギャップ部3gのX方向に沿った長さLgは、所定のインダクタンスが得られるように適宜設定すればよい。ギャップ部3gの長さLgは、例えば0.1mm以上2mm以下、0.3mm以上1.5mm以下、更に0.5mm以上1mm以下である。ギャップ部3gは、エアギャップでもよい。ギャップ部3gには、例えば、樹脂またはセラミックスからなる非磁性体が配置されていてもよい。ミドルコア部31がギャップ部3gを有する場合、ミドルコア部31の長さL31はギャップ部3gの長さLgを含む。ミドルコア部31の長さL31は、第一ミドルコア部31aの長さL1aと、第二ミドルコア部31bの長さL1bと、ギャップ部3gの長さLgとを合計した長さである。本実施形態とは異なり、ギャップ部3gはなくてもよい。この場合、第一ミドルコア部31aの端面と第二ミドルコア部31bの端面とは互いに接触しており、第一ミドルコア部31aと第二ミドルコア部31bとの間に実質的に隙間がない。
 (エンドコア部)
 エンドコア部35は、巻回部20の外側に配置される部分である。エンドコア部35は第一エンドコア部35aと第二エンドコア部35bとを有する。エンドコア部35の数は2つである。2つのエンドコア部35は、X方向に間隔をあけて配置されている。第二エンドコア部35bは、第一エンドコア部35aに対してX方向に離れて位置する。第一エンドコア部35aは、巻回部20の第一の端面と向かい合う。第一の端面は、巻回部20における第一の端部の端面である。第一エンドコア部35aには、ミドルコア部31における第一の端部、具体的には第一ミドルコア部31aの端部が接続される。第二エンドコア部35bは、巻回部20の第二の端面と向かい合う。第二の端面は、巻回部20における第二の端部の端面である。第二エンドコア部35bには、ミドルコア部31における第二の端部、具体的には第二ミドルコア部31bの端部が接続される。
 第一エンドコア部35aおよび第二エンドコア部35bの各々の形状は、所定の磁路が形成される形状であれば特に限定されない。本実施形態では、第一エンドコア部35aおよび第二エンドコア部35bの各々の形状は略直方体状である。
 (サイドコア部)
 サイドコア部33は、巻回部20の外側に配置される部分である。サイドコア部33の数は2つである。サイドコア部33の各々はX方向に延びている。サイドコア部33の各々における軸に沿った方向は、ミドルコア部31の軸に沿った方向と平行である。2つのサイドコア部33は、Y方向に間隔をあけて配置されている。2つのサイドコア部33は、ミドルコア部31を挟んで、並べられている。つまり、2つのサイドコア部33の間に、ミドルコア部31が配置されている。2つのサイドコア部33のうちの1つのサイドコア部33はY方向の第一方向に位置する。このサイドコア部33は、巻回部20の外周面のうち、第一の側面と向かい合う。第一の側面は、巻回部20におけるY方向の第一方向に向く面である。図2では、このサイドコア部33が紙面上側に位置する。2つのサイドコア部33のうちの残りのサイドコア部33はY方向の第二方向に位置する。このサイドコア部33は、巻回部20の外周面のうち、第二の側面と向かい合う。第二の側面は、巻回部20におけるY方向の第二方向に向く面である。図2では、このサイドコア部33が紙面下側に位置する。サイドコア部33は、X方向の第一方向に位置する第一の端部と、X方向の第二方向に位置する第二の端部とを有する。サイドコア部33における第一の端部は、第一エンドコア部35aに接続される。サイドコア部33における第二の端部は、第二エンドコア部35bに接続される。サイドコア部33の各々の断面積は、同じであってもよいし、異なってもよい。本実施形態では、2つのサイドコア部33の断面積は同じである。また、本実施形態では、2つのサイドコア部33の合計の断面積は、ミドルコア部31の断面積と同等である。ここでいう断面積は、X方向に直交する断面での面積をいう。
 サイドコア部33の各々は、第一エンドコア部35aと第二エンドコア部35bとをつなぐ長さを有していればよい。サイドコア部33の形状は特に限定されない。本実施形態では、サイドコア部33の各々の形状は略直方体状である。
 〈第一コア・第二コア〉
 第一コア3aは、第一ミドルコア部31aを有する。第二コア3bは、第二ミドルコア部31bを有する。第一コア3aおよび第二コア3bの各々の形状は、種々の組み合わせから選択できる。本実施形態では、図1、図2に示すように、磁性コア3は、E字状の第一コア3aと、T字状の第二コア3bとを組み合わせたE-T型である。
 〈第一コア〉
 本実施形態では、第一コア3aは、第一ミドルコア部31aと、第一エンドコア部35aと、2つのサイドコア部33とを有する。第一ミドルコア部31aと、第一エンドコア部35aと、2つのサイドコア部33とは一体に成形されている。第一コア3aは一体の成形体であるので、第一コア3aを構成する各コア部は同じ材質である。即ち、第一コア3aを構成する各コア部の磁気特性および機械的特性は実質的に同じである。第一ミドルコア部31aは、第一エンドコア部35aにおけるY方向の中間部から第二ミドルコア部31bに向かってX方向に延びている。サイドコア部33の各々は、第一エンドコア部35aのY方向の両端部から第二エンドコア部35bに向かってX方向に延びている。第一コア3aの形状は、Z方向から見て、E字状である。
 〈第二コア〉
 本実施形態では、第二コア3bは、第二ミドルコア部31bと、第二エンドコア部35bとを有する。第二ミドルコア部31bと、第二エンドコア部35bとは一体に成形されている。第二コア3bは一体の成形体であるので、第二コア3bを構成する各コア部は同じ材質である。即ち、第二コア3bを構成する各コア部の磁気特性および機械的特性は実質的に同じである。第二ミドルコア部31bは、第二エンドコア部35bにおけるY方向の中間部から第一ミドルコア部31aに向かってX方向に延びている。第二コア3bの形状は、Z方向から見て、T字状である。
 本実施形態では、磁性コア3は、第一コア3aと第二コア3bといった2つのピースで構成されている。つまり、磁性コア3の分割数が2である。磁性コア3の分割数および磁性コア3を分割する位置は特に限定されない。磁性コア3は、3つ以上のピースで構成されていてもよい。例えば、第一エンドコア部35a、第二エンドコア部35b、第一ミドルコア部31a、第二ミドルコア部31b、および2つのサイドコア部33のそれぞれを個別に構成し、これらを組み合わせて磁性コア3を構成してもよい。本実施形態のように、磁性コア3が第一コア3aと第二コア3bとで構成されている場合、組み合わせるコア片の数が2つしかないので、磁性コア3の組み立てが容易である。
  (第一ミドルコア部の比透磁率と第二ミドルコア部の比透磁率との関係)
 第二コア3bの比透磁率が第一コア3aの比透磁率よりも大きい。つまり、ミドルコア部31において、第二ミドルコア部31bの比透磁率が第一ミドルコア部31aの比透磁率よりも大きい。第二ミドルコア部31bの比透磁率と第一ミドルコア部31aの比透磁率との差は、例えば50以上であることが好ましい。上記比透磁率の差の上限は、実用上、例えば500程度である。上記比透磁率の差は、50以上500以下、更に100以上400以下でもよい。
 第一コア3aおよび第二コア3bの各々の比透磁率は、上記関係を満たした上で、所定のインダクタンスが得られるように適宜設定すればよい。第一ミドルコア部31aの比透磁率は、例えば5以上50以下である。第二ミドルコア部31bの比透磁率は、例えば50以上500以下である。第一コア3aの比透磁率が5以上50以下の範囲内で、かつ、第二コア3bの比透磁率が50以上500以下の範囲内であれば、所定のインダクタンスを得易い。第一ミドルコア部31aの比透磁率は、10以上45以下、更に15以上40以下でもよい。第二ミドルコア部31bの比透磁率は、100以上500以下が好ましい。第二ミドルコア部31bは、100以上450以下、更に150以上400以下でもよい。
 比透磁率は、次のようにして求めることができる。第一ミドルコア部31aと第二ミドルコア部31bのそれぞれからリング状の測定試料を切り出す。各々の測定試料に、一次側:300巻き、二次側:20巻きの巻線を施す。B-H初磁化曲線をH=0(Oe)以上100(Oe)以下の範囲で測定し、このB-H初磁化曲線のB/Hの最大値を求める。この最大値を比透磁率とする。ここでいう磁化曲線とは、いわゆる直流磁化曲線のことである。
  (ミドルコア部の材質)
 第一ミドルコア部31aおよび第二ミドルコア部31bは、軟磁性材料の成形体で構成されている。成形体は、例えば、圧粉成形体または複合材料の成形体である。第一ミドルコア部31aと第二ミドルコア部31bとは、互いに異なる材質の成形体で構成されている。互いに異なる材質とは、第一ミドルコア部31aおよび第二ミドルコア部31bを構成する各々の成形体において、個々の構成要素の材質が異なる場合は勿論、個々の構成要素の材質が同じであっても、構成要素の含有量が異なる場合も含む。例えば、第一ミドルコア部31aと第二ミドルコア部31bとが圧粉成形体で構成されていても、圧粉成形体を構成する軟磁性粉末の材質および含有量の少なくとも1つが異なれば、互いに異なる材質である。また、第一ミドルコア部31aと第二ミドルコア部31bとが複合材料の成形体で構成されていても、複合材料を構成する軟磁性粉末の材質および含有量の少なくとも1つが異なれば、互いに異なる材質である。
 圧粉成形体は、軟磁性粉末を含む原料粉末を圧縮成形してなる。圧粉成形体は、複合材料の成形体に比較して軟磁性粉末の含有量が多い。そのため、圧粉成形体は、複合材料の成形体に比較して磁気特性が高い。磁気特性は、例えば、比透磁率と飽和磁束密度である。圧粉成形体は、例えば、バインダ樹脂および成形助剤の少なくとも一方を含有してもよい。圧粉成形体における軟磁性粉末の含有量は、圧粉成形体を100体積%とするとき、例えば85体積%以上99.99体積%以下である。
 複合材料の成形体は、樹脂中に軟磁性粉末が分散されてなる。複合材料の成形体は、未固化の樹脂中に軟磁性粉末を分散させた流動性の素材を金型に充填し、樹脂を固化させることで得られる。複合材料の成形体は、軟磁性粉末の含有量を容易に調整できる。そのため、複合材料の成形体は、磁気特性を調整し易い。複合材料の成形体における軟磁性粉末の含有量は、複合材料の成形体を100体積%とするとき、例えば20体積%以上80体積%以下である。
 軟磁性粉末を構成する粒子は、軟磁性金属の粒子、軟磁性金属の粒子の外周に絶縁被覆を備える被覆粒子、および軟磁性非金属の粒子からなる群より選択される少なくとも一種である。軟磁性金属は、例えば、純鉄または鉄基合金である。鉄基合金は、例えば、Fe(鉄)-Si(シリコン)合金またはFe-Ni(ニッケル)合金である。絶縁被覆は、例えばリン酸塩である。軟磁性非金属は、例えばフェライトである。
 複合材料の成形体の樹脂は、熱硬化性樹脂でもよいし、熱可塑性樹脂でもよい。熱硬化性樹脂は、例えば、不飽和ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、またはシリコーン樹脂である。熱可塑性樹脂は、例えば、ポリフェニレンスルフィド樹脂、ポリテトラフルオロエチレン樹脂、液晶ポリマー、ポリアミド樹脂、ポリブチレンテレフタレート樹脂、またはアクリロニトリル・ブタジエン・スチレン樹脂である。ポリアミド樹脂は、例えば、ナイロン6、ナイロン66、またはナイロン9Tである。その他、複合材料の成形体の樹脂は、例えば、BMC(Bulk molding compound)、ミラブル型シリコーンゴム、またはミラブル型ウレタンゴムでもよい。BMCは、例えば、不飽和ポリエステルと、炭酸カルシウムまたはガラス繊維とが混合されたものである。
 複合材料の成形体は、軟磁性粉末および樹脂に加えて、フィラーを含有していてもよい。フィラーは、例えば、アルミナまたはシリカからなるセラミックスフィラーである。複合材料の成形体がフィラーを含有することで、放熱性を高めることができる。フィラーの含有量は、複合材料の成形体を100体積%とするとき、例えば0.2質量%以上20質量%以下、更に0.3質量%以上15質量%以下、0.5質量%以上10質量%以下である。
 圧粉成形体または複合材料の成形体における軟磁性粉末の含有量は、成形体の断面における軟磁性粉末の面積割合と等価とみなす。軟磁性粉末の含有量は、次のようにして求める。成形体の断面を走査型電子顕微鏡(SEM)で観察して観察画像を取得する。SEMの倍率は、例えば200倍以上500倍以下とする。観察画像の取得数は、10個以上とする。観察画像の総面積は0.1cm以上とする。一断面につき一つの観察画像を取得してもよいし、一断面につき複数の観察画像を取得してもよい。取得した各観察画像を画像処理して軟磁性粉末の粒子の輪郭を抽出する。画像処理は、例えば二値化処理である。各観察画像において軟磁性粉末の粒子の全面積を算出し、各観察画像に占める軟磁性粉末の粒子の面積割合を求める。全ての観察画像における面積割合の平均値を軟磁性粉末の含有量とみなす。
 本実施形態では、第一ミドルコア部31aを有する第一コア3aが複合材料の成形体である。第二ミドルコア部31bを有する第二コア3bが圧粉成形体である。第一コア3aが複合材料の成形体で構成されると共に、第二コア3bが圧粉成形体で構成されていることで、磁性コア3全体の磁気特性を調整できる。また、第一ミドルコア部31aが複合材料の成形体で構成されると共に、第二ミドルコア部31bが圧粉成形体で構成されていると、第一ミドルコア部31aおよび第二ミドルコア部31bの各々の比透磁率が上記関係を満たし易い。本実施形態では、第一ミドルコア部31aの比透磁率が20以上30以下程度である。第二ミドルコア部31bの比透磁率が150以上250以下程度である。第二ミドルコア部31bの比透磁率と第一ミドルコア部31aの比透磁率との差が120以上230以下程度である。
  (ミドルコア部における巻回部の位置)
 図2に示すように、巻回部20の中心位置C20がミドルコア部31の中心位置C31よりも第二ミドルコア部31bに近い領域に位置する。つまり、巻回部20の中心位置C20がミドルコア部31の中心位置C31よりも第二コア3bに寄っている。ここで、巻回部20の中心位置C20は、巻回部20におけるX方向の中心であり、巻回部20の長さL20を二等分する位置である。ミドルコア部31の中心位置C31は、ミドルコア部31におけるX方向の中心であり、ミドルコア部31の長さL31を二等分する位置である。また、巻回部20の中心位置C20がミドルコア部31の中心位置C31よりも第二ミドルコア部31bに近い領域に位置するとは、巻回部20の中心位置C20とミドルコア部31の中心位置C31との距離Dが誤差範囲よりも大きいことをいう。距離Dは、中心位置C31から中心位置C20までのX方向の距離のことである。距離Dが巻回部20の長さL20の1%未満である範囲は誤差範囲とみなす。距離Dは、例えば、巻回部20の長さL20の1%以上であることが好ましい。距離Dの上限は、ミドルコア部31の長さL31と巻回部20の長さL20との差の半分である。距離Dは、巻回部20の長さL20の1%以上15%以下、更に1.5%以上10%以下でもよい。距離Dの具体的な数値は、例えば0.5mm以上3.0mm以下、更に1.0mm以上2.0mm以下である。距離Dは、特に1.0mm以上であることが好ましい。
 <その他>
 リアクトル1aは、その他の構成として、樹脂モールド部材4、および保持部材5を備える。図1では、樹脂モールド部材4は二点鎖線で示している。図2では、樹脂モールド部材4は省略している。図1、図2では、保持部材5は省略している。図3は、磁性コア3のZ方向の中間位置において、Z方向に直交する平面で切断したリアクトル1aの断面を示している。磁性コア3のZ方向の中間位置は、巻回部20の中心軸を通る。
 (樹脂モールド部材)
 樹脂モールド部材4は、磁性コア3の外周面の少なくとも一部を覆う。樹脂モールド部材4は、組み合わされた第一コア3aと第二コア3bとを一体化する。また、樹脂モールド部材4は、コイル2と磁性コア3とを一体化する。本実施形態では、樹脂モールド部材4が、図3に示すように、巻回部20の内周面とミドルコア部31との間にも充填されている。そのため、樹脂モールド部材4によって、磁性コア3に対してコイル2が位置決めされた状態で保持される。また、樹脂モールド部材4によって、コイル2と磁性コア3との間の電気的絶縁を確保できる。樹脂モールド部材4を構成する樹脂には、例えば、上述した複合材料の成形体の樹脂と同様の樹脂を用いることができる。樹脂モールド部材4は、巻回部20を外周面を覆っていてもよい。樹脂モールド部材4は、巻回部20の上側および下側の少なくとも一方の面が露出するように形成されていてもよい。
 本実施形態では、樹脂モールド部材4の樹脂が、巻回部20の内周面とミドルコア部31との間を通って、ギャップ部3gにも充填されている。ギャップ部3gは、樹脂モールド部材4の樹脂によって構成されている。
 (保持部材)
 保持部材5は、コイル2と磁性コア3との間に配置される。保持部材5は、コイル2と磁性コア3との相対的な位置を決める。また、保持部材5によって、コイル2と磁性コア3との間の電気的絶縁を確保できる。本実施形態では、保持部材5は、第一保持部材5aと第二保持部材5bとを有する。第一保持部材5aは、巻回部20の第一の端面と向かい合う環状の部材である。第一保持部材5aは、巻回部20の第一の端面と、第一エンドコア部35aとの間に配置される。第二保持部材5bは、巻回部20の第二の端面と向かい合う環状の部材である。第二保持部材5bは、巻回部20の第二の端面と、第二エンドコア部35bとの間に配置される。保持部材5を構成する樹脂には、例えば、上述した複合材料の成形体の樹脂と同様の樹脂を用いることができる。
 第一保持部材5aの厚さと第二保持部材5bの厚さは、同じであってもよいし、異なってもよい。例えば、第一保持部材5aの厚さが第二保持部材5bの厚さよりも厚くてもよい。第一保持部材5aの厚さは、巻回部20の第一の端面と向かい合う面と、第一エンドコア部35aと向かい合うの面との距離である。第二保持部材5bの厚さは、巻回部20の第二の端面と向かい合う面と、第二エンドコア部35bと向かい合う面との距離である。上述した樹脂モールド部材4を備えない場合は、第一保持部材5aが第二保持部材5bよりも厚くなるように構成するとよい。第一保持部材5aが第二保持部材5bよりも厚くなるようにすることで、上述した樹脂モールド部材4がなくても、X方向において、巻回部20をミドルコア部31に対して位置決めできる。
 実施形態1のリアクトル1aは、巻回部20の中心位置C20がミドルコア部31の中心位置C31と同じ位置である基準リアクトルに比較して、インダクタンスを大きくすることができる。その理由は、巻回部20の中心位置C20がミドルコア部31の中心位置C31よりも第二ミドルコア部31bに近い領域に位置することで、巻回部20の内側に配置される第二ミドルコア部31bの割合が増えるからである。比透磁率が高い第二ミドルコア部31bを通る磁束が増えることから、インダクタンスが増加する。
 リアクトル1aは、巻回部20のターン数および磁性コア3のサイズを変更することなく、巻回部20の位置を第二コア3bに近づくようにずらすことのみによって、基準リアクトルよりもインダクタンスが増加する。インダクタンスが増加するため、リアクトル1aは、巻回部20のターン数を減らしたり、磁性コア3のサイズを小さくしたりしても、基準リアクトルと同じインダクタンスを確保できる。よって、リアクトル1aは、所定のインダクタンスを確保しつつ、小型化が可能である。
 第二ミドルコア部31bの比透磁率と第一ミドルコア部31aの比透磁率との差が50以上であると、インダクタンスの増加を図り易い。また、巻回部20の中心位置C20とミドルコア部31の中心位置C31との距離Dが、巻回部20の長さL20の1%以上である場合、インダクタンスの増加を図り易い。特に、距離Dが1.0mm以上であると、インダクタンスを効果的に増加することができる。
 [実施形態2]
 図4を参照して、実施形態2のリアクトル1bを説明する。実施形態2のリアクトル1bは、磁性コア3がE-E型である点が、実施形態1のリアクトル1aと相違する。以下の説明は、実施形態1との相違点を中心に行う。実施形態1と同様の構成は、同じ符号を付して説明を省略する。図4では、実施形態1で説明した樹脂モールド部材4および保持部材5は省略している。
 <磁性コア>
 磁性コア3は、実施形態1と同様に、第一コア3aと第二コア3bとがX方向に組み合わされることで構成される。磁性コア3の形状は、図4に示すようにZ方向から見て、θ状である。図4中、二点鎖線は、ミドルコア部31とエンドコア部35との境界、およびサイドコア部33とエンドコア部35との境界を示している。
 実施形態2では、2つのサイドコア部33の各々がX方向に分割されている。サイドコア部33は、第一サイドコア部33aと第二サイドコア部33bとを有する。第一サイドコア部33aと第二サイドコア部33bとは、X方向に並ぶ。第一サイドコア部33aはX方向の第一方向に位置する。第一サイドコア部33aの端部は第一エンドコア部35aに接続される。第二サイドコア部33bはX方向の第二方向に位置する。第二サイドコア部33bの端部は第二エンドコア部35bに接続される。
 第一サイドコア部33aの端面と第二サイドコア部33bの端面とは互いに接触している。第一サイドコア部33aおよび第二サイドコア部33bの各々の長さは、適宜設定すればよい。ここでいう長さは、X方向に沿った長さをいう。図4では、第一サイドコア部33aが第二サイドコア部33bよりも長い。第一サイドコア部33aは第二サイドコア部33bよりも短くてもよい。第一サイドコア部33aの長さと第二サイドコア部33bの長さとが同じであってもよい。
 第一コア3aは、第一ミドルコア部31aと、第一エンドコア部35aと、2つの第一サイドコア部33aとを有する。第一ミドルコア部31aと、第一エンドコア部35aと、2つの第一サイドコア部33aとは一体に成形されている。第一サイドコア部33aの各々は、第一エンドコア部35aのY方向の両端部から第二サイドコア部33bに向かってX方向に延びている。第一コア3aの形状は、Z方向から見て、E字状である。
 第二コア3bは、第二ミドルコア部31bと、第二エンドコア部35bと、2つの第二サイドコア部33bとを有する。第二ミドルコア部31bと、第二エンドコア部35bと、2つの第二サイドコア部33bとは一体に成形されている。第二サイドコア部33bの各々は、第二エンドコア部35bのY方向の両端部から第一サイドコア部33aに向かってX方向に延びている。第二コア3bの形状は、Z方向から見て、E字状である。
 第一コア3aの比透磁率と第二コア3bの比透磁率との関係は、実施形態1と同様である。つまり、第二ミドルコア部31bの比透磁率が第一ミドルコア部31aの比透磁率よりも大きい。また、巻回部20の中心位置C20がミドルコア部31の中心位置C31よりも第二ミドルコア部31bに近い領域に位置する点も、実施形態1と同様である。
 実施形態2のリアクトル1bは、実施形態1のリアクトル1aと同様に、インダクタンスを大きくすることができる。
 [実施形態3]
 図5を参照して、実施形態3のリアクトル1cを説明する。実施形態3のリアクトル1cは、コイル2が2つの巻回部20を有する点と、磁性コア3がU―U型である点が、実施形態1のリアクトル1aと相違する。以下の説明は、実施形態1との相違点を中心に行う。実施形態1と同様の構成は、同じ符号を付して説明を省略する。図5では、実施形態1で説明した樹脂モールド部材4および保持部材5は省略している。
 <コイル>
 コイル2は、2つの巻回部20を有する。2つの巻回部20は、互いの軸が平行するように並列に配置されている。巻回部20の各々の形状は矩形筒状である。巻回部20の各々の長さL20は同じである。巻回部20の各々は同じターン数である。
 図5に示す2つの巻回部20は、別々の巻線線を螺旋状に巻回して構成されている。図5では、巻回部20の各々の第二の端部から引き出された第二端末部21b同士が連結部材23によって電気的に接続されている。連結部材23は、例えば、巻線と同一部材で構成されている。巻回部20の各々の第一の端部から引き出された第一端末部21aには、図示しないバスバが接続される。2つの巻回部20は、1本の連続する巻線で構成されていてもよい。この場合、2つの巻回部20の形成方法は、例えば、1つの巻回部20を第一の端部から形成した後、この巻回部20の第二の端部で巻線をU字状に屈曲させて折り返し、残りの巻回部20を第二の端部から形成する。
 <磁性コア>
 磁性コア3は、実施形態1と同様に、第一コア3aと第二コア3bとがX方向に組み合わされることで構成される。磁性コア3の形状は、図5に示すようにZ方向から見て、O状である。実施形態3では、磁性コア3は、2つのミドルコア部31と、2つのエンドコア部35とを有する。2つのミドルコア部31が並列される方向をY方向とする。図5中、二点鎖線は、ミドルコア部31とエンドコア部35との境界を示している。
 2つのミドルコア部31の各々はX方向に延びている。2つのミドルコア部31は、互いの軸が平行するように並列に配置されている。ミドルコア部31の各々は、2つの巻回部20の内側にそれぞれ配置される部分を有する。ミドルコア部31の各々の形状は略直方体状である。ミドルコア部31の各々は、X方向に分割されており、第一ミドルコア部31aと第二ミドルコア部31bとを有する。第一ミドルコア部31aの各々はX方向の第一方向に位置する。第二ミドルコア部31bの各々はX方向の第二方向に位置する。
 2つのミドルコア部31の長さL31は同じである。ミドルコア部31の長さL31は巻回部20の長さL20よりも長い。図5では、第一ミドルコア部31aの各々の長さL1aが第二ミドルコア部31bの各々の長さL1bよりも長い。また、ミドルコア部31の各々はギャップ部3gを有する。ギャップ部3gは、第一ミドルコア部31aと第二ミドルコア部31bとの間に設けられている。
 エンドコア部35は第一エンドコア部35aと第二エンドコア部35bとを有する。第一エンドコア部35aは、X方向の第一方向に位置し、巻回部20の各々の第一の端面と向かい合う。第一エンドコア部35aには、第一ミドルコア部31aの各々の端部が接続される。つまり、第一エンドコア部35aは、第一ミドルコア部31aの端部同士をつなぐ。第二エンドコア部35bは、X方向の第二方向に位置し、巻回部20の各々の第二の端面と向かい合う。第二エンドコア部35bには、第二ミドルコア部31bの各々の端部が接続される。つまり、第二エンドコア部35bは、第二ミドルコア部31bの端部同士をつなぐ。第一エンドコア部35aおよび第二エンドコア部35bの各々の形状は略直方体状である。
 第一コア3aは、2つのミドルコア部31の各々の第一ミドルコア部31aと、第一エンドコア部35aとを有する。2つの第一ミドルコア部31aと、第一エンドコア部35aとは一体に成形されている。第一ミドルコア部31aの各々は、第一エンドコア部35aのY方向の両端部から第二ミドルコア部31bの各々に向かってX方向に延びている。第一コア3aの形状は、Z方向から見て、U字状である。
 第二コア3bは、2つのミドルコア部31の各々の第二ミドルコア部31bと、第二エンドコア部35bとを有する。2つの第二ミドルコア部31bと、第二エンドコア部35bとは一体に成形されている。第二ミドルコア部31bの各々は、第二エンドコア部35bのY方向の両端部から第一ミドルコア部31aの各々に向かってX方向に延びている。第二コア3bの形状は、Z方向から見て、U字状である。
 第一コア3aの比透磁率と第二コア3bの比透磁率との関係は、実施形態1と同様である。つまり、第二ミドルコア部31bの比透磁率が第一ミドルコア部31aの比透磁率よりも大きい。また、巻回部20の各々の中心位置C20がミドルコア部31の各々の中心位置C31よりも第二ミドルコア部31bに近い領域に位置する点も、実施形態1と同様である。
 実施形態3のリアクトル1cは、実施形態1のリアクトル1aと同様に、インダクタンスを大きくすることができる。
 [実施形態4]
 〔コンバータ・電力変換装置〕
 実施形態1から実施形態3のリアクトルは、以下の通電条件を満たす用途に利用できる。通電条件は、例えば、最大直流電流が100A以上1000A以下程度であり、平均電圧が100V以上1000V以下程度であり、使用周波数が5kHz以上100kHz以下程度である。実施形態1から実施形態3のリアクトル1a、1b、1cは、代表的には電気自動車およびハイブリッド自動車などの車両などに搭載されるコンバータの構成部品、およびこのコンバータを備える電力変換装置の構成部品に利用できる。
 ハイブリッド自動車および電気自動車などの車両1200は、図6に示すようにメインバッテリ1210と、メインバッテリ1210に接続される電力変換装置1100と、メインバッテリ1210からの供給電力により駆動して走行に利用されるモータ1220とを備える。モータ1220は、代表的には、3相交流モータである。モータ1220は、走行時、車輪1250を駆動し、回生時、発電機として機能する。ハイブリッド自動車の場合、車両1200は、モータ1220に加えてエンジン1300を備える。図6では、車両1200の充電箇所としてインレットを示すが、プラグを備える形態とすることができる。
 電力変換装置1100は、メインバッテリ1210に接続されるコンバータ1110と、コンバータ1110に接続されて、直流と交流との相互変換を行うインバータ1120とを有する。この例に示すコンバータ1110は、車両1200の走行時、200V以上300V以下程度のメインバッテリ1210の入力電圧を400V以上700V以下程度にまで昇圧して、インバータ1120に給電する。コンバータ1110は、回生時、モータ1220からインバータ1120を介して出力される入力電圧をメインバッテリ1210に適合した直流電圧に降圧して、メインバッテリ1210に充電させている。入力電圧は、直流電圧である。インバータ1120は、車両1200の走行時、コンバータ1110で昇圧された直流を所定の交流に変換してモータ1220に給電し、回生時、モータ1220からの交流出力を直流に変換してコンバータ1110に出力している。
 コンバータ1110は、図7に示すように複数のスイッチング素子1111と、スイッチング素子1111の動作を制御する駆動回路1112と、リアクトル1115とを備え、ON/OFFの繰り返しにより入力電圧の変換を行う。入力電圧の変換とは、ここでは昇降圧を行う。スイッチング素子1111には、電界効果トランジスタ、絶縁ゲートバイポーラトランジスタなどのパワーデバイスが利用される。リアクトル1115は、回路に流れようとする電流の変化を妨げようとするコイルの性質を利用し、スイッチング動作によって電流が増減しようとしたとき、その変化を滑らかにする機能を有する。リアクトル1115として、実施形態1から実施形態3のいずれかのリアクトルを備える。インダクタンスが大きいリアクトルを備えることで、リアクトルを小型化できることから、電力変換装置1100およびコンバータ1110を小型化できる。
 車両1200は、コンバータ1110の他、メインバッテリ1210に接続された給電装置用コンバータ1150や、補機類1240の電力源となるサブバッテリ1230とメインバッテリ1210とに接続され、メインバッテリ1210の高圧を低圧に変換する補機電源用コンバータ1160を備える。コンバータ1110は、代表的には、DC-DC変換を行うが、給電装置用コンバータ1150や補機電源用コンバータ1160は、AC-DC変換を行う。給電装置用コンバータ1150のなかには、DC-DC変換を行うものもある。給電装置用コンバータ1150や補機電源用コンバータ1160のリアクトルに、実施形態1から実施形態3のいずれかのリアクトルと同様の構成を備え、適宜、大きさまたは形状などを変更したリアクトルを利用できる。また、入力電力の変換を行うコンバータであって、昇圧のみを行うコンバータまたは降圧のみを行うコンバータに、実施形態1から実施形態3のいずれかのリアクトルを利用することもできる。
 <試験例1>
 実施形態1のリアクトル1aと同様の構成のリアクトルについて、インダクタンスを評価した。
 試験例1では、試料No.1-1と試料No.10について、インダクタンスをCAE(Computer Aided Engineering)により解析した。試料No.1-1は、巻回部20の中心位置C20がミドルコア部31の中心位置C31よりも第二ミドルコア部31bに近い領域に位置する。試料No.10は、巻回部20の中心位置C20がミドルコア部31の中心位置C31と同じ位置である。試験例1で用いたリアクトルの試料の構成は以下のように設定した。
 (コイル)
 巻回部20の長さL20:38mm
 ターン数:30ターン
 (磁性コア)
 ミドルコア部31の長さL31:43mm
 第一ミドルコア部31aの長さL1a:32mm
 第二ミドルコア部31bの長さL1b:10mm
 ギャップ部3gの長さLg:1mm
 第一コア3aの比透磁率:25
 第二コア3bの比透磁率:200
 第一コア3aの材質:複合材料の成形体
 第二コア3bの材質:圧粉成形体
 試料No.1-1では、巻回部20の中心位置C20とミドルコア部31の中心位置C31との距離Dを1.0mmに設定した。つまり、試料No.1-1での距離Dは、巻回部20の長さL20の2.6%である。試料No.10では、距離Dがゼロである。
 各試料のリアクトルについて、コイルに直流を流したときのインダクタンスを求めた。インダクタンスの解析には、市販の電磁界解析ソフトウェアである株式会社JSOL製のJMAG-Designer19.0を使用した。電流は0Aから300Aの範囲で変化させた。電流値が0A、100A、200A、および300Aのときの各インダクタンスを表1に示す。表1には、試料No.1-1における各電流値でのインダクタンスを、試料No.10における各電流値でのインダクタンスを100としたパーセントで示す。また、表1に、試料No.10における各電流値でのインダクタンスを基準として、試料No.1-1における各電流値でのインダクタンスの増加率を示す。増加率は、試料No.1-1のインダクタンスから試料No.10のインダクタンスを引いた値を試料No.10のインダクタンスで割った割合である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試料No.1-1のリアクトルは、試料No.10のリアクトルに比較して、インダクタンスが大きい。試料No.1-1における0Aから300Aの各電流値でのインダクタンスは、試料No.10における各電流値でのインダクタンスよりも増加している。
1a、1b、1c リアクトル
2 コイル
 20 巻回部
 21 端末部、21a 第一端末部、21b 第二端末部
 23 連結部材
3 磁性コア
 3a 第一コア、3b 第二コア
 31 ミドルコア部
  31a 第一ミドルコア部、31b 第二ミドルコア部
 33 サイドコア部
  33a 第一サイドコア部、33b 第二サイドコア部
 35 エンドコア部 
  35a 第一エンドコア部、35b 第二エンドコア部
 3g ギャップ部
4 樹脂モールド部材
5 保持部材
 5a 第一保持部材、5b 第二保持部材
C20、C31 中心位置
D 距離
L20、L31、L1a、L1b、Lg 長さ
1100 電力変換装置
 1110 コンバータ、1111 スイッチング素子、1112 駆動回路
 1115 リアクトル、1120 インバータ
 1150 給電装置用コンバータ、1160 補機電源用コンバータ
1200 車両
 1210 メインバッテリ、1220 モータ、1230 サブバッテリ
 1240 補機類、1250 車輪
 1300 エンジン

Claims (11)

  1.  巻回部を有するコイルと、ミドルコア部を有する磁性コアとを備え、
     前記巻回部は、前記ミドルコア部に配置され、
     前記ミドルコア部は、前記巻回部の軸に沿った方向に分割された第一ミドルコア部と第二ミドルコア部とを有し、
     前記第二ミドルコア部の比透磁率が前記第一ミドルコア部の比透磁率よりも大きく、
     前記巻回部の軸に沿った方向の中心位置は、前記ミドルコア部の軸に沿った方向の中心位置よりも前記第二ミドルコア部に近い領域に位置する、
     リアクトル。
  2.  前記第二ミドルコア部の比透磁率と前記第一ミドルコア部の比透磁率との差が50以上である、請求項1に記載のリアクトル。
  3.  前記巻回部の前記中心位置と前記ミドルコア部の前記中心位置との距離が、前記巻回部の軸に沿った長さの1%以上である、請求項1または請求項2に記載のリアクトル。
  4.  前記距離が1.0mm以上である、請求項3に記載のリアクトル。
  5.  前記第一ミドルコア部の比透磁率が5以上50以下である、請求項1から請求項4のいずれか1項に記載のリアクトル。
  6.  前記第二ミドルコア部の比透磁率が50以上500以下である、請求項1から請求項5のいずれか1項に記載のリアクトル。
  7.  前記第一ミドルコア部は、樹脂中に軟磁性粉末が分散された複合材料の成形体で構成され、
     前記第二ミドルコア部は、軟磁性粉末を含む原料粉末の圧粉成形体で構成されている、請求項1から請求項6のいずれか1項に記載のリアクトル。
  8.  前記ミドルコア部は、前記第一ミドルコア部と前記第二ミドルコア部との間にギャップ部を有し、
     前記ギャップ部は、前記巻回部の内側に位置する、請求項1から請求項7のいずれか1項に記載のリアクトル。
  9.  前記磁性コアは、第一コアと第二コアとで構成され、
     前記第一コアは、前記第一ミドルコア部を有し、
     前記第二コアは、前記第二ミドルコア部を有する、請求項1から請求項8のいずれか1項に記載のリアクトル。
  10.  請求項1から請求項9のいずれか1項に記載のリアクトルを備える、
     コンバータ。
  11.  請求項10に記載のコンバータを備える、
     電力変換装置。
PCT/JP2022/035030 2021-09-29 2022-09-20 リアクトル、コンバータ、及び電力変換装置 WO2023054071A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-159001 2021-09-29
JP2021159001A JP2023049328A (ja) 2021-09-29 2021-09-29 リアクトル、コンバータ、及び電力変換装置

Publications (1)

Publication Number Publication Date
WO2023054071A1 true WO2023054071A1 (ja) 2023-04-06

Family

ID=85782562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035030 WO2023054071A1 (ja) 2021-09-29 2022-09-20 リアクトル、コンバータ、及び電力変換装置

Country Status (2)

Country Link
JP (1) JP2023049328A (ja)
WO (1) WO2023054071A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294429A (ja) * 1999-04-09 2000-10-20 Hitachi Ferrite Electronics Ltd 複合磁芯
JP2021141123A (ja) * 2020-03-02 2021-09-16 株式会社オートネットワーク技術研究所 リアクトル、コンバータ、及び電力変換装置
JP2021141122A (ja) * 2020-03-02 2021-09-16 株式会社オートネットワーク技術研究所 リアクトル、コンバータ、及び電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294429A (ja) * 1999-04-09 2000-10-20 Hitachi Ferrite Electronics Ltd 複合磁芯
JP2021141123A (ja) * 2020-03-02 2021-09-16 株式会社オートネットワーク技術研究所 リアクトル、コンバータ、及び電力変換装置
JP2021141122A (ja) * 2020-03-02 2021-09-16 株式会社オートネットワーク技術研究所 リアクトル、コンバータ、及び電力変換装置

Also Published As

Publication number Publication date
JP2023049328A (ja) 2023-04-10

Similar Documents

Publication Publication Date Title
JP6065609B2 (ja) リアクトル、コンバータ、及び電力変換装置
US20230100669A1 (en) Reactor, converter, and power conversion device
JP5958792B2 (ja) リアクトル、コンバータ、及び電力変換装置
US11295888B2 (en) Reactor
WO2023054071A1 (ja) リアクトル、コンバータ、及び電力変換装置
WO2023054072A1 (ja) リアクトル、コンバータ、及び電力変換装置
WO2021177190A1 (ja) リアクトル、コンバータ、及び電力変換装置
WO2021193783A1 (ja) リアクトル、コンバータ、及び電力変換装置
WO2024005094A1 (ja) リアクトル、磁性コア、コンバータ、および電力変換装置
WO2022044711A1 (ja) リアクトル、コンバータ、及び電力変換装置
WO2023095534A1 (ja) リアクトル、コンバータ、及び電力変換装置
WO2023048104A1 (ja) リアクトル、コンバータ、及び電力変換装置
WO2024005095A1 (ja) リアクトル、磁性コア、コンバータ、および電力変換装置
WO2022209759A1 (ja) コア片、リアクトル、コンバータ、及び電力変換装置
WO2023063178A1 (ja) リアクトル、コンバータ、及び電力変換装置
WO2022038982A1 (ja) リアクトル、コンバータ、及び電力変換装置
WO2023026836A1 (ja) リアクトル、コンバータ、及び電力変換装置
US11557423B2 (en) Coil and reactor
WO2022196366A1 (ja) リアクトル、コンバータ、及び電力変換装置
WO2022044712A1 (ja) リアクトル、コンバータ、及び電力変換装置
WO2023248774A1 (ja) リアクトル、分割片、コンバータ、及び電力変換装置
CN117941020A (en) Reactor, converter, and power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875941

Country of ref document: EP

Kind code of ref document: A1