WO2023053716A1 - 発泡性樹脂組成物、発泡体、発泡体の製造方法、及び発泡性硬化剤 - Google Patents

発泡性樹脂組成物、発泡体、発泡体の製造方法、及び発泡性硬化剤 Download PDF

Info

Publication number
WO2023053716A1
WO2023053716A1 PCT/JP2022/029688 JP2022029688W WO2023053716A1 WO 2023053716 A1 WO2023053716 A1 WO 2023053716A1 JP 2022029688 W JP2022029688 W JP 2022029688W WO 2023053716 A1 WO2023053716 A1 WO 2023053716A1
Authority
WO
WIPO (PCT)
Prior art keywords
amine compound
resin composition
mass
foamable
curing agent
Prior art date
Application number
PCT/JP2022/029688
Other languages
English (en)
French (fr)
Inventor
裕貴 川島
和起 河野
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020247006083A priority Critical patent/KR20240087641A/ko
Priority to US18/690,024 priority patent/US20240301156A1/en
Priority to CN202280064627.6A priority patent/CN117980379A/zh
Priority to EP22875593.0A priority patent/EP4410866A1/en
Priority to JP2022568512A priority patent/JP7276628B1/ja
Publication of WO2023053716A1 publication Critical patent/WO2023053716A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G71/00Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
    • C08G71/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/156Heterocyclic compounds having oxygen in the ring having two oxygen atoms in the ring
    • C08K5/1565Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0066≥ 150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the present invention relates to a foamable resin composition, a foam, a method for producing a foam, and a foamable curing agent.
  • Polyurethane resins for example, are excellent in mechanical strength, flexibility, abrasion resistance, oil resistance, etc., and are widely used as resins for paints and adhesives.
  • a polyhydroxyurethane resin having both urethane bonds and hydroxyl groups in its chemical structure has been developed, and its industrial application is expected.
  • Polyhydroxyurethane resins like existing polyurethane resins, are resins with excellent mechanical strength. ).
  • polyurethane resin foams are used for various heat insulating materials, panel core materials, etc., because they are excellent in heat insulation, mechanical strength, water resistance, etc.
  • foaming agent chlorofluorocarbons or chlorofluorocarbons, halogen-containing hydrocarbons such as fluorocarbons, have been conventionally used. 2).
  • JP 2021-42267 A Japanese Patent Application Laid-Open No. 2004-339437
  • the present invention provides a novel method for producing a polyhydroxyurethane resin-based foam that can reduce the environmental burden, as well as an expandable resin composition and an expandable curing agent used in the production method.
  • the inventors have made extensive studies to solve the above problems. As a result, by using a reaction product of an amine compound and carbon dioxide as a foaming curing agent for molding a polyhydroxyurethane resin-based foam, it is possible to reduce the amount of conventional foaming agents that have a large environmental impact.
  • the present inventors have found that it is possible to reduce the environmental load during the production of polyhydroxyurethane resin-based foams, and have completed the present invention.
  • the following foamable resin composition, foam, method for producing a foam, and foamable curing agent are provided.
  • a foamable resin composition for molding a polyhydroxyurethane resin-based foam A foamable resin composition comprising a foamable curing agent (A) containing a reaction product (a2) of an amine compound (a1) and carbon dioxide, and a cyclic carbonate compound (B) having two or more cyclic carbonate groups.
  • a foamable curing agent (A) containing a reaction product (a2) of an amine compound (a1) and carbon dioxide, and a cyclic carbonate compound (B) having two or more cyclic carbonate groups A foamable curing agent (A) containing a reaction product (a2) of an amine compound (a1) and carbon dioxide, and a cyclic carbonate compound (B) having two or more cyclic carbonate groups.
  • the mass increase rate of the amine compound (a1) calculated by the following formula is 10% by mass or more and 50% by mass.
  • the foamable resin composition according to any one of [1] to [7], wherein the cyclic carbonate group in the cyclic carbonate compound (B) contains a 5-membered cyclic carbonate group.
  • the amine compound (a1) is o-xylylenediamine and its derivatives, m-xylylenediamine and its derivatives, p-xylylenediamine and its derivatives, bis(aminomethyl)cyclohexane and its derivatives, limonenediamine and its derivatives, and at least one selected from the group consisting of isophoronediamine and derivatives thereof.
  • the content of the foamable curing agent (A) in the foamable resin composition is the ratio of the number of amino groups in the foamable curing agent (A) to the number of cyclic carbonate groups in the cyclic carbonate compound (B) ( The expandable resin composition according to any one of the above [1] to [9], wherein the number of amino groups/the number of cyclic carbonate groups) is 0.5 or more and 1.5 or less.
  • a polyhydroxyurethane resin-based foam obtained by foam-molding the foamable resin composition according to any one of [1] to [10].
  • a method for producing a polyhydroxyurethane resin-based foam comprising the step of foam-molding the foamable resin composition according to any one of [1] to [10].
  • a foaming curing agent for molding a polyhydroxyurethane resin-based foam A foaming curing agent containing a reaction product (a2) of an amine compound (a1) and carbon dioxide.
  • the mass increase rate of the amine compound (a1) calculated by the following formula is 10% by mass or more and 50% by mass.
  • the foaming curing agent according to the above [13], which is: Mass increase rate of amine compound (a1) [% by mass] 100 ⁇ mass increase of amine compound (a1) (g)/(mass of amine compound (a1) (g) + mass increase of amine compound (a1) (g)) [15]
  • the amine compound (a1) is o-xylylenediamine and its derivatives, m-xylylenediamine and its derivatives, p-xylylenediamine and its derivatives, bis(aminomethyl)cyclohexane and its derivatives, limonenediamine and its derivatives, and isophoronediamine and derivatives thereof.
  • this embodiment The form for carrying out the present invention (hereinafter simply referred to as "this embodiment") will be described in detail.
  • the following embodiments are exemplifications for explaining the present invention, and do not limit the content of the present invention.
  • the present invention can be appropriately modified and implemented within the scope of the gist thereof.
  • the rules that are considered preferable can be arbitrarily adopted, and it can be said that a combination of preferable ones is more preferable.
  • the description “XX to YY” means “XX or more and YY or less”.
  • the foamable resin composition (C) of the present invention is a foamable resin composition for molding a polyhydroxyurethane resin-based foam, wherein the reaction product (a2) of the amine compound (a1) and carbon dioxide is and a cyclic carbonate compound (B) having two or more cyclic carbonate groups.
  • the reaction product (a2) of the amine compound (a1) and carbon dioxide is used as a foamable curing agent (A ), it is possible to reduce the amount of conventional foaming agents with a large environmental load, and to reduce the environmental load during the production of polyhydroxyurethane resin-based foams.
  • the foamable resin composition (C) of the present invention by using the foamable curing agent (A) containing the reaction product (a2) of the amine compound (a1) and carbon dioxide, polyhydroxyurethane resin-based foaming body can be manufactured.
  • the reason is not clear, it is considered as follows. First, by heating the foamable resin composition (C), the amine compound (a1) and carbon dioxide are generated from the reactant (a2). At this time, the generated carbon dioxide foams the foamable resin composition (C), and the generated amine compound (a1) and the cyclic carbonate compound (B) undergo a polyaddition reaction to form the foamable resin composition (C). It is thought that the polyhydroxyurethane resin-based foam (D) is obtained by curing of the above.
  • the foaming curing agent (A) contains a reactant (a2) of an amine compound (a1) and carbon dioxide.
  • the amine compound (a1) preferably contains a cyclic amine compound (a11) having a cyclic structure from the viewpoint of further improving reactivity with carbon dioxide and foamability.
  • the cyclic amine compound (a11) preferably has an amino group bonded to a primary carbon atom. Such an amino group has little steric hindrance and is thought to readily absorb carbon dioxide.
  • the cyclic amine compound (a11) is an amine compound having a cyclic structure.
  • Examples of the cyclic structure of the cyclic amine compound (a11) include an alicyclic hydrocarbon structure, an aromatic hydrocarbon structure, and a heterocyclic structure containing a heteroatom in the ring. From the viewpoint of further improving properties and foamability, it preferably contains at least one structure selected from an alicyclic hydrocarbon structure and an aromatic hydrocarbon structure, and more preferably contains an alicyclic hydrocarbon structure.
  • the alicyclic hydrocarbon structure refers to a cyclic structure composed of saturated or unsaturated carbon and hydrogen having no aromaticity, and a heterocyclic ring containing a heteroatom in the ring Formula structures are excluded.
  • a heterocyclic structure means a heterocyclic structure containing a heteroatom in the ring.
  • the cyclic amine compound (a11) When the cyclic amine compound (a11) has a structure that can take either a cis-form or a trans-form, it may be a cis-form, a trans-form, or a mixture of the cis- and trans-forms.
  • the cyclic structure of the cyclic amine compound (a11) preferably contains at least one selected from a 5-membered ring and a 6-membered ring, from the viewpoint of further improving reactivity with carbon dioxide and foamability. It is more preferable to include Moreover, the cyclic amine compound (a11) preferably has one cyclic structure from the viewpoint of further improving the reactivity with carbon dioxide and the foamability. That is, the cyclic amine compound (a11) is preferably a monocyclic compound.
  • the alicyclic hydrocarbon structure of the cyclic amine compound (a11) includes, for example, cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring and the like.
  • a cyclopentane ring and a cyclohexane ring are preferred, a cyclohexane ring is more preferred, and a 1,3-substituted cyclohexane ring is even more preferred.
  • the number of amino groups in the amine compound (a1) is preferably 2 or more and 6 or less, more preferably 2 or more and 4 or less, still more preferably 2, from the viewpoint of further improving reactivity with carbon dioxide, curability and foamability. 3 or less, more preferably 2.
  • the amino group is preferably an amino group having a nitrogen-hydrogen bond from the viewpoint of further improving reactivity with carbon dioxide, curability and foamability, and consists of a primary amino group and a secondary amino group. At least one amino group selected from the group is more preferred, and a primary amino group is even more preferred.
  • the amine compound (a1) is preferably o-xylylenediamine and its derivatives, m-xylylenediamine and its derivatives, p-xylylenediamine and its derivatives, limonenediamine and its derivatives, 4,4′-methylenebis(cyclohexyl amine) and its derivatives, N-(2-aminoethyl)piperazine and its derivatives, 2,5-bisaminomethylfuran and its derivatives, and 2,5-bis(aminomethyl)tetrahydrofuran and its derivatives, and the following formula It is at least one selected from the compounds represented by (1).
  • R 1 to R 4 each independently have 1 to 10 carbon atoms which may have at least one substituent selected from a hydrogen atom or an amino group, a cyano group and a phenyl group. is a hydrocarbon group
  • R 5 to R 10 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms
  • x and y each independently represent an integer of 0 to 6
  • x+y is 1 or more and 6 or less
  • p and q are each independently an integer of 0 or more and 4 or less
  • at least one of p and q is 1 or more.
  • R 1 to R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, optionally having at least one substituent selected from an amino group, a cyano group and a phenyl group; is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms optionally having at least one substituent selected from an amino group, a cyano group and a phenyl group, more preferably a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms optionally having at least one substituent selected from an amino group and a cyano group, more preferably a hydrogen atom, or an amino group and a cyano group It is an alkyl group having 2 to 4 carbon atoms which may have at least one substituent, more preferably a hydrogen atom.
  • the number of carbon atoms in the hydrocarbon groups of R 1 to R 4 is each independently 1 or more, preferably 2 or more, and 10 or less, preferably 5 or less, more preferably 4 or
  • R 5 to R 10 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably a hydrogen atom or It is an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group, still more preferably a hydrogen atom.
  • the number of carbon atoms in the hydrocarbon groups of R 5 to R 10 is each independently 1 or more and 4 or less, preferably 1 or 2, more preferably 1.
  • p and q are each independently 0 or more, preferably 1 or more, and 4 or less, preferably 2 or less, more preferably 1. However, at least one of p and q is 1 or more.
  • x and y each independently represent an integer of 0 or more and 6 or less, and x+y is 1 or more and 6 or less.
  • x + y is preferably 2 or more, more preferably 3 or more, and still more preferably 4 or more, and from the viewpoint of further improving carbon dioxide absorption and foamability, It is preferably 5 or less, more preferably 4. That is, the alicyclic hydrocarbon structure is preferably a 5- or 6-membered ring, more preferably a 6-membered ring.
  • x+y is 4, preferably x is 1 and y is 3.
  • amine compound (a1) o-xylylenediamine and its derivatives, m-xylylenediamine and its derivatives, and p-xylylenediamine are used from the viewpoint of further improving reactivity with carbon dioxide, curability and foamability.
  • At least one selected from the group consisting of (aminomethyl)cyclohexane and its derivatives, limonenediamine and its derivatives, and isophoronediamine and its derivatives is more preferred, and bis At least one selected from the group consisting of (aminomethyl)cyclohexane and its derivatives, limonenediamine and its derivatives, and isophoronediamine and its derivatives is more preferred, and bis(aminomethyl)cyclohexane and its derivatives are more preferred.
  • At least one hydrogen atom of the amino group has at least one substituent selected from the group consisting of an amino group, a cyano group and a phenyl group.
  • a hydrocarbon group having 1 to 10 carbon atoms preferably an alkyl having 1 to 4 carbon atoms and optionally having at least one substituent selected from the group consisting of an amino group, a cyano group and a phenyl group group, more preferably an alkyl group having 1 to 4 carbon atoms optionally having at least one substituent selected from the group consisting of an amino group and a cyano group, more preferably a group consisting of an amino group and a cyano group
  • a compound substituted with an alkyl group having 2 or more and 4 or less carbon atoms which may have at least one substituent selected from Examples of derivatives of various amines include hydrocarbon groups in which at least some of the hydrogen atoms in the cyclic structure have 1 to 4 carbon atoms, preferably alkyl groups with 1 to 3 carbon atoms, more preferably Examples include compounds substituted with a methyl group or an ethyl group, more preferably a methyl group.
  • amine compounds (a1) can be used alone or in combination of two or more.
  • the ratio of the cyclic amine compound (a11) in the amine compound (a1) in the reactant (a2) is preferably, when the total amount of the amine compound (a1) is 100 parts by mass, from the viewpoint of further improving the foamability. 50 parts by mass or more, more preferably 60 parts by mass or more, still more preferably 70 parts by mass or more, still more preferably 80 parts by mass or more, still more preferably 90 parts by mass or more, still more preferably 95 parts by mass or more, and preferably It is 100 parts by mass or less.
  • Examples of the amine compound (a1) other than the cyclic amine compound (a11) include monoethanolamine, 2-amino-2-methyl-1-propanol, diethanolamine, 2-(methylamino)ethanol, 2-(ethylamino ) ethanol, 2-(dimethylamino)ethanol, 2-(diethylamino)ethanol, ethylenediamine, N,N'-dimethylethylenediamine, diethylenetriamine, and other acyclic aliphatic amine compounds.
  • the maximum carbon dioxide dissociation temperature of the amine compound (a1) which is measured by the following method, is preferably 200° C. or lower, more preferably 180° C. or lower, from the viewpoint of improving the dissociation of carbon dioxide and improving foamability. , more preferably 160° C. or lower, more preferably 150° C. or lower, still more preferably 140° C. or lower, still more preferably 135° C. or lower, still more preferably 130° C. or lower. Although the lower limit of the maximum dissociation temperature of carbon dioxide is not particularly limited, it is, for example, 40°C or higher. (Method) The carbon dioxide-absorbed amine compound (a1) is heated from 23° C. to 250° C.
  • the carbon dioxide-absorbed amine compound (a1) can be prepared, for example, by allowing 5 mmol of the amine compound (a1) to stand in air at 23° C. and 50% RH for 24 hours.
  • the acid dissociation constant (pKa) of the amine compound (a1) is preferably 8.0 or higher, more preferably 8.5 or higher, and still more preferably 9.0 or higher, from the viewpoint of further improving carbon dioxide absorption and foamability. and is preferably 12.0 or less, more preferably 11.5 or less, and still more preferably 11.0 or less from the viewpoint of improving the dissociation property of carbon dioxide and further improving foamability.
  • the acid dissociation constant of the amine compound (a1) is a value determined by the following measurement method based on the acid-base titration method. (1) 0.2 g of amine compound (a1) is dissolved in 30 mL of purified water.
  • the molecular weight of the amine compound (a1) is preferably 110 or more, more preferably 120 or more, and still more preferably 130 or more, from the viewpoint of suppressing weight loss during heat treatment when carbon dioxide is dissociated. And from the viewpoint of further improving foamability, it is preferably 250 or less, more preferably 200 or less, and still more preferably 180 or less.
  • the maximum endothermic temperature of the amine compound (a1) measured by the following method is preferably 130° C. or higher, more preferably 140° C. or higher, from the viewpoint of suppressing weight loss during heat treatment for dissociating carbon dioxide. It is preferably 150° C. or higher, and from the viewpoint of further improving carbon dioxide absorption and foamability, it is preferably 260° C. or lower, more preferably 230° C. or lower, even more preferably 210° C. or lower, and still more preferably 190° C. or lower. . (Method)
  • the amine compound (a1) is heated from 23° C. to 350° C. at a rate of temperature increase of 10° C./min, and the temperature at which the amount of heat absorbed due to volatilization of the amine compound (a1) becomes maximum is measured. a1) maximum endothermic temperature.
  • the amine value of the amine compound (a1) is preferably 400 mgKOH/g or more, more preferably 500 mgKOH/g or more, still more preferably 600 mgKOH/g or more, still more preferably 600 mgKOH/g or more, from the viewpoint of further improving carbon dioxide absorption and foamability.
  • the amine value indicates the amount of amine in the compound, and refers to the number of milligrams of potassium hydroxide (KOH) equivalent to the acid required to neutralize 1 g of the compound.
  • KOH potassium hydroxide
  • the amine value can be measured by the following method according to JIS K7237-1995. (1) 0.1 g of amine compound (a1) is dissolved in 20 mL of acetic acid. (2) The solution obtained in (1) above is titrated with a 0.1N perchloric acid-acetic acid solution using a potentiometric automatic titrator (eg AT-610 manufactured by Kyoto Electronics Industry Co., Ltd.). Calculate the amine value.
  • a potentiometric automatic titrator eg AT-610 manufactured by Kyoto Electronics Industry Co., Ltd.
  • the mass increase rate of the amine compound (a1) calculated by the following formula when the amine compound (a1) is allowed to stand in an air environment of 23° C. and 50% RH for one week is the polyhydroxyurethane resin foam ( From the viewpoint of further improving the foamability of D), it is preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 18% by mass or more, still more preferably 20% by mass or more, and still more preferably 23% by mass or more. and is preferably 50% by mass or less, more preferably 45% by mass or less, still more preferably 40% by mass or less, still more preferably 30% by mass or less, and even more preferably 28% by mass or less.
  • Mass increase rate of amine compound (a1) [% by mass] 100 ⁇ mass increase of amine compound (a1) (g)/(mass of amine compound (a1) (g) + mass increase of amine compound (a1) (g)) Specifically, the mass increase rate of the amine compound (a1) can be measured by the method described in Examples.
  • the foaming curing agent (A) can be obtained, for example, by contacting the amine compound (a1) with a gas containing carbon dioxide to react the amine compound (a1) with carbon dioxide.
  • the reactant (a2) of the amine compound (a1) and carbon dioxide is selected from, for example, carbamic acid, carbamate, carbonate, hydrogencarbonate, etc., which are reactants of the amine compound (a1) and carbon dioxide. including at least one
  • the foaming curing agent (A) may contain components other than the reactant (a2), such as the amine compound (a1) that has not reacted with carbon dioxide.
  • the total amount of the amine compound (a1) that has not reacted with carbon dioxide and the reactant (a2) in the foaming curing agent (A) is the carbon dioxide absorption amount
  • the total amount of the foaming curing agent (A) is 100% by mass, preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more, More preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 98% by mass or more, and preferably 100% by mass or less.
  • the content of the amine compound (a1) that has not reacted with carbon dioxide in the foaming curing agent (A) is When the total amount of the amine compound (a1) that has not reacted with carbon dioxide and the reactant (a2) is 100 mol%, preferably 5 mol% or more, more preferably 10 mol% or more, still more preferably It is 30 mol % or more, more preferably 50 mol % or more, and preferably 95 mol % or less.
  • the cyclic carbonate compound (B) is a compound having two or more cyclic carbonate groups.
  • the cyclic carbonate group in the cyclic carbonate compound (B) preferably contains a 5-membered cyclic carbonate group from the viewpoint of improving reactivity with the amine compound (a1).
  • the cyclic carbonate compound (B) is not particularly limited as long as it has two or more cyclic carbonate groups in one molecule. Examples thereof include cyclic carbonate compounds having an aromatic skeleton, and aliphatic or alicyclic cyclic carbonate compounds. From the viewpoint of improving reactivity with the amine compound (a1), the cyclic carbonate compound (B) is preferably a compound having two or more five-membered cyclic carbonate groups. Examples of the cyclic carbonate compound having an aromatic skeleton include compounds represented by the following formula (2).
  • Z in formula (2) is, for example, any of the structures shown below.
  • X in the formula is a hydrogen atom or a methyl group.
  • Examples of aliphatic or alicyclic cyclic carbonate compounds include the following compounds.
  • X is a hydrogen atom or a methyl group
  • n is the average number of added moles of alkyleneoxy groups, which is 2 or more and 20 or less.
  • a cyclic carbonate compound having a high molecular weight obtained by adding an amine compound thereto can be used.
  • the amine compound that can be added to the cyclic carbonate compound include the aforementioned cyclic amine compound (a11); Acyclic aliphatic amine compounds such as diaminohexane, 1,8-diaminooctane, 1,10-diaminodecane, 1,12-diaminododecane, diethylenetriamine, and triethylenetetramine are included.
  • the cyclic carbonate compound as a raw material is reacted at a temperature of 50° C. or higher and 250° C. or lower for 10 minutes or more and 12 hours or less, thereby adding the amine to the cyclic carbonate compound.
  • Compounds can be added.
  • the compound represented by the formula (2) is preferable, and the bis-A type dicarbonate compound represented by the following formula is more preferable.
  • a cyclic carbonate compound (B) can be obtained, for example, by reacting an epoxy compound with carbon dioxide. More specifically, an epoxy compound as a raw material is reacted in the presence of a catalyst at a temperature of 0° C. or higher and 160° C. or lower in a carbon dioxide atmosphere pressurized to atmospheric pressure or higher and 1 MPa or lower for 1 hour or longer and 48 hours or shorter. A cyclic carbonate compound in which carbon dioxide is immobilized at the ester site can be obtained by allowing the reaction to proceed.
  • Examples of the catalyst used for the reaction between the epoxy compound and carbon dioxide include halogenated salts such as lithium chloride, lithium bromide, lithium iodide, sodium chloride, sodium bromide, and sodium iodide; quaternary ammonium salts; is mentioned.
  • the amount of the catalyst used is, for example, 1 part by mass or more and 50 parts by mass or less per 100 parts by mass of the epoxy compound. You may perform reaction of an epoxy compound and a carbon dioxide in presence of an organic solvent.
  • the content of the foamable curing agent (A) in the foamable resin composition (C) is, from the viewpoint of improving the foamability, the content of the foamable curing agent (A) relative to the number of cyclic carbonate groups in the cyclic carbonate compound (B). is preferably 0.5 or more, more preferably 0.6 or more, still more preferably 0.7 or more, still more preferably 0.8 or more, still more preferably is 0.9 or more, and from the viewpoint of improving the heat resistance, chemical resistance, curability and mechanical strength of the polyhydroxyurethane resin foam (D), it is preferably 1.5 or less, more preferably 1.4. Below, the amount is more preferably 1.3 or less, more preferably 1.2 or less, still more preferably 1.1 or less.
  • the number of amino groups in the foaming curing agent (A) is the number of amino groups in the amine compound (a1) before reacting with carbon dioxide in the reactant (a2), and the number of amino groups contained in the foaming curing agent (A). It means the total number of carbon dioxide and the number of unreacted amino groups of the amine compound (a1).
  • the foamable resin composition (C) may further contain fillers, modifying components such as plasticizers, flow control components such as thixotropic agents, pigments, leveling agents, tackifiers, elastomer fine particles, curing accelerators, regulating agents, and the like. Other components such as foaming agents and chemical foaming agents may be included depending on the application.
  • the total amount of the foamable curing agent (A) and the cyclic carbonate compound (B) in the foamable resin composition (C) is preferably 50% by mass or more, and more It is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and still more preferably 95% by mass or more.
  • an upper limit is 100 mass %.
  • the content of the foaming agent other than the foaming curing agent (A) in the foaming resin composition (C) is preferably from the viewpoint of further reducing the environmental load during the production of the polyhydroxyurethane resin foam (D). is 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, still more preferably 0.5% by mass or less, and even more preferably 0.1% by mass or less.
  • foaming agents other than the foaming curing agent (A) include fluorocarbon halogen-containing hydrocarbons such as chlorofluorocarbons and fluorocarbons; alicyclic hydrocarbons such as cyclopentane; dinitropentamethylenetetramine and azodicarbonamide. , p,p'-oxybisbenzenesulfonyl hydrazide; and inorganic foaming agents such as sodium hydrogen carbonate.
  • the method for preparing the foamable resin composition (C) is not particularly limited, and the foamable curing agent (A), the cyclic carbonate compound (B), and, if necessary, other components are mixed using a known method and apparatus. and can be manufactured.
  • the polyhydroxyurethane resin-based foam (D) of the present invention is a foam obtained by foam-molding the foamable resin composition (C). That is, the method for producing the polyhydroxyurethane resin-based foam (D) of the present invention includes a step of foaming the expandable resin composition (C).
  • the foamable resin composition (C) is heated to generate the amine compound (a1) and carbon dioxide from the reactant (a2), and carbon dioxide
  • the foamable resin composition (C) is foamed by the above, and the foamable resin composition (C) is cured by the reaction between the produced amine compound (a1) and the cyclic carbonate compound (B). Thereby, a polyhydroxyurethane resin-based foam (D) is obtained.
  • the heating temperature and heating time in the step of foaming the foamable resin composition (C) can be selected as appropriate. It is preferably 100 to 200°C, more preferably 120 to 180°C.
  • the reaction time is preferably 10 minutes to 12 hours, more preferably 15 minutes to 4 hours.
  • the amine compound (a1) is added to a carbon dioxide concentration of 0.01% by volume before the step of foaming the foamable resin composition (C). It is preferable to further include a step of reacting the amine compound (a1) with carbon dioxide to obtain a reactant (a2) by contacting with a gas of 10% by volume or more.
  • the carbon dioxide concentration is preferably 0.02% by volume or more, more preferably 0.03% by volume or more, and preferably 5% by volume or less, more preferably 1% by volume or less, and still more preferably 0.5% by volume. % by volume or less, more preferably 0.1% by volume or less.
  • the reactant (a2) is a reactant of the amine compound (a1) and carbon dioxide, such as carbamic acid, carbamate, carbonate, hydrogencarbonate, etc., which are reactants of the amine compound and carbon dioxide. including at least one selected from
  • the density of the polyhydroxyurethane resin-based foam (D) is preferably 0.05 g/cm 3 or more, more preferably 0.10 g/cm 3 or more, and still more preferably 0.15 g/cm 3 or more. cm 3 or more, more preferably 0.18 g/cm 3 or more, and preferably 1.0 g/cm 3 or less, more preferably 0.18 g/cm 3 or more, from the viewpoint of further improving functions such as heat insulation, sound insulation, and lightness.
  • the density of the polyhydroxyurethane resin-based foam (D) can be measured by the method described in Examples.
  • the foaming curing agent of the present invention is a foaming curing agent for molding a polyhydroxyurethane resin-based foam, and contains a reactant (a2) of an amine compound (a1) and carbon dioxide. According to the foamable curing agent according to the present invention, it is possible to reduce the amount of conventional foaming agents that have a large environmental load when producing a polyhydroxyurethane resin-based foam, so that the environmental load can be reduced. It is possible to provide a novel method for producing a urethane resin-based foam.
  • Each component used in the foaming curing agent according to the present invention and its preferred embodiment are the same as those of the foaming curing agent (A) in the foaming resin composition (C) according to the present invention described above.
  • Carbon dioxide (CO 2 ) maximum dissociation temperature of amine compound Carbon dioxide (CO 2 ) maximum dissociation temperature of amine compound
  • a carbon dioxide concentration meter and a petri dish were placed in an openable desiccator (inner dimensions: 370 mm ⁇ 260 mm ⁇ 272 mm). After that, the amine compound (5 mmol) was added to the petri dish in the desiccator, the door was immediately closed, and the amine compound was allowed to stand in the desiccator under an air environment of 23° C. and 50% RH for 24 hours. The initial carbon dioxide concentration was adjusted to about 400 ppm. Next, the amine compound was taken out from the desiccator to obtain an amine compound in which carbon dioxide had been absorbed.
  • the carbon dioxide-absorbing amine compound was subjected to DSC measurement in the following manner to measure the maximum carbon dioxide dissociation temperature of the amine compound.
  • DSC measurement was performed using From the DSC curve thus obtained, the temperature at which the amount of heat absorbed by desorption of carbon dioxide becomes maximum was calculated, and this temperature was defined as the maximum carbon dioxide dissociation temperature of the amine compound.
  • DSC measurement was performed on the amine compound as follows to measure the maximum endothermic temperature of the amine compound.
  • an amine compound is measured with a differential thermogravimetry meter (product name: DTG-60, manufactured by Shimadzu Corporation) under conditions of a measurement temperature range of 23 to 350°C, a heating rate of 10°C/min, and a nitrogen atmosphere.
  • Differential scanning calorimetry was performed using From the DSC curve thus obtained, the temperature at which the amount of heat absorbed by volatilization of the amine compound becomes maximum was calculated, and this temperature was defined as the maximum endothermic temperature of the amine compound.
  • the amine value was measured by the following measuring method according to JIS K7237-1995. (1) 0.1 g of an amine compound was dissolved in 20 mL of acetic acid. (2) The solution obtained in (1) above is titrated with a 0.1N perchloric acid-acetic acid solution using a potentiometric automatic titrator (manufactured by Kyoto Electronics Industry Co., Ltd., AT-610). calculated the value.
  • the acid dissociation constant of the amine compound was obtained by the following measuring method. (1) 0.2 g of an amine compound was dissolved in 30 mL of purified water. (2) The solution obtained in (1) above is titrated with a 0.1 N perchloric acid-acetic acid solution using a potentiometric automatic titrator (manufactured by Kyoto Electronics Industry Co., Ltd., AT-610). Dissociation constants (pKa) were calculated. The temperature during the measurement was 25 ⁇ 2°C.
  • the foamability of the foamable resin composition was evaluated from the film thickness and density of the polyhydroxyurethane resin-based foam. It means that the larger the film thickness and the lower the density, the more excellent the foamability.
  • the density of the polyhydroxyurethane resin-based foam was calculated from the mass and volume of the foam.
  • Examples 2-5 Polyhydroxyurethane resin-based foams were obtained in the same manner as in Example 1, except that the type of amine compound was changed to the compound shown in Table 1.
  • the polyhydroxyurethane resin-based foam obtained was subjected to each of the above evaluations. Table 1 shows the results obtained. Moreover, it was confirmed by visual observation that a foamed structure was formed in the obtained polyhydroxyurethane resin-based foam.
  • the thickness of the expandable resin composition placed in the mold before foaming was about 1.5 mm.
  • the polyhydroxyurethane resin-based foam obtained was subjected to each of the above evaluations. Table 1 shows the results obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

ポリヒドロキシウレタン樹脂系発泡体を成形するための発泡性樹脂組成物であって、アミン化合物(a1)と二酸化炭素との反応物(a2)を含む発泡性硬化剤(A)と、環状カーボネート基を2つ以上有する環状カーボネート化合物(B)と、を含む発泡性樹脂組成物、該発泡性樹脂組成物を発泡成形してなるポリヒドロキシウレタン樹脂系発泡体、該発泡性樹脂組成物を発泡成形する工程を含むポリヒドロキシウレタン樹脂系発泡体の製造方法、及び、ポリヒドロキシウレタン樹脂系発泡体を成形するための発泡性硬化剤であって、アミン化合物(a1)と二酸化炭素との反応物(a2)を含む発泡性硬化剤。

Description

発泡性樹脂組成物、発泡体、発泡体の製造方法、及び発泡性硬化剤
 本発明は、発泡性樹脂組成物、発泡体、発泡体の製造方法、及び発泡性硬化剤に関する。
 ポリウレタン樹脂は、例えば機械強度、柔軟性、耐摩耗性、耐油性等に優れ、塗料や接着剤用の樹脂として広く使用されている。近年、新規なポリウレタン樹脂として、化学構造中にウレタン結合と水酸基を併せ持つポリヒドロキシウレタン樹脂が開発され、その工業的応用が期待されている。ポリヒドロキシウレタン樹脂は既存ポリウレタン樹脂と同様に、機械強度に優れた樹脂であるが、既存ポリウレタン樹脂には無い水酸基に由来した機能性を生かした応用が検討されている(例えば、特許文献1参照)。
 また、ポリウレタン樹脂系発泡体は、例えば断熱性、機械的強度、耐水性等に優れていることから、各種断熱材、パネル芯材等に使用されている。その発泡剤としては、従来より、クロロフルオロカーボン、又はフルオロカーボン等のフロン系のハロゲン含有炭化水素類が使用されてきたが、その環境負荷の高さから使用が問題視されている(例えば、特許文献2参照)。
特開2021-42267号公報 特開2004-339437号公報
 本発明は、環境負荷を低減できる、ポリヒドロキシウレタン樹脂系発泡体の新規な製造方法、並びに、該製造方法に用いる発泡性樹脂組成物及び発泡性硬化剤を提供するものである。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた。その結果、アミン化合物と二酸化炭素との反応物を、ポリヒドロキシウレタン樹脂系発泡体を成形するための発泡性硬化剤として使用することにより、環境負荷の大きい従来の発泡剤の使用量を減らすことができ、ポリヒドロキシウレタン樹脂系発泡体の製造時における環境負荷を低減できることを見出し、本発明を完成させた。
 すなわち、本発明によれば、以下に示す発泡性樹脂組成物、発泡体、発泡体の製造方法、及び発泡性硬化剤が提供される。
[1]
 ポリヒドロキシウレタン樹脂系発泡体を成形するための発泡性樹脂組成物であって、
 アミン化合物(a1)と二酸化炭素との反応物(a2)を含む発泡性硬化剤(A)と、環状カーボネート基を2つ以上有する環状カーボネート化合物(B)と、を含む発泡性樹脂組成物。
[2]
 前記アミン化合物(a1)を23℃、50%RHの空気環境下、1週間静置したときの、下記式で算出される前記アミン化合物(a1)の質量増加率が10質量%以上50質量%以下である、前記[1]に記載の発泡性樹脂組成物。
 アミン化合物(a1)の質量増加率[質量%]=100×アミン化合物(a1)の質量増加量(g)/(アミン化合物(a1)の質量(g)+アミン化合物(a1)の質量増加量(g))
[3]
 前記アミン化合物(a1)が環状構造を有する環式アミン化合物(a11)を含む、前記[1]又は[2]に記載の発泡性樹脂組成物。
[4]
 前記環式アミン化合物(a11)が第一級炭素原子に結合したアミノ基を有する、前記[3]に記載の発泡性樹脂組成物。
[5]
 前記環式アミン化合物(a11)の環状構造が5員環及び6員環から選択される少なくとも一種を含む、前記[3]又は[4]に記載の発泡性樹脂組成物。
[6]
 前記アミン化合物(a1)のアミノ基の数が2以上6以下である、前記[1]~[5]のいずれかに記載の発泡性樹脂組成物。
[7]
 前記発泡性樹脂組成物中の前記発泡性硬化剤(A)以外の発泡剤の含有量が5質量%以下である、前記[1]~[6]のいずれかに記載の発泡性樹脂組成物。
[8]
 前記環状カーボネート化合物(B)における前記環状カーボネート基が5員環環状カーボネート基を含む、前記[1]~[7]のいずれかに記載の発泡性樹脂組成物。
[9]
 前記アミン化合物(a1)がo-キシリレンジアミン及びその誘導体、m-キシリレンジアミン及びその誘導体、p-キシリレンジアミン及びその誘導体、ビス(アミノメチル)シクロヘキサン及びその誘導体、リモネンジアミン及びその誘導体、並びにイソホロンジアミン及びその誘導体からなる群から選択される少なくとも一種を含む、前記[1]~[8]のいずれかに記載の発泡性樹脂組成物。
[10]
 前記発泡性樹脂組成物中の前記発泡性硬化剤(A)の含有量が、前記環状カーボネート化合物(B)中の前記環状カーボネート基数に対する前記発泡性硬化剤(A)中のアミノ基数の比(前記アミノ基数/前記環状カーボネート基数)が0.5以上1.5以下となる量である、前記[1]~[9]のいずれかに記載の発泡性樹脂組成物。
[11]
 前記[1]~[10]のいずれかに記載の発泡性樹脂組成物を発泡成形してなるポリヒドロキシウレタン樹脂系発泡体。
[12]
 前記[1]~[10]のいずれかに記載の発泡性樹脂組成物を発泡成形する工程を含むポリヒドロキシウレタン樹脂系発泡体の製造方法。
[13]
 ポリヒドロキシウレタン樹脂系発泡体を成形するための発泡性硬化剤であって、
 アミン化合物(a1)と二酸化炭素との反応物(a2)を含む発泡性硬化剤。
[14]
 前記アミン化合物(a1)を23℃、50%RHの空気環境下、1週間静置したときの、下記式で算出される前記アミン化合物(a1)の質量増加率が10質量%以上50質量%以下である、前記[13]に記載の発泡性硬化剤。
 アミン化合物(a1)の質量増加率[質量%]=100×アミン化合物(a1)の質量増加量(g)/(アミン化合物(a1)の質量(g)+アミン化合物(a1)の質量増加量(g))
[15]
 前記アミン化合物(a1)が環状構造を有する環式アミン化合物(a11)を含む、前記[13]又は[14]に記載の発泡性硬化剤。
[16]
 前記環式アミン化合物(a11)が第一級炭素原子に結合したアミノ基を有する、前記[15]に記載の発泡性硬化剤。
[17]
 前記環式アミン化合物(a11)の環状構造が5員環及び6員環から選択される少なくとも一種を含む、前記[15]又は[16]に記載の発泡性硬化剤。
[18]
 前記アミン化合物(a1)のアミノ基の数が2以上6以下である、前記[13]~[17]のいずれかに記載の発泡性硬化剤。
[19]
 前記アミン化合物(a1)がo-キシリレンジアミン及びその誘導体、m-キシリレンジアミン及びその誘導体、p-キシリレンジアミン及びその誘導体、ビス(アミノメチル)シクロヘキサン及びその誘導体、リモネンジアミン及びその誘導体、並びにイソホロンジアミン及びその誘導体からなる群から選択される少なくとも一種を含む、前記[13]~[18]のいずれかに記載の発泡性硬化剤。
 本発明によれば、環境負荷を低減できる、ポリヒドロキシウレタン樹脂系発泡体の新規な製造方法、並びに、該製造方法に用いる発泡性樹脂組成物及び発泡性硬化剤を提供することができる。
 本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明の内容を限定しない。本発明は、その要旨の範囲内で適宜に変形して実施できる。本実施形態において、好ましいとされている規定は任意に採用することができ、好ましいもの同士の組み合わせはより好ましいといえる。本実施形態において、「XX~YY」の記載は、「XX以上YY以下」を意味する。
[発泡性樹脂組成物(C)]
 本発明の発泡性樹脂組成物(C)は、ポリヒドロキシウレタン樹脂系発泡体を成形するための発泡性樹脂組成物であって、アミン化合物(a1)と二酸化炭素との反応物(a2)を含む発泡性硬化剤(A)と、環状カーボネート基を2つ以上有する環状カーボネート化合物(B)と、を含む。
 本発明の発泡性樹脂組成物(C)によれば、アミン化合物(a1)と二酸化炭素との反応物(a2)を、ポリヒドロキシウレタン樹脂系発泡体を成形するための発泡性硬化剤(A)として使用することにより、環境負荷の大きい従来の発泡剤の使用量を減らすことができ、ポリヒドロキシウレタン樹脂系発泡体の製造時における環境負荷を低減することができる。
 本発明の発泡性樹脂組成物(C)によれば、アミン化合物(a1)と二酸化炭素との反応物(a2)を含む発泡性硬化剤(A)を用いることで、ポリヒドロキシウレタン樹脂系発泡体を製造することができる。その理由は定かではないが、以下のように考えられる。
 まず、発泡性樹脂組成物(C)を加熱することにより、反応物(a2)からアミン化合物(a1)及び二酸化炭素が生成する。このとき、生成した二酸化炭素により発泡性樹脂組成物(C)が発泡するとともに、生成したアミン化合物(a1)と環状カーボネート化合物(B)とが重付加反応して発泡性樹脂組成物(C)の硬化が起きることによって、ポリヒドロキシウレタン樹脂系発泡体(D)が得られると考えられる。
<発泡性硬化剤(A)>
 発泡性硬化剤(A)は、アミン化合物(a1)と二酸化炭素との反応物(a2)を含む。
 アミン化合物(a1)は、二酸化炭素との反応性及び発泡性をより向上させる観点から、環状構造を有する環式アミン化合物(a11)を含むことが好ましい。また、環式アミン化合物(a11)は、第一級炭素原子に結合したアミノ基を有することが好ましい。このようなアミノ基は立体障害が小さく、二酸化炭素を吸収しやすいと考えられる。
 環式アミン化合物(a11)は、環状構造を有するアミン化合物である。環式アミン化合物(a11)の環状構造としては、例えば、脂環式炭化水素構造、芳香族炭化水素構造、環の中にヘテロ原子を含む複素環式構造等が挙げられ、二酸化炭素との反応性及び発泡性をより向上させる観点から、脂環式炭化水素構造及び芳香族炭化水素構造から選択される少なくとも一種の構造を含むことが好ましく、脂環式炭化水素構造を含むことがより好ましい。
 ここで、本実施形態において、脂環式炭化水素構造とは、芳香族性を有しない飽和又は不飽和の炭素と水素からなる環状構造のことをいい、環の中にヘテロ原子を含む複素環式構造は除かれる。また、複素環構造とは、環の中にヘテロ原子を含む複素環構造のことをいう。
 環式アミン化合物(a11)は、シス体及びトランス体のいずれもとり得る構造である場合には、シス体、トランス体、シス体とトランス体との混合物のいずれであってもよい。
 環式アミン化合物(a11)の環状構造は、二酸化炭素との反応性及び発泡性をより向上させる観点から、5員環及び6員環から選択される少なくとも一種を含むことが好ましく、6員環を含むことがより好ましい。
 また、環式アミン化合物(a11)は、二酸化炭素との反応性及び発泡性をより向上させる観点から、環状構造を1つ有することが好ましい。すなわち、環式アミン化合物(a11)は単環式化合物であることが好ましい。
 環式アミン化合物(a11)の脂環式炭化水素構造としては、例えばシクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環等が挙げられる。上記の環構造の中でも、シクロペンタン環、シクロヘキサン環が好ましく、シクロヘキサン環がより好ましく、1,3-置換のシクロヘキサン環が更に好ましい。
 アミン化合物(a1)のアミノ基の数は、二酸化炭素との反応性、硬化性及び発泡性をより向上させる観点から、好ましくは2以上6以下、より好ましくは2以上4以下、更に好ましくは2以上3以下、更に好ましくは2である。
 また、アミノ基としては、二酸化炭素との反応性、硬化性及び発泡性をより向上させる観点から、窒素-水素結合を有するアミノ基が好ましく、第一級アミノ基及び第二級アミノ基からなる群から選択される少なくとも一種のアミノ基がより好ましく、第一級アミノ基が更に好ましい。
 アミン化合物(a1)は、好ましくはo-キシリレンジアミン及びその誘導体、m-キシリレンジアミン及びその誘導体、p-キシリレンジアミン及びその誘導体、リモネンジアミン及びその誘導体、4,4’-メチレンビス(シクロヘキシルアミン)及びその誘導体、N-(2-アミノエチル)ピペラジン及びその誘導体、2,5-ビスアミノメチルフラン及びその誘導体、並びに、2,5-ビス(アミノメチル)テトラヒドロフラン及びその誘導体、並びに下記式(1)で示される化合物から選択される少なくとも一種である。
Figure JPOXMLDOC01-appb-C000001

 上記式(1)中、R~Rはそれぞれ独立に水素原子、又はアミノ基、シアノ基及びフェニル基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上10以下の炭化水素基を示し、R~R10はそれぞれ独立に水素原子又は炭素数1以上4以下の炭化水素基を示し、x及びyはそれぞれ独立に0以上6以下の整数を表し、x+yは1以上6以下であり、p及びqはそれぞれ独立に0以上4以下の整数であり、p及びqの少なくとも一方が1以上である。
 R~Rは、それぞれ独立に、水素原子、又はアミノ基、シアノ基及びフェニル基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上10以下の炭化水素基であり、好ましくは水素原子、又はアミノ基、シアノ基及びフェニル基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上4以下のアルキル基であり、より好ましくは水素原子、又はアミノ基及びシアノ基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上4以下のアルキル基であり、更に好ましくは水素原子、又はアミノ基及びシアノ基から選択される少なくとも一種の置換基を有していてもよい炭素数2以上4以下のアルキル基であり、更に好ましくは水素原子である。
 R~Rの炭化水素基の炭素数は、それぞれ独立に、1以上、好ましくは2以上、そして10以下、好ましくは5以下、より好ましくは4以下、更に好ましくは3以下である。
 R~R10は、それぞれ独立に、水素原子又は炭素数1以上4以下の炭化水素基であり、好ましくは水素原子又は炭素数1以上4以下のアルキル基であり、より好ましくは水素原子又は炭素数1以上3以下のアルキル基であり、更に好ましくは水素原子又はメチル基であり、更に好ましくは水素原子である。
 R~R10の炭化水素基の炭素数は、それぞれ独立に、1以上4以下、好ましくは1又は2、より好ましくは1である。
 p及びqは、それぞれ独立に、0以上、好ましくは1以上であり、そして4以下、好ましくは2以下、より好ましくは1である。ただし、p及びqの少なくとも一方が1以上である。
 x及びyは、それぞれ独立に、0以上6以下の整数を表し、x+yは1以上6以下である。二酸化炭素吸収量及び発泡性をより向上させる観点から、x+yは、好ましくは2以上、より好ましくは3以上、更に好ましくは4以上であり、二酸化炭素吸収量及び発泡性をより向上させる観点から、好ましくは5以下、より好ましくは4である。すなわち、脂環式炭化水素構造は5員環又は6員環であることが好ましく、6員環であることがより好ましい。x+yが4の場合、好ましくはxが1であり、yが3である。
 アミン化合物(a1)としては、二酸化炭素との反応性、硬化性及び発泡性をより向上させる観点から、o-キシリレンジアミン及びその誘導体、m-キシリレンジアミン及びその誘導体、p-キシリレンジアミン及びその誘導体、ビス(アミノメチル)シクロヘキサン及びその誘導体、リモネンジアミン及びその誘導体、イソホロンジアミン及びその誘導体、4,4’-メチレンビス(シクロヘキシルアミン)及びその誘導体、N-(2-アミノエチル)ピペラジン及びその誘導体、2,5-ビスアミノメチルフラン及びその誘導体、並びに、2,5-ビス(アミノメチル)テトラヒドロフラン及びその誘導体からなる群から選択される少なくとも一種が好ましく、o-キシリレンジアミン及びその誘導体、m-キシリレンジアミン及びその誘導体、p-キシリレンジアミン及びその誘導体、ビス(アミノメチル)シクロヘキサン及びその誘導体、リモネンジアミン及びその誘導体、並びにイソホロンジアミン及びその誘導体からなる群から選択される少なくとも一種がより好ましく、m-キシリレンジアミン及びその誘導体、ビス(アミノメチル)シクロヘキサン及びその誘導体、リモネンジアミン及びその誘導体、並びに、イソホロンジアミン及びその誘導体からなる群から選択される少なくとも一種が更に好ましく、ビス(アミノメチル)シクロヘキサン及びその誘導体、リモネンジアミン及びその誘導体、並びにイソホロンジアミン及びその誘導体からなる群から選択される少なくとも一種が更に好ましく、ビス(アミノメチル)シクロヘキサン及びその誘導体が更に好ましく、1,3-ビス(アミノメチル)シクロヘキサン及びその誘導体が更に好ましく、1,3-ビス(アミノメチル)シクロヘキサンが更に好ましい。
 ここで、上記各種アミンの誘導体としては、例えば、アミノ基の水素原子のうちの少なくとも1つが、アミノ基、シアノ基及びフェニル基からなる群から選択される少なくとも一種の置換基を有していてもよい炭素数1以上10以下の炭化水素基、好ましくはアミノ基、シアノ基及びフェニル基からなる群から選択される少なくとも一種の置換基を有していてもよい炭素数1以上4以下のアルキル基、より好ましくはアミノ基及びシアノ基からなる群から選択される少なくとも一種の置換基を有していてもよい炭素数1以上4以下のアルキル基、更に好ましくはアミノ基及びシアノ基からなる群から選択される少なくとも一種の置換基を有していてもよい炭素数2以上4以下のアルキル基で置換された化合物が挙げられる。
 また、上記各種アミンの誘導体としては、例えば、環状構造の水素原子のうちの少なくとも一部が炭素数1以上4以下の炭化水素基、好ましくは炭素数1以上3以下のアルキル基、より好ましくはメチル基又はエチル基、更に好ましくメチル基で置換された化合物が挙げられる。
 これらのアミン化合物(a1)は、単独で又は2種以上を組み合わせて用いることができる。
 反応物(a2)におけるアミン化合物(a1)中の環式アミン化合物(a11)の割合は、発泡性をより向上させる観点から、アミン化合物(a1)の全量を100質量部としたとき、好ましくは50質量部以上、より好ましくは60質量部以上、更に好ましくは70質量部以上、更に好ましくは80質量部以上、更に好ましくは90質量部以上、更に好ましくは95質量部以上であり、そして好ましくは100質量部以下である。
 環式アミン化合物(a11)以外のアミン化合物(a1)としては、例えば、モノエタノールアミン、2-アミノ-2-メチル-1-プロパノール、ジエタノールアミン、2-(メチルアミノ)エタノール、2-(エチルアミノ)エタノール、2-(ジメチルアミノ)エタノール、2-(ジエチルアミノ)エタノール、エチレンジアミン、N,N’-ジメチルエチレンジアミン、ジエチレントリアミン等の非環式脂肪族系アミン化合物が挙げられる。
 以下の方法で測定される、アミン化合物(a1)の二酸化炭素最大解離温度は、二酸化炭素の解離性を向上させ、発泡性を向上させる観点から、好ましくは200℃以下、より好ましくは180℃以下、更に好ましくは160℃以下、更に好ましくは150℃以下、更に好ましくは140℃以下、更に好ましくは135℃以下、更に好ましくは130℃以下である。上記二酸化炭素最大解離温度の下限値は特に限定されないが、例えば40℃以上である。
(方法)
 二酸化炭素を吸収させたアミン化合物(a1)を、昇温速度10℃/分で23℃から250℃まで加熱し、二酸化炭素の脱離に伴う吸熱量が最大になる温度を測定し、この温度を二酸化炭素最大解離温度とする。ここで、二酸化炭素を吸収させたアミン化合物(a1)は、例えば、アミン化合物(a1)5mmolを23℃、50%RHの空気中に24時間静置することにより調製することができる。
 アミン化合物(a1)の酸解離定数(pKa)は、二酸化炭素吸収量及び発泡性をより向上させる観点から、好ましくは8.0以上、より好ましくは8.5以上、更に好ましくは9.0以上であり、そして二酸化炭素の解離性を向上させ、発泡性をより向上させる観点から、好ましくは12.0以下、より好ましくは11.5以下、更に好ましくは11.0以下である。
 アミン化合物(a1)の酸解離定数は、酸塩基適定法に基づく下記測定方法により求められる値である。
(1)アミン化合物(a1)0.2gを精製水30mLに溶解する。
(2)上記(1)により得られた溶液を、電位差自動滴定装置(例えば京都電子工業株式会社製、AT-610)を用いて、0.1規定過塩素酸-酢酸溶液で滴定することにより酸解離定数(pKa)を算出する。
 なお、測定時の温度は、25±2℃とする。
 アミン化合物(a1)の分子量は、二酸化炭素を解離させる際の熱処理時の重量減少を抑制する観点から、好ましくは110以上、より好ましくは120以上、更に好ましくは130以上であり、二酸化炭素吸収量及び発泡性をより向上させる観点から、好ましくは250以下、より好ましくは200以下、更に好ましくは180以下である。
 以下の方法で測定されるアミン化合物(a1)の最大吸熱温度は、二酸化炭素を解離させる際の熱処理時の重量減少を抑制する観点から、好ましくは130℃以上、より好ましくは140℃以上、更に好ましくは150℃以上であり、二酸化炭素吸収量及び発泡性をより向上させる観点から、好ましくは260℃以下、より好ましくは230℃以下、更に好ましくは210℃以下、更に好ましくは190℃以下である。
(方法)
 アミン化合物(a1)を、昇温速度10℃/分で23℃から350℃まで加熱し、アミン化合物(a1)の揮発に伴う吸熱量が最大になる温度を測定し、この温度をアミン化合物(a1)の最大吸熱温度とする。
 アミン化合物(a1)のアミン価は、二酸化炭素吸収量及び発泡性をより向上させる観点から、好ましくは400mgKOH/g以上、より好ましくは500mgKOH/g以上、更に好ましくは600mgKOH/g以上、更に好ましくは650mgKOH/g以上、更に好ましくは700mgKOH/g以上であり、そして好ましくは1500mgKOH/g以下、より好ましくは1400mgKOH/g以下、更に好ましくは1300mgKOH/g以下、更に好ましくは1100mgKOH/g以下、更に好ましくは1000mgKOH/g以下、更に好ましくは850mgKOH/g以下である。アミン価とは、化合物中のアミンの量を示し、化合物1g量を中和するのに要する酸と当量の水酸化カリウム(KOH)のmg数をいう。
 アミン価はJIS K7237-1995に準じて、下記方法により測定することができる。
(1)アミン化合物(a1)0.1gを酢酸20mLに溶解する。
(2)上記(1)により得られた溶液を、電位差自動滴定装置(例えば京都電子工業株式会社製、AT-610)を用いて、0.1規定過塩素酸-酢酸溶液で滴定することによりアミン価を算出する。
 アミン化合物(a1)を23℃、50%RHの空気環境下、1週間静置したときの、下記式で算出されるアミン化合物(a1)の質量増加率は、ポリヒドロキシウレタン樹脂系発泡体(D)の発泡性をより向上させる観点から、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは18質量%以上、更に好ましくは20質量%以上、更に好ましくは23質量%以上であり、そして、好ましくは50質量%以下、より好ましくは45質量%以下、更に好ましくは40質量%以下、更に好ましくは30質量%以下、更に好ましくは28質量%以下である。
 アミン化合物(a1)の質量増加率[質量%]=100×アミン化合物(a1)の質量増加量(g)/(アミン化合物(a1)の質量(g)+アミン化合物(a1)の質量増加量(g))
 アミン化合物(a1)の質量増加率は、具体的には実施例に記載の方法により測定できる。
 発泡性硬化剤(A)は、例えば、アミン化合物(a1)を、二酸化炭素を含む気体に接触させて、アミン化合物(a1)と二酸化炭素を反応させることにより得ることができる。
 アミン化合物(a1)と二酸化炭素との反応物(a2)は、例えば、アミン化合物(a1)と二酸化炭素との反応物である、カルバミン酸、カルバミン酸塩、炭酸塩、炭酸水素塩等から選択される少なくとも一種を含む。
 発泡性硬化剤(A)は、二酸化炭素と反応していないアミン化合物(a1)等の、反応物(a2)以外の成分を含有してもよい。
 ただし、本発明の効果を有効に得る観点から、発泡性硬化剤(A)中の、二酸化炭素と反応していないアミン化合物(a1)及び反応物(a2)の合計量は、二酸化炭素吸収量及び発泡性をより向上させる観点から、発泡性硬化剤(A)の全量を100質量%としたとき、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、更に好ましくは90質量%以上、更に好ましくは95質量%以上、更に好ましくは98質量%以上であり、そして好ましくは100質量%以下である。
 また、発泡性硬化剤(A)中の、二酸化炭素と反応していないアミン化合物(a1)の含有量は、発泡体の外観及び発泡性をより向上させる観点から、発泡性硬化剤(A)中の、二酸化炭素と反応していないアミン化合物(a1)及び反応物(a2)の合計量を100モル%としたとき、好ましくは5モル%以上、より好ましくは10モル%以上、更に好ましくは30モル%以上、更に好ましくは50モル%以上であり、そして好ましくは95モル%以下である。
<環状カーボネート化合物(B)>
 環状カーボネート化合物(B)は、環状カーボネート基を2つ以上有する化合物である。環状カーボネート化合物(B)における環状カーボネート基は、アミン化合物(a1)との反応性を向上させる観点から、5員環環状カーボネート基を含むことが好ましい。
 環状カーボネート化合物(B)は、1分子中に2つ以上の環状カーボネート基を有するものであれば特に限定されず、例えば、ベンゼン骨格、芳香族多環骨格、縮合多環芳香族骨格等の、芳香族骨格を有する環状カーボネート化合物や、脂肪族系や脂環式系の環状カーボネート化合物等が挙げられる。
 環状カーボネート化合物(B)は、アミン化合物(a1)との反応性を向上させる観点から、5員環環状カーボネート基を2つ以上有する化合物であることが好ましい。
 芳香族骨格を有する環状カーボネート化合物としては、例えば、下記式(2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002

 式(2)中のZは、例えば、以下に示す構造のいずれかである。
Figure JPOXMLDOC01-appb-C000003

 式中のXは、水素原子又はメチル基である。
 脂肪族系や脂環式系の環状カーボネート化合物としては、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004

 式中のXは、水素原子又はメチル基であり、nはアルキレンオキシ基の平均付加モル数であり、2以上20以下の数である。
 また、環状カーボネート化合物(B)としては、整泡性を向上させる観点から、環状カーボネート化合物にアミン化合物を付加させて高分子量化させたものを用いることができる。
 環状カーボネート化合物に付加できるアミン化合物としては、例えば、前述した環式アミン化合物(a11);エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,8-ジアミノオクタン、1,10-ジアミノデカン、1,12-ジアミノドデカン、ジエチレントリアミン、トリエチレンテトラミン等の非環式脂肪族系アミン化合物等が挙げられる。
 環状カーボネート化合物にアミン化合物を付加させる方法としては、例えば、原材料である環状カーボネート化合物を、50℃以上250℃以下の温度にて、10分間以上12時間以下反応させることにより、環状カーボネート化合物にアミン化合物を付加させることができる。
 上記の中でも、環状カーボネート化合物(B)としては、前記式(2)で表される化合物が好ましく、下記式で表されるbis-A型ジカーボネート化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000005
 環状カーボネート化合物(B)は、例えば、エポキシ化合物と二酸化炭素との反応によって得ることができる。より具体的には、原材料であるエポキシ化合物を、触媒の存在下、0℃以上160℃以下の温度にて、大気圧以上1MPa以下に加圧した二酸化炭素雰囲気下で1時間以上48時間以下反応させることにより、二酸化炭素をエステル部位に固定化した環状カーボネート化合物を得ることができる。
 エポキシ化合物と二酸化炭素との反応に使用される触媒としては、例えば、塩化リチウム、臭化リチウム、ヨウ化リチウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム等のハロゲン化塩類;4級アンモニウム塩等が挙げられる。触媒の使用量は、例えば、エポキシ化合物100質量部当たり1質量部以上50質量部以下である。エポキシ化合物と二酸化炭素の反応は、有機溶媒の存在下で行ってもよい。
 発泡性樹脂組成物(C)中の発泡性硬化剤(A)の含有量は、発泡性を向上させる観点から、環状カーボネート化合物(B)中の環状カーボネート基数に対する発泡性硬化剤(A)中のアミノ基数の比(前記アミノ基数/前記環状カーボネート基数)が、好ましくは0.5以上、より好ましくは0.6以上、更に好ましくは0.7以上、更に好ましくは0.8以上、更に好ましくは0.9以上であり、ポリヒドロキシウレタン樹脂系発泡体(D)の耐熱性、耐薬品性、硬化性及び機械強度を向上させる観点から、好ましくは1.5以下、より好ましくは1.4以下、更に好ましくは1.3以下、更に好ましくは1.2以下、更に好ましくは1.1以下となる量である。
 ここで、発泡性硬化剤(A)中のアミノ基数は、反応物(a2)における二酸化炭素と反応する前のアミン化合物(a1)のアミノ基数と、発泡性硬化剤(A)に含まれる、二酸化炭素と未反応のアミン化合物(a1)のアミノ基数との合計数を意味する。
 発泡性樹脂組成物(C)には、さらに、充填材、可塑剤等の改質成分、揺変剤等の流動調整成分、顔料、レベリング剤、粘着付与剤、エラストマー微粒子、硬化促進剤、整泡剤、化学発泡剤等のその他の成分を用途に応じて含有させてもよい。
 ただし、本発明の効果を有効に得る観点から、発泡性樹脂組成物(C)中の発泡性硬化剤(A)及び環状カーボネート化合物(B)の合計量は、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、更に好ましくは90質量%以上、更に好ましくは95質量%以上である。また、上限は100質量%である。
 発泡性樹脂組成物(C)中の発泡性硬化剤(A)以外の発泡剤の含有量は、ポリヒドロキシウレタン樹脂系発泡体(D)の製造時における環境負荷をより低減する観点から、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは1質量%以下、更に好ましくは0.5質量%以下、更に好ましくは0.1質量%以下である。
 発泡性硬化剤(A)以外の発泡剤としては、例えば、クロロフルオロカーボン、フルオロカーボン等のフロン系のハロゲン含有炭化水素類;シクロペンタン等の脂環式炭化水素類;ジニトロペンタメチレンテトラミン、アゾジカルボンアミド、p,p’-オキシビスベンゼンスルホニルヒドラジド等の有機系発泡剤;炭酸水素ナトリウム等の無機系発泡剤が挙げられる。
<発泡性樹脂組成物(C)の調製方法>
 発泡性樹脂組成物(C)の調製方法には特に制限はなく、発泡性硬化剤(A)、環状カーボネート化合物(B)、及び必要に応じ他の成分を公知の方法及び装置を用いて混合し、製造することができる。
[ポリヒドロキシウレタン樹脂系発泡体(D)及びその製造方法]
 本発明のポリヒドロキシウレタン樹脂系発泡体(D)は、発泡性樹脂組成物(C)を発泡成形してなる発泡体である。すなわち、本発明のポリヒドロキシウレタン樹脂系発泡体(D)の製造方法は、発泡性樹脂組成物(C)を発泡する工程を含む。
 発泡性樹脂組成物(C)を発泡する工程では、例えば、発泡性樹脂組成物(C)を加熱することにより、反応物(a2)からアミン化合物(a1)及び二酸化炭素を生成させ、二酸化炭素により発泡性樹脂組成物(C)を発泡させるとともに、生成したアミン化合物(a1)と環状カーボネート化合物(B)との反応により発泡性樹脂組成物(C)を硬化させる。これにより、ポリヒドロキシウレタン樹脂系発泡体(D)が得られる。
 発泡性樹脂組成物(C)を発泡する工程における加熱温度及び加熱時間は適宜選択できるが、反応速度及び生産性、並びに原料の分解等を防止する観点からは、好ましくは50~250℃、より好ましくは100~200℃、更に好ましくは120~180℃である。また反応時間は、好ましくは10分間~12時間、より好ましくは15分間~4時間である。
 本発明に係るポリヒドロキシウレタン樹脂系発泡体(D)の製造方法では、発泡性樹脂組成物(C)を発泡する工程の前に、アミン化合物(a1)を二酸化炭素濃度が0.01体積%以上10体積%以下の気体に接触させることにより、アミン化合物(a1)と二酸化炭素を反応させて反応物(a2)を得る工程を更に含むことが好ましい。
 前記二酸化炭素濃度は、好ましくは0.02体積%以上、より好ましくは0.03体積%以上であり、そして、好ましくは5体積%以下、より好ましくは1体積%以下、更に好ましくは0.5体積%以下、更に好ましくは0.1体積%以下である。また、0.01体積%以上10体積%以下の前記気体は空気であることが更に好ましい。
 反応物(a2)は、アミン化合物(a1)と二酸化炭素との反応物であり、例えば、アミン化合物と二酸化炭素との反応物である、カルバミン酸、カルバミン酸塩、炭酸塩、炭酸水素塩等から選択される少なくとも一種を含む。
 ポリヒドロキシウレタン樹脂系発泡体(D)の密度は、機械強度を向上させる観点から、好ましくは0.05g/cm以上、より好ましくは0.10g/cm以上、更に好ましくは0.15g/cm以上、更に好ましくは0.18g/cm以上であり、断熱性、遮音性、軽量性等の機能をより向上させる観点から、好ましくは1.0g/cm以下、より好ましくは0.95g/cm以下、更に好ましくは0.90g/cm以下、更に好ましくは0.80g/cm以下、更に好ましくは0.70g/cm以下、更に好ましくは0.60g/cm以下、更に好ましくは0.50g/cm以下、更に好ましくは0.40g/cm以下、更に好ましくは0.38g/cm以下である。ポリヒドロキシウレタン樹脂系発泡体(D)の密度は、具体的には実施例に記載の方法により測定できる。
[発泡性硬化剤]
 本発明の発泡性硬化剤は、ポリヒドロキシウレタン樹脂系発泡体を成形するための発泡性硬化剤であって、アミン化合物(a1)と二酸化炭素との反応物(a2)を含む。
 本発明に係る発泡性硬化剤によれば、ポリヒドロキシウレタン樹脂系発泡体の製造時において、環境負荷の大きい従来の発泡剤の使用量を減らすことができるため、環境負荷を低減できる、ポリヒドロキシウレタン樹脂系発泡体の新規な製造方法を提供することが可能である。
 本発明に係る発泡性硬化剤で使用する各成分及びその好適態様は、前述した本発明に係る発泡性樹脂組成物(C)における発泡性硬化剤(A)と同じである。
 以下、本発明を実施例により説明するが、本発明は実施例の範囲に限定されない。なお本実施例において、各種測定は以下の方法により行った。
(アミン化合物の二酸化炭素(CO)最大解離温度)
 開閉可能なデシケーター(内寸:370mm×260mm×272mm)内に二酸化炭素濃度計とシャーレを配置した。その後、アミン化合物(5mmol)をデシケーター内のシャーレに加え、すぐに扉を閉め、デシケーター内にアミン化合物を、23℃、50%RHの空気環境下、24時間静置した。なお、二酸化炭素の初期濃度は、約400ppmに調整した。
 次いで、デシケーター内からアミン化合物を取り出し、二酸化炭素を吸収させたアミン化合物を得た。二酸化炭素を吸収させたアミン化合物に対して、次のようにしてDSC測定を行い、アミン化合物の二酸化炭素最大解離温度を測定した。まず、アミン化合物に対し、測定温度範囲23~250℃、昇温速度10℃/分、窒素雰囲気の条件下で、示差熱重量測定計(製品名:DTG-60、株式会社島津製作所製)を用いて示差走査熱量測定を行った。これにより得られたDSC曲線から、二酸化炭素の脱離に伴う吸熱量が最大になる温度を算出し、その温度をアミン化合物の二酸化炭素最大解離温度とした。
(アミン化合物の最大吸熱温度)
 アミン化合物に対して、次のようにしてDSC測定を行い、アミン化合物の最大吸熱温度を測定した。まず、アミン化合物に対し、測定温度範囲23~350℃、昇温速度10℃/分、窒素雰囲気の条件下で、示差熱重量測定計(製品名:DTG-60、株式会社島津製作所製)を用いて示差走査熱量測定を行った。これにより得られたDSC曲線から、アミン化合物の揮発に伴う吸熱量が最大になる温度を算出し、その温度をアミン化合物の最大吸熱温度とした。
(アミン化合物のアミン価)
 アミン価はJIS K7237-1995に準じて、下記測定方法により測定した。
(1)アミン化合物0.1gを酢酸20mLに溶解した。
(2)上記(1)により得られた溶液を、電位差自動滴定装置(京都電子工業株式会社製、AT-610)を用いて、0.1規定過塩素酸-酢酸溶液で滴定することによりアミン価を算出した。
(アミン化合物の酸解離定数(pKa))
 アミン化合物の酸解離定数は、下記測定方法により求めた。
(1)アミン化合物0.2gを精製水30mLに溶解した。
(2)上記(1)により得られた溶液を、電位差自動滴定装置(京都電子工業株式会社製、AT-610)を用いて、0.1規定過塩素酸-酢酸溶液で滴定することにより酸解離定数(pKa)を算出した。
 なお、測定時の温度は、25±2℃とした。
 実施例において、アミン化合物及び環状カーボネート化合物としては以下のものを用いた。
(アミン化合物)
MXDA:メタキシリレンジアミン(三菱瓦斯化学株式会社製)
1,3-BAC:1,3-ビス(アミノメチル)シクロヘキサン(三菱瓦斯化学株式会社製)
IPDA:イソホロンジアミン(東京化成工業株式会社製)
AEP:N-(2-アミノエチル)ピペラジン(東京化成工業株式会社製)
PACM:4,4’-メチレンビス(シクロヘキシルアミン)(東京化成工業株式会社製)
(環状カーボネート化合物)
bis-A型ジカーボネート化合物:以下の合成例1に従って作製した。
(合成例1:bis-A型ジカーボネート化合物の製造)
 撹拌機及び還流冷却器を備え付けた反応容器に、bis-A型エポキシ樹脂であるDER332(Olin社製、80.0g)とテトラブチルアンモニウムヨージド(21.6g)とジメチルアセトアミド(60g)を加えた。この混合液を撹拌しながら二酸化炭素を20mL/minの流速でバブリングすることで系内を二酸化炭素雰囲気とした。この状態で反応系を80℃に加温し20時間反応させた。反応終了後、ジメチルアセトアミド(200g)を系内に加えた(系が冷えると固体が析出してしまうため室温冷却せずに加えた)。フラスコに水1.5Lを加え、先ほどの反応溶液を撹拌しながらゆっくりとフラスコ内に加えることで白色固体を得た。この白色固体を吸引ろ過によって濾別し、次いで、メタノールで洗浄することにより下記式で表されるbis-A型ジカーボネート化合物を52g(収率:52%)得た。
Figure JPOXMLDOC01-appb-C000006
実施例1
(1)アミン化合物への二酸化炭素の吸収
 容器に、アミン化合物であるMXDA(40mmol)を加え、23℃、50%RHの空気環境下、1週間静置した。これにより、MXDAと空気中の二酸化炭素を反応させて、MXDAの炭酸塩を得た。ここで、反応ムラを抑制するために、適宜、アミン化合物が入っている容器を振り、未反応のMXDAが生じないようにした。
 次いで、MXDAの質量増加量を測定し、以下の式からアミン化合物の質量増加率を算出した。
 アミン化合物の質量増加率[質量%]=100×アミン化合物の質量増加量(g)/(初期のアミン化合物の質量(g)+アミン化合物の質量増加量(g))
(2)発泡性樹脂組成物の調製
 前記(1)における初期のMXDAのアミノ基数を計算し、前記アミノ基数/bis-A型ジカーボネート化合物中の環状カーボネート基数が1.0になるようにbis-A型ジカーボネート化合物を秤量した。
 次いで、(1)で得られたMXDAの炭酸塩とbis-A型ジカーボネート化合物を2分間撹拌混合し、発泡性樹脂組成物を得た。
(3)ポリヒドロキシウレタン樹脂系発泡体の製造
 (2)で得られた発泡性樹脂組成物を縦×横×高さ=12cm×12cm×1.2cmの型に入れ、熱風乾燥機を用いて、加熱温度150℃、加熱時間45分の条件で加熱し、発泡性樹脂組成物を硬化及び発泡させた。これにより、ポリヒドロキシウレタン樹脂系発泡体を得た。ここで、型に入れた発泡前の発泡性樹脂組成物の厚みは約3mmであった。また、目視により、得られたポリヒドロキシウレタン樹脂系発泡体に発泡構造が形成されていることを確認した。
 得られたポリヒドロキシウレタン樹脂系発泡体について、以下の各評価をおこなった。得られた結果を表1に示す。
(発泡性の評価)
 ポリヒドロキシウレタン樹脂系発泡体の膜厚及び密度により、発泡性樹脂組成物の発泡性を評価した。膜厚が大きく、密度が低いほど発泡性に優れていることを意味する。
 ポリヒドロキシウレタン樹脂系発泡体の密度は、発泡体の質量と体積から算出した。
(実施例2~5)
 アミン化合物の種類を表1に示す化合物に変更した以外は実施例1と同様にしてポリヒドロキシウレタン樹脂系発泡体をそれぞれ得た。
 得られたポリヒドロキシウレタン樹脂系発泡体について、上記の各評価をそれぞれおこなった。得られた結果を表1に示す。また、目視により、得られたポリヒドロキシウレタン樹脂系発泡体に発泡構造が形成されていることをそれぞれ確認した。
(実施例6)
 MXDAの炭酸塩を、MXDAの炭酸塩とMXDAとの混合物(MXDAの炭酸塩:MXDA=1:9(モル比))に変更し、ポリヒドロキシウレタン樹脂系発泡体を製造する際の型を縦×横×高さ=7cm×12cm×0.9cmの型に変更した以外は実施例1と同様にしてポリヒドロキシウレタン樹脂系発泡体を得た。ここで、型に入れた発泡前の発泡性樹脂組成物の厚みは約1.5mmであった。得られたポリヒドロキシウレタン樹脂系発泡体について、上記の各評価をおこなった。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000007
 表1より、実施例の発泡性樹脂組成物によれば、環境負荷の大きい従来の発泡剤を使用しなくても、ポリヒドロキシウレタン樹脂系発泡体を作製できることが分かる。
 本発明によれば、環境負荷を低減できる、ポリヒドロキシウレタン樹脂系発泡体の新規な製造方法、並びに、該製造方法に用いる発泡性樹脂組成物及び発泡性硬化剤を提供することができる。

Claims (19)

  1.  ポリヒドロキシウレタン樹脂系発泡体を成形するための発泡性樹脂組成物であって、
     アミン化合物(a1)と二酸化炭素との反応物(a2)を含む発泡性硬化剤(A)と、環状カーボネート基を2つ以上有する環状カーボネート化合物(B)と、を含む発泡性樹脂組成物。
  2.  前記アミン化合物(a1)を23℃、50%RHの空気環境下、1週間静置したときの、下記式で算出される前記アミン化合物(a1)の質量増加率が10質量%以上50質量%以下である、請求項1に記載の発泡性樹脂組成物。
     アミン化合物(a1)の質量増加率[質量%]=100×アミン化合物(a1)の質量増加量(g)/(アミン化合物(a1)の質量(g)+アミン化合物(a1)の質量増加量(g))
  3.  前記アミン化合物(a1)が環状構造を有する環式アミン化合物(a11)を含む、請求項1又は2に記載の発泡性樹脂組成物。
  4.  前記環式アミン化合物(a11)が第一級炭素原子に結合したアミノ基を有する、請求項3に記載の発泡性樹脂組成物。
  5.  前記環式アミン化合物(a11)の環状構造が5員環及び6員環から選択される少なくとも一種を含む、請求項3又は4に記載の発泡性樹脂組成物。
  6.  前記アミン化合物(a1)のアミノ基の数が2以上6以下である、請求項1~5のいずれかに記載の発泡性樹脂組成物。
  7.  前記発泡性樹脂組成物中の前記発泡性硬化剤(A)以外の発泡剤の含有量が5質量%以下である、請求項1~6のいずれかに記載の発泡性樹脂組成物。
  8.  前記環状カーボネート化合物(B)における前記環状カーボネート基が5員環環状カーボネート基を含む、請求項1~7のいずれかに記載の発泡性樹脂組成物。
  9.  前記アミン化合物(a1)がo-キシリレンジアミン及びその誘導体、m-キシリレンジアミン及びその誘導体、p-キシリレンジアミン及びその誘導体、ビス(アミノメチル)シクロヘキサン及びその誘導体、リモネンジアミン及びその誘導体、並びにイソホロンジアミン及びその誘導体からなる群から選択される少なくとも一種を含む、請求項1~8のいずれかに記載の発泡性樹脂組成物。
  10.  前記発泡性樹脂組成物中の前記発泡性硬化剤(A)の含有量が、前記環状カーボネート化合物(B)中の前記環状カーボネート基数に対する前記発泡性硬化剤(A)中のアミノ基数の比(前記アミノ基数/前記環状カーボネート基数)が0.5以上1.5以下となる量である、請求項1~9のいずれかに記載の発泡性樹脂組成物。
  11.  請求項1~10のいずれかに記載の発泡性樹脂組成物を発泡成形してなるポリヒドロキシウレタン樹脂系発泡体。
  12.  請求項1~10のいずれかに記載の発泡性樹脂組成物を発泡成形する工程を含むポリヒドロキシウレタン樹脂系発泡体の製造方法。
  13.  ポリヒドロキシウレタン樹脂系発泡体を成形するための発泡性硬化剤であって、
     アミン化合物(a1)と二酸化炭素との反応物(a2)を含む発泡性硬化剤。
  14.  前記アミン化合物(a1)を23℃、50%RHの空気環境下、1週間静置したときの、下記式で算出される前記アミン化合物(a1)の質量増加率が10質量%以上50質量%以下である、請求項13に記載の発泡性硬化剤。
     アミン化合物(a1)の質量増加率[質量%]=100×アミン化合物(a1)の質量増加量(g)/(アミン化合物(a1)の質量(g)+アミン化合物(a1)の質量増加量(g))
  15.  前記アミン化合物(a1)が環状構造を有する環式アミン化合物(a11)を含む、請求項13又は14に記載の発泡性硬化剤。
  16.  前記環式アミン化合物(a11)が第一級炭素原子に結合したアミノ基を有する、請求項15に記載の発泡性硬化剤。
  17.  前記環式アミン化合物(a11)の環状構造が5員環及び6員環から選択される少なくとも一種を含む、請求項15又は16に記載の発泡性硬化剤。
  18.  前記アミン化合物(a1)のアミノ基の数が2以上6以下である、請求項13~17のいずれかに記載の発泡性硬化剤。
  19.  前記アミン化合物(a1)がo-キシリレンジアミン及びその誘導体、m-キシリレンジアミン及びその誘導体、p-キシリレンジアミン及びその誘導体、ビス(アミノメチル)シクロヘキサン及びその誘導体、リモネンジアミン及びその誘導体、並びにイソホロンジアミン及びその誘導体からなる群から選択される少なくとも一種を含む、請求項13~18のいずれかに記載の発泡性硬化剤。
PCT/JP2022/029688 2021-09-30 2022-08-02 発泡性樹脂組成物、発泡体、発泡体の製造方法、及び発泡性硬化剤 WO2023053716A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020247006083A KR20240087641A (ko) 2021-09-30 2022-08-02 발포성 수지 조성물, 발포체, 발포체의 제조방법, 및 발포성 경화제
US18/690,024 US20240301156A1 (en) 2021-09-30 2022-08-02 Foamable resin composition, foam body, method for producing foam body, and foamable curing agent
CN202280064627.6A CN117980379A (zh) 2021-09-30 2022-08-02 发泡性树脂组合物、发泡体、发泡体的制造方法、和发泡性固化剂
EP22875593.0A EP4410866A1 (en) 2021-09-30 2022-08-02 Foamable resin composition, foam body, method for producing foam body, and foamable curing agent
JP2022568512A JP7276628B1 (ja) 2021-09-30 2022-08-02 発泡性樹脂組成物、発泡体、発泡体の製造方法、及び発泡性硬化剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-161072 2021-09-30
JP2021161072 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023053716A1 true WO2023053716A1 (ja) 2023-04-06

Family

ID=85782274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029688 WO2023053716A1 (ja) 2021-09-30 2022-08-02 発泡性樹脂組成物、発泡体、発泡体の製造方法、及び発泡性硬化剤

Country Status (7)

Country Link
US (1) US20240301156A1 (ja)
EP (1) EP4410866A1 (ja)
JP (1) JP7276628B1 (ja)
KR (1) KR20240087641A (ja)
CN (1) CN117980379A (ja)
TW (1) TW202330720A (ja)
WO (1) WO2023053716A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500656A (en) * 1983-04-05 1985-02-19 Bayer Aktiengesellschaft Process for the preparation of a cellular polyurethane
US20040192803A1 (en) * 2001-10-01 2004-09-30 Oleg Figovsky Preparation of oligomeric cyclocarbonates and their use in ionisocyanate or hybrid nonisocyanate polyurethanes
JP2004339437A (ja) 2003-05-19 2004-12-02 Asahi Fiber Glass Co Ltd ウレタン系樹脂発泡体の製造方法
JP2017014413A (ja) * 2015-07-02 2017-01-19 大日精化工業株式会社 ポリヒドロキシウレタン樹脂及びその製造方法
EP3760664A1 (en) * 2019-07-05 2021-01-06 Université de Liège Self-blowing isocyanate-free polyurethane foams
JP2021042267A (ja) 2019-09-06 2021-03-18 大日精化工業株式会社 ポリヒドロキシウレタン樹脂及びポリヒドロキシウレタン樹脂の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500656A (en) * 1983-04-05 1985-02-19 Bayer Aktiengesellschaft Process for the preparation of a cellular polyurethane
US20040192803A1 (en) * 2001-10-01 2004-09-30 Oleg Figovsky Preparation of oligomeric cyclocarbonates and their use in ionisocyanate or hybrid nonisocyanate polyurethanes
JP2004339437A (ja) 2003-05-19 2004-12-02 Asahi Fiber Glass Co Ltd ウレタン系樹脂発泡体の製造方法
JP2017014413A (ja) * 2015-07-02 2017-01-19 大日精化工業株式会社 ポリヒドロキシウレタン樹脂及びその製造方法
EP3760664A1 (en) * 2019-07-05 2021-01-06 Université de Liège Self-blowing isocyanate-free polyurethane foams
JP2021042267A (ja) 2019-09-06 2021-03-18 大日精化工業株式会社 ポリヒドロキシウレタン樹脂及びポリヒドロキシウレタン樹脂の製造方法

Also Published As

Publication number Publication date
CN117980379A (zh) 2024-05-03
KR20240087641A (ko) 2024-06-19
TW202330720A (zh) 2023-08-01
US20240301156A1 (en) 2024-09-12
EP4410866A1 (en) 2024-08-07
JP7276628B1 (ja) 2023-05-18
JPWO2023053716A1 (ja) 2023-04-06

Similar Documents

Publication Publication Date Title
Cornille et al. Room temperature flexible isocyanate-free polyurethane foams
JP3904311B2 (ja) エポキシ樹脂用硬化剤・硬化促進剤及びエポキシ樹脂組成物
BRPI0617174A2 (pt) compostos contendo aldimina, processo para hidrólise e reticulação bem como composição farmacêutica contendo os mesmos
US20090176944A1 (en) Aldimines Comprising Reactive Groups Containing Active Hydrogen, and Use Thereof
CN104981494B (zh) 适合用于制造聚氨酯的胺
EP3994201B1 (en) Self-blowing isocyanate-free polyurethane foams
US5789520A (en) Curing agent for resins and resin composition containing the same
JP7276628B1 (ja) 発泡性樹脂組成物、発泡体、発泡体の製造方法、及び発泡性硬化剤
CN107108482B (zh) 化学发泡剂和可热膨胀的热塑性组合物
US11718725B2 (en) Method of forming foam material
EP4194481A1 (en) Self-blowing isocyanate-free polyurethane foams
CA2723359C (en) Diamino-alcohol compounds, their manufacture and use in epoxy resins
EP4263672A1 (en) Self-blowing isocyanate-free polyurethane foams
WO2024053366A1 (ja) 発泡樹脂形成性組成物、ポリウレア系樹脂発泡体、及びポリウレア系樹脂発泡体の製造方法
WO2023195269A1 (ja) 発泡剤、発泡性樹脂組成物、ポリウレア樹脂系発泡体、及びポリウレア樹脂系発泡体の製造方法
JP2017132938A (ja) 難燃性ポリヒドロキシウレタン樹脂及び難燃性被膜
JPWO2024053366A5 (ja)
WO2023195270A1 (ja) 発泡剤、発泡性樹脂組成物、ポリウレタンウレア樹脂系発泡体、及びポリウレタンウレア樹脂系発泡体の製造方法
JPH0210169B2 (ja)
JPH07247255A (ja) ポリアミンのモノカルボキサミド
CN117209702A (zh) 一种液体醛亚胺潜伏性固化剂及其制备方法及应用
US20240124639A1 (en) Amine-terminated oxamide curatives
JPH08176291A (ja) ポリウレタン用新規ポリエーテルポリオールおよびその製造方法
JP2003137959A (ja) 硬化性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022568512

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875593

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18690024

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280064627.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022875593

Country of ref document: EP

Effective date: 20240430