WO2023053549A1 - 室内熱交換器、室内機、空気調和機および室内熱交換器の製造方法 - Google Patents

室内熱交換器、室内機、空気調和機および室内熱交換器の製造方法 Download PDF

Info

Publication number
WO2023053549A1
WO2023053549A1 PCT/JP2022/018451 JP2022018451W WO2023053549A1 WO 2023053549 A1 WO2023053549 A1 WO 2023053549A1 JP 2022018451 W JP2022018451 W JP 2022018451W WO 2023053549 A1 WO2023053549 A1 WO 2023053549A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
indoor heat
pipe
indoor
liquid refrigerant
Prior art date
Application number
PCT/JP2022/018451
Other languages
English (en)
French (fr)
Inventor
寛之 中野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280048429.0A priority Critical patent/CN117616235A/zh
Publication of WO2023053549A1 publication Critical patent/WO2023053549A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0068Indoor units, e.g. fan coil units characterised by the arrangement of refrigerant piping outside the heat exchanger within the unit casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • F24F1/0325Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/0326Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by the arrangement of refrigerant piping outside the heat exchanger within the unit casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings

Definitions

  • the present disclosure relates to an indoor heat exchanger, an indoor unit, an air conditioner, and a method for manufacturing an indoor heat exchanger.
  • an indoor heat exchanger there is one in which one end of a copper connection pipe is connected to a heat exchanger body, and the other end of the connection pipe is connected to a flare nut (for example, Japanese Patent Application Laid-Open No. 2013-155892 ( See Patent Document 1)).
  • This disclosure proposes an indoor heat exchanger whose connecting pipes can be easily bent during installation.
  • the present disclosure proposes an indoor unit including the indoor heat exchanger and an air conditioner including the indoor unit.
  • the present disclosure proposes a method for manufacturing an indoor heat exchanger that allows easy bending of connection pipes during installation.
  • the indoor heat exchanger of the present disclosure is a heat exchanger body; A connection pipe connected to the heat exchanger body via a connection part, The connecting pipe has a first bent portion with an elongation of 30% or more.
  • the elongation is measured according to JIS Z2201 and Z2241, and in the tensile test, the ratio of the elongation generated between the gauge marks on the test piece to the gauge length distance until the test piece breaks is expressed as a percentage. It is.
  • the connecting pipe can be easily bent when installing the indoor unit in which the heat exchanger main body is accommodated, improving workability during installation.
  • the connecting pipe has a second bent portion between the connecting portion and the first bent portion.
  • part of the bending stress when bending stress acts on the first bent portion, part of the bending stress can be received by the second bent portion to suppress stress concentration on the first bent portion, and damage to the first bent portion can be prevented. Reduce risk.
  • the second bent portion has an elongation of 20% or less.
  • the stress load on the heat exchanger body can be reduced.
  • a tubular member covering the first bent portion is provided.
  • bending stress applied to the first bending portion can be reduced by the tubular member.
  • the connecting pipe is a pipe made of aluminum or an aluminum alloy.
  • connection pipes made of aluminum or aluminum alloy which have a lower tensile strength than copper connection pipes.
  • the first bent portion has an elongation of 40% or more.
  • the connecting pipe can be more easily bent when installing the indoor unit in which the heat exchanger main body is accommodated, and workability during installation can be further improved.
  • connection pipe has an outer diameter of 9.52 mm or less.
  • the outer diameter of the connecting pipe is as thin as 9.52 mm ( ⁇ 3/8 inch) or less, the work of bending the connecting pipe becomes easier.
  • the indoor unit includes Equipped with any one of the above indoor heat exchangers.
  • the connecting pipe can be easily bent when installing the indoor unit containing the indoor heat exchanger, and workability during installation is improved.
  • the air conditioner according to one aspect of the present disclosure includes Equipped with the above indoor unit.
  • the connecting pipe can be easily bent when installing the indoor unit, and workability during installation is improved.
  • a method for manufacturing an indoor heat exchanger includes: A method for manufacturing an indoor heat exchanger comprising a heat exchanger body and a connecting pipe connected to the heat exchanger body via a connecting portion, a bending step of forming a first bent portion in the connection pipe by bending the connection pipe; and an annealing step of subjecting the first bent portion to an annealing treatment after the bending step to make the elongation of the first bent portion larger than before the annealing treatment.
  • the elongation of the first bent portion of the connection pipe connected to the heat exchanger body via the connection portion is made larger than that before the annealing treatment, so that the heat exchange
  • the connecting pipe can be easily bent at the time of installation of the indoor unit in which the device main body is housed, and workability at the time of installation is improved.
  • the annealing treatment is performed by furnace brazing.
  • the brazing for joining the parts to each other and the annealing treatment can be performed at the same time, and the brazing and the annealing treatment can be performed efficiently.
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner according to a first embodiment of the present disclosure
  • FIG. It is a perspective view of the indoor unit of the air conditioner of the said 1st Embodiment. It is a front view of the indoor unit of the air conditioner of the said 1st Embodiment. It is a front view of the indoor heat exchanger of the said 1st Embodiment, and its peripheral part. It is a front view of the principal part of the indoor heat exchanger of the said 1st Embodiment. It is a top view of the principal part of the indoor heat exchanger of the said 1st Embodiment. It is a left view of the principal part of the indoor heat exchanger of the said 1st Embodiment. It is a flowchart explaining the manufacturing method of the indoor heat exchanger of the said 1st Embodiment.
  • FIG. 4 is a front view of an indoor heat exchanger and its surroundings according to a second embodiment of the present disclosure;
  • FIG. 1 shows a refrigerant circuit RC included in an air conditioner according to a first embodiment of the present disclosure.
  • the air conditioner of the first embodiment includes an indoor unit 1 and an outdoor unit 2 connected to the indoor unit 1 via a refrigerant circuit RC.
  • the above air conditioner is a pair type air conditioner in which an indoor unit 1 and an outdoor unit 2 are one-to-one.
  • the refrigerant circuit RC has a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 13, an electric expansion valve 14, an indoor heat exchanger 15, and an accumulator 16.
  • refrigerant for example, HFC refrigerant such as R410A and R32
  • R410A and R32 HFC refrigerant
  • one end of a four-way switching valve 12 is connected to the discharge side of the compressor 11 .
  • One end of an outdoor heat exchanger 13 is connected to the other end of the four-way switching valve 12 .
  • One end of the electric expansion valve 14 is connected to the other end of the outdoor heat exchanger 13 .
  • One end of an indoor heat exchanger 15 is connected to the other end of the electric expansion valve 14 via a closing valve V1 and a connecting pipe L1.
  • One end of an accumulator 16 is connected to the other end of the indoor heat exchanger 15 via a connecting pipe L2, a closing valve V2 and a four-way switching valve 12. As shown in FIG. A suction side portion of the compressor 11 is connected to the other end of the accumulator 16 .
  • the indoor heat exchanger 15 and the indoor fan 18 are mounted on the indoor unit 1 .
  • the indoor fan 18 is, for example, a cross-flow fan, and sucks indoor air through the indoor heat exchanger 15 .
  • the compressor 11 the four-way switching valve 12 , the outdoor heat exchanger 13 , the electric expansion valve 14 , the accumulator 16 and the outdoor fan 17 are mounted on the outdoor unit 2 .
  • the air conditioner switches the four-way switching valve 12 to the switching position indicated by the solid line to start the compressor 11 during the cooling operation and the dehumidifying operation. to start the compressor 11 .
  • the direction of the solid line arrow in FIG. 1 indicates the direction in which the refrigerant flows during the cooling operation and the dehumidifying operation. Also, the direction of the dotted arrow in FIG. 1 indicates the direction in which the refrigerant flows during the heating operation.
  • FIG. 2 is a diagram of the indoor unit 1 viewed obliquely from above.
  • FIG. 3 is the figure which looked at the indoor unit 1 from the front side.
  • the indoor unit 1 includes a casing 21 in which an indoor heat exchanger 15 (shown in FIG. 1), an indoor fan 18 (shown in FIG. 1), and the like are accommodated. there is
  • the upper part of the casing 21 is provided with a suction port 22 for sucking in room air.
  • a suction port 22 for sucking in room air.
  • a blowout port 23 for blowing out air from the indoor fan 18 (indoor air heat-exchanged with the indoor heat exchanger 15) is provided in the lower part of the casing 21 .
  • a horizontal flap 24 is rotatably attached to the periphery of the outlet 23 .
  • the horizontal flap 24 shifts from a rest posture that closes the air outlet 23 to an operating posture that opens the air outlet 23, and the air blown out from the air outlet 23 moves in the vertical direction. to adjust.
  • FIG. 4 is a diagram of the indoor heat exchanger 15 viewed from the front side.
  • the indoor heat exchanger 15 includes a heat exchanger body 20 having a heat exchange section 201 and a plurality of heat transfer tubes 202 penetrating the heat exchange section 201 in the left-right direction.
  • the heat exchange section 201 and each heat transfer tube 202 are made of aluminum or an aluminum alloy.
  • the indoor heat exchanger 15 also includes a liquid refrigerant connection pipe 31 and a gas refrigerant connection pipe 32 that are fluidly connected to the heat transfer pipes 202 of the heat exchanger body 20 .
  • the liquid refrigerant connection pipe 31 is an example of a connection pipe, and constitutes a part of the connection pipe L1 (shown in FIG. 1).
  • the gas refrigerant connection pipe 32 is an example of a connection pipe, and constitutes a part of the connection pipe L2 (shown in FIG. 1).
  • the liquid refrigerant connection pipe 31 guides the liquid refrigerant from the electric expansion valve 14 to the heat exchanger main body 20 during the cooling operation and the dehumidifying operation.
  • the gas refrigerant connection pipe 32 guides the gas refrigerant from the heat exchanger main body 20 to the compressor 11 during the cooling operation and the dehumidifying operation.
  • One end of the liquid refrigerant connection pipe 31 is fluidly connected to the flow divider 33, and includes a first liquid refrigerant pipe 311 made of aluminum or an aluminum alloy and a second liquid refrigerant pipe 311 made of copper or a copper alloy.
  • a pipe 312 is provided.
  • one end of the second liquid refrigerant pipe 312 is fluidly connected to the other end of the first liquid refrigerant pipe 311 via a third liquid refrigerant pipe 313 made of stainless steel.
  • the liquid refrigerant flare union 41 is fixed to the other end of the second liquid refrigerant pipe 312 by brazing.
  • the outer diameter of the other end of the third liquid refrigerant pipe 313 is larger than that of one end.
  • One end of the third liquid refrigerant pipe 313 is connected to the first liquid refrigerant pipe 311 .
  • the other end of the third liquid refrigerant pipe 313 is connected to the second liquid refrigerant pipe 312 .
  • the gas refrigerant connection pipe 32 is configured in the same manner as the liquid refrigerant connection pipe 31, and includes a first gas refrigerant pipe 321 made of aluminum or an aluminum alloy and a second gas refrigerant pipe 322 made of copper or a copper alloy. ing.
  • One end of the first gas refrigerant pipe 321 is fluidly connected to a flow divider (not shown).
  • one end of the second gas refrigerant pipe 322 is fluidly connected to the other end of the first gas refrigerant pipe 321 via a third gas refrigerant pipe 323 made of stainless steel.
  • the gas refrigerant flare union 42 is fixed to the other end of the second gas refrigerant pipe 322 by brazing.
  • FIG. 5 is a view of the main part of the indoor heat exchanger 15 as seen from the front side.
  • FIG. 6 is the figure which looked at the principal part of the indoor heat exchanger 15 from the upper side.
  • FIG. 7 is the figure which looked at the principal part of the indoor heat exchanger 15 from the left side.
  • the first liquid refrigerant pipe 311 of the liquid refrigerant connection pipe 31 has a first portion 311a extending along the vertical direction or a direction inclined with respect to the vertical direction. Further, the first liquid refrigerant pipe 311 has a second portion 311b closer to the second liquid refrigerant pipe 312 than the first portion 311a.
  • the second portion 311b is connected to the lower end of the first portion 311a (the end on the second liquid refrigerant pipe 312 side) and is bent from the lower end toward the second liquid refrigerant pipe 312 side.
  • the second portion 311b is an example of a first bent portion.
  • the first liquid refrigerant pipe 311 has a third portion 311c closer to the second liquid refrigerant pipe 312 than the second portion 311b.
  • the third portion 311c continues to the end of the second portion 311b on the side of the second liquid refrigerant pipe 312, and extends in the horizontal direction or in a direction inclined with respect to the horizontal direction.
  • the waterproof tube 51 extends from the end of the third portion 311c on the second liquid refrigerant pipe 312 side to the end of the second portion 311b on the first portion 311a side. covered all around.
  • the waterproof tube 51 also covers the outer peripheral surface of the end of the third liquid refrigerant pipe 313 on the first liquid refrigerant pipe 311 side.
  • the waterproof tube 51 is formed by heating and shrinking a tube made of a waterproof material (for example, vinyl chloride, silicon rubber, fluorine-based polymer, etc.).
  • the first liquid refrigerant pipe 311 has a fourth portion 311d closer to the heat exchanger body 20 than the first portion 311a.
  • the fourth portion 311d continues to the upper end portion (the end portion on the side of the heat exchanger main body 20) of the first portion 311a, and is bent downward by making a U-turn from the end portion.
  • the fourth portion 311d is an example of a second bent portion.
  • the first liquid refrigerant pipe 311 has a fifth portion 311e closer to the heat exchanger body 20 than the fourth portion 311d.
  • the fifth portion 311e continues to the lower end portion (the end portion on the heat exchanger main body 20 side) of the fourth portion 311d and is bent from the lower end portion toward the flow divider 33 side.
  • the shunt 33 is an example of a connecting portion.
  • the first liquid refrigerant pipe 311 has a sixth portion 311f closer to the heat exchanger body 20 than the fifth portion 311e.
  • the sixth portion 311f extends from the heat exchanger main body 20 side end of the fifth portion 311e to the flow divider 33 .
  • the flow divider 33 is made of aluminum or an aluminum alloy.
  • a branch pipe 34 made of aluminum or an aluminum alloy is fixed by brazing to the end of the flow divider 33 on the side of the heat exchanger body 20 .
  • the gas refrigerant connection pipe 32 also has the same configuration as the liquid refrigerant connection pipe 31 .
  • the extension of the second portion 311b (first bent portion) of the liquid refrigerant connection pipe 31 connected to the heat exchanger body 20 via the flow divider 33 (connection portion) is set to 30% or more, and the elongation of the first bent portion of the gas refrigerant connection pipe 32 is set to 30% or more.
  • the liquid refrigerant connection pipe 31 and the gas refrigerant connection pipe 32 can be easily bent when installing the indoor unit in which the heat exchanger main body 20 is accommodated, thereby improving workability during installation.
  • liquid refrigerant connection pipe 31 has the fourth portion 311d (second bending portion) between the flow divider 33 and the second portion 311b, when a bending stress acts on the second portion 311b, the bending Part of the stress can be received by the fourth portion 311d to suppress the concentration of stress on the second portion 311b, thereby reducing the risk of damage to the second portion 311b (the same applies to the gas refrigerant connecting pipe 32).
  • the elongation of the second portion 311b of the liquid refrigerant connection pipe 31 may be 40% or more (the same applies to the gas refrigerant connection pipe 32).
  • the liquid refrigerant connection pipe 31 and the gas refrigerant connection pipe 32 can be bent more easily when installing the indoor unit in which the heat exchanger main body 20 is accommodated, and workability during installation can be further improved.
  • the outer diameters of the liquid refrigerant connection pipe 31 and the gas refrigerant connection pipe 32 are as thin as 9.52 mm ( ⁇ 3/8 inch) or less, the liquid refrigerant connection pipe 31 and the gas refrigerant connection pipe 32 bending work becomes easier.
  • the connecting pipe 31 for the liquid refrigerant and the connecting pipe 32 for the gas refrigerant can be easily connected when the indoor unit 1 is installed. It can be bent, improving workability during installation.
  • FIG. 8 is a flow chart for explaining the method for manufacturing the indoor heat exchanger 15. As shown in FIG.
  • FIG. 8 it has a bending process S1, an assembly process S2, and an annealing process S3.
  • the first liquid refrigerant pipe 311 is bent into a predetermined shape having a second portion 311b (first bent portion) and a fourth portion 311d (second bent portion) (bending step S1).
  • the bent first liquid refrigerant pipe 311, the second liquid refrigerant pipe 312, the third liquid refrigerant pipe 313, and the liquid refrigerant flare union 41 are assembled to form the liquid refrigerant connection pipe 31. Further, the liquid refrigerant connection pipe 31, the flow divider 33 (connection portion), and the branch pipe 34 are assembled to manufacture a connection pipe assembly (assembly step S2).
  • connection pipe assembly is joined to each other by brazing, and an annealing treatment is performed (annealing step S3).
  • the bending process S1, the assembling process S2, and the annealing process S3 are similarly performed for the gas refrigerant connecting pipe 32, and the indoor heat exchanger 15 is completed.
  • the second portion 311b (first bent portion) of the liquid refrigerant connecting pipe 31 and the first bent portion of the gas refrigerant connecting pipe 32 are stretched. It is halved due to work hardening (the gas refrigerant connecting pipe 32 is also the same).
  • the annealing treatment in the annealing step S3 after the bending step S1 the second portion 311b of the liquid refrigerant connection pipe 31 and the first portion 311b of the gas refrigerant connection pipe 32 connected to the heat exchanger body 20 via the flow divider 33 are bent.
  • the liquid refrigerant connection pipe 31 and the gas refrigerant connection pipe 32 can be easily bent when the indoor unit 1 housing the heat exchanger body 20 is installed. This improves workability during installation.
  • the annealing treatment is performed by furnace brazing, so that the brazing for joining the parts to each other and the annealing treatment can be performed at the same time, and the brazing and the annealing treatment can be performed efficiently. can be done.
  • one indoor unit 1 is connected to one outdoor unit 2, but a plurality of indoor units 1 may be connected.
  • the above air conditioner is of the pair type, but may be of the multi-type.
  • the first liquid refrigerant pipe 311 and the first gas refrigerant pipe 321 are made of aluminum or aluminum alloy, but they may be made of metal other than aluminum and aluminum alloy.
  • the second liquid refrigerant pipe 312 and the second gas refrigerant pipe 322 are made of copper or copper alloy, but may be made of metal other than copper or copper alloy.
  • the flow divider 33 and the branch pipe 34 are interposed between the heat transfer pipe 202 of the heat exchanger body 20 and one end of the first liquid refrigerant pipe 311.
  • one end of the first liquid refrigerant pipe 311 may be directly connected to the heat transfer pipe 202 of the heat exchanger main body 20 without interposing the flow divider 33 and the branch pipe 34 (the same applies to the gas refrigerant connection pipe 32).
  • the first embodiment uses the flow divider 33 that divides one refrigerant flow into two refrigerant flows, a flow divider that divides one refrigerant flow into three or more refrigerant flows may be used.
  • FIG. 9 is a front view of the liquid refrigerant connection pipe 31 and its periphery of the indoor heat exchanger 1015 according to the second embodiment of the present disclosure.
  • the indoor heat exchanger 1015 of the second embodiment is configured in the same manner as the indoor heat exchanger 15 of the first embodiment, except that the tubular member 61 covering the waterproof tube 51 is provided.
  • a tubular member 61 shown in FIG. 9 is made of a heat insulating material (eg, foamed polyester).
  • the cylindrical member 61 covers from the upper end of the first portion 311a of the first liquid refrigerant pipe 311 to the tip of the liquid refrigerant union.
  • the inner diameter of the cylindrical member 61 is set to be larger than the sum of the outer diameter of the liquid refrigerant connecting pipe 31 and the outer diameter of the gas refrigerant connecting pipe 32 .
  • the cylindrical member 61 covers the waterproof tube 51 , so liquid such as condensed water is prevented from adhering to the covering member or the waterproof tube 51 .
  • the bending stress applied to the second portion 311b can be reduced (the same applies to the gas refrigerant connection pipe 32).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

室内熱交換器(15)は、熱交換器本体(20)と、熱交換器本体(20)に接続部(33)を介して接続された接続配管(31)とを備える。上記接続配管(31)は、伸び30%以上の第1曲げ部(311b)を有する。これにより、据付時に接続配管を容易に曲げることができる。

Description

室内熱交換器、室内機、空気調和機および室内熱交換器の製造方法
 本開示は、室内熱交換器、室内機、空気調和機および室内熱交換器の製造方法に関する。
 従来、室内熱交換器としては、熱交換器本体に銅製の接続配管の一端が接続され、その接続配管の他端をフレアナットに接続したものがある(例えば、特開2013-155892号公報(特許文献1)参照)。
特開2013-155892号公報
 上記室内熱交換器は、製造時の曲げ加工により曲げ部に加工硬化が生じて、延びが小さくなるため、上記室内熱交換器を備えた室内機の据付時に接続配管が曲げにくくなって作業性が悪くなったり、破断したりしてしまうという問題がある。
 本開示では、据付時に接続配管を容易に曲げることができる室内熱交換器を提案する。
 また、本開示では、上記室内熱交換器を備えた室内機およびその室内機を備えた空気調和機を提案する。
 また、本開示では、据付時に接続配管を容易に曲げることができる室内熱交換器の製造方法を提案する。
 本開示の室内熱交換器は、
 熱交換器本体と、
 上記熱交換器本体に接続部を介して接続された接続配管と
を備え、
 上記接続配管は、伸び30%以上の第1曲げ部を有する。
 ここで、伸びは、JIS Z2201およびZ2241に準じて測定され、引張試験において、試験片が破断するまでに試験片上の標点間に生じた伸びと標点間距離との比を百分率で表したものである。
 本開示によれば、熱交換器本体が収容された室内機の据付時に接続配管を容易に曲げることができ、据付時の作業性が向上する。
 また、本開示の1つの態様に係る室内熱交換器では、
 上記接続配管は、上記接続部と上記第1曲げ部との間に第2曲げ部を有する。
 本開示によれば、第1曲げ部に曲げ応力が作用するとき、当該曲げ応力の一部を第2曲げ部で受けて第1曲げ部への応力集中を抑制でき、第1曲げ部の破損リスクを低減できる。
 また、本開示の1つの態様に係る室内熱交換器では、
 上記第2曲げ部は、伸びが20%以下である。
 本開示によれば、第1曲げ部に曲げ応力が作用するとき、熱交換器本体に対する応力負荷を低減できる。
 また、本開示の1つの態様に係る室内熱交換器では、
 上記第1曲げ部を覆う筒部材を備える。
 本開示によれば、筒部材によって第1曲げ部への曲げ応力を低減できる。
 また、本開示の1つの態様に係る室内熱交換器では、
 上記接続配管は、アルミニウム製またはアルミニウム合金の配管である。
 本開示によれば、銅製の接続配管に比べて引張強度が小さいアルミニウム製またはアルミニウム合金製の接続配管において特に作業性向上の効果が高い。
 また、本開示の1つの態様に係る室内熱交換器では、
 上記第1曲げ部は、伸びが40%以上である。
 本開示によれば、熱交換器本体が収容された室内機の据付時に接続配管をより容易に曲げることができ、据付時の作業性をさらに向上できる。
 また、本開示の1つの態様に係る室内熱交換器では、
 上記接続配管は、外径が9.52mm以下である。
 本開示によれば、接続配管の外径が9.52mm(≒3/8インチ)以下と細いので、接続配管の曲げ作業がより容易になる。
 また、本開示の1つの態様に係る室内機は、
 上記のいずれかの室内熱交換器を備える。
 本開示によれば、室内熱交換器が収容された室内機の据付時に接続配管を容易に曲げることができ、据付時の作業性が向上する。
 また、本開示の1つの態様に係る空気調和機は、
 上記の室内機を備える。
 本開示によれば、室内機の据付時に接続配管を容易に曲げることができ、据付時の作業性が向上する。
 また、本開示の1つの態様に係る室内熱交換器の製造方法は、
 熱交換器本体と、上記熱交換器本体に接続部を介して接続された接続配管とを備える室内熱交換器の製造方法であって、
 上記接続配管を曲げることによって上記接続配管に第1曲げ部を形成する曲げ工程と、
 上記曲げ工程の後に、上記第1曲げ部に対して焼鈍処理を行い、上記焼鈍処理前よりも上記第1曲げ部の延びを大きくする焼鈍工程と
を有する。
 本開示によれば、曲げ工程後の焼鈍工程において、熱交換器本体に接続部を介して接続された接続配管の第1曲げ部の伸びを、焼鈍処理前よりも大きくすることによって、熱交換器本体が収容された室内機の据付時に接続配管を容易に曲げることができ、据付時の作業性が向上する。
 また、本開示の1つの態様に係る室内熱交換器の製造方法では、
 上記焼鈍工程において、上記焼鈍処理を炉中ロウ付けにより行う。
 本開示によれば、焼鈍処理を炉中ロウ付けにより行うことによって、各部を互いに接合するロウ付けと焼鈍処理とを同時に行うことができ、ロウ付け接合と焼鈍処理とを効率よく行うことができる。
本開示の第1実施形態の空気調和機の冷媒回路図である。 上記第1実施形態の空気調和機の室内機の斜視図である。 上記第1実施形態の空気調和機の室内機の正面図である。 上記第1実施形態の室内熱交換器およびその周辺部の正面図である。 上記第1実施形態の室内熱交換器の要部の正面図である。 上記第1実施形態の室内熱交換器の要部の上面図である。 上記第1実施形態の室内熱交換器の要部の左側面図である。 上記第1実施形態の室内熱交換器の製造方法を説明するフローチャートである。 本開示の第2実施形態の室内熱交換器およびその周辺部の正面図である。
 以下、本開示の室内熱交換器を備えた室内機および空気調和機を図示の実施の形態により詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。また、説明中の上下左右は、室内機を室内に設置した状態での上下左右に対応する。
 〔第1実施形態〕
 図1は、本開示の第1実施形態の空気調和機が備える冷媒回路RCを示す。この第1実施形態の空気調和機は、室内機1と、この室内機1に冷媒回路RCを介して接続された室外機2とを備えている。上記空気調和機は、室内機1と室外機2とが一対一のペア型の空気調和機である。
 冷媒回路RCは、圧縮機11と、四路切換弁12と、室外熱交換器13と、電動膨張弁14と、室内熱交換器15と、アキュムレータ16とを有する。この圧縮機11の駆動に伴い、冷媒(例えば、R410A、R32などのHFC冷媒)が冷媒回路RCを循環する。
 より詳しく説明すると、圧縮機11の吐出側の部分には四路切換弁12の一端が接続されている。四路切換弁12の他端には室外熱交換器13の一端が接続されている。室外熱交換器13の他端には電動膨張弁14の一端が接続されている。電動膨張弁14の他端には、閉鎖弁V1および連絡配管L1を介して室内熱交換器15の一端が接続されている。室内熱交換器15の他端には、連絡配管L2,閉鎖弁V2および四路切換弁12を介してアキュムレータ16の一端が接続されている。アキュムレータ16の他端には圧縮機11の吸入側の部分が接続されている。
 また、室内熱交換器15および室内ファン18は、室内機1に搭載されている。この室内ファン18は、例えばクロスフローファンであり、室内熱交換器15を介して室内空気を吸い込む。
 また、圧縮機11、四路切換弁12、室外熱交換器13、電動膨張弁14、アキュムレータ16および室外ファン17は、室外機2に搭載されている。
 上記空気調和機は、冷房運転時および除湿運転時、四路切換弁12を実線の切換え位置に切り換えて、圧縮機11を起動する一方、暖房運転時、四路切換弁12を点線の切換え位置に切り換えて、圧縮機11を起動する。なお、図1中の実線矢印の方向は、冷房運転時および除湿運転時に冷媒が流れる方向を示す。また、図1中の点線矢印の方向は、暖房運転時に冷媒が流れる方向を示す。
 図2は、室内機1を斜め上方から見た図である。また、図3は、室内機1を前側から見た図である。
 室内機1は、図2,図3に示すように、ケーシング21を備え、室内熱交換器15(図1に示す)、室内ファン18(図1に示す)などがケーシング21内に収容されている。
 ケーシング21の上部には、室内空気を吸い込む吸込口22が設けられている。室内ファン18の駆動時、室内空気が吸込口22からケーシング21内に入って室内ファン18(クロスフローファン)に向かう。このとき、室内空気と共に埃などがケーシング21内に入らないようにするため、フィルタ(図示せず)が吸込口22に取り付けられている。
 ケーシング21の下部には、室内ファン18からの空気(室内熱交換器15と熱交換した室内空気)を吹き出す吹出口23が設けられている。この吹出口23の周縁部には、水平フラップ24が回動可能に取り付けられている。
 水平フラップ24は、冷房運転などが開始すると、吹出口23を塞ぐような停止姿勢から、吹出口23を開くような運転姿勢に移行して、吹出口23から吹き出される空気の上下方向の風向を調整する。
 図4は、室内熱交換器15を前側から見た図である。
 室内熱交換器15は、熱交換部201と、この熱交換部201を左右方向に貫通する複数の伝熱管202とを有する熱交換器本体20を備えている。この熱交換部201および各伝熱管202は、それぞれ、アルミニウムまたはアルミニウム合金で形成されている。
 また、室内熱交換器15は、熱交換器本体20の伝熱管202に流体的に接続された液冷媒用接続配管31とガス冷媒用接続配管32とを備えている。液冷媒用接続配管31は、接続配管の一例であり、連絡配管L1(図1に示す)の一部を構成する。ガス冷媒用接続配管32は、接続配管の一例であり、連絡配管L2(図1に示す)の一部を構成する。液冷媒用接続配管31は、冷房運転時および除湿運転時、電動膨張弁14からの液冷媒を熱交換器本体20へ案内する。一方、ガス冷媒用接続配管32は、冷房運転時および除湿運転時、熱交換器本体20からのガス冷媒を圧縮機11へ案内する。
 <液冷媒用接続配管31の構成>
 液冷媒用接続配管31は、一端が分流器33に流体的に接続されると共に、アルミニウムまたはアルミニウム合金で形成された第1液冷媒配管311と、銅または銅合金で形成された第2液冷媒配管312とを備えている。
 また、第2液冷媒配管312の一端は、ステンレス製の第3液冷媒配管313を介して、第1液冷媒配管311の他端に流体的に接続されている。一方、第2液冷媒配管312の他端には、液冷媒用フレアユニオン41がロウ付けで固定されている。
 第3液冷媒配管313は、一端部の外径よりも他端部の外径が大きくなっている。また、第3液冷媒配管313の一端部は、第1液冷媒配管311に繋がっている。一方、第3液冷媒配管313の他端部は、第2液冷媒配管312に繋がっている。
 <ガス冷媒用接続配管32の構成>
 ガス冷媒用接続配管32は、液冷媒用接続配管31と同様に構成されて、アルミニウムまたはアルミニウム合金製の第1ガス冷媒配管321と、銅または銅合金製の第2ガス冷媒配管322とを備えている。
 第1ガス冷媒配管321の一端は、分流器(図示せず)に流体的に接続されている。
 また、第2ガス冷媒配管322の一端は、ステンレス製の第3ガス冷媒配管323を介して、第1ガス冷媒配管321の他端に流体的に接続されている。一方、第2ガス冷媒配管322の他端には、ガス冷媒用フレアユニオン42がロウ付けで固定されている。
 図5は、室内熱交換器15の要部を前側から見た図である。また、図6は、室内熱交換器15の要部を上側から見た図である。また、図7は、室内熱交換器15の要部を左側から見た図である。
 <第1液冷媒配管311の第2液冷媒配管312側の構成>
 図5~図7に示すように、液冷媒用接続配管31の第1液冷媒配管311は、鉛直方向または鉛直方向に対して傾斜する方向に沿って延びる第1部分311aを有する。また、第1液冷媒配管311は、第1部分311aよりも第2液冷媒配管312側に、第2部分311bを有する。この第2部分311bは、第1部分311aの下端部(第2液冷媒配管312側の端部)に連なると共に、その下端部から第2液冷媒配管312側に向かうように屈曲している。第2部分311bは、第1曲げ部の一例である。
 また、第1液冷媒配管311は、第2部分311bよりも第2液冷媒配管312側に、第3部分311cを有する。この第3部分311cは、第2部分311bの第2液冷媒配管312側の端部に連なると共に、水平方向または水平方向に対して傾斜する方向に沿って延びている。
 また、第1液冷媒配管311の外周面において、第3部分311cの第2液冷媒配管312側の端部から第2部分311bの第1部分311a側の端部までは、防水チューブ51で全周にわたって覆われている。また、防水チューブ51は、第3液冷媒配管313の第1液冷媒配管311側の端部の外周面も覆われている。この防水チューブ51は、防水性を有する材料(例えば、塩化ビニール、シリコンゴム、フッ素系ポリマーなど)からなるチューブを、加熱して収縮させて形成されている。
 <第1液冷媒配管311の熱交換器本体20側の構成>
 第1液冷媒配管311は、第1部分311aよりも熱交換器本体20側に、第4部分311dを有する。この第4部分311dは、第1部分311aの上端部(熱交換器本体20側の端部)に連なると共に、その端部からUターンして下方に向かうように屈曲している。第4部分311dは、第2曲げ部の一例である。
 また、第1液冷媒配管311は、第4部分311dよりも熱交換器本体20側に、第5部分311eを有する。この第5部分311eは、第4部分311dの下端部(熱交換器本体20側の端部)に連なると共に、その下端部から分流器33側に向かうように屈曲している。分流器33は接続部の一例である。
 また、第1液冷媒配管311は、第5部分311eよりも熱交換器本体20側に、第6部分311fを有する。この第6部分311fは、第5部分311eの熱交換器本体20側の端部から分流器33まで延びている。
 分流器33は、アルミニウムまたはアルミニウム合金で形成されている。この分流器33の熱交換器本体20側の端部には、アルミニウムまたはアルミニウム合金で形成された枝配管34がロウ付けで固定されている。
 なお、この第1実施形態では、ガス冷媒用接続配管32においても、液冷媒用接続配管31と同様の構成をしている。
 上記構成の室内熱交換器15によれば、熱交換器本体20に分流器33(接続部)を介して接続された液冷媒用接続配管31の第2部分311b(第1曲げ部)の伸びを30%以上とすると共に、ガス冷媒用接続配管32の第1曲げ部の伸びを30%以上としている。これによって、熱交換器本体20が収容された室内機の据付時に液冷媒用接続配管31とガス冷媒用接続配管32とを容易に曲げることができ、据付時の作業性が向上する。
 また、液冷媒用接続配管31が分流器33と第2部分311bとの間に第4部分311d(第2曲げ部)を有することによって、第2部分311bに曲げ応力が作用するとき、当該曲げ応力の一部を第4部分311dで受けて第2部分311bへの応力集中を抑制でき、第2部分311bの破損リスクを低減できる(ガス冷媒用接続配管32も同様)。
 また、液冷媒用接続配管31の第4部分311dの伸びを20%以下とすることにより、第2部分311b(第1曲げ部)に曲げ応力が作用するとき、熱交換器本体20に対する応力負荷を低減できる(ガス冷媒用接続配管32も同様)。
 また、銅製の接続配管に比べて引張強度が小さいアルミニウム製またはアルミニウム合金製の液冷媒用接続配管31およびガス冷媒用接続配管32が採用された室内熱交換器15において、特に作業性向上の効果が高い。
 さらに、液冷媒用接続配管31の第2部分311bの伸びを40%以上としてもよい(ガス冷媒用接続配管32も同様)。これによって、熱交換器本体20が収容された室内機の据付時に液冷媒用接続配管31およびガス冷媒用接続配管32をより容易に曲げることができ、据付時の作業性をさらに向上できる。
 また、液冷媒用接続配管31およびガス冷媒用接続配管32の外径が9.52mm(≒3/8インチ)以下と細くしているので、液冷媒用接続配管31およびガス冷媒用接続配管32の曲げ作業がより容易になる。
 また、上記室内熱交換器15を備えた室内機1およびその室内機1を備えた空気調和機は、室内機1の据付時に液冷媒用接続配管31とガス冷媒用接続配管32とを容易に曲げることができ、据付時の作業性が向上する。
 <室内熱交換器15の製造方法>
 図8は、室内熱交換器15の製造方法を説明するフローチャートである。
 図8に示すように、曲げ工程S1と、組み立て工程S2と、焼鈍工程S3とを有する。
 詳しくは、第1液冷媒配管311を、第2部分311b(第1曲げ部)と第4部分311d(第2曲げ部)を有する所定の形状にする曲げ加工を行う(曲げ工程S1)。
 次に、曲げ加工を行った第1液冷媒配管311と、第2液冷媒配管312と、第3液冷媒配管313と、液冷媒用フレアユニオン41とを組み立てて、液冷媒用接続配管31を製作し、さらに、その液冷媒用接続配管31と、分流器33(接続部)と、枝配管34とを組み立てて、接続配管アッセンブリを製作する(組み立て工程S2)。
 そして、炉中ロウ付けにより、上記接続配管アッセンブリの各部をロウ付けにより互いに接合すると共に、焼鈍処理を行う(焼鈍工程S3)。
 このようにして、焼鈍処理を行った接続配管アッセンブリの枝配管34の端部(分流器33側と反対の側)を熱交換器本体20にロウ付けにより接合する。
 さらに、ガス冷媒用接続配管32についても、曲げ工程S1と組み立て工程S2と焼鈍工程S3とが同様に行われて、室内熱交換器15が完成する。
 上記室内熱交換器15の製造方法によれば、曲げ工程S1において、液冷媒用接続配管31の第2部分311b(第1曲げ部)およびガス冷媒用接続配管32の第1曲げ部の伸びが加工硬化によって半減する(ガス冷媒用接続配管32も同様)。この曲げ工程S1後の焼鈍工程S3の焼鈍処理により、熱交換器本体20に分流器33を介して接続された液冷媒用接続配管31の第2部分311bおよびガス冷媒用接続配管32の第1曲げ部の伸びを、焼鈍処理前よりも大きくすることによって、熱交換器本体20が収容された室内機1の据付時に液冷媒用接続配管31およびガス冷媒用接続配管32を容易に曲げることができ、据付時の作業性が向上する。
 また、上記焼鈍工程S3において、焼鈍処理を炉中ロウ付けにより行うことによって、各部を互いに接合するロウ付けと焼鈍処理とを同時に行うことができ、ロウ付け接合と焼鈍処理とを効率よく行うことができる。
 上記第1実施形態の空気調和機では、1つの室外機2に対して、室内機1を1つ接続していたが、室内機1を複数接続するようにしてもよい。別の言い方をすれば、上記空気調和機は、ペア型であったが、マルチ型にしてもよい。
 上記第1実施形態では、第1液冷媒配管311,第1ガス冷媒配管321は、アルミニウムまたはアルミニウム合金で形成されていたが、アルミニウムおよびアルミニウム合金以外の金属で形成されるようにしてもよい。
 上記第1実施形態では、第2液冷媒配管312,第2ガス冷媒配管322は、銅または銅合金で形成されていたが、銅または銅合金以外の金属で形成されるようにしてもよい。
 上記第1実施形態では、液冷媒用接続配管31において、熱交換器本体20の伝熱管202と第1液冷媒配管311の一端との間に、分流器33および枝配管34を介在させていたが、分流器33および枝配管34を介在させずに、熱交換器本体20の伝熱管202に第1液冷媒配管311の一端を直接接続してもよい(ガス冷媒用接続配管32も同様)。
 上記第1実施形態では、1つの冷媒流を2つの冷媒流に分ける分流器33を用いていたが、1つの冷媒流を3つ以上の冷媒流に分ける分流器を用いるようにしてもよい。
 〔第2実施形態〕
 図9は、本開示の第2実施形態の室内熱交換器1015の液冷媒用接続配管31およびその周辺部を前側から見た図である。この第2実施形態の室内熱交換器1015は、防水チューブ51を覆う筒部材61を備えている点を除いて、第1実施形態の室内熱交換器15と同様に構成されている。
 図9に示す筒部材61は、断熱材(例えば発泡ポリエステル)で形成されている。この筒部材61は、第1液冷媒配管311の第1部分311aの上端から液冷媒用ユニオンの先端まで覆っている。
 また、図示しないが、筒部材61内には、液冷媒用接続配管31と同様にガス冷媒用接続配管32の大部分も挿入される。このため、筒部材61は、液冷媒用接続配管31の外径とガス冷媒用接続配管32の外径との和よりも大きくなるように内径が設定されている。
 上記構成の室内熱交換器1015では、筒部材61が防水チューブ51を覆うので、結露水などの液体が被覆部材または防水チューブ51へ付着するのを抑制する。
 また、液冷媒用接続配管31の第2部分311bを筒部材61で覆うことによって、第2部分311bへの曲げ応力を低減できる(ガス冷媒用接続配管32も同様)。
 本開示の具体的な実施の形態について説明したが、本開示は上記第1,第2実施形態に限定されるものではなく、本開示の範囲内で種々変更して実施することができる。
 1…室内機
 15,1015…室内熱交換器
 20…熱交換器本体
 31…液冷媒用接続配管(接続配管)
 32…ガス冷媒用接続配管(接続配管)
 33…分流器(接続部)
 34…枝配管
 41…液冷媒用フレアユニオン
 42…ガス冷媒用フレアユニオン
 51…防水チューブ
 61…筒部材
 201…熱交換部
 202…伝熱管
 311…第1液冷媒配管
 311a…第1部分
 311b…第2部分(第1曲げ部)
 311c…第3部分
 311d…第4部分(第2曲げ部)
 311e…第5部分
 311f…第6部分
 312…第2液冷媒配管
 313…第3液冷媒配管
 321…第1ガス冷媒配管
 322…第2ガス冷媒配管

Claims (11)

  1.  熱交換器本体(20)と、
     上記熱交換器本体(20)に接続部(33)を介して接続された接続配管(31,32)と
    を備え、
     上記接続配管(31,32)は、伸び30%以上の第1曲げ部(311b)を有する、室内熱交換器(15)。
  2.  請求項1に記載の室内熱交換器(15)において、
     上記接続配管(31,32)は、上記接続部(33)と上記第1曲げ部(311b)との間に第2曲げ部(311d)を有する、室内熱交換器(15)。
  3.  請求項2に記載の室内熱交換器(15)において、
     上記第2曲げ部(311d)は、伸びが20%以下である、室内熱交換器(15)。
  4.  請求項1から3までのいずれか一項に記載の室内熱交換器(15)において、
     上記第1曲げ部(311b)を覆う筒部材(61)を備える、室内熱交換器(15)。
  5.  請求項1から4までのいずれか一項に記載の室内熱交換器(15)において、
     上記接続配管(31,32)は、アルミニウム製またはアルミニウム合金製の配管である、室内熱交換器(15)。
  6.  請求項1から5までのいずれか一項に記載の室内熱交換器(15)において、
     上記第1曲げ部(311b)は、伸びが40%以上である、室内熱交換器(15)。
  7.  請求項1から6までのいずれか一項に記載の室内熱交換器(15)において、
     上記接続配管(31,32)は、外径が9.52mm以下である、室内熱交換器(15)。
  8.  請求項1から7までのいずれか一項に記載の室内熱交換器(15)を備える、室内機(1)。
  9.  請求項8に記載の室内機(1)を備える、空気調和機。
  10.  熱交換器本体(20)と、上記熱交換器本体(20)に接続部(33)を介して接続された接続配管(31,32)とを備える室内熱交換器(15)の製造方法であって、
     上記接続配管(31,32)を曲げることによって上記接続配管(31,32)に第1曲げ部(311b)を形成する曲げ工程(S1)と、
     上記曲げ工程(S1)の後に、上記第1曲げ部(311b)に対して焼鈍処理を行い、上記焼鈍処理前よりも上記第1曲げ部(311b)の延びを大きくする焼鈍工程(S3)と
    を有する、室内熱交換器の製造方法。
  11.  請求項10に記載の室内熱交換器の製造方法において、
     上記焼鈍工程(S3)において、上記焼鈍処理を炉中ロウ付けにより行う、室内熱交換器の製造方法。
PCT/JP2022/018451 2021-09-30 2022-04-21 室内熱交換器、室内機、空気調和機および室内熱交換器の製造方法 WO2023053549A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280048429.0A CN117616235A (zh) 2021-09-30 2022-04-21 室内热交换器、室内机、空调机以及室内热交换器的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-161764 2021-09-30
JP2021161764A JP7323819B2 (ja) 2021-09-30 2021-09-30 室内熱交換器の製造方法

Publications (1)

Publication Number Publication Date
WO2023053549A1 true WO2023053549A1 (ja) 2023-04-06

Family

ID=85782219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018451 WO2023053549A1 (ja) 2021-09-30 2022-04-21 室内熱交換器、室内機、空気調和機および室内熱交換器の製造方法

Country Status (3)

Country Link
JP (2) JP7323819B2 (ja)
CN (1) CN117616235A (ja)
WO (1) WO2023053549A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570870A (ja) * 1991-09-13 1993-03-23 Kobe Steel Ltd 伝熱管用銅合金及び熱交換器用伝熱管の製造方法
JPH11197758A (ja) * 1998-01-16 1999-07-27 Sumitomo Metal Ind Ltd 異形金属素管とその製造方法および異形曲がり金属管の製造方法
JP2004003822A (ja) * 2002-04-02 2004-01-08 Kobe Steel Ltd 内面溝付伝熱管
JP2013155892A (ja) 2012-01-27 2013-08-15 Mitsubishi Electric Corp 熱交換器及びこれを備えた空気調和機
JP2015124983A (ja) * 2013-12-27 2015-07-06 ダイキン工業株式会社 空調室内機
JP2015140998A (ja) * 2014-01-30 2015-08-03 ダイキン工業株式会社 空気調和機の室内ユニット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570870A (ja) * 1991-09-13 1993-03-23 Kobe Steel Ltd 伝熱管用銅合金及び熱交換器用伝熱管の製造方法
JPH11197758A (ja) * 1998-01-16 1999-07-27 Sumitomo Metal Ind Ltd 異形金属素管とその製造方法および異形曲がり金属管の製造方法
JP2004003822A (ja) * 2002-04-02 2004-01-08 Kobe Steel Ltd 内面溝付伝熱管
JP2013155892A (ja) 2012-01-27 2013-08-15 Mitsubishi Electric Corp 熱交換器及びこれを備えた空気調和機
JP2015124983A (ja) * 2013-12-27 2015-07-06 ダイキン工業株式会社 空調室内機
JP2015140998A (ja) * 2014-01-30 2015-08-03 ダイキン工業株式会社 空気調和機の室内ユニット

Also Published As

Publication number Publication date
CN117616235A (zh) 2024-02-27
JP2023051217A (ja) 2023-04-11
JP2023078267A (ja) 2023-06-06
JP7323819B2 (ja) 2023-08-09

Similar Documents

Publication Publication Date Title
JP2013155892A (ja) 熱交換器及びこれを備えた空気調和機
AU2015212207A1 (en) Air conditioner indoor unit
WO2023053549A1 (ja) 室内熱交換器、室内機、空気調和機および室内熱交換器の製造方法
AU2018380495B2 (en) Air conditioner
WO2023053553A1 (ja) 室内機および空気調和機
WO2023053551A1 (ja) 室内機および空気調和機
KR100803774B1 (ko) 공기조화기의 설치배관
CN213901535U (zh) 热交换器单元
JP2023051213A (ja) 配管接続構造および空気調和機
US20180283703A1 (en) Indoor unit for air conditioner
JP7404213B2 (ja) 冷凍装置、当該冷凍装置の冷媒配管、及び冷媒配管の製造方法
US20240230112A1 (en) Air conditioner indoor unit and air conditioner
CN219913537U (zh) 热交换器和空调机
WO2023053579A1 (ja) 空気調和装置の室内ユニットおよび空気調和装置
JP7507994B1 (ja) 空気調和装置
WO2023053577A1 (ja) 空気調和機
JP7315864B2 (ja) 減圧弁、熱交換器、空気調和装置、及び熱交換器の製造方法
JP6950735B2 (ja) 冷凍装置及び当該冷凍装置の冷媒配管
WO2021019910A1 (ja) 冷凍装置
WO2023053550A1 (ja) 熱交換ユニットおよび空気調和機
WO2020138245A1 (ja) 冷媒配管、及び、空気調和装置
CN115899856A (zh) 空调室内机
KR20100005529A (ko) 공기조화기의 실외기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875432

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280048429.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022875432

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022875432

Country of ref document: EP

Effective date: 20240422

NENP Non-entry into the national phase

Ref country code: DE