WO2023053021A1 - 制御装置及び制御方法 - Google Patents

制御装置及び制御方法 Download PDF

Info

Publication number
WO2023053021A1
WO2023053021A1 PCT/IB2022/059221 IB2022059221W WO2023053021A1 WO 2023053021 A1 WO2023053021 A1 WO 2023053021A1 IB 2022059221 W IB2022059221 W IB 2022059221W WO 2023053021 A1 WO2023053021 A1 WO 2023053021A1
Authority
WO
WIPO (PCT)
Prior art keywords
lean vehicle
information
vehicle
execution unit
lean
Prior art date
Application number
PCT/IB2022/059221
Other languages
English (en)
French (fr)
Inventor
井苅佳秀
Original Assignee
ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング filed Critical ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング
Priority to JP2023550744A priority Critical patent/JPWO2023053021A1/ja
Publication of WO2023053021A1 publication Critical patent/WO2023053021A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1884Avoiding stall or overspeed of the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/36Cycles; Motorcycles; Scooters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/90Single sensor for two or more measurements
    • B60W2420/905Single sensor for two or more measurements the sensor being an xyz axis sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed

Definitions

  • This disclosure relates to a control device and control method capable of improving the safety of a lean vehicle.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2009-116882
  • the present invention was made against the background of the above problems, and provides a control device and a control method that can improve the safety of a lean vehicle.
  • a control device is a control device for controlling the behavior of a lean vehicle, wherein the lean vehicle is controlled based on positional relationship information between the lean vehicle and a preceding vehicle of the lean vehicle.
  • an execution unit configured to execute a first operation, which is an operation for causing the vehicle to perform cruise control, wherein the execution unit converts the speed information of the lean vehicle acquired during execution of the first operation from the lean vehicle to the lean vehicle.
  • a second action which is an action of causing the lean vehicle to perform cruise control without based on the positional relationship information, is executed.
  • a control method is a method for controlling the behavior of a lean vehicle, wherein an execution unit of a control device determines positional relationship information between the lean vehicle and a preceding vehicle of the lean vehicle.
  • the execution unit performs a first operation, which is an operation for causing the lean vehicle to perform cruise control based on the lean vehicle, and the execution unit determines that the lean vehicle speed information acquired during the execution of the first operation is based on the lean vehicle.
  • a second action which is an action of causing the lean vehicle to perform cruise control without based on the positional relationship information, is executed.
  • the execution unit of the control device performs the first operation of causing the lean vehicle to perform cruise control based on the positional relationship information between the lean vehicle and the preceding vehicle of the lean vehicle.
  • the execution unit performs the following instead of the first operation: A second action is performed that causes the lean vehicle to implement cruise control without relying on the positional information.
  • the cruise control can prevent the lean vehicle from slowing down excessively by the second action, thereby preventing the lean vehicle from overturning. Therefore, it is possible to improve the safety of the lean vehicle.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a lean vehicle according to an embodiment of the present invention
  • Fig. 2 is a block diagram showing an example of the functional configuration of the control device according to the embodiment of the present invention.
  • lean vehicle means a vehicle that leans to the right when turning to the right and leans to the left when turning to the left.
  • Lean vehicles include, for example, motorcycles (motorcycles and tricycles), bicycles, and the like.
  • motorcycles include vehicles powered by engines and vehicles powered by electric motors.
  • motorcycles include, for example, motorcycles, scooters, electric scooters, and the like.
  • Bicycle means a vehicle that can be propelled on the road by the rider's force applied to the pedals. Bicycles include electrically assisted bicycles, electric bicycles, and the like.
  • an engine specifically, engine 11 in FIG. 1 described later
  • a drive source other than the engine for example, an electric motor
  • a plurality of drive sources may be mounted.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a lean vehicle 1.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the control device 30. As shown in FIG.
  • the inertial measurement device 15 detects the lean angle of the lean vehicle 1 and outputs the detection result.
  • the inertial measurement device 15 may detect another physical quantity substantially convertible to the lean angle of the lean vehicle 1 .
  • the lean angle corresponds to an angle representing the inclination of the vehicle body (specifically, the body) of the lean vehicle 1 in the roll direction with respect to the vertically upward direction.
  • the inertial measurement device 15 may include only part of the 3-axis gyro sensor and 3-direction acceleration sensor.
  • the seating sensor 16 is provided on the rear seat of the lean vehicle 1 and detects the presence or absence of a passenger or load on the rear seat.
  • the presence or absence of a passenger on the rear seat corresponds to an example of passenger information of the lean vehicle 1 .
  • the occupant information may be information about the occupants of the lean vehicle 1, and may include information such as the number of occupants of the lean vehicle 1 or the weight of each occupant, for example.
  • the presence or absence of cargo on the rear seat corresponds to an example of cargo information of the lean vehicle 1 .
  • the load information may be information about the load of the lean vehicle 1, and may include information such as the number of loads of the lean vehicle 1 or the weight of each load, for example.
  • the seating sensor 16 corresponds to an example of a sensor that detects passenger information and load information of the lean vehicle 1 .
  • the occupant information or load information of the lean vehicle 1 may be detected by sensors other than the seating sensor 16 (for example, a camera, etc.).
  • the front wheel speed sensor 17 detects the wheel speed of the front wheel 2 (for example, the number of rotations of the front wheel 2 per unit time [rpm] or the distance traveled per unit time [km/h], etc.) It is a wheel speed sensor that detects and outputs the detection result.
  • the front wheel speed sensor 17 may detect another physical quantity substantially convertible to the wheel speed of the front wheels 2 .
  • a front wheel speed sensor 17 is provided on the front wheel 2 .
  • the rear wheel speed sensor 18 detects the wheel speed of the rear wheel 3 (for example, the number of rotations of the rear wheel 3 per unit time [rpm] or the distance traveled per unit time [km/h], etc. ) and outputs the detection result.
  • the rear wheel speed sensor 18 may detect another physical quantity substantially convertible to the wheel speed of the rear wheel 3.
  • a rear wheel speed sensor 18 is provided on the rear wheel 3 .
  • the gear position sensor 19 detects which gear stage the transmission 12 is in and outputs the detection result.
  • the gear position sensor 19 is provided in the transmission 12, for example.
  • the accelerator operation unit 21 is an operation unit used for accelerator operation by the rider.
  • the accelerator operation is an operation for adjusting the driving force of the lean vehicle 1 .
  • the accelerator operation unit 21 is an accelerator grip provided on the steering wheel of the lean vehicle 1, and the accelerator operation is an operation of turning the accelerator grip.
  • the brake operation unit 22 is an operation unit used for brake operation by the rider.
  • a brake operation is an operation for adjusting the braking force of the lean vehicle 1 .
  • the brake operation unit 22 is a brake lever provided on the steering wheel of the lean vehicle 1 or a brake pedal provided on the body, and the brake operation is an operation of grasping the brake lever or stepping on the brake pedal. be.
  • the clutch operation unit 23 is an operation unit used for clutch operation by the rider.
  • Clutch operation is an operation for engaging or disengaging a clutch interposed between the crankshaft of engine 11 and the input shaft of transmission 12 .
  • the clutch operation unit 23 is a clutch lever provided on the steering wheel of the lean vehicle 1, and the clutch operation is an operation of gripping the clutch lever [0032].
  • the shift operation unit 24 is an operation unit used for shift operation by the rider.
  • the shift operation is an operation for switching the gear stage of the transmission 12.
  • the shift operation unit 24 is a shift lever provided on the steering wheel of the lean vehicle 1, and the shift operation is an operation using the shift lever.
  • the control device 30 controls the behavior of the lean vehicle 1 .
  • part or all of the control device 30 is composed of a microcomputer, a microprocessor unit, or the like.
  • part or all of the control device 30 may be composed of an updateable device such as firmware, or may be a program module or the like executed by a command from a CPU or the like.
  • the control device 30 may be, for example, one, or may be divided into a plurality.
  • the control device 30 includes, for example, an acquisition unit 31 and an execution unit 32, as shown in FIG. Also, the control device 30 communicates with each device of the lean vehicle 1 .
  • the acquisition unit 31 acquires information from each device of the lean vehicle 1 and outputs the information to the execution unit 32 .
  • the acquisition unit 31 includes an ambient environment sensor 14, an inertial measurement device 15, a seating sensor 16, a front wheel speed sensor 17, a rear wheel speed sensor 18, a gear position sensor 19, and an accelerator operation unit.
  • Information is acquired from 21 , brake operation unit 22 , clutch operation unit 23 and shift operation unit 24 .
  • acquisition of information may include “extraction or generation of information”.
  • the execution unit 32 executes various controls by controlling the operation of each device of the lean vehicle 1 .
  • the execution unit 32 controls operations of the engine 11, the transmission 12, and the hydraulic control unit 13, for example.
  • a cruise control mode for causing the lean vehicle 1 to perform cruise control can be selected as the driving mode.
  • the execution unit 32 sets the running mode to the cruise control mode.
  • the execution unit 32 automatically controls the speed of the lean vehicle 1 regardless of the rider's acceleration/deceleration operation (that is, accelerator operation and brake operation).
  • the execution unit 32 adjusts the speed of the lean vehicle 1 to the target speed by monitoring the speed value of the lean vehicle 1 obtained based on the wheel speed of the front wheels 2 and the wheel speed of the rear wheels 3. can be controlled.
  • the execution unit 32 operates the lean vehicle 1 and the lean vehicle ! As a normal operation, the lean vehicle 1 is caused to perform cruise control based on the information on the positional relationship with the preceding vehicle. In normal operation, the execution unit 32 determines the target speed based on, for example, the above positional relationship information, and controls the speed of the lean vehicle 1 to the target speed.
  • the target speed determined based on the above positional relationship information is a speed that ensures that the inter-vehicle distance between the lean vehicle 1 and the preceding vehicle is equal to or greater than the reference distance.
  • the reference distance is a distance that ensures sufficient safety against collision with the preceding vehicle.
  • Such normal operation optimizes the inter-vehicle distance between the lean vehicle 1 and the preceding vehicle.
  • the positional relationship information may include, for example, information such as the relative position, relative distance, relative speed, relative acceleration, relative jerk, or passing time difference of the lean vehicle 1 with respect to the preceding vehicle.
  • the positional relationship information described above may be information of other physical quantities that can be substantially converted into such information.
  • the above positional relationship information can be obtained, for example, based on the detection results of the ambient environment sensors 14
  • the execution unit 32 of the control device 30 controls the lean vehicle 1 based on the positional relationship information between the lean vehicle 1 and the preceding vehicle of the lean vehicle 1 in the cruise control mode.
  • the operation to implement cruise control is executed as a normal operation.
  • the execution unit 32 performs speed control instead of the normal operation. Carry out a maintenance action. Thereby, as will be described later, the safety of the lean vehicle 1 can be improved.
  • the processing example of FIG. 3 will be described below.
  • the normal operation corresponds to an example of the first operation, which is an operation for causing the lean vehicle 1 to perform cruise control based on the positional relationship information between the lean vehicle 1 and the preceding vehicle.
  • the speed maintenance operation corresponds to an example of the second operation, which is an operation that causes the lean vehicle 1 to perform cruise control without being based on the positional relationship information between the lean vehicle 1 and the preceding vehicle.
  • the second action is not limited to the speed maintenance action.
  • the automatic stop operation described later corresponds to an example of a third operation, which is an operation for causing the lean vehicle 1 to automatically stop without being based on the positional relationship information between the lean vehicle 1 and the preceding vehicle.
  • FIG. 3 is a flow chart showing an example of the flow of processing performed by the control device 30.
  • the control flow shown in FIG. 3 is executed, for example, when the driving mode is set to the cruise control mode.
  • Step S10i in FIG. 3 corresponds to the start of the control flow shown in FIG.
  • Step S111 in FIG. 3 corresponds to the end of the control flow shown in FIG. Further, when the control flow shown in FIG. 3 is started, normal operation is being executed.
  • step S102 the execution unit 32 determines that the speed information of the lean vehicle 1 is a state in which the lean vehicle 1 decelerates to the reference speed. It is determined whether or not the information indicates
  • the above speed information may be the current speed of the lean vehicle 1 or the future speed of the lean vehicle 1 .
  • the above current speed can be obtained based on the wheel speed of the front wheels 2 and the wheel speed of the rear wheels 3, for example.
  • the future speed can be obtained based on the history of the wheel speed of the front wheels 2 and the wheel speed of the rear wheels 3, for example.
  • the above current speed and the above future speed may be obtained based on the running state information of the preceding vehicle.
  • the running state information of the preceding vehicle is information relating to the running state of the preceding vehicle, and may include, for example, information such as the speed, acceleration or jerk of the preceding vehicle.
  • the driving state information of the preceding vehicle can be obtained based on the detection result of the surrounding environment sensor 14, for example.
  • the execution unit 32 sets the speed information of the lean vehicle 1 to a state in which the lean vehicle 1 decelerates to the reference speed. It may be determined that it is information indicating Further, for example, when the future speed of the lean vehicle 1 is in the vicinity of the reference speed and the speed of the lean vehicle 1 is expected to decelerate to the reference speed in the future, the execution unit 32 obtains the speed information of the lean vehicle 1. may be determined to be information indicating a state in which the lean vehicle 1 decelerates to the reference speed.
  • the speed maintenance operation is executed. Thereby, the speed of the lean vehicle 1 is maintained at the reference speed after reaching the reference speed.
  • the reference speed can be set to the lower limit of the speed range in which the lean vehicle 1 can run in an independent state without falling over, or a value higher than the lower limit.
  • the reference speed can be set to the lower limit value of the speed range in which the engine stall does not occur in the lean vehicle 1, or to a value higher than the lower limit value.
  • step S!02 is repeated.
  • step S102 determines that the speed information of the lean vehicle 1 is information indicating the state in which the lean vehicle 1 decelerates to the reference speed.
  • step S1 Proceeding to 03, in step S!03, the execution unit 32 executes the speed maintenance operation.
  • the speed maintenance operation is an operation for causing the lean vehicle 1 to perform cruise control without based on the positional relationship information between the lean vehicle 1 and the preceding vehicle.
  • the execution unit 32 maintains the speed of the lean vehicle 1 in the speed maintenance operation.
  • the execution unit 32 maintains the speed of the lean vehicle 1 by speed maintenance operation after the speed of the lean vehicle 1 reaches the reference speed.
  • the execution unit 32 when the speed information of the lean vehicle 1 acquired during execution of the normal operation is information indicating a state in which the lean vehicle 1 decelerates to the reference speed, the execution unit 32 Then, the speed maintenance operation is executed instead of the normal operation.
  • the execution unit 32 specifically, determines that the speed information of the lean vehicle 1 acquired during execution of the normal operation in a state where the normal operation is enabled by the rider is set so that the lean vehicle 1 reaches the reference speed. If the information indicates a state of deceleration, the speed maintenance operation is executed instead of the normal operation.
  • the reference speed may be a preset value, or may be a value that varies based on various parameters. That is, the execution unit 32 may change the reference velocity based on various parameters.
  • the execution unit 32 may change the reference speed based on the gear stage information of the transmission 12 .
  • the gear stage information is information about the gear stage of the transmission 12, and includes, for example, information indicating which gear stage the transmission 12 is in.
  • Gear stage information can be obtained from the gear position sensor 19, for example.
  • the lower limit value of the speed range in which engine stall does not occur differs depending on the gear stages of the transmission 12. Therefore, by changing the reference speed based on the gear stage information of the transmission 12, the lower limit of the speed range in which the engine stall does not occur in the lean vehicle 1, or a value higher than the lower limit is appropriately set. can do. As a result, occurrence of engine stall can be suppressed in the speed maintenance operation.
  • the execution unit 32 may change the reference speed based on the running attitude information of the lean vehicle 1 .
  • the running posture information is information related to the running posture of the lean vehicle 1, and is, for example, lean angle information that is information related to the lean angle of the lean vehicle 1, yaw rate information that is information related to the yaw rate of the lean vehicle 1, or information of the lean vehicle 1. It includes lateral acceleration information, which is information related to lateral acceleration.
  • the running attitude information can be obtained from the inertial measurement device 15, for example.
  • the degree of stability of the attitude of the lean vehicle 1 varies depending on the running attitude of the lean vehicle 1 . Therefore, by changing the reference speed based on the running attitude information of the lean vehicle 1, the lower limit of the speed range in which the lean vehicle 1 can run independently without falling over, or a value higher than the lower limit. can be set appropriately.
  • the lean vehicle 1 It is possible to suppress the instability of the posture of the In particular, since the tendency of the lean vehicle 1 to fall in the roll direction varies depending on the lean angle and the lean angular velocity of the lean vehicle 1, by changing the reference velocity based on the lean angle information of the lean vehicle 1, It is possible to appropriately prevent the lean vehicle 1 from collapsing in the roll direction.
  • the execution unit 32 may change the reference speed based on the road surface information.
  • the road surface information is information about the road surface on which the lean vehicle 1 travels.
  • Road surface information can be obtained from the surrounding environment sensor 14, for example.
  • the road surface information can be obtained by performing image processing on the image captured by the camera.
  • the degree of stability of the attitude of the lean vehicle 1 varies according to the road surface information. Therefore, by changing the reference speed based on the road surface information, the lower limit value of the speed range in which the lean vehicle 1 can run in a self-supporting state without falling over, or a value higher than the lower limit value should be appropriately set. can be done. As a result, it is possible to prevent the attitude of the lean vehicle 1 from becoming unstable during the speed maintenance operation.
  • the degree of stability of the attitude of the lean vehicle 1 differs depending on whether the road surface on which the lean vehicle 1 travels is an uphill road or a downhill road, the reference speed is changed based on the road gradient information. As a result, it is possible to appropriately suppress the lean vehicle 1 from becoming unstable.
  • the execution unit 32 may change the reference speed based on at least one of the passenger information of the lean vehicle 1 and the load information. Passenger information and cargo information can be obtained from the seat sensor 16, for example.
  • the degree of stability of the attitude of the lean vehicle 1 varies depending on the passenger information and the load information of the lean vehicle 1 . Therefore, by changing the reference speed based on at least one of the occupant information and the load information of the lean vehicle 1, the lower limit of the speed range in which the lean vehicle 1 can run independently without collapsing, or , can be suitably set to a value higher than the lower limit. As a result, it is possible to prevent the attitude of the lean vehicle 1 from becoming unstable during the speed maintenance operation.
  • the parameters used for changing the reference speed are not limited to the above examples. That is, the execution unit 32 may change the reference velocity based on parameters other than the parameters exemplified above. Also, the execution unit 32 may change the reference speed based on multiple types of parameters. Note that the execution unit 32 may extract a plurality of candidates for the reference speed based on a plurality of types of parameters, and determine one of the plurality of candidates as the reference speed. In this case, the execution unit 32 preferably preferentially determines the candidate with the highest speed as the reference speed.
  • step S104 the execution unit 32 determines whether or not a condition for switching between the normal operation and the speed maintenance operation is satisfied. If it is determined that the switching condition is satisfied (step S104/YES), the process proceeds to step S105. Execute the action and return to step S! ⁇ 2.
  • the switching condition may be that the running state information of the preceding vehicle is information indicating that the preceding vehicle is accelerating.
  • the execution unit 32 performs the normal operation instead of the speed maintaining operation when the traveling state information of the preceding vehicle acquired during the execution of the speed maintaining operation is information indicating that the preceding vehicle is accelerating. may be executed.
  • the acceleration state is not limited to a state in which acceleration continues over a predetermined period of time, but also a state in which deceleration is performed during a part of the predetermined period of time. However, it may include a state in which the time average of the acceleration in a predetermined time is a positive value, or a state in which the acceleration increases over time as a result of comparing the accelerations at two points in time.
  • the switching condition may be that the rider's operation state information for the accelerator operation unit 21 is information indicating a state in which the accelerator operation unit 21 is being operated.
  • the execution unit 32 determines that the rider's operation state information for the accelerator operation unit 21 acquired during execution of the speed maintenance operation is information indicating the state in which the accelerator operation unit 21 is being operated.
  • Normal operation may be executed in place of the speed maintenance operation.
  • the rider's operation state information on the accelerator operation unit 21 is information on the rider's operation state on the accelerator operation unit 21, and can be obtained from the accelerator operation unit 21, for example.
  • the accelerator operation unit 21 is an accelerator grip
  • the accelerator grip when the accelerator operation unit 21 is operated, the accelerator grip is moved forward from the unloaded state (that is, The direction in which the driving force generated in the lean vehicle 1 increases) is performed, and the accelerator grip is rotated from the no-load state to the back direction, which is the opposite direction to the front direction. It can include the state in which the operation is being performed.
  • switching from the speed maintenance operation to the normal operation may be performed immediately when the above switching conditions are satisfied, or may be performed after a certain amount of time from the time when the above switching conditions are satisfied. It may be done after For example, when switching from the speed maintenance operation to the normal operation is performed based on the rider's operation state information on the accelerator operation unit 21, the execution unit 32 increases the speed of the lean vehicle 1 according to the accelerator operation, After the speed of the lean vehicle 1 reaches a speed higher than the reference speed to some extent, the speed maintaining operation may be switched to the normal operation.
  • the execution unit 32 may use the information set by the rider in the normal action executed before the speed maintaining action.
  • the setting information can include various information used in the cruise control mode.
  • the setting information may include the upper limit of the speed of the lean vehicle 1 in the cruise control mode, various parameters for determining the target speed of the lean vehicle 1, and the like.
  • step S104 if it is determined that the switching condition is not satisfied (step S104/NO), proceed to step S106, and in step S!06, The execution unit 32 determines whether or not the rider has performed a specific operation.
  • step S106 If it is determined in step S106 that the rider has not performed a specific operation (step S106/NO), return to step S103. On the other hand, in step S! ⁇ 6, if it is determined that the rider is performing a specific operation (step S106/YES), proceed to step S107, and in step S! ⁇ 7 , the execution unit 32 starts the automatic stop operation.
  • the automatic stop operation is an operation to automatically stop the lean vehicle 1 without based on the positional relationship information between the lean vehicle 1 and the preceding vehicle.
  • the execution unit 32 decelerates and stops the lean vehicle 1 in the automatic stop operation.
  • the execution unit 32 controls the deceleration that occurs in the lean vehicle 1 during the automatic stop operation without being based on the positional relationship information.
  • the execution unit 32 performs an automatic stop operation when the rider of the lean vehicle 1 performs a specific operation while the normal operation is enabled by the rider. Execute.
  • the specific operations described above may include various operations.
  • the above-mentioned specific operation may include operation using the brake operation unit 22 used for braking operation by the rider.
  • Specific operations using the brake operation unit 22 include, for example, operation of the brake operation unit 22 with an operation amount that substantially does not generate braking force in the lean vehicle 1 .
  • the above specific operation may include an operation using the accelerator operation unit 21 used for accelerator operation by the rider.
  • the accelerator grip is moved from the unloaded state to the front direction (that is, the direction in which the driving force generated in the lean vehicle 1 increases) and the back direction, which is the opposite direction.
  • An operation of rotating the device and the like can be mentioned.
  • the specific operation may include an operation using the clutch operation unit 23 used for clutch operation by the rider.
  • Specific operations using the clutch operation unit 23 include, for example, an operation for releasing a clutch interposed between the crankshaft of the engine 11 and the input shaft of the transmission 12. .
  • the above-mentioned specific operation may include an operation using the shift operation unit 24 used for shift operation by the rider.
  • Specific operations using the shift operating unit 24 include, for example, a downshift operation to lower the gear stage of the transmission 12 by one stage.
  • the above specific operations are not limited to the above examples.
  • the specific operation described above may be an operation that uses the operation unit described above but is different from the example described above.
  • the above specific operation may be an operation using an operation unit different from the above operation unit.
  • the above specific operation may be an operation using a dedicated operation unit for executing the automatic stop operation.
  • the above specific operation may be an operation using a plurality of operation units.
  • the execution unit 32 controls, for example, deceleration occurring in the lean vehicle 1 to a preset deceleration in the automatic stop operation.
  • the rider can easily predict the behavior of the lean vehicle 1 in the automatic stopping operation, so the behavior of the lean vehicle 1 is likely to match the rider's intention.
  • the execution unit 32 may change the deceleration generated in the lean vehicle 1 in the automatic stop operation based on various parameters.
  • the execution unit 32 may change the deceleration generated in the lean vehicle 1 in the automatic stop operation based on the running state information of the preceding vehicle.
  • the inter-vehicle distance between the lean vehicle 1 and the preceding vehicle tends to become shorter depending on the running state of the preceding vehicle. Therefore, during the automatic stop operation, by changing the deceleration generated in the lean vehicle 1 based on the driving state information of the preceding vehicle, the inter-vehicle distance between the lean vehicle 1 and the preceding vehicle is prevented from becoming excessively short. can. For example, when the speed of the preceding vehicle is excessively low, by increasing the deceleration occurring in the lean vehicle 1, it is possible to prevent the inter-vehicle distance between the lean vehicle 1 and the preceding vehicle from becoming excessively short.
  • the execution unit 32 may change the deceleration occurring in the lean vehicle 1 in the automatic stop operation based on the running posture information of the lean vehicle 1.
  • the degree of stability of the attitude of the lean vehicle 1 varies depending on the running attitude of the lean vehicle 1 . Therefore, by changing the deceleration generated in the lean vehicle 1 in the automatic stop operation based on the running attitude information of the lean vehicle 1, it is possible to suppress the attitude of the lean vehicle 1 from becoming unstable.
  • the execution unit 32 may change the deceleration occurring in the lean vehicle 1 in the automatic stop operation based on the road surface information.
  • the degree of stability of the attitude of the lean vehicle 1 varies according to the road surface information. Therefore, by changing the deceleration generated in the lean vehicle 1 in the automatic stop operation based on the road surface information, it is possible to suppress the attitude of the lean vehicle 1 from becoming unstable. In particular, by changing the deceleration generated in the lean vehicle 1 in the automatic stop operation based on the road surface gradient information, it is possible to appropriately suppress the lean vehicle 1 from becoming unstable.
  • the execution unit 32 may change the stop position of the lean vehicle 1 based on the road surface information.
  • the execution unit 32 can adjust the stop position of the lean vehicle 1 in the longitudinal direction by appropriately controlling the engine 11 and the hydraulic pressure control unit 13, for example.
  • the execution unit 32 evaluates the degree of danger when the rider's foot touches the road surface at a plurality of positions on the road surface in the front-rear direction based on the road surface information.
  • the execution unit 32 adjusts the stop position of the lean vehicle 1 so that the risk level at the stop position of the lean vehicle 1 is lower than the reference.
  • the stopping posture can be stabilized, so that the lean vehicle 1 and the rider can be prevented from overturning.
  • the execution unit 32 may change the deceleration caused in the lean vehicle 1 based on the speed of the lean vehicle 1 in the automatic stop operation.
  • the degree of stability of the attitude of the lean vehicle 1 varies depending on the speed of the lean vehicle 1 . Therefore, by changing the deceleration generated in the lean vehicle 1 based on the speed of the lean vehicle 1 in the automatic stop operation, it is possible to suppress the unstable posture of the lean vehicle 1 . For example, when the speed of the lean vehicle 1 is excessively low (for example, near ⁇ km/h), the attitude of the lean vehicle 1 becomes unstable by reducing the deceleration generated in the lean vehicle 1. can be appropriately suppressed.
  • the execution unit 32 changes the deceleration generated in the lean vehicle 1 in the automatic stop operation based on at least one of the passenger information and the load information of the lean vehicle 1.
  • the parameters used for changing the deceleration occurring in the lean vehicle 1 in the automatic stop operation are not limited to the above examples. That is, the execution unit 32 may change the deceleration occurring in the lean vehicle 1 in the automatic stop operation based on parameters other than the parameters exemplified above. Further, the execution unit 32 may change the deceleration generated in the lean vehicle 1 in the automatic stop operation based on multiple types of parameters.
  • step S 1 0 7 the execution unit 3 2 determines whether the rider's operation state information with respect to the accelerator operation unit 2 1 is operated. It is determined whether or not the information indicates a state where the If it is determined that the rider's operation state information for accelerator operation unit 21 is information indicating the state in which accelerator operation unit 21 is being operated (step S108/YES), step S105 Proceeding to step S105, the execution unit 32 executes the normal operation instead of the automatic stop operation, and returns to step S102.
  • the execution unit 32 determines that the rider's operation state information for the accelerator operation unit 21 acquired during the execution of the automatic stop operation is based on whether the accelerator operation unit 21 is being operated. If the information indicates the status, normal operation is executed instead of automatic stop operation.
  • the accelerator operation unit 21 is an accelerator grip
  • the state in which the accelerator operation unit 21 is operated is such that the accelerator grip is moved forward from the no-load state (that is, the driving force generated in the lean vehicle 1). increased power
  • the state in which the accelerator grip is rotated from the no-load state to the back direction which is the opposite direction to the front direction, is performed. can contain
  • the switching from the automatic stop operation to the normal operation may be performed immediately when it is determined YES in step S108, and it is determined YES in step S108. It may be performed after a certain amount of time has passed since the time when it was performed.
  • the execution unit 32 increases the speed of the lean vehicle 1 as the accelerator is operated, and after the speed of the lean vehicle 1 reaches the reference speed or a speed higher than the reference speed to some extent, the automatic stop operation is performed. may be switched from to normal operation.
  • the executing section 32 may use setting information by the rider in the normal action executed before the automatic stopping action.
  • the setting information as described above, may contain various information used in the cruise control mode.
  • Step S ! If it is determined in ⁇ 8 that the rider's operation state information for the accelerator operation unit 21 is not information indicating that the accelerator operation unit 21 is being operated (step S 1 08/NO), proceed to step S109, and in step S!09, the execution unit 32 determines whether or not the lean vehicle 1 is stopped.
  • step S109 When it is determined in step S109 that the lean vehicle 1 is not stopped (step S109/NO), the process returns to step S108. On the other hand, in step S109, when it is determined that the lean vehicle 1 is stopped (step S109/YES), the process proceeds to step S110, and in step S110, the execution unit 32 ends the automatic stop operation and the control flow shown in FIG. 3 ends.
  • the execution unit 32 determines that when the accelerator operation is performed by the rider in this state (that is, the rider's operation state information for the accelerator operation unit 21 is information indicating the state in which the accelerator operation unit 21 is being operated). ), the lean vehicle 1 is re-started and re-accelerated in response to the accelerator operation. Then, after the speed of the lean vehicle 1 reaches the reference speed or a speed higher than the reference speed to some extent, the execution unit 32 executes the normal operation.
  • the lean vehicle 1 can be stopped and restarted during the cruise control mode without performing an operation to cancel the cruise control mode.
  • the execution unit 32 restarts the lean vehicle 1 when an operation using an operation unit other than the accelerator operation unit 21 is performed.
  • control device 30 has been described above with reference to the flowchart of FIG. 3, the processing performed by the control device 30 is not limited to the above example.
  • some of the processes described above may be modified, and additional processes may be performed with respect to the processes described above.
  • the execution unit 32 may execute the automatic stop action when the rider performs a specific operation while the normal action is being executed.
  • the execution unit 32 determines that the collision possibility information of the lean vehicle 1 acquired during execution of the speed maintenance operation is information indicating that the collision probability of the lean vehicle 1 exceeding the reference will occur.
  • the speed An operation of causing the lean vehicle 1 to perform automatic emergency braking may be executed instead of the degree maintaining operation.
  • the collision probability information is information about the collision probability of the lean vehicle 1, and can be obtained from the surrounding environment sensor 14, for example.
  • the automatic emergency braking is control that causes the lean vehicle 1 to decelerate so as to avoid collision with an obstacle such as a preceding vehicle.
  • the execution unit 32 may execute the operation of continuing to apply the braking force to the lean vehicle 1 after the lean vehicle 1 has stopped by the automatic stop operation. In this operation, the execution unit 32 causes the lean vehicle 1 to generate a braking force without depending on the braking operation by the rider. As a result, the lean vehicle 1 is held at the stop position and prevented from moving back and forth.
  • the second operation may be any operation that causes the lean vehicle 1 to perform cruise control without being based on positional relationship information between the lean vehicle 1 and the preceding vehicle. It may be an operation to control within the speed range of .
  • the execution unit 32 performs a first operation (for example, , normal operation in the above example) is information indicating a state in which the lean vehicle 1 decelerates to the reference speed, instead of the first operation, the position A second operation (for example, the speed maintenance operation in the above example) is performed, which is an operation for causing the lean vehicle 1 to perform cruise control without based on the relevant information.
  • the execution unit 32 determines that the speed information of the lean vehicle 1 acquired during the execution of the first operation is based on the lean vehicle 1 in a state where the first operation is enabled by the rider 1. If the information indicates a state of deceleration to speed, the second action is executed instead of the first action.
  • the execution unit 32 determines that the running state information of the preceding vehicle acquired during execution of the second operation is information indicating that the preceding vehicle is in an accelerating state. , the first action is executed instead of the second action.
  • cruise control is performed based on the positional relationship information, so the inter-vehicle distance between the lean vehicle 1 and the preceding vehicle is appropriately controlled.
  • the execution unit 32 receives the operation of the rider of the lean vehicle 1 with respect to the accelerator operation unit 21 of the lean vehicle 1 acquired during execution of the second operation.
  • the state information is information indicating a state in which the accelerator operation unit 21 is being operated
  • the first action is executed instead of the second action.
  • the specific operation includes operation using the accelerator operation unit 21 used for accelerator operation by the rider.
  • the specific operation includes operation using the clutch operation unit 23 used for clutch operation by the rider.
  • the clutch operation unit 23 used for clutch operation by the rider.
  • the specific operation includes an operation using the shift operation unit 24 used in the shift operation by the rider.
  • the shift operation unit 24 used in the shift operation by the rider.
  • the execution unit 32 changes the deceleration caused in the lean vehicle 1 in the third operation based on the running state information of the preceding vehicle.
  • the third operation it is possible to prevent the inter-vehicle distance between the lean vehicle 1 and the preceding vehicle from becoming excessively short.
  • the execution unit 32 changes the deceleration caused in the lean vehicle 1 based on the running attitude information of the lean vehicle 1 in the third operation. As a result, it is possible to prevent the posture of the lean vehicle 1 from becoming unstable in the third operation.
  • the execution unit 32 changes the deceleration occurring in the lean vehicle 1 in the third operation based on the road surface information. As a result, it is possible to prevent the lean vehicle 1 from becoming unstable in the third operation.
  • the execution unit 32 changes the stop position of the lean vehicle 1 in the third operation based on the road surface information. As a result, it is possible to more appropriately suppress the lean vehicle 1 from becoming unstable in the third operation.
  • the execution unit 32 converts the deceleration occurring in the lean vehicle 1 into at least one of the passenger information and the load information of the lean vehicle 1 in the third operation. change based on As a result, it is possible to prevent the posture of the lean vehicle 1 from becoming unstable in the third operation.
  • the execution unit 32 executes the operation of continuing to apply the braking force to the lean vehicle 1 after the lean vehicle 1 is stopped by the third operation.
  • the execution unit 32 executes the operation of continuing to apply the braking force to the lean vehicle 1 after the lean vehicle 1 is stopped by the third operation.
  • the execution unit 32 determines that the operation state information of the rider with respect to the accelerator operation unit 21 of the lean vehicle 1 acquired during the execution of the third operation is the accelerator operation state information. If the information indicates that the operation unit 2! is being operated, the first action is executed instead of the third action. As a result, when the accelerator operation is performed and the speed of the lean vehicle 1 becomes higher than the reference speed, it is possible to appropriately switch from the third action to the first action.
  • the execution unit 32 when executing the first action in place of the third action, performs the first action before the execution of the third action.
  • the setting information by As a result, when the first action is performed after the third action is performed, the feeling of discomfort caused by the change in the behavior of the lean vehicle 1 compared to the first action performed before the third action is performed. What is given to the rider is suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

本発明は、リーン車両の安全性を向上させることができる制御装置及び制御方法を得るものである。 本発明に係る制御装置(30)及び制御方法では、制御装置(30)の実行部が、リーン車両(1)と、リーン車両(1)の先行車と、の位置関係情報に基づいてリーン車両(1)にクルーズコントロールを実施させる動作である第1動作を実行し、実行部は、第1動作の実行中に取得されるリーン車両(1)の速度情報が、リーン車両(1)が基準速度に減速する状態を示す情報である場合に、第1動作に換えて、位置関係情報に基づかずにリーン車両(1)にクルーズコントロールを実施させる動作である第2動作を実行する。

Description

書類名】 明細書
【発明の名称】 制御装置及び制御方法
【技術分野】
【。 0 0 1】 この開示は、 リーン車両の安全性を向上させることができる制御装置及び制御方法に関 する。
【背景技術】
【。 0 0 2】 モータサイクル等のリーン車両に関する従来の技術として、 ライダーの運転を支援する 技術がある。 例えば、 特許文献 1では、 走行方向又は実質的に走行方向にある障害物を検 出するセンサ装置により検出された情報に基づいて、 不適切に障害物に接近していること をモータサイクルのライダーへ警告する運転者支援システムが開示されている。
【先行技術文献】
【特許文献】
【〇 0 0 3】
【特許文献 1】 特開 2 0 0 9 — 1 1 6 8 8 2号公報
【発明の概要】
【発明が解決しようとする課題】
【〇 0 0 4】 ところで、 運転を支援するための技術として、 車両の速度を自動で制御するクルーズコ ントロールがある。 特に、 クルーズコントロールとして、 自車両と先行車との車間距離が 安全な距離に確保されるように、 自車両と先行車との位置関係情報に基づいて実施される ものがある。 ここで、 このようなクルーズコントロールを、 リーン車両に適用することが 考えられる。 しかしながら、 リーン車両の姿勢は、 四輪を有する自動車の姿勢と比較して 、 不安定になりやすい。 例えば、 リーン車両は、 停止した状態では自立できず、 リーン車 両の速度が過度に低くなると倒れやすくなってしまう。 ゆえに、 上記のクルーズコントロ ールをリーン車両に適用する場合において、 リーン車両の速度を適切に制御しないと、 リ ーン車両の姿勢が不安定になり、 安全性が損なわれてしまうおそれがある。
【〇 0 0 5】 本発明は、 上述の課題を背景としてなされたものであり、 リーン車両の安全性を向上さ せることができる制御装置及び制御方法を得るものである。
【課題を解決するための手段】
【〇 0 0 6】 本発明に係る制御装置は、 リーン車両の挙動を制御する制御装置であって、 前記リーン 車両と、 前記リーン車両の先行車と、 の位置関係情報に基づいて前記リーン車両にクルー ズコントロールを実施させる動作である第 1動作を実行する実行部を備え、 前記実行部は 、 前記第 1動作の実行中に取得される前記リーン車両の速度情報が、 前記リーン車両が基 準速度に減速する状態を示す情報である場合に、 前記第 1動作に換えて、 前記位置関係情 報に基づかずに前記リーン車両にクルーズコントロールを実施させる動作である第 2動作 を実行する。
【〇 0 0 7】 本発明に係る制御方法は、 リーン車両の挙動の制御方法であって、 制御装置の実行部が 、 前記リーン車両と、 前記リーン車両の先行車と、 の位置関係情報に基づいて前記リーン 車両にクルーズコントロールを実施させる動作である第 1動作を実行し、 前記実行部は、 前記第 1動作の実行中に取得される前記リーン車両の速度情報が、 前記リーン車両が基準 速度に減速する状態を示す情報である場合に、 前記第 1動作に換えて、 前記位置関係情報 に基づかずに前記リーン車両にクルーズコントロールを実施させる動作である第 2動作を 実行する。
【発明の効果】
【〇 0 0 8】 本発明に係る制御装置及び制御方法では、 制御装置の実行部が、 リーン車両と、 リーン 車両の先行車と、 の位置関係情報に基づいてリーン車両にクルーズコントロールを実施さ せる動作である第 1動作を実行し、 実行部は、 第 1動作の実行中に取得されるリーン車両 の速度情報が、 リーン車両が基準速度に減速する状態を示す情報である場合に、 第 1動作 に換えて、 位置関係情報に基づかずにリーン車両にクルーズコントロールを実施させる動 作である第 2動作を実行する。 それにより、 クルーズコントロールにより リーン車両の速 度が過度に低くなることを第 2動作によって抑制できるので、 リーン車両の転倒を抑制で きる。 ゆえに、 リーン車両の安全性を向上させることができる。
【図面の簡単な説明】
[ 000 9 ]
【図 1】 本発明の実施形態に係るリーン車両の概略構成を示す模式図である。
【図 2】 本発明の実施形態に係る制御装置の機能構成の一例を示すブロック図である
【図 3】 本発明の実施形態に係る制御装置が行う処理の流れの一例を示すフローチャ ートである。
【発明を実施するための形態】
[ 00 1 0 ] 以下に、 本発明に係る制御装置について、 図面を用いて説明する。
[ 00 1 1 ] なお、 以下では、 二輪のモータサイクルに用いられる制御装置について説明しているが (図 1中のリーン車両 1を参照) 、 本発明に係る制御装置の制御対象となる車両は、 リー ン車両であればよく、 二輪のモータサイクル以外の他のリーン車両であってもよい。 リー ン車両は、 右方向への旋回走行に際して車体が右側に倒れ、 左方向への旋回走行に際して 車体が左側に倒れる車両を意味する。 リーン車両には、 例えば、 モータサイクル (自動ニ 輪車、 自動三輪車) 、 自転車等が含まれる。 モータサイクルには、 エンジンを動力源とす る車両、 電気モータを動力源とする車両等が含まれる。 モータサイクルには、 例えば、 オ ートバイ、 スクーター、 電動スクーター等が含まれる。 自転車は、 ペダルに付与されるラ イダーの踏力によって路上を推進することが可能な車両を意味する。 自転車には、 電動ア シス ト自転車、 電動自転車等が含まれる。
[ 00 1 2 ] また、 以下では、 車輪を駆動するための動力を出力可能な駆動源としてエンジン (具体 的には、 後述される図 1中のエンジン 1 1 ) が搭載されている場合を説明しているが、 駆 動源としてエンジン以外の他の駆動源 (例えば、 電気モータ) が搭載されていてもよく、 複数の駆動源が搭載されていてもよい。
[ 00 1 3 ] また、 以下で説明する構成及び動作等は一例であり、 本発明に係る制御装置及び制御方 法は、 そのような構成及び動作等である場合に限定されない。
[ 00 1 4 ] また、 以下では、 同一の又は類似する説明を適宜簡略化又は省略している。 また、 各図 において、 同一の又は類似する部材又は部分については、 符号を付すことを省略している か、 又は同一の符号を付している。 また、 細かい構造については、 適宜図示を簡略化又は 省略している。
[ 00 1 5 ]
<リーン車両の構成> 図 1及び図 2を参照して、 本発明の実施形態に係るリーン車両 1の構成について説明す る。
[ 00 1 6 ] 図 1は、 リーン車両 1の概略構成を示す模式図である。 図 2は、 制御装置 30の機能構 成の一例を示すブロック図である。
[ 00 1 7 ]
Figure imgf000005_0001
けられている。 例えば、 慣性計測装置 1 5は、 リーン車両 1のリーン角を検出し、 検出結 果を出力する。 慣性計測装置 1 5が、 リーン車両 1のリーン角に実質的に換算可能な他の 物理量を検出するものであってもよい。 リーン角は、 鉛直上方向に対するリーン車両 1の 車体 (具体的には、 胴体) のロール方向の傾きを表す角度に相当する。 慣性計測装置 1 5 が、 3軸のジャイロセンサ及び 3方向の加速度センサの一部のみを備えていてもよい。
[ 0 0 2 5 ] 着座センサ 1 6は、 リーン車両 1のリアシートに設けられ、 リアシート上の搭乗者又は 積載物の有無を検出する。 リアシート上の搭乗者の有無は、 リーン車両 1の搭乗者情報の 一例に相当する。 ただし、 搭乗者情報は、 リーン車両 1の搭乗者に関する情報であればよ く、 例えば、 リーン車両 1の搭乗者の人数、 又は、 各搭乗者の重量等の情報を含み得る。 リアシート上の積載物の有無は、 リーン車両 1の積載物情報の一例に相当する。 ただし、 積載物情報は、 リーン車両 1の積載物に関する情報であればよく、 例えば、 リーン車両 1 の積載物の数、 又は、 各積載物の重量等の情報を含み得る。 つまり、 着座センサ 1 6は、 リーン車両 1の搭乗者情報及び積載物情報を検出するセンサの一例に相当する。 ただし、 リーン車両 1の搭乗者情報又は積載物情報は、 着座センサ 1 6以外のセンサ (例えば、 カ メラ等) によって検出されてもよい。
[ 0 0 2 6 ] 前輪車輪速センサ 1 7は、 前輪 2の車輪速 (例えば、 前輪 2の単位時間当たりの回転数 [ r p m] 又は単位時間当たりの移動距離 [ k m/ h ] 等) を検出する車輪速センサであ り、 検出結果を出力する。 前輪車輪速センサ 1 7が、 前輪 2の車輪速に実質的に換算可能 な他の物理量を検出するものであってもよい。 前輪車輪速センサ 1 7は、 前輪 2に設けら れている。
[ 0 0 2 7 ] 後輪車輪速センサ 1 8は、 後輪 3の車輪速 (例えば、 後輪 3の単位時間当たりの回転数 [ r p m] 又は単位時間当たりの移動距離 [ k m/ h ] 等) を検出する車輪速センサであ り、 検出結果を出力する。 後輪車輪速センサ 1 8が、 後輪 3の車輪速に実質的に換算可能 な他の物理量を検出するものであってもよい。 後輪車輪速センサ 1 8は、 後輪 3に設けら れている。
[ 0 0 2 8 ] ギアポジションセンサ 1 9は、 変速機 1 2のギア段がいずれのギア段になっているかを 検出し、 検出結果を出力する。 ギアポジションセンサ 1 9は、 例えば、 変速機 1 2に設け られている。
[ 0 0 2 9 ] アクセル操作部 2 1は、 ライダーによるアクセル操作で用いられる操作部である。 アク セル操作は、 リーン車両 1の駆動力を調整するための操作である。 例えば、 アクセル操作 部 2 1は、 リーン車両 1のハンドルに設けられるアクセルグリ ップであり、 アクセル操作 は、 アクセルグリ ップを回す操作である。
[ 0 0 3 0 ] ブレーキ操作部 2 2は、 ライダーによるブレーキ操作で用いられる操作部である。 ブレ ーキ操作は、 リーン車両 1の制動力を調整するための操作である。 例えば、 ブレーキ操作 部 2 2は、 リーン車両 1のハンドルに設けられるブレーキレバー、 又は、 胴体に設けられ るブレーキペダルであり、 ブレーキ操作は、 ブレーキレバーを握る操作、 又は、 ブレーキ ペダルを踏む操作である。
[ 0 0 3 1 ] クラッチ操作部 2 3は、 ライダーによるクラッチ操作で用いられる操作部である。 クラ ッチ操作は、 エンジン 1 1のクランクシャフトと変速機 1 2の入力軸との間に介在するク ラッチを締結又は開放させるための操作である。 例えば、 クラッチ操作部 2 3は、 リーン 車両 1のハンドルに設けられるクラッチレバーであり、 クラッチ操作は、 クラッチレバー を握る操作である [ 0 0 3 2 ] 変速操作部 2 4は、 ライダーによる変速操作で用いられる操作部である。 変速操作は、 変速機 1 2のギア段を切り替えるための操作である。 例えば、 変速操作部 2 4は、 リーン 車両 1のハンドルに設けられるシフトレバーであり、 変速操作は、 シフトレバーを用いた 操作である。
[ 0 0 3 3 ] 制御装置 3 0は、 リーン車両 1の挙動を制御する。 例えば、 制御装置 3 0の一部又は全 ては、 マイコン、 マイクロプロセッサユニッ ト等で構成されている。 また、 例えば、 制御 装置 3 0の一部又は全ては、 ファームウェア等の更新可能なもので構成されてもよく、 C P U等からの指令によって実行されるプログラムモジュール等であってもよい。 制御装置 3 0は、 例えば、 1つであってもよく、 また、 複数に分かれていてもよい。
[ 0 0 3 4 ] 制御装置 3 0は、 図 2に示されるように、 例えば、 取得部 3 1 と、 実行部 3 2とを備え る。 また、 制御装置 3 0は、 リーン車両 1の各装置と通信する。
[ 0 0 3 5 ] 取得部 3 1は、 リーン車両 1の各装置から情報を取得し、 実行部 3 2へ出力する。 例え ば、 取得部 3 1は、 周囲環境センサ 1 4、 慣性計測装置 1 5、 着座センサ 1 6、 前輪車輪 速センサ 1 7、 後輪車輪速センサ 1 8、 ギアポジションセンサ 1 9、 アクセル操作部 2 1 、 ブレーキ操作部 2 2、 クラッチ操作部 2 3及び変速操作部 2 4から情報を取得する。 な お、 本明細書において、 情報の取得には、 情報の抽出又は生成等が含まれ得る。
[ 0 0 3 6 ] 実行部 3 2は、 リーン車両 1の各装置の動作を制御することによって、 各種制御を実行 する。 実行部 3 2は、 例えば、 エンジン 1 1、 変速機 1 2及び液圧制御ユニッ ト 1 3の動 作を制御する。
[ 0 0 3 7 ] ここで、 リーン車両 1では、 走行モードとして、 クルーズコントロールをリーン車両 1 に実施させるクルーズコントロールモードを選択できるようになっている。 例えば、 リー ン車両 1の入力装置を用いたライダーによる入力操作に応じて、 実行部 3 2は、 走行モー ドをクルーズコントロールモードに設定する。 クルーズコントロールモードでは、 実行部 3 2は、 ライダーによる加減速操作 (つまり、 アクセル操作及びブレーキ操作) によらず にリーン車両 1の速度を自動で制御する。 例えば、 実行部 3 2は、 前輪 2の車輪速及び後 輪 3の車輪速に基づいて取得されるリーン車両 1の速度の値を監視することによって、 リ ーン車両 1の速度を目標速度に制御することができる。
[ 0 0 3 8 ] また、 クルーズコントロールモードでは、 実行部 3 2は、 リーン車両 1 と、 リーン車両 !の先行車との位置関係情報に基づいてリーン車両 1にクルーズコントロールを実施させ る動作を通常動作として実行する。 通常動作では、 実行部 3 2は、 例えば、 上記の位置関 係情報に基づいて、 目標速度を決定し、 リーン車両 1の速度を目標速度に制御する。 上記 の位置関係情報に基づいて決定される目標速度は、 リーン車両 1 と先行車との車間距離が 基準距離以上に確保されるような速度である。 基準距離は、 先行車との衝突に対する安全 性が十分に確保されるような距離である。 このような通常動作によって、 リーン車両 1 と 先行車との車間距離が適正化される。
[ 0 0 3 9 ] なお、 上記の位置関係情報は、 例えば、 先行車に対するリーン車両 1の相対位置、 相対 距離、 相対速度、 相対加速度、 相対加加速度又は通過時間差等の情報を含み得る。 上記の 位置関係情報は、 これらの情報に実質的に換算可能な他の物理量の情報であってもよい。 上記の位置関係情報は、 例えば、 周囲環境センサ 1 4の検出結果に基づいて取得され得る 〇
[ 0 0 4 0 ]
<制御装置の動作> 図 3を参照して、 本発明の実施形態に係る制御装置 3〇の動作について説明する [ 0 0 4 1 ] 上述したように、 制御装置 3 0の実行部 3 2は、 クルーズコントロールモードにおいて 、 リーン車両 1 と、 リーン車両 1の先行車との位置関係情報に基づいてリーン車両 1にク ルーズコントロールを実施させる動作を通常動作として実行する。 ここで、 実行部 3 2は 、 通常動作の実行中に取得されるリーン車両 1の速度情報が、 リーン車両 1が基準速度に 減速する状態を示す情報である場合に、 通常動作に換えて速度維持動作を実行する。 それ により、 後述するように、 リーン車両 1の安全性を向上させることができる。 以下、 制御 装置 3 0の処理の一例として、 図 3の処理例を説明する。
[ 0 0 4 2 ] 通常動作は、 リーン車両 1の先行車との位置関係情報に基づいてリーン車両 1にクルー ズコントロールを実施させる動作である第 1動作の一例に相当する。 速度維持動作は、 リ ーン車両 1 と先行車との位置関係情報に基づかずにリーン車両 1にクルーズコントロール を実施させる動作である第 2動作の一例に相当する。 ただし、 後述するように、 第 2動作 は、 速度維持動作に限定されない。 なお、 後述する自動停止動作は、 リーン車両 1の先行 車との位置関係情報に基づかずにリーン車両 1に自動停止を実施させる動作である第 3動 作の一例に相当する。
[ 0 0 4 3 ] 図 3は、 制御装置 3 0が行う処理の流れの一例を示すフローチャートである。 図 3に示 される制御フローは、 例えば、 走行モードがクルーズコントロールモードに設定された際 に実行される。 図 3におけるステップ S 1 0 iは、 図 3に示される制御フローの開始に対 応する。 図 3におけるステップ S 1 1 1は、 図 3に示される制御フローの終了に対応する 。 また、 図 3に示される制御フローが開始された際には、 通常動作が実行されている状態 となっている。
[ 0 0 4 4 ] 図 3に示される制御フローが開始されると、 ステップ S 1 0 2において、 実行部 3 2は 、 リーン車両 1の速度情報が、 リーン車両 1が基準速度に減速する状態を示す情報である か否かを判定する。
[ 0 0 4 5 ] 上記の速度情報は、 リーン車両 1の現在速度であってもよく、 リーン車両 1の将来速度 であってもよい。 上記の現在速度は、 例えば、 前輪 2の車輪速及び後輪 3の車輪速に基づ いて取得され得る。 上記の将来速度は、 例えば、 前輪 2の車輪速及び後輪 3の車輪速の履 歴に基づいて取得され得る。 ただし、 上記の現在速度、 及び、 上記の将来速度は、 先行車 の走行状態情報に基づいて取得されてもよい。 先行車の走行状態情報は、 先行車の走行状 態に関する情報であり、 例えば、 先行車の速度、 加速度又は加加速度等の情報を含み得る 。 先行車の走行状態情報は、 例えば、 周囲環境センサ 1 4の検出結果に基づいて取得され 得る。
[ 0 0 4 6 ] 例えば、 実行部 3 2は、 リーン車両 1が減速して現在速度が基準速度に到達した場合に 、 リーン車両 1の速度情報が、 リーン車両 1が基準速度に減速する状態を示す情報である と判定してもよい。 また、 例えば、 実行部 3 2は、 リーン車両 1の将来速度が基準速度近 傍であり リーン車両 1の速度が将来的に基準速度まで減速すると予想される場合に、 リー ン車両 1の速度情報が、 リーン車両 1が基準速度に減速する状態を示す情報であると判定 してもよい。
[ 0 0 4 7 ] 後述するように、 リーン車両 1の速度情報が、 リーン車両 1が基準速度に減速する状態 を示す情報である場合、 速度維持動作が実行される。 それにより、 リーン車両 1の速度が 基準速度に到達した後に基準速度に維持される。 例えば、 基準速度は、 リーン車両 1が倒 れずに自立した状態で走行できる速度範囲の下限値、 又は、 当該下限値より高い値に設定 され得る。 また、 例えば、 基準速度は、 リーン車両 1においてエンジンス トールが発生し ない速度範囲の下限値、 又は、 当該下限値より高い値に設定され得る。 [ 0 0 4 8 ] ステップ S ! 〇 2において、 リーン車両 1の速度情報が、 リーン車両 1が基準速度に減 速する状態を示す情報でないと判定された場合 (ステップ S 1 〇 2 / N O ) 、 ステップ S ! 〇 2が繰り返される。 一方、 ステップ S 1 0 2において、 リーン車両 1の速度情報が、 リーン車両 1が基準速度に減速する状態を示す情報であると判定された場合 (ステップ S ! 〇 2 / Y E S ) 、 ステップ S 1 0 3に進み、 ステップ S ! 〇 3において、 実行部 3 2は 、 速度維持動作を実行する。
[ 0 0 4 9 ] 速度維持動作は、 リーン車両 1 と先行車との位置関係情報に基づかずにリーン車両 1に クルーズコントロールを実施させる動作である。 具体的には、 実行部 3 2は、 速度維持動 作において、 リーン車両 1の速度を維持する。 例えば、 実行部 3 2は、 リーン車両 1の速 度が基準速度に到達した後に、 速度維持動作によってリーン車両 1の速度を維持する。
[ 0 0 5 0 ] 上記のように、 実行部 3 2は、 通常動作の実行中に取得されるリーン車両 1の速度情報 が、 リーン車両 1が基準速度に減速する状態を示す情報である場合に、 通常動作に換えて 速度維持動作を実行する。
[ 0 0 5 1 ] なお、 後述するように、 クルーズコントロールモードでは、 通常動作以外の他の動作 ( 例えば、 速度維持動作又は自動停止動作) が実行されている状態から通常動作が実行され る状態への切り替えが可能となっている。 つまり、 クルーズコントロールモードでは、 ラ イダーによって通常動作が有効化された状態となっている。 よって、 実行部 3 2は、 具体 的には、 ライダーによって通常動作が有効化されている状態で、 通常動作の実行中に取得 されるリーン車両 1の速度情報が、 リーン車両 1が基準速度に減速する状態を示す情報で ある場合に、 通常動作に換えて速度維持動作を実行する。
[ 0 0 5 2 ] ここで、 基準速度は、 予め設定された値であってもよいが、 各種パラメータに基づいて 変化する値であってもよい。 つまり、 実行部 3 2は、 基準速度を、 各種パラメータに基づ いて変化させてもよい。
[ 0 0 5 3 ] 例えば、 実行部 3 2は、 基準速度を、 変速機 1 2のギア段情報に基づいて変化させても よい。 ギア段情報は、 変速機 1 2のギア段に関する情報であり、 例えば、 変速機 1 2のギ ア段がいずれのギア段になっているかを示す情報を含む。 ギア段情報は、 例えば、 ギアポ ジションセンサ 1 9から取得され得る。
[ 0 0 5 4 ] エンジンス トールが発生しない速度範囲の下限値は、 変速機 1 2のギア段に応じて異な る。 ゆえに、 基準速度を、 変速機 1 2のギア段情報に基づいて変化させることによって、 リーン車両 1においてエンジンス トールが発生しない速度範囲の下限値、 又は、 当該下限 値より高い値に適切に設定することができる。 それにより、 速度維持動作において、 エン ジンス トールの発生を抑制できる。
[ 0 0 5 5 ] また、 例えば、 実行部 3 2は、 基準速度を、 リーン車両 1の走行姿勢情報に基づいて変 化させてもよい。 走行姿勢情報は、 リーン車両 1の走行姿勢に関する情報であり、 例えば 、 リーン車両 1のリーン角に関する情報であるリーン角情報、 リーン車両 1のヨーレート に関する情報であるヨーレート情報、 又は、 リーン車両 1の横加速度に関する情報である 横加速度情報等を含む。 走行姿勢情報は、 例えば、 慣性計測装置 1 5から取得され得る。
[ 0 0 5 6 ] リーン車両 1の姿勢の安定度合いは、 リーン車両 1の走行姿勢に応じて異なる。 ゆえに 、 基準速度を、 リーン車両 1の走行姿勢情報に基づいて変化させることによって、 リーン 車両 1が倒れずに自立した状態で走行できる速度範囲の下限値、 又は、 当該下限値より高 い値に適切に設定することができる。 それにより、 速度維持動作において、 リーン車両 1 の姿勢が不安定になることを抑制できる。 特に、 リーン車両 1のロール方向への倒れやす さは、 リーン車両 1のリーン角及びリーン角速度に応じて異なるので、 基準速度を、 リー ン車両 1のリーン角情報に基づいて変化させることによって、 リーン車両 1がロール方向 に倒れることを適切に抑制できる。
[ 0 0 5 7 ] また、 例えば、 実行部 3 2は、 基準速度を、 路面情報に基づいて変化させてもよい。 路 面情報は、 リーン車両 1が走行する路面に関する情報であり、 例えば、 路面の勾配の程度 を示す情報である路面の勾配情報、 又は、 路面の性状を示す情報である路面の性状情報等 を含む。 路面情報は、 例えば、 周囲環境センサ 1 4から取得され得る。 例えば、 周囲環境 センサ 1 4としてカメラが用いられる場合、 当該カメラにより撮像される画像に対して画 像処理を施すことによって、 路面情報が取得され得る。
[ 0 0 5 8 ] リーン車両 1の姿勢の安定度合いは、 路面情報に応じて異なる。 ゆえに、 基準速度を、 路面情報に基づいて変化させることによって、 リーン車両 1が倒れずに自立した状態で走 行できる速度範囲の下限値、 又は、 当該下限値より高い値に適切に設定することができる 。 それにより、 速度維持動作において、 リーン車両 1の姿勢が不安定になることを抑制で きる。 特に、 リーン車両 1の姿勢の安定度合いは、 リーン車両 1が走行する路面が登坂路 であるか降坂路であるかに応じて異なるので、 基準速度を、 路面の勾配情報に基づいて変 化させることによって、 リーン車両 1の姿勢が不安定になることを適切に抑制できる。
[ 0 0 5 9 ] また、 例えば、 実行部 3 2は、 基準速度を、 リーン車両 1の搭乗者情報及び積載物情報 の少なく とも一方に基づいて変化させてもよい。 搭乗者情報及び積載物情報は、 例えば、 着座センサ 1 6から取得され得る。
[ 0 0 6 0 ] リーン車両 1の姿勢の安定度合いは、 リーン車両 1の搭乗者情報及び積載物情報に応じ て異なる。 ゆえに、 基準速度を、 リーン車両 1の搭乗者情報及び積載物情報の少なく とも 一方に基づいて変化させることによって、 リーン車両 1が倒れずに自立した状態で走行で きる速度範囲の下限値、 又は、 当該下限値より高い値に適切に設定することができる。 そ れにより、 速度維持動作において、 リーン車両 1の姿勢が不安定になることを抑制できる
[ 0 0 6 1 ] なお、 基準速度を変化させるために用いられるパラメータは、 上記の例に限定されない 。 つまり、 実行部 3 2は、 基準速度を、 上記で例示したパラメータ以外のパラメータに基 づいて変化させてもよい。 また、 実行部 3 2は、 基準速度を、 複数種類のパラメータに基 づいて変化させてもよい。 なお、 実行部 3 2は、 複数種類のパラメータに基づいて基準速 度の複数の候補を抽出し、 複数の候補の中の 1つを基準速度として決定してもよい。 この 場合、 実行部 3 2は、 速度の高い候補を優先的に基準速度として決定することが好ましい
[ 0 0 6 2 ] ステップ S 1 0 3の次に、 ステップ S 1 0 4において、 実行部 3 2は、 通常動作と速度 維持動作との切換条件が満たされているか否かを判定する。 切換条件が満たされていると 判定された場合 (ステップ S 1 〇 4 / Y E S ) 、 ステップ S 1 0 5に進み、 ステップ S 1 〇 5において、 実行部 3 2は、 速度維持動作に換えて通常動作を実行し、 ステップ S ! 〇 2 に戻る。
[ 0 0 6 3 ] 例えば、 切換条件は、 先行車の走行状態情報が、 先行車が加速状態であることを示す情 報であることであってもよい。 つまり、 実行部 3 2は、 速度維持動作の実行中に取得され る先行車の走行状態情報が、 先行車が加速状態であることを示す情報である場合に、 速度 維持動作に換えて通常動作を実行してもよい。 なお、 加速状態は、 所定時間に亘って加速 が継続している状態のみならず、 所定時間のうちの一部の時間において減速が行われてい ても加速度の所定時間における時間平均が正の値である状態、 又は、 2つの時点の加速度 を比較した結果、 加速度が時間経過に伴い上昇している状態等を含み得る。
[ 0 0 6 4 ] また、 例えば、 切換条件は、 アクセル操作部 2 1に対するライダーの操作状態情報が、 アクセル操作部 2 1が操作されている状態を示す情報であることであってもよい。 つまり 、 実行部 3 2は、 速度維持動作の実行中に取得されるアクセル操作部 2 1に対するライダ ーの操作状態情報が、 アクセル操作部 2 1が操作されている状態を示す情報である場合に 、 速度維持動作に換えて通常動作を実行してもよい。 アクセル操作部 2 1に対するライダ ーの操作状態情報は、 アクセル操作部 2 1に対するライダーの操作状態に関する情報であ り、 例えば、 アクセル操作部 2 1から取得され得る。
[ 0 0 6 5 ] なお、 アクセル操作部 2 1がアクセルグリ ップである場合において、 アクセル操作部 2 1 が操作されている状態は、 アクセルグリ ップを無負荷状態から手前方向 (つまり、 リー ン車両 1に生じる駆動力が増加する方向) に回動させる操作が行われている状態のみなら ず、 アクセルグリ ップを無負荷状態から手前方向と逆方向である奥方向に回動させる操作 が行われている状態を含み得る。
[ 0 0 6 6 ] ここで、 速度維持動作から通常動作への切り換えは、 上記の切換条件が満たされた場合 に、 直ちに行われてもよく、 上記の切換条件が満たされた時点からある程度時間が経過し た後に行われてもよい。 例えば、 速度維持動作から通常動作への切り換えがアクセル操作 部 2 1に対するライダーの操作状態情報に基づいて行われる場合において、 実行部 3 2は 、 アクセル操作に伴いリーン車両 1の速度を上昇させ、 リーン車両 1の速度が基準速度に 対してある程度高い速度に到達した後に、 速度維持動作から通常動作への切り換えを行っ てもよい。
[ 0 0 6 7 ] また、 実行部 3 2は、 速度維持動作に換えて通常動作を実行する際に、 速度維持動作の 実行前に実行した通常動作でのライダーによる設定情報を用いてもよい。 設定情報は、 ク ルーズコントロールモードに用いられる各種情報を含み得る。 例えば、 設定情報は、 クル ーズコントロールモードにおけるリーン車両 1の速度の上限値、 又は、 リーン車両 1の目 標速度を決定するための各種パラメータ等を含み得る。
[ 0 0 6 8 ] ステップ S 1 0 4において、 切換条件が満たされていないと判定された場合 (ステップ S 1 0 4 / N O ) 、 ステップ S 1 0 6に進み、 ステップ S ! 〇 6において、 実行部 3 2は 、 ライダーによる特定の操作が行われているか否かを判定する。
[ 0 0 6 9 ] ステップ S 1 0 6において、 ライダーによる特定の操作が行われていないと判定された 場合 (ステップ S 1 0 6 / N O ) 、 ステップ S 1 0 3に戻る。 一方、 ステップ S ! 〇 6に おいて、 ライダーによる特定の操作が行われていると判定された場合 (ステップ S 1 0 6 / Y E S ) 、 ステップ S 1 0 7に進み、 ステップ S ! 〇 7において、 実行部 3 2は、 自動 停止動作を開始する。
[ 0 0 7 0 ] 自動停止動作は、 リーン車両 1 と先行車との位置関係情報に基づかずにリーン車両 1に 自動停止を実施させる動作である。 具体的には、 実行部 3 2は、 自動停止動作において、 リーン車両 1を減速させて停止させる。 ここで、 実行部 3 2は、 自動停止動作においてリ ーン車両 1に生じる減速度を上記の位置関係情報に基づかずに制御する。
[ 0 0 7 1 ] 上記のように、 実行部 3 2は、 リーン車両 1のライダーによって通常動作が有効化され ている状態で、 ライダーによる特定の操作が行われた場合に、 自動停止動作を実行する。 上記の特定の操作は、 種々の操作を含み得る。
[ 0 0 7 2 ] 例えば、 上記の特定の操作は、 ライダーによるブレーキ操作で用いられるブレーキ操作 部 2 2を用いた操作を含み得る。 ブレーキ操作部 2 2を用いた特定の操作としては、 例え ば、 実質的にリーン車両 1に制動力がほぼ生じない程度の操作量でのブレーキ操作部 2 2 の操作等が挙げられる。
[ 0 0 7 3 ] また、 例えば、 上記の特定の操作は、 ライダーによるアクセル操作で用いられるアクセ ル操作部 2 1を用いた操作を含み得る。 アクセル操作部 2 1を用いた特定の操作としては 、 例えば、 アクセルグリ ップを無負荷状態から手前方向 (つまり、 リーン車両 1に生じる 駆動力が増加する方向) と逆方向である奥方向に回動させる操作等が挙げられる。
[ 0 0 7 4 ] また、 例えば、 上記の特定の操作は、 ライダーによるクラッチ操作で用いられるクラッ チ操作部 2 3を用いた操作を含み得る。 クラッチ操作部 2 3を用いた特定の操作としては 、 例えば、 エンジン 1 1のクランクシャフ トと変速機 1 2の入力軸との間に介在するクラ ッチを開放させるための操作等が挙げられる。
[ 0 0 7 5 ] また、 例えば、 上記の特定の操作は、 ライダーによる変速操作で用いられる変速操作部 2 4を用いた操作を含み得る。 変速操作部 2 4を用いた特定の操作としては、 例えば、 変 速機 1 2のギア段を 1段下げるシフトダウン操作等が挙げられる。
[ 0 0 7 6 ] なお、 上記の特定の操作は、 上記の例に限定されない。 例えば、 上記の特定の操作は、 上記の操作部を用いるものの、 上記で説明した例と異なる操作であってもよい。 また、 例 えば、 上記の特定の操作は、 上記の操作部と異なる操作部を用いた操作であってもよい。 また、 例えば、 上記の特定の操作は、 自動停止動作を実行させるための専用の操作部を用 いた操作であってもよい。 また、 例えば、 上記の特定の操作は、 複数の操作部を用いた操 作であってもよい。
[ 0 0 7 7 ] 実行部 3 2は、 自動停止動作において、 例えば、 リーン車両 1に生じる減速度を予め設 定された減速度に制御する。 この場合、 ライダーは、 自動停止動作におけるリーン車両 1 の挙動を予測しやすくなるので、 リーン車両 1の挙動がライダーの意図に沿ったものにな りやすい。
[ 0 0 7 8 ] ここで、 実行部 3 2は、 自動停止動作において、 リーン車両 1に生じる減速度を種々の パラメータに基づいて変化させてもよい。
[ 0 0 7 9 ] 例えば、 実行部 3 2は、 自動停止動作において、 リーン車両 1に生じる減速度を、 先行 車の走行状態情報に基づいて変化させてもよい。 リーン車両 1 と先行車との車間距離は、 先行車の走行状態に応じて短くなりやすくなる。 ゆえに、 自動停止動作において、 リーン 車両 1に生じる減速度を、 先行車の走行状態情報に基づいて変化させることによって、 リ ーン車両 1 と先行車との車間距離が過度に短くなることを抑制できる。 例えば、 先行車の 速度が過度に小さい場合に、 リーン車両 1に生じる減速度を大きくすることによって、 リ ーン車両 1 と先行車との車間距離が過度に短くなることを抑制できる。
[ 0 0 8 0 ] また、 例えば、 実行部 3 2は、 自動停止動作において、 リーン車両 1に生じる減速度を 、 リーン車両 1の走行姿勢情報に基づいて変化させてもよい。 リーン車両 1の姿勢の安定 度合いは、 リーン車両 1の走行姿勢に応じて異なる。 ゆえに、 自動停止動作において、 リ ーン車両 1に生じる減速度を、 リーン車両 1の走行姿勢情報に基づいて変化させることに よって、 リーン車両 1の姿勢が不安定になることを抑制できる。 特に、 自動停止動作にお いて、 リーン車両 1に生じる減速度を、 リーン車両 1のリーン角情報に基づいて変化させ ることによって、 リーン車両 1がロール方向に倒れることを適切に抑制できる。
[ 0 0 8 1 ] また、 例えば、 実行部 3 2は、 自動停止動作において、 リーン車両 1に生じる減速度を 、 路面情報に基づいて変化させてもよい。 リーン車両 1の姿勢の安定度合いは、 路面情報 に応じて異なる。 ゆえに、 自動停止動作において、 リーン車両 1に生じる減速度を、 路面 情報に基づいて変化させることによって、 リーン車両 1の姿勢が不安定になることを抑制 できる。 特に、 自動停止動作において、 リーン車両 1に生じる減速度を、 路面の勾配情報 に基づいて変化させることによって、 リーン車両 1の姿勢が不安定になることを適切に抑 制できる。
[ 0 0 8 2 ] なお、 実行部 3 2は、 自動停止動作において、 リーン車両 1の停止位置を、 路面情報に 基づいて変化させてもよい。 実行部 3 2は、 例えば、 エンジン 1 1及び液圧制御ユニッ ト 1 3を適宜制御することによって、 リーン車両 1の停止位置を前後方向に調整することが できる。 例えば、 実行部 3 2は、 路面情報に基づいて、 路面における前後方向の複数の位 置について、 ライダーの足が路面に着く時の危険度を評価する。 そして、 実行部 3 2は、 リーン車両 1の停止位置での上記の危険度が基準より低くなるように、 リーン車両 1の停 止位置を調整する。 それにより、 リーン車両 1が停止する際に、 停止姿勢を安定化するこ とができるので、 リーン車両 1及びライダーの転倒を抑制することができる。
[ 0 0 8 3 ] また、 例えば、 実行部 3 2は、 自動停止動作において、 リーン車両 1に生じる減速度を 、 リーン車両 1の速度に基づいて変化させてもよい。 リーン車両 1の姿勢の安定度合いは 、 リーン車両 1の速度に応じて異なる。 ゆえに、 自動停止動作において、 リーン車両 1に 生じる減速度を、 リーン車両 1の速度に基づいて変化させることによって、 リーン車両 1 の姿勢が不安定になることを抑制できる。 例えば、 リーン車両 1の速度が過度に低い場合 (例えば、 〇 k m/ h付近である場合) に、 リーン車両 1に生じる減速度を小さくするこ とによって、 リーン車両 1の姿勢が不安定になることを適切に抑制できる。
[ 0 0 8 4 ] また、 例えば、 実行部 3 2は、 自動停止動作において、 リーン車両 1に生じる減速度を 、 リーン車両 1の搭乗者情報及び積載物情報の少なく とも一方に基づいて変化させてもよ い。 リーン車両 1の姿勢の安定度合いは、 リーン車両 1の搭乗者情報及び積載物情報に応 じて異なる。 ゆえに、 自動停止動作において、 リーン車両 1に生じる減速度を、 リーン車 両 1の搭乗者情報及び積載物情報の少なく とも一方に基づいて変化させることによって、 リーン車両 1の姿勢が不安定になることを抑制できる。
[ 0 0 8 5 ] なお、 自動停止動作において、 リーン車両 1に生じる減速度を変化させるために用いら れるパラメータは、 上記の例に限定されない。 つまり、 実行部 3 2は、 自動停止動作にお いて、 リーン車両 1に生じる減速度を、 上記で例示したパラメータ以外のパラメータに基 づいて変化させてもよい。 また、 実行部 3 2は、 自動停止動作において、 リーン車両 1に 生じる減速度を、 複数種類のパラメータに基づいて変化させてもよい。
[ 0 0 8 6 ] ステップ S 1 0 7の次に、 ステップ S 1 0 8において、 実行部 3 2は、 アクセル操作部 2 1に対するライダーの操作状態情報が、 アクセル操作部 2 1が操作されている状態を示 す情報であるか否かを判定する。 アクセル操作部 2 1に対するライダーの操作状態情報が 、 アクセル操作部 2 1が操作されている状態を示す情報であると判定された場合 (ステッ プ S 1 0 8 / Y E S ) 、 ステップ S 1 0 5に進み、 ステップ S 1 〇 5において、 実行部 3 2 は、 自動停止動作に換えて通常動作を実行し、 ステップ S 1 0 2に戻る。
[ 0 0 8 7 ] 上記のように、 実行部 3 2は、 自動停止動作の実行中に取得されるアクセル操作部 2 1 に対するライダーの操作状態情報が、 アクセル操作部 2 1が操作されている状態を示す情 報である場合に、 自動停止動作に換えて通常動作を実行する。 なお、 アクセル操作部 2 1 がアクセルグリ ップである場合において、 アクセル操作部 2 1が操作されている状態は、 アクセルグリ ップを無負荷状態から手前方向 (つまり、 リーン車両 1に生じる駆動力が増 加する方向) に回動させる操作が行われている状態のみならず、 アクセルグリ ップを無負 荷状態から手前方向と逆方向である奥方向に回動させる操作が行われている状態を含み得 る。
[ 0 0 8 8 ] ここで、 自動停止動作から通常動作への切り換えは、 ステップ S 1 0 8で Y E Sと判定 された場合に、 直ちに行われてもよく、 ステップ S 1 0 8で Y E Sと判定された時点から ある程度時間が経過した後に行われてもよい。 例えば、 実行部 3 2は、 アクセル操作に伴 いリーン車両 1の速度を上昇させ、 リーン車両 1の速度が基準速度、 又は、 基準速度に対 してある程度高い速度に到達した後に、 自動停止動作から通常動作への切り換えを行って もよい。
[ 0 0 8 9 ] 実行部 3 2は、 自動停止動作に換えて通常動作を実行する際に、 自動停止動作の実行前 に実行した通常動作でのライダーによる設定情報を用いてもよい。 設定情報は、 上述した ように、 クルーズコントロールモードに用いられる各種情報を含み得る。
[ 0 0 9 0 ] ステップ S ! 〇 8において、 アクセル操作部 2 1に対するライダーの操作状態情報が、 アクセル操作部 2 1が操作されている状態を示す情報でないと判定された場合 (ステップ S 1 0 8 / N O ) 、 ステップ S 1 0 9に進み、 ステップ S ! 〇 9において、 実行部 3 2は 、 リーン車両 1が停止しているか否かを判定する。
[ 0 0 9 1 ] ステップ S 1 0 9において、 リーン車両 1が停止していないと判定された場合 (ステッ プ S 1 0 9 / N O ) 、 ステップ S 1 0 8に戻る。 一方、 ステップ S 1 0 9において、 リー ン車両 1が停止していると判定された場合 (ステップ S 1 0 9 / Y E S ) 、 ステップ S 1 1 0に進み、 ステップ S 1 1 0において、 実行部 3 2は、 自動停止動作を終了し、 図 3に 示される制御フローは終了する。
[ 0 0 9 2 ] 自動停止動作によってリーン車両 1が停止した後において、 ライダーの足が路面に着い た状態でリーン車両 1が支えられる。 そして、 実行部 3 2は、 この状態でライダーにより アクセル操作が行われた場合 (つまり、 アクセル操作部 2 1に対するライダーの操作状態 情報が、 アクセル操作部 2 1が操作されている状態を示す情報である場合) 、 アクセル操 作に伴い、 リーン車両 1を再発進させ、 再加速させる。 そして、 リーン車両 1の速度が基 準速度、 又は、 基準速度に対してある程度高い速度に到達した後に、 実行部 3 2は、 通常 動作を実行する。 それにより、 クルーズコントロールモード中に、 クルーズコントロール モードを解除する操作を行うことなく、 リーン車両 1の停止及び再発進を行うことができ る。 なお、 自動停止動作によってリーン車両 1が停止した後において、 実行部 3 2は、 ア クセル操作部 2 1以外の操作部を用いた操作が行われた場合に、 リーン車両 1を再発進さ せてもよい。
[ 0 0 9 3 ] 以上、 図 3のフローチャートを参照して、 制御装置 3 0の処理例を説明したが、 制御装 置 3 0が行う処理は上記の例に限定されない。 例えば、 以下で説明するように、 上記で説 明した処理の一部に変更が加えられてもよく、 上記で説明した処理に対して追加的な処理 が行われてもよい。
[ 0 0 9 4 ] 上記では、 速度維持動作が実行されている状態で、 ライダーによる特定の操作が行われ た場合に自動停止動作が実行される例を説明した。 ただし、 実行部 3 2は、 通常動作が実 行されている状態で、 ライダーによる特定の操作が行われた場合に自動停止動作を実行し てもよい。
[ 0 0 9 5 ] また、 実行部 3 2は、 速度維持動作の実行中に取得されるリーン車両 1の衝突可能性情 報が、 リーン車両 1に基準を超える衝突可能性が生じることを示す情報である場合に、 速 度維持動作に換えて、 リーン車両 1に自動緊急ブレーキを実施させる動作を実行してもよ い。 衝突可能性情報は、 リーン車両 1の衝突可能性に関する情報であり、 例えば、 周囲環 境センサ 1 4から取得され得る。 自動緊急ブレーキは、 リーン車両 1に先行車等の障害物 との衝突を回避し得る減速度を生じさせる制御である。
[ 0 0 9 6 ] また、 実行部 3 2は、 自動停止動作によってリーン車両 1が停止した後において、 リー ン車両 1への制動力の付与を継続する動作を実行してもよい。 当該動作において、 実行部 3 2は、 ライダーによるブレーキ操作によらずに、 リーン車両 1に制動力を生じさせる。 それにより、 リーン車両 1が停止位置に保持され、 前後に移動することが抑制される。
[ 0 0 9 7 ] 上記では、 第 2動作の一例として速度維持動作が実行される例を説明したが、 第 2動作 は、 速度維持動作に限定されない。 第 2動作は、 リーン車両 1 と先行車との位置関係情報 に基づかずにリーン車両 1にクルーズコントロールを実施させる動作であればよく、 例え ば、 リーン車両 1の速度を、 基準速度を含む所定の速度範囲内に制御する動作であっても よい。
[ 0 0 9 8 ]
<制御装置の効果> 本発明の実施形態に係る制御装置 3〇の効果について説明する。
[ 0 0 9 9 ] 制御装置 3 0において、 実行部 3 2は、 リーン車両 1 と先行車との位置関係情報に基づ いてリーン車両 1にクルーズコントロールを実施させる動作である第 1動作 (例えば、 上 記の例における通常動作) の実行中に取得されるリーン車両 1の速度情報が、 リーン車両 1 が基準速度に減速する状態を示す情報である場合に、 第 1動作に換えて、 位置関係情報 に基づかずにリーン車両 1にクルーズコントロールを実施させる動作である第 2動作 (例 えば、 上記の例における速度維持動作) を実行する。 具体的には、 実行部 3 2は、 ライダ 一によって第 1動作が有効化されている状態で、 第 1動作の実行中に取得されるリーン車 両 1の速度情報が、 リーン車両 1が基準速度に減速する状態を示す情報である場合に、 第 ! 動作に換えて第 2動作を実行する。
[ 0 1 0 0 ] それにより、 クルーズコントロールにより リーン車両 1の速度が過度に低くなることを 抑制できる。 例えば、 リーン車両 1が基準速度に減速する状態において、 位置関係情報に 基づいてクルーズコントロールが実施される場合、 リーン車両 1の速度が基準速度に対し て大きく低下し、 リーン車両 1の姿勢が不安定になるおそれがある。 一方、 リーン車両 1 が基準速度に減速する状態において、 位置関係情報に基づかずにリーン車両 1にクルーズ コントロールを実施させることによって、 リーン車両 1の速度が基準速度に対して大きく 低下することが抑制され、 リーン車両 1の姿勢が不安定になることが抑制される。 よって 、 リーン車両 1の転倒を抑制できる。 ゆえに、 リーン車両 1の安全性を向上させることが できる。
[ 0 1 0 1 ] 好ましくは、 制御装置 3 0において、 実行部 3 2は、 第 2動作の実行中に取得される先 行車の走行状態情報が、 先行車が加速状態であることを示す情報である場合に、 第 2動作 に換えて第 1動作を実行する。 それにより、 先行車が加速状態である場合に、 位置関係情 報に基づいてクルーズコントロールが実施されるので、 リーン車両 1 と先行車との車間距 離が適切に制御される。
[ 0 1 0 2 ] 好ましくは、 制御装置 3 0において、 実行部 3 2は、 第 2動作の実行中に取得されるリ ーン車両 1のアクセル操作部 2 1に対するリーン車両 1のライダーの操作状態情報が、 ア クセル操作部 2 1が操作されている状態を示す情報である場合に、 第 2動作に換えて第 1 動作を実行する。 それにより、 アクセル操作が行われ、 リーン車両 1の速度が基準速度よ りも高くなる場合に、 第 2動作から第 1動作への切り替えを適切に行うことができる。
Figure imgf000016_0001
好ましくは、 制御装置 30において、 特定の操作は、 ライダーによるアクセル操作で用 いられるアクセル操作部 2 1を用いた操作を含む。 それにより、 リーン車両 1をライダー の意図に沿って減速させることが簡易かつ直感的な操作により適切に実現される。
[ 0 1 1 4 ] 好ましくは、 制御装置 30において、 特定の操作は、 ライダーによるクラッチ操作で用 いられるクラッチ操作部 2 3を用いた操作を含む。 それにより、 リーン車両 1をライダー の意図に沿って減速させることが簡易かつ直感的な操作により適切に実現される。
[ 0 1 1 5 ] 好ましくは、 制御装置 30において、 特定の操作は、 ライダーによる変速操作で用いら れる変速操作部 24を用いた操作を含む。 それにより、 リーン車両 1をライダーの意図に 沿って減速させることが簡易かつ直感的な操作により適切に実現される。
[ 0 1 1 6 ] 好ましくは、 制御装置 30において、 実行部 3 2は、 第 3動作において、 リーン車両 1 に生じる減速度を、 先行車の走行状態情報に基づいて変化させる。 それにより、 第 3動作 において、 リーン車両 1 と先行車との車間距離が過度に短くなることを抑制できる。
[ 0 1 1 7 ] 好ましくは、 制御装置 30において、 実行部 3 2は、 第 3動作において、 リーン車両 1 に生じる減速度を、 リーン車両 1の走行姿勢情報に基づいて変化させる。 それにより、 第 3 動作において、 リーン車両 1の姿勢が不安定になることを抑制できる。
[ 0 1 1 8 ] 好ましくは、 制御装置 30において、 実行部 3 2は、 第 3動作において、 リーン車両 1 に生じる減速度を、 路面情報に基づいて変化させる。 それにより、 第 3動作において、 リ ーン車両 1の姿勢が不安定になることを抑制できる。
[ 0 1 1 9 ] 好ましくは、 制御装置 30において、 実行部 3 2は、 第 3動作において、 リーン車両 1 の停止位置を、 路面情報に基づいて変化させる。 それにより、 第 3動作において、 リーン 車両 1の姿勢が不安定になることをより適切に抑制できる。
[ 0 1 2 0 ] 好ましくは、 制御装置 30において、 実行部 3 2は、 第 3動作において、 リーン車両 1 に生じる減速度を、 リーン車両 1の搭乗者情報及び積載物情報の少なく とも一方に基づい て変化させる。 それにより、 第 3動作において、 リーン車両 1の姿勢が不安定になること を抑制できる。
[ 0 1 2 1 ] 好ましくは、 制御装置 30において、 実行部 3 2は、 第 3動作によってリーン車両 1が 停止した後において、 リーン車両 1への制動力の付与を継続する動作を実行する。 それに より、 第 3動作によってリーン車両 1が停止した後において、 リーン車両 1の姿勢が不安 定になることを抑制できる。
[ 0 1 2 2 ] 好ましくは、 制御装置 30において、 実行部 3 2は、 第 3動作の実行中に取得されるリ ーン車両 1のアクセル操作部 2 1に対するライダーの操作状態情報が、 アクセル操作部 2 ! が操作されている状態を示す情報である場合に、 第 3動作に換えて第 1動作を実行する 。 それにより、 アクセル操作が行われ、 リーン車両 1の速度が基準速度よりも高くなる場 合に、 第 3動作から第 1動作への切り替えを適切に行うことができる。
[ 0 1 2 3 ] 好ましくは、 制御装置 30において、 実行部 3 2は、 第 3動作に換えて第 1動作を実行 する際に、 第 3動作の実行前に実行した第 1動作でのライダーによる設定情報を用いる。 それにより、 第 3動作の実行後に第 1動作が実行された際に、 第 3動作の実行前に実行し た第 1動作と比べて、 リーン車両 1の挙動が変化することに起因する違和感がライダーに 与えられることが抑制される。
[ 0 1 24 ] 本発明は実施形態の説明に限定されない。 例えば、 実施形態の一部のみが実施されても よい。
【符号の説明】
[ 0 1 2 5 ]
1 リーン車両、 2 前輪、 3 後輪、 1 1 エンジン、 1 2 変速機、 1 3 液圧制 御ユニッ ト、 1 4 周囲環境センサ、 1 5 慣性計測装置、 1 6 着座センサ、 1 7 前 輪車輪速センサ、 1 8 後輪車輪速センサ、 1 9 ギアポジションセンサ、 2 1 アクセ ル操作部、 2 2 ブレーキ操作部、 2 3 クラッチ操作部、 24 変速操作部、 3〇 制 御装置、 3 1 取得部、 3 2 実行部。

Claims

【書類名】 請求の範囲
【請求項 1】 リーン車両 ( 1 ) の挙動を制御する制御装置 (30) であって、 前記リーン車両 ( 1 ) と、 前記リーン車両 ( 1 ) の先行車と、 の位置関係情報に基づい て前記リーン車両 ( 1 ) にクルーズコントロールを実施させる動作である第 1動作を実行 する実行部 (3 2) を備え、 前記実行部 (3 2) は、 前記第 1動作の実行中に取得される前記リーン車両 ( 1 ) の速 度情報が、 前記リーン車両 ( 1 ) が基準速度に減速する状態を示す情報である場合に、 前 記第 1動作に換えて、 前記位置関係情報に基づかずに前記リーン車両 ( 1 ) にクルーズコ ントロールを実施させる動作である第 2動作を実行する、 制御装置。
【請求項 2】 前記実行部 (3 2) は、 前記第 2動作の実行中に取得される前記先行車の走行状態情報 が、 前記先行車が加速状態であることを示す情報である場合に、 前記第 2動作に換えて前 記第 1動作を実行する、 請求項 1に記載の制御装置。
【請求項 3】 前記実行部 (3 2) は、 前記第 2動作の実行中に取得される前記リーン車両 ( 1 ) のア クセル操作部 (2 1 ) に対する前記リーン車両 ( 1 ) のライダーの操作状態情報が、 前記 アクセル操作部 (2 1 ) が操作されている状態を示す情報である場合に、 前記第 2動作に 換えて前記第 1動作を実行する、 請求項 1又は 2に記載の制御装置。
【請求項 4】 前記実行部 (3 2) は、 前記第 2動作に換えて前記第 1動作を実行する際に、 前記第 2 動作の実行前に実行した前記第 1動作でのライダーによる設定情報を用いる、 請求項 2又は 3に記載の制御装置。
【請求項 5】 前記リーン車両 ( 1 ) は、 有段の変速機 ( 1 2) を備え、 前記実行部 (3 2) は、 前記基準速度を、 前記変速機 ( 1 2) のギア段情報に基づいて 変化させる、 請求項 1〜 4のいずれか一項に記載の制御装置。
【請求項 6】 前記実行部 (3 2) は、 前記基準速度を、 前記リーン車両 ( 1 ) の走行姿勢情報に基づ いて変化させる、 請求項 1〜 5のいずれか一項に記載の制御装置。
【請求項 7】 前記走行姿勢情報は、 前記リーン車両 ( 1 ) のリーン角情報を含む、 請求項 6に記載の制御装置。
【請求項 8】 前記実行部 (3 2) は、 前記基準速度を、 路面情報に基づいて変化させる、 請求項 1〜 7のいずれか一項に記載の制御装置。
【請求項 9】 前記路面情報は、 路面の勾配情報を含む、 請求項 8に記載の制御装置。
【請求項 1 〇】 前記実行部 (3 2) は、 前記基準速度を、 前記リーン車両 ( 1 ) の搭乗者情報及び積載 物情報の少なく とも一方に基づいて変化させる、 請求項 1〜 9のいずれか一項に記載の制御装置。
【請求項 1 1】 前記実行部 (3 2) は、 前記第 2動作の実行中に取得される前記リーン車両 ( 1 ) の衝 突可能性情報が、 前記リーン車両 ( 1 ) に基準を超える衝突可能性が生じることを示す情 報である場合に、 前記第 2動作に換えて、 前記リーン車両 ( 1 ) に自動緊急ブレーキを実 施させる動作を実行する、 請求項 1〜 1 〇のいずれか一項に記載の制御装置。
【請求項 1 2】 リーン車両 ( 1 ) の挙動の制御方法であって、 制御装置 (30) の実行部 (3 2) が、 前記リーン車両 ( 1 ) と、 前記リーン車両 ( 1 ) の先行車と、 の位置関係情報に基づいて前記リーン車両 ( 1 ) にクルーズコントロール を実施させる動作である第 1動作を実行し、 前記実行部 (3 2) は、 前記第 1動作の実行中に取得される前記リーン車両 ( 1 ) の速 度情報が、 前記リーン車両 ( 1 ) が基準速度に減速する状態を示す情報である場合に、 前 記第 1動作に換えて、 前記位置関係情報に基づかずに前記リーン車両 ( 1 ) にクルーズコ ントロールを実施させる動作である第 2動作を実行する、 制御方法。
PCT/IB2022/059221 2021-09-28 2022-09-28 制御装置及び制御方法 WO2023053021A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023550744A JPWO2023053021A1 (ja) 2021-09-28 2022-09-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-157667 2021-09-28
JP2021157667 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023053021A1 true WO2023053021A1 (ja) 2023-04-06

Family

ID=83945022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/059221 WO2023053021A1 (ja) 2021-09-28 2022-09-28 制御装置及び制御方法

Country Status (2)

Country Link
JP (1) JPWO2023053021A1 (ja)
WO (1) WO2023053021A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017211886A1 (de) * 2017-07-12 2019-01-17 Robert Bosch Gmbh Verfahren und Vorrichtung zur Beeinflussung bzw. Deaktivierung eines Geschwindigkeitsregelungssystems
EP3605496A1 (en) * 2017-03-21 2020-02-05 Robert Bosch GmbH Controller and control method
EP3604054A1 (en) * 2017-03-21 2020-02-05 Robert Bosch GmbH Control device and control method
WO2021094877A1 (ja) * 2019-11-14 2021-05-20 ロベルト•ボッシュ•ゲゼルシャフト•ミット•ベシュレンクテル•ハフツング モータサイクルの動作の制御装置及び制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605496A1 (en) * 2017-03-21 2020-02-05 Robert Bosch GmbH Controller and control method
EP3604054A1 (en) * 2017-03-21 2020-02-05 Robert Bosch GmbH Control device and control method
DE102017211886A1 (de) * 2017-07-12 2019-01-17 Robert Bosch Gmbh Verfahren und Vorrichtung zur Beeinflussung bzw. Deaktivierung eines Geschwindigkeitsregelungssystems
WO2021094877A1 (ja) * 2019-11-14 2021-05-20 ロベルト•ボッシュ•ゲゼルシャフト•ミット•ベシュレンクテル•ハフツング モータサイクルの動作の制御装置及び制御方法
EP4059796A1 (en) * 2019-11-14 2022-09-21 Robert Bosch GmbH Control device and control method for motorcycle operation

Also Published As

Publication number Publication date
JPWO2023053021A1 (ja) 2023-04-06

Similar Documents

Publication Publication Date Title
JP7104021B2 (ja) 制御装置及び制御方法
JP5414454B2 (ja) 車両運動制御装置
JP7104022B2 (ja) 制御装置及び制御方法
JP6000020B2 (ja) 鞍乗型電動車両、パワーユニットおよびパワーユニットの制御方法
JP2008273387A (ja) 車両の車速制御装置
WO2018197965A1 (ja) 制御装置、制御方法及びブレーキシステム
WO2018185578A1 (ja) 制御装置、制御方法及びブレーキシステム
US11654893B2 (en) Controller and control method
WO2020021382A1 (ja) 制御装置及び制御方法
JP2020029176A (ja) 制御装置及び制御方法
JP2017194045A (ja) 車両用挙動制御装置
EP3960564A1 (en) Control device and control method
JP2012224232A (ja) 車両の走行支援装置及び車両の走行支援方法
WO2023053021A1 (ja) 制御装置及び制御方法
WO2023053022A1 (ja) 制御装置及び制御方法
WO2023053023A1 (ja) 制御装置及び制御方法
JP7438333B2 (ja) 制御装置及び制御方法
JP2012172595A (ja) 自動二輪車の姿勢制御装置及び姿勢制御方法
JP7419098B2 (ja) アクセル異常操作判定システム
EP4227171A1 (en) Control device and control method
US20230382357A1 (en) Controller and control method
JP6020046B2 (ja) 車両用走行制御装置
WO2024003648A1 (ja) 制御装置及び制御方法
JP7438332B2 (ja) 制御装置及び制御方法
JP2024056153A (ja) 制御装置、支援システム、リーン車両、及び制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798183

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550744

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022798183

Country of ref document: EP

Effective date: 20240429