WO2024003648A1 - 制御装置及び制御方法 - Google Patents
制御装置及び制御方法 Download PDFInfo
- Publication number
- WO2024003648A1 WO2024003648A1 PCT/IB2023/056079 IB2023056079W WO2024003648A1 WO 2024003648 A1 WO2024003648 A1 WO 2024003648A1 IB 2023056079 W IB2023056079 W IB 2023056079W WO 2024003648 A1 WO2024003648 A1 WO 2024003648A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- speed
- lean vehicle
- information
- lean
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 120
- 238000001514 detection method Methods 0.000 claims abstract description 83
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 230000003044 adaptive effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000001629 suppression Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000036461 convulsion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/16—Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2300/00—Indexing codes relating to the type of vehicle
- B60W2300/36—Cycles; Motorcycles; Scooters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2422/00—Indexing codes relating to the special location or mounting of sensors
- B60W2422/50—Indexing codes relating to the special location or mounting of sensors on a steering column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
Definitions
- This disclosure relates to a control device and a control method that can appropriately perform speed control based on positional relationship information between a lean vehicle and a target vehicle.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2009-116882
- speed control that controls the speed of a lean vehicle based on information on the positional relationship between the lean vehicle and a target vehicle.
- An example of such speed control is adaptive cruise control.
- Adaptive cruise control controls the speed of a lean vehicle to maintain a safe distance between the lean vehicle and the target vehicle.
- the target vehicle is identified, for example, based on the detection results of an ambient environment sensor mounted on the lean vehicle.
- the posture of a lean vehicle is more likely to become unstable than the posture of a car with four wheels.
- a lean vehicle cannot stand on its own when stopped, and as the speed of the lean vehicle decreases, it is more likely to topple over. Therefore, when driving at low speeds, the rider may slightly swing the steering wheel from side to side in order to balance the lean vehicle.
- it becomes difficult to appropriately identify the target vehicle due to, for example, changes in the orientation of the surrounding environment sensor. This makes it difficult to perform speed control appropriately.
- the present invention was made against the background of the above-mentioned problems, and provides a control device and a control method that can appropriately perform speed control based on positional relationship information between a lean vehicle and a target vehicle. This is what you get.
- the control device is a control device that controls the behavior of a lean vehicle, and the control device controls the speed of the lean vehicle based on positional relationship information between the lean vehicle and a target vehicle.
- an execution unit that executes control; and a specification unit that executes a specification process that specifies the target vehicle based on a detection result of an ambient environment sensor mounted on the lean vehicle, and the specification unit includes: The specific processing is changed based on the speed information of the vehicle.
- the control method according to the present invention is a control method for controlling the behavior of a lean vehicle, in which an execution unit of a control device controls the behavior of a lean vehicle based on positional relationship information between the lean vehicle and a target vehicle. executing speed control to control the speed of the vehicle; the specifying unit of the control device executes specifying processing to specify the target vehicle based on a detection result of an ambient environment sensor mounted on the lean vehicle; The specifying unit changes the specifying process based on the speed information of the lean vehicle.
- the execution unit of the control device executes speed control to control the speed of the lean vehicle based on positional relationship information between the lean vehicle and the target vehicle
- the identification unit of the control device executes identification processing to identify the target vehicle based on the detection results of the surrounding environment sensor mounted on the lean vehicle, and the identification unit executes the identification processing based on the speed information of the lean vehicle. change.
- the target vehicle can be appropriately identified even when the rider operates the steering wheel to balance the lean vehicle. Therefore, it is possible to appropriately perform speed control based on positional relationship information between the lean vehicle and the target vehicle.
- FIG. 1 is a schematic diagram showing a schematic configuration of a lean vehicle according to an embodiment of the present invention.
- FIG. 2 A block diagram showing an example of the functional configuration of a control device according to an embodiment of the present invention.
- FIG. 3 A flow chart showing an example of the flow of the first process performed by the control device according to the embodiment of the present invention.
- FIG. 4 A diagram showing a state in which a preceding vehicle is located outside the detection range of the surrounding environment sensor of the lean vehicle according to the embodiment of the present invention.
- FIG. 5 A flow chart showing an example of the flow of second processing performed by the control device according to the embodiment of the present invention.
- FIG. 6 A diagram showing how the detection range of the ambient environment sensor of the lean vehicle according to the embodiment of the present invention is expanded.
- FIG. 7 A flow chart showing an example of the flow of the third process performed by the control device according to the embodiment of the present invention.
- FIG. 8 is a diagram showing how fluctuations in the expected travel trajectory in the vehicle width direction of the lean vehicle according to the embodiment of the present invention are suppressed.
- the vehicle may be any lean vehicle, and may be a lean vehicle other than a two-wheeled motorcycle.
- a lean vehicle is a vehicle whose body falls to the right when turning to the right, and whose body falls to the left when turning to the left.
- Examples of lean vehicles include motorcycles (motorcycles, tricycles), bicycles, etc.
- motorcycles include vehicles that use an engine as a power source, vehicles that use an electric motor as a power source, etc.
- motorcycles include, for example, motorcycles, scooters, electric scooters, etc.
- Bicycle means a vehicle that can be propelled on the road by the rider's pedal effort. Bicycles include electric assist bicycles, electric bicycles, etc.
- the inertial measurement device 15 is equipped with a 3-axis gyro sensor and a 3-direction acceleration sensor, and detects the attitude of the lean vehicle 1.
- the inertial measurement device 15 is provided, for example, in the body of the lean vehicle 1.
- the inertial measurement device 15 detects the lean angle of the lean vehicle 1 and outputs the detection result.
- the inertial measurement device 15 may detect other physical quantities that can be substantially converted into the lean angle of the lean vehicle 1.
- the lean angle corresponds to an angle representing the inclination of the body (specifically, the body) of the lean vehicle 1 in the roll direction with respect to the vertically upward direction.
- the inertial measurement device 15 may include only a portion of the 3-axis gyro sensor and the 3-direction acceleration sensor.
- the front wheel speed sensor 1 6 detects the wheel speed of the front wheel 2 (for example, the number of revolutions per unit time [ r p m ] or the moving distance per unit time [ k m/h : etc.) of the front wheel 2. This wheel speed sensor outputs the detection results.
- the front wheel speed sensor 16 may detect another physical quantity that can be substantially converted into the wheel speed of the front wheel 2.
- the front wheel speed sensor 16 is provided on the front wheel 2.
- the rear wheel speed sensor 1 7 measures the wheel speed of the rear wheels 3 (for example, the number of rotations per unit time of the rear wheels 3 [ r p m ] or the moving distance per unit time [ k m/h ], etc.) ) and outputs the detection results.
- the rear wheel speed sensor 17 may detect another physical quantity that can be substantially converted into the wheel speed of the rear wheel 3.
- the rear wheel speed sensor 17 is provided on the rear wheel 3.
- the control device 20 controls the behavior of the lean vehicle 1.
- part or all of the control device 20 is composed of a microcomputer, a microprocessor unit, etc.
- part or all of the control device 20 may be configured with something that can be updated, such as firmware, or may be a program module or the like that is executed by instructions from a CPU or the like.
- the control device 20 includes, for example, an acquisition section 21, an execution section 22, and an identification section 23. Further, the control device 20 communicates with each device of the lean vehicle 1.
- the acquisition unit 21 acquires information from each device of the lean vehicle 1 and outputs it to the execution unit 22 and the identification unit 23.
- the acquisition unit 21 acquires information from the input device 13, the surrounding environment sensor 14, the inertial measurement device 15, the front wheel speed sensor 16, and the rear wheel speed sensor 17.
- acquiring information may include extracting or generating information.
- the execution unit 22 executes various controls by controlling the operation of each device of the lean vehicle 1.
- the execution unit 22 controls, for example, the operations of the engine 11 and the hydraulic control unit 12.
- the execution unit 22 can execute adaptive cruise control as speed control based on positional relationship information between the lean vehicle 1 and the target vehicle.
- positional relationship information may include, for example, information such as the relative position, relative distance, relative speed, relative acceleration, relative jerk, or passing time difference of the lean vehicle 1 with respect to the target vehicle.
- the above positional relationship information may be information on other physical quantities that can be substantially converted into this information.
- adaptive cruise control is executed as speed control based on positional relationship information between the lean vehicle 1 and the target vehicle.
- the speed control may be control based on positional relationship information between the lean vehicle 1 and the target vehicle, and may be control other than adaptive cruise control.
- the execution unit 22 executes adaptive cruise control in response to the rider's operation using the input device 13, for example.
- the execution unit 22 operates independently of the rider's acceleration/deceleration operations (i.e., accelerator and brake operations). Automatically controls the speed of lean vehicle 1.
- the execution unit 2 2 can control the speed of the lean vehicle 1 based on the speed information of the lean vehicle 1 obtained based on the wheel speed of the front wheels 2 and the wheel speed of the rear wheels 3, for example. .
- the execution unit 22 performs inter-vehicle distance maintenance control to maintain the inter-vehicle distance between the lean vehicle 1 and the target vehicle at the target distance.
- the execution unit 22 performs inter-vehicle distance maintenance control based on the surrounding environment information detected by the surrounding environment sensor 14.
- the surrounding environment sensor 14 can detect the inter-vehicle distance between the lean vehicle 1 and a preceding vehicle running in front of the lean vehicle 1, and the relative speed of the lean vehicle 1 with respect to the preceding vehicle.
- the execution unit 22 sets the preceding vehicle as a target vehicle and controls the speed of the lean vehicle 1 so that the inter-vehicle distance with the preceding vehicle is maintained at the target distance.
- the inter-vehicle distance may mean a distance in a direction along a lane (specifically, the travel lane of lean vehicle 1), or may mean a straight-line distance.
- the identification unit 23 executes identification processing to identify the target vehicle based on the detection result of the ambient environment sensor 14 mounted on the lean vehicle 1.
- the detection range of the ambient environment sensor 1 4 extends forward from the front of the lean vehicle 1 .
- the surrounding environment sensor 1 4 can detect surrounding environment information within the detection range.
- the identifying unit 23 can identify a vehicle existing within the detection range of the surrounding environment sensor 14 as a target vehicle.
- Adaptive cruise control is executed by the execution unit 22 based on the target vehicle specified by the identification process.
- the surrounding environment sensor 14 rotates integrally with the steering wheel 4 of the lean vehicle 1.
- the rider may perform an operation of shaking the handlebar 4 from side to side in small increments in order to balance the lean vehicle 1.
- the direction of the surrounding environment sensors 1-4 changes in synchronization with the steering wheel 4, and the detection range of the surrounding environment sensors 1-4 is swung left and right. This makes it difficult to appropriately identify the target vehicle, making it difficult to appropriately execute speed control.
- the target vehicle identification process it is possible to appropriately identify the target vehicle and appropriately execute speed control.
- the identification unit 23 of the control device 20 executes the identification process to identify the target vehicle.
- a first process, a second process, and a third process will be described in order as processing examples related to the specific process performed by the control device 20 (specifically, the specific unit 23).
- low-speed driving in which the lean vehicle 1 travels at a speed lower than the reference speed is also simply referred to as low-speed driving.
- the reference speed is, for example, a speed that is low enough to require the rider to swing the handlebar 4 from side to side in small increments in order to balance the lean vehicle 1.
- FIG. 3 is a flowchart showing an example of the flow of the first process performed by the control device 20.
- Step S101 in FIG. 3 corresponds to the start of the control flow shown in FIG.
- step S102 the identification unit 23 determines the expected travel trajectory of the lean vehicle 1 (the expected travel trajectory 4 in FIG. 4, which will be described later). 0) Determine ⁇
- the predicted travel trajectory determined in step S1 ⁇ 2 is the trajectory that lean vehicle 1 is expected to travel in the future.
- the identification unit 23 determines the expected travel trajectory based on, for example, the lean angle of the lean vehicle 1 and the steering angle of the steering wheel 4.
- the detection range determined in step S 1 0 3 is the detection range that is valid in the specific process among all the detection ranges that can be detected by the surrounding environment sensor 1 4 .
- the identification unit 23 determines the detection range of the surrounding environment sensor 14 used for the identification process based on the predicted travel trajectory of the lean vehicle 1. For example, the specifying unit 23 selects a range having a predetermined width (see first width D1 in FIG. 4, which will be described later) centered on the expected travel trajectory, using the surrounding environment sensor 14 used for the specifying process. Determine as the detection range.
- step S 1 ⁇ 4 the identification unit 2 3 identifies the vehicle detected by the surrounding environment sensor 1 4 as the target vehicle. Specifically, the identifying unit 23 identifies a vehicle existing within the detection range determined in step S103 as a target vehicle.
- step S 1 the identification unit 2 3 determines whether the speed information of the lean vehicle 1 indicates that the lean vehicle 1 is running at a low speed or is running at a low speed. It is determined whether the information indicates that the vehicle is in the process of changing to driving.
- the above speed information is information regarding the speed of the lean vehicle 1, and various information can be used as the above speed information.
- the speed information is information indicating the speed of the lean vehicle 1.
- Information indicating the speed of the lean vehicle 1 can be obtained based on the output results of the front wheel speed sensor 16 and the output result of the rear wheel speed sensor 17, for example.
- the identifying unit 23 determines that the speed information is information indicating that the lean vehicle 1 is running at low speed. For example, if the speed of the lean vehicle 1 is gradually decreasing and is expected to fall below the standard speed, the specifying unit 23 determines that the speed information indicates the process of the lean vehicle 1 changing to low-speed driving. It is determined that the information indicates that
- the speed information is information indicating the deceleration of the lean vehicle 1.
- Information indicating the deceleration of the lean vehicle 1 can be obtained based on the change in the speed of the lean vehicle 1. For example, in the specific part 2 3, although the speed of lean vehicle 1 is higher than the reference speed, if lean vehicle 1 is decelerating and the deceleration of lean vehicle 1 is greater than the reference deceleration, the speed information is set to lean vehicle 1. is determined to be information indicating that the vehicle is in the process of changing to low-speed driving.
- the speed information is information regarding the brake operation by the rider of the lean vehicle 1.
- the information regarding brake operation include information indicating the amount of brake operation, information indicating master cylinder pressure, and the like.
- specific part 2 3 indicates that although the speed of lean vehicle 1 is higher than the reference speed, the brake operation is being performed and the amount of brake operation is greater than the standard operation amount, or the master cylinder pressure is lower than the reference pressure. If it is higher than that, it is determined that the speed information is information indicating that the lean vehicle 1 is in the process of changing to low speed driving.
- step S 1 0 if it is determined that the speed information is not information indicating that lean vehicle 1 is running at low speed or is in the process of changing to low speed running (step S ! ⁇ 5 / NO ), return to step S 1 0 2.
- step S1 ⁇ 5 the speed information is If it is determined that the information indicates that lean vehicle 1 is running at low speed or is in the process of changing to low speed running (Step S! ⁇ 5 / YES), Step S 1 ⁇ 5 is repeated. It will be done.
- step S 1 0 5 While the determination in step S 1 0 5 continues to be YES, step S ! In other words, if lean vehicle 1 is driving at low speed or is in the process of changing to low speed driving, changing the target vehicle is prohibited.
- FIG. 4 is a diagram showing a state in which the preceding vehicle 30 is located outside the detection range 50 of the ambient environment sensor 14 of the lean vehicle 1.
- lean vehicle 1 and leading vehicle 30 are running side by side in the same lane.
- Leading vehicle 30 is located in front of lean vehicle 1.
- the preceding vehicle 30 is a four-wheeled car.
- the preceding vehicle 3 ⁇ may be a vehicle other than a four-wheeled automobile (for example, a saddle-riding vehicle, etc.).
- the preceding vehicle 30 exists within the detection range of the surrounding environment sensor 14, and the preceding vehicle 30 is identified as the target vehicle. It had been. In this situation, in the first process described above, since the lean vehicle 1 starts running at low speed, changing the target vehicle is prohibited, so that the preceding vehicle 30 is detected as shown in FIG. Even if the vehicle deviates from the range 50, the preceding vehicle 30 is maintained as the target vehicle.
- the identification unit 23 determines whether or not to change the target vehicle according to the speed information. Specifically, the identification unit 23 prohibits changing the target vehicle when the speed information is information indicating that the lean vehicle 1 is running at low speed or is in the process of changing to low speed travel. do. This prevents the target vehicle from being lost in the event that the target vehicle deviates from the detection range of the surrounding environment sensor 14 due to the rider operating the steering wheel to balance the lean vehicle 1. be done. Therefore, the target vehicle can be appropriately identified and speed control can be appropriately executed.
- the identifying unit 23 may perform a process different from the first process described above. For example, if there is a prohibition condition for changing the target vehicle based on information other than speed information, the specifying unit 23 determines whether the speed information indicates that the lean vehicle 1 is traveling at low speed or is changing to low speed. If the information indicates that the lean vehicle 1 is in the process of changing, the above prohibition is prohibited compared to if the speed information does not indicate that lean vehicle 1 is running at low speed or is in the process of changing to low speed. The conditions may be set so that changing the target vehicle is likely to be prohibited.
- the speed information indicates that the lean vehicle 1 is traveling at low speed or is changing to low speed. If it is determined that the information does not indicate that a change is in progress, the function that prohibits changing the target vehicle is canceled.
- the conditions for canceling the function that prohibits changing the target vehicle may be other than the above example. For example, the condition that the rider performs a specific operation using the input device 13 or the like may be used as a condition for canceling the function that prohibits changing the target vehicle.
- the condition that the lean vehicle 1 is determined to be traveling on a curve may be used as the condition for canceling the function that prohibits the change.
- the identification unit 23 can determine whether the lean vehicle 1 is traveling in a curve based on, for example, the lean angle of the lean vehicle 1, the degree of change in the lean angle, or the yaw rate of the lean vehicle 1. .
- FIG. 5 is a flowchart showing an example of the flow of the second process performed by the control device 20. Step S2 ⁇ 1 in FIG. 5 corresponds to the start of the control flow shown in FIG.
- step S 2 0 2 the identification unit 2 3 determines the expected travel trajectory 4 0 of the lean vehicle 1 .
- the process in step S202 is similar to the process in step S102 in FIG.
- step S 2 0 3 determines whether the speed information of the lean vehicle 1 indicates that the lean vehicle 1 is traveling at low speed, or is traveling at low speed. It is determined whether the information indicates that the vehicle is in the process of changing to driving.
- the process in step S203 is similar to the process in step S105 in FIG.
- step S 2 0 if it is determined that the speed information is not information indicating that the lean vehicle 1 is running at low speed or is in the process of changing to low speed running (step S 2 0 3 / N O ), proceed to step S 2 0 4.
- the identification unit 23 determines the detection range 50 by setting the width of the detection range 50 of the ambient environment sensor 14 used for identification processing to the first width D1. Specifically, the identifying unit 23 determines a range having a first width D 1 centered on the expected travel trajectory 40 as the detection range 50.
- step S 2 0 3 it is determined that the speed information is information indicating that the lean vehicle 1 is running at low speed or is in the process of changing to low speed running. If (Step S 2 0 3 / Y E S ), proceed to Step S 2 0 5.
- the identification unit 2 3 sets the width of the detection range 5 0 of the ambient environment sensor 1 4 used for identification processing to a second width (see second width D 2 in FIG. 6 described later). Set to determine the detection range 5 0.
- the second width D 2 is wider than the first width D 1 .
- the specifying unit 23 determines a range having the second width D2 centered on the expected travel trajectory 40 as the detection range 50.
- FIG. 6 is a diagram showing how the detection range 5 ⁇ of the ambient environment sensor 1 4 of the lean vehicle 1 is expanded.
- a leading vehicle 30 is running in front of the lean vehicle 1 in the same lane.
- leading vehicle 30 moves out of the detection range 50.
- the detection range 50 is expanded as shown in FIG.
- the preceding vehicle 30 does not deviate from the detection range 50, and the situation in which the preceding vehicle 30 is located within the detection range 50 is maintained.
- the identification unit 23 when extending the detection range 50, the identification unit 23 extends the detection range 50 symmetrically on both sides with the expected travel trajectory 40 as the center. However, when extending the detection range 50, the identification unit 23 may extend the detection range 50 only to one side with respect to the expected travel trajectory 40. For example, the identification unit 23 only detects the direction in which the expected travel trajectory 40 curves relative to the body of the lean vehicle 1 (to the left in the example of Figure 6) and the opposite direction (to the right in the example of Figure 6). , the detection range 5 0 may be extended.
- step S206 the identification unit 23 targets the vehicle detected by the surrounding environment sensor 14. Identify it as a vehicle and return to step S202.
- the process in step S206 is the same as the process in step S104 in Figure 3. It is.
- the identification unit 23 determines the detection range 50 of the surrounding environment sensor 14 used for the identification process. , vary based on speed information.
- the specifying unit 23 is information indicating that the speed information indicates that the lean vehicle 1 is running at a low speed lower than the reference speed, or is in the process of changing to low speed running.
- the detection range 50 is expanded compared to the case where the speed information does not indicate that the lean vehicle 1 is running at low speed or is in the process of changing to low speed travel.
- the target vehicle will not deviate from the detection range 50, and the target vehicle will be located within the detection range 50. The situation is maintained. Therefore, it is possible to appropriately identify the target vehicle and appropriately execute speed control.
- the identification unit 2 3 may perform processing different from the second processing described above.
- the specific unit 23 may gradually expand the detection range 50 of the ambient environment sensor 14 as the speed of the lean vehicle 1 decreases.
- the identifying unit 23 may change the shape, extending direction, or relative position of the detection range 50 of the surrounding environment sensor 14 with respect to the lean vehicle 1 based on the speed information.
- the speed information indicates that the lean vehicle 1 is running at low speed or has changed to running at low speed. If it is determined that the information does not indicate a process, the function to extend the detection range 50 is canceled.
- the conditions for canceling the function that expands the detection range 50 may be other than the above example.
- the condition for canceling a function that extends the detection range 50 similar to a condition for canceling a function that prohibits changing the target vehicle, the condition for canceling a function that extends the detection range 50 may be that a specific operation using an input device 1 or 3 has been performed by the rider.
- the condition , or the condition that lean vehicle 1 is determined to be traveling on a curve may be used.
- FIG. 7 is a flowchart illustrating an example of the flow of the third process performed by the control device 20. Step S3 ⁇ 1 in FIG. 7 corresponds to the start of the control flow shown in FIG.
- step S 3 0 2 the identification unit 2 3 determines the expected travel trajectory 4 0 of the lean vehicle 1 .
- the process in step S302 is similar to the process in step S102 in FIG.
- step S 3 0 3 the identification unit 2 3 determines whether the speed information of the lean vehicle 1 indicates that the lean vehicle 1 is running at a low speed or is running at a low speed. It is determined whether the information indicates that the vehicle is in the process of changing to driving.
- the process in step S303 is similar to the process in step S105 in FIG.
- step S 3 0 3 if it is determined that the speed information is information indicating that lean vehicle 1 is running at low speed or is in the process of changing to low speed running ( Step S 3 0 3 / Y E S ), proceed to step S 3 0 4. On the other hand, if it is determined in step S 3 0 3 that the speed information is not information indicating that the lean vehicle 1 is running at low speed or is in the process of changing to low speed running (step S 3 0 3 / NO), step S304 is not performed and the process proceeds to step S305.
- step S 3 0 4 the identification unit 2 3 executes a fluctuation suppression process to suppress fluctuations in the expected travel trajectory 40 of the lean vehicle 1 in the vehicle width direction.
- the steering wheel operation performed by the rider to balance the lean vehicle 1 is an operation of shaking the steering wheel 4 from side to side in small increments. Therefore, when such a steering wheel operation is performed, the expected travel trajectory 40 determined in step S302 varies in the vehicle width direction of the lean vehicle 1. Specifically, the direction in which the predicted travel trajectory 40 curves oscillates left and right within a width of variation in the vehicle width direction (for example, the width D 3 in FIG. 8, which will be described later).
- the identification unit 2 3 performs filter processing using a low-pass filter on the data indicating the transition of the expected travel trajectory 4 0 to reduce the variation in the vehicle width direction.
- the predicted driving trajectory 40 is adjusted so that the fluctuation range of the predicted driving trajectory 40 is smaller than when fluctuation suppression processing is not executed. Further, for example, the identification unit 2 3 determines the expected travel trajectory in the vehicle width direction.
- FIG. 8 is a diagram showing how fluctuations in the expected travel trajectory 4 in the vehicle width direction of the lean vehicle 1 are suppressed.
- a leading vehicle 30 is running in front of the lean vehicle 1 in the same lane.
- leading vehicle 30 moves out of the detection range 50.
- the fluctuation suppression process is performed as the lean vehicle 1 starts running at low speed.
- the variation width of the expected travel trajectory 40 in the vehicle width direction changes from width D 3 to width D 4.
- the width D 4 after the change is smaller than the width D 3 when the fluctuation suppression process is not executed. In this way, fluctuations in the expected travel trajectory 40 in the vehicle width direction are suppressed by the fluctuation suppression process, so that the detection range 50 is suppressed from swinging to the left or right in synchronization with the steering wheel 4. As a result, the situation where the preceding vehicle 30 is located within the detection range 50 is maintained without leaving the detection range 50.
- Determine the detection range 5 0 of the ambient environment sensor 1 4 used in The process in step S304 is similar to the process in step S103 in FIG.
- step S 3 0 6 the identification unit 2 3 identifies the vehicle detected by the surrounding environment sensor 1 4 as a target vehicle, and in step S 3 0 2 Return to step S 3 0 5, in step S 3 0 6, the identification unit 2 3 identifies the vehicle detected by the surrounding environment sensor 1 4 as a target vehicle, and in step S 3 0 2 Return to step S 3 0 5, in step S 3 0 6, the identification unit 2 3 identifies the vehicle detected by the surrounding environment sensor 1 4 as a target vehicle, and in step S 3 0 2 Return to step S 3 0 5.
- the process of 5 3 0 6 is similar to the process of step S ! 0 4 in FIG. 3 .
- the specifying unit 23 changes the expected travel trajectory 40 based on the speed information.
- the specific part 2 3 is information indicating that the speed information is that the lean vehicle 1 is running at a low speed lower than the reference speed, or is in the process of changing to low speed running.
- the variation in the expected travel trajectory 40 of the lean vehicle 1 in the vehicle width direction is suppressed.
- the target vehicle will remain within the detection range 50 without leaving the detection range 50. The situation is maintained. Therefore, the target vehicle can be appropriately identified and speed control can be appropriately executed.
- the identifying unit 23 may perform a process different from the third process described above.
- the identification unit 23 may perform the fluctuation suppression process so that the suppression effect gradually increases as the speed of the lean vehicle 1 decreases.
- the speed information indicates that the lean vehicle 1 is traveling at a low speed, or that the lean vehicle 1 is traveling at a low speed. If it is determined that the information does not indicate that the vehicle is in the process of changing to removed.
- the conditions for canceling the function of suppressing fluctuations in the expected travel trajectory 40 may be other than the above example. For example, as a condition for canceling a function that suppresses fluctuations in the predicted travel trajectory, similar to a condition for canceling a function that prohibits changing the target vehicle, a specific operation using an input device 13 etc. is performed by the rider. Alternatively, the condition that lean vehicle 1 is determined to be traveling on a curve may be used.
- the identification unit 23 may execute each of the processing examples described above in a situation where a group consisting of a plurality of vehicles including the lean vehicle 1 is traveling in a group.
- group driving a group consisting of multiple vehicles including lean vehicle 1 travels in multiple vehicle convoys (specifically, two vehicle convoys, one on the left and one on the right in the same lane). .
- the control device 2 0 executes speed control (in the above example, adaptive cruise control) that controls the speed of the lean vehicle 1 based on the positional relationship information between the lean vehicle 1 and the target vehicle. It includes an execution unit 22 and a identification unit 23 that executes identification processing to identify the target vehicle based on the detection results of the ambient environment sensor 14 mounted on the lean vehicle 1. Then, the specifying unit 23 changes the specifying process based on the speed information of the lean vehicle 1. As a result, even if the rider operates the steering wheel to balance the lean vehicle 1, the target vehicle can be appropriately identified. Therefore, speed control can be appropriately executed based on the positional relationship information between lean vehicle 1 and the target vehicle.
- speed control in the above example, adaptive cruise control
- the surrounding environment sensor 14 rotates integrally with the steering wheel 4 of the lean vehicle 1.
- the direction of the surrounding environment sensors 1 4 changes in synchronization with the steering wheel 4, and the detection range 5 0 of the surrounding environment sensors 1 4 changes from left to right. is shaken by. This tends to make it difficult to appropriately identify the target vehicle. Therefore, it is particularly important to appropriately identify the target vehicle by changing the identification process based on speed information.
- the surrounding environment sensor 14 does not have to rotate integrally with the steering wheel 4 of the lean vehicle 1. Even in such a case, the detection results of the surrounding environment sensor 14 may vary due to the rider operating the steering wheel to balance the lean vehicle 1. Therefore, by changing the identification process based on the speed information, it is possible to appropriately identify the target vehicle and appropriately execute speed control.
- the specifying unit 23 determines whether or not to change the target vehicle according to the speed information.
- the target vehicle deviates from the detection range of the surrounding environment sensor 14 due to the rider operating the steering wheel to balance the lean vehicle 1. This prevents the target vehicle from being lost. Therefore, the target vehicle can be appropriately identified and speed control can be appropriately executed.
- the identification unit 23 is configured such that the speed information indicates that the lean vehicle 1 is running at a low speed lower than the reference speed, or that the lean vehicle 1 is running at a low speed at a speed lower than the reference speed. If the information indicates that a change is in progress, changing the target vehicle is prohibited.
- the target vehicle deviates from the detection range 50 of the surrounding environment sensor 1 4 due to the rider operating the steering wheel to balance the lean vehicle 1, , it is possible to appropriately prevent the target vehicle from being lost. Therefore, it is possible to properly identify the target vehicle and determine its speed. Appropriate execution of control is appropriately achieved.
- the specifying unit 23 changes the detection range 50 of the surrounding environment sensor 14 used for the specifying process based on the speed information.
- the target vehicle will not deviate from the detection range 5 0 and the detection range 5 will be maintained.
- the situation where the target vehicle is located within 0 is maintained. Therefore, the target vehicle can be appropriately identified and speed control can be appropriately executed.
- the identification unit 23 is configured such that the speed information indicates that the lean vehicle 1 is running at a low speed lower than the reference speed, or that the lean vehicle 1 is running at a low speed.
- the detection range 5 is greater than in the case where the speed information is not information indicating that the lean vehicle 1 is running at low speed or is in the process of changing to low speed running. Expand ⁇ .
- the detection range 50 of the surrounding environment sensor 14 used for the identification process is determined based on the expected travel trajectory 40 of the lean vehicle 1, and the identification unit 2 3 changes the predicted travel trajectory 40 based on speed information.
- the target vehicle will not deviate from the detection range 5 0 and the detection range 5 will be maintained.
- the situation where the target vehicle is located within 0 is maintained. Therefore, the target vehicle can be appropriately identified and speed control can be appropriately executed.
- the identification unit 23 is configured such that the speed information indicates that the lean vehicle 1 is running at a low speed lower than a reference speed, or that the lean vehicle 1 is running at a low speed lower than the reference speed. If the information indicates that a change is in progress, the variation in the expected travel trajectory 40 of the lean vehicle 1 in the vehicle width direction is suppressed. As a result, as in the third process described above, even if the rider operates the steering wheel to balance the lean vehicle 1, the target vehicle will not deviate from the detection range 5 0 and the detection range 5 will be maintained. Maintaining the situation where the target vehicle is located within ⁇ is appropriately achieved. Therefore, it is possible to appropriately identify the target vehicle and appropriately execute speed control.
- the speed information is information indicating the speed of the lean vehicle 1.
- the speed information is information indicating the speed of the lean vehicle 1.
- the speed information is information indicating the deceleration of the lean vehicle 1.
- the speed information is information indicating the deceleration of the lean vehicle 1.
- the speed information is information regarding a brake operation by a rider of the lean vehicle 1.
- the speed information is information regarding a brake operation by a rider of the lean vehicle 1.
- the present invention is not limited to the description of the embodiments. For example, even if only some of the embodiments are implemented good.
- the speed information used in each of the first processing, second processing, and third processing described above is not particularly limited. Specifically, in each of the first processing, second processing, and third processing explained above, information indicating the speed of the lean vehicle 1 may be used as the speed information, and the information indicating the speed of the lean vehicle 1 may be used as the speed information. Information indicating deceleration may be used, or information regarding brake operation by the rider of the lean vehicle 1 may be used.
- speed information information indicating the speed of the lean vehicle 1
- information indicating the deceleration of the lean vehicle 1 information indicating the deceleration of the lean vehicle 1
- information indicating the deceleration of the lean vehicle 1 are used as speed information.
- Multiple types of information among the information regarding the brake operation by the rider of vehicle 1 may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Controls For Constant Speed Travelling (AREA)
Abstract
本発明は、リーン車両と目標車両との位置関係情報に基づく速度制御を適切に実行することができる制御装置及び制御方法を得るものである。 本発明に係る制御装置(20)及び制御方法では、制御装置(20)の実行部が、リーン車両(1)と目標車両との位置関係情報に基づいてリーン車両(1)の速度を制御する速度制御を実行し、制御装置(20)の特定部が、リーン車両(1)に搭載された周囲環境センサ(14)の検出結果に基づいて、目標車両を特定する特定処理を実行し、特定部は、リーン車両(1)の速度情報に基づいて、特定処理を変化させる。
Description
【書類名】 明細書
【発明の名称】 制御装置及び制御方法
【技術分野】
【。 0 0 1】 この開示は、 リーン車両と目標車両との位置関係情報に基づく速度制御を適切に実行す ることができる制御装置及び制御方法に関する。
【背景技術】
【。 0 0 2】 モータサイクル等のリーン車両に関する従来の技術として、 ライダーの運転を支援する 技術がある。 例えば、 特許文献 1では、 走行方向又は実質的に走行方向にある障害物を検 出するセンサ装置により検出された情報に基づいて、 不適切に障害物に接近していること をモータサイクルのライダーへ警告する運転者支援システムが開示されている。
【先行技術文献】
【特許文献】
【〇 0 0 3】
【特許文献 1】 特開 2 0 0 9 — 1 1 6 8 8 2号公報
【発明の概要】
【発明が解決しようとする課題】
【〇 0 0 4】 運転を支援するための技術として、 リーン車両と目標車両との位置関係情報に基づいて リーン車両の速度を制御する速度制御がある。 このような速度制御としては、 例えば、 ア ダプティブクルーズコントロールが挙げられる。 アダプティブクルーズコントロールでは 、 リーン車両と目標車両との車間距離が安全な距離に確保されるように、 リーン車両の速 度が制御される。 目標車両は、 例えば、 リーン車両に搭載された周囲環境センサの検出結 果に基づいて特定される。
【〇 0 0 5】 ここで、 リーン車両の姿勢は、 四輪を有する自動車の姿勢と比較して、 不安定になりや すい。 具体的には、 リーン車両は、 停止した状態では自立できず、 リーン車両の速度が低 くなると倒れやすくなってしまう。 ゆえに、 低速走行時には、 リーン車両のバランスを取 るために、 ライダーは、 ハンドルを小刻みに左右に振る操作を行う場合がある。 このよう なハンドル操作が行われると、 例えば、 周囲環境センサの向きが変動すること等に起因し 、 目標車両を適切に特定することが困難となる。 それにより、 速度制御を適切に実行する ことが困難となる。
【〇 0 0 6】 本発明は、 上述の課題を背景としてなされたものであり、 リーン車両と目標車両との位 置関係情報に基づく速度制御を適切に実行することができる制御装置及び制御方法を得る ものである。
【課題を解決するための手段】
【〇 0 0 7】 本発明に係る制御装置は、 リーン車両の挙動を制御する制御装置であって、 前記リーン 車両と目標車両との位置関係情報に基づいて前記リーン車両の速度を制御する速度制御を 実行する実行部と、 前記リーン車両に搭載された周囲環境センサの検出結果に基づいて、 前記目標車両を特定する特定処理を実行する特定部と、 を備え、 前記特定部は、 前記リー ン車両の速度情報に基づいて、 前記特定処理を変化させる。
【〇 0 0 8】 本発明に係る制御方法は、 リーン車両の挙動を制御する制御方法であって、 制御装置の 実行部が、 前記リーン車両と目標車両との位置関係情報に基づいて前記リーン車両の速度 を制御する速度制御を実行し、 前記制御装置の特定部が、 前記リーン車両に搭載された周 囲環境センサの検出結果に基づいて、 前記目標車両を特定する特定処理を実行し、 前記特 定部は、 前記リーン車両の速度情報に基づいて、 前記特定処理を変化させる。
【発明の効果】
[ 0 0 0 9] 本発明に係る制御装置及び制御方法では、 制御装置の実行部が、 リーン車両と目標車両 との位置関係情報に基づいてリーン車両の速度を制御する速度制御を実行し、 制御装置の 特定部が、 リーン車両に搭載された周囲環境センサの検出結果に基づいて、 目標車両を特 定する特定処理を実行し、 特定部は、 リーン車両の速度情報に基づいて、 特定処理を変化 させる。 それにより、 リーン車両のバランスを取るためのハンドル操作がライダーにより 行われた場合であっても、 目標車両を適切に特定することできる。 ゆえに、 リーン車両と 目標車両との位置関係情報に基づく速度制御を適切に実行することができる。
【図面の簡単な説明】
[ 0 0 1 0]
【図 1】 本発明の実施形態に係るリーン車両の概略構成を示す模式図である。
[図 2] 本発明の実施形態に係る制御装置の機能構成の一例を示すブロック図である
[図 3] 本発明の実施形態に係る制御装置が行う第 1処理の流れの一例を示すフロー チャートである。
[図 4] 本発明の実施形態に係るリーン車両の周囲環境センサの検出範囲より外側に 先行車両が位置している様子を示す図である。
[図 5] 本発明の実施形態に係る制御装置が行う第 2処理の流れの一例を示すフロー チャートである。
[図 6] 本発明の実施形態に係るリーン車両の周囲環境センサの検出範囲が拡張され ている様子を示す図である。
[図 7] 本発明の実施形態に係る制御装置が行う第 3処理の流れの一例を示すフロー チャートである。
[図 8] 本発明の実施形態に係るリーン車両の車幅方向における予想走行軌跡の変動 が抑制されている様子を示す図である。
[発明を実施するための形態]
[ 0 0 1 1] 以下に、 本発明に係る制御装置及び制御方法について、 図面を用いて説明する。
[ 0 0 1 2] なお、 以下では、 二輪のモータサイクルに用いられる制御装置について説明しているが (図 1中のリーン車両 1を参照) 、 本発明に係る制御装置の制御対象となる車両は、 リー ン車両であればよく、 二輪のモータサイクル以外の他のリーン車両であってもよい。 リー ン車両は、 右方向への旋回走行に際して車体が右側に倒れ、 左方向への旋回走行に際して 車体が左側に倒れる車両を意味する。 リーン車両には、 例えば、 モータサイクル (自動ニ 輪車、 自動三輪車) 、 自転車等が含まれる。 モータサイクルには、 エンジンを動力源とす る車両、 電気モータを動力源とする車両等が含まれる。 モータサイクルには、 例えば、 オ ートバイ、 スクーター、 電動スクーター等が含まれる。 自転車は、 ペダルに付与されるラ イダーの踏力によって路上を推進することが可能な車両を意味する。 自転車には、 電動ア シス ト自転車、 電動自転車等が含まれる。
[ 0 0 1 3] また、 以下では、 車輪を駆動するための動力を出力可能な駆動源としてエンジン (具体 的には、 後述される図 1中のエンジン 1 1 ) が搭載されている場合を説明しているが、 駆 動源としてエンジン以外の他の駆動源 (例えば、 電気モータ) が搭載されていてもよく、 複数の駆動源が搭載されていてもよい。
[ 0 0 1 4] また、 以下で説明する構成及び動作等は一例であり、 本発明に係る制御装置及び制御方 法は、 そのような構成及び動作等である場合に限定されない。
[ 0 0 1 5] また、 以下では、 同一の又は類似する説明を適宜簡略化又は省略している。 また、 各図
慣性計測装置 1 5は、 3軸のジャイロセンサ及び 3方向の加速度センサを備えており、 リーン車両 1の姿勢を検出する。 慣性計測装置 1 5は、 例えば、 リーン車両 1の胴体に設 けられている。 例えば、 慣性計測装置 1 5は、 リーン車両 1のリーン角を検出し、 検出結 果を出力する。 慣性計測装置 1 5が、 リーン車両 1のリーン角に実質的に換算可能な他の 物理量を検出するものであってもよい。 リーン角は、 鉛直上方向に対するリーン車両 1の 車体 (具体的には、 胴体) のロール方向の傾きを表す角度に相当する。 慣性計測装置 1 5 が、 3軸のジャイロセンサ及び 3方向の加速度センサの一部のみを備えていてもよい。
[ 0 0 2 5 ] 前輪車輪速センサ 1 6は、 前輪 2の車輪速 (例えば、 前輪 2の単位時間当たりの回転数 [ r p m ] 又は単位時間当たりの移動距離 [ k m/ h : 等) を検出する車輪速センサであ り、 検出結果を出力する。 前輪車輪速センサ 1 6が、 前輪 2の車輪速に実質的に換算可能 な他の物理量を検出するものであってもよい。 前輪車輪速センサ 1 6は、 前輪 2に設けら れている。
[ 0 0 2 6 ] 後輪車輪速センサ 1 7は、 後輪 3の車輪速 (例えば、 後輪 3の単位時間当たりの回転数 [ r p m ] 又は単位時間当たりの移動距離 [ k m/ h ] 等) を検出する車輪速センサであ り、 検出結果を出力する。 後輪車輪速センサ 1 7が、 後輪 3の車輪速に実質的に換算可能 な他の物理量を検出するものであってもよい。 後輪車輪速センサ 1 7は、 後輪 3に設けら れている。
[ 0 0 2 7 ] 制御装置 2 0は、 リーン車両 1の挙動を制御する。 例えば、 制御装置 2 0の一部又は全 ては、 マイコン、 マイクロプロセッサユニッ ト等で構成されている。 また、 例えば、 制御 装置 2 0の一部又は全ては、 ファームウェア等の更新可能なもので構成されてもよく、 C P U等からの指令によって実行されるプログラムモジュール等であってもよい。 制御装置 2 0は、 例えば、 1つであってもよく、 また、 複数に分かれていてもよい。
[ 0 0 2 8 ] 制御装置 2 0は、 図 2に示されるように、 例えば、 取得部 2 1 と、 実行部 2 2と、 特定 部 2 3とを備える。 また、 制御装置 2 0は、 リーン車両 1の各装置と通信する。
[ 0 0 2 9 ] 取得部 2 1は、 リーン車両 1の各装置から情報を取得し、 実行部 2 2及び特定部 2 3へ 出力する。 例えば、 取得部 2 1は、 入力装置 1 3、 周囲環境センサ 1 4、 慣性計測装置 1 5 、 前輪車輪速センサ 1 6及び後輪車輪速センサ 1 7から情報を取得する。 なお、 本明細 書において、 情報の取得には、 情報の抽出又は生成等が含まれ得る。
[ 0 0 3 0 ] 実行部 2 2は、 リーン車両 1の各装置の動作を制御することによって、 各種制御を実行 する。 実行部 2 2は、 例えば、 エンジン 1 1及び液圧制御ユニッ ト 1 2の動作を制御する 。 ここで、 実行部 2 2は、 リーン車両 1 と目標車両との位置関係情報に基づく速度制御と して、 アダプティブクルーズコントロールを実行することができる。 なお、 上記の位置関 係情報は、 例えば、 目標車両に対するリーン車両 1の相対位置、 相対距離、 相対速度、 相 対加速度、 相対加加速度又は通過時間差等の情報を含み得る。 上記の位置関係情報は、 こ れらの情報に実質的に換算可能な他の物理量の情報であってもよい。
[ 0 0 3 1 ] 以下では、 リーン車両 1 と目標車両との位置関係情報に基づく速度制御として、 アダプ ティブクルーズコントロールが実行される例を説明する。 ただし、 速度制御は、 リーン車 両 1 と目標車両との位置関係情報に基づく制御であればよく、 アダプティブクルーズコン トロール以外の制御であってもよい。
[ 0 0 3 2 ] 実行部 2 2は、 例えば、 入力装置 1 3を用いたライダーによる操作に応じてアダプティ ブクルーズコントロールを実行する。 アダプティブクルーズコントロールでは、 実行部 2 2 は、 ライダーによる加減速操作 (つまり、 アクセル操作及びブレーキ操作) によらずに
リーン車両 1の速度を自動で制御する。 実行部 2 2は、 例えば、 前輪 2の車輪速、 及び、 後輪 3の車輪速に基づいて取得されるリーン車両 1の速度の情報に基づいて、 リーン車両 1 の速度を制御することができる。
[ 0 0 3 3 ] アダプティブクルーズコントロールでは、 実行部 2 2は、 リーン車両 1 と目標車両との 車間距離を目標距離に維持する車間距離維持制御を行う。 実行部 2 2は、 周囲環境センサ 1 4により検出される周囲環境情報に基づいて、 車間距離維持制御を行う。 周囲環境セン サ 1 4は、 リーン車両 1の前方を走行する先行車両とリーン車両 1 との車間距離、 及び、 先行車両に対するリーン車両 1の相対速度を検出することができる。 実行部 2 2は、 例え ば、 車間距離維持制御において、 先行車両を目標車両に設定し、 先行車両との車間距離が 目標距離に維持されるように、 リーン車両 1の速度を制御する。 なお、 車間距離は、 車線 (具体的には、 リーン車両 1の走行レーン) に沿う方向の距離を意味してもよく、 直線距 離を意味してもよい。
[ 0 0 3 4 ] 特定部 2 3は、 リーン車両 1に搭載された周囲環境センサ 1 4の検出結果に基づいて、 目標車両を特定する特定処理を実行する。 周囲環境センサ 1 4の検出範囲は、 リーン車両 1 の前部から前方に広がっている。 周囲環境センサ 1 4は、 検出範囲内の周囲環境情報を 検出することができる。 特定部 2 3は、 特定処理において、 周囲環境センサ 1 4の検出範 囲内に存在する車両を目標車両として特定することができる。 特定処理によって特定され た目標車両に基づいて、 実行部 2 2によるアダプティブクルーズコントロールが実行され る。
[ 0 0 3 5 ] ここで、 周囲環境センサ 1 4は、 リーン車両 1のハンドル 4と一体的に回動する。 リー ン車両 1の低速走行時には、 リーン車両 1のバランスを取るために、 ライダーは、 ハンド ル 4を小刻みに左右に振る操作を行う場合がある。 このようなハンドル操作が行われると 、 周囲環境センサ 1 4の向きがハンドル 4と同期して変動し、 周囲環境センサ 1 4の検出 範囲が左右に振られる。 それにより、 目標車両を適切に特定することが困難となるので、 速度制御を適切に実行することが困難となる。 本実施形態では、 後述するように、 目標車 両の特定処理に工夫が施されることによって、 目標車両を適切に特定し、 速度制御を適切 に実行することが実現される。
[ 0 0 3 6 ] く制御装置の動作> 図 3〜図 8を参照して、 本発明の実施形態に係る制御装置 2〇の動作について説明する
[ 0 0 3 7 ] 上述したように、 制御装置 2 0の特定部 2 3は、 目標車両を特定する特定処理を実行す る。 以下では、 制御装置 2 0 (具体的には、 特定部 2 3 ) により行われる特定処理に関す る処理例として、 第 1処理、 第 2処理及び第 3処理を順に説明する。
[ 0 0 3 8 ] なお、 以下では、 リーン車両 1が基準速度より低い速度で走行する低速走行を単に低速 走行とも呼ぶ。 基準速度は、 例えば、 リーン車両 1のバランスを取るために、 ライダーが 、 ハンドル 4を小刻みに左右に振る操作を行う必要が生じる程度に低い速度である。
[ 0 0 3 9 ] 図 3は、 制御装置 2 0が行う第 1処理の流れの一例を示すフローチャートである。 図 3 におけるステップ S 1 0 1は、 図 3に示される制御フローの開始に対応する。
[ 0 0 4 0 ] 図 3に示される制御フローが開始されると、 ステップ S 1 0 2において、 特定部 2 3は 、 リーン車両 1の予想走行軌跡 (後述する図 4中の予想走行軌跡 4 0を参照) を決定する 〇
[ 0 0 4 1 ]
ステップ S 1 〇 2で決定される予想走行軌跡は、 リーン車両 1が今後通過することが予 想される軌跡である。 ステップ S ! 〇 2では、 特定部 2 3は、 例えば、 リーン車両 1のリ ーン角、 及び、 ハンドル 4の操舵角等に基づいて、 予想走行軌跡を決定する。
[ 0 0 4 2 ] ステップ S ! 〇 2の次に、 ステップ S 1 0 3において、 特定部 2 3は、 特定処理に用い られる周囲環境センサ 1 4の検出範囲 (後述する図 4中の検出範囲 5 0を参照) を決定す る。
[ 0 0 4 3 ] ステップ S 1 0 3で決定される検出範囲は、 周囲環境センサ 1 4により検出可能な全検 出範囲の中で特定処理において有効とする検出範囲である。 ステップ S 1 0 3では、 特定 部 2 3は、 特定処理に用いられる周囲環境センサ 1 4の検出範囲を、 リーン車両 1の予想 走行軌跡に基づいて決定する。 例えば、 特定部 2 3は、 予想走行軌跡を中心とする所定の 幅 (後述する図 4中の第 1幅 D 1を参照) を有する範囲を、 特定処理に用いられる周囲環 境センサ 1 4の検出範囲として決定する。
[ 0 0 4 4 ] ステップ S ! 〇 3の次に、 ステップ S 1 〇 4において、 特定部 2 3は、 周囲環境センサ 1 4により検出された車両を目標車両として特定する。 具体的には、 特定部 2 3は、 ステ ップ S 1 〇 3で決定された検出範囲内に存在する車両を目標車両として特定する。
[ 0 0 4 5 ] ステップ S ! 〇 4の次に、 ステップ S 1 〇 5において、 特定部 2 3は、 リーン車両 1の 速度情報が、 リーン車両 1が低速走行を行っている、 又は、 低速走行への変化過程である ことを示す情報であるか否かを判定する。
[ 0 0 4 6 ] 上記の速度情報は、 リーン車両 1の速度に関する情報であり、 上記の速度情報としては 、 種々の情報が用いられ得る。
[ 0 0 4 7 ] 例えば、 速度情報は、 リーン車両 1の速度を示す情報である。 リーン車両 1の速度を示 す情報は、 例えば、 前輪車輪速センサ 1 6の出力結果、 及び、 後輪車輪速センサ 1 7の出 カ結果に基づいて取得され得る。 例えば、 特定部 2 3は、 リーン車両 1の速度が基準速度 より低い場合、 速度情報が、 リーン車両 1が低速走行を行っていることを示す情報である と判定する。 また、 例えば、 特定部 2 3は、 リーン車両 1の速度が徐々に下がっており基 準速度を下回ることが予想される場合、 速度情報が、 リーン車両 1が低速走行への変化過 程であることを示す情報であると判定する。
[ 0 0 4 8 ] また、 例えば、 速度情報は、 リーン車両 1の減速度を示す情報である。 リーン車両 1の 減速度を示す情報は、 リーン車両 1の速度の推移に基づいて取得され得る。 例えば、 特定 部 2 3は、 リーン車両 1の速度が基準速度より高いものの、 リーン車両 1が減速しており 、 リーン車両 1の減速度が基準減速度より大きい場合、 速度情報が、 リーン車両 1が低速 走行への変化過程であることを示す情報であると判定する。
[ 0 0 4 9 ] また、 例えば、 速度情報は、 リーン車両 1のライダーによるブレーキ操作に関する情報 である。 ブレーキ操作に関する情報としては、 例えば、 ブレーキ操作の操作量を示す情報 、 又は、 マスタシリンダ圧を示す情報等が挙げられる。 例えば、 特定部 2 3は、 リーン車 両 1の速度が基準速度より高いものの、 ブレーキ操作が行われており、 ブレーキ操作の操 作量が基準操作量より大きい、 又は、 マスタシリンダ圧が基準圧力より高い場合、 速度情 報が、 リーン車両 1が低速走行への変化過程であることを示す情報であると判定する。
[ 0 0 5 0 ] ステップ S 1 0 5において、 速度情報が、 リーン車両 1が低速走行を行っている、 又は 、 低速走行への変化過程であることを示す情報でないと判定された場合 (ステップ S ! 〇 5 / N O ) 、 ステップ S 1 0 2に戻る。 一方、 ステップ S 1 〇 5において、 速度情報が、
リーン車両 1が低速走行を行っている、 又は、 低速走行への変化過程であることを示す情 報であると判定された場合 (ステップ S ! 〇 5 / Y E S ) 、 ステップ S 1 〇 5が繰り返さ れる。
[ 0 0 5 1 ] ステップ S 1 〇 5で Y E Sと判定され続けている間、 ステップ S ! 〇 5が繰り返される ので、 ステップ S 1 0 2 — S 1 0 4の処理は行われない。 つまり、 リーン車両 1が低速走 行を行っている、 又は、 低速走行への変化過程である場合、 目標車両の変更が禁止される
[ 0 0 5 2 ] 図 4は、 リーン車両 1の周囲環境センサ 1 4の検出範囲 5 0より外側に先行車両 3 0が 位置している様子を示す図である。 図 4の例では、 同一レーンにおいて、 リーン車両 1及 び先行車両 3 0が前後に並んで走行している。 先行車両 3 0は、 リーン車両 1に対して前 方に位置する。 図 4の例では、 先行車両 3 0は四輪の自動車である。 ただし、 先行車両 3 〇は、 四輪の自動車以外の車両 (例えば、 鞍乗り型車両等) であってもよい。
[ 0 0 5 3 ] 図 4の例では、 リーン車両 1が低速走行を開始したことに伴い、 リーン車両 1のバラン スを取るためのハンドル操作がライダーにより行われた結果、 ハンドル 4が左側に振られ ている。 それにより、 左にカーブする軌跡が、 予想走行軌跡 4 0として決定されている。 そして、 予想走行軌跡を中心とする第 1幅 D 1を有する範囲が、 特定処理に用いられる周 囲環境センサ 1 4の検出範囲 5 0として決定されている。 その結果、 周囲環境センサ 1 4 の検出範囲 5 0より外側に先行車両 3〇が位置している。
[ 0 0 5 4 ] リーン車両 1が低速走行を開始する前においては、 周囲環境センサ 1 4の検出範囲 5 〇 内に先行車両 3 0が存在しており、 先行車両 3 0が目標車両として特定されていた。 この ような状況において、 上述した第 1処理では、 リーン車両 1が低速走行を開始したことに 伴い、 目標車両の変更が禁止されるので、 図 4に示されるように、 先行車両 3 0が検出範 囲 5〇から外れた場合であっても、 先行車両 3〇が目標車両として維持される。
[ 0 0 5 5 ] 上記のように、 図 3及び図 4を参照して説明した第 1処理では、 特定部 2 3は、 速度情 報に応じて、 目標車両の変更の可否を決定する。 具体的には、 特定部 2 3は、 速度情報が 、 リーン車両 1が低速走行を行っている、 又は、 低速走行への変化過程であることを示す 情報である場合、 目標車両の変更を禁止する。 それにより、 リーン車両 1のバランスを取 るためのハンドル操作がライダーにより行われたことに伴い目標車両が周囲環境センサ 1 4 の検出範囲 5 0から外れた場合に、 目標車両を見失うことが抑制される。 ゆえに、 目標 車両を適切に特定し、 速度制御を適切に実行することができる。
[ 0 0 5 6 ] ただし、 特定部 2 3は、 速度情報に応じて、 目標車両の変更の可否を決定する場合にお いて、 上記で説明した第 1処理と異なる処理を行ってもよい。 例えば、 速度情報以外の情 報に基づく 目標車両の変更の禁止条件が存在する場合、 特定部 2 3は、 速度情報が、 リー ン車両 1が低速走行を行っている、 又は、 低速走行への変化過程であることを示す情報で ある場合、 速度情報が、 リーン車両 1が低速走行を行っている、 又は、 低速走行への変化 過程であることを示す情報でない場合と比べて、 上記の禁止条件を目標車両の変更が禁止 されやすい条件に設定してもよい。
[ 0 0 5 7 ] また、 上記で説明した第 1処理では、 目標車両の変更が禁止された後において、 速度情 報が、 リーン車両 1が低速走行を行っている、 又は、 低速走行への変化過程であることを 示す情報でないと判定された場合、 目標車両の変更を禁止する機能が解除される。 ただし 、 目標車両の変更を禁止する機能の解除条件は、 上記の例以外であってもよい。 例えば、 目標車両の変更を禁止する機能の解除条件として、 入力装置 1 3等を利用する特定の操作 がライダーによって行われたとの条件が用いられてもよい。 また、 例えば、 目標車両の変
更を禁止する機能の解除条件として、 リーン車両 1がカーブ走行を行っていると判定され たとの条件が用いられてもよい。 特定部 2 3は、 例えば、 リーン車両 1のリーン角、 リー ン角の変化度合い、 又は、 リーン車両 1のヨーレート等に基づいて、 リーン車両 1がカー ブ走行を行っているか否かを判定できる。
[ 0 0 5 8 ] 図 5は、 制御装置 2 0が行う第 2処理の流れの一例を示すフローチャートである。 図 5 におけるステップ S 2 〇 1は、 図 5に示される制御フローの開始に対応する。
[ 0 0 5 9 ] 図 5に示される制御フローが開始されると、 ステップ S 2 0 2において、 特定部 2 3は 、 リーン車両 1の予想走行軌跡 4 0を決定する。 ステップ S 2 0 2の処理は、 図 3のステ ップ S 1 0 2の処理と同様である。
[ 0 0 6 0 ] ステップ S 2 0 2の次に、 ステップ S 2 0 3において、 特定部 2 3は、 リーン車両 1の 速度情報が、 リーン車両 1が低速走行を行っている、 又は、 低速走行への変化過程である ことを示す情報であるか否かを判定する。 ステップ S 2 0 3の処理は、 図 3のステップ S 1 0 5の処理と同様である。
[ 0 0 6 1 ] ステップ S 2 0 3において、 速度情報が、 リーン車両 1が低速走行を行っている、 又は 、 低速走行への変化過程であることを示す情報でないと判定された場合 (ステップ S 2 0 3 / N O ) 、 ステップ S 2 0 4に進む。 ステップ S 2 0 4において、 特定部 2 3は、 特定 処理に用いられる周囲環境センサ 1 4の検出範囲 5 0の幅を第 1幅 D 1に設定して検出範 囲 5 0を決定する。 具体的には、 特定部 2 3は、 予想走行軌跡 4 0を中心とする第 1幅 D 1 を有する範囲を、 検出範囲 5 〇として決定する。
[ 0 0 6 2 ] 一方、 ステップ S 2 0 3において、 速度情報が、 リーン車両 1が低速走行を行っている 、 又は、 低速走行への変化過程であることを示す情報であると判定された場合 (ステップ S 2 0 3 / Y E S ) 、 ステップ S 2 0 5に進む。 ステップ S 2 〇 5において、 特定部 2 3 は、 特定処理に用いられる周囲環境センサ 1 4の検出範囲 5 0の幅を第 2幅 (後述する図 6 中の第 2幅 D 2を参照) に設定して検出範囲 5 0を決定する。 第 2幅 D 2は、 第 1幅 D 1 よりも広い。 具体的には、 特定部 2 3は、 予想走行軌跡 4 0を中心とする第 2幅 D 2を 有する範囲を、 検出範囲 5 0として決定する。
[ 0 0 6 3 ] 図 6は、 リーン車両 1の周囲環境センサ 1 4の検出範囲 5 〇が拡張されている様子を示 す図である。 図 6の例では、 図 4の例と同様に、 同一レーンにおいて、 リーン車両 1の前 方に先行車両 3 0が走行している。 図 4の例では、 リーン車両 1が低速走行を開始したこ とに伴い、 先行車両 3 0が検出範囲 5 0から外れた。 一方、 上述した第 2処理では、 リー ン車両 1が低速走行を開始したことに伴い、 図 6に示されるように、 検出範囲 5 0が拡張 される。 その結果、 先行車両 3 0が検出範囲 5 0から外れることなく、 検出範囲 5 0内に 先行車両 3〇が位置する状況が維持される。
[ 0 0 6 4 ] なお、 図 6の例では、 特定部 2 3は、 検出範囲 5 0を拡張する場合において、 予想走行 軌跡 4 0を中心として両側に対称に検出範囲 5 0を拡張する。 ただし、 特定部 2 3は、 検 出範囲 5 〇を拡張する場合において、 予想走行軌跡 4〇を基準とする片側にのみ検出範囲 5 0を拡張してもよい。 例えば、 特定部 2 3は、 予想走行軌跡 4 0がリーン車両 1の胴体 に対してカーブする方向 (図 6の例では、 左方向) と逆方向 (図 6の例では、 右方向) に のみ、 検出範囲 5 0を拡張してもよい。
[ 0 0 6 5 ] 図 5中のステップ S 2〇 4又はステップ S 2〇 5の次に、 ステップ S 2〇 6において、 特定部 2 3は、 周囲環境センサ 1 4により検出された車両を目標車両として特定し、 ステ ップ S 2 0 2に戻る。 ステップ S 2 0 6の処理は、 図 3のステップ S 1 0 4の処理と同様
である。
[ 0 0 6 6 ] 上記のように、 図 5及び図 6を参照して説明した第 2処理では、 特定部 2 3は、 特定処 理に用いられる周囲環境センサ 1 4の検出範囲 5 0を、 速度情報に基づいて変化させる。 具体的には、 特定部 2 3は、 速度情報が、 リーン車両 1が基準速度より低い速度で走行す る低速走行を行っている、 又は、 低速走行への変化過程であることを示す情報である場合 、 速度情報が、 リーン車両 1が低速走行を行っている、 又は、 低速走行への変化過程であ ることを示す情報でない場合と比べて、 検出範囲 5 0を拡張する。 それにより、 リーン車 両 1のバランスを取るためのハンドル操作がライダーにより行われた場合であっても、 目 標車両が検出範囲 5 0から外れることなく、 検出範囲 5〇内に目標車両が位置する状況が 維持される。 ゆえに、 目標車両を適切に特定し、 速度制御を適切に実行することができる
〇
[ 0 0 6 7 ] ただし、 特定部 2 3は、 周囲環境センサ 1 4の検出範囲 5 0を速度情報に基づいて変化 させる場合において、 上記で説明した第 2処理と異なる処理を行ってもよい。 例えば、 特 定部 2 3は、 リーン車両 1の速度が低くなるにつれて徐々に周囲環境センサ 1 4の検出範 囲 5 0を拡張してもよい。 また、 例えば、 特定部 2 3は、 周囲環境センサ 1 4の検出範囲 5 0の形状、 延在方向、 又は、 リーン車両 1に対する相対位置を速度情報に基づいて変化 させてもよい。
[ 0 0 6 8 ] また、 上記で説明した第 2処理では、 検出範囲 5 0が拡張された後において、 速度情報 が、 リーン車両 1が低速走行を行っている、 又は、 低速走行への変化過程であることを示 す情報でないと判定された場合、 検出範囲 5 0を拡張する機能が解除される。 ただし、 検 出範囲 5 0を拡張する機能の解除条件は、 上記の例以外であってもよい。 例えば、 検出範 囲 5〇を拡張する機能の解除条件として、 目標車両の変更を禁止する機能の解除条件と同 様に、 入力装置 1 3等を利用する特定の操作がライダーによって行われたとの条件、 又は 、 リーン車両 1がカーブ走行を行っていると判定されたとの条件が用いられてもよい。
[ 0 0 6 9 ] 図 7は、 制御装置 2 0が行う第 3処理の流れの一例を示すフローチャートである。 図 7 におけるステップ S 3 〇 1は、 図 7に示される制御フローの開始に対応する。
[ 0 0 7 0 ] 図 7に示される制御フローが開始されると、 ステップ S 3 0 2において、 特定部 2 3は 、 リーン車両 1の予想走行軌跡 4 0を決定する。 ステップ S 3 0 2の処理は、 図 3のステ ップ S 1 0 2の処理と同様である。
[ 0 0 7 1 ] ステップ S 3 0 2の次に、 ステップ S 3 0 3において、 特定部 2 3は、 リーン車両 1の 速度情報が、 リーン車両 1が低速走行を行っている、 又は、 低速走行への変化過程である ことを示す情報であるか否かを判定する。 ステップ S 3 0 3の処理は、 図 3のステップ S 1 0 5の処理と同様である。
[ 0 0 7 2 ] ステップ S 3 0 3において、 速度情報が、 リーン車両 1が低速走行を行っている、 又は 、 低速走行への変化過程であることを示す情報であると判定された場合 (ステップ S 3 0 3 / Y E S ) 、 ステップ S 3 0 4に進む。 一方、 ステップ S 3 0 3において、 速度情報が 、 リーン車両 1が低速走行を行っている、 又は、 低速走行への変化過程であることを示す 情報でないと判定された場合 (ステップ S 3 0 3 / N O ) 、 ステップ S 3 0 4は行われず にステップ S 3 0 5に進む。
[ 0 0 7 3 ] ステップ S 3 0 4において、 特定部 2 3は、 リーン車両 1の車幅方向における予想走行 軌跡 4〇の変動を抑制する変動抑制処理を実行する。
[ 0 0 7 4 ]
リーン車両 1のバランスを取るためにライダーにより行われるハンドル操作は、 上述し たように、 ハンドル 4を小刻みに左右に振る操作である。 ゆえに、 このようなハンドル操 作が行われている場合、 ステップ S 3 0 2で決定される予想走行軌跡 4 0は、 リーン車両 1 の車幅方向に変動している。 具体的には、 予想走行軌跡 4 0がカーブする方向は、 車幅 方向の変動幅 (例えば、 後述する図 8の幅 D 3 ) 内で左右に振れ動く。
[ 0 0 7 5 ] 例えば、 特定部 2 3は、 変動抑制処理において、 予想走行軌跡 4 0の推移を示すデータ に対してローパスフィルタを用いたフィルタ処理を施すこと等によって、 車幅方向におけ る予想走行軌跡 4〇の変動幅が変動抑制処理の非実行時と比べて小さくなるように、 予想 走行軌跡 4 0を調整する。 また、 例えば、 特定部 2 3は、 車幅方向における予想走行軌跡
4 〇の変動幅が上限以下になるように、 予想走行軌跡 4〇を調整する。
[ 0 0 7 6 ] 図 8は、 リーン車両 1の車幅方向における予想走行軌跡 4 〇の変動が抑制されている様 子を示す図である。 図 8の例では、 図 4の例と同様に、 同一レーンにおいて、 リーン車両 1 の前方に先行車両 3 0が走行している。 図 4の例では、 リーン車両 1が低速走行を開始 したことに伴い、 先行車両 3 0が検出範囲 5 0から外れた。 一方、 上述した第 3処理では 、 リーン車両 1が低速走行を開始したことに伴い、 変動抑制処理が行われる。 それにより 、 例えば、 図 8に示されるように、 車幅方向における予想走行軌跡 4 0の変動幅が幅 D 3 から幅 D 4に変化する。 変化後の幅 D 4は、 変動抑制処理の非実行時の幅 D 3よりも小さ い。 このように、 車幅方向における予想走行軌跡 4 0の変動が変動抑制処理によって抑制 されるので、 検出範囲 5 0がハンドル 4と同期して左右に振れることが抑制される。 その 結果、 先行車両 3 0が検出範囲 5 0から外れることなく、 検出範囲 5 0内に先行車両 3 0 が位置する状況が維持される。
[ 0 0 7 7 ] 図 7中のステップ S 3 0 4の次に、 又は、 ステップ S 3 0 3で N Oと判定された場合に 、 ステップ S 3 0 5において、 特定部 2 3は、 特定処理に用いられる周囲環境センサ 1 4 の検出範囲 5 0を決定する。 ステップ S 3 0 4の処理は、 図 3のステップ S 1 0 3の処理 と同様である。
[ 0 0 7 8 ] ステップ S 3 0 5の次に、 ステップ S 3 0 6において、 特定部 2 3は、 周囲環境センサ 1 4により検出された車両を目標車両として特定し、 ステップ S 3 0 2に戻る。 ステップ
5 3 0 6の処理は、 図 3のステップ S ! 〇 4の処理と同様である。
[ 0 0 7 9 ] 上記のように、 図 7及び図 8を参照して説明した第 3処理では、 特定部 2 3は、 予想走 行軌跡 4 0を速度情報に基づいて変化させる。 具体的には、 特定部 2 3は、 速度情報が、 リーン車両 1が基準速度より低い速度で走行する低速走行を行っている、 又は、 低速走行 への変化過程であることを示す情報である場合、 リーン車両 1の車幅方向における予想走 行軌跡 4 0の変動を抑制する。 それにより、 リーン車両 1のバランスを取るためのハンド ル操作がライダーにより行われた場合であっても、 目標車両が検出範囲 5 〇から外れるこ となく、 検出範囲 5 0内に目標車両が位置する状況が維持される。 ゆえに、 目標車両を適 切に特定し、 速度制御を適切に実行することができる。
[ 0 0 8 0 ] ただし、 特定部 2 3は、 予想走行軌跡 4 0を速度情報に基づいて変化させる場合におい て、 上記で説明した第 3処理と異なる処理を行ってもよい。 例えば、 特定部 2 3は、 リー ン車両 1の速度が低くなるにつれて徐々に抑制効果が高くなるように、 変動抑制処理を実 行してもよい。
[ 0 0 8 1 ] また、 上記で説明した第 3処理では、 予想走行軌跡 4 0の変動が抑制された後において 、 速度情報が、 リーン車両 1が低速走行を行っている、 又は、 低速走行への変化過程であ ることを示す情報でないと判定された場合、 予想走行軌跡 4 〇の変動を抑制する機能が解
除される。 ただし、 予想走行軌跡 4 0の変動を抑制する機能の解除条件は、 上記の例以外 であってもよい。 例えば、 予想走行軌跡 4 0の変動を抑制する機能の解除条件として、 目 標車両の変更を禁止する機能の解除条件と同様に、 入力装置 1 3等を利用する特定の操作 がライダーによって行われたとの条件、 又は、 リーン車両 1がカーブ走行を行っていると 判定されたとの条件が用いられてもよい。
[ 0 0 8 2 ] 上記では、 特定部 2 3により行われる特定処理に関する処理例として、 第 1処理、 第 2 処理及び第 3処理を説明した。 これらの処理は、 種々の状況において実行され得る。 例え ば、 特定部 2 3は、 リーン車両 1を含む複数の車両で構成されるグループがグループ走行 を行っている状況において、 上述した各処理例を実行してもよい。 グループ走行では、 リ ーン車両 1を含む複数の車両で構成されるグループが複数車列 (具体的には、 同一レーン 内の左側の車列と右側の車列の 2車列) で走行する。
[ 0 0 8 3 ] く制御装置の効果> 本発明の実施形態に係る制御装置 2〇の効果について説明する。
[ 0 0 8 4 ] 制御装置 2 0は、 リーン車両 1 と目標車両との位置関係情報に基づいてリーン車両 1の 速度を制御する速度制御 (上記の例では、 アダプティブクルーズコントロール) を実行す る実行部 2 2と、 リーン車両 1に搭載された周囲環境センサ 1 4の検出結果に基づいて、 目標車両を特定する特定処理を実行する特定部 2 3とを備える。 そして、 特定部 2 3は、 リーン車両 1の速度情報に基づいて、 特定処理を変化させる。 それにより、 リーン車両 1 のバランスを取るためのハンドル操作がライダーにより行われた場合であっても、 目標車 両を適切に特定することできる。 ゆえに、 リーン車両 1 と目標車両との位置関係情報に基 づく速度制御を適切に実行することができる。
[ 0 0 8 5 ] 好ましくは、 制御装置 2 0において、 周囲環境センサ 1 4は、 リーン車両 1のハンドル 4 と一体的に回動する。 この場合、 リーン車両 1のバランスを取るためのハンドル操作が ライダーにより行われると、 周囲環境センサ 1 4の向きがハンドル 4と同期して変動し、 周囲環境センサ 1 4の検出範囲 5 0が左右に振られる。 それにより、 目標車両を適切に特 定することが困難となりやすい。 ゆえに、 速度情報に基づいて特定処理を変化させること によって、 目標車両を適切に特定することが特に重要となる。
[ 0 0 8 6 ] ただし、 周囲環境センサ 1 4は、 リーン車両 1のハンドル 4と一体的に回動しなくても よい。 そのような場合であっても、 リーン車両 1のバランスを取るためのハンドル操作が ライダーにより行われることに起因して周囲環境センサ 1 4の検出結果が変動し得る。 ゆ えに、 速度情報に基づいて特定処理を変化させることによって、 目標車両を適切に特定し 、 速度制御を適切に実行する効果が奏される。
[ 0 0 8 7 ] 好ましくは、 制御装置 2 0において、 特定部 2 3は、 速度情報に応じて、 目標車両の変 更の可否を決定する。 それにより、 上述した第 1処理のように、 リーン車両 1のバランス を取るためのハンドル操作がライダーにより行われたことに伴い目標車両が周囲環境セン サ 1 4の検出範囲 5 0から外れた場合に、 目標車両を見失うことが抑制される。 ゆえに、 目標車両を適切に特定し、 速度制御を適切に実行することができる。
[ 0 0 8 8 ] 好ましくは、 制御装置 2 0において、 特定部 2 3は、 速度情報が、 リーン車両 1が基準 速度より低い速度で走行する低速走行を行っている、 又は、 低速走行への変化過程である ことを示す情報である場合、 目標車両の変更を禁止する。 それにより、 上述した第 1処理 のように、 リーン車両 1のバランスを取るためのハンドル操作がライダーにより行われた ことに伴い目標車両が周囲環境センサ 1 4の検出範囲 5〇から外れた場合に、 目標車両を 見失うことを抑制することが適切に実現される。 ゆえに、 目標車両を適切に特定し、 速度
制御を適切に実行することが適切に実現される。
[ 0 0 8 9 ] 好ましくは、 制御装置 2 0において、 特定部 2 3は、 特定処理に用いられる周囲環境セ ンサ 1 4の検出範囲 5 0を、 速度情報に基づいて変化させる。 それにより、 上述した第 2 処理のように、 リーン車両 1のバランスを取るためのハンドル操作がライダーにより行わ れた場合であっても、 目標車両が検出範囲 5 0から外れることなく、 検出範囲 5 0内に目 標車両が位置する状況が維持される。 ゆえに、 目標車両を適切に特定し、 速度制御を適切 に実行することができる。
[ 0 0 9 0 ] 好ましくは、 制御装置 2 0において、 特定部 2 3は、 速度情報が、 リーン車両 1が基準 速度より低い速度で走行する低速走行を行っている、 又は、 低速走行への変化過程である ことを示す情報である場合、 速度情報が、 リーン車両 1が低速走行を行っている、 又は、 低速走行への変化過程であることを示す情報でない場合と比べて、 検出範囲 5〇を拡張す る。 それにより、 上述した第 2処理のように、 リーン車両 1のバランスを取るためのハン ドル操作がライダーにより行われた場合であっても、 目標車両が検出範囲 5〇から外れる ことなく、 検出範囲 5 〇内に目標車両が位置する状況を維持することが適切に実現される 。 ゆえに、 目標車両を適切に特定し、 速度制御を適切に実行することが適切に実現される
〇
[ 0 0 9 1 ] 好ましくは、 制御装置 2 0において、 特定処理に用いられる周囲環境センサ 1 4の検出 範囲 5 0は、 リーン車両 1の予想走行軌跡 4 0に基づいて決定され、 特定部 2 3は、 予想 走行軌跡 4 0を、 速度情報に基づいて変化させる。 それにより、 上述した第 3処理のよう に、 リーン車両 1のバランスを取るためのハンドル操作がライダーにより行われた場合で あっても、 目標車両が検出範囲 5 0から外れることなく、 検出範囲 5 0内に目標車両が位 置する状況が維持される。 ゆえに、 目標車両を適切に特定し、 速度制御を適切に実行する ことができる。
[ 0 0 9 2 ] 好ましくは、 制御装置 2 0において、 特定部 2 3は、 速度情報が、 リーン車両 1が基準 速度より低い速度で走行する低速走行を行っている、 又は、 低速走行への変化過程である ことを示す情報である場合、 リーン車両 1の車幅方向における予想走行軌跡 4〇の変動を 抑制する。 それにより、 上述した第 3処理のように、 リーン車両 1のバランスを取るため のハンドル操作がライダーにより行われた場合であっても、 目標車両が検出範囲 5 0から 外れることなく、 検出範囲 5〇内に目標車両が位置する状況を維持することが適切に実現 される。 ゆえに、 目標車両を適切に特定し、 速度制御を適切に実行することが適切に実現 される。
[ 0 0 9 3 ] 好ましくは、 制御装置 2 0において、 速度情報は、 リーン車両 1の速度を示す情報であ る。 それにより、 リーン車両 1が低速走行を行っている、 又は、 低速走行への変化過程で あるか否かを、 リーン車両 1の速度に着目して適切に判定できる。
[ 0 0 9 4 ] 好ましくは、 制御装置 2 0において、 速度情報は、 リーン車両 1の減速度を示す情報で ある。 それにより、 リーン車両 1が低速走行を行っている、 又は、 低速走行への変化過程 であるか否かを、 リーン車両 1の減速度に着目して適切に判定できる。
[ 0 0 9 5 ] 好ましくは、 制御装置 2 0において、 速度情報は、 リーン車両 1のライダーによるブレ ーキ操作に関する情報である。 それにより、 リーン車両 1が低速走行を行っている、 又は 、 低速走行への変化過程であるか否かを、 ライダーによるブレーキ操作に着目して適切に 判定できる。
[ 0 0 9 6 ] 本発明は実施形態の説明に限定されない。 例えば、 実施形態の一部のみが実施されても
よい。 例えば、 上記で説明した第 1処理、 第 2処理及び第 3処理の各処理において用いら れる速度情報は、 特に限定されない。 具体的には、 上記で説明した第 1処理、 第 2処理及 び第 3処理の各処理において、 速度情報として、 リーン車両 1の速度を示す情報が用いら れてもよく、 リーン車両 1の減速度を示す情報が用いられてもよく、 リーン車両 1のライ ダーによるブレーキ操作に関する情報が用いられてもよい。 また、 上記で説明した第 1処 理、 第 2処理及び第 3処理の各処理において、 速度情報として、 リーン車両 1の速度を示 す情報、 リーン車両 1の減速度を示す情報、 及び、 リーン車両 1のライダーによるブレー キ操作に関する情報のうちの複数種類の情報が用いられてもよい。
【符号の説明】
[ 0 0 9 7 ]
1 リーン車両、 2 前輪、 3 後輪、 4 ハンドル、 1 1 エンジン、 1 2 液圧制 御ユニッ ト、 1 3 入力装置、 1 4 周囲環境センサ、 1 5 慣性計測装置、 1 6 前輪 車輪速センサ、 1 7 後輪車輪速センサ、 2 0 制御装置、 2 1 取得部、 2 2 実行部 、 2 3 特定部、 3 〇 先行車両、 4〇 予想走行軌跡、 5〇 検出範囲、 D 1 第 1幅 、 D 2 第 2幅、 D 3 幅、 D 4 幅。
Claims
【請求項 1】 リーン車両 ( 1 ) の挙動を制御する制御装置 ( 2 0) であって、 前記リーン車両 ( 1 ) と目標車両との位置関係情報に基づいて前記リーン車両 ( 1 ) の 速度を制御する速度制御を実行する実行部 ( 2 2) と、 前記リーン車両 ( 1 ) に搭載された周囲環境センサ ( 1 4) の検出結果に基づいて、 前 記目標車両を特定する特定処理を実行する特定部 ( 2 3) と、 を備え、 前記特定部 ( 2 3) は、 前記リーン車両 ( 1 ) の速度情報に基づいて、 前記特定処理を 変化させる、 制御装置。
【請求項 2】 前記周囲環境センサ ( 1 4) は、 前記リーン車両 ( 1 ) のハンドル (4) と一体的に回 動する、 請求項 1に記載の制御装置。
【請求項 3 ] 前記特定部 ( 2 3) は、 前記速度情報に応じて、 前記目標車両の変更の可否を決定する 請求項 1または 2に記載の制御装置。
【請求項 4 ] 前記特定部 ( 2 3) は、 前記速度情報が、 前記リーン車両 ( 1 ) が基準速度より低い速 度で走行する低速走行を行っている、 又は、 前記低速走行への変化過程であることを示す 情報である場合、 前記目標車両の変更を禁止する、 請求項 3に記載の制御装置。
【請求項 5 ] 前記特定部 ( 2 3) は、 前記特定処理に用いられる前記周囲環境センサ ( 1 4) の検出 範囲 ( 5 0) を、 前記速度情報に基づいて変化させる、 請求項 1または 2に記載の制御装置。
【請求項 6 ] 前記特定部 ( 2 3) は、 前記速度情報が、 前記リーン車両 ( 1 ) が基準速度より低い速 度で走行する低速走行を行っている、 又は、 前記低速走行への変化過程であることを示す 情報である場合、 前記速度情報が、 前記リーン車両 ( 1 ) が前記低速走行を行っている、 又は、 前記低速走行への変化過程であることを示す情報でない場合と比べて、 前記検出範 囲 ( 5〇 ) を拡張する、 請求項 5に記載の制御装置。
【請求項 7】 前記特定処理に用いられる前記周囲環境センサ ( 1 4) の検出範囲 ( 5 0) は、 前記リ ーン車両 ( 1 ) の予想走行軌跡 (4 0) に基づいて決定され、 前記特定部 ( 2 3) は、 前記予想走行軌跡 (4 0) を、 前記速度情報に基づいて変化さ せる、 請求項 1または 2に記載の制御装置。
【請求項 8 ] 前記特定部 ( 2 3) は、 前記速度情報が、 前記リーン車両 ( 1 ) が基準速度より低い速 度で走行する低速走行を行っている、 又は、 前記低速走行への変化過程であることを示す 情報である場合、 前記リーン車両 ( 1 ) の車幅方向における前記予想走行軌跡 (4 0) の 変動を抑制する、 請求項 ?に記載の制御装置。
【請求項 9 ] 前記速度情報は、 前記リーン車両 ( 1 ) の速度を示す情報である、 請求項 1または 2に記載の制御装置。
【請求項 1 〇】 前記速度情報は、 前記リーン車両 (1 ) の減速度を示す情報である、 請求項 1または 2に記載の制御装置。
【請求項 1 1】 前記速度情報は、 前記リーン車両 (1 ) のライダーによるブレーキ操作に関する情報で ある、 請求項 1または 2に記載の制御装置。
【請求項 1 2】 リーン車両 ( 1 ) の挙動を制御する制御方法であって、 制御装置 (20) の実行部 (2 2) が、 前記リーン車両 ( 1 ) と目標車両との位置関係 情報に基づいて前記リーン車両 ( 1 ) の速度を制御する速度制御を実行し、 前記制御装置 (20) の特定部 (23) が、 前記リーン車両 ( 1 ) に搭載された周囲環 境センサ ( 1 4) の検出結果に基づいて、 前記目標車両を特定する特定処理を実行し、 前記特定部 (2 3) は、 前記リーン車両 ( 1 ) の速度情報に基づいて、 前記特定処理を 変化させる、 制御方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-106714 | 2022-06-30 | ||
JP2022106714 | 2022-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024003648A1 true WO2024003648A1 (ja) | 2024-01-04 |
Family
ID=87245534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2023/056079 WO2024003648A1 (ja) | 2022-06-30 | 2023-06-13 | 制御装置及び制御方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024003648A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3800099A1 (en) * | 2018-06-04 | 2021-04-07 | Yamaha Hatsudoki Kabushiki Kaisha | Leaning vehicle |
EP3842308A1 (en) * | 2018-08-23 | 2021-06-30 | Robert Bosch GmbH | Controller and control method |
DE102020202439A1 (de) * | 2020-02-26 | 2021-08-26 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Bestimmen einer Trajektorie eines Motorrads |
EP3995387A1 (en) * | 2020-11-06 | 2022-05-11 | Robert Bosch GmbH | Control apparatus, ambient environment acquisition system, lean vehicle, and control method |
-
2023
- 2023-06-13 WO PCT/IB2023/056079 patent/WO2024003648A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3800099A1 (en) * | 2018-06-04 | 2021-04-07 | Yamaha Hatsudoki Kabushiki Kaisha | Leaning vehicle |
EP3842308A1 (en) * | 2018-08-23 | 2021-06-30 | Robert Bosch GmbH | Controller and control method |
DE102020202439A1 (de) * | 2020-02-26 | 2021-08-26 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Bestimmen einer Trajektorie eines Motorrads |
EP3995387A1 (en) * | 2020-11-06 | 2022-05-11 | Robert Bosch GmbH | Control apparatus, ambient environment acquisition system, lean vehicle, and control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3689065B2 (ja) | 車両用走行制御装置 | |
US20220212656A1 (en) | Controller and control method | |
CN111846045B (zh) | 用于警告摩托车驾驶员的方法以及实现这种方法的骑乘辅助控制器和摩托车 | |
JP2022096468A (ja) | 制御装置及び制御方法 | |
US20220203979A1 (en) | Controller and control method | |
WO2024003648A1 (ja) | 制御装置及び制御方法 | |
JP7450034B2 (ja) | ライダー支援システムの制御装置、ライダー支援システム、及び、ライダー支援システムの制御方法 | |
US20240199161A1 (en) | Controller and control method for assistance system | |
JP2023175515A (ja) | 制御装置及び制御方法 | |
JP7438333B2 (ja) | 制御装置及び制御方法 | |
JP7261866B2 (ja) | モータサイクルの動作を制御する制御装置及び制御方法 | |
JP2022021309A (ja) | 前方にあるカーブを通過する際に、エゴ・車両の車両運転手をサポートするための方法 | |
JP2004268847A (ja) | 制動制御装置 | |
EP4108535B1 (en) | Processing device, motorcycle, and processing method | |
WO2024224186A1 (ja) | 制御装置及び制御方法 | |
WO2024147071A1 (ja) | 制御装置及び制御方法 | |
WO2024069270A1 (ja) | 制御装置及び制御方法 | |
EP4331925A1 (en) | Travel control device | |
EP4129786B1 (en) | Control device and control method | |
JP7561211B2 (ja) | モータサイクルの動作を制御する制御装置及び制御方法 | |
EP4410622A1 (en) | Controller and control method | |
WO2023053021A1 (ja) | 制御装置及び制御方法 | |
WO2024213952A1 (ja) | 制御装置及び制御方法 | |
WO2024147051A1 (ja) | 制御装置及び制御方法 | |
JP2024097270A (ja) | 制御装置及び制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23741120 Country of ref document: EP Kind code of ref document: A1 |