WO2023051514A1 - 高钪含量铝钪合金靶材及其制造方法 - Google Patents
高钪含量铝钪合金靶材及其制造方法 Download PDFInfo
- Publication number
- WO2023051514A1 WO2023051514A1 PCT/CN2022/121677 CN2022121677W WO2023051514A1 WO 2023051514 A1 WO2023051514 A1 WO 2023051514A1 CN 2022121677 W CN2022121677 W CN 2022121677W WO 2023051514 A1 WO2023051514 A1 WO 2023051514A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scandium
- powder
- aluminum
- alloy target
- content
- Prior art date
Links
- LUKDNTKUBVKBMZ-UHFFFAOYSA-N aluminum scandium Chemical compound [Al].[Sc] LUKDNTKUBVKBMZ-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 229910000542 Sc alloy Inorganic materials 0.000 title claims abstract description 42
- 229910052706 scandium Inorganic materials 0.000 title claims abstract description 27
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000013077 target material Substances 0.000 title abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 58
- 238000005245 sintering Methods 0.000 claims abstract description 28
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 11
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 239000004615 ingredient Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 238000003754 machining Methods 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 238000002844 melting Methods 0.000 abstract description 9
- 230000008018 melting Effects 0.000 abstract description 9
- 229910000905 alloy phase Inorganic materials 0.000 abstract description 7
- 238000005336 cracking Methods 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 239000010408 film Substances 0.000 description 7
- 238000003723 Smelting Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
Definitions
- the present application relates to the technical field of magnetron sputtering target manufacturing, in particular to an aluminum-scandium alloy target with high scandium content and a manufacturing method thereof.
- the high-purity AlSc rare-earth alloy target is mainly used for sputtering high-purity AlScN films.
- 5G high-frequency mobile communication
- the aluminum scandium nitride film is obtained by sputtering the aluminum scandium target in an argon/nitrogen atmosphere.
- the uniformity of the alloy phase distribution of the aluminum scandium alloy target and the density of the target directly affect the performance, structure and composition of the aluminum scandium nitride film The better the uniformity, the better the stability of the electromechanical coupling coefficient of the aluminum scandium nitride film, and the higher the target density, the better the film performance.
- the existing technology of aluminum-scandium alloy target mainly includes smelting process and powder metallurgy process forming.
- the smelting process is relatively simple, but it is very difficult to prepare targets with high Sc content (Sc content is 25-50at%).
- Sc content is 25-50at%.
- the solid-liquid solidification interval increases, and intermetallic compounds (Al 3 Sc, Al 2 Sc, AlSc, AlSc 2 ), the ingot is prone to difficult control of the nominal composition of the alloy, segregation of the alloy composition, coarse grains, etc., which is not conducive to the subsequent coating composition and thickness uniformity; and the brittle phase of the intermetallic compound produced Many, difficult to press molding.
- Forming by powder metallurgy process can avoid problems such as segregation of alloy components in smelting process and difficulty in brittle phase pressure processing.
- the temperature of powder sintering is limited, so that the degree of densification of the target is not as good as that of smelting process. .
- the purpose of this application is to provide a method for manufacturing an aluminum-scandium alloy target with high scandium content.
- Sc powder and intermetallic compound Al 3 Sc powder for batching and mixing, the melting point of Sc (1541 ° C) and the melting point of Al 3 Sc (1320 °C) are high, which can increase the powder sintering temperature to 1000-1300 °C, and improve the density of the AlSc target; the simple substance Sc has good bonding toughness, which can avoid cracking of the high-density Al-Sc alloy target; and due to the direct addition of The intermetallic compound Al 3 Sc powder can make the alloy phase more uniform and dispersed.
- the present application provides a method for manufacturing an aluminum-scandium alloy target with high scandium content, which includes:
- the first step Sc powder and Al 3 Sc powder batching
- the third step sintering
- the fourth step is machining of finished products.
- the first step is to take Sc powder and aluminum-scandium intermetallic compound Al 3 Sc powder, and then distribute the raw materials according to the alloy composition of the aluminum-scandium alloy target, and the particle size of the powder is 10-150 microns.
- the purity of Sc powder and Al 3 Sc powder is ⁇ 99.9%.
- the microstructure of the Al 3 Sc powder is uniform.
- the content of scandium atoms in the aluminum-scandium alloy target is 25-50 at%.
- the raw materials proportioned in the first step are uniformly mixed in a powder mixer, and the powder mixer is a three-dimensional powder mixer.
- the sheath used for sintering in the third step is a Ti sheath or a stainless steel sheath.
- the sintering temperature in the third step is 1000-1300° C.
- the holding time is 2-5 hours
- the holding pressure is 100-150 MPa.
- the aluminum-scandium alloy target with high scandium content obtained in the present application has high density, precise composition, and uniform and fine microstructure.
- the present application also provides an aluminum-scandium alloy target material with high scandium content prepared by the above method.
- This application prepares aluminum-scandium alloy targets with high scandium content (scandium atomic content is 25-50at%), and uses Sc powder and intermetallic compound Al 3 Sc powder for batching and mixing.
- the melting point of Sc (1541°C) is the same as that of Al 3 Sc
- the melting point (1320°C) is relatively high, so that the sintering temperature is no longer limited by the melting point of Al when the traditional Al powder and Sc are mixed (the melting point of Al is 660°C, if the sintering temperature is too high, the Al matrix will melt and volatilize easily.
- the alloy phase can be distributed more uniformly and dispersedly.
- Fig. 1 is a flow chart of the method for manufacturing an aluminum-scandium alloy target with high scandium content provided by the present application.
- the present application provides a method for manufacturing an aluminum-scandium alloy target with high scandium content, which includes:
- the first step Sc powder and Al 3 Sc powder batching
- the third step sintering
- the fourth step is machining of finished products.
- the first step is to take Sc powder and aluminum-scandium intermetallic compound Al 3 Sc powder, and then distribute the raw materials according to the alloy composition of the aluminum-scandium alloy target, and the particle size of the powder is 10-150 microns.
- the purity of Sc powder and Al 3 Sc powder is ⁇ 99.9%.
- the microstructure of the Al 3 Sc powder is uniform.
- the content of scandium atoms in the aluminum-scandium alloy target is 25-50 at%.
- the raw materials proportioned in the first step are uniformly mixed in a powder mixer, and the powder mixer is a three-dimensional powder mixer.
- the sheath used for sintering in the third step is a Ti sheath or a stainless steel sheath.
- the sintering temperature in the third step is 1000-1300° C.
- the holding time is 2-5 hours
- the holding pressure is 100-150 MPa.
- the aluminum-scandium alloy target with high scandium content obtained in the present application has high density, precise composition, and uniform and fine microstructure.
- the raw materials are mixed: Sc powder and Al 3 Sc powder, the spherical powder particle size ranges from 10 to 150 microns, and the purity of Sc powder and Al 3 Sc powder is ⁇ 99.9%.
- the uniformly mixed powder into a Ti sheath made according to the size of the target, perform degassing and sealing welding to prevent powder oxidation, and perform pressure sintering in a hot isostatic pressing furnace: the sintering temperature is 1000-1300 ° C, and the holding time is 2 -5 hours, the holding pressure is 100-150MPa, and the aluminum scandium alloy target blank is obtained after the sintering is completed.
- the sintered target blank is machined to obtain a target with a specified size.
- the raw material ingredients are carried out: the raw materials are elemental aluminum powder and elemental scandium powder.
- the uniformly mixed powder into an Al or Al alloy sheath made according to the size of the target, perform degassing and sealing welding to prevent powder oxidation, and perform pressure sintering in a hot isostatic pressing furnace: the sintering temperature is 500-630°C, and the heat preservation The time is 2-5 hours, the holding pressure is 100-150 MPa, and the aluminum-scandium alloy target blank is obtained after the sintering is completed.
- the sintered target blank is machined to obtain a target with a specified size.
- Table 1 shows the manufacturing process and performance results of the Al-Sc alloy targets in Examples 1-6 and Comparative Examples 1-3.
- the atomic ratio (at%) of Sc in Al 3 Sc is 25 at%, so only Al 3 Sc needs to be added in Example 1.
- Other embodiments are calculated by analogy.
- the aluminum-scandium alloy target manufactured by this application has a high scandium-content aluminum-scandium alloy target (scandium atomic content is 25-50at%), since this application uses Al 3 Sc, its melting point (1320 ° C ) is much higher than Al (660°C), and the sintering temperature can be increased to 1000°C-1300°C.
- High temperature sintering can increase the density, and the single substance Sc has good bonding toughness, which can avoid cracking of the high-density Al-Sc alloy target, thereby
- the density of the prepared aluminum-scandium alloy target is increased to more than 99.92%, and the distribution of the alloy phase is more uniform and dispersed.
- the better the uniformity of the alloy phase structure the better the stability of the electromechanical coupling coefficient of the aluminum scandium nitride thin film.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本申请提出一种高钪含量铝钪合金靶材的制造方法, 通过采用Sc粉与金属间化合物Al3Sc 粉进行配料混合, Sc 的熔点 (1541℃) Al3Sc 的熔点 (1320℃) 均较高, 能够提高粉末烧结温度至1000-1300℃, 并且单质Sc具有良好粘结韧性,可避免高致密铝钪合金靶材开裂, 从而提高了AlSc靶材的致密度; 并且由于直接加入了金属间化合物 Al3Sc 粉, 能够使得合金相更加均匀弥散的分布。
Description
相关申请的交叉引用
本申请要求于2021年09月30日提交的申请号为2021111601755,名称为“高钪含量铝钪合金靶材及其制造方法”的中国专利申请的优先权,其通过引用方式全部并入本文。
本申请涉及磁控溅射靶材制造技术领域,具体涉及一种高钪含量铝钪合金靶材及其制造方法。
高纯AlSc稀土合金靶材主要用于溅射高纯AlScN薄膜,相比AlN、ZnO、锆钛酸铅(PZT)等现有压电薄膜,其具有更强更优的压电性能,是高频移动通信(5G)射频滤波器芯片、MEMS微型先进传感器等制造核心材料。
铝钪靶材在氩/氮的氛围下溅射得到氮化铝钪薄膜,铝钪合金靶材合金相分布的均匀性及靶材的致密度直接影响氮化铝钪薄膜的性能,组织及成分均匀性越好越能提高氮化铝钪薄膜机电耦合系数的稳定性,靶材致密度越高,薄膜性能越好。
铝钪合金靶材的现有技术主要包括熔炼工艺和粉末冶金工艺成型。熔炼工艺相对简单,但是制备高Sc含量的靶材(Sc含量为25~50at%)难度很大,随着合金中钪含量增加,固液凝固区间加大,会逐渐生成金属间化合物(Al
3Sc、Al
2Sc、AlSc、AlSc
2),铸锭易出现合金名义成分难以控制、合金成分偏析、晶粒粗大等,从而不利于后续镀膜成分及厚度均匀性;且产生的金属间化合物脆性相较多,难以压力加工成型。粉末冶金工艺成型,可以规避熔炼工艺的合金成分 偏析、脆性相压力加工困难等问题,但由于Al的熔点(660℃)较低,限制了粉末烧结的温度,使得靶材致密化程度不如熔炼工艺。
发明内容
本申请的目的提供一种高钪含量铝钪合金靶材的制造方法,通过采用Sc粉与金属间化合物Al
3Sc粉进行配料混合,Sc的熔点(1541℃)及Al
3Sc的熔点(1320℃)均较高,能够提高粉末烧结温度至1000-1300℃,提高了AlSc靶材的致密度;单质Sc具有良好粘结韧性,可避免高致密铝钪合金靶材开裂;并且由于直接加入了金属间化合物Al
3Sc粉,能够使得合金相更加均匀弥散的分布。
为解决上述技术问题,本申请提供一种高钪含量铝钪合金靶材的制造方法,其包括:
第一步,Sc粉和Al
3Sc粉配料;
第二步,混合;
第三步,烧结;
第四步,成品机加工。
在一个实施例中,所述第一步为取Sc粉和铝钪金属间化合物Al
3Sc粉,然后按铝钪合金靶材的合金成分配比原料,粉体的粒度在10~150微米。
在一个实施例中,Sc粉及Al
3Sc粉末纯度≥99.9%。
在一个实施例中,所述Al
3Sc粉微观组织均匀。
在一个实施例中,所述铝钪合金靶材中钪原子含量为25~50at%。
在一个实施例中,所述第二步中,将第一步按比例配好的原料在混粉机中进行均匀混合,所述混粉机为三维混粉机。
在一个实施例中,所述第三步中烧结用的包套为Ti包套或不锈钢包套。
在一个实施例中,所述第三步中烧结温度为1000-1300℃,保温时间为2-5小时,保压压力为100-150MPa。
本申请得到的高钪含量铝钪合金靶材的致密度高、成分精准、微观组织均匀细小。
本申请还提供采用上述方法制备的高钪含量铝钪合金靶材。
本申请的有益效果
1.本申请制备高钪含量铝钪合金靶(钪原子含量为25~50at%),采用Sc粉与金属间化合物Al
3Sc粉进行配料混合,Sc的熔点(1541℃)与Al
3Sc的熔点(1320℃)均较高,使得烧结温度不再受限于传统的Al粉及Sc混合时Al的熔点(Al的熔点为660℃,若烧结温度过高,Al基体熔化易产生流淌挥发,不利于烧结),能够将粉末烧结温度提高至1000-1300℃,高温烧结进一步提高了AlSc靶材的致密化;并且单质Sc具有良好粘结韧性,可避免高致密铝钪合金靶材开裂,最终得到靶材的密度≥99.9%,解决了粉末烧结制备靶材致密度偏低的问题。
2.本申请在配料中,由于原料直接采用金属间化合物Al
3Sc粉,能够使得合金相更加均匀弥散的分布,合金相组织均匀性越好越能提高氮化铝钪薄膜机电耦合系数的稳定性。
图1是本申请提供的高钪含量铝钪合金靶材制造方法流程图。
本申请提供一种高钪含量铝钪合金靶材的制造方法,其包括:
第一步,Sc粉和Al
3Sc粉配料;
第二步,混合;
第三步,烧结;
第四步,成品机加工。
在一个实施例中,所述第一步为取Sc粉和铝钪金属间化合物Al
3Sc粉,然后按铝钪合金靶材的合金成分配比原料,粉体的粒度在10~150微米。
在一个实施例中,Sc粉及Al
3Sc粉末纯度≥99.9%。
在一个实施例中,所述Al
3Sc粉微观组织均匀。
在一个实施例中,所述铝钪合金靶材中钪原子含量为25~50at%。
在一个实施例中,所述第二步中,将第一步按比例配好的原料在混粉机中进行均匀混合,所述混粉机为三维混粉机。
在一个实施例中,所述第三步中烧结用的包套为Ti包套或不锈钢包套。
在一个实施例中,所述第三步中烧结温度为1000-1300℃,保温时间为2-5小时,保压压力为100-150MPa。
本申请得到的高钪含量铝钪合金靶材的致密度高、成分精准、微观组织均匀细小。
以下采用示例和附图来详细说明本申请的实施方式,借此对本申请如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。
按图1所示工艺流程图进行制备铝钪合金靶材:
1.配料
按表1中设计的铝钪合金靶材成分,进行原材料配料:Sc粉及Al
3Sc粉球形粉体粒度范围为10~150微米,Sc粉及Al
3Sc粉末纯度≥99.9%。
2.混料
采用三维混粉机将配得的粉末进行混合均匀。
3.烧结
将混合均匀的粉末装入按照靶材尺寸制作的Ti包套中,进行除气封焊防止粉末氧化,在热等静压炉中进行压力烧结:烧结温度为1000-1300℃,保温时间为2-5小时,保压压力为100-150MPa,烧结完成后得到铝钪合金靶坯。
4.成品加工
将烧结得到的靶坯进行机加工得到规定尺寸的靶材。
对比例1~3
1.配料
按表1中设计的铝钪合金靶材成分,进行原材料配料:原料为单质铝粉、单质钪粉。
2.混料
采用混粉机将粉末混合均匀。
3.烧结
将混合均匀的粉末装入按照靶材尺寸制作的Al或Al合金包套中,进行除气封焊防止粉末氧化,在热等静压炉中进行压力烧结:烧结温度为500-630℃,保温时间为2-5小时,保压压力为100-150MPa,烧结完成后得到铝钪合金靶坯。
4.成品加工
将烧结得到的靶坯进行机加工得到规定尺寸的靶材。
实施例1~6及对比例1~3的铝钪合金靶材主要制造工艺及性能结果见表1。表1示出了实施例1~6及对比例1~3中铝钪合金靶材制造工艺及性能结果。
Al
3Sc中Sc原子比(at%)为25at%,所以实施例1中只需添加Al
3Sc。实施例2中,要配得1kg的Al-30at%Sc,换算成质量百分比 是58.34wt%Al-41.66wt%Sc,需要0.5834kgAl,0.4166kgSc。其中所有的Al都要从Al
3Sc(64.29wt%Al-35.71wt%Sc)中提供,所需Al
3Sc为0.5834/0.6429=0.9074即90.74%,那剩余Sc需要由单质Sc提供,占比1-90.74%=9.26%。其他实施例以此类推计算所得。
表1
由表1可知,本申请所制造铝钪合金靶材具有制备高钪含量铝钪合金靶时(钪原子含量为25~50at%),由于本申请采用的是Al
3Sc,其熔点(1320℃)比Al(660℃)高很多,烧结温度可以提高至1000℃-1300℃,高温烧结能够提高致密度,且并且单质Sc具有良好粘结韧性,可避免高致密铝钪合金靶材开裂,从而制备出的铝钪合金靶材致 密度提高至99.92%以上,合金相更加均匀弥散的分布的特点,合金相组织均匀性越好越能提高氮化铝钪薄膜机电耦合系数的稳定性。
本申请未限制采用其他形式实施本申请的方法或产品。基于此,本领域技术人员可以对上述内容进行修改,以实现类似的执行情况。但是,所有基于本申请作出的修改或改造属于本申请保留的权利。
以上所述,仅是本申请的较佳实施例而已,并非是对本申请作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本申请技术方案内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本申请的保护范围。
Claims (8)
- 一种高钪含量铝钪合金靶材的制造方法,包括:第一步,Sc粉和Al 3Sc粉配料;第二步,混合;第三步,烧结;第四步,成品机加工。
- 如权利要求1所述的高钪含量铝钪合金靶材的制造方法,其中,所述第一步为取Sc粉和铝钪金属间化合物Al 3Sc粉,然后按铝钪合金靶材的合金成分配比原料,粉体的粒度在10~150微米。
- 如权利要求1所述的高钪含量铝钪合金靶材的制造方法,其中,所述第一步中Sc粉及Al 3Sc粉末纯度≥99.9%。
- 如权利要求1所述的高钪含量铝钪合金靶材的制造方法,其中,所述第二步中,将第一步按比例配好的原料在混粉机中进行均匀混合,所述混粉机为三维混粉机。
- 如权利要求1所述的高钪含量铝钪合金靶材的制造方法,其中,所述第三步中烧结用的包套为Ti包套或不锈钢包套。
- 如权利要求1所述的高钪含量铝钪合金靶材的制造方法,其中,所述第三步中烧结温度为1000-1300℃,保温时间为2-5小时,保压压力为100-150MPa。
- 采用权利要求1至6任一项所述方法制备的高钪含量铝钪合金靶材。
- 如权利要求7所述的高钪含量铝钪合金靶材,其中,所述铝钪合金靶材中钪原子含量为25~50at%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111160175.5A CN113981386B (zh) | 2021-09-30 | 2021-09-30 | 高钪含量铝钪合金靶材及其制造方法 |
CN202111160175.5 | 2021-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023051514A1 true WO2023051514A1 (zh) | 2023-04-06 |
Family
ID=79737409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/121677 WO2023051514A1 (zh) | 2021-09-30 | 2022-09-27 | 高钪含量铝钪合金靶材及其制造方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113981386B (zh) |
WO (1) | WO2023051514A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113981386B (zh) * | 2021-09-30 | 2024-01-05 | 有研亿金新材料有限公司 | 高钪含量铝钪合金靶材及其制造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111485207A (zh) * | 2020-06-08 | 2020-08-04 | 福建阿石创新材料股份有限公司 | 一种细晶粒均相高钪含量的铝钪合金烧结靶材及其制备方法和应用 |
CN111560585A (zh) * | 2020-04-28 | 2020-08-21 | 先导薄膜材料(广东)有限公司 | 一种铝钪靶材的制备方法 |
CN112708864A (zh) * | 2020-12-23 | 2021-04-27 | 有研亿金新材料有限公司 | 一种铝钪合金靶材的制造方法 |
CN113981386A (zh) * | 2021-09-30 | 2022-01-28 | 有研亿金新材料有限公司 | 高钪含量铝钪合金靶材及其制造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108441827A (zh) * | 2018-04-17 | 2018-08-24 | 长沙迅洋新材料科技有限公司 | 铝钪合金靶材制备方法 |
CN111910160B (zh) * | 2020-07-15 | 2022-10-14 | 湖南稀土金属材料研究院 | 铝钪靶材的制备方法 |
-
2021
- 2021-09-30 CN CN202111160175.5A patent/CN113981386B/zh active Active
-
2022
- 2022-09-27 WO PCT/CN2022/121677 patent/WO2023051514A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111560585A (zh) * | 2020-04-28 | 2020-08-21 | 先导薄膜材料(广东)有限公司 | 一种铝钪靶材的制备方法 |
CN111485207A (zh) * | 2020-06-08 | 2020-08-04 | 福建阿石创新材料股份有限公司 | 一种细晶粒均相高钪含量的铝钪合金烧结靶材及其制备方法和应用 |
CN112708864A (zh) * | 2020-12-23 | 2021-04-27 | 有研亿金新材料有限公司 | 一种铝钪合金靶材的制造方法 |
CN113981386A (zh) * | 2021-09-30 | 2022-01-28 | 有研亿金新材料有限公司 | 高钪含量铝钪合金靶材及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113981386A (zh) | 2022-01-28 |
CN113981386B (zh) | 2024-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Spark plasma sintering of TiC–ZrC composites | |
JP2010236060A (ja) | 窒化物分散Ti−Al系ターゲット及びその製造方法 | |
WO2023051514A1 (zh) | 高钪含量铝钪合金靶材及其制造方法 | |
CN109267020B (zh) | 一种铝氮钪合金靶材的制备方法和应用 | |
CN110714142A (zh) | 一种Al-Sc-X多元合金靶材及其制备方法 | |
CN114956826A (zh) | 一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法 | |
CN113652657B (zh) | 铝钪合金靶材及采用大气高温扩散烧结成型制造方法 | |
CN106244988B (zh) | 一种高阻靶材制造方法 | |
US20220356558A1 (en) | Sputtering target | |
CN111455329B (zh) | 一种铝钛硼靶材及其粉末固相合金化烧结方法 | |
JP2023512126A (ja) | バナジウムタングステン合金ターゲット素材の製造方法 | |
CN115255367B (zh) | 一种镍铝合金溅射靶材及其热压制备方法 | |
CN113798488B (zh) | 铝基粉末冶金材料及其制备方法 | |
TWI588267B (zh) | High purity tungsten metal material and preparation method of tungsten target | |
CN105779816A (zh) | 一种钛铝锆三元合金靶材及其制备方法 | |
CN112708864B (zh) | 一种铝钪合金靶材的制造方法 | |
WO2008045698A1 (en) | Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same | |
CN110741106A (zh) | 氧化物烧结体及溅射靶 | |
Hmelov | Development of Dense Materials by Plasma-Spark Sintering of Oxide–Oxide-Free Components with Different Mixtures of Metal Powders | |
JPH0499146A (ja) | 粉末焼結材料およびその製造方法 | |
CN104928539A (zh) | 一种钒铝硅三元合金靶材及其制备方法 | |
CN117024147B (zh) | 一种(Ta,Nb,Hfx)2C中熵合金化碳化物陶瓷及其制备方法 | |
CN117102490B (zh) | 锶钛合金制备方法、基于合金的靶材及磁控溅射薄膜 | |
CN112501566B (zh) | 一种氧化钨基陶瓷靶材、薄膜及薄膜制备工艺 | |
JPH0254760A (ja) | ターゲットの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22874899 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 09.07.24. |