WO2023051206A1 - 一种电路板及电子设备 - Google Patents
一种电路板及电子设备 Download PDFInfo
- Publication number
- WO2023051206A1 WO2023051206A1 PCT/CN2022/117561 CN2022117561W WO2023051206A1 WO 2023051206 A1 WO2023051206 A1 WO 2023051206A1 CN 2022117561 W CN2022117561 W CN 2022117561W WO 2023051206 A1 WO2023051206 A1 WO 2023051206A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chip
- signal input
- power
- power supply
- input end
- Prior art date
Links
- 230000005236 sound signal Effects 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 35
- 238000012545 processing Methods 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 21
- 230000005540 biological transmission Effects 0.000 claims description 4
- 238000005457 optimization Methods 0.000 description 30
- 101150075681 SCL1 gene Proteins 0.000 description 22
- 230000006870 function Effects 0.000 description 22
- 101150111792 sda1 gene Proteins 0.000 description 21
- 238000004891 communication Methods 0.000 description 20
- 238000013461 design Methods 0.000 description 13
- 238000007726 management method Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 10
- 101100365013 Arabidopsis thaliana SCL3 gene Proteins 0.000 description 8
- 238000010295 mobile communication Methods 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229920001621 AMOLED Polymers 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 101100365014 Arabidopsis thaliana SCL4 gene Proteins 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
- H05K1/142—Arrangements of planar printed circuit boards in the same plane, e.g. auxiliary printed circuit insert mounted in a main printed circuit
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1637—Details related to the display arrangement, including those related to the mounting of the display in the housing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/18—Packaging or power distribution
- G06F1/189—Power distribution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1626—Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1656—Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
- G06F1/1658—Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories related to the mounting of internal components, e.g. disc drive or any other functional module
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1684—Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
- G06F1/1688—Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being integrated loudspeakers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/18—Packaging or power distribution
- G06F1/183—Internal mounting support structures, e.g. for printed circuit boards, internal connecting means
- G06F1/185—Mounting of expansion boards
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R12/00—Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
- H01R12/70—Coupling devices
- H01R12/77—Coupling devices for flexible printed circuits, flat or ribbon cables or like structures
- H01R12/78—Coupling devices for flexible printed circuits, flat or ribbon cables or like structures connecting to other flexible printed circuits, flat or ribbon cables or like structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
- H04M1/026—Details of the structure or mounting of specific components
- H04M1/0277—Details of the structure or mounting of specific components for a printed circuit board assembly
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/11—Printed elements for providing electric connections to or between printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
- H05K1/147—Structural association of two or more printed circuits at least one of the printed circuits being bent or folded, e.g. by using a flexible printed circuit
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/189—Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R12/00—Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
- H01R12/70—Coupling devices
- H01R12/77—Coupling devices for flexible printed circuits, flat or ribbon cables or like structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
- H04M1/026—Details of the structure or mounting of specific components
- H04M1/0274—Details of the structure or mounting of specific components for an electrical connector module
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10128—Display
Definitions
- the present application relates to the field of electronic technology, in particular to a circuit board and electronic equipment.
- Circuit boards are used to carry electronic components of electronic equipment.
- the circuit board of a mobile phone usually includes a main circuit board (ie, a main board) and a sub-circuit board (ie, a sub-board), and the main board and the sub-board respectively carry electronic components for different functions.
- the main board and the sub-board are connected through an FPC (may be referred to as the main and sub-board FPC).
- another FPC (which may be called a screen FPC) is connected between the main board and the screen of the electronic device.
- two connection bits need to be set on the main board, one is used to connect the FPC of the main board and the sub-board, and the other is used to connect the FPC of the screen.
- the two connection positions occupy a large area of the motherboard, and the hardware costs of the two connection positions and the two FPCs are high.
- the present application provides a circuit board and electronic equipment to solve at least part of the above-mentioned technical problems, and the disclosed technical solutions are as follows:
- the present application provides a circuit board, which is applied to electronic equipment.
- the electronic equipment includes a screen, the screen includes a screen chip, and the circuit board includes: a main board, a secondary board, and a flexible circuit board;
- the circuit board is connected to the main board through the first connection position;
- the second connection position is set on the sub-board, the flexible circuit board is connected to the sub-board through the second connection position, and the flexible circuit board is also connected to the screen chip;
- the target circuit module is arranged on the sub-board, and the target circuit
- the signal input terminal of the target signal type of the module is connected to the signal input terminal of the same target signal type on the sub-board, and the target signal type includes at least one of a power signal, a control signal and a data signal.
- this solution combines the screen FPC and the main and sub-board FPC, and the two connectors on the main board can be combined into one, that is, the first connection position, which reduces the area occupied by the connector on the main board and improves the utilization rate of the main board area; At the same time, the number of FPCs and connectors is reduced, thereby reducing hardware costs.
- some circuit modules such as screen power supply chips
- the signal input terminals of this part of the circuit modules are further merged and optimized to reduce these problems.
- the number of signals of the circuit module passing through the first connection position enables the first connection position to transmit more and more complicated signals of the circuit module, thereby improving the pin utilization rate of the first connection position.
- moving some circuit modules of the main board to the sub-board saves the occupied area of the main board, so that the main board can carry more and more complex circuit modules.
- the target circuit module includes at least one of the following: a screen power supply chip, a motor drive power supply chip, a speaker power amplifier, a charging protocol chip, a PD charging protocol chip, an earphone switch switching chip, and a sensor . It can be seen that this solution can move at least one of the above circuit modules from the main board to the sub board, saving the occupied area of the main board and improving the flexibility of the circuit board optimization scheme in the electronic device.
- the speaker power amplifier includes a first speaker power amplifier or a second speaker power amplifier; the first speaker power amplifier is used for processing analog sound signals; the second speaker power amplifier is used for processing digital sound signal. It can be seen that the solution is not only applicable to the scene using the analog speaker power amplifier, but also applicable to the scene using the digital speaker power amplifier, which expands the scope of application of the solution.
- the screen power supply chip includes a backlight power supply chip or an OLED driver chip. It can be seen that this solution is not only applicable to electronic equipment using LCD, but also suitable for electronic equipment using OLED. scope of application of the program.
- the target circuit module is a screen power chip and a speaker power amplifier
- the screen power chip is a backlight power chip
- the control signal input end of the backlight power chip and the control signal input end of the speaker power amplifier Connection the backlight enable signal input end of the backlight power chip is connected with the power supply signal input end of the backlight power chip
- one power supply signal input end of the speaker power amplifier is connected with the power supply signal input end of the backlight power chip.
- This scheme connects the backlight power supply chip with the control signal input terminal of the speaker power amplifier, and at the same time connects the backlight enable signal input terminal of the backlight power supply chip with the power supply input terminal, compared with the scheme in which these two circuit modules are placed on the main board ,
- This solution can save 2 pins of the first connection position, and the saved pins can be used to transmit signals of other circuit modules.
- the two circuit modules are moved from the main board to the sub-board, further reducing the occupied area of the main board.
- the speaker is usually placed close to the sub-board, so moving the speaker power amplifier to the sub-board can simplify the wiring layout of the circuit board, thereby reducing the complexity of the circuit board design. Therefore, the first connection bit carries more circuit signals, and the pin utilization rate of the first connection bit is improved.
- the target circuit module is a screen power chip and a motor drive power chip, and the screen power chip is a backlight power chip; the control signal input terminal of the backlight power chip is connected to the control signal of the motor drive power chip The input terminal is connected, the backlight enable signal input terminal of the backlight power chip is connected with the power supply signal input terminal of the backlight power chip, and one power supply signal input terminal of the motor drive power chip is connected with the power supply signal input terminal of the backlight power chip.
- this solution can save one pin of the first connection position, and the saved pin can be used to transmit signals of other circuit modules.
- the two circuit modules are moved from the main board to the sub-board, which further reduces the Board area.
- the target circuit module is a screen power chip, a motor drive power chip, and a speaker power amplifier
- the screen power chip is a backlight power chip
- the backlight power chip, the motor drive power chip, and a speaker power amplifier The control signal input terminal of the backlight power supply chip is connected to the backlight enable signal input terminal of the backlight power supply chip and the power supply signal input terminal of the backlight power supply chip is connected, and one power supply signal input terminal of the motor drive power supply chip is connected to the power supply signal input terminal of the backlight power chip connect.
- This solution moves the three circuit modules of the screen power chip, the motor drive power chip and the speaker power amplifier from the main board to the sub-board, and combines the control signal input terminals and power signal input terminals of these three circuit modules respectively, saving the first The 2 pins of the connection bit improve the pin utilization rate of the first connection bit.
- moving the three circuit modules to the sub-board further saves the occupied area of the main board.
- the speaker is usually placed close to the sub-board, so moving the speaker power amplifier to the sub-board can simplify the wiring layout of the circuit board and reduce the complexity of the circuit board design.
- the target circuit module is a screen power chip and a charging protocol chip
- the screen power chip is a backlight power chip
- the control signal input end of the backlight power chip and the control signal input end of the charging protocol chip Connection the backlight enable signal input end of the backlight power chip is connected to the power supply signal input end of the backlight power chip
- the power supply signal input end of the charging protocol chip is connected to a power supply signal input end of the backlight power chip
- the power supply signal input end of the charging protocol chip is connected.
- the positive signal input terminal of the charging power supply is connected to the positive signal input terminal of the charging power supply of the sub-board
- the DC power signal input terminal of the charging protocol chip is connected to the DC power signal input terminal of the sub-board.
- This solution moves the screen power chip and charging protocol chip to the sub-board, saving the area occupied by the main board.
- the output terminal of the charging protocol chip is connected to the USB interface circuit, and the USB interface circuit is usually arranged near the sub-board. Therefore, moving the charging protocol chip to the sub-board can simplify the wiring layout of the circuit board, thereby reducing the circuit board. Design complexity.
- the target circuit module is a screen power chip, a charging protocol chip, and a speaker power amplifier
- the screen power chip is a backlight power chip
- the control of the backlight power chip, the charging protocol chip, and the speaker power amplifier The signal input terminal is connected, the backlight enable signal input terminal of the backlight power chip is connected with the power supply signal input terminal of the backlight power chip, and a power supply signal input terminal of the speaker power amplifier is connected with a power supply signal input terminal of the backlight power chip.
- the power supply signal input terminal of the charging protocol chip is connected to a power supply signal input terminal of the backlight power chip, the positive signal input terminal of the charging power supply of the charging protocol chip is connected to the positive signal input terminal of the charging power supply of the sub-board, and the DC power supply of the charging protocol chip The signal input end is connected with the DC power signal input end of the sub-board.
- This solution moves the screen power supply chip, charging protocol chip and speaker power amplifier from the main board to the sub board, saving the area occupied by the main board.
- the number of signals per connection bit, and the output terminal of the charging protocol chip is connected to the USB interface circuit, and the USB interface circuit is usually arranged near the sub-board, so moving the charging protocol chip to the sub-board can simplify the wiring of the circuit board layout, thereby reducing the design complexity of the circuit board.
- the target circuit module is a screen power chip, an earphone switch chip, and a speaker power amplifier
- the screen power chip is a backlight power chip; the backlight power chip, the headphone switch chip, and a speaker power amplifier
- the control signal input end of the backlight power chip is connected to the backlight enable signal input end of the backlight power chip and the power supply signal input end of the backlight power chip, and one power supply signal input end of the speaker power amplifier is connected to the power supply signal input end of the backlight power chip
- the audio positive signal input end of the speaker power amplifier is connected to the left channel signal input end of the headphone switch switching chip, the audio negative signal input end is connected to the right channel signal input end, and a power supply signal input end of the headphone switch switching chip is connected to the The power supply signal input terminal of the backlight power supply chip is connected.
- This solution moves the screen power supply chip, headphone switch switching chip and speaker power amplifier from the main board to the sub board, saving the occupied area of the main board.
- the output terminal of the headphone switch switching chip is connected to the USB interface circuit, and the output terminal of the speaker power amplifier is connected to the speaker.
- the USB interface circuit and the speaker are usually located close to the sub-board. Therefore, moving these two circuit modules to the sub-board can simplify the circuit.
- the routing layout of the board thereby reducing the design complexity of the circuit board.
- the screen power supply chip is an OLED driver chip
- a signal of the OLED driver chip via the first connection bit is an input signal of the OLED driver chip.
- the target circuit module is a screen power chip and a speaker power amplifier
- the screen power chip is an OLED driver chip
- a power supply signal input terminal of the speaker power amplifier is connected to a power supply of the OLED driver chip Power signal input connection.
- This solution moves the screen power chip and speaker power amplifier from the main board to the sub board, further saving the area occupied by the main board.
- the speaker is usually placed close to the sub-board, so moving the speaker power amplifier to the sub-board can simplify the wiring layout of the circuit board, thereby reducing the complexity of the circuit board design.
- the target circuit module includes a motor drive power chip and a screen power chip, and the screen power chip is an OLED drive chip; the power supply signal input terminal of the motor drive power chip is connected to one of the OLED drive chips The signal input terminal of the power supply is connected.
- This solution moves the screen power supply chip and the motor drive power supply chip from the main board to the sub board, which further saves the occupied area of the main board.
- merging the signal input terminals of these two circuits it reduces the number of connections between the two circuits through the first connection position. number of signals.
- the target circuit module includes a screen power chip, a motor drive power chip and a speaker power amplifier
- the screen power chip is an OLED drive chip
- the power supply signal input terminal of the motor drive power chip is connected to the OLED
- One power supply signal input terminal of the driver chip is connected, one power supply signal input terminal of the speaker power amplifier is connected with the power supply signal input terminal of the OLED driver chip, the control signal input terminal of the speaker power amplifier is connected with the control signal input terminal of the motor drive power chip end connection.
- the target circuit module includes a screen power chip, an earphone switch chip, and a speaker power amplifier, and the screen power chip is an OLED driver chip; the control signal input terminal of the earphone switch chip is connected to the speaker power The control signal input terminal of the amplifier is connected, the power supply signal input terminal of the headphone switch chip is connected with a power supply signal input terminal of the OLED driver chip, and the power supply signal input terminal of the speaker power amplifier is connected with the power supply signal input terminal of the backlight power chip
- the audio positive signal input end of the loudspeaker power amplifier is connected with the left channel signal input end of the headphone switch switching chip, and the audio negative signal input end is connected with the right channel signal input end.
- This solution moves the screen power supply chip, headphone switch switching chip and speaker power amplifier from the main board to the sub board, saving the occupied area of the main board.
- the output terminal of the headphone switch switching chip is connected to the USB interface circuit, and the output terminal of the speaker power amplifier is connected to the speaker.
- the USB interface circuit and the speaker are usually located close to the sub-board. Therefore, moving these two circuit modules to the sub-board can simplify the circuit.
- the routing layout of the board thereby reducing the design complexity of the circuit board.
- the target circuit module includes a screen power chip and a charging protocol chip, and the screen power chip is an OLED driver chip; a power supply signal input terminal of the charging protocol chip is connected to an input terminal of the OLED driver chip The power signal input terminal is connected, the charging power positive signal input terminal of the charging protocol chip is connected with the charging power positive signal input terminal of the sub-board, and the DC power signal input terminal of the charging protocol chip is connected with the DC power signal input terminal of the sub-board.
- This solution moves the screen power chip and charging protocol chip to the sub-board, saving the area occupied by the main board.
- the output terminal of the charging protocol chip is connected to the USB interface circuit, and the USB interface circuit is usually arranged near the sub-board. Therefore, moving the charging protocol chip to the sub-board can simplify the wiring layout of the circuit board, thereby reducing the circuit board. Design complexity.
- the target circuit module includes a screen power chip, a charging protocol chip, and a speaker power amplifier, and the screen power chip is an OLED driver chip; a power supply signal input terminal of the speaker power amplifier is connected to the OLED driver chip.
- One power supply signal input terminal of the chip is connected, the control signal input terminal of the speaker power amplifier is connected with the control signal input terminal of the charging protocol chip, one power supply signal input terminal of the charging protocol chip is connected with one power supply signal input terminal of the OLED driver chip To connect, the positive signal input end of the charging power supply of the charging protocol chip is connected to the positive signal input end of the charging power supply of the sub-board, and the DC power signal input end of the charging protocol chip is connected to the DC power signal input end of the sub-board.
- This solution moves the screen power supply chip, charging protocol chip and speaker power amplifier from the main board to the sub board, saving the area occupied by the main board.
- the number of signals per connection bit, and the output terminal of the charging protocol chip is connected to the USB interface circuit, and the USB interface circuit is usually arranged near the sub-board, so moving the charging protocol chip to the sub-board can simplify the wiring of the circuit board layout, thereby reducing the design complexity of the circuit board.
- the flexible circuit board is a flexible circuit board, and the flexible circuit board is connected to the screen chip through a connection point.
- the target circuit module includes a motor drive power chip and a speaker power amplifier; a power supply signal input end of the motor drive power chip is connected to a power supply signal input end of the speaker power amplifier; The control signal input end of the motor driving power supply chip is connected with the control signal input end of the loudspeaker power amplifier.
- the target circuit module includes the screen power chip, the headphone switch chip and the motor drive power chip, the screen power chip is a backlight power chip; the backlight power chip and the headphone switch chip The control signal input terminal is connected to the control signal input terminal of the motor drive power chip; the backlight enable signal input terminal of the backlight power chip is connected to the power signal input terminal; a power supply input terminal of the headphone switch chip is connected to the power supply of the screen power chip The power signal input terminal is connected; the power supply input terminal of the motor drive power chip is connected with the power supply signal input terminal of the screen power chip.
- the target circuit module includes a screen power chip, an earphone switch chip and a motor drive power chip, and the screen power chip is an OLED drive chip; the control signal input terminal of the headphone switch chip is connected to the motor The control signal input terminal of the driving power chip is connected, the power supply input terminal of the headphone switch switching chip is connected with a power supply input terminal of the OLED driver chip; the power supply input terminal of the motor driving power chip is connected with a power supply input terminal of the OLED driver chip connect.
- the electronic device includes a USB interface;
- the target circuit module includes a screen power chip and a PD charging protocol chip, and the screen power chip is a backlight power chip;
- the control signal input terminal of the backlight power chip is connected to the PD
- the control signal input terminal of the charging protocol chip is connected, the backlight enable signal input terminal of the backlight power chip is connected with the power supply signal input terminal of the backlight power chip;
- the positive signal input terminal of the charging power supply of the PD charging protocol is connected with the positive signal input terminal of the USB interface
- the power supply signal input terminal of the PD charging protocol is connected to the power supply input terminal of the backlight power chip.
- the electronic device includes a USB interface;
- the target circuit module includes a screen power supply chip and a PD charging protocol chip, and the screen power supply chip is an OLED driver chip;
- the positive signal input of the charging power supply of the PD charging protocol chip is The terminal is connected to the power positive signal input terminal of the USB interface, and the power supply signal input terminal of the PD charging protocol is connected to the power supply input terminal of the OLED driver chip.
- the target circuit module includes: a motor drive power chip; the power supply signal input end of the motor drive power chip is connected to the power supply signal input end of the screen power chip, and the power supply signal input end of the motor drive power chip
- the control signal input terminal is connected with the control signal input terminal of the PD charging protocol chip.
- the electronic device includes a USB interface;
- the target circuit module includes a speaker power amplifier and a PD charging protocol chip; the charging power positive signal input terminal of the PD charging protocol chip and the positive power signal of the USB interface The input terminal is connected, the power supply signal input terminal of the PD charging protocol chip is connected with the power supply signal input terminal of the speaker power amplifier, and the control signal input terminal of the PD charging protocol chip is connected with the control signal input terminal of the speaker power amplifier.
- the electronic device includes a USB interface;
- the target circuit module includes a motor drive power chip and a PD charging protocol chip; the control signal input terminal of the motor driving power chip and the control signal of the PD charging protocol chip The input terminal is connected, and the charging power supply positive signal of the PD charging protocol chip is connected with the power supply positive signal input terminal of the USB interface.
- the flexible circuit board is a flexible circuit board, and the flexible circuit board is connected to the screen chip through a connection point.
- the flexible circuit board includes a first flexible circuit board and a second flexible circuit board.
- the first flexible circuit board is connected to the main board through the first connection position, the first flexible circuit board is connected to the sub-board through the second connection position, and the first flexible circuit board is used for The signal between the main board and the sub-board, and the signal between the main board and the screen chip are transmitted; the second flexible circuit board is connected to the screen chip through the third connection position, and connected to the sub-board through the fourth connection position.
- the first connection position is an electrical connector
- the electrical connector is a connector with 62 pins, or a connector with 72 pins, or a connector with 82 pins.
- the present application further provides an electronic device, including a screen, and the circuit board described in any possible implementation manner of the first aspect.
- Fig. 1 is a kind of structural representation of existing circuit board
- Fig. 2A is a schematic structural diagram of a circuit board combining a screen FPC and a main and sub-board FPC;
- Fig. 2B is a structural schematic diagram of another circuit board combining screen FPC and main and sub-board FPC;
- FIG. 3 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
- 4 to 35 are schematic structural diagrams of circuit boards corresponding to different embodiments provided in the embodiments of the present application.
- words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
- the existing circuit board is shown in Figure 1.
- the main board is connected to the screen through the screen FPC, and the screen FPC only transmits signals related to the screen; at the same time, the main board is also connected to the sub-board through the main and sub-board FPC.
- the FPC only transmits the signals that need to be transmitted between the main board and the sub board.
- the connection position is a board-to-board (BTB) connector
- BTB connector connected to the screen FPC
- a BTB connector connected to the FPC of the main and sub-boards need to be set on the main board.
- the two BTB connectors occupy a large area of the motherboard, and the hardware costs of the two BTB connectors and the two FPCs are high.
- the merged FPC can not only transmit the signal between the main board and the screen chip, but also transmit the signal between the main board and the sub-board.
- Two FPC-connected connectors can also be combined into one connector.
- the merged FPC is connected to the main board and the sub-board, which can not only transmit signals related to the screen, but also transmit signals between the main and sub-boards. Signal.
- the screen chip is connected to the sub-board through the screen FPC to transmit signals related to the screen.
- main board and the sub-board are respectively provided with a variety of circuit modules with different functions, and FIG. 2A and FIG. 2B only use the speaker power amplifier and the screen power supply chip as examples for illustration.
- the organic light-emitting display (OLED) screen module has more pins than the liquid crystal display (LCD) module, the number of pins of the BTB connector on the motherboard cannot meet the requirements of the OLED screen module. Therefore, only solutions based on LCD screens can be realized, and solutions based on OLED screens cannot be realized.
- OLED organic light-emitting display
- the solution based on the LCD screen can only support any one of the video transmission interface specification protocols MIPI CPHY and MIPI DPHY, and cannot be compatible with these two protocols, because compatibility with these two protocols requires a large number of pins on the BTB connector.
- the fingerprint module under the screen is usually used at the same time as the OLED screen module.
- the fingerprint solution under the screen cannot be realized.
- the present application provides a circuit board, which is applied in electronic equipment including a screen, and the circuit board includes a main board, a sub board and an FPC.
- a first connection position is set on the main board, and the FPC is connected to the main board through the first connection position.
- a second connection position is set on the sub-board, and the FPC is connected to the sub-board through the second connection position, and the FPC is also connected to the screen chip.
- the sub-board is provided with a target circuit module
- the target circuit module can be a circuit module moved from the main board to the sub-board and the target circuit module is merged and optimized with the signal input terminals of the same signal type as other circuit modules on the sub-board , thereby reducing the number of signals of the target circuit module passing through the first connection bit.
- the target circuit module may include at least one of the following: a screen power supply chip, a motor drive power supply chip, a speaker power amplifier, a charging protocol chip, an earphone switch switching chip, a PD charging protocol chip, and a sensor.
- the sensors include but are not limited to: ambient light sensors, proximity light sensors, magnetic sensors, air pressure sensors, sar sensors, acceleration sensors, gyroscopes, and gravity sensors.
- this solution combines the screen FPC and the main and sub-board FPC into one FPC, so that the two connection positions on the main board can be combined into one connection position, saving the area occupied by the connection position on the main board and improving the utilization rate of the main board area; At the same time, the number of FPC and connection bits is reduced, thus reducing hardware cost.
- some circuit modules on the main board are moved to the sub-board, and the input signals of this part of the circuit modules are further merged and optimized to reduce the signal of these circuit modules through the connection position. quantity, so that the entire circuit board carries more complex functional modules.
- the self-device applying the circuit board provided by the application can be mobile phone, tablet computer, desktop, laptop, notebook computer, Ultra-mobile Personal Computer (Ultra-mobile Personal Computer, UMPC), handheld computer, netbook, personal digital assistant (Personal Digital Assistant, PDA), wearable electronic devices, smart watches and other portable electronic devices, this application does not make special restrictions on the specific form of electronic devices using the circuit board.
- Fig. 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
- the electronic device may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, and a battery 142 , antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193 , a screen 194, and a subscriber identification module (subscriber identification module, SIM) card interface 195, etc.
- SIM subscriber identification module
- the sensor module 180 may include a pressure sensor, a gyroscope sensor, an air pressure sensor, a magnetic sensor, an acceleration sensor, a distance sensor, a proximity light sensor, a temperature sensor, an ambient light sensor, a bone conduction sensor, a fingerprint sensor, and the like.
- the structure shown in this embodiment does not constitute a specific limitation on the electronic device.
- the electronic device may include more or fewer components than shown, or combine certain components, or separate certain components, or arrange different components.
- the illustrated components can be realized in hardware, software or a combination of software and hardware.
- the processor 110 may include one or more processing units, for example: the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
- application processor application processor, AP
- modem processor graphics processing unit
- GPU graphics processing unit
- image signal processor image signal processor
- ISP image signal processor
- controller video codec
- digital signal processor digital signal processor
- baseband processor baseband processor
- neural network processor neural-network processing unit
- processor 110 may include one or more interfaces.
- the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transmitter (universal asynchronous receiver/transmitter, UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input and output (general-purpose input/output, GPIO) interface, SIM interface, and/or universal serial bus (universal serial bus, USB) interface, etc.
- I2C integrated circuit
- I2S integrated circuit built-in audio
- PCM pulse code modulation
- PCM pulse code modulation
- UART universal asynchronous transmitter
- MIPI mobile industry processor interface
- GPIO general-purpose input and output
- SIM interface SIM interface
- USB universal serial bus
- the I2C interface is a bidirectional synchronous serial bus, including a serial data line (serial data line, SDA) and a serial clock line (derail clock line, SCL).
- processor 110 may include multiple sets of I2C buses.
- the processor 110 may be coupled to sensors, chargers, flashlights, cameras 193 and the like through different I2C bus interfaces.
- the I2S interface can be used for audio communication.
- processor 110 may include multiple sets of I2S buses.
- the processor 110 may be coupled to the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170 .
- the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface, so as to realize the function of answering calls through the Bluetooth headset.
- MIPI is the most mainstream video transmission interface specification in the mobile field.
- MIPI DPHY and MIPI CPHY two protocol clusters are widely used.
- the MIPI interface can be used to connect the processor 110 with peripheral devices such as the screen 194 and the camera 193 .
- MIPI interface includes camera serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
- the processor 110 communicates with the camera 193 through the CSI interface to realize the shooting function of the electronic device.
- the processor 110 communicates with the screen 194 through the DSI interface to realize the display function of the electronic device.
- the GPIO interface can be configured by software.
- the GPIO interface can be configured as a control signal or as a data signal.
- the GPIO interface can be used to connect the processor 110 with the camera 193 , the screen 194 , the wireless communication module 160 , the audio module 170 , the sensor module 180 and so on.
- the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
- the USB interface 130 is an interface conforming to the USB standard specification, specifically, it can be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
- the USB interface 130 can be used to connect a charger to charge the electronic device, and can also be used to transmit data between the electronic device and peripheral devices. It can also be used to connect headphones and play audio through them. This interface can also be used to connect other electronic devices, such as AR devices.
- the interface connection relationship among the modules shown in this embodiment is only a schematic illustration, and does not constitute a structural limitation of the electronic device.
- the electronic device may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
- the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
- the power management module 141 receives the input of the battery 142 and/or the charging management module 140, and supplies power to other components of the circuit board.
- the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
- the power management module 141 may also be disposed in the processor 110 .
- the power management module 141 and the charging management module 140 may also be set in the same device.
- the wireless communication function of the electronic device can be realized by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
- Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
- Each antenna in an electronic device can be used to cover a single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
- the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied to electronic devices.
- at least part of the functional modules of the mobile communication module 150 may be set in the processor 110 .
- at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be set in the same device.
- the wireless communication module 160 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wi-Fi) network), bluetooth (bluetooth, BT), global navigation satellite system, etc. (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
- WLAN wireless local area networks
- Wi-Fi wireless fidelity
- BT Bluetooth
- GNSS global navigation satellite system
- frequency modulation frequency modulation, FM
- NFC near field communication technology
- infrared technology infrared, IR
- the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
- the antenna 1 of the electronic device is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device can communicate with the network and other devices through wireless communication technology.
- the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR techniques, etc.
- GSM global system for mobile communications
- general packet radio service general packet radio service
- CDMA code division multiple access
- WCDMA broadband Code division multiple access
- time division code division multiple access time-division code division multiple access
- TD-SCDMA time-division code division multiple access
- LTE long term evolution
- BT GNSS
- the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (global navigation satellite system, GLONASS), a Beidou navigation satellite system (beidou navigation satellite system, BDS), a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
- GPS global positioning system
- GLONASS global navigation satellite system
- Beidou navigation satellite system beidou navigation satellite system
- BDS Beidou navigation satellite system
- QZSS quasi-zenith satellite system
- SBAS satellite based augmentation systems
- the electronic device implements the display function through the GPU, the screen 194, and the application processor.
- the GPU is a microprocessor for image processing, and is connected to the screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
- Processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
- the screen 194 is used to display images, videos and the like.
- the screen 194 includes a display panel.
- the display panel can use LCD, OLED, active matrix organic light emitting diode or active matrix organic light emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oled, quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
- the electronic device may include 1 or N screens 194, where N is a positive integer greater than 1.
- the electronic device can realize the shooting function through ISP, camera 193 , video codec, GPU, screen 194 and application processor.
- the ISP is used for processing the data fed back by the camera 193 .
- ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
- the ISP may be located in the camera 193 .
- Camera 193 is used to capture still images or video.
- the electronic device may include 1 or N cameras 193, where N is a positive integer greater than 1.
- the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to realize expanding the storage capacity of the electronic device.
- the external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function. Such as saving music, video and other files in the external memory card.
- the internal memory 121 may be used to store computer-executable program codes including instructions.
- the processor 110 executes various functional applications and data processing of the electronic device by executing instructions stored in the internal memory 121 .
- the electronic device can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. Such as music playback, recording, etc.
- the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
- the audio module 170 may also be used to encode and decode audio signals.
- the audio module 170 may be set in the processor 110 , or some functional modules of the audio module 170 may be set in the processor 110 .
- Speaker 170A also referred to as a "horn" is used to convert audio electrical signals into sound signals.
- the electronic device can listen to music through speaker 170A, or listen to hands-free calls.
- Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
- the electronic device receives a call or a voice message, it can listen to the voice by placing the receiver 170B close to the human ear.
- the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
- the user can put his mouth close to the microphone 170C to make a sound, and input the sound signal to the microphone 170C.
- the electronic device may be provided with at least one microphone 170C.
- the electronic device can be provided with two microphones 170C, which can also implement a noise reduction function in addition to collecting sound signals.
- the electronic device can also be equipped with three, four or more microphones 170C to realize sound signal collection, noise reduction, identify sound sources, and realize directional recording functions, etc.
- the earphone interface 170D is used for connecting wired earphones.
- the earphone interface 170D can be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, or a cellular telecommunications industry association of the USA (CTIA) standard interface.
- OMTP open mobile terminal platform
- CTIA cellular telecommunications industry association of the USA
- the keys 190 include a power key, a volume key and the like.
- the key 190 may be a mechanical key. It can also be a touch button.
- the electronic device can receive key input and generate key signal input related to user settings and function control of the electronic device.
- the motor 191 can generate a vibrating reminder.
- the motor 191 can be used for incoming call vibration prompts, and can also be used for touch vibration feedback.
- touch operations applied to different applications may correspond to different vibration feedback effects.
- the motor 191 can also correspond to different vibration feedback effects for touch operations on different areas of the screen 194 .
- Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
- the touch vibration feedback effect can also support customization.
- the indicator 192 can be an indicator light, and can be used to indicate charging status, power change, and can also be used to indicate messages, missed calls, notifications, and the like.
- the SIM card interface 195 is used for connecting a SIM card.
- the electronic device can support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
- SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card etc. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the multiple cards may be the same or different.
- the SIM card interface 195 is also compatible with different types of SIM cards.
- the SIM card interface 195 is also compatible with external memory cards.
- Embodiment 1 The screen power supply chip and speaker power amplifier are moved from the main board to the sub board
- the speaker power amplifier and screen power chip are moved from the main board to the sub board, and the main and sub board FPCs are merged into the screen FPC.
- the motherboard is provided with a first BTB connector, and the FPC is connected to the motherboard through the first BTB connector.
- the first BTB connector is a snap-fit connector, which includes a matching fastener and a seat body, wherein the fastener is fixed at one end of the FPC connected to the main board, and the seat body is welded on the main board, and the buckle The parts are clipped to the seat body so as to realize the connection between the FPC and the main board.
- the sub-board is provided with a second BTB connector, and the FPC is connected to the sub-board through the second BTB connector.
- the structure and connection principle of the second BTB connector are the same as those of the first BTB connector, for example, the fastener is fixed on the end where the FPC is connected to the sub-board, and the base is fixed on the sub-board.
- the BTB connector can also be replaced by other types of connectors such as zero insertion force (ZIF) type connectors, or not Limited to the connection form of the connector, it can also be connected by crimping (eg, FOF, FOB). This application does not limit the specific type of the connection position.
- ZIF zero insertion force
- FOF FOB
- the FPC is an FPC
- one end of the FPC is connected to the main board, the other end is connected to the sub-board, and the FPC is also connected to the screen chip, and the part of the FPC that transmits the signal between the main board and the screen chip is provided with A connection point, through which the connection point is connected to the screen chip, wherein the connection point contains a conductive medium, for example, the connection point can be welded together with the corresponding pins of the screen chip.
- the screen chip When the screen chip receives the signal sent by the motherboard, the signal is transmitted to the pin pin of the screen chip through the first BTB connector, FPC and the above-mentioned connection point; on the contrary, when the screen chip sends a signal to the motherboard, the signal passes through the connection point, FPC and the first pin in turn.
- a BTB connector transmits to corresponding chips on the motherboard, such as system-on-chip SOC, power management unit (power management unit, PMU), codec, etc.
- the screen power chip is the driving power of the screen chip.
- the screen is an LCD
- the screen power chip is a backlight power chip, which provides driving power for the backlight of the LCD and controls the flip direction of the liquid crystal so that the LCD can display .
- the screen is an OLED
- the screen power chip is an OLED driver chip, which provides driving power for the OLED.
- the speaker power amplifier is the power amplification circuit module of the speaker, and the sound signal is amplified by the speaker power amplifier and then transmitted to the speaker.
- the sound signal in this application can be a digital signal or an analog signal, wherein, the analog SPK PA (speaker power amplifier) is an analog power amplifier for processing analog sound signals, and SMART PA is a digital power amplifier for processing digital sound signals .
- the analog SPK PA peaker power amplifier
- SMART PA digital power amplifier for processing digital sound signals
- the screen is an LCD
- the screen power chip is a backlight power chip
- the speaker power amplifier is an analog SPK PA.
- control signal address such as 0010001
- address such as 1011000
- control signals SDA1, SCL1 of the backlight power supply chip and SDA2, SCL1 in the simulation SPK PA SCL2 can be shared, saving 2 BTB connector pins.
- the LCD_EN signal of the backlight power supply chip can be connected with VPH-PWR or pull-up power supply, saving 1 pin.
- a VPH-PWR signal in the analog SPK PA can be combined with a VPH-PWR signal of the backlight power chip, saving 1 pin. It can be seen that after merging and optimizing the input signals of these two circuit modules, the remaining 9 input signals pass through the motherboard BTB connector. Compared with setting these two circuit modules on the motherboard, a total of 2 pins of the motherboard BTB connector are saved. foot.
- the speaker power amplifier can also be a SMART PA, as shown in Table 2, after moving the backlight power chip and SMART PA from the main board to the sub-board, after the signal combination of the first BTB connector is optimized Description:
- the signals passing through the first BTB connector include the four signals shown in Table 2.
- the signals passing through the first BTB connector include For the 11 signals shown in Table 2, the VPH-PWR signal of the SMART PA is combined with the VPH-PWR signal of the backlight power chip, saving 1 pin.
- the VIO_1.8V signal of the SMART PA is combined with the antenna switching power supply on the sub-board, saving 1 pin, that is, 9 signals after 11 signals are combined.
- other signal adjustments in this paper can be to combine and optimize the signals of the same network involved in different chips, thereby reducing the number of pins occupied by such signals.
- other signals may include a GND signal, or a pin of a floating network (not connect, NC) network (that is, a pin of a BTB connector not connected to a network), and the like.
- 3OLED driver chip and analog SPK PA are moved from the main board to the sub board
- the screen is an OLED.
- Table 3 after the OLED driver chip and the analog SPK PA are moved from the main board to the sub board, they are combined and optimized through the BTB connector on the main board. Description:
- the signals passing through the BTB connector of the motherboard are the 7 output signals of the OLED driver chip, and after the OLED is moved to the sub-board, the signals passing through the BTB connector of the motherboard become OLED
- the 4 input signals of the driver chip can save 3 pins without merging the input signals.
- the analog SPK PA is moved from the main board to the sub-board, the number of signals changes from 4 to 6, and the VPH-PWR can be combined with the VPH-PWR of the OLED driver chip, saving 1 pin.
- the analog SPK PA needs to be occupied after being moved to the sub-board.
- the motherboard BTB connector has 5 pins. For the two circuit modules of the OLED driver chip and the analog SPK PA, after moving from the main board to the sub board, 2 pins of the BTB connector on the main board are saved.
- 4OLED driver chip and SMART PA are moved from the main board to the sub board
- the LCD in the scheme corresponding to Table 2 can be replaced by an OLED, and correspondingly, the backlight power chip is replaced by an OLED driver chip.
- the OLED power driver chip and SMART PA are moved from the main board to the secondary board, the signal comparison through the BTB connector of the main board is shown in Table 4:
- SMART PA is moved from the main board to the sub board, and the signals passing through the BTB connector of the main board are changed from 4 to 11, further combining and optimizing the signals of SMART PA, such as combining the VPH-PWR signal of SMART PA with the VPH-PWR signal of the OLED driver chip.
- the PWR signal is combined to save 1 pin, and the DC power signal VIO_1.8V of SMART PA is combined with the antenna switching power supply on the sub-board to save 1 pin.
- the signal of SMART PA is merged from 11 to 9, driven by OLED
- the chip and the SMART PA chip have a total of 13 pins. Overall, the number of pins passing through the BTB connector is not saved, but the OLED driver chip is moved from the main board to the sub-board, which saves the space of the main board and optimizes the layout of the main board.
- the backlight enable signal LCD_EN It can be connected with VPH-PWR or pull-up power supply, occupying less than 1 pin of BTB connector, that is, saving 1 pin.
- the OLED driver chip is moved from the main board to the sub board, and the signals passing through the BTB connector are changed from 7 output signals to 4 input signals, which means that 3 pins of the BTB connector are less occupied, which saves 3 a pin.
- the circuit board provided by this embodiment merges the screen FPC and the main board FPC, and the two BTB connectors on the main board can be combined into one, that is, the first BTB connector, which reduces the area occupied by the BTB connector on the main board and improves the Utilization of motherboard area. At the same time, the number of FPC and BTB connectors is reduced, thereby reducing hardware costs. Moreover, the solution saves space on the main board by moving the circuit modules on the main board to the sub-board.
- Figure 4 is the FPC obtained by merging the main and sub-board FPCs into the screen FPC.
- the screen FPC can also be merged into the main and sub-boards FPC to obtain the FPC.
- the FPC includes the first FPC and the second FPC .
- One end of the first FPC is connected to the main board through the first BTB connector, and the other end of the first FPC is connected to the sub-board through the second BTB connector. That is, the first FPC transmits signals between the main board and the sub-board, and signals between the main board and the screen.
- the sub-board and the screen chip are connected through a second FPC, and the second FPC transmits signals related to the screen to the screen chip.
- Other circuit modules are the same as those in the embodiment shown in FIG. 4 , and will not be repeated here.
- the circuit board provided in this embodiment connects the main board and the sub-board through the first FPC, and connects the sub-board and the screen chip through the second FPC.
- the main board only needs to be equipped with a BTB connector, thus saving the occupied area of the main board.
- the number of FPC and BTB connectors is reduced, thereby reducing hardware costs.
- the screen power supply chip and the analog SPK PA are moved from the main board to the sub board, and at the same time, the input signals of these two circuit modules are combined and optimized to reduce the number of signals passing through the first BTB connector of these two circuit modules, thereby
- the BTB connector of the main board can carry signals of more and more complex circuit modules, so that the main board can carry more complex functional modules.
- Embodiment 2 The screen power chip and the motor drive power chip are moved from the main board to the sub board
- the analog SPK PA in the embodiment shown in Figure 4 is replaced with a motor drive power supply chip, and other circuit modules remain unchanged, and will not be repeated here.
- the signals passing through the BTB connector on the main board are two signals: VIBR_P and VIBR_N.
- the signals passing through the BTB connector on the main board become as follows 5 A signal VPH-PWR, SDA2, SCL2, MOTOR_EN and MOTOR_INT.
- control signals SDA1 and SCL1 of the backlight power chip are combined with the SDA2 and SCL2 of the motor drive power supply, saving 2 pins, and the LCD_EN of the backlight power chip is connected to VPH-PWR or the default pull-up power supply, saving 1 pin pin, the VPH-PWR of the motor drive power chip is merged with the VPH-PWR of the backlight power chip, saving 1 pin.
- the screen power supply chip is an OLED driver chip.
- the signals passing through the BTB connector on the motherboard Merge optimization instructions are shown in Table 6.
- the screen FPC and the main and sub-board FPC can also be combined into the main and sub-board FPC to obtain the FPC, as shown in Figure 7, the difference from the embodiment shown in Figure 6 is that the FPC includes a The first FPC of the board, and the second FPC connecting the sub-board and the screen chip.
- the signal between the main board and the screen is transmitted to the sub-board first, and then to the other side.
- the other structures are the same and will not be repeated here.
- the circuit board provided by this embodiment moves the screen power chip and the motor drive power chip from the main board to the sub-board, and combines and optimizes the input signals of these two chips to reduce the number of screen power chips and motor drive power chips passing through the main board.
- the number of signals of the BTB connector so that the motherboard BTB connector carries more and more complex circuit modules, and then the motherboard carries more complex functional modules.
- Embodiment 3 The screen power supply chip, motor drive power supply and speaker power amplifier are moved from the main board to the sub board
- the speaker power amplifier can be further moved from the main board to the sub-board, that is, the screen power supply chip, the motor drive power supply chip and the speaker power amplifier are moved from the main board to the sub-board. sub board.
- the FPC transmits signals between the main board and the screen, as well as between the main board and the sub-board. Since the screen power chip, motor drive power chip and speaker power amplifier are all set on the sub-board, the output signal of the screen power chip is transmitted to the screen chip, and the motor drive The output signal of the power supply chip is transmitted to the motor, and the output signal of the speaker power amplifier is transmitted to the speaker.
- the screen is an LCD
- the screen power chip is a backlight power chip
- the speaker power amplifier is an analog SPK PA.
- Table 7 After the backlight power chip, motor drive power chip and analog SPK PA are moved from the main board to the sub-board, the description of signal combination optimization through the main board BTB connector is shown in Table 7:
- control signals of the backlight power chip, the motor drive power chip and the analog SPK PA can share one set, thus saving 4 pins, and the LCD_EN of the backlight power chip is connected to VPH-PWR or the default pull-up power supply, saving 1 pin pin; the VPH-PWR of the motor drive power chip is merged with the VPH-PWR of the backlight power chip, saving 1 pin; one VPH-PWR of the analog SPK PA is merged with the VPH-PWR of the backlight power chip, saving 1 pin.
- 2 pins can be saved in the end.
- the simulated SPK PA in Table 7 can be replaced by a SMART PA, that is, after the backlight power chip, the motor drive power chip and the SMART PA are moved from the main board to the sub board, they are optimized through the signal combination of the BTB connector on the main board
- Table 8 The description is shown in Table 8:
- 3OLED drive chip, motor drive power chip and SMART PA are moved from the main board to the sub board
- the screen is an OLED
- the screen power supply chip is an OLED driver chip.
- the OLED driver chip, motor driver power supply chip and SMART PA are moved from the main board to the sub-board, and pass through the BTB connector on the main board.
- Table 9 shows the description of the signal combination optimization.
- the OLED driver chip is moved from the main board to the sub board, and the signals passing through the BTB connector of the main board are changed from 7 output signals to 4 input signals, saving 3 pins.
- the power supply signal VPH-PWR of the motor drive power chip is combined with the VPH-PWR of the OLED drive chip, saving 1 pin;
- the VPH-PWR of the analog SPK PA is combined with the VPH-PWR of the OLED drive chip, saving 1 pin, and at the same time,
- the control signals SDA3 and SCL3 of the analog SPK PA are shared with the SDA2 and SCL2 of the motor drive power chip, saving 2 pins. After the above-mentioned input signal combination, 2 pins can be saved in the end.
- 4OLED drive chip, motor drive power chip and SMART PA are moved from the main board to the sub board
- the simulated SPK PA in Table 9 can be replaced by a SMART PA.
- the signals passing through the BTB connector on the main board Merge optimization instructions are shown in Table 10:
- the signals passing through the BTB connector of the main board are changed from 4 to 11, and the signals of the SMART PA are further merged and optimized to obtain 9 signals.
- the three circuits Before and after the module is moved from the main board to the sub board, the number of signals passing through the BTB connector on the main board remains unchanged, but moving these three circuit modules from the main board to the sub board saves space on the main board and optimizes the layout of the circuit modules on the main board.
- the screen FPC and the main and sub-board FPC can also be combined into the main and sub-board FPC to obtain the FPC, as shown in Figure 9, the FPC includes a first FPC and a second FPC, wherein the first FPC is used to connect the main board With the sub-board, the second FPC is used to connect the sub-board and the screen chip.
- the first FPC transmits signals between the main board and the screen, and between the main board and the sub-board, and the second FPC only transmits signals related to the screen.
- Other structures are the same as those in FIG. 8 , and will not be repeated here.
- the circuit board provided by this embodiment moves the screen power chip, the motor drive power chip and the speaker power amplifier from the main board to the sub-board, and combines and optimizes the input signals of these three circuits to reduce the BTB connector on the main board.
- the number of signals so that the motherboard BTB connector carries more and more complex circuit module signals, so that the entire circuit board carries more complex functional modules.
- Embodiment 4 The screen power supply chip and the charging protocol chip are moved from the main board to the sub board
- the speaker power amplifier in the embodiment shown in FIG. 4 can be replaced by a charging protocol chip, wherein the charging protocol chip is used to control the charging mode of the charging module.
- the FPC transmits signals between the main board and the screen, as well as between the main board and the sub-board, wherein the output signal of the screen power supply chip is transmitted to the screen chip, and the output signal of the charging protocol chip is transmitted to the USB interface circuit.
- the VPH-PWR of the charging protocol chip is merged with the VPH-PWR of the backlight power chip, saving 1 pin; the sub-board itself has a VBUS signal, so the VBUS of the charging protocol chip is directly merged with the VBUS of the USB interface, saving 1 pin; charging The VIO_1.8V of the protocol chip is combined with the antenna switching power supply of the sub-board, saving 1 pin.
- the number of signals of these two chips passing through the BTB connector on the motherboard is 9, which is the same as the number of signals when the backlight power chip and the charging protocol chip are set on the motherboard, but This solution moves the backlight power chip and charging protocol chip to the sub-board, saving the area occupied by the main board.
- 2OLED driver chip and charging protocol chip are moved from the main board to the sub board
- the screen is an OLED
- the screen power chip is an OLED driver chip.
- the screen FPC can also be combined with the main and sub-board FPC to obtain the FPC, as shown in Figure 11, the FPC includes a first FPC and a second FPC, the first FPC is connected to the main board and the sub-board, and the second FPC is connected to the sub-board board and screen chip.
- the first FPC transmits signals between the main board and the sub-board, and the main board and the screen chip, and the second FPC transmits the signal between the sub-board and the screen chip.
- the other structures are the same as those in Fig. 10 and will not be repeated here.
- the screen power supply chip and the charging protocol chip are moved from the main board to the sub board, and the area occupied by the main board is saved without increasing the number of signals passing through the BTB connector of the main board, so that the main board can carry complex Functional modules improve the area utilization of the entire circuit board.
- Embodiment 5 The screen power supply chip, charging protocol chip and speaker power amplifier are moved from the main board to the sub board
- the speaker power amplifier is further moved from the main board to the sub board, wherein the signal combination optimization method of the screen power supply chip and the charging protocol chip is the same as that shown in Figure 10.
- the embodiment shown in 10 is the same and will not be repeated here.
- the screen power chip is a backlight power chip
- the speaker power amplifier is an analog SPK PA that processes analog sound signals.
- the above-mentioned three circuit modules are moved from the main board to the sub-board and then pass through the signal of the BTB connector on the main board. Merge optimization instructions are shown in Table 13:
- control address of the simulated SPK PA does not conflict with the control addresses of the backlight power supply chip and the charging protocol chip. Therefore, the two control signals SDA3 and SCL3 of the simulated SPK PA can be combined with the control signals SDA2 and SCL2 of the charging protocol chip. , save 2 pins. It can be seen that this solution saves 1 pin in the end.
- the speaker power amplifier can also use SMART PA to process digital sound signals.
- the backlight power chip, charging protocol chip and SMART PA are moved from the main board to the sub board, the signal passing through the BTB connector on the main board Merge optimization instructions are shown in Table 14:
- the signals passing through the BTB connector of the main board are changed from 4 output signals to 11 input signals, and the 11 input signals are further combined and optimized, for example, the SMART PA
- the VPH-PWR is combined with the VPH-PWR of the backlight power chip, saving 1 pin; the DC power signal VIO_1.8V of the SMART PA is combined with the antenna switching power supply of the sub-board, saving 1 pin.
- the signal combination method of the backlight power supply chip and the charging protocol chip is the same as that shown in Table 13, and will not be repeated here.
- this solution does not save the number of signals passing through the BTB connector on the main board, but moves the backlight power chip, charging protocol chip and SMART PA from the main board to the sub-board, saving the occupied area of the main board and optimizing the layout of the main board.
- 3OLED driver chip, charging protocol chip and analog SPK PA are moved from the main board to the sub board
- the screen is an OLED
- the screen power supply chip is an OLED driver chip
- the speaker power amplifier is an analog SPK PA for processing analog sound signals.
- Table 15 The difference between Table 15 and Table 13 is that when the OLED driver chip is placed on the main board, the signals passing through the BTB connector of the main board are 7 output signals, and when the OLED driving chip is moved to the sub board, the signals passing through the BTB connector of the main board become 4 input signals, in other words, 3 pins can be saved without combining and optimizing the input signals of the OLED driver chip.
- 4OLED driver chip, charging protocol chip and SMART PA are moved from the main board to the sub board
- the analog SPK PA for processing analog sound signals in Table 15 can also be replaced by the SMART PA for processing digital sound signals.
- Table 16 The comparison of signals passing through the BTB connector on the main board corresponding to this scenario is shown in Table 16:
- the screen FPC can also be combined with the main board FPC to obtain the FPC, as shown in Figure 13, the FPC includes a first FPC and a second FPC, the first FPC is connected to the main board and the sub board, and the second FPC is connected to the sub board. board and screen chip.
- the first FPC transmits signals between the main board and the sub-board, and the main board and the screen chip, and the second FPC transmits the signal between the sub-board and the screen chip.
- Other structures are the same as those in Fig. 12 and will not be repeated here.
- the screen power supply chip, the charging protocol chip and the speaker power amplifier are moved from the main board to the sub-board, which saves the occupied area of the main board, so that the main board can carry complex function modules. Moreover, by merging and optimizing the input signals of the three circuit modules, the number of signals passing through the BTB connector of the main board is reduced, so that the sub-board can carry more and more complex circuit modules.
- Embodiment 6 The screen power chip, the headphone switch chip and the speaker power amplifier are moved from the main board to the sub board
- the earphone switch switching chip is used to switch the working mode of the USB TypeC interface, such as earphone mode or USB interface mode.
- the main and sub-board FPCs are merged into the screen FPC to obtain an FPC.
- the structure of the FPC is the same as that of the FPC in the embodiment shown in FIG. 8 , and will not be repeated here.
- the FPC since the headphone switch switching chip is moved from the main board to the sub-board, the FPC transmits signals between the main board and the headphone switch switching chip. In addition, the output signal of the headphone switch switching chip is transmitted to the USB interface.
- the screen is an LCD
- the screen power chip is a backlight power chip
- the speaker power amplifier is an analog SPK PA that processes analog sound signals.
- the signals passing through the BTB connector on the main board change from 4 input signals to 12 output signals.
- the addresses of the control signals SDA2 and SCL2 have no conflict with the control addresses in the backlight power supply chip and the analog SPK PA, therefore, the control signals in these three chips can be merged, as in this embodiment, the SDA3 of the backlight power supply chip , SCL3 and SDA2, SCL2 of the headphone switch switching chip are merged with the control signal SDA3, SCL3 of the analog SPK PA.
- the VPH-PWR of the headphone switch switching chip is combined with the VPH-PWR of the backlight power chip, saving 1 pin.
- the analog SPK PA in Table 17 can be replaced by a SMART PA that processes digital audio signals.
- the corresponding signal combination optimization instructions through the motherboard BTB connector are shown in Table 18:
- the signals passing through the BTB connector on the main board change from 4 output signals to 11 input signals. Further, the VPH-PWR in the input signal and the backlight power chip VPH-PWR is combined to save 1 pin; and, the DC power signal VIO_1.8V is combined with the antenna switching power supply of the sub-board to save 1 pin. That is, the input signals of SMART PA become 9 after being combined.
- 3OLED driver chip, headphone switch chip and analog SPK PA are moved from the main board to the sub board
- the screen power chip is an OLED driver chip. Replace the backlight power supply chip in Table 17 with an OLED driver chip to get Table 19:
- the signals passing through the BTB connector of the main board change from 7 output signals to 4 input signals, saving 3 pins.
- the number of signals passing through the BTB connector on the main board remains unchanged, but the occupied area of the main board is saved, and the layout of the main board is optimized.
- 4OLED driver chip, headphone switch chip and SMART PA are moved from the main board to the sub board
- the backlight power supply chip in Table 18 can also be replaced with an OLED driver chip.
- the comparison of signals passing through the BTB connector of the main board is shown in Table 20.
- the signals passing through the BTB connector of the main board change from 7 output signals to 4 input signals, saving 3 pins.
- moving these three circuits from the main board to the sub board does not save pins, but saves the occupied area of the main board and optimizes the layout of the main board.
- the screen FPC in the embodiment shown in FIG. 14 can be combined with the main and sub-board FPC to obtain the FPC, as shown in FIG.
- the structure and principle of the FPC in the examples are the same, and will not be repeated here.
- the screen power supply chip, the headphone switch switching chip and the analog SPK PA are moved from the main board to the sub-board, and the input signals of these three circuit modules are further combined and optimized.
- the occupied area of the main board is saved, so that the main board can carry more complex functional modules, and the utilization rate of the entire circuit board is improved.
- Embodiment 7 The motor drive power supply chip and speaker power amplifier are moved from the main board to the sub board
- the speaker power amplifier and the motor drive power supply chip are moved from the main board to the sub board, and the screen FPC is merged into the main and sub board FPC, and after the merger, there is one FPC, that is, the first FPC.
- Fig. 17 The difference between Fig. 17 and Fig. 16 is that the FPC of the main and sub-boards is merged into the screen FPC, and one FPC is formed after the merger.
- the speaker power amplifier uses an analog SPK PA that processes analog sound signals.
- the signal combination via the BTB connector on the main board is optimized The description is shown in Table 21:
- the speaker power amplifier uses a SMART PA that processes digital sound signals, and the signals passing through the BTB connector on the main board are shown in Table 22:
- Embodiment 8 The screen power supply chip and the headphone switch switching chip are moved from the main board to the sub board
- the screen power supply chip and the headphone switch switching chip are moved from the main board to the sub-board, and the main and sub-board FPCs are merged into the screen FPC, that is, the FPC in Figure 18.
- the screen FPC can also be combined with the main and sub-board FPCs to obtain the first FPC.
- the other parts are the same as those in FIG. 18 , and will not be repeated here.
- the screen is an LCD
- the screen power chip is a backlight power chip.
- the signal combination and optimization of the BTB connector on the main board is shown in Table 23:
- 2OLED driver chip and headphone switch switching chip are moved from the main board to the sub board
- the screen is an OLED
- the screen power chip is an OLED driver chip.
- the signal combination and optimization of the BTB connector on the main board is as follows: Table 24 shows:
- the OLED driver chip is moved from the main board to the sub board, and the signals passing through the BTB connector of the main board are changed from 7 output signals to 4 input signals, which can directly save 3 pins.
- the headphone switch switching chip is moved from the main board to the sub board, and the signals passing through the BTB connector of the main board are changed from 4 output signals to 12 input signals.
- the VPH-PWR is merged with the VPH-PWR of the OLED driver chip, saving 1 pin. On the whole, this solution does not save the number of pins of the mainboard BTB connector, but saves the occupied area of the mainboard and optimizes the layout of the mainboard.
- Embodiment 9 The screen power chip, headphone switch switching chip and motor drive power chip are moved from the main board to the sub board
- the motor drive power supply chip can be moved from the main board to the sub board, and the main and sub board FPC can be merged into the screen FPC.
- the screen FPC can also be combined with the main and sub-board FPCs, and other parts are the same as those in FIG. 20 , and will not be repeated here.
- 2OLED driver chip, headphone switch switching chip and motor drive power chip are moved from the main board to the sub board
- Embodiment 10 The headphone switch switching chip and the motor drive power chip are moved from the main board to the sub board
- the headphone switch switching chip and the motor drive power supply chip are moved from the main board to the sub board, and the screen FPC is merged into the main and sub board FPC (ie, the first FPC).
- the screen power supply chip is located on the main board, and the output signal of the screen power supply chip is transmitted to the screen chip through the first FPC and the second FPC.
- the input signal provided by the SOC chip of the motherboard to the headphone switch chip and the motor drive power chip is transmitted to the corresponding chip through the first FPC, and the output signals of these two chips are transmitted to the corresponding circuit or chip.
- the headphone switch switching chip and the motor drive power supply chip are moved from the main board to the sub board, and the main and sub board FPCs are merged into the screen FPC, that is, the FPC in FIG. 23 .
- control signals SDA1 and SCL1 of the headphone switch chip can be shared with the motor drive power chip SDA2 and SCL2, saving 2 pins.
- the VPH-PWR of the motor drive power chip is combined with the VPH-PWR of the headphone switch chip, saving 1 pin.
- other signals such as GND signals, etc.
- Embodiment 11 Headphone switch switching chip and speaker power amplifier are moved from the main board to the sub board
- the motor drive power supply chip in Figure 22 can be replaced by a speaker power amplifier.
- the headphone switch switching chip and the speaker power amplifier are moved from the main board to the sub board, and the screen FPC is merged into the main and sub board.
- the board FPC gets the first FPC.
- the difference between this exemplary embodiment and the embodiment shown in FIG. 24 is that the main and sub-board FPCs are merged into the screen FPC, that is, the FPC in FIG. 25, and the other parts It is the same as that in Fig. 24 and will not be repeated here.
- the speaker power amplifier could be an analog SPK PA capable of processing analog sound signals.
- the speaker power amplifier can be a SMART PA that processes digital sound signals.
- Embodiment 12 The headphone switch switching chip, the motor drive power supply chip and the speaker power amplifier are moved from the main board to the sub board
- This embodiment is based on the tenth embodiment, and the motor drive power supply chip can be moved from the main board to the sub board.
- this embodiment further moves the motor drive power chip from the main board to the sub-board, and merges the screen FPC into the main and sub-board FPC, that is, the first FPC in FIG. 26 .
- this embodiment is based on Figure 25, further moving the motor drive power chip from the main board to the sub-board, and merging the main and sub-board FPC to the screen FPC, That is, the FPC in Figure 27.
- the speaker power amplifier can use a SMART PA capable of processing digital sound signals.
- the headphone switch chip, motor drive power chip and SMART PA are moved from the main board to the sub board Finally, the total number of signals passing through the BTB connector of the main board remains unchanged, but the occupied area of the main board is saved, and the layout of the main board is optimized.
- Embodiment 13 The screen power supply chip, headphone switch switching chip, motor drive power supply chip and speaker power amplifier are moved from the main board to the sub board
- the screen power supply chip, speaker power amplifier chip, headphone switch switching chip and motor drive power supply chip are set on the sub-board, and the FPC of the main and sub-board is merged into the screen FPC, and after merging into one FPC, that is, Fig. 28 FPC in.
- the SOC chip of the motherboard provides to the screen and the signals of the above four chips are transmitted to the screen through the first BTB connector and the FPC, and further transmit the signals of the above four chips to the sub-board. Further, the above four chips transmit respective output signals to corresponding hardware modules.
- the screen FPC can also be combined with the main and sub-board FPCs, that is, the first FPC in FIG. 29, and the signals between the screen power supply chip and the screen chip are transmitted through the second FPC.
- the screen is an LCD
- the screen power chip is a backlight power supply
- the speaker power amplifier is an analog SPK PA capable of processing analog sound signals.
- Table 32 after the above four chips are moved from the main board to the sub board, the total number of signals passing through the BTB connector of the main board remains unchanged, but the occupied area of the main board is saved and the layout of the main board is optimized.
- the speaker power amplifier can also use a SMART PA capable of processing digital sound signals.
- this solution does not save the number of pins of the BTB connector on the motherboard, but saves the occupation of the motherboard area, optimizing the layout of the motherboard.
- the screen is an OLED
- the screen power supply chip is an OLED driver chip
- the speaker power amplifier adopts an analog SPK PA capable of processing analog sound signals.
- Table 34 after these chips are moved from the main board to the sub board, the total number of signals passing through the BTB connector of the main board remains unchanged, but the occupied area of the main board is saved and the layout of the main board is optimized.
- 4OLED driver chip, headphone switch chip, motor drive power chip and SMART PA are moved from the main board to the sub board
- Embodiment 14 The screen power supply chip and the PD (Power Delivery) charging protocol chip are moved from the main board to the sub board
- USB Power Delivery a fast charging specification developed by the USB-IF organization, compatible with mobile phones, tablets, and laptops.
- PD fast charging increases power transmission through USB cables and connectors, expands the power supply capability of the USB cable bus, and achieves higher voltage and current.
- the screen power supply chip and the PD charging protocol chip are set on the sub-board, and the main and sub-board FPC is merged into the screen FPC, that is, the FPC in Figure 30, and the SOC chip provides the signal for the screen power supply chip and the PD charging protocol chip It is transmitted to the screen chip through the first BTB connector and FPC, and further transmitted to the corresponding chip on the sub-board.
- the screen FPC can also be combined with the main and sub-board FPC, that is, the first FPC in Figure 31, and the signal between the screen power chip and the screen chip is transmitted through the second FPC .
- the other parts are the same as those in Fig. 30 and will not be repeated here.
- the screen is an LCD
- the screen power chip is a backlight power chip.
- the signals passing through the BTB connector of the main board change from 7 output signals to 7 input signals.
- the PD charging protocol chip is moved from the main board to the sub board, and the signals passing through the BTB connector of the main board are changed from 2 output signals to 5 input signals.
- the charging power positive signal VBUS of the PD charging protocol chip can be multiplexed with the VBUS signal of the USB interface, saving 1 pin; the chip power supply VDD is combined with the VPH-PWR of the backlight power chip, saving 1 pin.
- the addresses of the control signals SDA1 and SCL1 of the backlight power supply chip and the control signals SDA2 and SCL2 of the PD charging protocol chip do not conflict, so the two pairs of control signals can be combined to save 2 pins.
- the backlight enable signal of the backlight power chip can be combined with VPH-PWR, saving 1 pin.
- the number of signals passing through the BTB connector of the main board is reduced from 9 to 7, which saves the number of pins of the BTB connector of the main board, and saves the power of the main board. Occupies an area and optimizes the layout of the motherboard.
- the OLED driver chip is moved from the main board to the sub board, and the signals passing through the BTB connector of the main board are changed from 7 output signals to 4 input signals, saving 3 pins.
- the VBUS in the input signal of the chip can be multiplexed with the VBUS of the USB interface, saving 1 pin.
- VDD can be multiplexed with the VPH-PWR of the OLED driver chip, saving 1 pin. It can be seen that the number of signals passing through the mainboard BTB connector is reduced from 9 to 7, saving 2 pins, and saving the space occupied by the mainboard and optimizing the layout of the mainboard.
- Embodiment 15 PD charging protocol and speaker power amplifier are moved from the main board to the sub board
- the PD charging protocol chip and speaker power amplifier are set on the sub-board, and the screen power chip is set on the main board. Moreover, the screen FPC between the screen power supply chip and the screen chip is merged into the main and sub-board FPC, that is, the first FPC.
- the main and sub-board FPC can also be combined with the screen FPC, that is, the FPC in FIG. 33 , and the other structures are the same as those in FIG. 32 .
- the control signals SDA1 and SCL1 of the PD charging protocol chip and the control signals SDA2 and SCL2 of the analog SPK PA are multiplexed, saving 2 pins.
- the VDD of the PD charging protocol chip is multiplexed with the VPH-PWR of the analog SPK PA, saving 1 pin.
- the VBUS of the PD charging protocol chip is multiplexed with the VBUS of the USB interface, saving 1 pin.
- 2PD charging protocol chip and SMART PA are moved from the main board to the sub board
- control addresses of the control signals SDA1 and SCL1 of the PD charging protocol chip and the control signals SDA2 and SCL2 of the SMART PA can be multiplexed, saving 2 pins.
- the DC power signal VIO_1.8V of the SMART PA is multiplexed with the antenna switch power signal of the sub-board, saving 1 pin.
- the multiplexing of VBUS and VDD of the PD charging protocol chip is the same as that of the fourteenth embodiment above including the PD charging protocol, and will not be repeated here. This solution does not save the total number of signals passing through the BTB connector of the main board, but saves the occupied area of the main board and optimizes the layout of the main board.
- Embodiment 16 The PD charging protocol chip and the motor drive power chip are moved from the main board to the sub board
- the loudspeaker power amplifier in Fig. 32 and Fig. 33 is replaced by a motor driving power supply chip, and other structures remain unchanged.
- control signals SDA1 and SCL1 of the motor drive power chip are multiplexed with SDA2 and SCL2 of the PD charging protocol, saving 2 pins.
- Other signal combination optimization conditions are the same as those in Embodiment 15, and will not be repeated here. It can be seen that after the PD charging protocol chip and motor drive power chip are moved from the main board to the sub board, the total number of signals passing through the BTB connector of the main board remains unchanged, but the occupied area of the main board is saved and the layout of the main board is optimized.
- Embodiment 17 PD charging protocol chip, screen power chip and motor drive power chip are moved from the main board to the sub board
- the motor drive power supply chip is further moved from the main board to the sub-board.
- the addresses of the control signals of the backlight power chip, the motor drive power chip, and the PD charging protocol chip do not conflict with each other, so the control signals of the three chips can be multiplexed, that is, SDA1, SCL1, SDA2, and SCL2 can be combined with SDA3 , SCL3 multiplexing, saving 4 pins in total.
- the combined optimization of other signals is the same as that of the foregoing embodiment, and will not be repeated here. This solution can finally save 2 pins of the motherboard BTB connector.
- 2PD charging protocol chip, OLED driver chip and motor drive power chip are moved from the main board to the sub board
- the VPH-PWR of the motor drive power chip is multiplexed with the VPH-PWR of the OLED driver chip, saving 1 pin.
- the control signals SDA1 and SCL1 of the motor drive power chip are multiplexed with the control signals SDA2 and SCL2 of the PD charging protocol chip, saving 2 pins.
- the VBUS of the PD charging protocol chip is multiplexed with the VBUS of the USB interface, and the VDD is multiplexed with the VPH-PWR of the OLED driver chip. It can be seen that the number of input signals of these three chips is reduced to 9 after merging and optimizing, 2 pins are saved in the BTB connector of the main board, and the occupied area of the main board is saved, and the layout of the main board is optimized.
- Embodiment 18 The screen power supply chip, the headphone switch switching chip and the PD charging protocol chip are moved from the main board to the sub board
- the screen power chip, headphone switch chip and PD charging protocol chip are set on the sub-board, and the FPC of the main and sub-board is merged into the screen FPC, that is, the FPC in Figure 34.
- the input pins of these three chips are connected to the FPC through the second BTB connector, and the output pins of the screen power supply chip are connected to the screen chip through the second BTB connector; the output pins of the headphone switch chip and the PD charging protocol chip are connected USB interface.
- the screen FPC is merged into the main and sub-board FPC, that is, the first FPC in Figure 35, and the output pin of the screen power supply chip is connected to the screen chip through the second FPC; other structures It is the same as that in Fig. 34 and will not be repeated here.
- control signals SDA1 and SCL1 of the backlight power chip and the control signals SDA2 and SCL2 of the headphone switch chip are shared with SDA3 and SCL3 of the PD charging protocol chip, saving 4 pins.
- the conditions of other signal combination optimization are the same as those in the above embodiment, and will not be repeated here.
- control signals SDA1 and SCL1 of the headphone switch switching chip are multiplexed with the SDA2 and SCL2 of the PD charging protocol chip, saving 2 pins.
- the VPH-PWR of the headphone switch switching chip is merged with the VPH-PWR of the OLED driver chip, saving 1 pin.
- the other signal optimization of the PD charging protocol chip is the same as the signal combination optimization of the PD charging protocol chip in other embodiments, and will not be repeated here.
- Embodiment 19 The screen power supply chip, motor drive power supply chip, speaker power amplifier and PD charging protocol chip are moved from the main board to the sub board
- the screen is an LCD
- the screen power chip is a screen power chip
- the speaker power amplifier uses an analog SPK PA that can process analog sound signals.
- control signals SDA1 and SCL1 of the backlight power chip, the control signals SDA2 and SCL2 of the motor drive power chip, and the control signals SDA4 and SCL4 of the analog SPK PA are shared with SDA3 and SCL3 of the PD charging protocol chip, saving 6 a pin.
- the backlight enable signal LCD_EN of the backlight power chip is merged with the VPH-PWR of the backlight power chip, saving 1 pin.
- the VPH-PWR of the motor drive power chip is merged with the VPH-PWR of the backlight power chip, saving 1 pin.
- the VBUS of the PD charging protocol chip is multiplexed with the VBUS of the USB interface, saving 1 pin.
- the VDD of the PD charging protocol chip is merged with the VPH-PWR of the backlight power chip, saving 1 pin.
- VPH-PWR of the analog SPK PA is merged with the VPH-PWR of the backlight power chip, saving 1 pin.
- this solution combines and optimizes the signals of the above three chips and reduces them to 12, occupying less than 2 pins of the BTB connector on the main board, and saving the occupied area of the main board and optimizing the layout of the main board.
- speaker power amplification can also use a SMART PA that can process digital signals.
- the combined optimization scheme of the signals moved to the sub-board is shown in Table 46. It can be seen that the total number of signals passing through the BTB connector of the main board remains unchanged in this solution, but the occupied area of the main board is saved, and the layout of the main board is optimized.
- 3OLED drive chip, motor drive power chip, PD charging protocol chip and analog SPK PA are moved from the main board to the sub board
- the screen is an OLED
- the screen power supply chip is an OLED driver chip.
- the speaker power amplifier employs an analog SPK PA that can process analog sound signals.
- the total number of signals passing through the BTB connector of the main board is reduced from 15 to 12, which saves 3 pins of the BTB connector of the main board and saves The occupied area of the motherboard optimizes the layout of the motherboard.
- 4OLED drive chip, motor drive power chip, PD charging protocol chip and SMART PA are moved from the main board to the sub board
- the speaker power amplifier uses a SMART PA that can process digital sound signals.
- Embodiment 20 The charging protocol chip and the PD charging protocol chip are moved from the main board to the sub board
- the control signals SDA1 and SCL1 of the charging protocol chip are shared with SDA2 and SCL2 of the PD charging protocol chip, saving 2 pins.
- the VDD of the PD charging protocol chip is multiplexed with the VPH-PWR of the charging protocol chip, saving 1 pin.
- the number of signals passing through the motherboard BTB connector is reduced from 11 to 7, saving 4 pins.
- the occupied area of the main board is also saved, and the layout of the main board is optimized.
- Embodiment 21 Motor drive power supply chip, speaker power amplifier and PD charging protocol chip
- the motor drive power supply chip is further moved to the sub-board, and other structures remain unchanged.
- a speaker power amplifier employs an analog SPK PA that can process analog sound signals.
- the VPH-PWR of the chip is merged with the VPH-PWR of the analog SPK PA, saving 1 pin; the control signals SDA1, SCL1 of the chip and the PD charging protocol chip SDA2 and SCL2 are shared, saving 2 pins.
- the VDD of the PD charging protocol chip is merged with the VPH-PWR of the analog SPK PA, saving 1 pin.
- the control signals SDA3 and SCL3 of the analog SPK PA are shared with the SDA2 and SCL2 of the PD charging protocol chip, saving 2 pins.
- Other signal combining schemes are similar to the foregoing embodiments, and will not be repeated here.
- 2PD charging protocol chip, motor drive power chip and SMART PA are moved from the main board to the sub board
- the speaker power amplifier can also use a SMART PA that can process digital sound signals.
- Embodiment 22 The screen power supply chip, speaker power amplifier and PD charging protocol are moved from the main board to the sub board
- the speaker power amplifier is further moved to the sub-board, and other structures remain unchanged.
- the screen is an LCD
- the screen power chip is a backlight power chip.
- the speaker power amplifier employs an analog SPK PA that can process analog sound signals.
- the number of signals passing through the BTB connector of the main board is reduced by 3, that is, 3 pins of the BTB connector of the main board are saved. Moreover, the occupied area of the main board is saved, and the layout of the main board is optimized.
- the speaker power amplifier uses a SMART PA that can process digital sound signals.
- 3OLED driver chip, PD charging protocol chip and analog SPK PA are moved from the main board to the sub board
- the screen is an OLED
- the screen power chip is an OLED driver chip.
- the speaker power amplifier adopts analog SPK PA.
- the signals passing through the BTB connector of the main board change from 7 output signals to 4 input signals, saving 3 pins.
- the VBUS of the PD charging protocol chip is multiplexed with the VBUS of the USB interface, saving 1 pin; at the same time, VDD is multiplexed with the VPH-PWR of the OLED driver chip, saving 1 pin.
- control signals SDA2 and SCL2 of the analog SPK PA are shared with the SDA1 and SCL1 of the PD charging protocol chip, saving 2 pins.
- the VPH-PWR of analog SPK PA is multiplexed with the VPH-PWR of OLED driver chip, saving 1 pin.
- the number of signals passing through the mainboard BTB connector is reduced from 13 to 10, saving 3 pins of the mainboard BTB connector.
- the occupied area of the main board is saved, and the layout of the main board is optimized.
- 4OLED driver chip, PD charging protocol chip and SMART PA are moved from the main board to the sub board
- the speaker power amplifier uses a SMART PA that processes digital signals.
- the VPH-PWR of the SMART PA is combined with the VPH-PWR of the OLED driver chip, saving 1 pin; the control signal of the SMART PA is multiplexed with the control signals SDA1 and SCL1 of the PD charging protocol chip, Save 2 pins.
- the combination and optimization of other signals has been introduced in detail in the foregoing embodiments, and will not be repeated here.
- Embodiment 23 PD charging protocol chip, screen power supply chip and charging protocol chip are moved from the main board to the sub board
- the PD charging protocol chip in this article refers to the common fast charging protocol chip among various equipment manufacturers, including fast charging protocol, USB port identification, OTG (On The Go) function, water inflow monitoring and other functions.
- the charging protocol chip in this article refers to the private fast charging protocol chip developed by different equipment manufacturers.
- the hardware difference is not big, and the main difference lies in the different software protocol.
- the PD charging protocol has high versatility, but the charging speed is limited, while the charging protocol chip has a faster charging speed but poor versatility.
- Two charging protocol chips can exist in the device at the same time.
- the charging protocol chip is used to charge the electronic device, and the charging speed is faster.
- the PD charging protocol chip is used for charging.
- the charging protocol chip is further moved to the sub-board, and other structures remain unchanged, further saving the occupied area of the main board.
- the screen is an LCD
- the screen power chip is a backlight power chip.
- control signals SDA1 and SCL1 of the backlight power chip are shared with the SDA2 and SCL2 of the PD charging protocol chip, saving 2 pins.
- the backlight enable signal LCD_EN of the backlight power chip is connected to the VPH-PWR of the backlight power chip or the default pull-up power supply, saving 1 pin.
- the VDD of the PD charging protocol chip is multiplexed with the VPH-PWR of the backlight power chip, saving 1 pin.
- 2PD charging protocol chip, OLED driver chip and charging protocol chip are moved from the main board to the sub board
- the screen is an OLED
- the screen power chip is an OLED driver chip.
- the optimization method of signal combination through the mainboard BTB connector is shown in Table 57.
- the number of signals passing through the BTB connector of the main board is reduced from 11 to 10, saving 1 pin.
- the occupied area of the main board is reduced, and the layout of the main board is optimized.
- Embodiment 24 The screen power supply chip, headphone switch switching chip, PD charging protocol chip and speaker power amplifier are moved from the main board to the sub board
- the loudspeaker power amplifier is further moved from the main board to the sub-board, further reducing the occupied area of the main board.
- the screen is an LCD
- the screen power chip is a backlight power chip.
- the speaker power amplifier employs an analog SPK PA that processes analog sound signals.
- the number of signals passing through the main board BTB connector remains unchanged, but the number of signals passing through the main board BTB connector is reduced. Occupies an area and optimizes the motherboard layout.
- the speaker power amplifier can also use a SMART PA capable of processing digital sound signals.
- 3OLED driver chip, headphone switch chip, PD charging protocol chip and analog SPK PA are moved from the main board to the sub board
- the screen is an OLED
- the screen power chip is an OLED driver chip.
- the speaker power amplifier employs an analog SPK PA that processes analog sound signals.
- 4OLED driver chip, headphone switch chip, PD charging protocol chip and SMART PA are moved from the main board to the sub board
- the speaker power amplifier uses a SMART PA capable of processing digital sound signals.
- the optimization scheme for combining signals through the BTB connector on the main board is shown in Table 61.
- the circuit board provided by this application moves one or more circuit modules from the main board to the sub board, and further merges and optimizes the input signals of these circuit modules.
- the input signal refers to the signal sent to the circuit module by the SOC chip of the main board , such as power signals, control signals, etc.) ultimately achieve the purpose of reducing the number of signals passing through the motherboard BTB connector.
- the circuit modules that can achieve the above purpose may also include audio chips, sensors, flashlight driver chips, etc., which will not be described in detail in this application.
- the number of pins of the BTB connector on the main board can be 62 pins, 72 pins, 80 pins, 82 pins, etc., which is not limited in the present application.
- any combination of the following pins can be selected: 16pin, 24pin, 34pin, 42pin, 52pin, 62pin.
- 66pin can be obtained by using 24pin+42pin combination
- 68pin can be obtained by using 34pin+34pin combination
- 76pin can be obtained by using 34pin+42pin or 24pin+52pin combination
- 84pin can be obtained by using 42pin+42pin combination, etc.
- the embodiment of the present application does not limit the number of BTB connectors and the number of pins of each connector.
- the pins of a single BTB connector may also consist of pins of different sizes.
- the aforementioned 62pin, 72pin, 80pin, and 82pin can be 60+2pin, 70+2pin, 78+2pin, 80+2pin, taking 60+2pin as an example, 60 is the number of smaller pins, and 2 is the larger pin quantity. It can be understood that a pin with a larger size allows a larger current to pass through it.
- the present application does not limit the number of above-mentioned large and small pins, which can be designed according to actual needs.
- the input signals of this part of the circuit modules are further merged and optimized, so that some circuit modules reduce the number of signals passing through the BTB connector of the main board, that is Save the number of pins it takes up on the motherboard's BTB connector.
- the signals of other circuit modules on the sub-board passing through the BTB connector of the main board can be optimized and merged, so that the BTB connector of the main board can carry more circuit modules, and finally realize more complex functions of the entire circuit board.
- the input signal of the circuit module moved to the sub-board and the input signal of the existing circuit module on the sub-board are merged and optimized, for example, on the basis of saving 2 pins as shown in Table 1 , and further combine LINOUTP and LINOUTN of the analog SPK PA with the driving signal of the existing circuit on the sub-board, and save 2 pins; further, the BTB connector usually has 2 large pins, and the rest are small pins. Among them, the flow capacity of the large pin is 5A, and the flow capacity of the small pin is about 0.3A. In the charging scenario of less than or equal to 50W, the charging current is less than 5A.
- the charging circuit module only needs to occupy one large pin, and the VPH-PWR signal in the remaining one large pin can be used to replace the three VPH-PWR signals in the carrying circuit.
- the PWR signal has a small pin, thereby saving 2 pins, and finally saving 6 pins, which is greater than 5 pins. Therefore, using this solution can achieve compatibility with MIPI CPHY and MIPI DPHY protocols.
- the OLED driver chip is placed on the sub-board, and the number of signals passing through the BTB connector on the main board is reduced to 4, and the under-screen fingerprint driver The chip needs 7 pins, and further merges and optimizes other signals that can be combined and optimized, and finally saves 11 pins to realize the solution based on OLED and under-screen fingerprints.
- the BTB connector of the main board can carry more signals of the circuit modules, and then the BTB connector of the main board can Carry more signals of other circuit modules, and at the same time, make the sub-board carry more circuit modules whose signals need to be transmitted through the BTB connector of the main board, for example, the SIM card module can be placed on the sub-board.
- the SIM card module has a total of 10 pins, including 8 signals for two SIM cards, 1 NFC signal and 1 detection signal.
- the other signals on the sub-board are further combined and optimized to save more pins, and finally the SIM card module is set on the sub-board to further save Board area.
- the above-mentioned functions can be allocated according to needs It is completed by different functional modules, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
- the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
- the disclosed system, device and method may be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components can be Incorporation may either be integrated into another system, or some features may be omitted, or not implemented.
- the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of this embodiment may be integrated into one processing unit, or each unit may physically exist separately, or two or more units may be integrated into one unit.
- the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
- the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
- the technical solution of this embodiment is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium
- several instructions are included to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor execute all or part of the steps of the method described in each embodiment.
- the aforementioned storage medium includes: flash memory, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk, and other various media capable of storing program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Signal Processing (AREA)
- Telephone Function (AREA)
Abstract
本申请提供了一种电路板及电子设备,将屏幕柔性电路板(flexible printed circuit,FPC)和主副板FPC进行合并,使得主板的两个板对板(board to board,BTB)连接器合二为一,从而降低了BTB连接器占用主板的面积,节省了主板面积,提高主板的面积利用率。同时,减少了FPC和主板BTB连接器的数量,降低了硬件成本。进一步,该方案通过优化主板和副板的电路模块布局,将主板上的部分电路模块移至副板上,并针对电路模块的输入信号进行合并优化,以降低此部分电路模块经过主板BTB连接器的信号数量,以使主板BTB连接器承载更多、更复杂电路模块的信号,进而使副板承载更多、更复杂的电路模块。
Description
本申请要求于2021年09月30日提交中国国家知识产权局、申请号为202111165965.2、发明名称为“一种电路板及电子设备”,以及于2022年01月27日提交中国国家知识产权局、申请号为202210101437.9、发明名称为“一种电路板及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及电子技术领域,尤其涉及一种电路板及电子设备。
电路板用来承载电子设备的电子元器件。例如,手机的电路板通常包括主电路板(即主板)和副电路板(即副板),主板和副板上分别承载实现不同功能的电子元器件。而且,主板和副板之间通过一根FPC(可称为主副板FPC)连接。同时,主板与电子设备的屏幕之间通过另一根FPC(可称为屏幕FPC)连接。这种方案中,主板上需要设置两个连接位,一个用于连接主副板FPC,另一个用于连接屏幕FPC。两个连接位占用主板的面积大,且两个连接位、两根FPC的硬件成本高。
发明内容
有鉴于此,本申请提供了一种电路板及电子设备,以解决至少部分上述技术问题,其公开的技术方案如下:
第一方面,本申请提供了一种电路板,应用于电子设备,电子设备包括屏幕,屏幕包括屏幕芯片,电路板包括:主板、副板和柔性电路板;主板设置一个第一连接位,柔性电路板通过第一连接位连接主板;副板设置第二连接位,柔性电路板通过第二连接位连接副板,柔性电路板还与屏幕芯片连接;副板上设置有目标电路模块,目标电路模块的目标信号类型的信号输入端与副板上的与目标信号类型相同的信号输入端连接,目标信号类型包括电源信号、控制信号和数据信号中的至少一种。
可见,该方案将屏幕FPC和主副板FPC进行合并,主板上的两个连接器可以合并为一个,即第一连接位,降低了连接器占用主板的面积,提高了主板面积的利用率;同时,减少了FPC和连接器的数量,因此降低了硬件成本。而且,该方案通过优化主板和副板的电路模块布局,将主板上的部分电路模块(如屏幕电源芯片)移至副板上,进一步针对此部分电路模块的信号输入端进行合并优化,降低这些电路模块经过第一连接位的信号数量,从而使第一连接位传输更多、更复杂电路模块的信号,提高了第一连接位的引脚利用率。同时,将主板的部分电路模块移至副板节省了主板占用面积,从而使主板承载更多、更复杂的电路模块。
在第一方面另一种可能的实现方式中,目标电路模块包括以下至少一种:屏幕电源芯片、马达驱动电源芯片、扬声器功率放大器、充电协议芯片、PD充电协议芯片、耳机开关切换芯片和传感器。可见,该方案可以将上述的至少一个电路模块从主板移至副板,节省主板的占用面积,提高了电子设备内电路板优化方案的灵活性。
在第一方面又一种可能的实现方式中,扬声器功率放大器包括第一扬声器功率放大器或第二扬声器功率放大器;第一扬声器功率放大器用于处理模拟声音信号;第二扬声器功率放大器用于处理数字声音信号。可见,该方案既适用于采用模拟扬声器功率放大器的场景,同时也适用于采用数字扬声器功率放大器的场景,扩大了该方案的适用范围。
在第一方面的另一种可能的实现方式中,屏幕电源芯片包括背光电源芯片或OLED驱动 芯片,可见,该方案既适用于采用LCD的电子设备,同时也适用于采用OLED的电子设备,扩大了该方案的适用范围。
在第一方面又一种可能的实现方式中,目标电路模块为屏幕电源芯片和扬声器功率放大器,屏幕电源芯片为背光电源芯片;背光电源芯片的控制信号输入端与扬声器功率放大器的控制信号输入端连接,背光电源芯片的背光使能信号输入端与背光电源芯片的供电电源信号输入端连接,扬声器功率放大器的一个供电电源信号输入端与背光电源芯片的供电电源信号输入端连接。该方案将背光电源芯片与扬声器功率放大器的控制信号输入端相连,同时,将背光电源芯片的背光使能信号输入端与供电电源输入端相连,与这两个电路模块放在主板的方案相比,该方案能够节省第一连接位的2个pin,节省下来的pin脚可以用于传输其他电路模块的信号,同时,将两个电路模块从主板移至副板,进一步降低了主板占用面积。而且,扬声器通常设置在靠近副板的位置,因此,将扬声器功率放大器移至副板能够简化电路板的走线布局,进而降低电路板设计复杂度。从而使第一连接位承载更多电路的信号,提高了第一连接位的引脚利用率。
在第一方面再一种可能的实现方式中,目标电路模块为屏幕电源芯片和马达驱动电源芯片,屏幕电源芯片为背光电源芯片;背光电源芯片的控制信号输入端与马达驱动电源芯片的控制信号输入端连接,背光电源芯片的背光使能信号输入端与背光电源芯片的供电电源信号输入端连接,马达驱动电源芯片的一个供电电源信号输入端与背光电源芯片的供电电源信号输入端连接。该方案将屏幕电源芯片和马达驱动电源芯片从主板移至副板,进一步,将这两个芯片的控制信号输入端相连,同时,供电电源信号输入端相连,与这两个电路模块放在主板的方案相比,该方案能够节省第一连接位的1个pin,节省下来的pin脚可以用于传输其他电路模块的信号,同时,将两个电路模块从主板移至副板,进一步降低了主板占用面积。
在第一方面另一种可能的实现方式中,目标电路模块为屏幕电源芯片、马达驱动电源芯片和扬声器功率放大器,屏幕电源芯片为背光电源芯片;背光电源芯片、马达驱动电源芯片和扬声器功率放大器的控制信号输入端连接,背光电源芯片的背光使能信号输入端与背光电源芯片的供电电源信号输入端连接,马达驱动电源芯片的一个供电电源信号输入端与背光电源芯片的供电电源信号输入端连接。该方案将屏幕电源芯片、马达驱动电源芯片和扬声器功率放大器三个电路模块从主板移至副板,而且,分别合并这三个电路模块的控制信号输入端、电源信号输入端,节省了第一连接位的2个pin,提高了第一连接位的引脚利用率。同时,将三个电路模块移至副板进一步节省了主板占用面积。而且,扬声器通常设置在靠近副板的位置,因此,将扬声器功率放大器移至副板能够简化电路板的走线布局,降低电路板设计复杂度。
在第一方面又一种可能的实现方式中,目标电路模块为屏幕电源芯片和充电协议芯片,屏幕电源芯片为背光电源芯片;背光电源芯片的控制信号输入端与充电协议芯片的控制信号输入端连接,背光电源芯片的背光使能信号输入端与背光电源芯片的供电电源信号输入端连接,充电协议芯片的供电电源信号输入端与背光电源芯片的一个供电电源信号输入端连接,充电协议芯片的充电电源正信号输入端与副板的充电电源正信号输入端连接,充电协议芯片的直流电源信号输入端与副板的直流电源信号输入端连接。
该方案将屏幕电源芯片和充电协议芯片移至副板,节省了主板占用面积。而且,充电协议芯片的输出端与USB接口电路连接,USB接口电路通常设置在靠近副板的位置,因此,将充电协议芯片移至副板能够简化电路板的走线布局,进而降低电路板的设计复杂度。
在第一方面再一种可能的实现方式中,目标电路模块为屏幕电源芯片、充电协议芯片和 扬声器功率放大器,屏幕电源芯片为背光电源芯片;背光电源芯片、充电协议芯片和扬声器功率放大器的控制信号输入端连接,背光电源芯片的背光使能信号输入端与背光电源芯片的供电电源信号输入端连接,扬声器功率放大器的一个供电电源信号输入端与背光电源芯片的一个供电电源信号输入端连接,充电协议芯片的供电电源信号输入端与背光电源芯片的一个供电电源信号输入端连接,充电协议芯片的充电电源正信号输入端与副板的充电电源正信号输入端连接,充电协议芯片的直流电源信号输入端与副板的直流电源信号输入端连接。
该方案将屏幕电源芯片、充电协议芯片和扬声器功率放大器从主板移至副板,节省了主板占用面积,同时,对这三个电路的信号输入端进行合并优化,降低了这三个电路经过第一连接位的信号数量,而且,充电协议芯片的输出端与USB接口电路连接,USB接口电路通常设置在靠近副板的位置,因此,将充电协议芯片移至副板能够简化电路板的走线布局,进而降低电路板的设计复杂度。
在第一方面另一种可能的实现方式中,目标电路模块为屏幕电源芯片、耳机开关切换芯片和扬声器功率放大器,屏幕电源芯片为背光电源芯片;背光电源芯片、耳机开关切换芯片和扬声器功率放大器的控制信号输入端连接,背光电源芯片的背光使能信号输入端与背光电源芯片的供电电源信号输入端连接,扬声器功率放大器的一个供电电源信号输入端与背光电源芯片的供电电源信号输入端连接,扬声器功率放大器的音频正信号输入端与耳机开关切换芯片的左声道信号输入端连接,音频负信号输入端与右声道信号输入端连接,耳机开关切换芯片的一个供电电源信号输入端与背光电源芯片的供电电源信号输入端连接。
该方案将屏幕电源芯片、耳机开关切换芯片和扬声器功率放大器从主板移至副板,节省了主板占用面积。耳机开关切换芯片的输出端连接USB接口电路,扬声器功率放大器的输出端连接扬声器,USB接口电路和扬声器通常设置在靠近副板的位置,因此,将这两个电路模块移至副板能够简化电路板的走线布局,进而降低电路板的设计复杂度。
在第一方面又一种可能的实现方式中,屏幕电源芯片为OLED驱动芯片,OLED驱动芯片经过第一连接位的信号为OLED驱动芯片的输入信号。该方案将OLED驱动芯片从主板移至副板后,该电路模块经过第一连接位的信号数量由7个输出信号变为4个输入信号,这样能够直接节省3个pin脚,同时,将OLED驱动芯片从主板移至副板,节省了主板占用面积。
在第一方面另一种可能的实现方式中,目标电路模块为屏幕电源芯片和扬声器功率放大器,屏幕电源芯片为OLED驱动芯片;扬声器功率放大器的一个供电电源信号输入端与OLED驱动芯片的一个供电电源信号输入端连接。
该方案将屏幕电源芯片和扬声器功率放大器从主板移至副板,进一步节省了主板占用面积。而且,扬声器通常设置在靠近副板的位置,因此,将扬声器功率放大器移至副板能够简化电路板的走线布局,进而降低电路板设计复杂度。
在第一方面又一种可能的实现方式中,目标电路模块包括马达驱动电源芯片和屏幕电源芯片,屏幕电源芯片为OLED驱动芯片;马达驱动电源芯片的供电电源信号输入端与OLED驱动芯片的一个供电电源信号输入端连接。该方案将屏幕电源芯片、马达驱动电源芯片从主板移至副板,进一步节省了主板占用面积,而且,通过对这两个电路的信号输入端进行合并,降低这两个电路经过第一连接位的信号数量。
在第一方面另一种可能的实现方式中,目标电路模块包括屏幕电源芯片、马达驱动电源芯片和扬声器功率放大器,屏幕电源芯片为OLED驱动芯片;马达驱动电源芯片的供电电源信号输入端与OLED驱动芯片的一个供电电源信号输入端连接,扬声器功率放大器的一个供电电源信号输入端与OLED驱动芯片的供电电源信号输入端连接,扬声器功率放大器的控制 信号输入端与马达驱动电源芯片的控制信号输入端连接。该方案将三个电路模块从主板移至副板,进一步节省了主板占用面积,而且,扬声器通常设置在靠近副板的位置,因此,将扬声器功率放大器移至副板能够简化电路板的走线布局,进而降低电路板设计复杂度。
在第一方面又一种可能的实现方式中,目标电路模块包括屏幕电源芯片、耳机开关切换芯片和扬声器功率放大器,屏幕电源芯片为OLED驱动芯片;耳机开关切换芯片的控制信号输入端与扬声器功率放大器的控制信号输入端连接,耳机开关切换芯片的供电电源信号输入端与OLED驱动芯片的一个供电电源信号输入端连接,扬声器功率放大器的一个供电电源信号输入端与背光电源芯片的供电电源信号输入端连接,扬声器功率放大器的音频正信号输入端与耳机开关切换芯片的左声道信号输入端连接,音频负信号输入端与右声道信号输入端连接。该方案将屏幕电源芯片、耳机开关切换芯片和扬声器功率放大器从主板移至副板,节省了主板占用面积。耳机开关切换芯片的输出端连接USB接口电路,扬声器功率放大器的输出端连接扬声器,USB接口电路和扬声器通常设置在靠近副板的位置,因此,将这两个电路模块移至副板能够简化电路板的走线布局,进而降低电路板的设计复杂度。
在第一方面另一种可能的实现方式中,目标电路模块包括屏幕电源芯片和充电协议芯片,屏幕电源芯片为OLED驱动芯片;充电协议芯片的一个供电电源信号输入端与OLED驱动芯片的一个输入电源信号输入端连接,充电协议芯片的充电电源正信号输入端与副板的充电电源正信号输入端连接,充电协议芯片的直流电源信号输入端与副板的直流电源信号输入端连接。
该方案将屏幕电源芯片和充电协议芯片移至副板,节省了主板占用面积。而且,充电协议芯片的输出端与USB接口电路连接,USB接口电路通常设置在靠近副板的位置,因此,将充电协议芯片移至副板能够简化电路板的走线布局,进而降低电路板的设计复杂度。
在第一方面又一种可能的实现方式中,目标电路模块包括屏幕电源芯片、充电协议芯片和扬声器功率放大器,屏幕电源芯片为OLED驱动芯片;扬声器功率放大器的一个供电电源信号输入端与OLED驱动芯片的一个供电电源信号输入端连接,扬声器功率放大器的控制信号输入端与充电协议芯片的控制信号输入端连接,充电协议芯片的一个供电电源信号输入端与OLED驱动芯片的一个供电电源信号输入端连接,充电协议芯片的充电电源正信号输入端与副板的充电电源正信号输入端连接,充电协议芯片的直流电源信号输入端与副板的直流电源信号输入端连接。
该方案将屏幕电源芯片、充电协议芯片和扬声器功率放大器从主板移至副板,节省了主板占用面积,同时,对这三个电路的信号输入端进行合并优化,降低了这三个电路经过第一连接位的信号数量,而且,充电协议芯片的输出端与USB接口电路连接,USB接口电路通常设置在靠近副板的位置,因此,将充电协议芯片移至副板能够简化电路板的走线布局,进而降低电路板的设计复杂度。
在第一方面另一种可能的实现方式中,柔性电路板是一根柔性电路板,且柔性电路板通过连接点与屏幕芯片连接。
在第一方面又一种可能的实现方式中,目标电路模块包括马达驱动电源芯片和扬声器功率放大器;马达驱动电源芯片的一个供电电源信号输入端与扬声器功率放大器的一个供电电源信号输入端连接;马达驱动电源芯片的控制信号输入端与扬声器功率放大的控制信号输入端连接。该方案将马达驱动电源芯片和扬声器功率放大器的从主板移至副板,并对这两个电路芯片的信号进行合并优化,简化电路板的走线布局,进而降低电路板的设计复杂度。
在第一方面再一种可能的实现方式中,目标电路模块包括所述屏幕电源芯片、耳机开关 切换芯片和马达驱动电源芯片,屏幕电源芯片为背光电源芯片;背光电源芯片及耳机开关切换芯片的控制信号输入端,与马达驱动电源芯片的控制信号输入端连接;背光电源芯片的背光使能信号输入端与电源信号输入端连接;耳机开关切换芯片的一个供电电源输入端与屏幕电源芯片的供电电源信号输入端连接;马达驱动电源芯片的供电电源输入端与屏幕电源芯片的供电电源信号输入端连接。
在第一方面另一种可能的实现方式中,目标电路模块包括屏幕电源芯片、耳机开关切换芯片和马达驱动电源芯片,屏幕电源芯片为OLED驱动芯片;耳机开关切换芯片的控制信号输入端与马达驱动电源芯片的控制信号输入端连接,耳机开关切换芯片的供电电源输入端与OLED驱动芯片的一个供电电源输入端连接;马达驱动电源芯片的供电电源输入端与OLED驱动芯片的一个供电电源输入端连接。
在第一方面又一种可能的实现方式中,电子设备包括USB接口;目标电路模块包括屏幕电源芯片和PD充电协议芯片,屏幕电源芯片为背光电源芯片;背光电源芯片的控制信号输入端与PD充电协议芯片的控制信号输入端连接,背光电源芯片的背光使能信号输入端与背光电源芯片的供电电源信号输入端连接;PD充电协议的充电电源正信号输入端与USB接口的电源正信号输入端连接,PD充电协议的供电电源信号输入端与背光电源芯片的供电电源输入端连接。
在第一方面再一种可能的实现方式中,电子设备包括USB接口;目标电路模块包括屏幕电源芯片和PD充电协议芯片,屏幕电源芯片为OLED驱动芯片;PD充电协议芯片的充电电源正信号输入端与USB接口的电源正信号输入端连接,PD充电协议的供电电源信号输入端与OLED驱动芯片的供电电源输入端连接。
在第一方面另一种可能的实现方式中,目标电路模块包括:马达驱动电源芯片;马达驱动电源芯片的供电电源信号输入端与屏幕电源芯片的供电电源信号输入端连接,马达驱动电源芯片的控制信号输入端与PD充电协议芯片的控制信号输入端连接。
在第一方面又一种可能的实现方式中,电子设备包括USB接口;目标电路模块包括扬声器功率放大器和PD充电协议芯片;PD充电协议芯片的充电电源正信号输入端与USB接口的正电源信号输入端连接,PD充电协议芯片的供电电源信号输入端与扬声器功率放大器的供电电源信号输入端连接,PD充电协议芯片的控制信号输入端与所述扬声器功率放大器的控制信号输入端连接。
在第一方面另一种可能的实现方式中,电子设备包括USB接口;目标电路模块包括马达驱动电源芯片和PD充电协议芯片;马达驱动电源芯片的控制信号输入端与PD充电协议芯片的控制信号输入端连接,PD充电协议芯片的充电电源正信号与USB接口的电源正信号输入端连接。
在第一方面又一种可能的实现方式中,柔性电路板是一根柔性电路板,且柔性电路板通过连接点与屏幕芯片连接。
在第一方面再一种可能的实现方式中,所述柔性电路板包括第一柔性电路板和第二柔性电路板。在第一方面另一种可能的实现方式中第一柔性电路板通过第一连接位连接所述主板,第一柔性电路板通过第二连接位连接所述副板,第一柔性电路板用于传输主板与所述副板之间的信号,以及主板与屏幕芯片之间的信号;第二柔性电路板通过第三连接位连接所述屏幕芯片,通过第四连接位连接副板。
在第一方面又一种可能的实现方式中,所述第一连接位为电连接器。
在第一方面另一种可能的实现方式中,电连接器为62个引脚的连接器,或者,72个引 脚的连接器,或者,82引脚的连接器。
第二方面,本申请还提供了一种电子设备,包括屏幕,以及第一方面任一种可能的实现方式所述的电路板。
应当理解的是,本申请中对技术特征、技术方案、有益效果或类似语言的描述并不是暗示在任意的单个实施例中可以实现所有的特点和优点。相反,可以理解的是对于特征或有益效果的描述意味着在至少一个实施例中包括特定的技术特征、技术方案或有益效果。因此,本说明书中对于技术特征、技术方案或有益效果的描述并不一定是指相同的实施例。进而,还可以任何适当的方式组合本实施例中所描述的技术特征、技术方案和有益效果。本领域技术人员将会理解,无需特定实施例的一个或多个特定的技术特征、技术方案或有益效果即可实现实施例。在其他实施例中,还可在没有体现所有实施例的特定实施例中识别出额外的技术特征和有益效果。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种已有电路板的结构示意图;
图2A是一种合并屏幕FPC和主副板FPC的电路板的结构示意图;
图2B是另一种合并屏幕FPC和主副板FPC的电路板的结构示意图;
图3是本申请实施例提供的一种电子设备的结构示意图;
图4~图35分别是本申请实施例提供的不同实施例对应的电路板的结构示意图。
本申请说明书和权利要求书及附图说明中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
以手机为例,已有的电路板如图1所示,主板通过屏幕FPC连接屏幕,该屏幕FPC仅传输与屏幕相关的信号;同时,主板还通过主副板FPC连接副板,主副板FPC仅传输主板与副板之间需要传输的信号。例如,连接位为板对板(board to board,BTB)连接器,则主板上需要设置与屏幕FPC连接的BTB连接器,以及与主副板FPC连接的BTB连接器,即,主板上需要设置两个BTB连接器,占用主板面积大,且两个BTB连接器、两个FPC的硬件成本高。
为了解决上述技术问题,相关技术提出了将屏幕FPC和主副板FPC直接合并的如下两种方案:
如图2A所示,为直接将主副板FPC合并至屏幕FPC的方案,合并后的FPC既能传输主板与屏幕芯片间的信号,又能传输主板与副板间的信号,主板上与这两个FPC连接的连接器也可以合并为一个连接器。
如图2B所示,为直接将屏幕FPC合并至主副板FPC的方案,此方案中,合并FPC连接 主板与副板,既能传输与屏幕相关的信号,还能传输主副板之间的信号。屏幕芯片通过屏幕FPC连接副板,用于传输与屏幕相关的信号。
需要说明的是,主板和副板上分别设置有多种不同功能的电路模块,图2A和图2B仅以扬声器功率放大器和屏幕电源芯片为例进行示例性说明。
但是,本申请的发明人经研究发现图2A和图2B所示的方案存在如下问题:由于合并后的BTB连接器的引脚数量有限,导致BTB连接器需要承载更多、更复杂功能模块的信号。
例如,由于有机发光显示器(organic light-emitting display,OLED)屏幕模组比液晶显示屏(liquid crystal display,LCD)模组的引脚数量多,主板BTB连接器的引脚数量无法满足OLED屏幕模组的要求,因此只能实现基于LCD屏幕的方案,无法实现基于OLED屏幕的方案。
而且,基于LCD屏幕的方案只能支持视频传输接口规范协议MIPI CPHY、MIPI DPHY中的任一种,无法兼容这两种协议,因为兼容这两种协议对BTB连接器的pin数量占用较多。
此外,屏下指纹模组通常与OLED屏幕模组同时使用,在OLED屏幕无法实现的情况下,屏下指纹的方案更无法实现。
为了解决上述技术问题,本申请提供了一种电路板,该电路板应用于包括屏幕的电子设备中,该电路板包括主板、副板和FPC。主板上设置一个第一连接位,FPC通过该第一连接位连接主板。副板上设置第二连接位,FPC通过该第二连接位连接副板,该FPC还与屏幕芯片连接。而且,副板上设置有目标电路模块,目标电路模块可以是从主板上移到副板上的电路模块并将该目标电路模块与副板上其他电路模块信号类型相同的信号输入端进行合并优化,从而减少目标电路模块经过第一连接位的信号数量。
其中,目标电路模块可以包括如下至少一种:屏幕电源芯片、马达驱动电源芯片、扬声器功率放大器、充电协议芯片、耳机开关切换芯片、PD充电协议芯片、传感器。其中,传感器包括但不限于:环境光传感器,接近光传感器,磁力传感器,空气压力传感器,sar传感器,加速度传感器,陀螺仪,重力传感器。
可见,该方案将屏幕FPC和主副板FPC合并为一个FPC,这样,主板上的两个连接位可以合并为一个连接位,节省了连接位占用主板的面积,提高了主板面积的利用率;同时,减少了FPC和连接位的数量,因此降低了硬件成本。而且,该方案通过优化主板和副板的电路模块布局,将主板上的部分电路模块移至副板上,进一步针对此部分电路模块的输入信号进行合并优化,降低这些电路模块经过连接位的信号数量,使整个电路板承载更复杂的功能模块。
应用本申请提供的电路板的点自己设备可以是手机、平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)、可穿戴电子设备、智能手表等设备等便携式电子设备,本申请对应用该电路板的电子设备的具体形式不做特殊限制。
图3是本申请实施例提供的一种电子设备的结构示意图。
如图3所示,该电子设备可以包括处理器110、外部存储器接口120、内部存储器121、通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,屏幕194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。
其中,传感器模块180可以包括压力传感器、陀螺仪传感器,气压传感器,磁传感器, 加速度传感器,距离传感器,接近光传感器,温度传感器,环境光传感器,骨传导传感器、指纹传感器等。
可以理解的是,本实施例示意的结构并不构成对电子设备的具体限定。在另一些实施例中,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,SIM接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合传感器,充电器,闪光灯,摄像头193等。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
其中,MIPI是移动领域最主流的视频传输接口规范,其中,应用比较广泛的是MIPI DPHY和MIPI CPHY两组协议簇。
MIPI接口可以被用于连接处理器110与屏幕194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备的拍摄功能。处理器110和屏幕194通过DSI接口通信,实现电子设备的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,屏幕194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备充电,也可以用于电子设备与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备的结构限定。在本申请另一些实施例中,电子设备也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块 141接收电池142和/或充电管理模块140的输入,为电路板的其他器件供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。
移动通信模块150可以提供应用在电子设备上的包括2G/3G/4G/5G等无线通信的解决方案。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在电子设备上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。
在一些实施例中,电子设备的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备通过GPU,屏幕194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接屏幕194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
屏幕194用于显示图像,视频等。屏幕194包括显示面板。显示面板可以采用LCD,OLED,有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oled,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备可以包括1个或N个屏幕194,N为大于1的正整数。
电子设备可以通过ISP,摄像头193,视频编解码器,GPU,屏幕194以及应用处理器等实现拍摄功能。ISP用于处理摄像头193反馈的数据。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。摄像头193用于捕获静态图像或视频。在一些实施例中,电子设备可以包括1个或N个摄像头193,N为大于1的正整数。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备的 存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行电子设备的各种功能应用以及数据处理。
电子设备可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备可以设置至少一个麦克风170C。在另一些实施例中,电子设备可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备可以接收按键输入,产生与电子设备的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于屏幕194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。电子设备可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。
下面将结合附图详细介绍本申请的电路板的具体实施例:
实施例一:屏幕电源芯片和扬声器功率放大器从主板移至副板
如图4所示,将扬声器功率放大器和屏幕电源芯片从主板移至副板,将主副板FPC合并至屏幕FPC。
主板设置一个第一BTB连接器,FPC通过该第一BTB连接器连接主板。在一些实施例中,第一BTB连接器为扣合式连接器,其包括相匹配的扣件和座体,其中,扣件固定在FPC与主板连接的一端,座体焊接在主板上,将扣件抠合至座体从而实现FPC与主板连接。副板设置有第二BTB连接器,FPC通过第二BTB连接器连接副板。其中,第二BTB连接器的结构和连接原理与第一BTB连接器相同,例如,扣件固定在FPC与副板连接的一端,座体固定在副板上。
本申请以连接位是BTB连接器为例进行说明,在其他实施例中,BTB连接器还可以替换为零插入力(zero insertion force,ZIF)类型连接器等其他类型的连接器,或者,不局限于连接器的连接形式,还可以采用压接方式(如,FOF、FOB)进行连接,本申请对连接位的具体类型不做限定。
如图4所示,FPC为一根FPC,该FPC的一端与主板连接,另一端与副板连接,且该FPC还与屏幕芯片连接,FPC中传输主板与屏幕芯片之间信号的部分设置有连接点,通过该连接点与屏幕芯片连接,其中,该连接点包含导电介质,如可以将该连接点与屏幕芯片的相应引脚焊接在一起。
屏幕芯片接收主板发送的信号时,信号经过第一BTB连接器、FPC及上述的连接点传输至屏幕芯片的pin脚;反之,屏幕芯片向主板发送信号时,信号依次经连接点、FPC和第一BTB连接器传输至主板上的相应芯片,如系统级芯片SOC、电源管理单元(power management unit,PMU)、编解码器Codec等。
需要说明的是,为了方便绘图,附图中仅示出了部分信号线,并未示出全部信号线,因此,附图中的信号线的数量不应该对本申请的电路板造成限制。
屏幕电源芯片为屏幕芯片的驱动电源,在一种应用场景中,屏幕为LCD,屏幕电源芯片则为背光电源芯片,为LCD的背光源提供驱动电源,以及控制液晶翻转方向,以使LCD实现显示。在另一种应用场景中,屏幕为OLED,屏幕电源芯片则为OLED驱动芯片,为OLED提供驱动电源。
扬声器功率放大器是扬声器的功率放大电路模块,声音信号通过扬声器功率放大器进行功率放大后传输至扬声器。
本申请的声音信号可以是数字信号也可以是模拟信号,其中,模拟SPK PA(speaker power amplifier)是用于处理模拟声音信号的模拟型功率放大器,SMART PA是处理数字声音信号的数字型功率放大器。
将屏幕电源芯片和功率放大器从主板移至副板,这两个电路模块经过第一BTB连接器的信号由原来的输出信号变为输出信号。如图2A和图2B所示,当这两个电路模块设置在主板时,这两个电路模块的输出信号经过第一BTB连接器和FPC传输至副板,再传输至屏幕芯片、扬声器。而这两个电路模块移至副板后,如图4所示,主板上的芯片输出的信号经过第一BTB连接器、FPC传输至扬声器功率放大器、屏幕电源芯片,即经过第一BTB连接器的信号为这两个电路模块的输入信号。
①背光电源芯片和模拟SPK PA从主板移至副板
在一种应用场景中,屏幕为LCD,屏幕电源芯片则为背光电源芯片,扬声器功率放大器为模拟SPK PA。
如表1所示,背光电源芯片和模拟SPK PA从主板移至副板之后,经过主板BTB连接器(即第一BTB连接器)的信号合并优化说明:
表1
根据表1可知,背光电源芯片放在主板时经过主板BTB连接器的输出信号为表1所示的7个信号,将其移至副板后,经过主板BTB连接器的输入信号变13个信号。
进一步,背光电源芯片的控制信号地址(如,0010001)与模拟SPK PA中控制信号的地址(如,1011000)无冲突,因此,背光电源芯片的控制信号SDA1、SCL1与模拟SPK PA中的SDA2、SCL2可以共用,节省2个BTB连接器pin脚。而且,背光电源芯片的LCD_EN信号可以与VPH-PWR或上拉电源连接,节省1个pin脚。此外,模拟SPK PA中的一个VPH-PWR信号可以与背光电源芯片的一个VPH-PWR信号合并,节省1个pin脚。可见,对这两个电路模块的输入信号合并优化后最终剩下9个输入信号经过主板BTB连接器,与这两个电路模块设置在主板上相比,共节省主板BTB连接器的2个pin脚。
②背光电源芯片和SMART PA从主板移到副板
在另一种场景中,扬声器功率放大器还可以是SMART PA,如表2所示,是将背光电源芯片和SMART PA从主板移到副板之后,经过第一BTB连接器的信号合并优化说明:
表2
表2中背光电源芯片的信号从主板移至副板前后的信号变化与表1相同,此处不再赘述。
如表2所示,SMART PA设置在主板时经过第一BTB连接器的信号包括表2所示的4个信号,将SMART PA从主板移至副板后,经过第一BTB连接器的信号包括表2所示的11个信号,将SMART PA的VPH-PWR信号与背光电源芯片的VPH-PWR合并,节省1个pin。此外,将SMART PA的VIO_1.8V信号与副板上的天线开关电源合并,节省1个pin,即11个信号合并后为9个信号。
此外,本文中的其他信号调整可以是将不同芯片涉及的同一网络的信号进行合并优化,从而减少此类信号占用的pin数量。例如,其他信号可以包括GND信号,或者,悬空网络(not connect,NC)网络的引脚(即,BTB连接器未连接网络的pin)等。
③OLED驱动芯片和模拟SPK PA从主板移至副板
在另一种应用场景中,屏幕为OLED,如表3所示,OLED驱动芯片和模拟SPK PA从主板移至副板之后,经过主板BTB连接器的信号合并优化说明:
表3
由表3可知,OLED驱动芯片放在主板时,经过主板BTB连接器的信号为该OLED驱动芯片的7个输出信号,而将OLED移至副板后,经过主板BTB连接器的信号变为OLED驱动芯片的4个输入信号,不合并输入信号,即可节省3个pin脚。模拟SPK PA从主板移至副板后信号由4个变为6个,其中VPH-PWR可以与OLED驱动芯片的VPH-PWR合并,节省1个pin,最终模拟SPK PA移至副板后需占用主板BTB连接器5个pin脚。对于OLED驱动芯片和模拟SPK PA这两个电路模块而言,从主板移至副板后,节省了主板BTB连接器2个pin脚。
④OLED驱动芯片和SMART PA从主板移至副板
在又一种场景中,表2所对应的方案中的LCD可以替换为OLED,相应的,背光电源芯片替换为OLED驱动芯片,该场景下,将OLED电源驱动芯片和SMART PA从主板移至副板,经过主板BTB连接器的信号对比如表4所示:
如表4所示,将OLED驱动芯片从主板移至副板,经过主板BTB连接器的信号由7个变为4个,节省3个。SMART PA从主板移至副板,经过主板BTB连接器的信号由4个变为11个,进一步对SMART PA的信号进行合并优化,如将SMART PA的VPH-PWR信号与OLED驱动芯片的VPH-PWR信号合并,节省1个pin,以及,将SMART PA的直流电源信号VIO_1.8V与副板上的天线开关电源合并,节省1个pin,SMART PA的信号由11个合并为9个,OLED驱动芯片和SMART PA芯片共13个pin,整体上未节省经过BTB连接器的pin数量,但将OLED驱动芯片从主板移至副板,节省了主板的空间,优化了主板的布局。
当然,在本申请的其他实施例中,还可以仅把屏幕电源芯片从主板移至副板,对于屏幕采用LCD的应用场景,将背光电源芯片从主板移至副板后,背光使能信号LCD_EN可以与VPH-PWR或上拉电源连接,少占用BTB连接器1个pin,即节省1个pin。
对于屏幕采用OLED的应用场景,将OLED驱动芯片从主板移至副板,经过BTB连接 器的信号由7个输出信号变为4个输入信号,即少占用BTB连接器3个pin,即节省3个pin。
表4
本实施例提供的电路板,将屏幕FPC和主副板FPC合并,主板上的两个BTB连接器可以合并为一个,即第一BTB连接器,降低了BTB连接器占用主板的面积,提高了主板面积的利用率。同时,减少了FPC和BTB连接器的数量,因此降低了硬件成本。而且,该方案通过将主板上的电路模块移至副板,节省了主板空间。并对移至副板的电路模块的信号进行合并优化,降低此部分电路模块经过主板BTB连接器的信号数量,以使主板BTB连接器承载更多、更复杂电路模块的信号,进而使整个电路板承载功能更复杂的功能模块。
图4是将主副板FPC合并至屏幕FPC得到FPC,在其他实施例中,还可以将屏幕FPC合并至主副板FPC得到FPC,如图5所示,FPC包括第一FPC和第二FPC。
第一FPC的一端通过第一BTB连接器连接主板,第一FPC的另一端通过第二BTB连接器连接副板。即,第一FPC传输主板与副板之间的信号,以及主板与屏幕之间的信号。
副板与屏幕芯片之间通过第二FPC连接,第二FPC将与屏幕相关的信号传输至屏幕芯片。其他电路模块与图4所示实施例相同,此处不再赘述。
本实施例提供的电路板,通过第一FPC连接主板与副板,通过第二FPC连接副板与屏幕芯片,主板只需设置一个BTB连接器,因此节省了主板占用面积。同时,减少了FPC和BTB连接器的数量,因此降低了硬件成本。而且,将屏幕电源芯片和模拟SPK PA从主板移至副板,同时,对这两个电路模块的输入信号进行合并优化,以降低这两个电路模块经过第一BTB 连接器的信号数量,从而使主板BTB连接器承载更多、更复杂电路模块的信号,进而使主板承载更复杂的功能模块。
实施例二:屏幕电源芯片和马达驱动电源芯片从主板移至副板
如图6所示,本实施例是将图4所示实施例中的模拟SPK PA替换为马达驱动电源芯片,其他电路模块保持不变,此处不再赘述。
①背光电源芯片和马达驱动电源从主板移至副板
在屏幕为LCD的场景下,背光电源芯片和马达驱动电源从主板移至副板之后,经过主板BTB连接器的信号合并优化说明如表5所示:
表5
如表5所示,马达驱动电源放在主板时,经过主板BTB连接器的信号为VIBR_P和VIBR_N两个信号,将马达驱动电源移至副板后,经过主板BTB连接器的信号变为如下5个信号VPH-PWR、SDA2、SCL2、MOTOR_EN和MOTOR_INT。
本实施例中,背光电源芯片的控制信号SDA1、SCL1与马达驱动电源的SDA2、SCL2合并,节省2个pin脚,背光电源芯片的LCD_EN与VPH-PWR或默认上拉电源相连,节省1个pin脚,马达驱动电源芯片的VPH-PWR与背光电源芯片的VPH-PWR合并,节省1个pin脚。可见,将背光电源芯片和模拟SPK PA移至副板,并对其输入信号进行合并优化后,最终背光电源芯片和马达驱动电源芯片需经过主板BTB连接器的信号缩减至8个,与这两个电路模块放在主板的方案相比,节省1个pin脚。
②OLED驱动芯片和马达驱动电源芯片从主板移至副板
在另一种应用场景中,屏幕为OLED,则屏幕电源芯片为OLED驱动芯片,此种应用场景下,OLED驱动芯片和马达驱动电源芯片从主板移至副板之后,经过主板BTB连接器的信号合并优化说明如表6所示。
表6
由表6可知,OLED驱动芯片由主板移至副板后,经过主板BTB连接器的信号数量由7个缩减至4个。马达驱动电源芯片由主板移至副板后,经过主板BTB连接器的信号数量由2个变为5个,其中,VPH-PWR可以与OLED驱动芯片的VPH-PWR合并,节省1个pin脚,因此,该方案最终可以节省1个pin脚。
在其他实施例中,还可以将屏幕FPC和主副板FPC合并至主副板FPC得到FPC,如图7所示,与图6所示实施例的区别在于,FPC包括用于连接主板与副板的第一FPC,以及连接副板与屏幕芯片的第二FPC。本实施例中,主板与屏幕之间的信号先传输至副板,再传输至对方。其他结构相同,此处不再赘述。
本实施例提供的电路板,通过将屏幕电源芯片和马达驱动电源芯片从主板移至副板,并对这两个芯片的输入信号进行合并优化,以降低屏幕电源芯片和马达驱动电源芯片经过主板BTB连接器的信号数量,从而主板BTB连接器承载更多、更复杂的电路模块,进而使主板承载更复杂的功能模块。
实施例三:屏幕电源芯片、马达驱动电源和扬声器功率放大器从主板移至副板
如图8所示,在图6所示实施例的基础上,进一步还可以将扬声器功率放大器从主板移至副板,即,将屏幕电源芯片、马达驱动电源芯片和扬声器功率放大器从主板移至副板。
FPC传输主板与屏幕,以及主板与副板之间的信号,其中,由于屏幕电源芯片、马达驱动电源芯片和扬声器功率放大器均设置在副板,屏幕电源芯片的输出信号传输至屏幕芯片,马达驱动电源芯片的输出信号传输至马达,扬声器功率放大器的输出信号传输至扬声器。
①背光电源芯片、马达驱动电源芯片和模拟SPK PA从主板移至副板
在一种场景中,屏幕为LCD,则屏幕电源芯片为背光电源芯片,扬声器功率放大器为模拟SPK PA。此种应用场景下,背光电源芯片、马达驱动电源芯片和模拟SPK PA从主板移至副板之后,经过主板BTB连接器的信号合并优化说明如表7所示:
表7
由表7可知,背光电源芯片、马达驱动电源芯片和模拟SPK PA的控制信号可以共用一组,从而节省4个pin,背光电源芯片的LCD_EN与VPH-PWR或默认上拉电源相连,节省1个pin;马达驱动电源芯片的VPH-PWR与背光电源芯片的VPH-PWR合并,节省1个pin;模拟SPK PA的一个VPH-PWR与背光电源芯片的VPH-PWR合并,节省1个pin。通过上述合并优化,最终可节省2个pin。
②背光电源芯片、马达驱动电源芯片和SMART PA从主板移至副板
在另一种场景下,表7中的模拟SPK PA可以替换为SMART PA,即,背光电源芯片、马达驱动电源芯片和SMART PA从主板移至副板之后,经过主板BTB连接器的信号合并优化说明如表8所示:
表8
如表8所示,背光电源芯片、马达驱动电源芯片和SMART PA从主板移至副板后,经过主板BTB连接器的信号数量由15个变为23个,进一步对此部分电路模块的信号进行合并优化后为15个,整体上未节省pin数量,但这三个电路模块从主板移至副板后,节省了主板的空间,优化了主板的布局。
③OLED驱动芯片、马达驱动电源芯片和SMART PA从主板移至副板
在另一种应用场景中,屏幕为OLED,屏幕电源芯片为OLED驱动芯片,此种应用场景下,OLED驱动芯片、马达驱动电源芯片和SMART PA从主板移至副板之后,经过主板BTB连接器的信号合并优化说明如表9所示。
表9
由表9可知,OLED驱动芯片由主板移至副板,经过主板BTB连接器的信号由7个输出信号变为4个输入信号,节省3个pin。马达驱动电源芯片的供电电源信号VPH-PWR与OLED驱动芯片的VPH-PWR合并,节省1个pin;模拟SPK PA的VPH-PWR与OLED驱动芯片的VPH-PWR合并,节省1个pin,同时,模拟SPK PA的控制信号SDA3、SCL3与马达驱动电源芯片的SDA2、SCL2共用,节省2个pin,经过上述的输入信号合并,最终可节省2个pin。
④OLED驱动芯片、马达驱动电源芯片和SMART PA从主板移至副板
在又一种场景下,表9中的模拟SPK PA可以替换为SMART PA,该场景下,OLED驱动芯片、马达驱动电源芯片和SMART PA从主板移至副板之后,经过主板BTB连接器的信号合并优化说明如表10所示:
表10
如表10所示,SMART PA从主板移至副板后,经过主板BTB连接器的信号由4个变为11个,进一步将SMART PA的信号进行合并优化后得到9个信号,这三个电路模块从主板移至副板前后,经过主板BTB连接器的信号数量未变,但将这三个电路模块从主板移至副板,节省了主板的空间,可以优化主板的电路模块布局。
在其他实施例中,还可以将屏幕FPC和主副板FPC合并至主副板FPC得到FPC,如图9所示,FPC包括第一FPC和第二FPC,其中,第一FPC用于连接主板与副板,第二FPC用于连接副板与屏幕芯片。第一FPC传输主板与屏幕,以及主板与副板之间的信号,第二FPC仅传输与屏幕相关的信号。其他结构与图8相同,此处不再赘述。
本实施例提供的电路板,通过将屏幕电源芯片、马达驱动电源芯片和扬声器功率放大器从主板移至副板,并对这三个电路的输入信号进行合并优化,以降低经过主板BTB连接器的信号数量,从而主板BTB连接器承载更多、更复杂电路模块的信号,进而使整个电路板承载 更复杂的功能模块。
实施例四:屏幕电源芯片、充电协议芯片从主板移至副板
如图10所示,图4所示实施例中的扬声器功率放大器可以替换为充电协议芯片,其中,充电协议芯片用于控制充电模块的充电模式。FPC传输主板与屏幕,以及主板与副板之间的信号,其中,屏幕电源芯片的输出信号传输至屏幕芯片,充电协议芯片的输出信号传输至USB接口电路。
①背光电源芯片和充电协议芯片从主板移至副板
在屏幕为LCD、屏幕电源芯片为背光电源芯片的应用场景中,经过主板BTB连接器的信号对比如上述表11所示。
表11
由表7可知,背光电源芯片的控制信号SDA1和SCL1的地址与充电协议芯片的控制信 号SDA2和SCL2的地址无冲突,因此,SDA1、SCL1可以与SDA2、SCL2共用,可节省2个pin;同时,背光电源芯片的LCD_EN与VPH-PWR或默认上拉电源连接,节省1个pin。充电协议芯片的VPH-PWR与背光电源芯片的VPH-PWR合并,节省1个pin;副板本身就有VBUS信号,因此充电协议芯片的VBUS直接与USB接口的VBUS合并,节省1个pin;充电协议芯片的VIO_1.8V与副板的天线开关电源合并,节省1个pin。
通过对背光电源芯片和充电协议芯片的输入信号合并优化,这两个芯片最终经过主板BTB连接器的信号数量是9个,与背光电源芯片和充电协议芯片设置在主板时的信号数量相同,但该方案将背光电源芯片和充电协议芯片移至副板,节省了主板占用面积。
②OLED驱动芯片和充电协议芯片从主板移至副板
在另一种应用场景中,屏幕为OLED,屏幕电源芯片为OLED驱动芯片,OLED驱动芯片和充电协议芯片从主板移至副板后,这两个芯片经过主板BTB连接器的信号数量对比如表12所示。
表12
由表12可知,OLED驱动芯片从主板移至副板后,经过主板BTB连接器的信号由该模块的输出信号变为输入信号,数量由7个变为4个,节省了3个pin;充电协议芯片的输入信号合并优化方式与表11相同,此处不再赘述。
在其他实施例中,还可以将屏幕FPC合并至主副板FPC得到FPC,如图11所示,FPC包括第一FPC和第二FPC,第一FPC连接主板和副板,第二FPC连接副板和屏幕芯片。第一FPC传输主板与副板,以及主板与屏幕芯片之间的信号,第二FPC传输副板与屏幕芯片之间的信号。其他结构与图10相同,此处不再赘述。
本实施例提供的电路板,将屏幕电源芯片和充电协议芯片由主板移至副板,在未增加经过主板BTB连接器的信号数量的前提下,节省了主板占用面积,从而使主板能够承载复杂功能模块,提高了整个电路板的面积利用率。
实施例五:屏幕电源芯片、充电协议芯片和扬声器功率放大器由主板移至副板
本实施例中,如图12所示,在图10所示实施例的基础上,进一步将扬声器功率放大器从主板移至副板,其中,屏幕电源芯片和充电协议芯片的信号合并优化方式与图10所示实施例相同,此处不再赘述。
①背光电源芯片、充电协议芯片和模拟SPK PA从主板移至副板
在一种场景下,屏幕电源芯片为背光电源芯片,扬声器功率放大器为处理模拟声音信号的模拟SPK PA,该场景下,上述三个电路模块从主板移至副板之后经过主板BTB连接器的信号合并优化说明如表13所示:
表13
由表13可知,模拟SPK PA由主板移至副板后,经过主板BTB连接器的信号由4个输出信号变为6个输入信号,对这6个输入信号进行合并优化,具体的,模拟SPK PA的输入电源信号VPH-PWR与背光电源芯片的VPH-PWR合并,节省1个pin。
而且,模拟SPK PA的控制地址与背光电源芯片、充电协议芯片的控制地址均无冲突,因此,可以将模拟SPK PA的两个控制信号SDA3、SCL3与充电协议芯片中的控制信号SDA2、SCL2合并,节省2个pin。可见,该方案最终节省1个pin。
②背光电源芯片、充电协议芯片和SMART PA从主板移至副板
在另一种场景下,扬声器功率放大器还可以采用处理数字声音信号的SMART PA,该场景下,背光电源芯片、充电协议芯片和SMART PA从主板移至副板之后,经过主板BTB连接器的信号合并优化说明如表14所示:
表14
如表14所示,SMART PA从主板移至副板后,经过主板BTB连接器的信号由4个输出信号变为11个输入信号,进一步对11个输入信号进行合并优化,如,SMART PA的VPH-PWR与背光电源芯片的VPH-PWR合并,节省1个pin;SMART PA的直流电源信号VIO_1.8V与副板的天线开关电源合并,节省1个pin。背光电源芯片和充电协议芯片的信号合并方式与表13所示的方案相同,此处不再赘述。可见,该方案未节省经过主板BTB连接器的信号数量,但将背光电源芯片、充电协议芯片和SMART PA从主板移至副板,节省了主板的占用面积,进而可以优化主板的布局。
③OLED驱动芯片、充电协议芯片和模拟SPK PA从主板移至副板
在另一种应用场景中,屏幕为OLED,屏幕电源芯片为OLED驱动芯片,扬声器功率放大器为处理模拟声音信号的模拟SPK PA,该场景下,此种应用场景下,上述三个电路模块从主板移至副板之后,经过主板BTB连接器的信号合并优化说明如表15所示。
表15与表13之间的区别在于,OLED驱动芯片放在主板时经过主板BTB连接器的信号为7个输出信号,将OLED驱动芯片移至副板时,经过主板BTB连接器的信号变为4个输入信号,换言之,未对OLED驱动芯片的输入信号进行合并优化即可节省3个pin。
表15
④OLED驱动芯片、充电协议芯片和SMART PA从主板移至副板
在又一种场景下,还可以将表15中处理模拟声音信号的模拟SPK PA替换为处理数字声音信号的SMART PA,该场景对应的经过主板BTB连接器的信号对比说明如表16所示:
表16
在其他实施例中,还可以将屏幕FPC合并至主副板FPC得到FPC,如图13所示,FPC包括第一FPC和第二FPC,第一FPC连接主板和副板,第二FPC连接副板和屏幕芯片。第一FPC传输主板与副板,以及主板与屏幕芯片之间的信号,第二FPC传输副板与屏幕芯片之间的信号。其他结构与图12相同,此处不再赘述。
本实施例提供的电路板,将屏幕电源芯片、充电协议芯片和扬声器功率放大器由主板移至副板,节省了主板占用面积,从而使主板能够承载复杂功能模块。而且,通过对这三个电路模块的输入信号进行合并优化,降低了经过主板BTB连接器的信号数量,从而使得副板能够承载更多、更复杂的电路模块。
实施例六:屏幕电源芯片、耳机开关切换芯片和扬声器功率放大器由主板移至副板
在耳机接口采用USB TypeC接口的场景中,耳机开关切换芯片用于切换USB TypeC接口的工作模式,如耳机模式或USB接口模式。
如图14所示,将主副板FPC合并至屏幕FPC得到FPC,该FPC的结构与图8所示实施例中的FPC原理相同,此处不再赘述。本实施例中,由于耳机开关切换芯片由主板移至副板,因此,FPC传输主板与该耳机开关切换芯片之间的信号。此外,耳机开关切换芯片的输出信号传输至USB接口。
①背光电源芯片、耳机开关切换芯片和模拟SPK PA从主板移至副板
在一种场景下,屏幕为LCD,屏幕电源芯片为背光电源芯片,扬声器功率放大器为处理模拟声音信号的模拟SPK PA,该场景下,背光电源芯片、二级开关切换芯片和模拟SPK PA从主板移至副板之后,经过主板BTB连接器的信号合并优化说明如表17所示:
表17
对于屏幕电源芯片和模拟SPK PA的输入信号合并优化方式,前述实施例均已详述,此处不再赘述。
耳机开关切换芯片由主板移至副板后,经过主板BTB连接器的信号由4个输入信号变为12个输出信号。其中,控制信号SDA2、SCL2的地址与背光电源芯片及模拟SPK PA中的控制地址均无冲突,因此,可以将这三个芯片中的控制信号合并,如本实施例中,背光电源芯片的SDA3、SCL3和耳机开关切换芯片的SDA2、SCL2与模拟SPK PA的控制信号SDA3、SCL3合并。耳机开关切换芯片的VPH-PWR与背光电源芯片的VPH-PWR合并,节省1个pin。
由表17可知,将背光电源芯片、耳机开关切换芯片和模拟SPK PA由主板移至副板后,未节省主板BTB连接器的pin数量,但节省了主板占用面积,提高了主板利用率,使主板承载更复杂的功能模块。
②背光电源芯片、耳机开关切换芯片和SMART PA从主板移至副板
在另一场景下,表17中的模拟SPK PA可以替换为处理数字声音信号的SMART PA,该场景对应的经过主板BTB连接器的信号合并优化说明如表18所示:
表18
如表18所示,SMART PA从主板移至副板后,经过主板BTB连接器的信号由4个输出信号变为11个输入信号,进一步,将输入信号中的VPH-PWR与背光电源芯片的VPH-PWR合并,节省1个pin;以及,将直流电源信号VIO_1.8V与副板的天线开关电源合并,节省1个pin。即SMART PA的输入信号进行合并后变为9个。
如表18所示,背光电源芯片、耳机开关切换芯片和SMART PA从主板移至副板后,经过主板BTB连接器的信号数量未变,但节省了主板的空间,优化了主板的布局。
③OLED驱动芯片、耳机开关切换芯片和模拟SPK PA从主板移至副板
在另一种应用场景中,屏幕电源芯片为OLED驱动芯片。将表17中的背光电源芯片更换为OLED驱动芯片得到表19:
表19
如表19所示,OLED驱动芯片由主板移至副板后,经过主板BTB连接器的信号由7个输出信号变为4个输入信号,节省了3pin。将OLED驱动芯片、耳机开关切换芯片和模拟SPK PA从主板移至副板后,经过主板BTB连接器的信号数量未变,但节省了主板的占用面积,优化了主板的布局。
④OLED驱动芯片、耳机开关切换芯片和SMART PA从主板移至副板
在又一场景下,还可以将表18中的背光电源芯片替换为OLED驱动芯片,该场景下经过主板BTB连接器的信号对比如表20所示。
表20
如表20所示,OLED驱动芯片从主板移至副板后,经过主板BTB连接器的信号由7个输出信号变为4个输入信号,节省3个pin。整体上这三个电路从主板移至副板未节省pin,但节省了主板的占用面积,优化了主板的布局。
在其他实施例中,可以将图14所示实施例中的屏幕FPC合并至主副板FPC得到FPC,如图15所示,该FPC与图5、图9、图11、图13所示实施例中的FPC的结构及原理相同,此处不再赘述。
本实施例提供的电路板,将屏幕电源芯片、耳机开关切换芯片和模拟SPK PA由主板移至副板,进一步对这三个电路模块的输入信号进行合并优化,在未增加这三个电路经过主板BTB连接器的信号数量的前提下,节省了主板占用面积,使得主板能够承载更复杂功能模块,提高了整个电路板的利用率。
实施例七:马达驱动电源芯片和扬声器功率放大器从主板移至副板
如图16所示,扬声器功率放大器和马达驱动电源芯片从主板移至副板,而且,将屏幕FPC合并至主副板FPC,合并后是一个FPC,即第一FPC。
图17与图16的不同之处在于,将主副板FPC合并至屏幕FPC,合并后是一个FPC,图17中的其他部分与图16相同,此处不再赘述。
①马达驱动电源芯片和模拟SPK PA从主板移至副板
在一种应用场景中,扬声器功率放大器采用处理模拟声音信号的模拟SPK PA,该场景下,将马达驱动电源芯片和模拟SPK PA从主板移至副板之后,经过主板BTB连接器的信号合并优化说明如表21所示:
表21
如表21所示,马达驱动电源芯片和模拟SPK PA从主板移至副板前后,经过主板BTB连接器的信号数量未变,但节省了主板的占用面积,优化了主板的布局。
②马达驱动电源芯片和SMART PA从主板移至副板
在另一种场景中,扬声器功率放大器采用处理数字声音信号的SMART PA,经过主板BTB连接器的信号如表22所示:
表22
如表22所示,将马达驱动电源芯片和SMART PA从主板移至副板前后,经过主板BTB连接器的信号数量未变,但节省了主板的占用面积,优化了主板的布局。
实施例八:屏幕电源芯片和耳机开关切换芯片从主板移至副板
如图18所示,将屏幕电源芯片和耳机开关切换芯片从主板移至副板,而且,将主副板FPC合并至屏幕FPC,即图18中的FPC。
在另一示例性实施例中,如图19所示,还可以将屏幕FPC合并至主副板FPC得到第一FPC,其他部分与图18相同,此处不再赘述。
①背光电源芯片和耳机开关切换芯片从主板移至副板
在一种场景中,屏幕为LCD,屏幕电源芯片为背光电源芯片。该场景下,背光电源芯片和耳机开关切换芯片从主板移至副板之后,经过主板BTB连接器的信号合并优化如表23所示:
表23
如表23所示,背光电源芯片从主板移至副板后,经过主板BTB连接器的信号由7个输出信号变为7个输入信号。其中,控制信号SDA1、SCL1的地址与耳机开关切换芯片的控制信号SDA2、SCL2的地址无冲突,因此,SDA1、SCL1与SDA2、SCL2可以共用,节省2个pin。其他的信号合并方式与表18相同,此处不再赘述。
如表23所示,将背光电源芯片和耳机开关切换芯片从主板移至副板前后,经过主板BTB连接器的信号数量未变,但节省了主板的占用面积,优化了主板的布局。
②OLED驱动芯片与耳机开关切换芯片从主板移至副板
在另一种场景中,屏幕为OLED,屏幕电源芯片为OLED驱动芯片,此种场景下,OLED驱动芯片和耳机开关切换芯片从主板移至副板之后,经过主板BTB连接器的信号合并优化如表24所示:
表24
如表24所示,OLED驱动芯片从主板移至副板,经过主板BTB连接器的信号由7个输出信号变为4个输入信号,可以直接节省3个pin。耳机开关切换芯片从主板移至副板,经过主板BTB连接器的信号由4个输出信号变为12个输入信号,其中,VPH-PWR与OLED驱动芯片的VPH-PWR合并,节省1个pin。整体上该方案没有节省主板BTB连接器的pin数量,但节省了主板的占用面积,优化了主板的布局。
实施例九:屏幕电源芯片、耳机开关切换芯片和马达驱动电源芯片从主板移至副板
如图20所示,在图18的基础上,进一步还可以将马达驱动电源芯片从主板移至副板,而且,将主副板FPC合并至屏幕FPC。
在另一示例性实施例中,如图21所示,还可以将屏幕FPC合并至主副板FPC,其他部分与图20相同,此处不再赘述。
①背光电源芯片、耳机开关切换芯片和马达驱动电源芯片从主板移至副板
将背光电源芯片、耳机开关切换芯片和马达驱动电源芯片从主板移至副板之后,经过主板BTB连接器的信号合并优化如表25所示。
如表25所示,将背光电源芯片、耳机开关切换芯片和马达驱动电源芯片从主板移至副板后,经过主板BTB连接器的信号总量未变,但节省了主板的占用面积,优化了主板的布局。
表25
②OLED驱动芯片、耳机开关切换芯片和马达驱动电源芯片从主板移至副板
将OLED驱动芯片、耳机开关切换芯片和马达驱动电源芯片从主板移至副板之后,经过主板BTB连接器的信号合并优化说明如表26所示。
如表26所示,上述的三个芯片从主板移至副板后,经过主板BTB连接器的信号总数量未变,但节省了主板的占用面积,优化了主板的布局。
表26
实施例十:耳机开关切换芯片和马达驱动电源芯片从主板移至副板
如图22所示,耳机开关切换芯片和马达驱动电源芯片从主板移至副板,而且,屏幕FPC合并至主副板FPC(即,第一FPC)。屏幕电源芯片位于主板,屏幕电源芯片的输出信号经第一FPC和第二FPC传输至屏幕芯片。主板的SOC芯片提供给耳机开关切换芯片和马达驱动电源芯片的输入信号经第一FPC传输至对应的芯片,这两个芯片的输出信号传输至相应的电路或芯片。
在另一示例性实施例中,如图23所示,耳机开关切换芯片和马达驱动电源芯片从主板移至副板,而且,主副板FPC合并至屏幕FPC,即图23中的FPC。
如表27所示,耳机开关切换芯片的控制信号SDA1、SCL1可以与马达驱动电源芯片SDA2、SCL2共用,节省2pin。马达驱动电源芯片的VPH-PWR与耳机开关切换芯片的VPH-PWR合并,节省1个pin。此外,这两个芯片从主板移至副板后,还有其他信号(如GND信号等)可以合并调整,最终经过主板BTB连接器的信号数量未变,但节省了主板的占用面积,优化了主板的布局。
表27
实施例十一:耳机开关切换芯片和扬声器功率放大器从主板移至副板
本实施例可以将图22中的马达驱动电源芯片替换为扬声器功率放大器,如图24所示,将耳机开关切换芯片和扬声器功率放大器从主板移至副板,而且,将屏幕FPC合并至主副板FPC得到第一FPC。
在另一示例性实施例中,如图25所示,该示例性实施例与图24所示实施例的区别在于:将主副板FPC合并至屏幕FPC,即图25中的FPC,其他部分与图24相同,此处不再赘述。
①模拟SPK PA和耳机开关切换芯片从主板移至副板
在一种场景下,扬声器功率放大器可以是能够处理模拟声音信号的模拟SPK PA。
如表28所示,将模拟SPK PA和耳机开关切换芯片从主板移至副板后,经过主板BTB连接器的信号总数未变,但节省了主板的占用面积,优化了主板的布局。
表28
②SMART PA和耳机开关切换芯片从主板移至副板
在另一场景下,扬声器功率放大器可以是处理数字声音信号的SMART PA。
如表29所示,将SMART PA和耳机开关切换芯片从主板移至副板后,经过主板BTB连接器的信号总数量未变,但节省了主板的占用面积,优化了主板的布局。
表29
实施例十二:耳机开关切换芯片、马达驱动电源芯片和扬声器功率放大器从主板移至副板
本实施例是在实施例十的基础上,进一步还可以将马达驱动电源芯片从主板移至副板。
如图26所示,该实施例在图24的基础上,进一步将马达驱动电源芯片从主板移至副板,且将屏幕FPC合并至主副板FPC,即图26中的第一FPC。
在另一示例性实施例中,如图27所示,该实施例是在图25的基础上,进一步将马达驱动电源芯片从主板移至副板,且将主副板FPC合并至屏幕FPC,即图27中的FPC。
①耳机开关切换芯片、马达驱动电源芯片和模拟SPK PA从主板移至副板
如表30所示,耳机开关切换芯片、马达驱动电源芯片和模拟SPK PA从主板移至副板后,以及其他需要调整的信号,经过主板BTB连接器的信号总数未变,但节省了主板的占用面积,优化了主板的布局。
表30
②耳机开关切换芯片、马达驱动电源芯片和SMART PA从主板移至副板
在另一种应用场景中,扬声器功率放大器可以采用能够处理数字声音信号的SMART PA,该场景下,如表31所示,耳机开关切换芯片、马达驱动电源芯片和SMART PA从主板移至副板后,经过主板BTB连接器的信号总数量未变,但节省了主板的占用面积,优化了主板的布局。
表31
实施例十三:屏幕电源芯片、耳机开关切换芯片、马达驱动电源芯片和扬声器功率放大器从主板移至副板
如图28所示,屏幕电源芯片、扬声器功率放大器芯片、耳机开关切换芯片和马达驱动电 源芯片设置在副板上,而且,主副板FPC合并至屏幕FPC,合并后为一个FPC,即图28中的FPC。主板的SOC芯片提供至屏幕及上述四个芯片的信号通过第一BTB连接器和FPC传输至屏幕,进一步将上述四个芯片的信号传输至副板。进一步,上述四个芯片将各自的输出信号传输至相应的硬件模块。
此外,如图29所示,还可以将屏幕FPC合并至主副板FPC,即图29中的第一FPC,屏幕电源芯片与屏幕芯片之间的信号通过第二FPC传输。
①背光电源芯片、耳机开关切换芯片、马达驱动电源芯片和模拟SPK PA从主板移至副板
在一种场景下,屏幕为LCD,屏幕电源芯片为背光电源,以及,扬声器功率放大器为能够处理模拟声音信号的模拟SPK PA。该场景下,如表32所示,将上述四个芯片从主板移至副板后,经过主板BTB连接器的信号总数未变,但节省了主板的占用面积,优化了主板的布局。
表32
②背光电源芯片、耳机开关切换芯片、马达驱动电源芯片和SMART PA
在另一种场景下,扬声器功率放大器还可以采用能够处理数字声音信号的SMART PA,该场景下,如表33所示,该方案未节省主板BTB连接器的pin数量,但节省了主板的占用面积,优化了主板的布局。
表33
③OLED驱动芯片、耳机开关切换芯片、马达驱动电源芯片和模拟SPK PA
在另一示例性实施例中,屏幕为OLED,屏幕电源芯片为OLED驱动芯片,扬声器功率放大器采用能够处理模拟声音信号的模拟SPK PA。如表34所示,这几个芯片从主板移至副板后,经过主板BTB连接器的信号总数量未变,但节省了主板的占用面积,优化了主板的布局。
表34
④OLED驱动芯片、耳机开关切换芯片、马达驱动电源芯片和SMART PA从主板移至副板
表35
如表35所示,将OLED驱动芯片、耳机开关切换芯片、马达驱动电源芯片和SMART PA从主板移至副板后,经过主板BTB连接器的信号总数未变,但节省了主板的占用面积,优化了主板的布局。
实施例十四:屏幕电源芯片和PD(Power Delivery)充电协议芯片从主板移到副板
PD充电协议是全称为USB Power Delivery,由USB-IF组织制定的一种快速充电规范,兼容手机、平板电脑和笔记本电脑等设备。PD快充透过USB电缆和连接器增加电力输送,扩展USB电缆总线的供电能力,实现更高的电压和电流。
如图30所示,屏幕电源芯片和PD充电协议芯片设置在副板上,主副板FPC合并至屏幕FPC,即图30中的FPC,SOC芯片提供给屏幕电源芯片和PD充电协议芯片的信号经第一BTB连接器和FPC传输至屏幕芯片,进一步传输至副板上的相应芯片。
在另一示例性实施例中,如图31所示,屏幕FPC还可以合并至主副板FPC,即图31中的第一FPC,屏幕电源芯片与屏幕芯片之间的信号经由第二FPC传输。其他部分与图30相同,此处不再赘述。
①背光电源芯片和PD充电协议芯片从主板移至副板
在一种场景下,屏幕为LCD,屏幕电源芯片为背光电源芯片。
如表36所示,背光电源芯片从主板移至副板后,经过主板BTB连接器的信号由7个输出信号变为7个输入信号。PD充电协议芯片从主板移至副板,经过主板BTB连接器的信号由2个输出信号变为5个输入信号。
其中,PD充电协议芯片的充电电源正信号VBUS可以与USB接口的VBUS信号复用,节省1个pin;芯片供电电源VDD与背光电源芯片的VPH-PWR合并,节省1个pin。背光电源芯片的控制信号SDA1、SCL1与PD充电协议芯片的控制信号SDA2、SCL2的地址无冲突,因此这两对控制信号可以合并,节省2个pin。此外,背光电源芯片的背光使能信号可以与VPH-PWR合并,节省1个pin。可见,背光电源芯片和PD充电协议芯片从主板移至副板后,经过主板BTB连接器的信号数量由9个减少至7个,节省了主板BTB连接器的pin数量,而且,节省了主板的占用面积,优化了主板的布局。
表36
②OLED驱动芯片和PD充电协议芯片从主板移至副板
如表37所示,OLED驱动芯片从主板移至副板,经过主板BTB连接器的信号由7个输出信号变为4个输入信号,节省3个pin。而且,PD充电协议芯片从主板移至副板后,该芯片输入信号中的VBUS可以与USB接口的VBUS复用,节省1个pin。以及,VDD可以与OLED驱动芯片的VPH-PWR复用,节省1个pin。可见,经过主板BTB连接器的信号有原来的9个减少为7个,节省2个pin,而且,节省了主板的占用空间,优化了主板的布局。
表37
实施例十五:PD充电协议和扬声器功率放大器从主板移至副板
如图32所示,PD充电协议芯片和扬声器功率放大器设置在副板,屏幕电源芯片设置在主板。而且,屏幕电源芯片与屏幕芯片之间的屏幕FPC合并至主副板FPC,即第一FPC。
如图33所示,主副板FPC还可以合并至屏幕FPC,即图33中的FPC,其他结构与图32相同。
①PD充电协议芯片和模拟SPK PA从主板移至副板
如表38所示,PD充电协议芯片和模拟SPK PA从主板移至副板后,PD充电协议芯片的控制信号SDA1、SCL1与模拟SPK PA的控制信号SDA2、SCL2复用,节省2个pin。PD充电协议芯片的VDD与模拟SPK PA的VPH-PWR复用,节省1个pin。PD充电协议芯片的VBUS与USB接口的VBUS复用,节省1个pin。经过主板BTB连接器的信号总数量未变,但是节省了主板的占用面积,优化了主板的布局。
表38
②PD充电协议芯片和SMART PA从主板移至副板
如表39所示,PD充电协议芯片的控制信号SDA1、SCL1与SMART PA的控制信号SDA2、SCL2的控制地址无冲突,这两组控制信号可以复用,节省2个pin。SMART PA的直流电源信号VIO_1.8V与副板的天线开关电源信号复用,节省1个pin。PD充电协议芯片的VBUS和VDD的复用情况与包含PD充电协议上述的实施例十四相同,此处不再赘述。该方案未节省经过主板BTB连接器的信号总数量,但节省了主板的占用面积,优化了主板的布局。
表39
实施例十六:PD充电协议芯片和马达驱动电源芯片从主板移至副板
本实施例将图32和图33中的扬声器功率放大器替换为马达驱动电源芯片,其他结构不变。
如表40所示,马达驱动电源芯片的控制信号SDA1、SCL1与PD充电协议的SDA2、SCL2复用,节省2个pin。其他信号合并优化情况与实施例十五相同,此处不再赘述。可见,该方案将PD充电协议芯片和马达驱动电源芯片从主板移至副板后,经过主板BTB连接器的信号总数量未变,但节省了主板的占用面积,优化了主板的布局。
表40
实施例十七:PD充电协议芯片、屏幕电源芯片和马达驱动电源芯片从主板移至副板
本实施例在图30和图31的基础上,进一步将马达驱动电源芯片从主板移至副板。
①PD充电协议芯片、背光电源芯片和马达驱动电源芯片从主板移至副板
表41
如表41所示,背光电源芯片、马达驱动电源芯片和PD充电协议芯片的控制信号的地址互不冲突,因此三个芯片的控制信号可以复用,即SDA1、SCL1,SDA2、SCL2可以与SDA3、SCL3复用,共节省4个pin。其他信号的合并优化情况与前述实施例相同,此处不再赘述。该方案最终可以节省主板BTB连接器的2个pin。
②PD充电协议芯片、OLED驱动芯片和马达驱动电源芯片从主板移至副板
如表42所示,马达驱动电源芯片的VPH-PWR与OLED驱动芯片的VPH-PWR复用,节省1个pin。马达驱动电源芯片的控制信号SDA1、SCL1与PD充电协议芯片的控制信号SDA2、SCL2复用,节省2个pin。PD充电协议芯片的VBUS与USB接口的VBUS复用,VDD与OLED驱动芯片的VPH-PWR复用。可见,对这三个芯片的输入信号进行合并优化后减少为9个,主板BTB连接器节省了2个pin,而且,节省了主板的占用面积,优化了主板的布局。
表42
实施例十八:屏幕电源芯片、耳机开关切换芯片和PD充电协议芯片从主板移至副板
如图34所示,屏幕电源芯片、耳机开关切换芯片和PD充电协议芯片设置在副板,主副板FPC合并至屏幕FPC,即图34中的FPC。这三个芯片的输入引脚经第二BTB连接器连接该FPC,屏幕电源芯片的输出引脚经第二BTB连接器连接屏幕芯片;耳机开关切换芯片和PD充电协议芯片的输出引脚均连接USB接口。
在另一示例性实施例中,如图35所示,屏幕FPC合并至主副板FPC,即图35中的第一FPC,屏幕电源芯片的输出引脚经第二FPC连接屏幕芯片;其他结构与图34相同,此处不再赘述。
①背光电源芯片、耳机开关切换芯片和PD充电协议芯片
如表43所示,背光电源芯片中的控制信号SDA1、SCL1及耳机开关切换芯片的控制信号SDA2、SCL2,与PD充电协议芯片的SDA3、SCL3共用,节省4个pin。其他信号合并优化情况与上述实施例相同,此处不再赘述。
可见,该方案将背光电源芯片、耳机开关切换芯片和PD充电协议芯片从主板移至副板后,经过主板BTB连接器的信号总数量未变,但节省了主板的占用面积,优化了主板的布局。
表43
②OLED驱动芯片、耳机开关切换芯片和PD充电协议芯片
如表44所示,耳机开关切换芯片的控制信号SDA1、SCL1与PD充电协议芯片的SDA2、SCL2复用,节省2个pin。耳机开关切换芯片的VPH-PWR与OLED驱动芯片的VPH-PWR合并,节省1个pin。PD充电协议芯片的其他信号优化情况与其他实施例中PD充电协议芯片的信号合并优化情况相同,此处不再赘述。
可见,该方案将OLED驱动芯片、耳机开关切换芯片和PD充电协议芯片这三个芯片移至副板后,经过主板BTB连接器的信号总数量未变,但节省了主板的占用面积,优化了主板的布局。
表44
实施例十九:屏幕电源芯片、马达驱动电源芯片、扬声器功率放大器和PD充电协议芯片从主板移至副板
本实施例在图30和图31的基础上,进一步将马达驱动电源芯片和扬声器功率放大器移至副板,其他结构相同,此处不再赘述。
①背光电源芯片、马达驱动电源芯片和模拟SPK PA和PD充电协议芯片从主板移至副板
在一种场景下,屏幕是LCD,屏幕电源芯片是屏幕电源芯片,扬声器功率放大器采用可以处理模拟声音信号的模拟SPK PA。
如表45所示,背光电源芯片的控制信号SDA1、SCL1,马达驱动电源芯片的控制信号SDA2、SCL2,以及模拟SPK PA的控制信号SDA4、SCL4与PD充电协议芯片的SDA3、SCL3共用,节省6个pin。背光电源芯片的背光使能信号LCD_EN与背光电源芯片的VPH-PWR合并,节省1个pin。
马达驱动电源芯片的VPH-PWR与背光电源芯片的VPH-PWR合并,节省1个pin。
PD充电协议芯片的VBUS与USB接口的VBUS复用,节省1个pin。PD充电协议芯片的VDD与背光电源芯片的VPH-PWR合并,节省1个pin。
模拟SPK PA的VPH-PWR与背光电源芯片的VPH-PWR合并,节省1个pin。
可见,该方案对上述三个芯片的信号进行合并优化后减少至12个,少占用主板BTB连接器2个pin,而且,节省了主板的占用面积,优化了主板的布局。
表45
②背光电源芯片、马达驱动电源芯片、PD充电协议芯片和SMART PA
在另一种场景中,扬声器功率放大还可以采用可以处理数字信号的SMART PA。该场景下,移至副板的各信号的合并优化方案如表46所示。可见,该方案经过主板BTB连接器的信号总数量未变,但节省了主板的占用面积,优化了主板的布局。
表46
③OLED驱动芯片、马达驱动电源芯片、PD充电协议芯片和模拟SPK PA从主板移至副板
在又一场景中,屏幕为OLED,屏幕电源芯片为OLED驱动芯片。扬声器功率放大器采用可以处理模拟声音信号的模拟SPK PA。
如表47所示,移至副板的各芯片的信号优化合并后,经过主板BTB连接器的信号总数量由15个减至12个,少占用主板BTB连接器3个pin,而且,节省了主板的占用面积,优化了主板的布局。
表47
④OLED驱动芯片、马达驱动电源芯片、PD充电协议芯片和SMART PA从主板移至副板
在另一场景下,扬声器功率放大器采用可以处理数字声音信号的SMART PA。
如表48所示,OLED驱动芯片、马达驱动电源芯片、PD充电协议芯片和SMART PA移至副板后,经过主板的BTB连接器的信号总数量未变,但节省了主板的占用面积,优化了主 板的布局。
表48
实施例二十:充电协议芯片和PD充电协议芯片从主板移至副板
本实施例是将图32和图33中的扬声器功率放大器替换为充电协议芯片,其他结构不变。
如表49所示,将充电协议芯片和PD充电协议芯片从主板移至副板后,充电协议芯片的控制信号SDA1、SCL1与PD充电协议芯片的SDA2、SCL2共用,节省2个pin。PD充电协议芯片的VDD与充电协议芯片的VPH-PWR复用,节省1个pin。
如表49所示,该方案合并优化后,经过主板BTB连接器的信号由11个减至7个,节省4个pin。而且,还节省了主板的占用面积,优化了主板布局。
表49
实施例二十一:马达驱动电源芯片、扬声器功率放大器和PD充电协议芯片
本实施例在图32和图33的基础上,进一步将马达驱动电源芯片移至副板,其他结构不变。
①PD充电协议芯片、马达驱动电源芯片和模拟SPK PA
在一场景下,扬声器功率放大器采用可以处理模拟声音信号的模拟SPK PA。
如表50所示,马达驱动电源芯片移至副板后,该芯片的VPH-PWR与模拟SPK PA的VPH-PWR合并,节省1个pin;该芯片的控制信号SDA1、SCL1与PD充电协议芯片的SDA2、SCL2共用,节省2个pin。PD充电协议芯片的VDD与模拟SPK PA的VPH-PWR合并,节省1个pin。模拟SPK PA的控制信号SDA3、SCL3与PD充电协议芯片的SDA2、SCL2共用,节省2个pin。其他信号合并方案与前述的实施例类似,此处不再赘述。
可见,PD充电协议芯片、马达驱动电源芯片和模拟SPK PA移至副板后,经过主板BTB连接器的信号总数量未变,但节省了主板占用面积,优化了主板的布局。
表50
②PD充电协议芯片、马达驱动电源芯片和SMART PA从主板移至副板
在另一场景下,扬声器功率放大器还可以采用可以处理数字声音信号的SMART PA。
如表51所示,PD充电协议芯片、马达驱动电源芯片和SMART PA从主板移至副板后,经过主板BTB连接器的信号总数量未变,但是节省了主板的占用面积,优化了主板的布局。
表51
实施例二十二:屏幕电源芯片、扬声器功率放大器和PD充电协议从主板移至副板
本实施例在图30和图31的基础上,进一步将扬声器功率放大器移至副板,其他结构不变。
①背光电源芯片、PD充电协议和模拟SPK PA
在一种场景下,屏幕为LCD,屏幕电源芯片为背光电源芯片。扬声器功率放大器采用可以处理模拟声音信号的模拟SPK PA。
如表52所示,背光电源芯片PD充电协议和模拟SPK PA从主板移至副板后,经过主板BTB连接器的信号数量减少了3个,即节省了主板BTB连接器的3个pin。而且,节省了主板的占用面积,优化了主板的布局。
表52
②背光电源芯片、PD充电协议芯片和SMART PA从主板移至副板
在另一场景下扬声器功率放大器采用可以处理数字声音信号的SMART PA。
如表53所示,背光电源芯片、PD充电协议芯片和SMART PA从主板移至副板后,经过主板BTB连接器的信号总数量未变,但是,节省了主板的占用面积,优化了主板的布局。
表53
③OLED驱动芯片、PD充电协议芯片和模拟SPK PA从主板移至副板
在另一种场景下,屏幕为OLED,屏幕电源芯片为OLED驱动芯片。扬声器功率放大器采用模拟SPK PA。
如表54所示,OLED驱动芯片从主板移至副板后,经过主板BTB连接器的信号由7个输出信号变为4个输入信号,节省3个pin。PD充电协议芯片的VBUS与USB接口的VBUS复用,节省1个pin;同时,VDD与OLED驱动芯片的VPH-PWR复用,节省1个pin。
模拟SPK PA的控制信号SDA2、SCL2与PD充电协议芯片的SDA1、SCL1共用,节省2个pin。模拟SPK PA的VPH-PWR与OLED驱动芯片的VPH-PWR复用,节省1个pin。
可见,该方案经过主板BTB连接器的信号由13个减至10个,节省主板BTB连接器的3个pin。而且,节省了主板的占用面积,优化了主板的布局。
表54
④OLED驱动芯片、PD充电协议芯片和SMART PA从主板移至副板
在又一场景下,扬声器功率放大器采用处理数字信号的SMART PA。
如表55所示,该方案中,SMART PA的VPH-PWR与OLED驱动芯片的VPH-PWR合并,节省1个pin;SMART PA的控制信号与PD充电协议芯片的控制信号SDA1、SCL1复用,节省2个pin。其他信号的合并优化在前述实施例已详细介绍,此处不再赘述。
如表55所示,该方案经过主板BTB连接器的信号总数量未变,但节省了主板的占用面积,优化了主板的布局。
表55
实施例二十三:PD充电协议芯片、屏幕电源芯片和充电协议芯片从主板移至副板
本文中的PD充电协议芯片是指各个设备商之间通用的快充协议芯片,包括快充协议、USB端口识别、OTG(On The Go)功能、进水监测等功能。
本文中的充电协议芯片是指不同设备商开发的私有的快充协议芯片,硬件差异不大,主要差异在于软件协议不同。
其中,PD充电协议通用性高,但充电速度有限,而充电协议芯片的充电速度更快但通用性差。
设备中可以同时存在两种充电协议芯例如,电子设备在使用与该设备配套的充电器的场景下,使用充电协议芯片对电子设备充电,充电速度更快。当电子设备使用其他设备商的充电器设备充电的场景下,使用PD充电协议芯片进行充电。
本实施例是在图30和图31的基础上,进一步将充电协议芯片移至副板,其他结构不变,进一步节省主板的占用面积。
①背光电源芯片、PD充电协议芯片和充电协议芯片从主板移至副板
在一种场景下,屏幕是LCD,屏幕电源芯片是背光电源芯片。
如表56所示,背光电源芯片的控制信号SDA1、SCL1与PD充电协议芯片的SDA2、SCL2共用,节省2个pin。背光电源芯片的背光使能信号LCD_EN与背光电源芯片的VPH-PWR或默认上拉电源相连,节省1个pin。PD充电协议芯片的VDD与背光电源芯片的VPH-PWR复用,节省1个pin。其他信号的合并优化与前述实施例相似,此处不再赘述。
可见,该方案将背光电源芯片、PD充电协议芯片和充电协议芯片从主板移至副板后,经过主板BTB连接器的信号总数量未变,但减少了主板的占用面积,优化了主板的布局。
表56
②PD充电协议芯片、OLED驱动芯片和充电协议芯片从主板移至副板
在另一场景下,屏幕为OLED,屏幕电源芯片为OLED驱动芯片。该场景下,经过主板BTB连接器的信号合并优化方式如表57所示。
如表57所示,PD充电协议芯片移至副板后,其供电电源信号VDD与OLED驱动芯片的VPH-PWR合并,节省1个pin。
充电协议芯片移至副板后,其输入信号VPH-PWR与OLED驱动芯片的VPH-PWR合并, 节省1个pin。其他信号的合并优化方式与前述实施例相似,此处不再赘述。
可见,该方案将PD充电协议芯片、OLED驱动芯片和充电协议芯片从主板移至副板后,经过主板BTB连接器的信号由11个减至10个,节省了1个pin。而且,减少了主板的占用面积,优化了主板的布局。
表57
实施例二十四:屏幕电源芯片、耳机开关切换芯片、PD充电协议芯片和扬声器功率放大器从主板移至副板
本实施例在图34和图35的基础上,进一步将扬声器功率放大器从主板移至副板,进一步降低主板的占用面积。
①背光电源芯片、耳机开关切换芯片、PD充电协议芯片和模拟SPK PA从主板移至副板
在一场景下,屏幕为LCD,屏幕电源芯片为背光电源芯片。扬声器功率放大器采用处理模拟声音信号的模拟SPK PA。
如表58所示,该方案将背光电源芯片、耳机开关切换芯片、PD充电协议芯片和模拟SPK PA从主板移至副板后,经过主板BTB连接器的信号数量未变,但减少了主板的占用面积,优化了主板布局。
表58
②背光电源芯片、耳机开关切换芯片、PD充电协议芯片和SMART PA从主板移至副板
在另一场景下,扬声器功率放大器还可以采用能够处理数字声音信号的SMART PA。
如表59所示,该方案将背光电源芯片、耳机开关切换芯片、PD充电协议芯片和SMART PA从主板移至副板后,经过主板BTB连接器的信号总数量未变,但减少了主板占用面积,优化了主板的布局。
表59
③OLED驱动芯片、耳机开关切换芯片、PD充电协议芯片和模拟SPK PA从主板移至副板
在另一场景下,屏幕为OLED,屏幕电源芯片为OLED驱动芯片。扬声器功率放大器采 用处理模拟声音信号的模拟SPK PA。
表60
如表60所示,该方案将OLED驱动芯片、耳机开关切换芯片、PD充电协议芯片和模拟SPK PA从主板移至副板后,经过主板BTB连接器的信号总数量未变,但是,减少了主板的占用面积,优化了主板的布局。
④OLED驱动芯片、耳机开关切换芯片、PD充电协议芯片和SMART PA从主板移至副板
在另一场景下,扬声器功率放大器采用能够处理数字声音信号的SMART PA。该场景下,经过主板BTB连接器的信号合并优化方案如表61所示。
表61
如表61所示,该方案将上述四个芯片移至副板后,经过主板BTB连接器的信号未改变,但减少了主板的占用面积,优化了主板的布局。
本申请提供的电路板,将某一个或多个电路模块从主板移至副板,进一步对这些电路模块的输入信号进行合并优化,输入信号是指由主板的SOC芯片发送至该电路模块的信号,如 电源信号、控制信号等)最终实现降低经过主板BTB连接器的信号数量的目的。能够达到上述目的的电路模块除上述实施例涉及的电路模块之外,还可以包括如音频芯片、传感器、闪光灯驱动芯片等,本申请不再一一详述。
此外,本申请提供的电路板实施例中,主板BTB连接器的pin数量可以是62pin、72pin、80pin、82pin等,本申请对此不做限制。
此外,当BTB连接器的pin数较多时,可以采用pin数较少的至少两个BTB连接器的组合方式,这样能够避免BTB连接器过长导致部分pin脚未连接的问题。
例如,可以选用如下任意引脚组合:16pin,24pin,34pin,42pin,52pin,62pin。如,66pin可以选用24pin+42pin组合得到,68pin选用34pin+34pin组合,76pin选用34pin+42pin或24pin+52pin组合,84pin选用42pin+42pin组合等。
本申请实施例对BTB连接器的个数及每个连接器的pin数量不做限制。
可选地,单个BTB连接器的pin也可以由不同尺寸的pin组成。前述62pin、72pin、80pin、82pin可以是60+2pin、70+2pin、78+2pin、80+2pin,以60+2pin为例,60为尺寸较小的pin的数量,2为尺寸较大的pin的数量。可以理解,尺寸较大的pin允许通过的电流更大。本申请对上述大、小尺寸的pin的数量不作限制,可以根据实际需要进行设计。
基于以上实施例提供的电路板,通过将部分电路模块由主板移至副板,进一步对此部分电路模块的输入信号进行合并优化,以此部分电路模块降低经过主板BTB连接器的信号数量,即节省其占用主板BTB连接器的pin数量。进一步,还可以对副板上的其他电路模块经过主板BTB连接器的信号进行优化合并,以使主板BTB连接器承载更多电路模块,最终实现整个电路板实现更复杂的功能。
针对前述的图2A和图2B所示的方案无法实现兼容MIPI CPHY、MIPI DPHY两种协议的情况,通过分析MIPI CPHY、MIPI DPHY的信号发现,兼容这两种协议需要在支持MIPI DPHY协议的基础上,再增加5个pin。利用上述采用LCD的实施例,对移至副板的电路模块的输入信号,以及副板上已有电路模块的输入信号进行合并优化,如,在表1所示的节省2个pin的基础上,进一步将模拟SPK PA的LINOUTP、LINOUTN与副板上已有电路的驱动信号合并,再节省2个pin;进一步,BTB连接器通常具有2个大pin,剩余均为小pin。其中大pin的通流能力是5A,小pin的通流能力约为0.3A。在小于等于50W的充电场景下,充电电流小于5A,此时充电电路模块只需占用1个大pin,利用剩余的1个大pin承载电路中的VPH-PWR信号,可替代3个承载VPH-PWR信号小pin,从而节省2个pin,最终可节省6个pin,大于5个pin,因此,利用该方案能够实现兼容MIPI CPHY、MIPI DPHY两种协议。
针对前述的图2A和图2B所示的方案无法实现基于OLED和屏下指纹的情况,将OLED驱动芯片放在副板后,经过主板BTB连接器的信号数量减少为4个,屏下指纹驱动芯片需要7个pin,进一步对其他可合并优化的信号进行合并优化,最终实现节省11个pin,以实现基于OLED和屏下指纹的方案。
在本申请的其他实施例中,利用上述实施例压缩副板上的电路模块经过主板BTB连接器的信号数量后,使得主板BTB连接器能够承载更多电路模块的信号,进而使主板BTB连接器承载更多其他电路模块的信号,同时,使副板承载更多信号需经过主板BTB连接器传输的电路模块,例如,可以将SIM卡模块放在副板。
SIM卡模块共有10个引脚,包括两个SIM卡共8个信号、1个NFC信号和1个检测信号。在将背光电源芯片和模拟SPK PA移至副板的方案中,进一步对副板上的其它信号进行 合并优化,以节省更多数量的pin,最终实现将SIM卡模块设置在副板,进一步节省主板占用面积。通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本实施例所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (31)
- 一种电路板,其特征在于,应用于电子设备,所述电子设备包括屏幕,所述屏幕包括屏幕芯片,所述电路板包括:主板、副板和柔性电路板;所述主板设置一个第一连接位,所述柔性电路板通过所述第一连接位连接所述主板;所述副板设置第二连接位,所述柔性电路板通过所述第二连接位连接所述副板,所述柔性电路板还与所述屏幕芯片连接;所述副板上设置有目标电路模块,所述目标电路模块的目标信号类型的信号输入端,与所述副板上与所述目标信号类型相同的信号输入端连接,所述目标信号类型包括电源信号、控制信号和数据信号中的至少一种。
- 根据权利要求1所述的电路板,其特征在于,所述目标电路模块包括以下至少一种:屏幕电源芯片、马达驱动电源芯片、扬声器功率放大器、充电协议芯片、电力传输PD充电协议芯片耳机开关切换芯片、传感器。
- 根据权利要求2所述的电路板,其特征在于,所述扬声器功率放大器包括第一扬声器功率放大器或第二扬声器功率放大器;所述第一扬声器功率放大器用于处理模拟声音信号;所述第二扬声器功率放大器用于处理数字声音信号。
- 根据权利要求2所述的电路板,其特征在于,所述屏幕电源芯片包括背光电源芯片或有机发光显示器OLED驱动芯片。
- 根据权利要求2-4任一项所述的电路板,其特征在于,所述目标电路模块为所述屏幕电源芯片和所述扬声器功率放大器,所述屏幕电源芯片为背光电源芯片;所述背光电源芯片的控制信号输入端与所述扬声器功率放大器的控制信号输入端连接,所述背光电源芯片的背光使能信号输入端与所述背光电源芯片的供电电源信号输入端连接,所述扬声器功率放大器的一个供电电源信号输入端与所述背光电源芯片的供电电源信号输入端连接。
- 根据权利要求2-4任一项所述的电路板,其特征在于,所述目标电路模块为所述屏幕电源芯片和所述马达驱动电源芯片,所述屏幕电源芯片为背光电源芯片;所述背光电源芯片的控制信号输入端与所述马达驱动电源芯片的控制信号输入端连接,所述背光电源芯片的背光使能信号输入端与所述背光电源芯片的供电电源信号输入端连接,所述马达驱动电源芯片的一个供电电源信号输入端与所述背光电源芯片的供电电源信号输入端连接。
- 根据权利要求2-4任一项所述的电路板,其特征在于,所述目标电路模块为所述屏幕电源芯片、所述马达驱动电源芯片和所述扬声器功率放大器,所述屏幕电源芯片为背光电源芯片;所述背光电源芯片、所述马达驱动电源芯片和所述扬声器功率放大器的控制信号输入端连接,所述背光电源芯片的背光使能信号输入端与所述背光电源芯片的供电电源信号输入端连接,所述马达驱动电源芯片的一个供电电源信号输入端与所述背光电源芯片的供电电源信号输入端连接。
- 根据权利要求2-4任一项所述的电路板,其特征在于,所述目标电路模块为所述屏幕电源芯片和所述充电协议芯片,所述屏幕电源芯片为背光电源芯片;所述背光电源芯片的控制信号输入端与所述充电协议芯片的控制信号输入端连接,所述背光电源芯片的背光使能信号输入端与所述背光电源芯片的供电电源信号输入端连接,所述 充电协议芯片的供电电源信号输入端与所述背光电源芯片的一个供电电源信号输入端连接,所述充电协议芯片的充电电源正信号输入端与所述副板的充电电源正信号输入端连接,所述充电协议芯片的直流电源信号输入端与所述副板的直流电源信号输入端连接。
- 根据权利要求2-4任一项所述的电路板,其特征在于,所述目标电路模块为所述屏幕电源芯片、所述充电协议芯片和所述扬声器功率放大器,所述屏幕电源芯片为背光电源芯片;所述背光电源芯片、所述充电协议芯片和所述扬声器功率放大器的控制信号输入端连接,所述背光电源芯片的背光使能信号输入端与所述背光电源芯片的供电电源信号输入端连接,所述扬声器功率放大器的一个供电电源信号输入端与所述背光电源芯片的一个供电电源信号输入端连接,所述充电协议芯片的供电电源信号输入端与所述背光电源芯片的一个供电电源信号输入端连接,所述充电协议芯片的充电电源正信号输入端与所述副板的充电电源正信号输入端连接,所述充电协议芯片的直流电源信号输入端与所述副板的直流电源信号输入端连接。
- 根据权利要求2-4任一项所述的电路板,其特征在于,所述目标电路模块为所述屏幕电源芯片、耳机开关切换芯片和所述扬声器功率放大器,所述屏幕电源芯片为背光电源芯片;所述背光电源芯片、所述耳机开关切换芯片和所述扬声器功率放大器的控制信号输入端连接,所述背光电源芯片的背光使能信号输入端与所述背光电源芯片的供电电源信号输入端连接,所述扬声器功率放大器的一个供电电源信号输入端与所述背光电源芯片的供电电源信号输入端连接,所述扬声器功率放大器的音频正信号输入端与所述耳机开关切换芯片的左声道信号输入端连接,音频负信号输入端与右声道信号输入端连接,所述耳机开关切换芯片的一个供电电源信号输入端与所述背光电源芯片的供电电源信号输入端连接。
- 根据权利要求2-4任一项所述的电路板,其特征在于,所述屏幕电源芯片为OLED驱动芯片,所述OLED驱动芯片经过所述第一连接位的信号为所述OLED驱动芯片的输入信号。
- 根据权利要求2或11所述的电路板,其特征在于,所述目标电路模块为所述屏幕电源芯片和所述扬声器功率放大器,所述屏幕电源芯片为OLED驱动芯片;所述扬声器功率放大器的一个供电电源信号输入端与所述OLED驱动芯片的一个供电电源信号输入端连接。
- 根据权利要求2或11所述的电路板,其特征在于,所述目标电路模块包括所述马达驱动电源芯片和所述屏幕电源芯片,所述屏幕电源芯片为OLED驱动芯片;所述马达驱动电源芯片的供电电源信号输入端与所述OLED驱动芯片的一个供电电源信号输入端连接。
- 根据权利要求2或11所述的电路板,其特征在于,所述目标电路模块包括所述屏幕电源芯片、所述马达驱动电源芯片和所述扬声器功率放大器,所述屏幕电源芯片为OLED驱动芯片;所述马达驱动电源芯片的供电电源信号输入端与所述OLED驱动芯片的一个供电电源信号输入端连接,所述扬声器功率放大器的一个供电电源信号输入端与所述OLED驱动芯片的供电电源信号输入端连接,所述扬声器功率放大器的控制信号输入端与所述马达驱动电源芯片的控制信号输入端连接。
- 根据权利要求2或11所述的电路板,其特征在于,所述目标电路模块包括所述屏幕电源芯片和充电协议芯片,所述屏幕电源芯片为OLED驱动芯片;所述充电协议芯片的一个供电电源信号输入端与所述OLED驱动芯片的一个输入电源信号输入端连接,所述充电协议芯片的充电电源正信号输入端与所述副板的充电电源正信号输入端连接,所述充电协议芯片的直流电源信号输入端与所述副板的直流电源信号输入端连接。
- 根据权利要求2或11所述的电路板,其特征在于,所述目标电路模块包括所述屏幕电源芯片、所述充电协议芯片和所述扬声器功率放大器,所述屏幕电源芯片为OLED驱动芯片;所述扬声器功率放大器的一个供电电源信号输入端与所述OLED驱动芯片的一个供电电源信号输入端连接,所述扬声器功率放大器的控制信号输入端与所述充电协议芯片的控制信号输入端连接,所述充电协议芯片的一个供电电源信号输入端与所述OLED驱动芯片的一个供电电源信号输入端连接,所述充电协议芯片的充电电源正信号输入端与所述副板的充电电源正信号输入端连接,所述充电协议芯片的直流电源信号输入端与所述副板的直流电源信号输入端连接。
- 根据权利要求2或11所述的电路板,其特征在于,所述目标电路模块包括所述屏幕电源芯片、所述耳机开关切换芯片和所述扬声器功率放大器,所述屏幕电源芯片为OLED驱动芯片;所述耳机开关切换芯片的控制信号输入端与所述扬声器功率放大器的控制信号输入端连接,所述耳机开关切换芯片的供电电源信号输入端与所述OLED驱动芯片的一个供电电源信号输入端连接,所述扬声器功率放大器的一个供电电源信号输入端与所述背光电源芯片的供电电源信号输入端连接,所述扬声器功率放大器的音频正信号输入端与所述耳机开关切换芯片的左声道信号输入端连接,音频负信号输入端与右声道信号输入端连接。
- 根据权利要求1或2所述的电路板,其特征在于,所述目标电路模块包括马达驱动电源芯片和扬声器功率放大器;所述马达驱动电源芯片的一个供电电源信号输入端与所述扬声器功率放大器的一个供电电源信号输入端连接;所述马达驱动电源芯片的控制信号输入端与所述扬声器功率放大的控制信号输入端连接。
- 根据权利要求1或2所述的电路板,其特征在于,所述目标电路模块包括屏幕电源芯片、耳机开关切换芯片和马达驱动电源芯片,所述屏幕电源芯片为背光电源芯片;所述背光电源芯片及所述耳机开关切换芯片的控制信号输入端,与所述马达驱动电源芯片的控制信号输入端连接;所述背光电源芯片的背光使能信号输入端与所述电源信号输入端连接;所述耳机开关切换芯片的一个供电电源输入端与所述屏幕电源芯片的供电电源信号输入端连接;所述马达驱动电源芯片的供电电源输入端与所述屏幕电源芯片的供电电源信号输入端连接。
- 根据权利要求1或2所述的电路板,其特征在于,所述目标电路模块包括屏幕电源芯片、耳机开关切换芯片和马达驱动电源芯片,所述屏幕电源芯片为OLED驱动芯片;所述耳机开关切换芯片的控制信号输入端与所述马达驱动电源芯片的控制信号输入端连接,所述耳机开关切换芯片的供电电源输入端与所述OLED驱动芯片的一个供电电源输入端连接;所述马达驱动电源芯片的供电电源输入端与所述OLED驱动芯片的一个供电电源输入端连接。
- 根据权利要求1或2所述的电路板,其特征在于,所述电子设备包括通用串行总线USB接口;所述目标电路模块包括屏幕电源芯片和PD充电协议芯片,所述屏幕电源芯片为背光电源芯片;所述背光电源芯片的控制信号输入端与所述PD充电协议芯片的控制信号输入端连接,所述背光电源芯片的背光使能信号输入端与所述背光电源芯片的供电电源信号输入端连接;所述PD充电协议的充电电源正信号输入端与所述USB接口的电源正信号输入端连接,所述PD充电协议的供电电源信号输入端与所述背光电源芯片的供电电源输入端连接。
- 根据权利要求1或2所述的电路板,其特征在于,所述电子设备包括USB接口;所述目标电路模块包括屏幕电源芯片和PD充电协议芯片,所述屏幕电源芯片为OLED驱动芯片;所述PD充电协议芯片的充电电源正信号输入端与所述USB接口的电源正信号输入端连接,所述PD充电协议的供电电源信号输入端与所述OLED驱动芯片的供电电源输入端连接。
- 根据权利要求21或22所述的电路板,其特征在于,所述目标电路模块包括:马达驱动电源芯片;所述马达驱动电源芯片的供电电源信号输入端与所述屏幕电源芯片的供电电源信号输入端连接,所述马达驱动电源芯片的控制信号输入端与所述PD充电协议芯片的控制信号输入端连接。
- 根据权利要求1或2所述的电路板,其特征在于,所述电子设备包括USB接口;所述目标电路模块包括所述扬声器功率放大器和所述PD充电协议芯片;所述PD充电协议芯片的充电电源正信号输入端与所述USB接口的正电源信号输入端连接,所述PD充电协议芯片的供电电源信号输入端与所述扬声器功率放大器的供电电源信号输入端连接,所述PD充电协议芯片的控制信号输入端与所述扬声器功率放大器的控制信号输入端连接。
- 根据权利要求1或2所述的电路板,其特征在于,所述电子设备包括USB接口;所述目标电路模块包括所述马达驱动电源芯片和所述PD充电协议芯片;所述马达驱动电源芯片的控制信号输入端与所述PD充电协议芯片的控制信号输入端连接,所述PD充电协议芯片的充电电源正信号与所述USB接口的电源正信号输入端连接。
- 根据权利要求1-25任一项所述的电路板,其特征在于,所述柔性电路板是一根柔性电路板,且所述柔性电路板通过连接点与所述屏幕芯片连接。
- 根据权利要求1-26任一项所述的电路板,其特征在于,所述柔性电路板包括第一柔性电路板和第二柔性电路板。
- 根据权利要求27所述的电路板,其特征在于,所述第一柔性电路板通过所述第一连接位连接所述主板,所述第一柔性电路板通过所述第二连接位连接所述副板,所述第一柔性电路板用于传输所述主板与所述副板之间的信号,以及所述主板与所述屏幕芯片之间的信号;所述第二柔性电路板通过第三连接位连接所述屏幕芯片,通过第四连接位连接所述副板。
- 根据权利要求1-27任一项所述的电路板,其特征在于,所述第一连接位为电连接器。
- 根据权利要求29所述的电路板,其特征在于,所述电连接器为62个引脚的连接器,或者,72个引脚的连接器,或者,82个引脚的连接器。
- 一种电子设备,其特征在于,包括屏幕,以及权利要求1-30任一项所述的电路板。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22836028.5A EP4181635A4 (en) | 2021-09-30 | 2022-09-07 | CIRCUIT BOARD AND ELECTRONIC DEVICE |
US18/015,486 US20240264632A1 (en) | 2021-09-30 | 2022-09-07 | Circuit board and electronic device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111165965 | 2021-09-30 | ||
CN202111165965.2 | 2021-09-30 | ||
CN202210101437.9A CN115003020B (zh) | 2021-09-30 | 2022-01-27 | 一种电路板及电子设备 |
CN202210101437.9 | 2022-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023051206A1 true WO2023051206A1 (zh) | 2023-04-06 |
Family
ID=83023748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/117561 WO2023051206A1 (zh) | 2021-09-30 | 2022-09-07 | 一种电路板及电子设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240264632A1 (zh) |
EP (1) | EP4181635A4 (zh) |
CN (2) | CN118660388A (zh) |
WO (1) | WO2023051206A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118660388A (zh) * | 2021-09-30 | 2024-09-17 | 荣耀终端有限公司 | 一种电路板及电子设备 |
WO2024077529A1 (zh) * | 2022-10-12 | 2024-04-18 | 锐捷网络股份有限公司 | 一种芯片到面板的线缆组件及pcb板电路 |
CN116708614B (zh) * | 2022-10-28 | 2024-04-26 | 荣耀终端有限公司 | 电子设备及信号传输控制方法 |
CN117708014A (zh) * | 2023-07-11 | 2024-03-15 | 荣耀终端有限公司 | 控制电路、方法以及电子设备 |
CN118536319B (zh) * | 2024-07-23 | 2024-10-11 | 深圳飞骧科技股份有限公司 | 基于边收缩技术的电路预处理方法、系统及相关设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010192749A (ja) * | 2009-02-19 | 2010-09-02 | Konica Minolta Opto Inc | フレキシブルプリント基板およびそれを用いる像ぶれ補正装置、撮像装置ならびにフレキシブルプリント基板の作成方法 |
CN204795862U (zh) * | 2015-06-12 | 2015-11-18 | 上海与德通讯技术有限公司 | 一种二合一连接线路板及电子设备 |
CN205946321U (zh) * | 2016-08-05 | 2017-02-08 | 硕诺科技(深圳)有限公司 | 一种液晶显示模组fpc |
CN217240720U (zh) * | 2022-01-21 | 2022-08-19 | 荣耀终端有限公司 | 柔性电路板模组及终端 |
CN115003006A (zh) * | 2021-11-03 | 2022-09-02 | 荣耀终端有限公司 | 一种电路板、电子设备以及测试方法 |
CN115003020A (zh) * | 2021-09-30 | 2022-09-02 | 荣耀终端有限公司 | 一种电路板及电子设备 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001296841A (ja) * | 1999-04-28 | 2001-10-26 | Matsushita Electric Ind Co Ltd | 表示装置 |
CN101916553B (zh) * | 2010-07-13 | 2012-03-07 | 深圳市长江力伟股份有限公司 | 一种彩色lcos显示芯片及其驱动控制方法 |
JP5396524B2 (ja) * | 2012-10-18 | 2014-01-22 | 株式会社半導体エネルギー研究所 | 液晶表示装置 |
JP5696190B2 (ja) * | 2013-09-20 | 2015-04-08 | 株式会社半導体エネルギー研究所 | 表示装置 |
JP5885821B2 (ja) * | 2014-12-19 | 2016-03-16 | 株式会社半導体エネルギー研究所 | 液晶表示装置、モジュール及び電子機器 |
KR20190020971A (ko) * | 2017-08-22 | 2019-03-05 | 삼성전자주식회사 | 도전성 외관 부재를 가지는 전자 장치 및 이에 관한 누설 전류 검출 방법 |
CN207410590U (zh) * | 2017-09-11 | 2018-05-25 | 广东欧珀移动通信有限公司 | 电路连接结构及终端 |
CN208264022U (zh) * | 2018-06-13 | 2018-12-21 | 杭州小站智能科技有限公司 | 一种电瓶车智能充电桩系统 |
DE102018010197A1 (de) * | 2018-12-18 | 2020-06-18 | GRID INVENT gGmbH | Elektronisches Element und elektrisch angesteuertes Anzeigeelement |
WO2020133905A1 (zh) * | 2018-12-29 | 2020-07-02 | Oppo广东移动通信有限公司 | 移动终端 |
US11510010B2 (en) * | 2019-02-28 | 2022-11-22 | Samsung Display Co., Ltd. | Display device including circuit board having sound generator |
US11675438B2 (en) * | 2019-02-28 | 2023-06-13 | Samsung Display Co., Ltd. | Display device and sound providing method of the display device |
CN209590837U (zh) * | 2019-04-30 | 2019-11-05 | 蚌埠传感器系统工程有限公司 | 一种手持式高精度数据采集仪 |
CN112073789B (zh) * | 2019-06-10 | 2023-04-14 | 海信视像科技股份有限公司 | 一种声音处理法及显示设备 |
KR20210027703A (ko) * | 2019-09-02 | 2021-03-11 | 삼성디스플레이 주식회사 | 표시 장치 |
CN113271368A (zh) * | 2020-02-17 | 2021-08-17 | 华为技术有限公司 | 可分离的移动终端 |
KR20220042613A (ko) * | 2020-09-28 | 2022-04-05 | 삼성전자주식회사 | 인터 포저 및 이를 포함하는 전자 장치 |
CN112583231A (zh) * | 2020-10-29 | 2021-03-30 | 深圳市奥达电源科技有限公司 | 高功率密度结构的充电器 |
KR20220128212A (ko) * | 2021-03-12 | 2022-09-20 | 삼성전자주식회사 | 안테나를 포함하는 전자 장치 |
-
2022
- 2022-01-27 CN CN202410870964.5A patent/CN118660388A/zh active Pending
- 2022-01-27 CN CN202210101437.9A patent/CN115003020B/zh active Active
- 2022-09-07 US US18/015,486 patent/US20240264632A1/en active Pending
- 2022-09-07 WO PCT/CN2022/117561 patent/WO2023051206A1/zh unknown
- 2022-09-07 EP EP22836028.5A patent/EP4181635A4/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010192749A (ja) * | 2009-02-19 | 2010-09-02 | Konica Minolta Opto Inc | フレキシブルプリント基板およびそれを用いる像ぶれ補正装置、撮像装置ならびにフレキシブルプリント基板の作成方法 |
CN204795862U (zh) * | 2015-06-12 | 2015-11-18 | 上海与德通讯技术有限公司 | 一种二合一连接线路板及电子设备 |
CN205946321U (zh) * | 2016-08-05 | 2017-02-08 | 硕诺科技(深圳)有限公司 | 一种液晶显示模组fpc |
CN115003020A (zh) * | 2021-09-30 | 2022-09-02 | 荣耀终端有限公司 | 一种电路板及电子设备 |
CN115003006A (zh) * | 2021-11-03 | 2022-09-02 | 荣耀终端有限公司 | 一种电路板、电子设备以及测试方法 |
CN217240720U (zh) * | 2022-01-21 | 2022-08-19 | 荣耀终端有限公司 | 柔性电路板模组及终端 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4181635A4 |
Also Published As
Publication number | Publication date |
---|---|
CN115003020A (zh) | 2022-09-02 |
US20240264632A1 (en) | 2024-08-08 |
CN118660388A (zh) | 2024-09-17 |
EP4181635A1 (en) | 2023-05-17 |
EP4181635A4 (en) | 2024-01-17 |
CN115003020B (zh) | 2024-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023051206A1 (zh) | 一种电路板及电子设备 | |
WO2020156269A1 (zh) | 一种具有柔性屏幕的电子设备的显示方法及电子设备 | |
CN110347269B (zh) | 一种空鼠模式实现方法及相关设备 | |
CN112737566B (zh) | 一种接口转换电路及电子设备 | |
WO2021129521A1 (zh) | 蓝牙通信方法和装置 | |
CN113448382A (zh) | 多屏幕显示电子设备和电子设备的多屏幕显示方法 | |
WO2024131169A1 (zh) | 线路板、相关装置和控制方法 | |
CN112099741B (zh) | 显示屏位置识别方法、电子设备及计算机可读存储介质 | |
WO2022161120A1 (zh) | 一种点亮屏幕的方法及电子设备 | |
CN113672534B (zh) | 终端设备和开关电路 | |
CN113438643B (zh) | 终端能力上报系统、方法、电子设备及存储介质 | |
CN116231815B (zh) | 控制充电的方法及电子设备 | |
EP4407831A1 (en) | Electronic device | |
CN114827973B (zh) | 双耳一致性控制方法、图形界面、系统及相关装置 | |
CN117215990A (zh) | 多核芯片的核间通信方法、设备及多核芯片 | |
CN113641611B (zh) | I2c接口电路及其控制方法、电子设备 | |
CN113849194B (zh) | 烧录方法和终端设备 | |
WO2022143075A1 (zh) | 柔性基板、附晶薄膜cof及显示屏 | |
WO2024120297A1 (zh) | 一种电子设备及充电系统 | |
WO2023005333A1 (zh) | 电子设备和摄像头模组 | |
CN219717258U (zh) | 高速传输线组件、屏幕组件和电子设备 | |
CN116346982B (zh) | 处理音频的方法、电子设备及可读存储介质 | |
WO2013029391A1 (zh) | 通信系统 | |
CN115733921B (zh) | Tws耳机解耦分享方法、装置、设备、存储介质及程序产品 | |
CN117130959B (zh) | 总线控制方法、电子设备及计算机存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022836028 Country of ref document: EP Effective date: 20230113 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |