WO2023051141A1 - 一种基于电流指令重构及负序电流提取的断相诊断方法 - Google Patents

一种基于电流指令重构及负序电流提取的断相诊断方法 Download PDF

Info

Publication number
WO2023051141A1
WO2023051141A1 PCT/CN2022/116241 CN2022116241W WO2023051141A1 WO 2023051141 A1 WO2023051141 A1 WO 2023051141A1 CN 2022116241 W CN2022116241 W CN 2022116241W WO 2023051141 A1 WO2023051141 A1 WO 2023051141A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
phase
phase current
value
motor
Prior art date
Application number
PCT/CN2022/116241
Other languages
English (en)
French (fr)
Inventor
赵宇
翟羽
李硕
高鹏
刁国亮
Original Assignee
博世华域转向系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博世华域转向系统有限公司 filed Critical 博世华域转向系统有限公司
Publication of WO2023051141A1 publication Critical patent/WO2023051141A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/16Measuring asymmetry of polyphase networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines

Definitions

  • the invention relates to the technical field of EPS motors, in particular to a phase failure diagnosis method based on current command reconstruction and negative sequence current extraction.
  • Electric power steering system EPS is a power steering system that directly relies on the motor to provide auxiliary torque, and its safety requirements are very high. Therefore, once the electric power steering system fails, it must be detected in time and switched to a safe mode.
  • the single-phase failure diagnosis of most motor drive products is completed through power-on self-test.
  • a phase failure occurs during the operation of the motor, it cannot be diagnosed and identified and corresponding safety measures can be taken, which brings a great safety risk to the users of the product.
  • the three-phase two-level drive topology diagram of an EPS motor is shown in Figure 1.
  • the power device 1 in the drive circuit is disconnected, it can be detected by the driver chip, but when the phase separation MOSFET 7 is disconnected, such as point a or If point b is disconnected, it cannot be detected and identified.
  • phase failure diagnosis method based on current command reconstruction and negative sequence current extraction to detect and identify the disconnection of the phase separation MOSFET.
  • the purpose of the present invention is to overcome the deficiencies of the prior art and provide a phase failure diagnosis method based on current command reconstruction and negative sequence current extraction to detect and identify the disconnection of phase separation MOSFETs.
  • the present invention provides a phase failure diagnosis method based on current command reconstruction and negative sequence current extraction, which includes the following steps: Step 1, calculate the d-axis current command of the motor according to the current torque, speed and voltage of the motor Value i dref , q-axis current command value i qref ; step 2, the d-axis current command value i dref and q-axis current command value i qref of the motor are transformed through inverse Clark transformation and inverse Park transformation to obtain the U-phase current reference value i uref , V-phase current reference value ivref , W-phase current reference value i wref ; step 3, calculate the U-phase current reference value according to U-phase current reference value i uref , V-phase current reference value ivref , and W-phase current reference value i wref Negative sequence component i urefNagtive ; step 4, calculate the negative sequence component i uNag
  • step 1 the formulas for calculating the d-axis current command value i dref and the q-axis current command value i qref of the motor are both: Among them, T e is the electromagnetic torque, p n is the number of pole pairs of the motor, ⁇ f is the flux linkage of the permanent magnet, L d is the d-axis inductance of the motor, L q is the q-axis inductance of the motor, i d is the d-axis current of the motor, R s is the stator resistance of the motor, w e is the current speed of the motor, i q is the q-axis current of the motor, and u lim is the available voltage limit.
  • i bref i vref (t)-i vref (t- ⁇ t)cos( ⁇ t) ⁇ cos( ⁇ t)-i vref (t- ⁇ t) sin ⁇ t
  • x cref i wref (t)-i wref (t- ⁇ t) cos( ⁇ t) cos( ⁇ t)-i wref (t- ⁇ t) sin ⁇ t
  • ivref (t) is the reference value of V-phase current at time t
  • i w (t) is the reference value of W-phase current at time t
  • iv (t- ⁇ t) is the reference value of V-phase current at time t- ⁇ t
  • i w (t- ⁇ t) is the W-phase current reference value at time t- ⁇ t
  • ⁇ t is the current phase difference.
  • the current adjustment value i threshold is adjusted according to the current sampling level of the actual product.
  • Said N is determined according to the fault tolerance time of functional safety and the operation period of the diagnosis strategy.
  • the present invention designs a phase-opening diagnosis method based on current command reconstruction and negative-sequence current extraction, and judges whether a phase-opening fault occurs through the reference negative-sequence component of the U-phase current and the difference between the negative-sequence components , under each working condition of the EPS motor, it can quickly and accurately diagnose the phase-opening fault of the phase-separation MOSFET of the motor, and make the system enter a safe state.
  • FIG. 1 is a topological diagram of a three-phase two-level motor drive in the prior art.
  • Fig. 2 is a flow chart of the phase failure diagnosis method of the present invention.
  • the present invention provides a phase failure diagnosis method based on current command reconstruction and negative sequence current extraction, including the following steps:
  • Step 1 Calculate the d-axis current command value idref and the q-axis current command value i qref of the motor according to the current torque, speed and voltage of the motor.
  • T e is the electromagnetic torque
  • p n is the number of pole pairs of the motor
  • ⁇ f is the flux linkage of the permanent magnet
  • L d is the d-axis inductance of the motor
  • L q is the q-axis inductance of the motor
  • i d is the d-axis current of the motor
  • R s is the stator resistance of the motor
  • w e is the current speed of the motor
  • i q is the q-axis current of the motor
  • u lim is the available voltage limit.
  • Step 2 the d-axis current command value i dref and the q-axis current command value i qref of the motor are transformed through inverse Clark transformation and inverse Park transformation to obtain the U-phase current reference value i uref , the V-phase current reference value ivref , and the W-phase current Reference value i wref .
  • Step 3 Calculate the reference negative sequence component i urefNagtive of the U-phase current according to the U-phase current reference value i uref , the V-phase current reference value ivref , and the W-phase current reference value i wref .
  • ivref (t) is the reference value of V-phase current at time t
  • i w (t) is the reference value of W-phase current at time t
  • iv (t- ⁇ t) is the reference value of V-phase current at time t- ⁇ t
  • i w (t- ⁇ t) is the W-phase current reference value at time t- ⁇ t
  • ⁇ t is the current phase difference
  • ⁇ t is the time difference of the software running cycle
  • Step 4 calculate the negative sequence component i uNagtive of the U-phase current according to the three-phase current.
  • x b i v (t)-i v (t- ⁇ t)cos( ⁇ t)-i v (t- ⁇ t)sin ⁇ t
  • x c i w (t)-i w (t- ⁇ t)cos( ⁇ t)-i w (t- ⁇ t)sin ⁇ t
  • i u is the U-phase current feedback value
  • iv is the V-phase current feedback value
  • i w is the W-phase current feedback value
  • iv (t) is the V-phase electrical feedback value at time t
  • i w (t) is The W-phase current feedback value at time t
  • iv (t- ⁇ t) is the V-phase electrical feedback value at t- ⁇ t time
  • i w (t- ⁇ t) is the W-phase current feedback value at t- ⁇ t time.
  • Step 5 according to the difference between the reference negative sequence component i urefNagtive of the U-phase current and the negative sequence component i uNagtive of the U-phase current i urefNagtive -i uNagtive to determine whether a phase failure has occurred, specifically, if i urefNagtive -i uNagtive ⁇ current
  • the adjustment value i threshold indicates that there is a fault, and the fault counter is incremented by one. If i urefNagtive -i uNagtive ⁇ the current adjustment value i threshold , it indicates that the fault may disappear, and the fault counter is decremented by one.
  • the current adjustment value i threshold is adjusted according to the current sampling level of the actual product.
  • the statistical result of the fault counter in step 5 is the number of motor faults within the fault tolerance time. If a phase failure occurs, the reference negative sequence component is basically zero, but the negative sequence component calculated according to the feedback current has value, so the difference between the two parameters can be used to judge whether a phase failure has occurred.
  • Step 6 if the fault counter ⁇ N, which means that the fault has occurred continuously for N times, it can be judged that a fault has really occurred, then set N and trigger a phase failure fault, if the fault counter ⁇ N, then proceed to step 7.
  • N is determined according to the fault tolerance time of functional safety and the running period of the diagnosis strategy. For example, if the safety requirement requires a fault tolerance time of 14 ms, and the fault detection algorithm has a running cycle of 1 ms, then the N value can be set to 14.
  • Step 7 if the fault counter ⁇ 0, set it to 0 and return to step 1, if the fault counter ⁇ 0, directly return to step 1.
  • Step 7 prevents the failure counter from going negative.
  • the current command reconstruction and the negative sequence current extraction are realized through steps 1 and 2, and then the difference between the reference negative sequence component and the negative sequence component of the U-phase current is used to judge whether a phase failure has occurred.
  • the EPS motor Under each working condition, it can quickly and accurately diagnose the phase-opening fault of the phase-separation MOSFET of the motor, so that the system enters a safe state.

Abstract

本发明提供一种基于电流指令重构及负序电流提取的断相诊断方法。其中,方法包括如下步骤:根据电机当前的扭矩、转速、电压,计算电机的d轴电流指令值、q轴电流指令值;将电机的d轴电流指令值、q轴电流指令值通过逆Clark变换和逆Park变换,得到U相电流参考值、V相电流参考值,W相电流参考值;根据U相电流参考值、V相电流参考值,W相电流参考值计算U相电流的参考负序分量;根据三相电流计算U相电流的负序分量;计算U相电流的参考负序分量与U相电流的负序分量的差值,根据参考负序分量与负序分量的差值进行断相诊断。从而实现了基于电流指令重构及负序电流提取的断相诊断。

Description

一种基于电流指令重构及负序电流提取的断相诊断方法
本申请要求申请日为2021/9/30的中国专利申请202111158000.0的优先权。本申请引用上述中国专利申请的全文。
技术领域
发明涉及EPS电机技术领域,具体地说是一种基于电流指令重构及负序电流提取的断相诊断方法。
背景技术
当前汽车行业飞速发展,汽车电气化程度越来越高,消费者对汽车的驾驶体验越来越高。电动助力转向系统EPS是一种直接依靠电机提供辅助扭矩的动力转向系统,其安全性要求非常高。因此,一旦电动助力转向系统出现故障,要及时检测出来并且切换到安全模式。
目前,大部分电机驱动产品的单相断相诊断都是通过上电自检的方式完成。然而,当电机运行过程中出现断相,却无法诊断识别并做出相应的安全措施,对产品的使用者带来了很大的安全风险。比如,EPS电机三相两电平的驱动拓扑图如图1所示,当驱动电路中的功率器件1发生断路时,可以由驱动芯片进行检测,但是相分离MOSFET7发生断路时,如a点或b点断开,则无法检测识别。
因此,需要设计一种基于电流指令重构及负序电流提取的断相诊断方法,以检测识别相分离MOSFET发生的断路。
发明内容
本发明的目的是克服现有技术的不足,提供了一种基于电流指令重构及负序电流提取的断相诊断方法,以检测识别相分离MOSFET发生的断路。
为了达到上述目的,本发明提供一种基于电流指令重构及负序电流提取的断相诊断方法,包括如下步骤:步骤1,根据电机当前的扭矩、转速、电压,计算电机的d轴电流指令值i dref、q轴电流指令值i qref;步骤2,将电机的d轴电流指令值i dref、q轴电流指令值i qref通过逆Clark变换和逆Park变换,得到U相电流参考值i uref、V相电流参考值i vref,W相电流参考值i wref;步骤3,根据U相电流参考值i uref、V相电流参考值i vref,W相电流参考值i wref计算U相电流的参考负序分量i urefNagtive;步骤4,根据三相电流计算U相电流的负序分量i uNagtive;步骤5,计算U相电流的参考负序分量i urefNagtive与U相电流的负序分量i uNagtive的差值i urefNagtive-i uNagtive,如i urefNagtive-i uNagtive≥电流调校值i threshold,则故障计数器加一,如i urefNagtive-i uNagtive<电流调校值i threshold,则故障计数器减一;步骤6,如故障计数器≥N,则置N并触发断相故障,如故障计数器<N,则进行步骤7;步骤7,如故障计数器<0,则置0并返回步骤1,如故障计数器≥0,则直接返回步骤1。
所述的步骤1中,计算电机的d轴电流指令值i dref、q轴电流指令值i qref的公式均为:
Figure PCTCN2022116241-appb-000001
Figure PCTCN2022116241-appb-000002
Figure PCTCN2022116241-appb-000003
Figure PCTCN2022116241-appb-000004
其中,T e为电磁扭矩,p n为电机极对数,ψ f为永磁体磁链,L d为电机d轴电感,L q为电机q轴电感,i d为电机d轴电流,R s为电机定子电阻,w e为电机当前转速,i q为电机q轴电流,u lim为可利用的电压极限值。
所述的U相电流参考值i uref、V相电流参考值i vref,W相电流参考值i wref的公式为
Figure PCTCN2022116241-appb-000005
i uref=i drefcosθ-i qrefsin θ
Figure PCTCN2022116241-appb-000006
Figure PCTCN2022116241-appb-000007
其中,θ为d-q坐标系的旋转角度。
所述的计算U相电流的参考负序分量i urefNative的公式为i bref=i vref(t)-i vref(t-Δt)cos(ωΔt)·cos(ωΔt)-i vref(t-Δt)sinωΔt,x cref=i wref(t)-i wref(t-Δt)cos(ωΔt)·cos(ωΔt)-i wref(t-Δt)sinωΔt,
Figure PCTCN2022116241-appb-000008
其中,i vref(t)为t时刻的V相电流参考值,i w(t)为t时刻的W相电流参考值,i v(t-Δt)为t-Δt时刻的V相电流参考值,i w(t-Δt)为t-Δt时刻的W相电流参考值,ωΔt为电流相位差。
所述的计算U相电流的负序分量i uNagtive的公式为x b=i v(t)-i v(t-Δt)cos(ωΔt)-i v(t-Δt)sinωΔt,x c=i w(t)-i w(t-Δt)cos(ωΔt)-i w(t-Δt)sinωΔt,
Figure PCTCN2022116241-appb-000009
其中,i u为U相电流反馈值,i v为V相电流反馈值,i w为W相电流反馈值,i v(t)为t时刻的V相电反馈值,i w(t)为t时刻的W相电流反馈值,i v(t-Δt)为t-Δt时刻的V相电反馈值,i w(t-Δt)为t-Δt时刻的W相电流反馈值。
所述的电流调校值i threshold根据实际产品的电流采样水平调校得到。
所述的N根据功能安全的故障容忍时间和该诊断策略运行周期确定。
本发明同现有技术相比,设计了基于电流指令重构及负序电流提取的断相诊断方法,通过U相电流的参考负序分量与负序分量的差值来判断是否发生了断相故障,在EPS电机各个工况下,能够快速、准确地诊断出电机相分离MOSFET发生的断相故障,使系统进入安全状态。
附图说明
图1为现有技术中,三相两电平的电机驱动拓扑图。
图2为本发明的断相诊断方法的流程图。
具体实施方式
现结合附图对本发明做进一步描述。
参见图2,本发明提供一种基于电流指令重构及负序电流提取的断相诊断方法,包括如下步骤:
步骤1,根据电机当前的扭矩、转速、电压,计算电机的d轴电流指令值i dref、q轴电流指令值i qref
计算电机的d轴电流指令值i dref、q轴电流指令值i qref的公式均为:
Figure PCTCN2022116241-appb-000010
Figure PCTCN2022116241-appb-000011
Figure PCTCN2022116241-appb-000012
Figure PCTCN2022116241-appb-000013
其中,T e为电磁扭矩,p n为电机极对数,ψ f为永磁体磁链,L d为电机d轴电感,L q为电机q轴电感,i d为电机d轴电流,R s为电机定子电阻,w e为电机当前转速,i q为电机q轴电流,u lim为可利用的电压极限值。
步骤2,将电机的d轴电流指令值i dref、q轴电流指令值i qref通过逆Clark变换和逆Park变换,得到U相电流参考值i uref、V相电流参考值i vref,W相电流参考值i wref
U相电流参考值i uref、V相电流参考值i vref,W相电流参考值i wref的公式为
Figure PCTCN2022116241-appb-000014
i uref=i drefcosθ-i qrefsinθ,
Figure PCTCN2022116241-appb-000015
Figure PCTCN2022116241-appb-000016
其中,θ为d-q坐标系的旋转角度。
步骤3,根据U相电流参考值i uref、V相电流参考值i vref,W相电流参考值i wref计算U相电流的参考负序分量i urefNagtive
计算U相电流的参考负序分量i urefNagtive的公式为x bref=i vref(t)-i vref(t-Δt)cos(ωΔt)·cos(ωΔt)-i vref(t-Δt)sinωΔt,x cref=i wref(t)-i wref(t-Δt)cos(ωΔt)·cos(ωΔt)-i wref(t-Δt)sinωΔt,
Figure PCTCN2022116241-appb-000017
其中,i vref(t)为t时刻的V相电流参考值,i w(t)为t时刻的W相电流参考值,i v(t-Δt)为t-Δt时刻的 V相电流参考值,i w(t-Δt)为t-Δt时刻的W相电流参考值,ωΔt为电流相位差,Δt为软件运行周期的时间差,ω为电机的电角速度。
步骤4,根据三相电流计算U相电流的负序分量i uNagtive
计算U相电流的负序分量i uNagtive的公式为
x b=i v(t)-i v(t-Δt)cos(ωΔt)-i v(t-Δt)sinωΔt
x c=i w(t)-i w(t-Δt)cos(ωΔt)-i w(t-Δt)sinωΔt
Figure PCTCN2022116241-appb-000018
其中,i u为U相电流反馈值,i v为V相电流反馈值,i w为W相电流反馈值,i v(t)为t时刻的V相电反馈值,i w(t)为t时刻的W相电流反馈值,i v(t-Δt)为t-Δt时刻的V相电反馈值,i w(t-Δt)为t-Δt时刻的W相电流反馈值。
步骤5,根据U相电流的参考负序分量i urefNagtive与U相电流的负序分量i uNagtive的差值i urefNagtive-i uNagtive判断是否发生了断相故障,具体的,如i urefNagtive-i uNagtive≥电流调校值i threshold,说明出现了故障,则故障计数器加一,如i urefNagtive-i uNagtive<电流调校值i threshold,说明故障可能消失,则故障计数器减一。电流调校值i threshold根据实际产品的电流采样水平调校得到。
步骤5中故障计数器的统计结果为统计故障容忍时间内电机出现故障的次数。如果发生断相,参考负序分量基本为零,但是根据反馈电流计算的负序分量是有值的,因此可以通过两个参数的差值来判断是否发生了断相。
步骤6,如故障计数器≥N,表征了故障持续出现了N次则可以判断真的出现了故障,则置N并触发断相故障,如故障计数器<N,则进行步骤7。
N根据功能安全的故障容忍时间和该诊断策略运行周期确定。举例来说,若安全需求要求故障容忍时间为14ms,这个故障检测的算法运行周期为1ms,那么N值可以设置为14。
步骤7,如故障计数器<0,则置0并返回步骤1,如故障计数器≥0,则直接返回步骤1。
步骤7可以避免故障计数器减到负数。
本发明实施中,通过步骤1和2实现了电流指令重构及负序电流提取,进而通过U相电流的参考负序分量与负序分量的差值来判断是否发生了断相故障,在EPS电机各个工况下,能够快速、准确地诊断出电机相分离MOSFET发生的断相故障,使系统进入安全状态。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (7)

  1. 一种基于电流指令重构及负序电流提取的断相诊断方法,其特征在于,包括如下步骤:步骤1,根据电机当前的扭矩、转速、电压,计算电机的d轴电流指令值i dref、q轴电流指令值i qref;步骤2,将电机的d轴电流指令值i dref、q轴电流指令值i qref通过逆Clark变换和逆Park变换,得到U相电流参考值i uref、V相电流参考值i vref,W相电流参考值i wref;步骤3,根据U相电流参考值i uref、V相电流参考值i vref,W相电流参考值i wref计算U相电流的参考负序分量i urefNagtive;步骤4,根据三相电流计算U相电流的负序分量i uNagtive;步骤5,计算U相电流的参考负序分量i urefNagtive与U相电流的负序分量i uNagtive的差值i urefNagtive-i uNagtive,如i urefNagtive-i uNagtive≥电流调校值i threshold,则故障计数器加一,如i urefNagtive-i uNagtive<电流调校值i threshold,则故障计数器减一;步骤6,如故障计数器≥N,则置N并触发断相故障,如故障计数器<N,则进行步骤7;步骤7,如故障计数器<0,则置0并返回步骤1,如故障计数器≥0,则直接返回步骤1。
  2. 根据权利要求1所述的基于电流指令重构及负序电流提取的断相诊断方法,其特征在于,所述步骤1中,计算电机的d轴电流指令值i dref、q轴电流指令值i qref的公式为:
    Figure PCTCN2022116241-appb-100001
    Figure PCTCN2022116241-appb-100002
    Figure PCTCN2022116241-appb-100003
    Figure PCTCN2022116241-appb-100004
    其中,T e为电磁扭矩,p n为电机极对数,ψ f为永磁体磁链,L d为电机d轴电感,L q为电机q轴电感,i d为电机d轴电流,R s为电机定子电阻,w e为电机当前转速,i q为电机q轴电流,u lim为可利用的电压极限值。
  3. 根据权利要求1所述的基于电流指令重构及负序电流提取的断相诊断方法,其特征在于,所述U相电流参考值i uref、V相电流参考值i vref,W相电流参考值i wref的公式为:
    Figure PCTCN2022116241-appb-100005
    i uref=i drefcosθ-i qrefsinθ,
    Figure PCTCN2022116241-appb-100006
    Figure PCTCN2022116241-appb-100007
    其中,θ为d-q坐标系的旋转角度。
  4. 根据权利要求1所述的基于电流指令重构及负序电流提取的断相诊断方法,其特征在于,所述计算U相电流的参考负序分量i urefNagtive的公式为:x bref=i vref(t)-i vref(t-Δt)cos(ωΔt)·cot(ωΔt)-i vref(t-Δt)sinωΔt,
    x cref=i vref(t)-i wref(t-Δt)cos(ωΔt)·cot(ωΔt)-i wref(t-Δt)sinωΔt,
    Figure PCTCN2022116241-appb-100008
    其中,i vref(t)为t时刻的V相电流参考值,i w(t)为t时刻的W相电流参考值,i v(t-Δt)为t-Δt时刻的V相电流参考值,i w(t-Δt)为t-Δt时刻的W相电流参考值,ωΔt为电流相位差。
  5. 根据权利要求1所述的基于电流指令重构及负序电流提取的断相诊断方法,其特征在于,所述计算U相电流的负序分量i uNagtive的公式为:x b=i v(t)-i v(t-Δt)cotωΔt-i v(t-Δt)sinωΔt,
    x c=i w(t)-i w(t-Δt)cotωΔt-i w(t-Δt)sinωΔt,
    Figure PCTCN2022116241-appb-100009
    其中,i u为U相电流反馈值,i v为V相电流反馈值,i w为W相电流反馈值,i v(t)为t时刻的V相电反馈值,i w(t)为t时刻的W相电流反馈值,i v(t-Δt)为t-Δt时刻的V相电反馈值,i w(t-Δt)为t-Δt时刻的W相电流反馈值。
  6. 根据权利要求1所述的基于电流指令重构及负序电流提取的断相诊断方法,其特征在于,所述电流调校值i threshold根据实际产品的电流采样水平调校得到。
  7. 根据权利要求1所述的基于电流指令重构及负序电流提取的断相诊断方法,其特征在于,所述N根据功能安全的故障容忍时间和诊断策略运行周期确定。
PCT/CN2022/116241 2021-09-30 2022-08-31 一种基于电流指令重构及负序电流提取的断相诊断方法 WO2023051141A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111158000.0A CN115877202A (zh) 2021-09-30 2021-09-30 一种基于电流指令重构及负序电流提取的断相诊断方法
CN202111158000.0 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023051141A1 true WO2023051141A1 (zh) 2023-04-06

Family

ID=85756609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116241 WO2023051141A1 (zh) 2021-09-30 2022-08-31 一种基于电流指令重构及负序电流提取的断相诊断方法

Country Status (2)

Country Link
CN (1) CN115877202A (zh)
WO (1) WO2023051141A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101927700A (zh) * 2009-06-18 2010-12-29 通用汽车环球科技运作公司 用于诊断电动机中的定子线圈的方法和系统
CN101963655A (zh) * 2009-07-21 2011-02-02 通用汽车环球科技运作公司 用于检测逆变器子模块的异常工作的方法、系统和装置
CN102411111A (zh) * 2010-09-17 2012-04-11 现代自动车株式会社 电动机的电力电缆断路的检测方法
US20140054103A1 (en) * 2011-06-24 2014-02-27 Mitsubishi Electric Corporation Motor control device and electric power steering device using same
CN103620944A (zh) * 2011-07-04 2014-03-05 株式会社捷太格特 马达控制设备和用于车辆的转向设备
CN105099325A (zh) * 2014-05-08 2015-11-25 发那科株式会社 电动机控制装置
CN105143894A (zh) * 2013-04-30 2015-12-09 伊顿公司 用于检测三相ac电路中的过度电压降的系统和方法
JP2016077103A (ja) * 2014-10-08 2016-05-12 株式会社デンソー 断線判定装置
CN111736071A (zh) * 2020-06-24 2020-10-02 威迪斯电机技术(芜湖)有限公司 一种基于电流相序分解的永磁同步电机缺相检测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101927700A (zh) * 2009-06-18 2010-12-29 通用汽车环球科技运作公司 用于诊断电动机中的定子线圈的方法和系统
CN101963655A (zh) * 2009-07-21 2011-02-02 通用汽车环球科技运作公司 用于检测逆变器子模块的异常工作的方法、系统和装置
CN102411111A (zh) * 2010-09-17 2012-04-11 现代自动车株式会社 电动机的电力电缆断路的检测方法
US20140054103A1 (en) * 2011-06-24 2014-02-27 Mitsubishi Electric Corporation Motor control device and electric power steering device using same
CN103620944A (zh) * 2011-07-04 2014-03-05 株式会社捷太格特 马达控制设备和用于车辆的转向设备
CN105143894A (zh) * 2013-04-30 2015-12-09 伊顿公司 用于检测三相ac电路中的过度电压降的系统和方法
CN105099325A (zh) * 2014-05-08 2015-11-25 发那科株式会社 电动机控制装置
JP2016077103A (ja) * 2014-10-08 2016-05-12 株式会社デンソー 断線判定装置
CN111736071A (zh) * 2020-06-24 2020-10-02 威迪斯电机技术(芜湖)有限公司 一种基于电流相序分解的永磁同步电机缺相检测方法

Also Published As

Publication number Publication date
CN115877202A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
US9438153B2 (en) Rotary electric machine control device
JP5435282B2 (ja) モータ制御装置
JP6011324B2 (ja) 回転電機制御装置
US20120278007A1 (en) Method for checking the plausibility of the torque of an electric machine and machine controller for controlling an electric machine and for carrying out the method
CN108490353A (zh) 多相永磁同步电机驱动系统故障诊断方法
JP5910460B2 (ja) 断線検出装置
JP5402403B2 (ja) 電動機制御システム
JP6954149B2 (ja) 交流電動機の制御装置
JP6939800B2 (ja) モータ制御方法、モータ制御システムおよび電動パワーステアリングシステム
JP6954150B2 (ja) 交流電動機の制御装置
CN105580267A (zh) 电力转换装置和电力转换方法
US20180241333A1 (en) Electric motor control device
JP5934295B2 (ja) インバータシステムにおける電力ケーブルの状態検出方法
KR102150872B1 (ko) 모터 전류 센서의 고장 감지 장치 및 방법
EP3544174A1 (en) Rotating electric machine control device and electric power steering device equipped with said rotating electric machine control device
JP5703174B2 (ja) 電流検出器の故障診断方法及び、その装置
WO2023051141A1 (zh) 一种基于电流指令重构及负序电流提取的断相诊断方法
DE112018001129T5 (de) Motorsteuerungsverfahren, motorsteuerungssystem und elektronisches servolenkungssystem
JP3572384B2 (ja) 3相交流モータの制御装置
JP4738549B2 (ja) 電気車の電力変換装置
JP2006230056A (ja) 電動機の磁極位置推定方法及び装置
DE112018001128T5 (de) Motorsteuerungsverfahren, motorsteuerungssystem und elektronisches servolenkungssystem
US10622925B2 (en) Control device and control method
JP2014212602A (ja) モータ駆動装置
CN112422008A (zh) 一种eps相电流故障检测方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874532

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401002051

Country of ref document: TH