WO2023051043A1 - 防抖马达、摄像模组和电子设备 - Google Patents

防抖马达、摄像模组和电子设备 Download PDF

Info

Publication number
WO2023051043A1
WO2023051043A1 PCT/CN2022/111373 CN2022111373W WO2023051043A1 WO 2023051043 A1 WO2023051043 A1 WO 2023051043A1 CN 2022111373 W CN2022111373 W CN 2022111373W WO 2023051043 A1 WO2023051043 A1 WO 2023051043A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
image sensor
base
coil
main circuit
Prior art date
Application number
PCT/CN2022/111373
Other languages
English (en)
French (fr)
Inventor
王炜
何瑛勇
王建文
李邓峰
唐玮
林威智
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202280019699.9A priority Critical patent/CN116998162A/zh
Publication of WO2023051043A1 publication Critical patent/WO2023051043A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Definitions

  • the present application relates to the field of camera technology, in particular to an anti-shake motor, camera module and electronic equipment.
  • the anti-shake solution of the camera module is to move the lens or tilt the prism by setting an optical image stabilization (OIS) motor to adjust the distance between the optical axis of the lens or prism and the imaging surface of the image sensor. Positional relationship, so as to achieve the purpose of shake correction.
  • OIS optical image stabilization
  • the prism and the lens itself are large in size, and the space of the camera module is limited.
  • the prism or the lens is driven to move or rotate, the displacement and rotation angle are very limited, so it cannot meet the needs of optical anti-shake adjustment. The effect is poor.
  • Embodiments of the present application provide an anti-shake motor, a camera module, and an electronic device, which can achieve a better anti-shake effect by moving an image sensor.
  • An embodiment of the present application provides an anti-shake motor on the one hand, including: a base, a movable assembly, a suspension assembly and a drive assembly; the movable assembly is arranged below the base, and the movable assembly includes a main circuit board and a For the image sensor, one end of the flexible circuit board is connected to the end surface of the main circuit board, and the other end is connected to the board-to-board connector. At least part of the length of the flexible circuit board is attached to the side wall of the base; the suspension component is fixedly connected to the base On the top, the main circuit board is connected to the suspension assembly.
  • the drive assembly includes a mover and a stator. The mover is fixed on the main circuit board. The stator is installed in the base and correspondingly arranged above the mover. The movable component is driven to translate and/or rotate on the plane where the image sensor is located.
  • An embodiment of the present application provides an anti-shake motor, which can use an electromagnetic drive assembly to drive an image sensor, so that the image sensor can achieve vibration suppression in three directions: X-axis translation, Y-axis translation, and Z-axis (in the XY plane) rotation. Solve problems such as optical image instability and image rotation.
  • the flexible circuit board attached to the side wall of the base is provided to communicate with the external power supply and the main circuit board, which can provide reliable electrical connection and reduce the occupied space.
  • the flexible circuit board includes a bent section and a fixed section, the bent section is connected between the end surface of the main circuit board and the fixed section, and the bent section is bent and attached to the base of the base.
  • the fixed sections are connected through connecting circuit boards and board-to-board connectors.
  • the bent section can be attached to the side wall of the base, so that the flexible circuit board can reduce the occupied space and improve the structural reliability. At the same time, the flexible circuit board can provide a certain stiffness value for the anti-shake motor.
  • the fixing section is attached to the top wall of the base, and the fixing section is welded to the connecting circuit board.
  • the fixed section is attached to the top wall of the base, which is beneficial to the reliable fixed connection between the fixed section and the connecting circuit board, and at the same time, can reduce the space occupied by the flexible circuit board as a whole.
  • the symmetrical flexible circuit board protruding from the left and right sides of the independent circuit board can provide the stiffness values in the X and Y directions for the anti-shake motor, and work together with the suspension wire to ensure that the difference of the entire anti-shake motor under different postures is very small.
  • the small size can ensure the stability of the anti-shake performance of the image sensor in different postures during the movement of the anti-shake motor.
  • the flexible circuit board and the main circuit board are rigid-flex boards.
  • Rigid-flex boards have both the characteristics of flexible circuit boards and printed circuit boards, and have the advantages of reducing the overall assembly size, avoiding wiring errors, improving reliability, and realizing three-dimensional assembly under different assembly conditions.
  • the suspension assembly includes a reed and a suspension wire, the reed is installed on the base, one end of the suspension wire is fixed on the reed, and the other end of the suspension wire is fixed to the main circuit board.
  • the suspension component will have a certain stiffness in the X and Y directions, and the suspension will provide a certain damping effect when the image sensor is translated or rotated, and a certain restoring force will be formed due to the deformation of the suspension when the power is turned off, which can Make sure the image sensor returns to its original position.
  • the base is provided with a mounting hole, the suspension wire is passed through the mounting hole, and the mounting hole is filled with damping glue.
  • the mounting hole can be filled with damping glue to increase the stiffness of the suspension in the X and Y directions to ensure the stability of the anti-shake performance.
  • the base is provided with a positioning boss
  • the reed is provided with a positioning hole
  • the positioning hole is clamped in the positioning boss.
  • the interference fit between the positioning hole and the positioning boss can ensure the reliability of fixing the reed on the base.
  • the mover includes a first coil and a second coil
  • the stator includes a first magnet and a second magnet
  • the length direction of the first coil extends along the first direction
  • the length direction of the second coil The length direction extends along the second direction.
  • the first direction and the second direction are two directions perpendicular to each other on the plane where the image sensor is located. Both pass through the center of the image sensor; the first coil and the first magnet are used to drive the movable assembly to translate in the second direction, and the second coil and the second magnet are used to drive the movable assembly to translate in the first direction.
  • the Lorentz force in the second direction can be generated under the action of the magnetic field.
  • the Lorentz force in the first direction can be generated under the action of the magnetic field.
  • the mechanical centers of these two forces pass through the image sensor , so no additional torque is generated and only contributes to the translational motion of the image sensor in the first and second directions.
  • the mover further includes a third coil
  • the stator further includes a third magnet
  • the length direction of the third coil extends along the first direction or the second direction, and the length direction of the third coil
  • the vertical line of the image sensor does not pass through the center; the third coil and the third magnet are used to drive the movable component to rotate on the plane where the image sensor is located.
  • the Lorentz force in the first direction or the second direction can be generated under the action of the magnetic field.
  • the driving force center does not pass through the center of the image sensor, and there is a certain force arm, so a certain torque will be generated.
  • the image sensor is realized to rotate along the rotation center, so as to realize the anti-shake suppression in the rotation direction of the image sensor.
  • the movable assembly further includes: an additional circuit board, the image sensor is fixed on the additional circuit board, and the additional circuit board is welded on a side of the main circuit board facing away from the base.
  • the movable component further includes: an optical filter, which is fixed on the additional circuit board and located on a side of the image sensor facing the base.
  • the filter can filter out certain wavelengths of light and only allow certain wavelengths of light to pass through, which can reduce part of the ghost image and stray light, and can also protect the image sensor to a certain extent.
  • a magnetic induction device is further arranged on the main circuit board, and the magnetic induction device is arranged at the center of the mover.
  • the magnetic induction device is used to induce magnetic flux, and can monitor the relative position signal between the image sensor and the center of the optical path, so as to realize the position feedback of the image sensor and determine whether the anti-shake amplitude reaches the preset value.
  • a temperature sensor is further arranged on the main circuit board, and the temperature sensor is arranged in the mover.
  • the temperature sensor is used to sense the temperature information of the main circuit board during the anti-shake process and perform closed-loop feedback to monitor whether the heat dissipation of the main circuit board is normal.
  • the anti-shake motor further includes a driver IC, and the driver IC is arranged on the main circuit board.
  • the driver IC can calculate the required displacement compensation after receiving the jitter data collected by the gyroscope and other sensors in the electronic device, and then control the direction and magnitude of the energized current of each coil to control the driver component to drive the image sensor to translate or rotate .
  • the base is provided with an accommodating cavity, the accommodating cavity is used to accommodate the optical components, the image sensor is located on the light emitting side of the optical components, and the side wall or the top wall of the base is provided with an opening, The opening is located on the light-incoming side of the optic.
  • the optical component is arranged in the accommodating cavity, so that when the anti-shake motor drives the image sensor to move, relative movement occurs between the image sensor and the optical component, thereby realizing anti-shake.
  • the embodiment of the present application also provides a camera module, including a lens, a prism, and the above-mentioned anti-shake motor.
  • the prism is installed in the base, and the optical axis direction of the lens is parallel to the plane where the image sensor is located.
  • the light from the lens is such that the light is perpendicular to the plane where the image sensor sits.
  • An embodiment of the present application provides a camera module, which may be a periscope telephoto camera module.
  • the anti-shake motor can drive the image sensor to move, so that there is a relative movement between the image sensor and the prism, thereby realizing anti-shake.
  • a camera module including a lens and the above-mentioned anti-shake motor, the lens is installed in the base, and the optical axis of the lens is perpendicular to the plane where the image sensor is located.
  • the present application provides an embodiment of a camera module, which can be a main camera or a wide-angle camera module.
  • the anti-shake motor can drive the image sensor to move, so that there is a relative movement between the image sensor and the lens, thereby realizing anti-shake.
  • Still another aspect of the embodiment of the present application provides an electronic device, including the above-mentioned camera module.
  • the embodiment of the present application also provides an electronic device, including the camera module provided by the above embodiment of the present application.
  • the camera module has a three-axis anti-shake capability and can achieve high-quality shooting effects, thereby improving the competitiveness of the electronic device.
  • Embodiments of the present application provide an anti-shake motor, a camera module, and electronic equipment, which can use an electromagnetic drive component to drive an image sensor, so that the image sensor can realize the three functions of X-axis translation, Y-axis translation, and Z-axis (in the XY plane) rotation. Jitter suppression in two directions to solve the problems of optical image instability, image rotation, crosstalk and hysteresis in drive control, and has the advantage of high integration.
  • FIG. 1 is a schematic diagram of the shaking direction when shooting with a mobile phone
  • Fig. 2a is a structural schematic diagram of an anti-shake motor provided by the related art
  • Fig. 2b is a structural schematic diagram of another anti-shake motor provided by the related art.
  • Fig. 3 is an exploded schematic diagram of a movable assembly provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of an assembled movable assembly provided by an embodiment of the present application.
  • Fig. 5 is an exploded schematic diagram of a movable assembly, a base and a suspension assembly provided by an embodiment of the present application;
  • Fig. 6 is a structural schematic diagram of an assembled movable component, a base and a suspension component provided by an embodiment of the present application;
  • Fig. 7 is a structural schematic diagram of another viewing angle of the base provided by an embodiment of the present application.
  • Fig. 8 is an exploded schematic diagram of the housing and external circuit connection structure of the anti-shake motor provided by an embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of an assembled anti-shake motor provided by an embodiment of the present application.
  • Fig. 10 is a top view of an anti-shake motor provided by an embodiment of the present application.
  • Figure 11 is a schematic cross-sectional view at C-C in Figure 10;
  • Figure 12 is a schematic cross-sectional view at D-D in Figure 10;
  • FIG. 13 is a schematic structural diagram of a main circuit board provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the principle of the optical image stabilization driving process provided by an embodiment of the present application.
  • Fig. 15 is a schematic diagram of a driving assembly provided by an embodiment of the present application.
  • Fig. 16 is a schematic diagram of a driving assembly provided by an embodiment of the present application.
  • Fig. 17 is a schematic diagram of a driving assembly provided by an embodiment of the present application.
  • Fig. 18 is another schematic diagram of the anti-shake motor provided by an embodiment of the present application.
  • Fig. 19 is an exploded schematic diagram of the anti-shake motor provided by an embodiment of the present application.
  • the embodiment of the present application provides an electronic device, including but not limited to mobile phone, tablet computer, notebook computer, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), handheld computer, walkie-talkie, netbook, POS machine, personal digital assistant ( personal digital assistant, PDA), wearable devices, virtual reality devices, Bluetooth audio, car devices and other devices with camera modules.
  • mobile phone tablet computer
  • notebook computer ultra-mobile personal computer (ultra-mobile personal computer, UMPC)
  • handheld computer walkie-talkie, netbook
  • POS machine personal digital assistant
  • PDA personal digital assistant
  • wearable devices virtual reality devices
  • Bluetooth audio car devices and other devices with camera modules.
  • a mobile phone is taken as an example of the above-mentioned electronic device to specifically describe the structure of the electronic device and the camera module.
  • FIG. 1 is a schematic diagram of a shaking direction when a mobile phone is shooting.
  • the X axis can be defined as the length direction of the mobile phone
  • the Y axis can be defined as the width direction of the mobile phone
  • the Z axis can be defined as the thickness direction of the mobile phone.
  • the shaking direction of mobile phone shooting includes pitch (pitch), yaw (yaw) and rotation (roll), where pitch refers to the swing on the X axis, deflection refers to the swing on the Y axis, and rotation refers to the rotation around the The rotation of the Z axis.
  • the X-axis and Y-axis are two directions perpendicular to each other on the plane where the image sensor is located, and the Z-axis is the direction perpendicular to the plane where the image sensor is located, that is, the direction where the optical axis is located.
  • the anti-shake solution of the camera module can be Optical Image Stabilization (OIS).
  • OIS Optical Image Stabilization
  • Optical image stabilization uses physical technology to make displacement compensation between the moving parts and the shaking direction of the body, which can reduce image blur caused by shaking. effect.
  • Fig. 2a is a schematic structural diagram of an anti-shake motor provided in the related art.
  • the lens A is installed in the anti-shake motor, and the image sensor 22 is located on the light-emitting side of the lens A, as shown by the solid arrow, external light enters the lens from the light-incoming side of the lens A , and imaged on the image sensor 22.
  • the anti-shake motor can drive the lens A to translate, and the translation direction is shown by the hollow arrow in the figure, so as to perform displacement compensation and realize optical anti-shake.
  • the anti-shake motor drives the lens A to translate.
  • the translation only occurs on the X-axis and Y-axis. On the Z-axis, it is easy to tilt the optical axis. When the optical axis is tilted too much, the corners of the picture will be blurred. .
  • the lens translation optical image stabilization can only compensate the displacement of the plane where the image sensor 22 is located, but cannot correct the rotation angle in the direction of the optical axis. Therefore, the maximum compensation angle of the optical image stabilization is limited, and the anti-shake effect is limited.
  • SMA Shape Memory Alloy, shape memory alloy
  • piezoelectric drive etc.
  • SMA wire drive For the displacement compensation of the SMA wire drive, there is a hysteresis effect and a large crosstalk, which affects the optical anti-shake effect.
  • piezoelectric drive For displacement compensation of piezoelectric drive, there are problems of noise and life.
  • Fig. 2b is a schematic structural diagram of another anti-shake motor provided in the related art.
  • the external light is reflected by the prism B, then passes through the lens A, and forms an image on the image sensor 22 on the light-emitting side of the lens A.
  • the anti-shake motor can drive the prism B to swing on the X-axis and Y-axis to perform dual-axis compensation and achieve larger-angle optical anti-shake.
  • the anti-shake motor can combine the above two related technologies to drive the prism to rotate while driving the lens to translate, so as to realize multi-axis displacement compensation.
  • this solution has low integration and low power consumption. Taller, larger size etc issues.
  • an embodiment of the present application provides an anti-shake motor and a camera module, which can use an electromagnetic drive component to drive an image sensor, so that the image sensor can realize X-axis translation, Y-axis translation, and Z-axis (in the XY plane) rotation.
  • the embodiment of the present application provides an anti-shake motor, which can be applied in different types of camera modules, such as telephoto, main camera, wide angle, etc.
  • the anti-shake motor provided by the embodiment of the present application may include a base, a movable assembly, a suspension assembly and a drive assembly; wherein, the movable assembly includes a main circuit board and an image sensor arranged on the main circuit board, and the movable assembly can be suspended by the suspension assembly Connected under the base, the drive assembly is used to drive the movable assembly to translate and/or rotate on the plane where the image sensor is located.
  • the positive direction of the X-axis is right
  • the positive direction of the Y-axis is the rear
  • the positive direction of the Z-axis is upward.
  • Fig. 3 is an exploded schematic diagram of the movable assembly provided by an embodiment of the present application
  • Fig. 4 is a schematic structural diagram of the assembled movable assembly provided by an embodiment of the present application.
  • the movable assembly 200 may include a main circuit board 21 and an image sensor 22 disposed on the main circuit board 21 .
  • the main circuit board 21 is used to carry an image sensor 22 and other electronic devices, and the image sensor 22 is used for photosensitive imaging.
  • the main circuit board 21 can be a printed circuit board (printed circuit board, PCB), and the image sensor 22 can be a photosensitive coupling device (charge coupled device, CCD) or a complementary metal oxide semiconductor device (Complementary metal-oxide semiconductor sensor, CMOS sensor ).
  • the image sensor 22 can be connected on the additional circuit board 221 by a COP (Chip on board, chip on board) process, and the additional circuit board 221 can be connected on the main circuit board 21 by a laser welding process, so that the image sensor 22 can be connected to the main circuit board.
  • the circuit board 21 realizes electrical connection.
  • the image sensor 22 and the additional circuit board 221 can be arranged on the bottom of the main circuit board 21, that is, the side of the main circuit board 21 facing away from the base.
  • the hole 211 is opposite, so that the light entering the anti-shake motor can pass through the light hole 211 and irradiate the image sensor 22 .
  • the movable assembly 200 can also include a filter 23, the filter 23 can be fixed on the main circuit board 21 through the carrier 231, the filter 23 and the image sensor 22 are arranged oppositely, and the filter 23 is located above the image sensor 22 , that is, the filter 23 is located on the side of the image sensor 22 facing the substrate.
  • the optical filter 23 can be bonded on the carrying platform 231, and the carrying platform 231 can be in a frame structure, which is surrounded by the optical filter 23 and will not block the image sensor 22 at the same time, and the carrying platform 231 can be bonded on the additional circuit board 221 superior.
  • the filter 23 can filter out certain wavelengths of light and only allow certain wavelengths of light to pass through, which can reduce part of ghost image stray light, and can also protect the image sensor 22 to a certain extent.
  • the filter 23 may be an infrared filter, which can filter out light in the infrared band and allow light in other bands to pass through.
  • the movable assembly 200 can also include a reinforcement plate 222, which can be bonded to the bottom of the additional circuit board 221, that is, to be bonded to the side of the additional circuit board 221 facing away from the main circuit board 21, and the reinforcement plate 222 can be a stainless steel plate, etc.
  • the metal plate, on the one hand, the reinforcing plate 222 can assist laser welding, increase the overall structural strength of the movable assembly 200, and play a role in protecting the main circuit board 21 and the image sensor 22; on the other hand, the reinforcing plate 222 has good thermal conductivity.
  • copper foil or graphene can be pasted on the reinforcing plate 222 to achieve good heat dissipation.
  • the above-mentioned main circuit board 21, additional circuit board 221, image sensor 22, optical filter 23, carrying platform 231, and reinforcing plate 222 together constitute the movable assembly 200, so that when the electromagnetic drive assembly drives the movable assembly 200 to translate or rotate, the image sensor 22 There is relative movement between the optical components and the camera module, so as to achieve anti-shake.
  • Fig. 5 is an exploded schematic view of the movable assembly, the base and the suspension assembly provided by an embodiment of the present application
  • Fig. 6 is a schematic diagram of the assembled structure of the movable assembly, the base and the suspension assembly provided by an embodiment of the present application.
  • the anti-shake motor may further include a base 100 and a suspension assembly 300
  • the movable assembly 200 may be suspended on the bottom of the base 100 through the suspension assembly 300 .
  • the suspension assembly 300 can include a reed 31 and a suspension wire 32, the reed 31 can be fixed on the base 100, and the suspension wire 32 can be connected between the reed 31 and the main circuit board 21, so that the main circuit board 21 is suspended under the base 100.
  • a through hole can be set on the main circuit board 21, one end of the suspension wire 32 is welded at the through hole, and the other end is welded on the reed 31, a plurality of positioning holes 311 can be set on the reed 31, and multiple positioning holes 311 can be set on the base 100.
  • a positioning boss 121 , the positioning hole 311 and the positioning boss 121 have an interference fit, so that the reed 31 is fixed on the base 100 .
  • the number of suspension wires 32 can be four, which are respectively connected to the four corners of the main circuit board 21, and four suspension wires can make the suspension effect uniform.
  • the suspension wire 32 will have a certain stiffness in the X direction and the Y direction, and the suspension wire 32 will provide a certain damping effect when the image sensor 22 translates or rotates, and when the power is turned off, the suspension wire 32 will form a certain degree of stiffness due to the deformation recovery of the suspension wire 32. Restoration force can ensure that the image sensor 22 returns to the original position.
  • the suspension wire 32 has a large stiffness in the Z direction, that is, the direction parallel to the optical path, which can ensure that the plane where the image sensor 22 is located remains perpendicular to the received optical path during the movement of the movable component 200, that is, ensures that the image sensor 22 is always positioned at XY On the plane, there will be no out-of-plane tilt, thereby ensuring the final overall imaging effect of the entire camera module.
  • the base 100 is provided with a mounting hole 11, the mounting hole 11 can extend along the Z axis, the reed 31 is fixed on the top of the base 100, the main circuit board 21 is located at the bottom of the base 100, and the suspension wire 32 is passed through the mounting hole 11 to connect the reed 31 and the main circuit board 21.
  • the installation hole 11 can be filled with damping glue, so as to increase the stiffness of the suspension wire 32 in the X direction and the Y direction, so as to ensure the stability of the anti-shake performance.
  • the base 100 is provided with an accommodating cavity 10, the accommodating cavity 10 is used to accommodate optical components, such as prisms or periscope mirrors, the accommodating cavity 10 is arranged above the main circuit board 21, and one side of the base 100 An opening is provided on the wall, and the opening may be on the XZ plane in the figure.
  • the opening is the light inlet of the housing cavity 10 , and is used for light to enter the optical component from the light inlet and reflect to the image sensor 22 .
  • the above-mentioned installation holes 11 are arranged around the accommodation cavity 10 without interference with the light inlet of the accommodation cavity 10 , and the side of the reed 31 corresponding to the light inlet of the accommodation cavity 10 is set as Edges are missing to prevent the reed 31 from blocking the light.
  • the anti-shake motor may also include a flexible circuit board 500, the main circuit board 21 may be connected to the flexible circuit board 500, and the flexible circuit board 500 is used to connect the main circuit board 21 and an external power supply to supply power to the main circuit board 21 and the image sensor 22 and the like.
  • the flexible circuit board 500 is a circuit board made of polyimide or polyamide film as the base material, and has excellent characteristics of being freely bendable and foldable.
  • the flexible circuit board 500 can form a rigid-flex board with the main circuit board 21.
  • the circuit board with the characteristics of flexible circuit board and printed circuit board has the advantages of reducing the overall assembly size, avoiding wiring errors, improving reliability and realizing three-dimensional assembly under different assembly conditions.
  • the flexible circuit board 500 may include a bending section 51 and a fixing section 52 , the bending section 51 is connected between the main circuit board 21 and the fixing section 52 , and the fixing section 52 may be used to connect to an external power source.
  • the bent section 51 can be attached to the side wall of the base 100
  • the fixed section 52 can be attached to the top wall of the base 100 , so that the flexible circuit board 500 can reduce the occupied space and improve the structural reliability.
  • Positioning boss 122 can also be set on the top wall surface of base 100, and positioning hole can be set on fixed section 52, when fixing section 52 is attached on the top wall surface of base 100, positioning hole can cooperate with positioning boss 122, makes The positioning between the fixing section 52 and the base 100 is more precise, and the connection is more reliable.
  • bent section 51 extends on the side wall of the base 100 , it also needs to avoid the direction where the light inlet of the accommodating cavity 10 is located.
  • the bent section 51 may include three bends.
  • the bent section 51 protrudes from the end surface of the main circuit board 21 and can be attached to the base 100 and the accommodating cavity 10 after one bend.
  • the fixing section 52 can be attached to the top wall of the base 100 by means of the reinforcing plate 501 , the fixing section 52 is used to be fixed on the reinforcing plate 501 by laser welding, and the fixing section 52 is used to conduct the circuit to the outside.
  • the number of flexible circuit boards 500 can be two, and the bent sections 51 of the two flexible circuit boards 500 can be connected to the two opposite end faces of the main circuit board 21 respectively, and these two end faces correspond to the accommodating cavity of the base 100 On the two side walls adjacent to the light inlet of 10, the bent sections 51 of the two flexible circuit boards 500 respectively extend to the side walls of the base 100 opposite to the light inlet of the accommodating cavity 10, and the two flexible circuit boards
  • the fixing section 52 of the circuit board 500 can be arranged adjacent to each other and attached to the same reinforcement board 501 . Overall, the two flexible circuit boards 500 are arranged symmetrically.
  • the symmetrical flexible circuit board 500 protruding from the left and right sides of the main circuit board 21 can not only realize the flexible electrical connection, but also provide the stiffness values in the X and Y directions for the anti-shake motor, and work together with the suspension wire 32 to achieve Ensuring that the difference in different attitudes of the entire anti-shake motor is small can ensure the stability of the anti-shake performance of the image sensor 22 in different attitudes during the movement of the anti-shake motor. That is, the suspension wire 32 , the damping glue disposed in the mounting hole 11 of the base 100 and the flexible circuit board 500 disposed on the side of the main circuit board 21 cooperate to form a damping system of the anti-shake motor.
  • the left and right sides of the symmetrically bent flexible circuit board 500 provide a reaction force opposite to the translation direction due to resistance to deformation; when the movable assembly 200 translates in the Y direction, the flexible circuit board 500 The second bend of the circuit board 500 can provide a reaction force opposite to the translation direction due to resistance to deformation in the Y direction.
  • the driving assembly can include a mover and a stator, the mover can be arranged on the main circuit board 21, the stator can be fixed in the base 100, the mover and the stator can be coils and magnets respectively, or the mover and the stator can be magnets and magnets respectively.
  • the coil after the coil is energized, can generate Lorentz force in the magnetic field environment of the magnet to realize the drive, forming an electromagnetic drive system.
  • the mover may be a coil, the coil may be disposed on the main circuit board 21 , the stator may be a magnet, and the magnet may be fixed in the base 100 .
  • the number of coils and magnets is not specifically limited in this embodiment of the present application.
  • the three anti-shake compensations of X-axis translation, Y-axis translation and XY plane rotation can be realized by one or more sets of coil magnets respectively.
  • the driving assembly may include three sets of coils and magnets, which are respectively used to realize three anti-shake compensations of X-axis translation, Y-axis translation and XY plane rotation.
  • the first coil 411, the second coil 412 and the third coil 413 can be set on the main circuit board 21, and the first coil 411, the second coil 412 and the third coil 413 can be mounted by SMT (Surface Mount Technology). technology) SMD or soldering process configuration is fixed on the main circuit board 21.
  • the first magnet 421, the second magnet 422 and the third magnet 423 can be fixedly installed in the base 100, and the first magnet 421, the second magnet 422 and the third magnet 423 are respectively arranged on the first coil 411, the second coil 412, above the third coil 413 .
  • FIG. 7 is a structural schematic diagram of another viewing angle of a base provided by an embodiment of the present application.
  • installation cavities 141 , 142 and 143 may be provided in the base 100 , and the first magnet 421 , the second magnet 422 and the third magnet 423 are respectively fixed in the installation cavities 141 , 142 and 143 .
  • the magnets can be quadrupole uniformly magnetized magnets, or the same two magnets can be connected and fixed together after bipolar magnetization.
  • the specific position of the coil may not be specifically limited in this embodiment of the application. Since the magnet is located above the coil, the direction of the magnetic field lines generated by the magnet is perpendicular to the plane where the image sensor 22 is located. According to the left-hand rule, the coil is in a magnetic field environment. The direction of the generated Lorentz force is parallel to the plane where the image sensor 22 is located. It should be understood that the force center line of the Lorentz force generated by the coil under the magnetic field of the corresponding matching magnet can pass through the center of the image sensor 22 to realize translational driving, and the Lorentz force generated by the coil under the magnetic field of the corresponding matching magnet The force centerline of the image sensor 22 may not pass through the center of the image sensor 22, and the generated torque may realize rotational driving. In different situations, the movable assembly 200 can be driven to achieve different movements by balancing and controlling the driving forces and driving torques of multiple sets of coil magnets.
  • the length direction of the first coil 411 can extend along the first direction (ie the Y direction)
  • the center line of the second coil 412 can extend along the second direction (ie the X direction)
  • the first coil 411 can extend along the first direction (ie the Y direction).
  • a perpendicular line in the length direction of 411 may pass through the center of the image sensor 22
  • a perpendicular line in the length direction of the second coil 412 may pass through the center of the image sensor 22 .
  • the length direction of the third coil 413 can extend along the X-axis or the Y-axis. In the figure, the extension along the X-axis is taken as an example. The vertical line in the length direction of the third coil 413 may not pass through the center of the image sensor 22.
  • the third coil 413 After 413 is energized, under the action of the third magnet 423 , a force in the X-axis direction or a Y-axis direction will be generated, and torque will be generated at the same time to drive the movable assembly 200 to rotate on the XY plane.
  • the shape of the above-mentioned coil can be a rounded rectangle in the figure, and the length direction of the coil is the long side direction of the rounded rectangle. After the coil is energized, the direction of the equivalent current is consistent with the length direction. The longer the coil, the greater the driving force.
  • the first coil 411, the second coil 412 and the third coil 413 can be respectively arranged on three sides around the light transmission hole 211 of the main circuit board 21, and these three sides can accommodate The three sides other than the light-incoming side of the cavity 10.
  • FIG. 8 is an exploded schematic view of the casing and external circuit connection structure of the anti-shake motor provided by an embodiment of the present application
  • FIG. 9 is a schematic diagram of the assembled structure of the anti-shake motor provided by an embodiment of the present application.
  • the anti-shake motor may further include an upper case 61 and a lower case 62 , which are respectively covered on the top and bottom of the base 100 for protection.
  • the upper shell 61 is provided with an opening 611, the opening 611 is located above the top wall of the base 100, and is arranged corresponding to the fixing section 52 of the flexible circuit board 500, so that the fixing section 52 can be exposed outside to pass through the connecting circuit board 53 Laser welding realizes reliable fixing and electrical connection.
  • the end of the connecting circuit board 53 is provided with a connector 54, the connector 54 can be a board-to-board (Board to Board, BTB) connector, and can be fastened on the main board in the electronic device to realize the power supply of the anti-shake motor.
  • BTB board-to-board
  • the flexible circuit board 500 may further include a limiting section 55 disposed on the upper surface of the upper case 61 , and the limiting section 55 is connected to the connecting circuit board 53 .
  • a part is transmitted to the main circuit board 21 through the bending section 51, and the other part is transmitted to the limiting section 55.
  • Pins can be provided on the same side as the light-incoming side of the cavity 10 , as shown in the figure, six pins are provided.
  • the limiting section 55 is used to connect with other devices around the anti-shake motor, such as focus module, etc., so as to realize the power transmission and data transmission between the anti-shake motor and peripheral devices, which is beneficial to the reasonable arrangement of circuit wiring in electronic equipment.
  • the top wall surface of the base 100 can also be provided with a limit boss 13, the limit boss 13 is located above the accommodating cavity 10, and exposed outside the upper shell 61, the number of the limit boss 13 can be Two, two space-limiting bosses 13 are distributed left and right in the X direction, and the space-limiting section 55 can be clamped at the space-limiting boss 13, so that the space-limiting boss 13 can limit the space-limiting section 55 in the X direction and Y direction. direction, so as to play a role in the positioning of the limiting section 55 and the connecting circuit board 53, which can ensure the position accuracy of the welding holes in the laser welding process and ensure the accuracy of the welding process.
  • the top wall surface of the base 100 may include a main body surface and a convex surface.
  • the protruding surface is higher than the main body surface, and the protruding surface is located above the accommodating cavity 10.
  • the fixed section 52 is attached to the main body surface, and the limiting boss 13 is arranged on the protruding surface, and the limiting section 55 is independent of the main body surface. After being bent, it extends to the protruding surface and is clamped at the position-limiting boss 13 .
  • the inner side wall of the upper case 61 can also be provided with a limit protrusion 612, which is protruding relative to the inner side wall of the upper case 61.
  • the limit The bumps 612 can limit the movement of the flexible circuit board 500 within a certain range, forming a stable structure of the flexible circuit board.
  • FIG. 10 is a top view of an anti-shake motor provided by an embodiment of the present application
  • FIG. 11 is a schematic cross-sectional view at C-C in FIG. 10
  • FIG. 12 is a schematic cross-sectional view at D-D in FIG. 10 .
  • movable assembly 200 can comprise main circuit board 21, additional circuit board 221, stiffener 222, image sensor 22, carrying platform 231, optical filter 23, and additional circuit board 221 is connected on the main circuit board 21, the reinforcing plate 222 is connected below the additional circuit board 221, the image sensor 22 is connected in the additional circuit board 221, the carrying platform 231 is connected above the additional circuit board 221, and is located in the light transmission hole 211 of the main circuit board 21 Inside, the filter 23 is connected above the carrying platform 231 .
  • the base 100 is located above the movable assembly 200 , and the accommodating cavity 10 is located directly above the filter 23 and the image sensor 22 .
  • the upper surface of the main circuit board 21 is also connected with a first coil 411, a second coil 412, and a third coil 413, and the base 100 is fixed with a first magnet 421, a second magnet 422, a third magnet 423, and the first magnet 421 , the second magnet 422 and the third magnet 423 are arranged above the first coil 411 , the second coil 412 and the third coil 413 respectively.
  • each electronic device can be connected to the main circuit board 21, each magnet can be fixed in the base 100, and the reed 31 can be fixed on the base 100 Then, the suspension wire 32 is passed through the base 100 and the two ends of the suspension wire are respectively welded to the reed 31 and the main circuit board 21, the flexible circuit board 500 is bent and the fixed section 52 is attached to the base 100 on the top wall; then, the additional circuit board 221 carrying the image sensor 22 and the optical filter 23 can be welded to the bottom of the main circuit board 21 by laser; next, the upper shell 61 and the lower shell 62 can be assembled; Finally, the connecting circuit board 53 may be laser welded to the fixed section 52 of the flexible circuit board 500, and then the connector 54 is snapped onto the main board in the electronic device.
  • the base 100, the suspension assembly 300, the drive assembly, the flexible circuit board 500, and the main circuit board 21 can be assembled as a whole, and the additional circuit board 221 carrying the image sensor 22 and the optical filter 23 is separately used as an assembly module, Afterwards, it is soldered to the main circuit board 21, thereby improving the overall assembly yield of the anti-shake motor.
  • FIG. 13 is a schematic structural diagram of a main circuit board provided by an embodiment of the present application.
  • drive IC integrated circuit, integrated circuit
  • drive IC 26 can also be set on the main circuit board 21, and drive IC 26 can be fixed on the main circuit board 21 by SMT sticking or soldering process configuration, and drive IC can receive After the vibration data collected by the gyroscope and other sensors in the electronic equipment, the required displacement compensation amount is calculated, and then the direction and magnitude of the energized current of each coil is controlled to control the driving component to drive the image sensor 22 to translate or rotate.
  • a magnetic induction device 241 can also be provided on the main circuit board 21.
  • the magnetic induction device 241 can be fixed on the main circuit board 21 by SMT attachment or welding process configuration.
  • the magnetic induction device 241 is used to induce magnetic flux.
  • the magnetic induction device 241 can include but is not limited to Hall Hall sensor, GMR (Giant Magneto Resistance, giant magnetoresistance) sensor or TMR (Tunnel Magneto Resistance, tunnel magnetoresistance) sensor.
  • the number of magnetic induction devices 241 may be three, which are respectively located at the centers of the first coil 411 , the second coil 412 and the third coil 413 .
  • the three magnetic induction devices 241 are matched with the first magnet 421, the second magnet 422, and the third magnet 433 in sequence.
  • Position signal and quickly re-detect the position signal of the image sensor 22 after the anti-shake compensation, and then realize the position feedback of the image sensor 22 in the three directions of translation in the X direction, translation in the Y direction, and rotation in the XY plane, so that the anti-shake can be determined Whether the anti-shake range of the motor reaches the preset value.
  • a temperature sensor 242 can also be set on the main circuit board 21, and the temperature sensor 242 can be fixed on the main circuit board 21 by SMT attachment or welding process configuration, and the temperature sensor 242 can be an NTC (Negative temperature coefficient, negative temperature coefficient) temperature sensor,
  • the temperature sensor 242 can be arranged in the coil and electrically connected with the driver IC 26 to sense the temperature information of the main circuit board 21 during the anti-shake process and perform closed-loop feedback.
  • the four corners of the main circuit board 21 can be connected with anti-collision pieces 25, such as elastic materials such as rubber parts, and the anti-collision pieces 25 can be arranged as triangles, fixed on the four corners of the main circuit board 21, thereby preventing movement.
  • the component 200 collides with the inner side of the base 100 to play a buffering and protecting role.
  • the anti-shake motor provided by the embodiment of the present application translates the image sensor on the XY plane to cause relative displacement between the image sensor and the optical path, thereby correcting the shake, and synchronously, the image sensor can be driven around the XY through the driving component
  • the in-plane Z-axis rotates to realize the shake correction of the rotation angle;
  • the drive assembly is composed of a coil connected to the movable assembly and a magnet connected to the base, and various translations and rotations in different directions can be realized by controlling the direction and magnitude of the coil current Image sensor stabilization correction for combined cases.
  • the anti-shake motor provided by the embodiment of the present application integrates the movable assembly, the base, the driving assembly, the flexible circuit board circuit system, the suspension assembly, etc., and has the advantages of high integration and stable and reliable structure.
  • FIG. 14 is a schematic diagram of the principle of an optical image stabilization driving process provided by an embodiment of the present application.
  • the solid line box in the figure is the initial position of the image sensor 22, and the dotted line box is the position of the image sensor 22 after shaking. Taking a specific point on the image sensor 22 as an example, after shaking, this point is on the X axis.
  • Leftward movement ⁇ x, upward movement ⁇ y on the Y axis, and angular rotation in the direction of the R axis (that is, the rotation axis of the XY plane) is a clockwise rotation ⁇ .
  • the drive assembly should drive the image sensor 22 to move rightward by ⁇ x on the X axis, downward by ⁇ y on the Y axis, and rotate counterclockwise by ⁇ on the R axis, so as to eliminate the influence of the vibration on imaging.
  • Fig. 15 is a schematic diagram of a driving assembly provided by an embodiment of the present application.
  • the driving assembly may include a first coil 411, a second coil 412 and a third coil 413, and the first coil 411, the second coil 412 and the third coil 413 are arranged in sequence
  • the length direction of the first coil 411 can extend along the Y direction
  • the center line of the second coil 412 can extend along the X direction
  • the length direction of the third coil 413 can extend along the X direction
  • the vertical line in the length direction of the first coil 411 can pass through the center of the image sensor 22
  • the vertical line in the length direction of the second coil 412 can pass through the center of the image sensor 22
  • the vertical line in the length direction of the third coil 413 can pass through the center of the image sensor 22.
  • the perpendicular may not pass through the center of the image sensor 22 .
  • the mechanical structure design of the movable assembly 200 should ensure that the center of gravity of the movable assembly 200, the geometric center of the image sensor 22, and the coordinates of the X and Y axis directions The mechanical centers of the Lorentz forces Fx and Fy coincide, that is, to ensure the mechanical structure of "three centers in one".
  • the first coil 411 can generate the Lorentz force Fx in the X-axis direction under the action of the magnetic field after the first coil 411 is energized
  • the second coil 412 can generate the Lorentz force Fx in the Y-axis direction under the action of the magnetic field.
  • the Lorentz force Fy, the third coil 413 can generate the Lorentz force Fyr in the X-axis direction under the action of the magnetic field after the third coil 413 is energized.
  • the centers of the first coil 411 , the second coil 412 and the third coil 413 can each be provided with a magnetic induction device, which can realize the position feedback of the image sensor in three directions of pitch, yaw and rotation.
  • Fig. 16 is a schematic diagram of a driving assembly provided by an embodiment of the present application.
  • the driving assembly may include five coils 401-405, and the periphery of the image sensor may be defined as the first side to the fourth side connected in sequence, and the coils 401 and 403 may be
  • the coils 402 and 404 can be set on the third side and opposite to the coils 401 and 403 , and the coil 405 can be set on the second side.
  • the length directions of the coils 401-404 can all extend along the Y direction, and the perpendicular lines in the length directions do not pass through the center of the image sensor.
  • the length directions of the coil 405 can extend along the X direction, and the perpendicular lines in the length directions can be Pass through the center O of the image sensor.
  • the coils 401-404 can generate Lorentz forces Fx1, Fx2, Fx3, Fx4 in the X-axis direction and moment MR under the action of the magnetic field after being energized, so that the image sensor can be realized in the
  • the coil 405 can generate a Lorentz force Fy in the Y axis direction under the action of the magnetic field after being energized, so as to realize the translation of the image sensor in the Y direction.
  • the rotation angle of the image sensor can be controlled by controlling the current in the coils 401-404.
  • Fx1 ⁇ Fx3 ⁇ 0 and Fy ⁇ 0 can be controlled.
  • control in the above various scenarios is based on controlling the magnitude of the coil current to control the magnitude of the Lorentz force, thereby controlling the displacement of the image sensor in different directions; controlling the Lorentz force by controlling the current direction of the coil in different directions And the direction of the corresponding moment, and then control the direction of translation and rotation of the image sensor.
  • the implementation of this solution needs to configure three magnetic induction devices, which can be respectively arranged at the centers of the coils 403 , 404 and 405 to realize the position feedback of the image sensor in three directions of pitch, yaw and rotation.
  • a single controller element controls a single variable output to ensure that the control system outputs a unique solution for the movement compensation ⁇ x, ⁇ y, ⁇ and the magnetic field strength under different jitter scenarios, which can reduce errors caused by complex cross-coupling.
  • Fig. 17 is a schematic diagram of a driving assembly provided by an embodiment of the present application.
  • the number and arrangement of the coils are the same as those in Fig. 16, and different from the coils 401-404 in Fig. 16 which are coils of the same size.
  • the coils 401-404 are not limited to guarantee The size is consistent, and the size and relative position of the coil can be adjusted according to the electromagnetic thrust size and structural requirements of the mechanical design.
  • the size of 402 is larger than the size of coils 403 and 404 .
  • the drive assembly of the anti-shake motor provided by the above-mentioned embodiment of the present application, the electromagnetic drive scheme is a decoupling design, and cooperates with the high-precision magnetic induction device feedback system, which can effectively solve the problems of optical image instability, image rotation, and problems such as crosstalk and hysteresis.
  • the structure of the anti-shake motor applied in the periscope telephoto camera module and the structure of the anti-shake motor can also be applied in the vertical camera module.
  • the structure of the anti-shake motor provided in the embodiment of the present application will be described in detail by taking the anti-shake motor applied in the main camera or wide-angle camera module as an example.
  • FIG. 18 is another schematic diagram of the anti-shake motor provided by an embodiment of the present application
  • FIG. 19 is an exploded schematic diagram of the anti-shake motor provided by an embodiment of the present application.
  • the anti-shake motor provided by the embodiment of the present application may also include structures such as a base 100 , a movable component 200 , a suspension component 300 , a drive component, and a flexible circuit board 500 .
  • the cavity 10 can be configured as a cylindrical cavity, the bottom of the cavity 10 is the movable component 200 , and the light entrance hole of the cavity 10 is located on the top wall of the base 100 .
  • the flexible circuit board 500 may also include a bent section 51 and a fixed section 52.
  • the fixed section 52 needs to avoid the light inlet of the accommodating cavity 10 and cannot be attached to the top wall of the base 100. Refer to FIG. 19 for details. It is shown that it is suspended on the side of the base 100 and fixed by other devices around the camera module in the electronic device, or the fixing section 52 can be attached to the side wall of the base 100 .
  • the embodiment of the present application also provides a camera module, which can be a periscope telephoto camera module, including the anti-shake motor shown in Figure 3- Figure 17, and the anti-shake motor is provided with a prism or a periscope
  • the anti-shake motor can form a camera module together with the lens and the focus motor.
  • the embodiment of the present application also provides a camera module.
  • the camera module can include the anti-shake motor shown in FIG. 18-19.
  • the anti-shake motor is provided with a lens. mod.
  • the embodiment of the present application also provides an electronic device, including the camera module provided by the above embodiment of the present application.
  • the camera module has a three-axis anti-shake capability and can achieve high-quality shooting effects, thereby improving the competitiveness of the electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

本申请实施例提供一种防抖马达、摄像模组和电子设备,防抖马达包括:基座、活动组件、悬挂组件、驱动组件和柔性电路板;活动组件设置在基座的底部,包括主电路板和图像传感器,柔性电路板的一端和主电路板的端面连接,另一端和板对板连接器连接,至少部分长度的柔性电路板贴设在基座的侧壁面上;悬挂组件固定连接在基座上,主电路板和悬挂组件连接,驱动组件包括动子和定子,动子固定在主电路板上,定子安装在基座内且对应设置在动子的上方,动子用于在定子的作用下带动活动组件在图像传感器所在的平面上平移和/或旋转。本申请实施例提供一种防抖马达、摄像模组和电子设备,可以通过移动图像传感器来实现较佳的防抖效果。

Description

防抖马达、摄像模组和电子设备
本申请要求于2021年09月29日提交中国专利局、申请号为202111154957.8、申请名称为“防抖马达、摄像模组和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及摄像技术领域,尤其涉及一种防抖马达、摄像模组和电子设备。
背景技术
随着智能手机、平板电脑等电子设备的普及,用户对电子设备的拍摄质量要求越来越来越高。使用电子设备进行拍摄操作时,电子设备的抖动难以避免,会严重影响到拍摄质量,因而摄像模组中需要设置防抖结构。
相关技术中,摄像模组的防抖方案为,通过设置光学防抖(Optical Image Stabilization,OIS)马达,来移动镜头或者倾斜棱镜,以调整镜头或者棱镜的光轴与图像传感器成像面之间的位置关系,从而实现抖动校正的目的。
但是,棱镜及镜头自身体积较大,而摄像模组的空间有限,驱动棱镜或镜头移动或旋转时,移动的位移和旋转的角度都非常有限,因此无法满足光学防抖调整的需要,防抖效果较差。
发明内容
本申请实施例提供一种防抖马达、摄像模组和电子设备,可以通过移动图像传感器来实现较佳的防抖效果。
本申请实施例一方面提供一种防抖马达,包括:基座、活动组件、悬挂组件和驱动组件;活动组件设置在基座的下方,活动组件包括主电路板和连接在主电路板上的图像传感器,柔性电路板的一端和主电路板的端面连接,另一端和板对板连接器连接,至少部分长度的柔性电路板贴设在基座的侧壁面上;悬挂组件固定连接在基座上,主电路板和悬挂组件连接,驱动组件包括动子和定子,动子固定在主电路板上,定子安装在基座内且对应设置在动子的上方,动子用于通电后在定子的作用下带动活动组件在图像传感器所在的平面上平移和/或旋转。
本申请实施例提供一种防抖马达,可以利用电磁驱动组件来驱动图像传感器,使图像传感器实现X轴平移、Y轴平移、Z轴(XY平面内)旋转这三个方向的抖动抑制,以解决光学图像不稳定、像旋等问题。并且,设置贴设在基座侧壁面上的柔性电路板,来连通外部电源和主电路板,可以提供可靠的电连接,并减少占用空间。
在一种可能的实施方式中,柔性电路板包括弯折段和固定段,弯折段连接在主电路板的端面和固定段之间,弯折段呈弯折设置并贴设在基座的至少两个侧壁面上,固定段通过连接电路板和板对板连接器连接。
弯折段可以贴附在基座的侧壁面上,以使得柔性电路板可以减少占用空间,并提高结构可靠性。同时,柔性电路板可以为防抖马达提供一定的刚度值。
在一种可能的实施方式中,固定段贴设在基座的顶壁面上,固定段和连接电路板焊接。
固定段贴设在基座的顶壁面上,有利于固定段和连接电路板的可靠固定连接,同时,可以使柔性电路板整体上减少空间的占用。
在一种可能的实施方式中,柔性电路板的数量为两个,两个柔性电路板的弯折段分别连接在主电路板相对的两个端面上。
自主电路板左右两侧伸出的对称的柔性电路板,可以为防抖马达提供X、Y方向的刚度值,并且与悬线共同作用,可以保证整个防抖马达在不同姿态下的差异值很小,可以保证防抖马达运动过程中图像传感器在不同姿态下防抖性能的稳定性。
在一种可能的实施方式中,柔性电路板和主电路板为软硬结合板。
软硬结合板同时具有柔性电路板特性和印制电路板特性,具有可以减少整体的组装尺寸、避免连线错误、提高可靠性及实现不同装配条件下的三维立体组装等优点。
在一种可能的实施方式中,悬挂组件包括簧片和悬线,簧片安装在基座上,悬线的一端固定在簧片上,悬线的另一端和主电路板固定。
悬挂组件在X方向和Y方向上会有一定的刚度,在图像传感器平移或者旋转时悬线会提供一定的阻尼作用,并且在断电时由于悬线的变形恢复会形成一定的回复力,可以保证图像传感器回到初始位置。
在一种可能的实施方式中,基座上设置有安装孔,悬线穿设在安装孔内,安装孔内填充设置有阻尼胶。
安装孔内可以填充阻尼胶,以增加悬线在X方向和Y方向上的刚度值,以保证防抖性能的稳定性。
在一种可能的实施方式中,基座上设置有定位凸台,簧片上设置有定位孔,定位孔卡设在定位凸台内。
设置定位孔和定位凸台的过盈配合,可以保证簧片固定在基座上的可靠性。
在一种可能的实施方式中,所述动子包括第一线圈和第二线圈,所述定子包括第一磁石和第二磁石,第一线圈的长度方向沿第一方向延伸,第二线圈的长度方向沿第二方向延伸,第一方向和第二方向为图像传感器所在的平面上互相垂直的两个方向,第一线圈的长度方向的中垂线、第二线圈的长度方向的中垂线均经过图像传感器的中心;第一线圈和第一磁石用于驱动活动组件在第二方向上平移,第二线圈和第二磁石用于驱动活动组件在第一方向上平移。
第一线圈通电后在磁场作用下可以产生第二方向的洛伦兹力,第二线圈通电后在磁场作用下可以产生第一方向的洛伦兹力,这两个力的力学中心经过图像传感器的中心,因此不会产生额外的转矩,仅对图像传感器在第一方向和第二方向上的平移运动起到贡献作用。
在一种可能的实施方式中,所述动子还包括第三线圈,所述定子还包括第三磁石,第三线圈的长度方向沿第一方向或第二方向延伸,第三线圈的长度方向的中垂线不经过图像传感器的中心;第三线圈和第三磁石用于驱动活动组件在图像传感器所在的平面上旋转。
第三线圈通电后在磁场作用下可以产生第一方向或第二方向的洛伦兹力,其驱动力中心不经过与图像传感器的中心,存在一定的力臂,因此会产生一定的转矩,实现图像传感 器沿着旋转中心转动,从而实现图像传感器旋转方向的防抖抑制。
在一种可能的实施方式中,活动组件还包括:附加电路板,图像传感器固定在附加电路板上,附加电路板焊接在主电路板的背向基座的一侧。
通过将图像传感器固定在附加电路板上,并设置附加电路板通过激光焊接在主电路板的底部,相当于将活动组件拆分为主电路板和附加电路板两部分,有利于图像传感器的装配。
在一种可能的实施方式中,活动组件还包括:滤光片,滤光片固定在附加电路板上,且位于图像传感器的面向基座的一侧。
滤光片可以过滤掉某些波长的光,只允许某些波长的光通过,可以消减部分鬼像杂光,也可以对图像传感器起到一定的保护作用。
在一种可能的实施方式中,主电路板上还设置有磁感应器件,磁感应器件设置在动子的中心。
磁感应器件用来感应磁通量,可以监测图像传感器与光路中心的相对位置信号,以实现图像传感器的位置反馈,判定防抖幅度是否达到预设值。
在一种可能的实施方式中,主电路板上还设置有温度传感器,温度传感器设置在动子内。
温度传感器用来感测防抖过程中主电路板的温度信息并进行闭环反馈,以监控主电路板的散热是否正常。
在一种可能的实施方式中,防抖马达还包括驱动IC,驱动IC设置在主电路板上。
驱动IC可以在接收到电子设备内的陀螺仪等传感器采集到的抖动数据后,计算需要的位移补偿量,再控制各个线圈的通电电流方向和大小,以控制驱动组件驱动图像传感器进行平移或旋转。
在一种可能的实施方式中,基座上设置有容置腔,容置腔用于容置光学部件,图像传感器位于光学部件的出光侧,基座的侧壁或者顶壁上设置有开口,开口位于光学部件的进光侧。
光学部件设置在容置腔内,以使防抖马达在驱动图像传感器移动时,可以使图像传感器和光学部件之间出现相对运动,从而实现防抖。
本申请实施例另一方面还提供一种摄像模组,包括镜头、棱镜和上述的防抖马达,棱镜安装在基座内,镜头的光轴方向平行于图形传感器所在的平面,棱镜用于反射来自镜头的光线以使光线垂直于图像传感器所在的平面。
本申请实施例提供一种摄像模组,可以为潜望式长焦摄像模组,防抖马达可以驱动图像传感器移动,使图像传感器和棱镜之间出现相对运动,从而实现防抖。
本申请实施例另一方面还提供一种摄像模组,包括镜头和上述的防抖马达,镜头安装在基座内,镜头的光轴方向垂直于图像传感器所在的平面。
本申请提供实施例一种摄像模组,可以为主摄或者广角摄像模组,防抖马达可以驱动图像传感器移动,使图像传感器和镜头之间出现相对运动,从而实现防抖。
本申请实施例又一方面还提供一种电子设备,包括上述的摄像模组。
本申请实施例还提供一种电子设备,包括上述本申请实施例提供的摄像模组,摄像模组具有三轴防抖能力,可以实现优质的拍摄效果,从而可以提高电子设备的竞争力。
本申请实施例提供一种防抖马达、摄像模组和电子设备,可以利用电磁驱动组件来驱动图像传感器,使图像传感器实现X轴平移、Y轴平移、Z轴(XY平面内)旋转这三个方向的抖动抑制,以解决光学图像不稳定、像旋、驱动控制存在串扰、迟滞等问题,且具有集成度高的优点。
附图说明
图1为手机拍摄时的抖动方向的示意图;
图2a为相关技术提供的一种防抖马达的结构示意图;
图2b为相关技术提供的另一种防抖马达的结构示意图;
图3为本申请一实施例提供的活动组件的分解示意图;
图4为本申请一实施例提供的活动组件组装后的结构示意图;
图5为本申请一实施例提供的活动组件、基座和悬挂组件的分解示意图;
图6为本申请一实施例提供的活动组件、基座和悬挂组件装配后的结构示意图;
图7为本申请一实施例提供的基座的另一视角的结构示意图;
图8为本申请一实施例提供的防抖马达的外壳和外部电路连接结构的分解示意图;
图9为本申请一实施例提供的防抖马达装配后的结构示意图;
图10为本申请一实施例提供的防抖马达的俯视图;
图11为图10中C-C处的剖面示意图;
图12为图10中D-D处的剖面示意图;
图13为本申请一实施例提供的主电路板的结构示意图;
图14为本申请一实施例提供的光学防抖驱动过程的原理示意图;
图15为本申请一实施例提供的驱动组件的一种示意图;
图16为本申请一实施例提供的驱动组件的一种示意图;
图17为本申请一实施例提供的驱动组件的一种示意图;
图18为本申请一实施例提供的防抖马达的另一种示意图;
图19为本申请一实施例提供的防抖马达的爆炸示意图。
附图标记说明:
100-基座;10-容置腔;11-安装孔;121、122-定位凸台;13-限位凸台;141、142、143-安装腔;200-活动组件;21-主电路板;211-透光孔;22-图像传感器;221-附加电路板;222-加强板;23-滤光片;231-承载台;241-磁感应器件;242-温度传感器;25-防撞件;26-驱动IC;300-悬挂组件;31-簧片;311-定位孔;32-悬线;411-第一线圈;412-第二线圈;413-第三线圈;421-第一磁石;422-第二磁石;423-第三磁石;401、402、403、404、405-线圈;500-柔性电路板;51-弯折段;52-固定段;53-连接电路板;54-连接器;55-限位段;61-上壳;611-开孔;62-下壳。
具体实施方式
本申请实施例提供一种电子设备,包括但不限于手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、对讲机、上网本、POS机、个人数字助理(personal digital assistant,PDA)、可穿戴设备、虚拟现实设备、 蓝牙音响、车载装置等具有摄像模组的设备。
本申请实施例中,以手机作为上述电子设备的例子,来对电子设备及摄像模组的结构进行具体说明。
图1为手机拍摄时的抖动方向的示意图。参考图1所示,可以定义X轴为手机的长度方向,定义Y轴为手机的宽度方向,定义Z轴为手机的厚度方向。手机拍摄时的抖动方向包括俯仰(pitch)、偏转(yaw)和旋转(roll),其中俯仰指的是在X轴上的摇摆,偏转指的是在Y轴上的摇摆,旋转指的是绕Z轴的旋转。
应理解,对于手机内部的摄像模组来说,X轴和Y轴为图像传感器所在平面上相互垂直的两个方向,Z轴为垂直于图像传感器所在平面的方向,即光轴所在的方向。
相关技术中,摄像模组的防抖方案可以为光学防抖(Optical Image Stabilization,OIS),光学防抖通过物理技术使动件与机身抖动方向产生位移补偿,可以降低抖动带来的图像模糊效应。
图2a为相关技术提供的一种防抖马达的结构示意图。参考图2a所示,在一种相关技术中,镜头A安装在防抖马达内,图像传感器22位于镜头A的出光侧,如实心箭头所示,外部光线自镜头A的进光侧进入镜头内,并在图像传感器22上成像。防抖马达可以驱动镜头A平移,平移方向如图中的空心箭头所示,以进行位移补偿,实现光学防抖。
通过防抖马达驱动镜头A平移,平移仅发生在X轴和Y轴上,而在Z轴上,容易产生光轴的倾斜,当光轴倾斜程度过大时,会导致拍照画面的边角模糊。另外,镜头平移式的光学防抖,仅能对图像传感器22所在平面进行位移补偿,而无法实现光轴方向旋转角度的校正,因此光学防抖的最大补偿角度有限,防抖效果有限。
防抖马达的驱动方法可以有多种,例如SMA(Shape Memory Alloy,形状记忆合金)丝驱动、压电驱动等。对于SMA丝驱动进行位移补偿,存在迟滞效应和较大的串扰,影响光学防抖效果。对于压电驱动进行位移补偿,存在噪音及寿命问题。
图2b为相关技术提供的另一种防抖马达的结构示意图。参考图2b所示,长焦摄像模组中,如图中实心箭头所示,外部光线经过棱镜B的反射,再经过镜头A,在镜头A出光侧的图像传感器22上成像。防抖马达可以驱动棱镜B在X轴和Y轴上摆动,以进行双轴补偿,实现较大角度的光学防抖。
但是,通过防抖马达驱动棱镜B摆动,可以实现俯仰和偏转这两个方向的抖动抑制,但是无法实现旋转方向的抖动抑制。另外,棱镜B绕两轴摆动,不可避免地会引入像旋问题,由于消旋算法难度较高,因此会影响到光学防抖的效果。
在另一种相关技术中,防抖马达可以结合上述两种相关技术,在驱动镜头平移的同时,驱动棱镜旋转,以实现多轴的位移补偿,但是,该方案存在集成度不高,功耗较高,尺寸较大等问题。
基于上述问题,本申请实施例提供一种防抖马达和摄像模组,可以利用电磁驱动组件来驱动图像传感器,使图像传感器实现X轴平移、Y轴平移、Z轴(XY平面内)旋转这三个方向的抖动抑制,以解决光学图像不稳定、像旋、驱动控制存在串扰、迟滞等问题,且具有集成度高的优点。
本申请实施例提供一种防抖马达,可以应用在不同类型的摄像模组中,例如长焦、主摄、广角等。
以下,以应用在潜望式长焦摄像模组中的防抖马达为例,对本申请实施例提供的防抖马达的结构,做详细的描述。
本申请实施例提供的防抖马达,可以包括基座、活动组件、悬挂组件和驱动组件;其中,活动组件包括主电路板和设置在主电路板上的图像传感器,活动组件可以通过悬挂组件悬挂连接在基座的下方,驱动组件用于驱动活动组件在图像传感器所在的平面上平移和/或旋转。
为了便于说明,以下各附图中,以X轴的正方向为右,Y轴的正方向为后,Z轴的正方向为上。
图3为本申请一实施例提供的活动组件的分解示意图,图4为本申请一实施例提供的活动组件组装后的结构示意图。参考图3和图4所示,活动组件200可以包括主电路板21和设置在主电路板21上的图像传感器22。
其中,主电路板21用来承载图像传感器22及其它电子器件,图像传感器22用来感光成像。主电路板21可以为印制电路板(printed circuit board,PCB),图像传感器22可以为感光耦合元件(charge coupled device,CCD)或者互补性氧化金属半导体元件(Complementary metal-oxide semiconductor sensor,CMOS sensor)。
图像传感器22可以通过COP(Chip on board,板上芯片封装)工艺连接在附加电路板221上,附加电路板221可以通过激光焊接工艺连接在主电路板21上,从而可以使图像传感器22与主电路板21实现电连接。
图像传感器22和附加电路板221可以设置在主电路板21的底部,即主电路板21背向基座的一侧,主电路板21的中心设置有透光孔211,图像传感器22和透光孔211正对,以使进入防抖马达内部的光线可以经过透光孔211照射到图像传感器22上。
活动组件200还可以包括滤光片23,滤光片23可以通过承载台231固定在主电路板21上,滤光片23和图像传感器22相对设置,且滤光片23位于图像传感器22的上方,即滤光片23位于图像传感器22的面向基板的一侧。滤光片23可以粘接在承载台231上,承载台231可以呈框架结构,围设在滤光片23的周围同时不会遮挡到图像传感器22,承载台231可以粘接在附加电路板221上。
摄像模组外部的光线进入到防抖马达内的光学部件后,可以依次经过滤光片23和图像传感器22,最终在图像传感器22的作用下将光信号转化为图像目标信号。滤光片23可以过滤掉某些波长的光,只允许某些波长的光通过,可以消减部分鬼像杂光,也可以对图像传感器22起到一定的保护作用。示例性地,滤光片23可以为红外滤光片,其可以过滤掉红外波段的光,允许其它波段的光通过。
活动组件200还可以包括加强板222,加强板222可以粘接在附加电路板221底部,即粘接在附加电路板221的背向主电路板21的一侧,加强板222可以为不锈钢板等金属板,一方面,加强板222可以辅助激光焊接,增加活动组件200整体的结构强度,起到保护主电路板21和图像传感器22的作用,另一方面,加强板222具有良好的导热性能,且加强板222上可以贴附铜箔或者石墨烯,以实现良好的散热。
上述主电路板21、附加电路板221、图像传感器22、滤光片23、承载台231、加强板222共同构成活动组件200,以使电磁驱动组件驱动活动组件200平移或旋转时,图像传感器22和摄像模组内的光学部件之间出现相对运动,从而实现防抖。
不难理解,通过将滤光片23和图像传感器22固定在附加电路板221上,并设置附加电路板221通过激光焊接在主电路板21的底部,相当于将活动组件200拆分为主电路板21和附加电路板221两部分,有利于图像传感器22的装配。
图5为本申请一实施例提供的活动组件、基座和悬挂组件的分解示意图,图6为本申请一实施例提供的活动组件、基座和悬挂组件装配后的结构示意图。参考图5和图6所示,防抖马达还可以包括基座100和悬挂组件300,活动组件200可以通过悬挂组件300悬挂在基座100的底部。
其中,悬挂组件300可以包括簧片31和悬线32,簧片31可以固定在基座100上,悬线32可以连接在簧片31和主电路板21之间,以使主电路板21悬挂在基座100的下方。主电路板21上可以设置通孔,悬线32的一端焊接在该通孔处,另一端焊接在簧片31上,簧片31上可以设置多个定位孔311,基座100上可以设置多个定位凸台121,定位孔311和定位凸台121过盈配合,从而使簧片31固定在基座100上。
悬线32的数量可以为四根,分别连接在主电路板21的四角,设置四根悬线可以使悬挂作用均匀。悬线32在X方向和Y方向上会有一定的刚度,在图像传感器22平移或者旋转时悬线32会提供一定的阻尼作用,并且在断电时由于悬线32的变形恢复会形成一定的恢复力,可以保证图像传感器22回到初始位置。
另外,悬线32在Z方向即平行于光路的方向的刚度值很大,可以保证活动组件200运动过程中,图像传感器22所在的平面与接收的光路保持垂直,即保证图像传感器22始终位于XY平面上,不会产生平面外的倾斜,进而保证了整个摄像模组的最终整体成像效果。
基座100上设置有安装孔11,安装孔11可以沿着Z轴延伸,簧片31固定在基座100的顶部,主电路板21位于基座100的底部,悬线32穿设在安装孔11内以连接簧片31和主电路板21。安装孔11内可以填充阻尼胶,以增加悬线32在X方向和Y方向上的刚度值,以保证防抖性能的稳定性。
基座100上设置有容置腔10,容置腔10用来容纳光学部件,例如棱镜或潜望式反射镜,容置腔10设置在主电路板21的上方,且基座100的一个侧壁上设置有开口,该开口可以处于图中XZ平面上,该开口为容置腔10的进光口,用来是光线自该进光口内进入到光学部件内,再反射至图像传感器22。
需要理解的是,上述安装孔11设置在容置腔10的四周,对容置腔10的进光口不产生干涉,簧片31的与容置腔10的进光口对应的边上设置为缺边,以避免簧片31遮挡到光线。
继续参考图3-图6所示,本申请实施例中,防抖马达还可以包括柔性电路板500,主电路板21可以与柔性电路板500连接,柔性电路板500用来连接主电路板21和外部电源,以为主电路板21及图像传感器22等供电。
柔性电路板500是以聚酰亚胺或聚酰薄膜为基材制成的一种电路板,具有可自由弯曲折叠的优良特性。本申请实施例中,柔性电路板500可以与主电路板21构成软硬结合板,软硬结合板指的是将柔性电路板和印制电路板经过压合等工序组合在一起,形成的同时具有柔性电路板特性和印制电路板特性的电路板,具有可以减少整体的组装尺寸、避免连线错误、提高可靠性及实现不同装配条件下的三维立体组装等优点。
柔性电路板500可以包括弯折段51和固定段52,弯折段51连接在主电路板21和固定段52之间,固定段52可以用来和外部电源连接。弯折段51可以贴附在基座100的侧壁面上,固定段52可以贴附在基座100的顶壁面上,以使得柔性电路板500可以减少占用空间,并提高结构可靠性。
基座100的顶壁面上还可以设置定位凸台122,固定段52上可以设置定位孔,固定段52贴设在基座100的顶壁面上时,定位孔可以和定位凸台122配合,使得固定段52可以和基座100之间定位更加精确,连接更加可靠。
需要理解的是,弯折段51在基座100的侧壁面上延伸时,同样需要避开容置腔10进光口所在的方向。
本申请实施例中,弯折段51可以包括三个折弯,弯折段51自主电路板21的端面处伸出,经过一个折弯后可以贴设在基座100的与容置腔10的进光口相邻的侧壁面上,并在该侧壁面上延伸一段长度,然后可以经过第二个折弯,贴设在基座100的与容置腔10的进光口相背的侧壁面上,在该侧壁面上延伸一段长度,再经过第三个折弯,贴设在基座100的顶壁上,连接至固定段52。固定段52可以借助加强板501贴附在基座100的顶壁面上,固定段52用来通过激光焊接工艺固定在加强板501上,固定段52用来将电路导通到外部。
柔性电路板500的数量可以为两个,两个柔性电路板500的弯折段51可以分别连接在主电路板21相对的两个端面上,这两个端面对应基座100的与容置腔10的进光口相邻的两个侧壁面,两个柔性电路板500的弯折段51分别延伸至基座100的与容置腔10的进光口相背的侧壁面上,两个柔性电路板500的固定段52可以紧邻设置,贴附在同一个加强板501上。整体上,两个柔性电路板500呈对称设置。
自主电路板21左右两侧伸出的对称的柔性电路板500,除了可以实现柔性电连接外,同时也可以为防抖马达提供X、Y方向的刚度值,并且与悬线32共同作用,可以保证整个防抖马达在不同姿态下的差异值很小,可以保证防抖马达运动过程中图像传感器22在不同姿态下防抖性能的稳定性。也即,悬线32、设置在基座100的安装孔11内的阻尼胶以及设置在主电路板21侧边的柔性电路板500共同作用形成了防抖马达的阻尼系统。
实际使用过程中,活动组件200在进行X方向平移时,对称弯折的柔性电路板500的左右两侧由于抵抗变形提供与平移方向相反的反力;当活动组件200进行Y方向平移时,柔性电路板500的第二个折弯处可以由于抵抗Y方向的变形而提供与平移方向相反的反力。
本申请实施例中,活动组件200在图像传感器22所在的平面上平移和/或旋转,需要通过设置驱动组件来实现。驱动组件可以包括动子和定子,动子可以设置在主电路板21上,定子可以固定在基座100内,动子和定子可以分别为线圈和磁石,或者动子和定子可以分别为磁石和线圈,线圈通电后,在磁石的磁场环境下可以产生洛伦兹力实现驱动,构成电磁驱动系统。
在一种可能的实施方式中,动子可以为线圈,线圈可以设置在主电路板21上,定子可以为磁石,磁石可以固定在基座100内。线圈和磁石的数量在本申请实施例中不做具体限制,X轴平移、Y轴平移和XY平面旋转这三种防抖补偿可以分别通过一组或者多组线圈磁石来实现。
在一种可能的实施方式中,驱动组件可以包括三组线圈和磁石,以分别用来实现X轴 平移、Y轴平移和XY平面旋转这三种防抖补偿。
此时,主电路板21上可以设置第一线圈411、第二线圈412和第三线圈413,第一线圈411、第二线圈412和第三线圈413可以通过SMT(Surface Mount Technology,表面贴装技术)贴片或焊接工艺配置固定在主电路板21上。基座100内则可以固定安装第一磁石421、第二磁石422和第三磁石423,第一磁石421、第二磁石422、第三磁石423分别设置在第一线圈411、第二线圈412、第三线圈413的上方。
图7为本申请一实施例提供的基座的另一视角的结构示意图。参考图7所示,基座100内可以设置安装腔141、142和143,第一磁石421、第二磁石422、第三磁石423分别固定在安装腔141、142和143内。磁石可以为四极均匀充磁磁石,或相同两块磁石双极充磁后连接固定在一起。
线圈的具体位置在本申请实施例中可以不做具体限制,由于磁石位于线圈的上方,磁石产生的磁感线的方向垂直于图像传感器22所在的平面,根据左手定则,线圈在磁场环境下产生的洛伦兹力的方向与图像传感器22所在的平面平行。应理解,线圈在对应搭配的磁石的磁场下产生的洛伦兹力的力中心线可以经过图像传感器22的中心,以实现平移驱动,线圈在对应搭配的磁石的磁场下产生的洛伦兹力的力中心线也可以不经过图像传感器22的中心,产生的力矩可以实现旋转驱动。在不同情境下,通过平衡和控制多组线圈磁石的驱动力和驱动力矩,可以驱动活动组件200实现不同的移动。
在一种可行的实施方式中,第一线圈411的长度方向可以沿第一方向(即Y方向)延伸,第二线圈412的中心线可以沿第二方向(即X方向)延伸,第一线圈411的长度方向上的中垂线可以经过图像传感器22的中心,第二线圈412的长度方向上的中垂线可以经过图像传感器22的中心。第一线圈411通电后在第一磁石421的磁场作用下,会产生X轴方向的洛伦兹力,且力中心线经过图像传感器22的中心,不会产生驱动力矩,因此可以驱动活动组件200在X轴上平移,第二线圈412通电后在第二磁石422的磁场作用下,会产生Y轴方向的作用力,且力中心线经过图像传感器22的中心,不会产生驱动力矩,因此可以驱动活动组件200在Y轴上平移。
第三线圈413的长度方向可以沿X轴或者Y轴延伸,图中以沿X轴延伸为例,第三线圈413的长度方向上的中垂线可以不经过图像传感器22的中心,第三线圈413通电后在第三磁石423的作用下会产生X轴方向或Y轴方向的作用力,同时产生转矩,以驱动活动组件200在XY平面上旋转。
需要补充说明的是,上述线圈的形状可以为图示中的圆角矩形,线圈的长度方向为圆角矩形的长边方向,线圈通电后等效电流方向与长度方向一致,同等条件上长度越长的线圈受到的驱动力越大。
在一种可能的实施方式中,第一线圈411、第二线圈412和第三线圈413可以分别设置在主电路板21的透光孔211周侧的三边上,这三边可以为容置腔10的进光侧以外的三边。
图8为本申请一实施例提供的防抖马达的外壳和外部电路连接结构的分解示意图,图9为本申请一实施例提供的防抖马达装配后的结构示意图。参考图8和图9所示,防抖马达还可以包括上壳61和下壳62,上壳61和下壳62分别罩设在基座100的顶部和底部,以起到保护作用。
上壳61上设置有开孔611,开孔611位于基座100的顶壁面上方,与柔性电路板500的固 定段52对应设置,以使固定段52可以暴露在外,以与连接电路板53通过激光焊接实现可靠固定与电连接。连接电路板53的端部设置有连接器54,连接器54可以为板对板(Board to Board,BTB)连接器,可以扣合在电子设备内的主板上,以实现防抖马达的供电。
柔性电路板500还可以包括限位段55,限位段55设置在上壳61的上表面,限位段55和连接电路板53连接。电源信号和数据信号自连接器54处经过连接电路板53的传输后,一部分经弯折段51传输至主电路板21,另一部分则传输至限位段55,限位段55的与容置腔10的进光侧一致的一侧可以设置引脚,如图中设置了六个引脚。限位段55用来和防抖马达周边的其它器件连接,例如对焦模组等,以实现防抖马达和周边器件的电力传输和数据传输,有利于电子设备内电路走线的合理排布。
另一方面,基座100的顶壁面上还可以设置限位凸台13,限位凸台13位于容置腔10上方,且暴露在上壳61的外部,限位凸台13的数量可以为两个,两个限位凸台13在X方向上呈左右分布,限位段55可以卡设在限位凸台13处,使限位凸台13可以限制限位段55在X方向和Y方向上的移动,从而起到对限位段55和连接电路板53的定位作用,可以保证激光焊接工艺的焊接孔的位置精度,保证焊接工艺的准确性。
需要说明的是,对于本申请实施例提供的防抖马达,为了保证容置腔10具有足够大的空间,同时保证防抖马达的结构紧凑性,基座100的顶壁面可以包括主体面和凸出面,凸出面高于主体面,凸出面位于容置腔10的上方,此时,固定段52贴设在主体面上,而限位凸台13设置在凸出面上,限位段55自主体面经过弯折后延伸到凸出面上,并卡设在限位凸台13处。
另外,上壳61的内侧壁上还可以设置限位凸点612,限位凸点612相对于上壳61的内侧壁呈凸出设置,在上壳61罩设在基座100外时,限位凸点612可以限制柔性电路板500在一定范围内运动,形成柔性电路板稳定结构。
用来限制与固定段52连接的限位段55的位置,从而可以限制柔性电路板500在一定范围内运动,形成柔性电路板500的稳定结构,限制柔性电路板500的变形量。
图10为本申请一实施例提供的防抖马达的俯视图,图11为图10中C-C处的剖面示意图,图12为图10中D-D处的剖面示意图。参考图10-图12所示,活动组件200可以包括主电路板21、附加电路板221、加强板222、图像传感器22、承载台231、滤光片23,附加电路板221连接在主电路板21的下方,加强板222连接在附加电路板221的下方,图像传感器22连接在附加电路板221内,承载台231连接在附加电路板221的上方,且位于主电路板21的透光孔211内,滤光片23连接在承载台231的上方。
基座100位于活动组件200的上方,容置腔10位于滤光片23和图像传感器22的正上方。主电路板21的上表面还连接有第一线圈411、第二线圈412、第三线圈413,基座100内固定有第一磁石421、第二磁石422、第三磁石423,第一磁石421、第二磁石422、第三磁石423分别设置在第一线圈411、第二线圈412、第三线圈413的上方。
在本申请实施例中提供的防抖马达的装配过程中,首先可以将各电子器件连接在主电路板21上,将各磁石固定在基座100内,将簧片31固定在基座100上;然后,将悬线32穿设在基座100内并将悬线两端分别与簧片31和主电路板21焊接,将柔性电路板500弯折并使固定段52贴附在基座100的顶壁面上;然后,可以将承载了图像传感器22和滤光片23的附加电路板221通过激光焊接至主电路板21的底部;接下来,可以将上壳61和下壳62装配完成; 最后,可以将连接电路板53通过激光焊接至柔性电路板500的固定段52上,再将连接器54扣合在电子设备内的主板上。
应理解,基座100、悬挂组件300、驱动组件、柔性电路板500、主电路板21可以组装为一个整体,承载了图像传感器22和滤光片23的附加电路板221单独作为一个组装模块,后焊接到主电路板21上,从而,可以提高防抖马达整体的组装良率。
图13为本申请一实施例提供的主电路板的结构示意图。参考图13所示,主电路板21上还可以设置驱动IC(integrated circuit,集成电路)26,驱动IC26可以通过SMT贴附或者焊接工艺配置固定在主电路板21上,驱动IC可以在接收到电子设备内的陀螺仪等传感器采集到的抖动数据后,计算需要的位移补偿量,再控制各个线圈的通电电流方向和大小,以控制驱动组件驱动图像传感器22进行平移或旋转。
主电路板21上还可以设置磁感应器件241,磁感应器件241可以通过SMT贴附或者焊接工艺配置固定在主电路板21上,磁感应器件241用来感应磁通量,磁感应器件241可以包括但不限于霍尔Hall传感器、GMR(Giant Magneto Resistance,巨磁电阻)传感器或者是TMR(Tunnel Magneto Resistance,隧道磁阻)传感器。
磁感应器件241的数量可以为三个,分别位于第一线圈411、第二线圈412和第三线圈413的中心。三个磁感应器件241与第一磁石421、第二磁石422、第三磁石433依次搭配,通过感应不同抖动姿态下磁通量在X/Y/Z向上的分量,可以监测图像传感器22与光路中心的相对位置信号,并在防抖补偿后快速重新检测图像传感器22的位置信号,进而实现图像传感器22在X方向平移、Y方向平移、XY平面内旋转这三个方向的位置反馈,从而可以判定防抖马达的防抖幅度是否达到预设值。
主电路板21上还可以设置温度传感器242,温度传感器242可以通过SMT贴附或者焊接工艺配置固定在主电路板21上,温度传感器242可以为NTC(Negative temperature coefficient,负温度系数)温度传感器,温度传感器242可以设置在线圈内并和驱动IC26电连接,用来感测防抖过程中主电路板21的温度信息并进行闭环反馈。
此外,主电路板21的四角可以连接防撞件25,防撞件25例如可以为橡胶件等弹性材料,防撞件25可以设置为三角形,固定在主电路板21的四角,从而可以防止活动组件200与基座100内侧发生撞击,起到缓冲和保护作用。
综上所述,本申请实施例提供的防抖马达,通过在XY平面上平移图像传感器,使图像传感器与光路发生相对位移,从而校正抖动,同步地,可以通过驱动组件驱动图像传感器绕着XY面内的Z轴旋转,实现旋转角度的抖动校正;驱动组件由连接在活动组件上的线圈和连接在基座上的磁石构成,通过线圈电流方向及大小控制实现不同方向的平移及旋转多种组合情况的图像传感器防抖校正。
并且,本申请实施例提供的防抖马达,将活动组件、基座、驱动组件、柔性电路板电路系统、悬挂组件等集成在一起,具有集成度高,结构稳定可靠的优点。
以下,参考附图和具体的实施例,对本申请实施例提供的电磁驱动式防抖马达的防抖原理进行详细描述。
图14为本申请一实施例提供的光学防抖驱动过程的原理示意图。参考图14所示,图中实线框为图像传感器22的初始位置,虚线框为抖动后图像传感器22的位置,以图像传感器22上一特定点为例,抖动后该点在X轴上向左移动Δx,在Y轴上的向上移动Δy, 在R轴方向(即XY平面的旋转轴)上的角度旋转量为顺时针旋转Δθ。驱动组件应驱动图像传感器22在X轴上向右移动Δx,在Y轴上的向下移动Δy,在R轴方向上逆时针旋转Δθ,以消除该抖动对成像的影响。
图15为本申请一实施例提供的驱动组件的一种示意图。参考图15所示,在一种可能的实施方式中,驱动组件可以包括第一线圈411、第二线圈412和第三线圈413,第一线圈411、第二线圈412和第三线圈413依次设置在图像传感器周侧相邻的三边上,第一线圈411的长度方向可以沿Y方向延伸,第二线圈412的中心线可以沿X方向延伸,第三线圈413的长度方向可以沿X方向延伸,第一线圈411的长度方向上的中垂线可以经过图像传感器22的中心,第二线圈412的长度方向上的中垂线可以经过图像传感器22的中心,第三线圈413的长度方向上的中垂线可以不经过图像传感器22的中心。
需要说明的是,对于本申请实施例提供的图像传感器位移式的防抖马达,其活动组件200的机械结构设计应保证活动组件200的重心、图像传感器22的几何中心与X、Y轴方向的洛伦兹力Fx、Fy的力学中心重合,即保证“三心合一”的机械结构。
根据洛伦兹力和左手定则,可以判断第一线圈411通电后在磁场作用下可以产生X轴方向的洛伦兹力Fx,第二线圈412通电后在磁场作用下可以产生Y轴方向的洛伦兹力Fy,第三线圈413通电后在磁场作用下可以产生X轴方向的洛伦兹力Fyr。由于Fx和Fy的力学中心与图像传感器22的重心O重合,因此Fx和Fy不会对O产生额外的转矩,因此第一线圈411和第二线圈412产生的洛伦兹力仅对图像传感器在X方向和Y方向上的平移运动起到贡献作用。而对于Fyr,由于其驱动力中心与中心O不重合,存在一定的力臂d,因此对O会产生一定的转矩MR,在MR的作用下实现图像传感器22沿着旋转中心转动,从而实现图像传感器22在XY平面上旋转(roll)方向的防抖抑制。
此外,第一线圈411、第二线圈412和第三线圈413的中心可以各自设置一个磁感应器件,可以实现图像传感器俯仰、偏转、旋转三个方向的位置反馈。
图16为本申请一实施例提供的驱动组件的一种示意图。参考图16所示,在另一种可能的实施方式中,驱动组件可以包括五个线圈401-405,图像传感器的四周可以定义为依次连接的第一侧至第四侧,线圈401和403可以设置在第一侧,且分设在第一侧的两端,线圈402、404可以设置在第三侧并与线圈401、403相对设置,线圈405可以设置在第二侧。线圈401-404的长度方向可以均沿着Y方向延伸,且长度方向上的中垂线不经过图像传感器的中心,线圈405的长度方向可以沿着X方向延伸,且长度方向的中垂线可以经过图像传感器的中心O。
根据洛伦兹力和左手定则,可以判断线圈401-404通电后在磁场作用下可以产生X轴方向的洛伦兹力Fx1、Fx2、Fx3、Fx4,以及力矩MR,从而可以实现图像传感器在X方向的平移及R轴方向的旋转,线圈405通电后在磁场作用下可以产生Y轴方向的洛伦兹力Fy,从而可以实现图像传感器在Y方向的平移。
线圈401-404可以为四个大小相同的线圈,在三心合一的前提下,线圈401和402可以采用一路控制,使两者的电流大小相同,即Fx1=Fx2,线圈403和404可以采用一路控制,电流大小相同,即Fx3=Fx4。通过特定的电流方向及大小控制可以实现不同方向平移及旋转多种组合情况的图像传感器防抖校正。
示例性地,在X轴平移模式下,可以控制Fx1=Fx3≠0,Fy=0;在Y轴平移模式下, 可以控制Fy≠0,Fx1=Fx3=0;在X+Y双轴方向平移模式下,可以控制Fx1=Fx3≠0,Fy≠0。在XY平面内旋转的模式下,可以控制Fx1=-Fx3≠0,Fy=0,其中,如果Fx1和Fx2大于Fx3和Fx4,则为顺时针旋转,如果Fx1和Fx2小于Fx3和Fx4,则为逆时针旋转。
通过控制线圈401-404内的电流大小可以控制图像传感器旋转角度的大小,对于图像传感器平移+面内旋转模式:
X轴方向平移+面内旋转模式下,可以控制Fx1≠Fx3≠0,Fy=0;力矩MR的大小可以表示为:MR=2d*(Fx1-Fx3);
Y轴方向平移+面内旋转模式下,可以控制Fy≠0,Fx1=-Fx3≠0;通过控制Fx1方向控制力矩MR方向,从而控制旋转方向;
X轴方向平移+Y轴方向平移+面内旋转模式下,可以控制Fx1≠Fx3≠0,Fy≠0。
以上多种场景下的控制,都是基于控制线圈电流的大小进而控制洛伦兹力的大小,进而控制图像传感器不同方向补偿的位移量;通过控制不同方向线圈的电流方向进而控制洛伦兹力和对应力矩的方向,进而控制图像传感器平移和旋转的方向。
该方案的实现需要配置三个磁感应器件,可以分别设置在线圈403、404和405的中心,以实现图像传感器俯仰、偏转、旋转三个方向的位置反馈。单个控制器元件控制单个变量输出,保证不同抖动情景下控制系统输出移动补偿量Δx,Δy,Δθ与磁场强度的唯一解,可以减少复杂交叉耦合引起的误差。
图17为本申请一实施例提供的驱动组件的一种示意图。参考图17所示,其线圈的数量和排布与图16中相同,不同于图16中线圈401-404为尺寸一致的线圈,本申请实施例中,线圈401-404并不局限于须保证尺寸一致,可根据机械设计的电磁推力大小和结构需求对线圈大小和相对位置做出相应的调整,比如为了保证相同尺寸下图像传感器X轴方向的光学防抖角度足够大,可以设置线圈401和402的尺寸大于线圈403和404的尺寸。
上述本申请实施例提供的防抖马达的驱动组件,电磁驱动方案为解耦设计,配合高精度磁感应器件反馈系统,可以有效解决相关技术中防抖马达存在的光学图像不稳定、存在像旋、串扰以及迟滞等问题。
上述图3-图17为应用在潜望式长焦摄像模组中的防抖马达的结构,该防抖马达的结构还可以应用在直立式的摄像模组中。以下,以应用在主摄或者广角摄像模组中的防抖马达为例,对本申请实施例提供的防抖马达的结构,做详细的描述。
图18为本申请一实施例提供的防抖马达的另一种示意图,图19为本申请一实施例提供的防抖马达的爆炸示意图。参考图18和图19所示,本申请实施例提供的防抖马达,同样可以包括基座100、活动组件200、悬挂组件300、驱动组件、柔性电路板500等结构。
对于与上述图3-图17中的结构相同的部分,在此不再赘述,而不同之处主要在于,本申请实施例中,基座100内用来容置的光学部件可以为镜头,容置腔10可以设置为圆柱形腔体,容置腔10的底部为活动组件200,容置腔10的进光孔位于基座100的顶壁上。
对应地,不难理解,基座100上的各个结构、活动组件200、悬挂组件300、驱动组件、柔性电路板500等结构在设计时,仅需注意避让容置腔10的进光孔,防止影响到镜头的进光。
此时,柔性电路板500同样可以包括弯折段51和固定段52,固定段52需要避让容置腔10的进光口,无法贴附在基座100的顶壁上,可以参考图19所示悬空设置在基座100 的旁侧,借助电子设备内摄像模组周边的其它器件来固定,或者,固定段52可以贴附在基座100的侧壁上。
本申请实施例还提供一种摄像模组,该摄像模组可以为潜望式长焦摄像模组,包括图3-图17所示的防抖马达,防抖马达中设置有棱镜或者潜望式反射镜,该防抖马达可以和镜头、对焦马达共同构成摄像模组。
本申请实施例还提供一种摄像模组,该摄像模组可以包括图18-图19所示的防抖马达,防抖马达中设置有镜头,该摄像模组可以应用在主摄或者广角摄像模组。
本申请实施例还提供一种电子设备,包括上述本申请实施例提供的摄像模组,摄像模组具有三轴防抖能力,可以实现优质的拍摄效果,从而可以提高电子设备的竞争力。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的范围。

Claims (19)

  1. 一种防抖马达,其特征在于,包括:基座、活动组件、悬挂组件、驱动组件和柔性电路板;
    所述活动组件设置在所述基座的底部,所述活动组件包括主电路板和连接在所述主电路板上的图像传感器,所述柔性电路板的一端和所述主电路板的端面连接,另一端和板对板连接器连接,至少部分长度的所述柔性电路板贴设在所述基座的侧壁面上;
    所述悬挂组件固定连接在所述基座上,所述主电路板和所述悬挂组件连接,所述驱动组件包括动子和定子,所述动子固定在所述主电路板上,所述定子安装在所述基座内且对应设置在所述动子的上方,所述动子用于在所述定子的作用下带动所述活动组件在所述图像传感器所在的平面上平移和/或旋转。
  2. 根据权利要求1所述的防抖马达,其特征在于,所述柔性电路板包括弯折段和固定段,所述弯折段连接在所述主电路板的端面和所述固定段之间,所述弯折段呈弯折设置并贴设在所述基座的至少两个侧壁面上,所述固定段通过连接电路板和所述板对板连接器连接。
  3. 根据权利要求2所述的防抖马达,其特征在于,所述固定段贴设在所述基座的顶壁面上,所述固定段和所述连接电路板焊接。
  4. 根据权利要求2或3所述的防抖马达,其特征在于,所述柔性电路板的数量为两个,两个所述柔性电路板的弯折段分别连接在所述主电路板相对的两个端面上。
  5. 根据权利要求1-4任一项所述的防抖马达,其特征在于,所述柔性电路板和所述主电路板为软硬结合板。
  6. 根据权利要求1-5任一项所述的防抖马达,其特征在于,所述悬挂组件包括簧片和悬线,所述簧片安装在所述基座上,所述悬线的一端固定在所述簧片上,所述悬线的另一端和所述主电路板固定。
  7. 根据权利要求6所述的防抖马达,其特征在于,所述基座上设置有安装孔,所述悬线穿设在所述安装孔内,所述安装孔内填充设置有阻尼胶。
  8. 根据权利要求6所述的防抖马达,其特征在于,所述基座上设置有定位凸台,所述簧片上设置有定位孔,所述定位孔卡设在所述定位凸台内。
  9. 根据权利要求1-8任一项所述的防抖马达,其特征在于,所述动子包括第一线圈和第二线圈,所述定子包括第一磁石和第二磁石,所述第一线圈的长度方向沿第一方向延伸,所述第二线圈的长度方向沿第二方向延伸,所述第一方向和所述第二方向为所述图像传感器所在的平面上互相垂直的两个方向,所述第一线圈的长度方向的中垂线、所述第二线圈的长度方向的中垂线均经过所述图像传感器的中心;
    所述第一线圈和所述第一磁石用于驱动所述活动组件在所述第二方向上平移,所述第二线圈和所述第二磁石用于驱动所述活动组件在所述第一方向上平移。
  10. 根据权利要求9所述的防抖马达,其特征在于,所述动子还包括第三线圈,所述定子还包括第三磁石,所述第三线圈的长度方向沿所述第一方向或所述第二方向延伸,所述第三线圈的长度方向的中垂线不经过所述图像传感器的中心;
    所述第三线圈和所述第三磁石用于驱动所述活动组件在所述图像传感器所在的平面上旋转。
  11. 根据权利要求1-10任一项所述的防抖马达,其特征在于,所述活动组件还包括:附加电路板,所述图像传感器固定在所述附加电路板上,所述附加电路板焊接在所述主电路板的背向所述基座的一侧。
  12. 根据权利要求11所述的防抖马达,其特征在于,所述活动组件还包括:滤光片,所述滤光片固定在所述附加电路板上,且位于所述图像传感器的面向所述基座的一侧。
  13. 根据权利要求1-12任一项所述的防抖马达,其特征在于,所述主电路板上还设置有磁感应器件,所述磁感应器件设置在所述动子的中心。
  14. 根据权利要求1-13任一项所述的防抖马达,其特征在于,所述主电路板上还设置有温度传感器,所述温度传感器设置在所述动子内。
  15. 根据权利要求1-14任一项所述的防抖马达,其特征在于,所述防抖马达还包括驱动IC,所述驱动IC设置在所述主电路板上。
  16. 根据权利要求1-15任一项所述的防抖马达,其特征在于,所述基座上设置有容置腔,所述容置腔用于容置光学部件,所述图像传感器位于所述光学部件的出光侧,所述基座的侧壁或者顶壁上设置有开口,所述开口位于所述光学部件的进光侧。
  17. 一种摄像模组,其特征在于,包括镜头、棱镜和权利要求1-16任一项所述的防抖马达,所述棱镜安装在所述基座内,所述镜头的光轴方向平行于所述图形传感器所在的平面,所述棱镜用于反射来自所述镜头的光线以使光线垂直于所述图像传感器所在的平面。
  18. 一种摄像模组,其特征在于,包括镜头和权利要求1-16任一项所述的防抖马达,所述镜头安装在所述基座内,所述镜头的光轴方向垂直于所述图像传感器所在的平面。
  19. 一种电子设备,其特征在于,包括权利要求17或18所述的摄像模组。
PCT/CN2022/111373 2021-09-29 2022-08-10 防抖马达、摄像模组和电子设备 WO2023051043A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280019699.9A CN116998162A (zh) 2021-09-29 2022-08-10 防抖马达、摄像模组和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111154957.8 2021-09-29
CN202111154957.8A CN115914832A (zh) 2021-09-29 2021-09-29 防抖马达、摄像模组和电子设备

Publications (1)

Publication Number Publication Date
WO2023051043A1 true WO2023051043A1 (zh) 2023-04-06

Family

ID=85733863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111373 WO2023051043A1 (zh) 2021-09-29 2022-08-10 防抖马达、摄像模组和电子设备

Country Status (2)

Country Link
CN (2) CN115914832A (zh)
WO (1) WO2023051043A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116707227A (zh) * 2023-04-26 2023-09-05 苏州昀冢电子科技股份有限公司 一种马达基座、音圈马达及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110122267A1 (en) * 2009-11-06 2011-05-26 Samsung Techwin Co., Ltd. Shake correction module, camera module comprising the same, and method of manufacturing the camera module
CN207895211U (zh) * 2017-10-26 2018-09-21 华为技术有限公司 光学防抖装置
CN211266959U (zh) * 2020-02-13 2020-08-14 南昌欧菲光电技术有限公司 摄像头模组、摄像装置及电子设备
CN112804417A (zh) * 2019-11-14 2021-05-14 南昌欧菲光电技术有限公司 摄像头模组及移动终端
CN113382144A (zh) * 2021-06-09 2021-09-10 重庆市天实精工科技有限公司 传感器位移式的防抖摄像模组、摄像防抖系统及移动终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521285A (ja) * 2008-05-14 2011-07-21 ハイソニック カンパニー,リミテッド 振れ補正機能を備えた映像撮影装置
US7881598B1 (en) * 2009-12-03 2011-02-01 Tdk Taiwan Corporation Anti-shake auto-focus modular structure
CN206421133U (zh) * 2017-01-11 2017-08-18 广州市松诺电子有限公司 一种弹片式镜头抖动补偿装置
CN108174078A (zh) * 2018-03-14 2018-06-15 欧菲影像技术(广州)有限公司 摄像模组及其线路板机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110122267A1 (en) * 2009-11-06 2011-05-26 Samsung Techwin Co., Ltd. Shake correction module, camera module comprising the same, and method of manufacturing the camera module
CN207895211U (zh) * 2017-10-26 2018-09-21 华为技术有限公司 光学防抖装置
CN112804417A (zh) * 2019-11-14 2021-05-14 南昌欧菲光电技术有限公司 摄像头模组及移动终端
CN211266959U (zh) * 2020-02-13 2020-08-14 南昌欧菲光电技术有限公司 摄像头模组、摄像装置及电子设备
CN113382144A (zh) * 2021-06-09 2021-09-10 重庆市天实精工科技有限公司 传感器位移式的防抖摄像模组、摄像防抖系统及移动终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116707227A (zh) * 2023-04-26 2023-09-05 苏州昀冢电子科技股份有限公司 一种马达基座、音圈马达及其制造方法
CN116707227B (zh) * 2023-04-26 2024-03-01 苏州昀冢电子科技股份有限公司 一种马达基座、音圈马达及其制造方法

Also Published As

Publication number Publication date
CN116998162A (zh) 2023-11-03
CN115914832A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
CN211266959U (zh) 摄像头模组、摄像装置及电子设备
US10197887B2 (en) Actuator, camera module, and camera mounted device
CN211698367U (zh) 光学元件驱动机构
CN211959364U (zh) 感光组件驱动机构
JP2017037306A (ja) レンズ駆動装置
WO2020248444A1 (zh) 摄像头模组、电子设备及其光学防抖方法
CN112954186B (zh) 摄像头结构及电子设备
CN113014785B (zh) 一种柔性电路板组件、驱动装置、摄像模组及电子产品
CN113411470B (zh) 摄像模组和电子设备
CN113286062B (zh) 摄像头结构和电子设备
WO2023051043A1 (zh) 防抖马达、摄像模组和电子设备
CN113068362B (zh) 一种柔性电路板组件、驱动装置、摄像模组及电子产品
US20230156310A1 (en) Camera module with sensor shifting module
US20230102719A1 (en) Imaging apparatus
CN113946080A (zh) 带抖动修正功能的光学单元
WO2021258999A1 (zh) 摄像模组及电子设备
WO2015015999A1 (ja) 撮像モジュール及び電子機器
CN215340557U (zh) 光学系统
WO2024082846A1 (zh) 防抖组件、摄像模组及电子设备
WO2021232948A1 (zh) 具有防抖功能的感光组件、摄像模组及其组装方法
WO2023124783A1 (zh) 摄像组件和电子设备
CN113099086B (zh) 摄像头装置和电子设备
CN114245019A (zh) 一种大角度光学防抖结构装置
CN117741995A (zh) 光学系统
JP2013038678A (ja) 撮像システム及びこれを用いた電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280019699.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022874439

Country of ref document: EP

Effective date: 20240306

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024006096

Country of ref document: BR