WO2023051017A1 - 一种回收退役锂离子电池的方法和电化学系统 - Google Patents

一种回收退役锂离子电池的方法和电化学系统 Download PDF

Info

Publication number
WO2023051017A1
WO2023051017A1 PCT/CN2022/109426 CN2022109426W WO2023051017A1 WO 2023051017 A1 WO2023051017 A1 WO 2023051017A1 CN 2022109426 W CN2022109426 W CN 2022109426W WO 2023051017 A1 WO2023051017 A1 WO 2023051017A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
lithium
decommissioned
ion batteries
positive
Prior art date
Application number
PCT/CN2022/109426
Other languages
English (en)
French (fr)
Inventor
顾帅
付彤彤
郭子睿
于建国
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111142974.XA external-priority patent/CN113881850B/zh
Priority claimed from CN202111144885.9A external-priority patent/CN113881851B/zh
Application filed by 华东理工大学 filed Critical 华东理工大学
Publication of WO2023051017A1 publication Critical patent/WO2023051017A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions

Definitions

  • the invention relates to the technical field of waste recycling, in particular to a method and an electrochemical system for recycling decommissioned lithium-ion batteries.
  • Lithium-ion battery is a new type of high-energy battery that is widely used. With the development of the electronic information market and the new energy automobile industry in recent years, the scale of the global lithium-ion battery industry has gradually increased. In 2020, the global lithium-ion battery shipments will reach 294.5GWh, and the market size is about 53.5 billion US dollars. Most of the industry is concentrated in China, and it is estimated that by 2026, the market value of the global LIBs market will reach 139.36 billion US dollars. According to statistics, in 2019, the output of lithium-ion batteries in my country reached 15.722 billion, and it is estimated that the number of recycled secondary batteries will reach 780,000 tons by 2025.
  • lithium-ion batteries contain a large amount of heavy metal elements (Co, Ni, Mn, etc.) and toxic and harmful substances (electrolyte and organic solvents), which will cause great threats and harm to the ecological environment and human health if they are not disposed of properly.
  • waste lithium-ion batteries contain a large amount of valuable metal elements, among which lithium and cobalt are national strategic resources. Therefore, in order to sustainably utilize resources and protect mineral resources, it is necessary to recycle retired lithium-ion batteries for a second time.
  • the current collector material of the positive electrode is aluminum foil, and the negative electrode
  • the active material is graphite, and the current collector material is copper foil.
  • the recovery methods of decommissioned LIBs include: hydrometallurgy, pyrometallurgy and biometallurgy.
  • pretreatment is mainly dismantling, crushing, crushing, screening, filtering, sorting, magnetic separation, primary grinding, A series of operations such as sorting and secondary grinding
  • leaching is to dissolve valuable elements in an acidic or alkaline environment under the action of a reducing agent, or to reduce or oxidize high-valence transition metals through electrochemical reduction or oxidation. achieve leaching.
  • anode reaction of the traditional electrochemical reduction method is the electro-oxidation of hydroxide or chloride ions, etc.
  • the tank pressure will be too high and harmful gases will be released.
  • traditional electroreduction methods can only recover cathode materials from decommissioned Li-ion batteries, and electricity is required during the leaching process.
  • the technical problem to be solved by the present invention is to provide a method for simultaneously reclaiming the positive and negative electrodes of decommissioned lithium-ion batteries and separating valuable elements. Disassemble the positive and negative materials.
  • this method can realize the simultaneous recovery of positive and negative electrodes of decommissioned lithium-ion batteries and the separation of valuable elements, which is greatly improved compared with the electrolytic leaching method. At the same time, no external power supply is needed, energy is saved, and energy can be exported.
  • the present invention provides the following technical solutions:
  • the present invention provides a method for recycling decommissioned lithium-ion batteries, comprising the following steps:
  • the positive electrode of the decommissioned lithium-ion battery is surrounded by conductive and acid-resistant materials as the positive electrode of the primary battery system;
  • the negative electrode of the decommissioned lithium-ion battery is surrounded by conductive and acid-resistant materials as the negative electrode of the primary battery system;
  • the mixed liquid in the chamber is subjected to solid-liquid separation.
  • the method further includes simply disassembling the positive electrode and the negative electrode of the lithium ion battery, that is, obtaining the positive electrode sheet and the negative electrode sheet by disassembling the decommissioned lithium ion battery.
  • the "disassembly” here refers to simply separating the positive and negative electrodes without further processing of the positive and negative electrodes.
  • a series of operations such as dismantling, crushing, sieving, sorting, magnetic separation, grinding, primary grinding, positive electrode material sorting, and secondary grinding are required to further disassemble the positive electrode material. . Therefore, the method of the present invention, the present invention can avoid the cumbersome pretreatment process of the positive electrode material.
  • the positive electrode material or the negative electrode material of the lithium-ion battery is sandwiched by the conductive acid-resistant material to form a "sandwich” structure.
  • the conductive acid-resistant material can be two or more layers (such as three layers, four layers, etc.), specifically, the "sandwich” structure can be: conductive acid-resistant material-lithium ion battery positive electrode-conductive acid-resistant material, that is, two layers of conductive The acid-resistant material pack holds the positive electrode of the lithium-ion battery.
  • it can be: conductive acid-resistant material-lithium-ion battery negative electrode-conductive acid-resistant material, that is, two layers of conductive acid-resistant material are used to clamp the lithium-ion battery negative electrode.
  • the conductive acid-resistant material has pores.
  • the conductive acid-resistant material includes at least one of platinum, gold, palladium, lead, titanium, aluminum, copper, stainless steel, graphite, glassy carbon, carbon fiber, graphene, carbon cloth, and carbon felt,
  • platinum including platinum mesh, platinum sheet
  • gold mesh, palladium mesh, lead mesh, titanium mesh, aluminum mesh, copper mesh, stainless steel mesh, graphite material, carbon material, carbon cloth or carbon felt For example platinum (including platinum mesh, platinum sheet), gold mesh, palladium mesh, lead mesh, titanium mesh, aluminum mesh, copper mesh, stainless steel mesh, graphite material, carbon material, carbon cloth or carbon felt.
  • the "sandwich” structure can be: titanium mesh-lithium-ion battery positive electrode-titanium mesh, that is, the lithium-ion battery positive electrode is sandwiched by two layers of titanium mesh.
  • the "sandwich” structure can be: titanium mesh-lithium-ion battery negative electrode-titanium mesh, that is, two layers of titanium mesh are used to clamp the lithium-ion battery negative electrode.
  • the positive and negative electrodes can also be reinforced with a fixed net, which is mostly when flexible conductive and acid-resistant materials are used.
  • the "sandwich” structure can be: fixed net-carbon cloth (or carbon felt)-lithium ion battery positive electrode-carbon cloth (or carbon felt)-fixed net, wherein the fixed net is an acid-resistant material, with two layers of carbon cloth (or carbon felt) to clamp the positive electrode of the lithium-ion battery, and then fix it from both sides with a fixed net.
  • the "sandwich” structure can be: fixed net-carbon cloth-lithium-ion battery negative electrode-carbon cloth-fixed net, wherein the fixed net is made of acid-resistant material, and the lithium-ion battery negative pole is clamped by two layers of carbon cloth (or carbon felt) , and then fixed from both sides with a fixed net.
  • the voltage loss in the whole process is relatively large, which will eventually cause the problem of excessive cell voltage.
  • the present invention uses a "sandwich” type electrode structure in direct contact with the current collector of the positive electrode, thereby greatly reducing the voltage loss and cell pressure.
  • cell voltage or “cell voltage” used herein refers to the voltage difference between the counter electrode and the working electrode of the entire electrolytic cell.
  • the number of positive or negative plates of the decommissioned lithium-ion batteries sandwiched in the conductive acid-resistant material can be two or more (such as three, four, etc.);
  • a plurality of positive electrode sheets can be sandwiched in the conductive acid-resistant material in a tiled manner, or sandwiched in the conductive acid-resistant material in a stacked manner, or can be arranged in combination of the above two methods at the same time.
  • the positive electrode sheet of a lithium-ion battery is generally composed of a positive electrode current collector and a positive electrode active material attached to the positive electrode current collector
  • the negative electrode sheet is generally composed of a negative electrode current collector and a negative electrode active material attached to the negative electrode current collector.
  • the positive electrode current collector is generally aluminum foil
  • the positive electrode active material includes various types according to the type of lithium ion battery.
  • LiCoO 2 lithium cobalt oxide
  • LiMn 2 O 4 lithium manganese oxide
  • LiFePO 4 lithium iron phosphate
  • LiNi x Co y Mnz O 2 lithium nickel cobalt manganese oxide
  • the change in the ratio of the positive active material will only affect the output voltage of the primary battery.
  • the negative electrode current collector is copper foil
  • the negative electrode active material includes but not limited to one or more of graphite, activated carbon, and lithium titanate. The change in the proportion of the negative electrode active material will not affect the output voltage of the primary battery, because the negative electrode active material does not participate in the reaction, and only the negative electrode current collector (copper foil) participates in the electrochemical reaction.
  • the acid solution can be either an organic acid or an inorganic acid.
  • organic acid formic acid, acetic acid, propionic acid, butyric acid, octanoic acid, adipic acid, oxalic acid, malonic acid, succinic acid, maleic acid, tartaric acid, benzoic acid, phenylacetic acid, ophthalmic acid, One or more of dicarboxylic acid, terephthalic acid, valeric acid, caproic acid, capric acid, stearic acid, palmitic acid, acrylic acid, ascorbic acid, and malic acid.
  • inorganic acid one or more of hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid may be included.
  • the main function of the acid solution is to provide hydrogen ions, which are used to combine the oxygen in the transition metal oxide on the positive electrode sheet, and help the copper on the negative electrode current collector to dissolve into the solution.
  • the concentration of hydrogen ions in the solution will affect the reaction rate and output voltage.
  • the concentration of the acid solution is preferably 0.1-5M, for example, 0.1M, 0.2M, 0.5M, 1M, 1.5M, 2M, 3M, 4M, 5M and so on.
  • the acid solution is an inorganic acid, such as hydrochloric acid, sulfuric acid, nitric acid and the like.
  • the acid solution is hydrochloric acid, sulfuric acid or phosphoric acid, its concentration is 0.5-2M; when the acid solution is nitric acid, its concentration is 1-5M.
  • the acid liquid is an organic acid, its concentration is 1-5M.
  • a more preferred solution in the present invention is that the acid solution is hydrochloric acid or phosphoric acid.
  • hydrochloric acid or phosphoric acid When hydrochloric acid or phosphoric acid is used as the electrolyte, the chloride ions in hydrochloric acid and the phosphate ions in phosphoric acid will coordinate with the transition metal in the positive electrode active material, speed up the leaching rate of metal ions, and effectively increase the output voltage.
  • the concentration of hydrogen ions mainly affects the reaction rate, that is, the leaching rate. The greater the concentration, the faster the leaching rate; but if the concentration is too high, it will lead to excess acid and waste of acid.
  • the concentration of hydrochloric acid is 0.5-2M, such as 0.5M, 1M, 2M, etc., and the more preferred concentration is 1M.
  • the concentration of phosphoric acid is 0.5-2M, such as 0.5M, 1M, 1.5M, 2M and so on.
  • the acid solution is sulfuric acid.
  • sulfuric acid is used as the electrolyte, after the metal ions are leached out through the galvanic reaction, it is convenient to use the electroreduction method to directly electrodeposit the copper ions in the negative electrode chamber, thereby recovering copper metal.
  • the sulfuric acid concentration is 0.5-2M, such as 0.5M, 1M, 1.5M, 2M and so on.
  • the copper foil in the negative electrode sheet in the primary battery loses two electrons, the copper foil is oxidized to Cu 2+ and enters the electrolyte, the electrons reach the positive electrode through the external circuit, and the high-valent transition metal in the positive electrode sheet is reduced to + 2 valence, enters the electrolyte.
  • the dissolved transition metal ions and copper ions will coordinate with Cl - in the hydrochloric acid solution to form a coordination compound.
  • the final recovered products are: valuable elements (Li, Co, Ni, Mn) dissolved in the solution, Cu 2+ , part of the Cu metal powder electrodeposited on the positive electrode and the remaining active material powder (such as activated carbon powder) on the negative electrode.
  • the remaining active material powder of the negative electrode can be directly used to make new lithium-ion battery negative electrode materials, and part of the copper deposited on the positive electrode can be directly melted to make copper plates and other materials, realizing the recycling and efficient recovery of resources.
  • reaction equation of the primary battery reaction is:
  • the reaction temperature is 0-80°C, such as 0°C, 5°C, 10°C, 20°C, 25°C, 30°C, 35°C, 40°C, 45°C, 50°C, 55°C, 60°C, 65°C , 70°C, 75°C, 80°C, more preferably 0°C.
  • the stirring speed will also have a certain influence on the reaction. In the present invention, the stirring speed is preferably 300 to 1660 rpm, for example, 300 rpm, 740 rpm, 1180 rpm, 1560 rpm, or 1660 rpm.
  • the reaction time of the leaching method is 60 to 240min, a more preferred range is 120 to 180min, such as 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240 minutes.
  • the chamber of the primary battery system is further provided with a separator for separating the positive electrode and the negative electrode, that is, the chamber of the primary battery system is divided into a positive electrode chamber and a negative electrode chamber.
  • the diaphragm only allows small molecular substances (such as water molecules, etc.) to pass through, while the leached metal ions (Cu 2+ ), valuable metal ions (Li + , Co 2+ , Ni 2+ , Mn 2+ , etc.) cannot pass through the diaphragm , so Cu 2+ is confined in the electrolyte of the negative electrode chamber and will not enter the positive electrode chamber; valuable metal ions are confined in the electrolyte of the positive electrode chamber and will not enter the negative electrode chamber, thus achieving Separation of Cu 2+ from valuable metal ions.
  • the electrolyte in the negative chamber can be further recovered by electroreduction to obtain Cu powder.
  • the voltage of the electrolytic copper is 1.8-2.5V, which is generally controlled at 1.9V.
  • the separator includes but not limited to polyethylene microporous membrane, polypropylene microporous membrane, nylon microporous membrane, nitrocellulose microporous membrane, cellulose acetate microporous membrane, polysulfone microporous membrane, polyamide microporous membrane One or more of microporous membranes, polyacrylonitrile microporous membranes, polyvinyl chloride microporous membranes, polytetrafluoroethylene microporous membranes, polyvinylidene fluoride microporous membranes, and polycarbonate microporous membranes.
  • the separator is obtained by dismantling the decommissioned lithium-ion battery, so that full utilization of each part of the decommissioned lithium-ion battery can be realized.
  • the diaphragm is a polyethylene diaphragm or a polypropylene diaphragm, which has a small pore size and uniform distribution, which can block the passage of Cu 2+ and valuable metal ions, and has a certain flux at the same time, ensuring the leaching rate , so the overall performance is better.
  • an external power supply is added to the external circuit of the primary battery system, the positive pole of the primary battery system communicates with the negative pole of the external power supply, and the negative pole of the primary battery system communicates with the positive pole of the external power supply. connected.
  • no external power supply is added, although the reaction can proceed spontaneously, it is difficult to further improve the overall recovery rate. Therefore, by adding an external power source, the reaction can be promoted, the leaching rate can be increased, and the overall recovery rate can be increased.
  • the leaching rate can reach 99%, for example, the leaching rate is not lower than 99.0%, not lower than 99.1%, not lower than 99.2%, not lower than 99.2%, Not less than 99.3%, not less than 99.4%, not less than 99.5%, not less than 99.6%, not less than 99.7%, not less than 99.8%, not less than 99.9%.
  • the meaning of the term "leaching rate" in this article is the same as the leaching rate and leaching efficiency, and its calculation formula is as follows:
  • m is the content of the metal element in the leaching solution
  • M is the total content of the metal element in the decommissioned cathode material.
  • the present invention provides an electrochemical system for reclaiming decommissioned lithium-ion batteries, comprising an electrolytic cell, a positive electrode and a negative electrode, wherein an electrolyte is housed in the electrolytic cell, and the positive electrode and the negative electrode are electrically connected by wires, And both the positive electrode and the negative electrode are submerged in the electrolyte; the positive electrode is obtained by enclosing the positive plate of the decommissioned lithium-ion battery with a conductive acid-resistant material, and the negative electrode is obtained by enclosing the decommissioned lithium-ion battery with a conductive acid-resistant material. Negative sheet obtained, the electrolyte is an acid solution.
  • a diaphragm is also provided in the electrolytic cell, and the diaphragm is used to separate the positive electrode and the negative electrode, that is, the electrolytic cell is divided into a positive electrode chamber and a negative electrode chamber.
  • the diaphragm includes but not limited to polyethylene microporous membrane, polypropylene microporous membrane, nylon microporous membrane, nitrocellulose microporous membrane, cellulose acetate microporous membrane, polysulfone microporous membrane, polyamide microporous membrane One or more of microporous membranes, polyacrylonitrile microporous membranes, polyvinyl chloride microporous membranes, polytetrafluoroethylene microporous membranes, polyvinylidene fluoride microporous membranes, and polycarbonate microporous membranes.
  • the separator is a separator in a decommissioned lithium ion battery.
  • multiple positive poles, negative poles and diaphragms can be set in the electrolyzer, and multiple positive poles, negative poles and diaphragms are configured as positive pole/diaphragm/negative pole/diaphragm/positive pole
  • a repeating sequence of /separator/negative electrode is arranged in the electrolytic cell, thereby increasing the number of simultaneous treatments.
  • an external power supply is connected to the circuit between the positive pole and the negative pole, the positive pole communicates with the negative pole of the external power supply, and the negative pole communicates with the positive pole of the external power supply.
  • the method for recovering decommissioned lithium ion batteries of the present invention does not need to crush, ultrasonically oscillate, roast, sieve, sort, magnetically separate, primary grind, positive electrode material sorting, and secondary grind the decommissioned lithium ion battery positive electrode materials And a series of complex pretreatment operations, only need to disassemble the positive and negative materials.
  • the reaction can be carried out spontaneously without an external power supply, saving energy; in addition, energy can be output externally, and the output voltage has reached 0.4-1.2V.
  • the method of the present invention does not have the problem of high tank pressure, and has high economic efficiency, and can realize simultaneous recovery and separation of positive and negative electrode materials.
  • the method for recovering decommissioned lithium-ion batteries of the present invention can simultaneously reclaim valuable elements (such as lithium, cobalt, nickel, manganese, etc.) in the anode of decommissioned lithium-ion batteries and copper and carbon powder in the negative electrode;
  • the method for reclaiming decommissioned lithium ion batteries of the present invention separates the positive and negative electrodes of the original battery by setting a diaphragm in the electrolytic cell to form a positive electrode chamber and a negative electrode chamber.
  • the positive electrode chamber is leached valuable elements
  • the negative electrode chamber is copper.
  • the method for recovering decommissioned lithium ion batteries of the present invention has high leaching efficiency for valuable elements in positive electrodes, and the leaching rate can reach 99% in hydrochloric acid, sulfuric acid and nitric acid systems.
  • Fig. 1 is a structural schematic diagram of the first primary battery system constructed in the present invention.
  • Fig. 2 is a schematic structural diagram of the second primary battery system constructed in the present invention.
  • Fig. 3 is a schematic structural diagram of the third primary battery system constructed in the present invention.
  • Fig. 4 is a roadmap for simultaneously recovering positive and negative electrodes of decommissioned lithium-ion batteries using the method of the present invention.
  • Fig. 5 is the effect of concentration of hydrochloric acid, solid-to-liquid ratio, stirring speed and temperature on the leaching rate of lithium and cobalt when the hydrochloric acid leaching system reclaims the positive and negative electrodes of decommissioned lithium-ion batteries in Example 1.
  • Fig. 6 is the change curve of the lithium manganese leaching rate with time when the nitric acid leaching system recovers the positive and negative electrodes of the decommissioned lithium ion battery in Example 2.
  • Fig. 7 is a time-dependent curve of lithium iron leaching rate at 20°C (a) and 60°C (b) when the sulfuric acid leaching system recovers the positive and negative electrodes of the decommissioned lithium-ion battery in Example 3.
  • Fig. 8 shows the effects of hydrochloric acid concentration, solid-to-liquid ratio, stirring speed and temperature on lithium and cobalt leaching rates when the hydrochloric acid leaching system recovers the positive and negative electrodes of decommissioned lithium-ion batteries in Example 4.
  • Fig. 9 is the SEM figure of polyethylene membrane (a), cellulose acetate microporous membrane (b), nylon microporous membrane (c) in embodiment 5.
  • Fig. 10 is polyethylene (a), cellulose acetate microporous membrane (b) and nylon microporous membrane (c) sulfuric acid leaching system recycling decommissioned lithium-ion battery positive and negative poles time-varying curve of lithium manganese leaching rate in embodiment 5 .
  • Fig. 11 is the change curve of the lithium and iron leaching rate with time when the nitric acid leaching system recovers the positive and negative electrodes of the decommissioned lithium ion battery in Example 6.
  • Fig. 12 is the variation curve of the lithium leaching rate with time when the oxalic acid leaching system recovers the positive and negative electrodes of the decommissioned lithium ion battery in Examples 7-8.
  • a hydrochloric acid leaching system is used without adding a separator.
  • the positive electrode of the decommissioned lithium-ion battery is lithium cobalt oxide, and the negative electrode is carbon powder.
  • the positive and negative electrodes are dried, place the positive electrode in a "sandwich” electrode structure as the positive electrode of the primary battery system (the positive electrode of the decommissioned lithium-ion battery is sandwiched between two layers of platinum mesh), and place the negative electrode in a "sandwich” electrode structure.
  • the positive electrode of the decommissioned lithium-ion battery is sandwiched between two layers of platinum mesh
  • the negative electrode in a "sandwich” electrode structure In the "type electrode structure, it is used as the negative electrode of the primary battery system (the negative electrode sheet of the decommissioned lithium-ion battery is sandwiched by two layers of platinum mesh).
  • hydrochloric acid to the primary battery system, the concentration of hydrochloric acid is 0.1M, 0.5M, 1M, 2M respectively, the volume of hydrochloric acid is 300mL, 400mL, 500mL respectively, the stirring speed is 300rpm, 740rpm, 1180rpm, 1560rpm, 1660rpm respectively, and the reaction temperature is 20°C , 40°C, 60°C, 80°C, the reaction time is 120min. After the reaction, the solid-liquid mixture is separated by suction filtration to obtain a metal-rich leaching solution.
  • the optimal conditions are hydrochloric acid concentration 1M, hydrochloric acid volume 400mL, stirring speed 1560rpm, reaction temperature 20°C, and finally the leaching rates of lithium and cobalt are >99% and >99%, respectively, and the output voltage is 0.45V.
  • a nitric acid leaching system is used without adding a diaphragm.
  • the positive electrode of the decommissioned lithium ion battery is lithium manganese oxide (LiMn 2 O 4 ), and the negative electrode is lithium titanate.
  • the positive and negative electrodes are dried, place the positive electrode in a "sandwich" electrode structure as the positive electrode of the primary battery system (the positive electrode of the decommissioned lithium-ion battery is sandwiched between two layers of platinum mesh), and place the negative electrode in a "sandwich” electrode structure.
  • the "type electrode structure it is used as the negative electrode of the primary battery system (the negative electrode sheet of the decommissioned lithium-ion battery is sandwiched by two layers of platinum mesh).
  • Add nitric acid into the primary battery system the concentration of nitric acid is 2M, the volume of nitric acid is 300mL, the stirring speed is 1180rpm, the reaction temperature is 20°C, and the reaction time is 120min. After the reaction, the solid-liquid mixture is separated by suction filtration to obtain a metal-rich leaching solution.
  • a sulfuric acid leaching system is used without adding a diaphragm.
  • the positive electrode of the decommissioned lithium-ion battery is lithium iron phosphate, and the negative electrode is carbon powder.
  • the positive and negative electrodes are dried, place the positive electrode in a "sandwich" electrode structure as the positive electrode of the primary battery system (the positive electrode of the decommissioned lithium-ion battery is sandwiched between two layers of platinum mesh), and place the negative electrode in a "sandwich” electrode structure.
  • the "type electrode structure it is used as the negative electrode of the primary battery system (the negative electrode sheet of the decommissioned lithium-ion battery is sandwiched by two layers of platinum mesh).
  • Add sulfuric acid to the primary battery system the concentration of sulfuric acid is 1M, the volume of sulfuric acid is 300mL, the stirring speed is 1000rpm, the reaction temperatures are 20°C and 60°C respectively, and the reaction time is 120min. After the reaction, the solid-liquid mixture is separated by suction filtration to obtain a metal-rich leaching solution.
  • the final lithium and iron leaching rates are >99% and >99%, respectively, and the output voltage is 1.0V at 20°C and 1.1V at 60°C. It can be seen that the increase in temperature is not only beneficial to increase the output voltage, but also to accelerate the speed of the leaching reaction.
  • a hydrochloric acid leaching system is used, a diaphragm is added, and the positive electrode of the decommissioned lithium-ion battery is lithium cobalt oxide, and the negative electrode is carbon powder.
  • the disassembled separator is washed and dried, and the positive electrode is placed in a "sandwich" electrode structure as the positive electrode of a battery-like structure device (two layers of platinum mesh sandwich the decommissioned lithium-ion battery positive electrode), the negative electrode is placed in the "sandwich” electrode structure as the negative electrode of the battery-like structure device (the negative electrode of the decommissioned lithium-ion battery is sandwiched between two layers of platinum mesh).
  • the concentration of hydrochloric acid is 0.1M, 0.5M, 1M, 2M, the volume of hydrochloric acid is 300mL, 400mL, 500mL, the stirring speed is 300rpm, 740rpm, 1180rpm, 1560rpm, 1660rpm, and the reaction temperature is 20°C, 40°C, 60°C , 80°C, and the reaction time is 120min.
  • the solid-liquid mixture is separated by suction filtration to obtain the positive chamber solution and the negative chamber solution respectively.
  • the negative chamber solution is electroreduced with a copper electrode to obtain copper powder.
  • the electrolytic copper voltage is 1.8-2.5V, which is generally controlled at 1.9V.
  • the output voltage of the test battery structure was 0.44V.
  • the experiment was carried out by controlling variables and the concentration of metal ions in the positive chamber was analyzed by ICP. The results are shown in FIG. 8 .
  • the H 2 SO 4 leaching system is used, and a diaphragm is added.
  • the positive electrode of the decommissioned lithium-ion battery is lithium manganate, and the negative electrode is carbon powder.
  • the disassembled separator is washed and dried, and the positive electrode is placed in a "sandwich" electrode structure as the positive electrode of a battery-like structure device (two layers of platinum mesh sandwich the decommissioned lithium-ion battery The positive electrode of the battery), the negative electrode is placed in the "sandwich” electrode structure as the negative electrode of the battery-like structure device (the negative electrode of the decommissioned lithium-ion battery is sandwiched between two layers of platinum mesh), and 1M H 2 SO 4 is added to the primary battery system as the electrolytic Liquid, polyethylene diaphragm, cellulose acetate microporous membrane, and nylon microporous membrane are used as the battery-like structure device diaphragm to separate the positive and negative chambers, the stirring speed is 700rpm, the reaction temperature is 40°C, and the reaction time is 120min.
  • the output voltage of the test battery structure during the process is 1.1V.
  • the solid-liquid mixture is separated by suction filtration to obtain the positive chamber solution and the negative chamber solution respectively.
  • the negative chamber solution is electroreduced with a copper electrode to obtain copper sheets.
  • the electrolytic copper voltage is 1.8-2.5V, which is generally controlled at 1.9V.
  • the pore size and microscopic morphology of different membranes are different.
  • the pore size distribution of the polyethylene membrane is relatively uniform, and the pore size is small; the pore size of the cellulose acetate microporous membrane is large, but the distribution is uneven; and the pore size of the nylon microporous membrane is small, but the distribution is uneven.
  • Figure 10 shows the recovery rates of lithium and manganese corresponding to different separators. It can be seen from the figure that the polyethylene film has the best performance, and the recovery rate of lithium and manganese is the highest and greater than 99% at about 40 minutes. Due to the large pore size of the cellulose acetate microporous membrane, the flux is relatively large, so the leaching speed of money is faster in 30 minutes. However, as the time prolongs, some lithium and manganese in the positive electrode chamber enter the negative electrode chamber, resulting in the loss of lithium and manganese. The final recovery decreased with time.
  • the early leaching rate is relatively slow, and due to the uneven pore size distribution, some lithium ions migrate to the negative electrode chamber as time goes on, so the lithium ion leaching rate decreases as time goes on.
  • manganese ions did not migrate to the negative chamber.
  • a nitric acid leaching system is used, a diaphragm is added, and the positive pole of the decommissioned lithium-ion battery is lithium iron phosphate, and the negative pole is carbon powder.
  • the disassembled separator is washed and dried, and the positive electrode is placed in a "sandwich" electrode structure as the positive electrode of a battery-like structure device (two layers of platinum mesh sandwich the decommissioned lithium-ion battery The positive electrode of the battery), the negative electrode is placed in the "sandwich” electrode structure as the negative electrode of the battery-like structure device (the negative electrode of the decommissioned lithium-ion battery is sandwiched between two layers of platinum mesh), and 1M HNO3 is added to the primary battery system as the electrolyte.
  • a polyethylene diaphragm is used as a battery-like structure to separate the positive and negative chambers.
  • the stirring speed is 800 rpm
  • the reaction temperature is 20°C
  • the reaction time is 120 minutes.
  • the output voltage of the battery-like structure during the reaction is 1.0V.
  • the solid-liquid mixture is separated by suction filtration to obtain a positive chamber solution and a negative chamber solution respectively, and the negative chamber solution is electroreduced with a copper electrode to obtain a copper sheet.
  • the experiment was carried out by controlling variables and the concentration of metal ions in the positive chamber was analyzed by ICP. The results are shown in FIG. 11 .
  • this type of primary battery structure can effectively leach lithium ions and iron ions, and the leaching rate is greater than 99% in 40 minutes.
  • the oxalic acid extraction system is used without adding a separator.
  • the positive electrode of the decommissioned lithium-ion battery is lithium cobalt oxide, and the negative electrode is carbon powder.
  • the positive and negative electrodes are dried, place the positive electrode in a "sandwich" electrode structure as the positive electrode of the primary battery system (the positive electrode of the decommissioned lithium-ion battery is sandwiched between two layers of platinum mesh), and place the negative electrode in a "sandwich” electrode structure.
  • the "type electrode structure it is used as the negative electrode of the primary battery system (the negative electrode sheet of the decommissioned lithium-ion battery is sandwiched by two layers of platinum mesh).
  • Add oxalic acid to the primary battery system the concentration of oxalic acid is 3M, the volume of oxalic acid is 400mL, the stirring speed is 1180rpm, the reaction temperature is 20°C, and the reaction time is 120min. After the reaction, the solid-liquid mixture is separated by suction filtration to obtain a lithium-ion-rich leach solution. During the reaction, the output voltage was 0.78V.
  • an oxalic acid leaching system is used, a diaphragm is added, and the positive electrode of the decommissioned lithium-ion battery is lithium cobalt oxide, and the negative electrode is carbon powder.
  • the disassembled separator is washed and dried, and the positive electrode is placed in a "sandwich" electrode structure as the positive electrode of a battery-like structure device (two layers of platinum mesh sandwich the decommissioned lithium-ion battery positive electrode), the negative electrode is placed in the "sandwich” electrode structure as the negative electrode of the battery-like structure device (the negative electrode of the decommissioned lithium-ion battery is sandwiched between two layers of platinum mesh).
  • the concentration of oxalic acid is 3M, the volume of oxalic acid is 400mL, the stirring speed is 1180rpm, the reaction temperature is 20°C, and the reaction time is 120min.
  • the solid-liquid mixture was separated by suction filtration to obtain the positive chamber solution (lithium ions), the positive chamber precipitate (cobalt oxalate) and the negative chamber precipitate (copper oxalate and graphite powder in a sandwich structure), and the reaction process
  • the output voltage of the test type battery structure is 0.65V.
  • the experiment was carried out by controlling variables and the concentration of lithium ions in the positive chamber was analyzed by ICP, and the results are shown in FIG. 12 .
  • the lithium recovery rate is >99% under this condition.
  • the membrane system can realize the separate recovery of cobalt oxalate in the positive cavity and copper oxalate in the negative cavity, but the output potential of the membraneless system is higher due to the lack of membrane resistance.

Abstract

本发明公开了一种回收退役锂离子电池的方法,包括以下步骤:以导电耐酸材料包夹退役锂离子电池的正极片,作为原电池体系的正极;以导电耐酸材料包夹退役锂离子电池的负极片,作为原电池体系的负极;向所述原电池体系的腔室中注入酸液;电化学反应之后,对腔室中的混合液进行固液分离。本发明还公开了一种用于回收退役锂离子电池的电化学系统。本发明的回收退役锂离子电池的方法,无需对退役锂离子电池正极电极材料进行一系列复杂的预处理操作,只需拆解出正、负极材料即可。另外,该方法既能实现同时回收退役锂离子电池正、负极及分离有价元素,与电解浸出方法相比有极大的提升,同时无需外加电源,节省能量,还可以向外输出能量。

Description

一种回收退役锂离子电池的方法和电化学系统 技术领域
本发明涉及废物回收利用技术领域,具体涉及一种回收退役锂离子电池的方法和电化学系统。
背景技术
锂离子电池是一种广泛使用的新型高能电池。随着近年来电子信息市场和新能源汽车产业的发展,全球锂离子电池产业规模逐渐增长,2020年全球锂离子电池出货量达到294.5GWh,市场规模约为535亿美元,其中锂离子电池的产业大多数集中在中国,预计到2026年,全球LIBs市场的市值将达到1393.6亿美元。据统计,在2019年,我国锂离子电池产量达到了157.22亿只,预计到2025年二次电池回收数量将达到78万吨。退役锂离子电池中含有大量重金属元素(Co,Ni,Mn等)和有毒有害物质(电解液和有机溶剂),若是处置不当将会对生态环境和人类健康造成极大的威胁和伤害。同时,废旧锂离子电池中含有大量有价金属元素,其中锂和钴是国家战略资源,所以为了可持续利用资源、保护矿产资源,需要对退役锂离子电池进行二次回收利用。
锂离子电池的正极活性物质主要是LiCoO 2、LiNi xCo yMn zO 2(x+y+z=1)、LiMn 2O 4和LiMn 2O 4等,正极的集流体材料为铝箔,负极活性物质为石墨,集流体材料为铜箔。目前对退役LIBs回收方法有:湿法冶金、火法冶金和生物冶金。由于火法冶金高温焙烧能耗成本高且反应过程中会产生大量有毒有害气体,生物冶金的微生物培养时间长及浸出金属的效率不理想,而湿法冶金回收效率高、反应条件温和,从而得到广泛应用。传统的湿法冶金包括预处理、浸出、分离回收和再利用四个步骤:预处理主要是退役锂离子电池的拆解、破碎、粉碎、筛分、过滤、分选、磁选、一次研磨、分选、二次研磨等系列操作;浸出是在酸性或碱性环境中,在还原剂的作用下溶解其中的有价元素,或者通过电化学还原或氧化使高价态过渡金属被还原或氧化从而实现浸出。但由于传统的电化学还原法的阳极反应为电氧化氢氧根或氯离子等,会造成槽压过高,且释放有害气体。而且,传统的电还原方法仅能回收退役锂离子电池的正极材料,并且在浸出过程中需要通电。
有鉴于此,特提出本发明。
发明内容
本发明要解决的技术问题是提供一种同时回收退役锂离子电池正、负极及分离有价元素的方法,该方法无需对退役锂离子电池正极电极材料进行一系列复杂的预处理操作,只需拆解出正、负极材料即可。另外,该方法既能实现同时回收退役锂离子电池正、负极及分离有价元素,与电解浸出方法相比有极大的提升,同时无需外加电源,节省能量,且能够向外输出能量。
为了解决上述技术问题,本发明提供了如下的技术方案:
第一方面,本发明提供了一种回收退役锂离子电池的方法,包括以下步骤:
以导电耐酸材料包夹退役锂离子电池的正极片,作为原电池体系的正极;以导电耐酸材料包夹退役锂离子电池的负极片,作为原电池体系的负极;
向所述原电池体系的腔室(或称为“电解槽”)中注入酸液;
电化学反应之后,对腔室中的混合液进行固液分离。
本发明中,所述方法还包括将锂离子电池的正极与负极简单拆分开,即通过拆解退役锂离子电池得到正极片和负极片。这里的“拆解”指的是简单的将正极片与负极片拆分开,并不需要对正极片和负极片进行进一步的处理。而传统的退役锂离子电池的回收方法中,还需要将正极材料进一步进行拆解、粉碎、筛分、分选、磁选、研磨、一次研磨、正极材料分选、二次研磨等一系列操作。因此,本发明的方法,本发明可以避免对正极材料繁琐的预处理过程。
本发明中,导电耐酸材料包夹锂离子电池正极材料或负极材料,构成一种“三明治”结构。其中,导电耐酸材料可以为两层或多层(例如三层、四层等),具体地,“三明治”结构可以是:导电耐酸材料-锂离子电池正极-导电耐酸材料,即用两层导电耐酸材料包夹住锂离子电池正极。或者可以是:导电耐酸材料-锂离子电池负极-导电耐酸材料,即用两层导电耐酸材料包夹住锂离子电池负极。
作为示例性的实施方案,所述导电耐酸材料上带有孔隙。
作为示例性的实施方案,所述导电耐酸材料包括铂、金、钯、铅、钛、铝、铜、不锈钢、石墨、玻碳、碳纤维、石墨烯、碳布、碳毡中的至少一种,例如铂(包括铂网、铂片)、金网、钯网、铅网、钛网、铝网、铜网、不锈钢网、石墨材料、碳材料、碳布或碳毡。
具体的,“三明治”结构可以是:钛网-锂离子电池正极-钛网,即用两层钛网包夹住锂离子电池正极。或者“三明治”结构可以是:钛网-锂离子电池负极-钛网,即用两层钛网包夹住锂离子电池负极。
在一些实施方案中,为了便于固定住原电池体系的正极、负极,还可以使用固定网加固正极和负极,这种情况多为采用柔性的导电耐酸材料时。例如,“三明治”结构可以为:固定网-碳布(或碳毡)-锂离子电池正极-碳布(或碳毡)-固定网,其中固定网为耐酸材料,用两层碳布(或碳毡)包夹住锂离子电池正极,再用固定网从两个面固定住。或者,“三明治”结构可以为:固定网-碳布-锂离子电池负极-碳布-固定网,其中固定网为耐酸材料,用两层碳布(或碳毡)包夹住锂离子电池负极,再用固定网从两个面固定住。
由于钴酸锂等正极材料本身导电性较差,导致整个过程中电压损失较大,最终也会造成槽压过大的问题。本发明通过使用“三明治”型的电极结构与正极的集流体直接接触,从而大大降低了电压损失,降低了槽压。需要指出的是,本文中所使用的术语“槽压”或“槽电压”,是指整个电解槽的对电极和工作电极之间的电压差。
在一些实施方案中,为了提高回收的效率,导电耐酸材料中包夹的退役锂离子电池的正极片或负极片的个数可为两个或多个(例如三个、四个等等);多个正极片既可以采用平铺的方式包夹在导电耐酸材料中,也可以采用叠层的方式包夹在导电耐酸材料中,还可以同时结合上述两种方式进行排布。
锂离子电池的正极片一般由正极集流体和附着在正极集流体上的正极活性物质组成,负极片一般由负极集流体和附着在负极集流体上的负极活性物质组成。其中,正极集流体一般为铝箔,按照锂离子电池的种类,正极活性物质包括多种。本发明中,正极活性物质包括但不限于钴酸锂(LiCoO 2)、锰酸锂(LiMn 2O 4)、磷酸铁锂(LiFePO 4)、镍钴锰酸锂(LiNi xCo yMn zO 2,x≥0,y≥0,z≥0,x+y+z=1)中的一种或多种。正极片中,正极活性物质的比例变化仅仅会影响原电池输出电压。
本发明中,负极集流体为铜箔,负极活性物质包括但不限于石墨、活性炭、钛酸锂中的一种或多种。负极活性物质的比例变化不会影响原电池输出电压,因为负极活性物质不参与 反应,只有负极集流体(铜箔)参与电化学反应。
本发明中,所述酸液既可以为有机酸,也可以为无机酸。作为所述有机酸,可以包括甲酸、乙酸、丙酸、丁酸、辛酸、己二酸、乙二酸、丙二酸、丁二酸、马来酸、酒石酸、苯甲酸、苯乙酸、邻苯二甲酸、对苯二甲酸、戊酸、己酸、癸酸、硬脂酸、软脂酸、丙烯酸、抗坏血酸、苹果酸中的一种或多种。作为所述无机酸,可以包括盐酸、硫酸、硝酸和磷酸中的一种或多种。
酸液的主要作用是提供氢离子,用于结合正极片上过渡金属氧化物中的氧,并帮助负极集流体上的铜溶解进入溶液。在反应过程中,溶液中氢离子的浓度会影响反应速率和输出电压。本发明中,酸液的浓度优选为0.1~5M,例如可以为0.1M、0.2M、0.5M、1M、1.5M、2M、3M、4M、5M等等。
在优选的实施方案中,所述酸液为无机酸,如盐酸、硫酸、硝酸等。进一步地,当所述酸液为盐酸、硫酸或磷酸时,其浓度为0.5~2M;当所述酸液为硝酸时,其浓度为1~5M。当酸液为有机酸时,其浓度为1~5M。
本发明中更为优选的方案是,所述酸液为盐酸或磷酸。以盐酸或磷酸作为电解质时,盐酸中的氯离子和磷酸中的磷酸根离子会与正极活性材料中的过渡金属配位,加快金属离子的浸出速率,并有效提高输出电压。氢离子的浓度主要影响反应速率,即浸出速率,浓度越大,浸出速率越快;但是如果浓度过大,会导致酸过量造成酸的浪费。因此优选地,盐酸浓度为0.5~2M,例如0.5M、1M、2M等等,更优选的浓度为1M。优选地,磷酸的浓度为0.5~2M,例如0.5M、1M、1.5M、2M等。
另外一种优选的方案是,所述酸液为硫酸。采用硫酸作为电解液时,在通过原电池反应浸出金属离子后,便于使用电还原方法直接电沉积负极腔室中的铜离子,从而回收铜金属。优选地,硫酸浓度为0.5~2M,例如0.5M、1M、1.5M、2M等。
在原电池反应过程中,原电池中负极片中的铜箔失去两个电子,铜箔被氧化为Cu 2+进入电解液,电子通过外电路到达正极,且还原正极片中的高价过渡金属至+2价,进入电解液。溶解后的过渡金属离子和铜离子会与盐酸溶液中的Cl -配位,形成配位化合物。最终回收产物为:溶解在溶液中的有价元素(Li、Co、Ni、Mn)、Cu 2+、电沉积在正极的部分Cu金属粉末和负极剩余的活性物质粉末(例如活性炭粉末)。负极剩余的活性物质粉末可直接用于制作新的锂离子电池负极材料,正极沉积的部分铜,可直接熔融后制作铜板等材料,实现了资源的 循环利用和高效回收。
以电解液为盐酸,正极活性物质为钴酸锂,负极集流体为铜箔为例,原电池反应的反应方程式为:
总反应:Cu+Co 3O 4+8H +=Cu 2++3Co 2++4H 2O     ΔG=-252kJ/mol
正极反应:
Figure PCTCN2022109426-appb-000001
负极反应:
Figure PCTCN2022109426-appb-000002
根据HSC热力学分析可知,在25℃时,该反应的ΔG=-252kJ,ΔH=-342kJ,说明该反应为放热反应,且在常温下可自发进行,无需外加电源,节省能量。且该原电池的理论开路电压为1.3V,可以对外输出能量。不同的电解液及浓度对应不同的电化学反应,总体来说,该原电池的输出电压范围为:0.4~1.2V。在1M硫酸体系中,测试得到的开路电位为0.8V,使用2cm*4cm的正极材料和负极材料时产生的短路电流为0.076A,最大输出功率为0.001246W。
随着温度的升高,该反应的ΔG逐渐增大,说明温度的升高,不利于该反应的发生。因为该原电池反应为放热反应,温度升高不利于提高输出电压和电流密度。优选地,反应温度为0~80℃,例如0℃、5℃、10℃、20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃、80℃,更优选的为0℃。另外,搅拌速度也会对反应具有一定的影响。本发明中,搅拌速度优选为300~1660rpm,例如可以为300rpm、740rpm、1180rpm、1560rpm、1660rpm。
本发明中,浸出方法的反应间为60至240min,更优选的范围为120至180min,例如60、70、80、90、100、110、120、130、140、150、160、170、180、190、200、210、220、230、240min。
在一种优选的实施方案中,所述原电池体系的腔室中还设置有用于分隔所述正极和负极的隔膜,即将原电池体系的腔室分隔成正极腔室和负极腔室。该隔膜仅允许小分子物质(如水分子等)通过,而浸出的金属离子(Cu 2+)、有价金属离子(Li +、Co 2+、Ni 2+、Mn 2+等)并不能通过隔膜,因此Cu 2+被限制在负极腔室的电解液中,而不会进入正极腔室;有价金属离子被限制在正极腔室的电解液中,而不会进入负极腔室,因此实现了Cu 2+与有价金属离子的分离。负极腔室的电解液可进一步通过电还原的方式回收得到Cu粉末,电解铜的电压为 1.8~2.5V,一般控制在1.9V。
上述实施方案中,对于具体的隔膜种类不限,只要能够实现阻隔Cu 2+和有价金属离子的通过即可。例如,所述隔膜包括但不限于聚乙烯微孔膜、聚丙烯微孔膜、尼龙微孔膜、硝酸纤维素微孔膜、醋酸纤维素微孔膜、聚砜类微孔膜、聚酰胺类微孔膜、聚丙烯腈微孔膜、聚氯乙烯微孔膜、聚四氟乙烯微孔膜、聚偏氟乙烯微孔膜、聚碳酸酯微孔膜中的一种或多种。
在优选的实施方案中,所述隔膜为拆解退役锂离子电池而得到的隔膜,这样能够实现退役锂离子电池各部分的充分利用。优选地,所述隔膜为聚乙烯隔膜、聚丙烯隔膜,其孔径较小,且分布均匀,既能够阻挡Cu 2+和有价金属离子的通过,同时又具有一定的通量,保证了浸出速率,因此综合性能较好。
在另一优选的实施方案中,所述原电池体系的外电路中还添加有外电源,所述原电池体系的正极与外电源的负极连通,所述原电池体系的负极与外电源的正极连通。不加外电源时,虽然反应可以自发进行,但总体的回收速度难以进一步地提高。因此,通过添加外电源,能够促进反应的进行,提高浸出速率,从而提升总体的回收速度。
采用本发明的方法,在盐酸、硫酸和硝酸体系中,浸出率均可以达到99%,例如浸出率不低于99.0%、不低于99.1%、不低于99.2%、不低于99.2%、不低于99.3%、不低于99.4%、不低于99.5%、不低于99.6%、不低于99.7%、不低于99.8%、不低于99.9%。需要指出的是,本文中的术语“浸出率”的含义同浸取率、浸取效率,其计算公式如下:
浸出率=m/M×100%
上式中,m为浸取液中金属元素的含量,M为退役正极材料中该金属元素的总含量。
第二方面,本发明提供了一种用于回收退役锂离子电池的电化学系统,包括电解槽、正极和负极,所述电解槽中装有电解液,所述正极和负极通过导线电连接,且所述正极和负极均浸没于所述电解液中;所述正极是由导电耐酸材料包夹退役锂离子电池的正极片得到的,所述负极是由导电耐酸材料包夹退役锂离子电池的负极片得到的,所述电解液为酸液。
在优选的实施方案中,所述电解槽中还设置有隔膜,所述隔膜用于将所述正极和负极分隔开来,即将电解槽分隔成正极腔室和负极腔室。其中,所述隔膜包括但不限于聚乙烯微孔膜、聚丙烯微孔膜、尼龙微孔膜、硝酸纤维素微孔膜、醋酸纤维素微孔膜、聚砜类微孔膜、聚酰胺类微孔膜、聚丙烯腈微孔膜、聚氯乙烯微孔膜、聚四氟乙烯微孔膜、聚偏氟乙烯微孔 膜、聚碳酸酯微孔膜中的一种或多种。优选地,所述隔膜为退役锂离子电池中的隔膜。
在优选的实施方案中,为了提高产量以实现工业化应用,可以在电解槽中设置多个正极、负极和隔膜,且多个正极、负极和隔膜被配置为以正极/隔膜/负极/隔膜/正极/隔膜/负极的重复次序布置于所述电解槽中,从而提高了同时处理的数量。
在优选的实施方案中,所述正极和负极之间的电路上还连接有外电源,所述正极与外电源的负极连通,所述负极与外电源的正极连通。通过添加外电源,能够促进反应的进行,提高浸出速率,从而提升总体的回收效率。
与现有技术相比,本发明的有益效果在于:
1.本发明的回收退役锂离子电池的方法,无需对退役锂离子电池正极电极材料进行粉碎、超声波振荡、焙烧、筛分、分选、磁选、一次研磨、正极材料分选、二次研磨等一系列复杂的预处理操作,只需拆解出正、负极材料即可。
2.本发明的回收退役锂离子电池的方法,反应可以自发进行,不需要外加电源,节省能量;另外还可以对外输出能量,输出电压达到了0.4~1.2V。
3.与电化学还原回收退役锂离子电池正极的方法相比,本发明的方法不存在槽压高的问题,且经济性高、能够实现正、负极材料的同时回收及分离。
4.本发明的回收退役锂离子电池的方法,可以同时回收退役锂离子电池正极中的有价元素(例如锂、钴、镍、锰等)和负极中的铜、碳粉;
5.本发明的回收退役锂离子电池的方法,通过在电解槽中设置隔膜分开原电池的正负极,形成正极腔和负极腔,正极腔中为浸出的有价元素,负极腔中为铜离子,而隔膜仅允许小分子通过,从而实现了有价元素和铜离子的分离;并且负极腔中的铜离子可以通过电沉积的方式回收高价值的铜片。
6.本发明的回收退役锂离子电池的方法,对于正极中有价元素的浸出效率高,在盐酸、硫酸和硝酸体系中,浸出率均可以达到99%。
附图说明
图1是本发明构建的第一种原电池体系的结构示意图。
图2是本发明构建的第二种原电池体系的结构示意图。
图3是本发明构建的第三种原电池体系的结构示意图。
图4是采用本发明的方法同时回收退役锂离子电池正负极路线图。
图5是实施例1中盐酸浸出体系回收退役锂离子电池正、负极时盐酸浓度、固液比、搅拌速度及温度对锂、钴浸出率的影响。
图6是实施例2中硝酸浸出体系回收退役锂离子电池正、负极时锂锰浸出率随时间的变化曲线。
图7是实施例3中硫酸浸出体系回收退役锂离子电池正、负极时锂铁浸出率在20℃(a)和60℃(b)温度下随时间的变化曲线。
图8是实施例4中盐酸浸出体系回收退役锂离子电池正、负极时盐酸浓度、固液比、搅拌速度及温度对锂、钴浸出率的影响。
图9是实施例5中聚乙烯膜(a)、醋酸纤维素微孔膜(b)、尼龙微孔膜(c)的SEM图。
图10是实施例5中聚乙烯(a)、醋酸纤维素微孔膜(b)和尼龙微孔膜(c)硫酸浸出体系回收退役锂离子电池正、负极时锂锰浸出率随时间变化曲线。
图11是实施例6中硝酸浸出体系回收退役锂离子电池正、负极时锂和铁浸出率随时间的变化曲线。
图12是实施例7-8中草酸浸出体系回收退役锂离子电池正、负极时锂浸出率随时间的变化曲线。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法,所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
本实施例采用盐酸浸出体系,未添加隔膜,退役锂离子电池的正极为钴酸锂,负极为碳粉。
(1)拆解
将钴酸锂为正极、碳粉为负极的退役锂离子电池充分放电,烘干后,在手套箱内手动拆解去除外壳,分离隔膜和负极,取出正、负极片。
(2)原电池法浸提锂、钴
待正、负极片干燥之后,将正极片置于“三明治”型电极结构中作为原电池体系的正极(两层铂网包夹住退役锂离子电池的正极片),将负极片置于“三明治”型电极结构中作为原电池体系的负极(两层铂网包夹住退役锂离子电池的负极片)。向原电池体系中加入盐酸,盐酸浓度分别为0.1M、0.5M、1M、2M,盐酸体积分别为300mL、400mL、500mL,搅拌速度分别为300rpm、740rpm、1180rpm、1560rpm、1660rpm,反应温度分别20℃、40℃、60℃、80℃,反应时间为120min。反应结束后,将固液混合物抽滤分离,得到富含金属的浸取液。
反应方程为:
Figure PCTCN2022109426-appb-000003
通过控制变量进行实验并采用ICP分析浸取液中金属离子的浓度,结果如图5所示。
从图中可以看出,最优条件为盐酸浓度1M,盐酸体积400mL,搅拌速度1560rpm,反应温度20℃,最终得到锂和钴的浸取率分别为>99%和>99%,输出电压为0.45V。
实施例2
本实施例采用硝酸浸出体系,未添加隔膜,退役锂离子电池的正极为锰酸锂(LiMn 2O 4),负极为钛酸锂。
(1)拆解
将锰酸锂为正极、钛酸锂为负极的退役锂离子电池充分放电,烘干后,在手套箱内手动拆解去除外壳,分离隔膜和负极,取出正、负极片。
(2)原电池法浸提锂、锰
待正、负极片干燥之后,将正极片置于“三明治”型电极结构中作为原电池体系的正极(两层铂网包夹住退役锂离子电池的正极片),将负极片置于“三明治”型电极结构中作为原电池体系的负极(两层铂网包夹住退役锂离子电池的负极片)。向原电池体系中加入硝酸,硝 酸浓度为2M,硝酸体积为300mL,搅拌速度为1180rpm,反应温度20℃,反应时间120min。反应结束后,将固液混合物抽滤分离,得到富含金属的浸取液。
反应方程为:
Figure PCTCN2022109426-appb-000004
通过控制变量进行实验并采用ICP分析浸取液中金属离子的浓度,结果如图6所示。
从图中可以看出,最终得到锂和锰的浸取率分别为>99%和>99%,输出电压为1.16V。
实施例3
本实施例采用硫酸浸出体系,未添加隔膜,退役锂离子电池的正极为磷酸铁锂,负极为碳粉。
(1)拆解
将磷酸铁锂为正极、碳粉为负极的退役锂离子电池充分放电,烘干后,在手套箱内手动拆解去除外壳,分离隔膜和负极,取出正、负极片。
(2)原电池法浸提锂、铁
待正、负极片干燥之后,将正极片置于“三明治”型电极结构中作为原电池体系的正极(两层铂网包夹住退役锂离子电池的正极片),将负极片置于“三明治”型电极结构中作为原电池体系的负极(两层铂网包夹住退役锂离子电池的负极片)。向原电池体系中加入硫酸,硫酸浓度为1M,硫酸体积为300mL,搅拌速度为1000rpm,反应温度分别为20℃和60℃,反应时间为120min。反应结束后,将固液混合物抽滤分离,得到富含金属的浸取液。
反应方程为:
Figure PCTCN2022109426-appb-000005
通过控制变量进行实验并采用ICP分析浸取液中金属离子的浓度,结果如图7所示。
从图中可以看出,最终得到锂和铁的浸取率分别为>99%和>99%,20℃输出电压为1.0V,60℃输出电压为1.1V。可以看出,温度升高不仅有利于提高输出电压,还有利于加快浸出反应的速度。
实施例4
本实施例采用盐酸浸出体系,添加隔膜,退役锂离子电池的正极为钴酸锂,负极为碳粉。
(1)拆解
将钴酸锂为正极、碳粉为负极的退役锂离子电池充分放电,烘干后,在手套箱内手动拆解去除外壳,分离隔膜和负极,取出正、负极片;
(2)原电池法浸提锂、钴
待正、负极片干燥之后,将拆解得到的隔膜洗净后烘干,将正极片置于“三明治”型电极结构中作为类电池结构装置正极(两层铂网包夹住退役锂离子电池的正极),将负极片置于“三明治”型电极结构中作为类电池结构装置负极(两层铂网包夹住退役锂离子电池的负极)。向原电池体系中加入盐酸,并以拆解的聚乙烯隔膜作为类电池结构装置隔膜分隔出正、负极腔室。盐酸浓度分别为0.1M、0.5M、1M、2M,盐酸体积分别为300mL、400mL、500mL,搅拌速度分别为300rpm、740rpm、1180rpm、1560rpm、1660rpm,反应温度分别为20℃、40℃、60℃、80℃,反应时间为120min。反应结束后,将固液混合物抽滤分离,分别得到正极腔室溶液和负极腔室溶液,负极腔室溶液以铜电极进行电还原得到铜粉末,电解铜电压为1.8~2.5V,一般控制在1.9V。反应过程中测试类电池结构的输出电压为0.44V。
通过控制变量进行实验并采用ICP分析正极腔室金属离子的浓度,结果如图8所示。
从图8中可以看出,最优条件为盐酸浓度1M,盐酸体积400mL,搅拌速度1560rpm,反应温度60℃,最终得到锂和钴的浸取率均>99%。
实施例5
本实施例采用H 2SO 4浸出体系,添加隔膜,退役锂离子电池的正极为锰酸锂,负极为碳粉。
(1)拆解
将LiMn 2O 4为正极、碳粉为负极的退役锂离子电池充分放电,烘干后,在手套箱内手动拆解去除外壳,分离隔膜和负极,取出正、负极片。
(2)原电池法浸提锂、锰
待正、负极片干燥之后,将拆解得到的隔膜洗净后烘干,将正极片置于“三明治”型电极结构中作为类电池结构装置正极(两层铂网包夹住退役锂离子电池的正极),将负极片置于“三明治”型电极结构中作为类电池结构装置负极(两层铂网包夹住退役锂离子电池的负极),向原电池体系中加入1M H 2SO 4作为电解液,分别以聚乙烯隔膜、醋酸纤维素微孔膜、尼龙微孔膜作为类电池结构装置隔膜分隔出正、负极腔室,搅拌速度为700rpm,反应温度为40℃,反应时间为120min,反应过程中测试类电池结构的输出电压为1.1V。反应结束后,将固液 混合物抽滤分离,分别得到正极腔室溶液和负极腔室溶液,负极腔室溶液以铜电极进行电还原得到铜片,电解铜电压为1.8~2.5V,一般控制在1.9V。
通过控制变量进行实验并采用ICP分析正极腔室和负极腔室有价金属的浓度,结果如图9-10所示。
从图9可知,不同隔膜的孔径和微观形态不一。聚乙烯膜孔径分布较为均匀,且孔径较小;醋酸纤维素微孔膜孔径较大,但是分布不均;而尼龙微孔膜孔径较小,但是分布不均。
图10是不同隔膜对应的锂、锰回收率。从图中可以看出,聚乙烯膜性能最佳,在40min左右锂、锰回收率最高且大于99%。醋酸纤维素微孔膜由于孔径大,因此通量较大,所以钱30min浸出速度较快,但是,随着时间延长部分正极腔室的锂、锰进入负极腔室,造成锂、锰的损失,最终回收率随着时间延长降低。而尼龙微孔膜由于通量较小,因此前期浸出速率较慢,且由于孔径分布不均匀,所以随着时间延长,部分锂离子迁移至负极腔室,因此随着时间延长,锂离子浸出率降低,但是,由于锰离子半径较大,所以锰离子没有迁移至负极腔室。
综上,聚乙烯膜的选择性最好,但通量相比醋酸纤维素微孔膜低。
实施例6
本实施例采用硝酸浸出体系,添加隔膜,退役锂离子电池的正极为磷酸铁锂,负极为碳粉。
(1)拆解
将磷酸铁锂为正极、碳粉为负极的退役锂离子电池充分放电,烘干后,在手套箱内手动拆解去除外壳,分离隔膜和负极,取出正、负极片。
(2)原电池法浸提锂、铁
待正、负极片干燥之后,将拆解得到的隔膜洗净后烘干,将正极片置于“三明治”型电极结构中作为类电池结构装置正极(两层铂网包夹住退役锂离子电池的正极),将负极片置于“三明治”型电极结构中作为类电池结构装置负极(两层铂网包夹住退役锂离子电池的负极),向原电池体系中加入1M HNO 3作为电解液,以聚乙烯隔膜作为类电池结构装置隔膜分隔出正、负极腔室,搅拌速度为800rpm,反应温度为20℃,反应时间为120min,反应过程中测试类电池结构的输出电压为1.0V。反应结束后,将固液混合物抽滤分离,分别得到正极腔室溶液和负极腔室溶液,负极腔室溶液以铜电极进行电还原得到铜片。
通过控制变量进行实验并采用ICP分析正极腔室金属离子的浓度,结果如图11所示。
由图11可知,该类原电池结构能够有效的浸出锂离子和铁离子,且在40min时浸出率大于99%。
实施例7
本实施例采用草酸出体系,未添加隔膜,退役锂离子电池的正极为钴酸锂,负极为碳粉。
(1)拆解
将钴酸锂为正极、碳粉为负极的退役锂离子电池充分放电,烘干后,在手套箱内手动拆解去除外壳,分离隔膜和负极,取出正、负极片。
(2)原电池法浸提锂
待正、负极片干燥之后,将正极片置于“三明治”型电极结构中作为原电池体系的正极(两层铂网包夹住退役锂离子电池的正极片),将负极片置于“三明治”型电极结构中作为原电池体系的负极(两层铂网包夹住退役锂离子电池的负极片)。向原电池体系中加入草酸,草酸浓度为3M,草酸体积为400mL,搅拌速度为1180rpm,反应温度为20℃,反应时间为120min。反应结束后,将固液混合物抽滤分离,得到富含锂离子的浸取液。反应过程中输出电压为0.78V。
反应方程为:
Figure PCTCN2022109426-appb-000006
由于生成的草酸钴和草酸铜均为沉淀,所以仅通过ICP测定了锂离子的回收率,结果如图12所示。
从图中可以看出,该浸出条件下最终得到锂的浸取率>99%。
实施例8
本实施例采用草酸浸出体系,添加隔膜,退役锂离子电池的正极为钴酸锂,负极为碳粉。
(1)拆解
将钴酸锂为正极、碳粉为负极的退役锂离子电池充分放电,烘干后,在手套箱内手动拆解去除外壳,分离隔膜和负极,取出正、负极片;
(2)原电池法浸提锂
待正、负极片干燥之后,将拆解得到的隔膜洗净后烘干,将正极片置于“三明治”型电极结构中作为类电池结构装置正极(两层铂网包夹住退役锂离子电池的正极),将负极片置于 “三明治”型电极结构中作为类电池结构装置负极(两层铂网包夹住退役锂离子电池的负极)。向原电池体系中加入草酸,并以拆解的聚乙烯隔膜作为类电池结构装置隔膜分隔出正、负极腔室。草酸浓度为3M,草酸体积为400mL,搅拌速度为1180rpm,反应温度为20℃,反应时间为120min。反应结束后,将固液混合物抽滤分离,分别得到正极腔室溶液(锂离子),正极腔室沉淀(草酸钴)和负极腔室沉淀(草酸铜和三明治结构中的石墨粉),反应过程中测试类电池结构的输出电压为0.65V。
反应方程为:
总反应:
Figure PCTCN2022109426-appb-000007
正极腔:
Figure PCTCN2022109426-appb-000008
负极腔:
Figure PCTCN2022109426-appb-000009
通过控制变量进行实验并采用ICP分析正极腔室锂离子的浓度,结果如图12所示。
从图12中可以看出,该条件下锂回收率>99%。且有膜体系能够实现正极腔草酸钴和负极腔草酸铜的分别回收,但是,无膜体系由于没有膜电阻输出电位较高。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (23)

  1. 一种回收退役锂离子电池的方法,其特征在于,包括以下步骤:
    以导电耐酸材料包夹退役锂离子电池的正极片,作为原电池体系的正极;以导电耐酸材料包夹退役锂离子电池的负极片,作为原电池体系的负极;
    向所述原电池体系的腔室中注入酸液;
    电化学反应之后,对腔室中的混合液进行固液分离。
  2. 根据权利要求1所述的一种回收退役锂离子电池的方法,其特征在于,所述导电耐酸材料上带有孔隙。
  3. 根据权利要求2所述的一种回收退役锂离子电池的方法,其特征在于,所述导电耐酸材料包括铂、金、钯、铅、钛、铝、铜、不锈钢、石墨、玻碳、碳纤维、石墨烯、碳布、碳毡中的至少一种。
  4. 根据权利要求1所述的一种回收退役锂离子电池的方法,其特征在于,所述正极片中的正极活性物质包括钴酸锂、锰酸锂、磷酸铁锂、镍钴锰酸锂中的一种或多种。
  5. 根据权利要求1所述的一种回收退役锂离子电池的方法,其特征在于,所述负极片中的负极集流体为铜箔,负极活性物质包括石墨、活性炭、钛酸锂中的一种或多种。
  6. 根据权利要求1所述的一种回收退役锂离子电池的方法,其特征在于,所述酸液为有机酸或无机酸;
    所述有机酸包括甲酸、乙酸、丙酸、丁酸、辛酸、己二酸、乙二酸、丙二酸、丁二酸、马来酸、酒石酸、苯甲酸、苯乙酸、邻苯二甲酸、对苯二甲酸、戊酸、己酸、癸酸、硬脂酸、软脂酸、丙烯酸、抗坏血酸、苹果酸中的一种或多种;
    所述无机酸包括盐酸、硫酸、硝酸和磷酸中的一种或多种。
  7. 根据权利要求6所述的一种回收退役锂离子电池的方法,其特征在于,所述酸液的浓度为0.1~5M。
  8. 根据权利要求6所述的一种回收退役锂离子电池的方法,其特征在于,当所述酸液为 盐酸、硫酸或磷酸时,其浓度为0.5~2M;当所述酸液为硝酸时,其浓度为1~5M;当所述酸为有机酸时,其浓度为1~5M。
  9. 根据权利要求1~8任一项所述的一种回收退役锂离子电池的方法,其特征在于,所述原电池体系的腔室中还设置有用于分隔所述正极和负极的隔膜。
  10. 根据权利要求9所述的一种回收退役锂离子电池的方法,其特征在于,所述隔膜包括聚乙烯微孔膜、聚丙烯微孔膜、尼龙微孔膜、硝酸纤维素微孔膜、醋酸纤维素微孔膜、聚砜类微孔膜、聚酰胺类微孔膜、聚丙烯腈微孔膜、聚氯乙烯微孔膜、聚四氟乙烯微孔膜、聚偏氟乙烯微孔膜、聚碳酸酯微孔膜中的一种或多种。
  11. 根据权利要求9所述的一种回收退役锂离子电池的方法,其特征在于,所述隔膜为退役锂离子电池中的隔膜。
  12. 根据权利要求9所述的一种回收退役锂离子电池的方法,其特征在于,所述原电池体系的外电路中还添加有外电源,所述原电池体系的正极与外电源的负极连通,所述原电池体系的负极与外电源的正极连通。
  13. 一种用于回收退役锂离子电池的电化学系统,包括电解槽、正极和负极,所述电解槽中装有电解液,所述正极和负极通过导线电连接,且所述正极和负极均浸没于所述电解液中;其特征在于,所述正极是由导电耐酸材料包夹退役锂离子电池的正极片得到的,所述负极是由导电耐酸材料包夹退役锂离子电池的负极片得到的,所述电解液为酸液。
  14. 根据权利要求13所述的一种用于回收退役锂离子电池的电化学系统,其特征在于,所述导电耐酸材料上带有孔隙。
  15. 根据权利要求14所述的一种用于回收退役锂离子电池的电化学系统,其特征在于,所述导电耐酸材料包括铂、金、钯、铅、钛、铝、铜、不锈钢、石墨、玻碳、碳纤维、石墨烯、碳布、碳毡中的至少一种。
  16. 根据权利要求13所述的一种用于回收退役锂离子电池的电化学系统,其特征在于,所述导电耐酸材料中包夹有多层退役锂离子电池的正极片或负极片。
  17. 根据权利要求13所述的一种用于回收退役锂离子电池的电化学系统,其特征在于,所述正极片中的正极活性物质包括钴酸锂、锰酸锂、磷酸铁锂、镍钴锰酸锂中的一种或多种。
  18. 根据权利要求13所述的一种用于回收退役锂离子电池的电化学系统,其特征在于,所述负极片中的负极集流体为铜箔,负极活性物质包括石墨、活性炭、钛酸锂中的一种或多种。
  19. 根据权利要求13~18任一项所述的一种用于回收退役锂离子电池的电化学系统,其特征在于,所述电解槽中还设置有隔膜,所述隔膜用于将所述正极和负极分隔开来。
  20. 根据权利要求19所述的一种用于回收退役锂离子电池的电化学系统,其特征在于,所述隔膜包括聚乙烯微孔膜、聚丙烯微孔膜、尼龙微孔膜、硝酸纤维素微孔膜、醋酸纤维素微孔膜、聚砜类微孔膜、聚酰胺类微孔膜、聚丙烯腈微孔膜、聚氯乙烯微孔膜、聚四氟乙烯微孔膜、聚偏氟乙烯微孔膜、聚碳酸酯微孔膜中的一种或多种。
  21. 根据权利要求19所述的一种用于回收退役锂离子电池的电化学系统,其特征在于,所述隔膜为退役锂离子电池中的隔膜。
  22. 根据权利要求19所述的一种用于回收退役锂离子电池的电化学系统,其特征在于,所述正极、负极和隔膜均为多个,且多个正极、负极和隔膜被配置为以正极/隔膜/负极/隔膜/正极/隔膜/负极的重复次序布置于所述电解槽中。
  23. 根据权利要求19所述的一种用于回收退役锂离子电池的电化学系统,其特征在于,所述正极和负极之间的电路上还连接有外电源,所述正极与外电源的负极连通,所述负极与外电源的正极连通。
PCT/CN2022/109426 2021-09-28 2022-08-01 一种回收退役锂离子电池的方法和电化学系统 WO2023051017A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111142974.XA CN113881850B (zh) 2021-09-28 2021-09-28 同时回收锂离子电池正极和负极的方法
CN202111142974.X 2021-09-28
CN202111144885.9A CN113881851B (zh) 2021-09-28 2021-09-28 采用多层电极结构同时回收锂离子电池正极和负极的方法
CN202111144885.9 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023051017A1 true WO2023051017A1 (zh) 2023-04-06

Family

ID=85781266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109426 WO2023051017A1 (zh) 2021-09-28 2022-08-01 一种回收退役锂离子电池的方法和电化学系统

Country Status (1)

Country Link
WO (1) WO2023051017A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116207731A (zh) * 2023-05-05 2023-06-02 石家庄嘉硕电子技术有限公司 提锂槽的供电系统及提锂控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514311B1 (en) * 2001-08-20 2003-02-04 Industrial Technology Research Institute Clean process of recovering metals from waste lithium ion batteries
CN107326181A (zh) * 2017-05-26 2017-11-07 金川集团股份有限公司 废旧锂离子电池剥离浸出一步完成的回收方法
CN110983050A (zh) * 2019-12-16 2020-04-10 山东理工大学 从废旧锂离子电池正极片中回收高纯锂的方法
CN112531159A (zh) * 2021-02-05 2021-03-19 矿冶科技集团有限公司 废锂离子电池的回收利用方法和应用
CN113881851A (zh) * 2021-09-28 2022-01-04 华东理工大学 采用多层电极结构同时回收锂离子电池正极和负极的方法
CN113881850A (zh) * 2021-09-28 2022-01-04 华东理工大学 同时回收锂离子电池正极和负极的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514311B1 (en) * 2001-08-20 2003-02-04 Industrial Technology Research Institute Clean process of recovering metals from waste lithium ion batteries
CN107326181A (zh) * 2017-05-26 2017-11-07 金川集团股份有限公司 废旧锂离子电池剥离浸出一步完成的回收方法
CN110983050A (zh) * 2019-12-16 2020-04-10 山东理工大学 从废旧锂离子电池正极片中回收高纯锂的方法
CN112531159A (zh) * 2021-02-05 2021-03-19 矿冶科技集团有限公司 废锂离子电池的回收利用方法和应用
CN113881851A (zh) * 2021-09-28 2022-01-04 华东理工大学 采用多层电极结构同时回收锂离子电池正极和负极的方法
CN113881850A (zh) * 2021-09-28 2022-01-04 华东理工大学 同时回收锂离子电池正极和负极的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116207731A (zh) * 2023-05-05 2023-06-02 石家庄嘉硕电子技术有限公司 提锂槽的供电系统及提锂控制方法
CN116207731B (zh) * 2023-05-05 2023-07-07 石家庄嘉硕电子技术有限公司 提锂槽的供电系统及提锂控制方法

Similar Documents

Publication Publication Date Title
CN102751549B (zh) 一种废旧锂离子电池正极材料全组分资源化回收方法
CN109207730B (zh) 一种从废旧磷酸铁锂电池中回收锂的方法及系统
CN107196004B (zh) 一种从废旧锂离子动力电池中回收有价金属的方法
CN109234524B (zh) 一种从废旧三元锂电池中综合回收有价金属的方法及系统
CN109256597B (zh) 一种从废旧钴酸锂电池中回收锂和钴的方法及系统
CN100440615C (zh) 一种废旧锂离子电池的回收方法
CN109207725B (zh) 一种从废旧锰酸锂电池中回收锂和锰的方法及系统
WO2022127117A1 (zh) 废旧锂电池正极材料处理方法
CN100595970C (zh) 废旧锂离子电池选择性脱铜的方法
CN107326181A (zh) 废旧锂离子电池剥离浸出一步完成的回收方法
CN109687051A (zh) 一种废旧锂离子电池的正极材料回收方法
CN109256596B (zh) 一种逆向制备铝掺杂三元前驱体的方法及系统
CN101599563A (zh) 一种高效回收废旧锂电池中正极活性材料的方法
JP2012200666A (ja) Li溶液回収装置及びLi溶液回収方法
CN108270045A (zh) 一种废旧锂电池正极材料的电化学浸出方法
WO2023051017A1 (zh) 一种回收退役锂离子电池的方法和电化学系统
US20210317547A1 (en) Process for recovering metals from recycled rechargeable batteries
CN101381817A (zh) 一种从废旧锂离子电池中直接回收、生产电积钴的方法
CN108808153A (zh) 一种锂离子电池正极极片回收处理方法
CN113881850B (zh) 同时回收锂离子电池正极和负极的方法
CN113881851B (zh) 采用多层电极结构同时回收锂离子电池正极和负极的方法
CN107611514B (zh) 一种锂离子电池正极片再生系统及其方法
CN1692997A (zh) 回收处理混合废旧电池的方法及其专用焙烧炉
CN109524735B (zh) 一种废旧磷酸铁锂-钛酸锂电池的回收方法
Qin et al. Recovery and reuse of spent LiFePO4 batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874413

Country of ref document: EP

Kind code of ref document: A1