CN113881850A - 同时回收锂离子电池正极和负极的方法 - Google Patents

同时回收锂离子电池正极和负极的方法 Download PDF

Info

Publication number
CN113881850A
CN113881850A CN202111142974.XA CN202111142974A CN113881850A CN 113881850 A CN113881850 A CN 113881850A CN 202111142974 A CN202111142974 A CN 202111142974A CN 113881850 A CN113881850 A CN 113881850A
Authority
CN
China
Prior art keywords
less
lithium ion
ion battery
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111142974.XA
Other languages
English (en)
Other versions
CN113881850B (zh
Inventor
顾帅
孔娇
于建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202111142974.XA priority Critical patent/CN113881850B/zh
Publication of CN113881850A publication Critical patent/CN113881850A/zh
Priority to PCT/CN2022/109426 priority patent/WO2023051017A1/zh
Application granted granted Critical
Publication of CN113881850B publication Critical patent/CN113881850B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/324Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0069Leaching or slurrying with acids or salts thereof containing halogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/0423Halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

本发明提供了一种同时回收锂离子电池正极和负极的方法,包括以下步骤:将导电耐酸材料包夹锂离子电池正极材料,作为电极体系的阴极;将导电耐酸材料包夹锂离子电池负极材料,作为电极体系的阳极;在电极体系中加入酸溶液;反应之后进行固液分离。本发明的方法无需对锂离子电池正极和负极进行粉碎、超声波振荡、焙烧、筛分、分选、磁选、一次研磨、正极材料分选、二次研磨等一系列预处理操作。与传统的电化学还原回收退役锂离子电池正极的方法相比,本发明的方法经济性更高、槽压更低、效果更好、且能够实现正、负极材料的同时回收。

Description

同时回收锂离子电池正极和负极的方法
技术领域
本发明涉及危险固体废弃物回收领域,具体涉及同时回收锂离子电池正极和负极的方法。
背景技术
锂离子电池是一种广泛使用的清洁能源存储器件。随着近几年新能源汽车产业的发展,我国现在已经产生了大量的退役或废旧锂离子电池,而且未来随着电动汽车的普及,退役或废旧锂电池的数量必然会越来越多。预计到2023年,锂离子电池的年报废量将达到101GWh,约116万吨/年。退役或废旧锂电池中含有大量的重金属元素和有毒有害物质,若是处置不当会对自然环境和人类身体健康造成极大威胁。因此,回收利用退役或废旧锂离子电池不仅对环境保护和可持续发展具有积极作用,还能缓解自然资源短缺的压力。
锂离子电池的负极活性物质为石墨,集流体材料为铜箔,正极活性物质主要是LiCoO2、LiNixCOyMnzO2(其中,x+y+z=1)和LiMn2O4等,正极的集流体材料为铝箔。
目前,退役锂离子电池的回收方法分为干法、湿法和生物冶金三种。其中,湿法因为环境负担小,速度快,能够分离回收所有金属而广泛使用。传统的湿法冶金分为预处理、浸出、分离回收、再利用等四个步骤,其中预处理部分主要是退役锂离子电池的拆解、粉碎、筛分、分选、磁选、一次研磨、正极材料分选、二次研磨等一系列操作。后续的浸出则是在酸性或者碱性环境中在还原剂的作用下溶解其中的有价元素,或者通过电化学还原还原其中的高价态过渡金属实现浸出。但是,传统的电化学还原方法由于阳极反应为电氧化氢氧根或者氯离子等,造成槽压(或槽电压)过高,并且释放有毒气体。而且,传统的电还原方法只能回收退役锂离子电池的正极材料,不能够同时回收电池的正极材料和负极材料。
发明内容
针对现有技术存在的问题,本发明的目的在于提供一种从锂离子电池(例如,退役或废旧的锂离子电池)中同时回收正极材料、负极材料的高电流效率、低槽压(或槽电压)的方法,本发明的方法相比传统的电还原浸出方法有极大的提升。本发明的方法可以实现同时回收退役锂离子电池正极有价金属(锂、钴、镍、锰)、负极中的碳粉及负极中的铜。根据本领域一般的理解,锂离子电池(例如,退役或废旧的锂离子电池)中含有锂、钴、镍、锰、铜。例如,锂离子电池正极含有有价金属(锂、钴、镍、锰),负极中含有碳粉和铜。
本发明采用以下技术方案:
作为具体的实施方案,本申请提供了一种同时回收锂离子电池正极和负极的方法,包括以下步骤:
将导电耐酸材料包夹锂离子电池正极材料,例如将两层或更多层(例如三层、四层等等)导电耐酸材料包夹锂离子电池正极材料,作为电极体系的阴极;
将导电耐酸材料包夹锂离子电池负极材料,例如将两层或更多层(例如三层、四层等等)导电耐酸材料包夹锂离子电池负极材料,作为电极体系的阳极;
在电极体系中加入酸溶液;
反应之后进行固液分离,例如,反应结束后,将固液混合物抽滤或过滤分离,得到富含金属的浸取液和活性炭粉末。
可替代地,作为具体的实施方案,本申请提供了一种同时回收锂离子电池正极和负极的方法,包括以下步骤:
将导电耐酸材料包夹锂离子电池正极材料,例如将两层或更多层(例如三层、四层等等)导电耐酸材料包夹锂离子电池正极材料,作为两电极体系的阴极;
将导电耐酸材料包夹锂离子电池负极材料,例如将两层或更多层(例如三层、四层等等)导电耐酸材料包夹锂离子电池负极材料,作为两电极体系的阳极;
在两电极体系中加入酸溶液;
反应之后进行固液分离,例如,反应结束后,将固液混合物抽滤或过滤分离,得到富含金属的浸取液和活性炭粉末。
除非另有说明,否则本文中所使用的术语“两电极体系”为本领域技术人员的普遍理解。
可替代地,作为具体的实施方案,本申请提供了一种同时回收锂离子电池正极和负极的方法,包括以下步骤:
将导电耐酸材料包夹锂离子电池正极材料,例如将两层或更多层(例如三层、四层等等)导电耐酸材料包夹锂离子电池正极材料,作为三电极体系的阴极;
将导电耐酸材料包夹锂离子电池负极材料,例如将两层或更多层(例如三层、四层等等)导电耐酸材料包夹锂离子电池负极材料,作为三电极体系的阳极;
将参比电极与所述阳极、阴极形成三电极体系;
在三电极体系中加入酸溶液;
反应之后进行固液分离,例如,反应结束后,将固液混合物抽滤或过滤分离,得到富含金属的浸取液和活性炭粉末。
除非另有说明,否则本文中所使用的术语“三电极体系”为本领域技术人员的普遍理解。
具体地,例如,两层或更多层(例如三层、四层等等)导电耐酸材料包夹锂离子电池正极材料构成一种“三明治”结构;或者两层或更多层(例如三层、四层等等)导电耐酸材料包夹锂离子电池负极材料构成一种“三明治”结构。
作为示例的实施方案,所述导电耐酸材料带有孔隙。
作为示例的实施方案,所述导电耐酸材料包括铂、金、钯、铅、钛、铝、铜、不锈钢、石墨、玻碳、碳纤维、石墨烯、碳布、碳毡中的至少一种,例如铂(例如铂网或铂片)、金网、钯网、铅网、钛网、铝网、铜网、不锈钢网、石墨材料、碳材料、碳布或碳毡。
具体地,“三明治”结构可以是:导电耐酸材料-锂离子电池正极-导电耐酸材料,即用两层导电耐酸材料包夹住锂离子电池正极。例如,“三明治”结构:导电耐酸材料-锂离子电池负极-导电耐酸材料,即用两层导电耐酸材料包夹住锂离子电池负极。
例如,“三明治”结构可以是:钛网-锂离子电池正极-钛网,即用两层或更多层(例如三层、四层等等)钛网包夹住锂离子电池正极。例如,“三明治”结构:钛网-锂离子电池负极-钛网,即用两层或更多层(例如三层、四层等等)钛网包夹住锂离子电池负极。
为了便于固定住三电极体系的阳极、阴极,还可以使用固定网加固阳极、阴极。例如,“三明治”结构可以为:固定网-碳布(或碳毡)-锂离子电池正极-碳布(或碳毡)-固定网,其中固定网是耐酸材料,用两层碳布(或碳毡)包夹住锂离子电池正极,再用固定网从两个面固定住。例如,“三明治”结构可以为:固定网-碳布-锂离子电池负极-碳布-固定网,其中固定网是耐酸材料,用两层碳布(或碳毡)包夹住锂离子电池负极,再用固定网从两个面固定住。
图1示出了三明治电极结构的一种示意图,从左至右依次为:多孔固定网、碳布/碳毡、退役锂离子电池电极、碳布/碳毡、多孔固定网。
图2是本发明的回收路线图,先将退役锂离子电池拆分为正极与负极,再采用“三明治”结构:三明治型电极+负极(即两层或更多层(例如三层、四层等等)导电耐酸材料包夹锂离子电池负极);“三明治”结构:三明治型电极+正极(即两层或更多层(例如三层、四层等等)导电耐酸材料包夹锂离子电池正极),然后通过电氧化和电还原回收得到所需的成分。图3是本发明回收的碳粉的SEM-EDX图。
在各个实施方案中,所述方法包括将锂离子电池的正极与负极简单拆分开。这里只是简单的将正极与负极拆分开,并不需要对正极和负极进行进一步的处理。
具体地,采用“三明治”结构(两层或更多层(例如三层、四层等等)导电耐酸材料包夹锂离子电池正极材料,或者两层或更多层(例如三层、四层等等)导电耐酸材料包夹锂离子电池负极材料)的阴、阳极实现了无需预处理的退役锂离子电池正极材料、负极材料直接浸出;
阴极还原退役锂离子电池正极材料,阳极氧化退役锂离子电池负极集流体(铜箔),实现了退役锂离子电池正极材料、负极材料的同时回收,且有效的降低了槽压,提高了电流效率。
本发明有效降低槽压的原理为:
Figure BDA0003284414790000041
E1=1.82V (1)
Figure BDA0003284414790000042
E2=1.36V (2)
Figure BDA0003284414790000043
E3=1.229V (3)
Figure BDA0003284414790000044
E4=0.34V (4)
在不考虑电解液电阻,极化电位且各物种处于标准状态下时,含氯离子的溶液中理论槽压为:5.00V(反应(1)和(2)),而不含氯离子溶液中电还原理论槽压为:8.51V(反应(1)和(3))。但是,由于浸出液很多都是强酸性溶液,所以,不含氯离子的溶液的实际槽压往往大于理论值,文献中报道的实际数值为8~9V左右。但是,在本申请中使用的体系,理论槽压可以为1.25V(反应(1)和(4)),且由于浸出过程中铜离子的浓度远低于标准状态(1M),所以,实际测得的槽压不超过2.5V,优选不超过2.0V,优选不超过1.5V,优选不超过1.25V。
造成此前报道槽压较高的另一个原因是钴酸锂等正极材料本身导电性较差,导致整个过程中电压损失较大,最终也会造成槽压过大的问题。本申请则是通过使用三明治型电极结构与正极的集流体直接接触,从而大大降低了电压损失,降低了槽压。而且,本发明可以避免对正极材料繁琐的预处理过程。作为示例的实施方案,所述方法不包括对锂离子电池的正极材料和负极材料进行粉碎、超声波振荡、焙烧、筛分、磁选、研磨、正极材料分选的过程。
如本文中所使用的的术语“槽压”或“槽电压”是指整个电解槽工作电极和对电极之间的电压差。此外,工作电极的电压是相对于参比电极测量的,其中参比电极电压恒定。
在各个实施方案中,本申请的方法从锂离子电池中拆解得到的正极和负极,并不像传统的回收方法一样还需要将正极材料进一步进行拆解、粉碎、筛分、分选、磁选、研磨、一次研磨、正极材料分选、二次研磨等一系列操作。这里使用的术语“拆解”针对的是退役锂离子电池,是将退役锂离子电池拆解成正极、负极、隔膜,而非针对退役锂离子电池的正极材料和负极材料,即不对退役锂离子电池的正极材料和负极材料进行进一步的拆解。
作为示例的实施方案,所述酸溶液包括盐酸、硝酸中的至少一种,例如盐酸,例如硝酸,例如盐酸和硝酸。可替代地,所述酸溶液可以作为浸取剂。
例如,盐酸的主要作用是提供氢离子,用于结合过渡金属氧化物中的氧。氢离子的浓度主要影响反应速率,即浸出速率,但是如果浓度过大,会导致酸过量造成酸的浪费。同时盐酸能提供氯离子与过渡金属进行配位,加快浸出速率。该系统使用电子作为还原剂,还原电极材料中的高价过渡金属至+2价,而阳极则氧化其中的铜箔为Cu2+。溶解后的自由过渡金属离子和铜离子会与盐酸溶液中的Cl-配位,形成配位化合物。最终回收产物为:溶解在溶液中的有价元素(Li、Co、Ni、Mn),Cu2+和阳极剩余的活性炭粉末。阳极剩余的活性炭粉末可直接用于制作新的锂离子电池负极材料。从而实现了资源的循环利用和高效回收。
回收过程中的反应方程式为(以钴酸锂为例):
阴极
Figure BDA0003284414790000051
阳极
Figure BDA0003284414790000052
例如,浸取剂中硝酸的浓度为0.1~5mol/L,优选0.5~1mol/L。
例如,硝酸的主要作用是提供氢离子,用于和锂过渡金属氧化物的反应。因此,硝酸浓度优选0.1~5mol/L,更优选的范围为0.5~1mol/L。该系统使用电子作为还原剂,还原电极材料中的高价过渡金属至+2价,而阳极则氧化其中的铜箔为Cu2+。当溶液中出现大量的Co2+和Cu2+时,会造成Cu2+与Co3+在阴极竞争电子,所以,该反应体系中有两个阴极反应。最终回收产物为,溶解在溶液中的有价元素(Li、Co、Ni、Mn),Cu2+,电沉积在阴极的部分Cu金属粉末和阳极剩余的活性炭粉末。阳极剩余的活性炭粉末可直接用于制作新的锂离子电池负极材料。阴极沉积的部分铜,可直接熔融后制作铜板等材料,实现了资源的循环利用和高效回收。
回收过程中的反应方程式为(以钴酸锂为例):
阴极
Figure BDA0003284414790000053
阳极
Figure BDA0003284414790000054
阴极
Figure BDA0003284414790000055
优选地,浸出方法的反应间为60至240min,更优选的范围为120至180min,例如60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、195、200、205、210、215、220、225、230、235、240min。
作为示例的实施方案,所述酸溶液的浓度为0.1mol/L至5mol/L,优选0.5mol/L至1mol/L,例如0.1mol/L、0.2mol/L、0.3mol/L、0.4mol/L、0.5mol/L、0.6mol/L、0.7mol/L、0.8mol/L、0.9mol/L、1.0mol/L、1.1mol/L、1.2mol/L、1.3mol/L、1.4mol/L、1.5mol/L、1.6mol/L、1.7mol/L、1.8mol/L、1.9mol/L、2.0mol/L、2.1mol/L、2.2mol/L、2.3mol/L、2.4mol/L、2.5mol/L、2.6mol/L、2.7mol/L、2.8mol/L、2.9mol/L、3.0mol/L、3.1mol/L、3.2mol/L、3.3mol/L、3.4mol/L、3.5mol/L、3.6mol/L、3.7mol/L、3.8mol/L、3.9mol/L、4.0mol/L、4.1mol/L、4.2mol/L、4.3mol/L、4.4mol/L、4.5mol/L、4.6mol/L、4.7mol/L、4.8mol/L、4.9mol/L、5.0mol/L。
针对三电极体系,作为示例的实施方案,三电极体系中工作电极电位为-0.6V至-0.2V,例如-0.5V、-0.4V、-0.3V。
作为示例的实施方案,相对于参比电极(例如0.1981V),恒电位工作电极电压为-1V至0.5V,例如-1V、-0.9V、-0.8V、-0.7V、-0.6V、-0.5V、-0.4V、-0.3V、-0.2V、-0.1V、0.1V、0.2V、0.3V、0.4V、0.5V。
例如,三电极体系的参比电极可以是Ag/AgCl饱和KCl。
作为示例的实施方案,回收过程中槽电压不超过2.5V,例如不超过2.5V,不超过2.4V,不超过2.3V,不超过2.2V,不超过2.1V,不超过2.0V,不超过1.5V,不超过1.49V,不超过1.48V,不超过1.47V,不超过1.46V,不超过1.45V,不超过1.44V,不超过1.43V,不超过1.42V,不超过1.41V,不超过1.40V,不超过1.39V,不超过1.38V,不超过1.37V,不超过1.36V,不超过1.35V,不超过1.34V,不超过1.33V,不超过1.32V,不超过1.31V,不超过1.30V,不超过1.29V,不超过1.28V,不超过1.27V,不超过1.26V,不超过1.25V,不超过1.24V,不超过1.23V,不超过1.22V,不超过1.21V,不超过1.20V。
相比于普通的电极结构,本发明采用的三明治结构,降低了极化电位。并且,实现正负极同时回收,从理论上降低了槽压,而且实现了碳粉和铜箔的回收。前述两种效果缺一不可。本发明的三明治结构降低电极与处理的退役锂离子电池电极之间的电位差。而针对普通的电化学回收锂电池技术,主动降低槽电压并不能实现同时回收正极和负极,因为电位不够。
作为示例的实施方案,回收反应的温度可以在大约室温下进行,例如反应温度为约10℃、11℃、12℃、13℃、14℃、15℃、16℃、17℃、18℃、19℃、20℃、21℃、22℃、23℃、24℃、25℃、26℃、27℃、28℃、29℃、30℃、31℃、32℃、33℃、34℃、35℃、36℃、37℃、38℃、39℃、40℃。
本文中使用的术语“退役锂离子电池”可以与“废旧锂离子电池”互换使用。
例如,本公开中的锂离子电池的负极活性物质为石墨,正极活性物质主要是LiCoO2、LiNixCOyMnzO2(其中,x+y+z=1)和LiMn2O4等锂过渡金属氧化物。作为示例,本公开中的锂离子电池的正极的构成为:正极活性物质(锂过渡金属氧化物)、少量导电剂(一般为乙炔黑)和有机粘结剂,将它们均匀混合后,涂布在铝箔集流体上形成正极。
并非特殊的限制,本发明的回收方法包括非常简单的处理,具体地,将退役锂离子电池充分、放电,拆解去除外壳(例如可以在手套箱内进行手动或机械化操作),分离隔膜和负极,取出正极片(即正极材料);干燥正极片,使得电解液等有机溶剂挥发,这个简单的处理过程当中避免了复杂的浸出前预处理过程。
在盐酸体系中,本发明同时回收锂离子电池正极和负极的方法,其中锂的浸取率达到99%以上,例如浸取率不低于99.0%、不低于99.1%、不低于99.2%、不低于99.2%、不低于99.3%、不低于99.4%、不低于99.5%、不低于99.6%、不低于99.7%、不低于99.8%、不低于99.9%。
在盐酸体系中,本发明同时回收锂离子电池正极和负极的方法,其中钴的浸取率达到99%以上,例如浸取率不低于99.0%、不低于99.1%、不低于99.2%、不低于99.2%、不低于99.3%、不低于99.4%、不低于99.5%、不低于99.6%、不低于99.7%、不低于99.8%、不低于99.9%。
在盐酸体系中,本发明同时回收锂离子电池正极和负极的方法,其中镍的浸取率达到99%以上,例如浸取率不低于99.0%、不低于99.1%、不低于99.2%、不低于99.2%、不低于99.3%、不低于99.4%、不低于99.5%、不低于99.6%、不低于99.7%、不低于99.8%、不低于99.9%。
在盐酸体系中,本发明同时回收锂离子电池正极和负极的方法,其中锰的浸取率达到99%以上,例如浸取率不低于99.0%、不低于99.1%、不低于99.2%、不低于99.2%、不低于99.3%、不低于99.4%、不低于99.5%、不低于99.6%、不低于99.7%、不低于99.8%、不低于99.9%。
在硝酸体系中,本发明同时回收锂离子电池正极和负极的方法,其中锂的浸取率达到95%以上,例如浸取率不低于95.0%、不低于95.1%、不低于95.2%、不低于95.2%、不低于95.3%、不低于95.4%、不低于95.5%、不低于95.6%、不低于95.7%、不低于95.8%、不低于95.9%、不低于96.0%、不低于96.1%、不低于96.2%、不低于96.3%、不低于96.4%、不低于96.5%、不低于96.6%、不低于96.7%、不低于96.8%、不低于96.9%、不低于97.0%、不低于97.1%、不低于97.2%、不低于97.3%、不低于97.4%、不低于97.5%、不低于97.6%、不低于97.7%、不低于97.8%、不低于97.9%、不低于98.0%、不低于98.1%、不低于98.2%、不低于98.2%、不低于98.3%、不低于98.4%、不低于98.5%、不低于98.6%、不低于98.7%、不低于98.8%、不低于98.9%、不低于99.0%、不低于99.1%、不低于99.2%、不低于99.2%、不低于99.3%、不低于99.4%、不低于99.5%、不低于99.6%、不低于99.7%、不低于99.8%、不低于99.9%。
在硝酸体系中,本发明同时回收锂离子电池正极和负极的方法,其中钴的浸取率达到95%以上,例如浸取率不低于95.0%、不低于95.1%、不低于95.2%、不低于95.2%、不低于95.3%、不低于95.4%、不低于95.5%、不低于95.6%、不低于95.7%、不低于95.8%、不低于95.9%、不低于96.0%、不低于96.1%、不低于96.2%、不低于96.3%、不低于96.4%、不低于96.5%、不低于96.6%、不低于96.7%、不低于96.8%、不低于96.9%、不低于97.0%、不低于97.1%、不低于97.2%、不低于97.3%、不低于97.4%、不低于97.5%、不低于97.6%、不低于97.7%、不低于97.8%、不低于97.9%、不低于98.0%、不低于98.1%、不低于98.2%、不低于98.2%、不低于98.3%、不低于98.4%、不低于98.5%、不低于98.6%、不低于98.7%、不低于98.8%、不低于98.9%、不低于99.0%、不低于99.1%、不低于99.2%、不低于99.2%、不低于99.3%、不低于99.4%、不低于99.5%、不低于99.6%、不低于99.7%、不低于99.8%、不低于99.9%。
在硝酸体系中,本发明同时回收锂离子电池正极和负极的方法,其中镍的浸取率达到95%以上,例如浸取率不低于95.0%、不低于95.1%、不低于95.2%、不低于95.2%、不低于95.3%、不低于95.4%、不低于95.5%、不低于95.6%、不低于95.7%、不低于95.8%、不低于95.9%、不低于96.0%、不低于96.1%、不低于96.2%、不低于96.3%、不低于96.4%、不低于96.5%、不低于96.6%、不低于96.7%、不低于96.8%、不低于96.9%、不低于97.0%、不低于97.1%、不低于97.2%、不低于97.3%、不低于97.4%、不低于97.5%、不低于97.6%、不低于97.7%、不低于97.8%、不低于97.9%、不低于98.0%、不低于98.1%、不低于98.2%、不低于98.2%、不低于98.3%、不低于98.4%、不低于98.5%、不低于98.6%、不低于98.7%、不低于98.8%、不低于98.9%、不低于99.0%、不低于99.1%、不低于99.2%、不低于99.2%、不低于99.3%、不低于99.4%、不低于99.5%、不低于99.6%、不低于99.7%、不低于99.8%、不低于99.9%。
在硝酸体系中,本发明同时回收锂离子电池正极和负极的方法,其中锰的浸取率达到95%以上,例如浸取率不低于95.0%、不低于95.1%、不低于95.2%、不低于95.2%、不低于95.3%、不低于95.4%、不低于95.5%、不低于95.6%、不低于95.7%、不低于95.8%、不低于95.9%、不低于96.0%、不低于96.1%、不低于96.2%、不低于96.3%、不低于96.4%、不低于96.5%、不低于96.6%、不低于96.7%、不低于96.8%、不低于96.9%、不低于97.0%、不低于97.1%、不低于97.2%、不低于97.3%、不低于97.4%、不低于97.5%、不低于97.6%、不低于97.7%、不低于97.8%、不低于97.9%、不低于98.0%、不低于98.1%、不低于98.2%、不低于98.2%、不低于98.3%、不低于98.4%、不低于98.5%、不低于98.6%、不低于98.7%、不低于98.8%、不低于98.9%、不低于99.0%、不低于99.1%、不低于99.2%、不低于99.2%、不低于99.3%、不低于99.4%、不低于99.5%、不低于99.6%、不低于99.7%、不低于99.8%、不低于99.9%。
本文中所使用的术语“浸取”和“浸出”、“浸提”可互换使用。本文中所使用的术语“浸取率(Leaching efficiency)”和“浸取效率”可互换使用。浸取率的计算公式如下:
Figure BDA0003284414790000081
上式中,m为浸取液中金属元素的含量,M为退役正极材料中该金属元素的总含量。
在本文中如无特殊说明,本文中所购买的物质或所使用的物质的纯度等级为化学纯、分析纯或优级纯,优选为分析纯,更优选为优级纯。
如本文所使用的,“和/或”包括任何和一个或多个关联列出项的所有组合的术语。这里使用的术语仅用于描述具体实施例的,而不是意在限制本发明。如本文所使用的,单数形式“一”,“一个”和“一种”也意图包括复数形式,除非上下文另外明确指出。进一步理解,“包括”在本说明书中使用时,指定所陈述的特征,整数,步骤,操作,元素和/或组成,但不排除存在或附加一个或多个其它特征,整数,步骤,操作,元件,组成和/或它们的组合。
除非另有定义,本文使用的所有术语(包括技术和科学术语)具有本发明所属的技术领域中普通技术人员普遍理解的相同的含义。进一步理解,术语,诸如在常用词典中定义,解释与它们在相关领域的环境下的含义一致,并且不是理想化或过于正式的意义,除非这里明确地如此定义。
除非本文另外指出或上下文明显矛盾,否则本文描述的所有方法可以以任何合适的顺序执行。
除非另外指出,否则本文提供的任何和所有实施例或示例性语言(诸如,“例如”)的使用仅意在更好地阐明本发明,而不对本发明的范围构成限制。除非明确说明,否则说明书中的语言均不应解释为表示任何要素对于实施本发明是必不可少的。
本文所描述的示例性发明可以适当地缺少任何一种或多种要素限制,这里没有特别公开。因此,“包含”,“包括”,“含有”等的术语应被宽泛和非限制性地理解。另外,本文所使用的术语表达被用作描述,没有限制,并且在使用这些不包括任何等价特性的术语表达是无意的,只是描述它们的一部分特性,但是根据权利,在本发明的范围内各种修改是可能。因此,虽然本发明已通过优选实施例和任选特征被具体公开,在此公开的修改以体现的本发明的变化可能会被本领域的技术人员记录,并且这样的修改和变化会被认为在本发明的范围之内。
相比于现有技术,本发明的有益效果:
(1)与传统的电化学还原回收退役锂离子电池正极的方法相比,本发明的方法经济性更高,槽压更低、效果更好、且能够实现正、负极材料的同时回收;
(2)本发明可以同时回收退役锂离子电池正极中有价元素(例如,锂、钴、镍、锰)和负极中的铜及碳粉;
(3)本发明显著降低了电化学氧化还原的槽压,极大提高了电流效率(例如,-0.4V电流效率为88.12%,有了显著提高);
(4)本发明的浸取效率高,硝酸体系下可以达到95%以上的浸取率,盐酸体系下可以达到99%以上的浸取率,盐酸体系中氯离子具有配位作用,形成了更稳定的配位结构因此加快了浸出反应的动力学并使有价元素浸出反应向进一步溶解的方向移动;
(5)本发明的方法无需对退役锂离子电池正极和负极进行粉碎、超声波振荡、焙烧、筛分、分选、磁选、一次研磨、正极材料分选、二次研磨等一系列预处理操作。
附图说明
图1示出了三明治电极结构示意图,从左至右依次为:多孔固定网、碳布/碳毡、退役锂离子电池电极、碳布/碳毡、多孔固定网;
图2是本发明的回收路线图;
图3是本发明回收的碳粉的SEM-EDX图;
图4是实施例1在不同工作电极电位下的Li、Co元素的浸取率;
图5是实施例1回收得到的活性碳粉的粒径分布;
图6是实施例2在不同工作电极电位下的Li、Co元素的浸取率;
图7是实施例2在不同工作电极电位下的Ni、Mn元素的浸取率;
图8是实施例2回收得到的活性碳粉的粒径分布;
图9是实施例2回收得到的铜粉的SEM-EDX图。
具体实施方式
为了更好的解释本发明,现结合以下具体实施例作进一步说明,但是本发明不限于具体实施例。
实施例1
一种同时回收锂离子电池正极和负极的方法,通过以下步骤实现:
(1)拆解:
将退役锂离子电池充分放电,在手套箱内进行手动拆解去除外壳,分离隔膜和负极,取出正极片(即正极材料)和负极片(即负极材料);干燥正极和负极,使得电解液等有机溶剂挥发,这个过程无需复杂的浸出前预处理过程。
(2)电氧化还原浸提锂、钴、镍、锰、铜及活性碳粉:
待正极和负极干燥之后,在传统的三电极体系中加入1M盐酸,阳极是三明治结构的电极+退役锂离子电池负极(两层铂网包夹住退役锂离子电池负极),阴极是三明治结构的电极+退役锂离子电池正极(两层铂网包夹住退役锂离子电池正极)。反应温度25℃,反应时间180min,参比电极是Ag/AgCl饱和KCl,工作电极电位为-0.6至-0.2V;反应结束后,将固液混合物抽滤分离,得到富含金属的浸取液和活性炭粉末。以-0.4V工作电极电压为例,监测的槽压为1.68V,计算得到的电流效率为88.12%,采用ICP分析浸取液中金属离子的浓度,计算得到锂、钴、镍、锰的浸取率分别为>99.81%、>99.68%、>99.45%和>99.15%。以1A恒电流为例,反应温度25℃,反应时间180min,监测的槽压为1.74V,计算得到的电流效率为87.25%,采用ICP分析浸取液中金属离子的浓度,计算得到锂、钴、镍、锰的浸取率分别为>99.89%、>99.78%、>99.52%和>99.19%。其中铜粉在阴极被还原,而碳粉在阳极获得,不在同一个电极上,因此很容易分开。
图4是实施例1在不同工作电极电位下的Li、Co元素的浸取率。图5示出了实施例1回收得到的活性炭粉末的粒径分布,表明通过本发明回收得到的活性炭粉末可以直接用于锂离子电池的负极材料加工。
这里的回收方法不需要将正极材料进行拆解、粉碎、筛分、分选、磁选、研磨、一次研磨、正极材料分选、二次研磨、粉碎、超声波振荡、焙烧等一系列操作。
这里的回收方法不需要对锂离子电池的负极材料进行粉碎、超声波振荡、焙烧、筛分、磁选、研磨的过程。
实施例2
一种同时回收锂离子电池正极和负极的方法,通过以下步骤实现:
(1)拆解:
将退役锂离子电池充分放电,在手套箱内进行手动拆解去除外壳,分离隔膜和负极,取出正极片(即正极材料)和负极片(即负极材料);干燥正极和负极,使得电解液等有机溶剂挥发,这个过程无需复杂的浸出前预处理过程。
(2)电氧化还原浸提锂、钴、镍、锰、铜及活性碳粉:
待正极和负极干燥之后,在传统的三电极体系中加入1M硝酸,阳极是三明治结构的电极+退役锂离子电池负极(两层钛网包夹住退役锂离子电池负极),阴极是三明治结构的电极+退役锂离子电池正极(两层钛网包夹住退役锂离子电池正极)。反应温度25℃,反应时间180min,参比电极是Ag/AgCl饱和KCl,工作电极电位为-0.2V至-0V;反应结束后,将固液混合物抽滤分离,得到富含金属的浸取液和活性炭粉末。采用ICP分析浸取液中金属离子的浓度,计算得到锂和钴的浸取率分别为>95%和>95%。以-0.2V工作电极电压为例,监测的槽压为1.89V,计算得到的电流效率为84.25%。
图6是实施例2在不同工作电极电位下的Li、Co元素的浸取率;图7是实施例2在不同工作电极电位下的Ni、Mn元素的浸取率。图8示出了实施例2回收得到的活性炭粉末的粒径分布,表明其可以直接用于锂离子电池的负极材料加工。图9是回收得到的铜粉的SEM-EDX图。
这里的回收方法不需要将正极材料进行拆解、粉碎、筛分、分选、磁选、研磨、一次研磨、正极材料分选、二次研磨、粉碎、超声波振荡、焙烧等一系列操作。
这里的回收方法不需要对锂离子电池的负极材料进行粉碎、超声波振荡、焙烧、筛分、磁选、研磨的过程。
此外,将酸溶液浓度调整为0.2mol/L、0.5mol/L、0.8mol/L、1.2mol/L、1.5mol/L、2.0mol/L、2.5mol/L、3.0mol/L、3.5mol/L、4.0mol/L后也可以获得类似的技术效果。
实施例3
一种同时回收锂离子电池正极和负极的方法,通过以下步骤实现:
(1)拆解:
将退役锂离子电池充分放电,在手套箱内进行手动拆解去除外壳,分离隔膜和负极,取出正极片(即正极材料)和负极片(即负极材料);干燥正极和负极,使得电解液等有机溶剂挥发,这个过程无需复杂的浸出前预处理过程。
(2)电氧化还原浸提锂、钴、镍、锰、铜及活性碳粉:
待正极和负极干燥之后,在传统的两电极体系(阴极和阳极)中加入1M盐酸,其中阳极是三明治结构的电极+退役锂离子电池负极(即:两层铂网包夹住退役锂离子电池负极的多层结构),阴极是三明治结构的电极+退役锂离子电池正极(即:两层铂网包夹住退役锂离子电池正极的多层结构)。反应温度25℃,反应时间180min,控制槽压为0.5至2V,或者恒电流为0.01A~5A;反应结束后,得到沉积在阴极的Cu,得到阳极剩余的活性炭粉末和富含金属的浸取液。当采用恒电位控制槽压为1V时,采用ICP分析浸取液中金属离子的浓度,计算得到锂、钴、镍、锰的浸取率分别为>99.48%、>99.92%、>99.15%和>99.07%。恒电流1A,反应温度25℃,反应时间120min时,采用ICP分析浸取液中金属离子的浓度,计算得到锂、钴、镍、锰的浸取率分别为>99.52%、>99.98%、>99.02%和>99.09%。其中铜在阴极被还原,而碳粉在阳极获得,不在同一个电极上,因此很容易分开。
在工业实践中为了提高产量,可以使用多层阴阳极叠加(阴极-多孔隔膜-阳极-多孔隔膜-阴极不断重复的方式)或者电解槽串联的方式提高同时处理的数量,采用恒电压时施加的电压按照叠层的数量成倍增加,而采用恒电流时电流值不受影响。
对比例1
一种同时回收锂离子电池正极的方法,通过以下步骤实现:
(1)拆解:
将退役锂离子电池充分放电,在手套箱内进行手动拆解去除外壳,分离隔膜和负极,取出正极片(即正极材料)和负极片(即负极材料);干燥正极,使得电解液等有机溶剂挥发。
(2)正极预处理:
将拆解后的正极材料进行粉碎、筛分、分选、磁选、研磨、一次研磨、正极材料分选、二次研磨、粉碎、超声波振荡、焙烧等一系列操作获得退役锂离子电池正极材料粉末。
(3)正极粉末制备阴极
将获得的正极粉末与炭黑1:1混合,然后加入适量的PVDF(作为粘结剂)并均匀的涂布于铂网电极上,然后将涂布好的电极在40℃下烘干,制成阴极。
(4)电还原浸提锂、钴、镍、锰:
完成制作阴极后,以铂网作为阳极,Ag/AgCl饱和KCl作为参比电极,在三电极体系中浸出正极粉末中的有价元素(锂、钴、镍、锰),在传统的三电极体系中加入1M盐酸,反应温度25℃,反应时间180min,反应结束后,采用ICP分析浸取液中金属离子的浓度,计算得到锂、钴、镍、锰的浸取率分别为89%、72%、78%和76%。以1A恒电流为例,监测的槽压为8.74V,计算得到的电流效率为51.24%。
可见采用非三明治结构电极,且阳极为铂片时,槽压远高于实施例1,且电流效率和有价元素回收率显著下降。
对比例2
(1)拆解:
将退役锂离子电池充分放电,在手套箱内进行手动拆解去除外壳,分离隔膜和负极,取出正极片(即正极材料)和负极片(即负极材料);干燥正极和负极,使得电解液等有机溶剂挥发。
(2)正、负极预处理:
将拆解后的正极材料进行粉碎、筛分、分选、磁选、研磨、一次研磨、正极材料分选、二次研磨、粉碎、超声波振荡、焙烧等一系列操作获得退役锂离子电池正极材料粉末和粉末,将负极材料直接进行粉碎和研磨,得到含有碳粉和铜粉的负极粉末。
(3)正极粉末制备阴极
将获得的正极粉末与炭黑1:1混合,然后加入适量的PVDF(作为粘结剂)并均匀的涂布于铂网电极上,然后将涂布好的电极在40℃下烘干,制成阴极。
(4)负极粉末制备阳极
将获得的负极粉末与PVDF混合并均匀的涂布于铂网电极上,然后将涂布好的电极在40℃下烘干,制成阳极。
(5)电还原浸提锂、钴、镍、锰:
完成制作阴、阳极后,以Ag/AgCl饱和KCl作为参比电极,在三电极体系中浸出正极粉末中的有价元素(锂、钴、镍、锰),和负极粉末中的铜,在传统的三电极体系中加入1M盐酸,反应温度25℃,反应时间180min,反应结束后,采用ICP分析浸取液中金属离子的浓度,计算得到锂、钴、镍、锰,铜的浸取率分别为91%、77%、79%,78%和85%。以1A恒电流为例,监测的槽压为6.23V,计算得到的电流效率为58.12%。
可见采用非三明治结构电极,且阳极为铜粉和碳粉混合物时,槽压低于对比例1,但显著高于实施例1,且电流效率和有价元素回收率也高于对比例1但显著低于实施例1。该对比例证明,阳极中含有铜粉能够显著降低槽压,提高回收率和电流效率。
对比例1和对比例2,充分说明了三明治结构和阳极中含有铜的重要性,两者结合能够大幅降低槽压,且提高浸出率和电流效率。
对比例3
采用对比例1的回收方法,区别在于,阳极是铅板,电解液为为20g/L硫酸+18g/L柠檬酸,实验结果为锂和钴浸出率为94%和90%,槽压为8V,电流效率为70%。
可见即使采用优化后的电解液,槽压也远高于实施例1,且电流效率和有价元素回收率相比于实施例显著下降,且由于阳极中不含铜箔,溶液中不能得到溶解后的铜离子,也不能获得可直接用于生产锂离子电池负极的活性炭粉末。
以上所述仅为本发明的具体实施例,并非因此限制本发明的专利范围,凡是利用本发明作的等效变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围之中。
对于实施例中未注明具体条件的,按照常规条件或制造商建议的条件进行。对于所用试剂或仪器未注明生产厂商的,均为可以通过市售购买获得的常规产品。

Claims (10)

1.同时回收锂离子电池正极和负极的方法,其特征在于,包括以下步骤:
将导电耐酸材料包夹锂离子电池正极材料,作为电极体系的阴极;
将导电耐酸材料包夹锂离子电池负极材料,作为电极体系的阳极;
在电极体系中加入酸溶液;
反应之后进行固液分离。
2.根据权利要求1所述的方法,其特征在于,包括以下步骤:
将导电耐酸材料包夹锂离子电池正极材料,作为两电极体系的阴极;
将导电耐酸材料包夹锂离子电池负极材料,作为两电极体系的阳极;
在两电极体系中加入酸溶液;
反应之后进行固液分离。
3.根据权利要求1所述的方法,其特征在于,包括以下步骤:
将导电耐酸材料包夹锂离子电池正极材料,作为三电极体系的阴极;
将导电耐酸材料包夹锂离子电池负极材料,作为三电极体系的阳极;
将参比电极与所述阳极、阴极形成三电极体系;
在三电极体系中加入酸溶液;
反应之后进行固液分离。
4.根据权利要求1-3中任一项所述的方法,其特征在于,所述方法不包括对锂离子电池的正极材料和负极材料进行粉碎、超声波振荡、焙烧、筛分、磁选、研磨的过程。
5.根据权利要求1-3中任一项所述的方法,其特征在于,所述导电耐酸材料带有孔隙。
6.根据权利要求1-3中任一项所述的方法,其特征在于,所述导电耐酸材料包括铂、金、钯、铅、钛、铝、铜、不锈钢、石墨、玻碳、碳纤维、石墨烯、碳布、碳毡中的至少一种。
7.根据权利要求1-3中任一项所述的方法,其特征在于,所述酸溶液包括盐酸、硝酸中的至少一种。
8.根据权利要求1-3中任一项所述的方法,其特征在于,所述酸溶液的浓度为0.1mol/L至5mol/L。
9.根据权利要求1-3中任一项所述的方法,其特征在于,回收过程中槽电压不超过2.5V。
10.根据权利要求3所述的方法,其特征在于,三电极体系中工作电极电位为-0.6V至-0.2V;相对于参比电极,恒电位工作电极电压为-1V至0.5V。
CN202111142974.XA 2021-09-28 2021-09-28 同时回收锂离子电池正极和负极的方法 Active CN113881850B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111142974.XA CN113881850B (zh) 2021-09-28 2021-09-28 同时回收锂离子电池正极和负极的方法
PCT/CN2022/109426 WO2023051017A1 (zh) 2021-09-28 2022-08-01 一种回收退役锂离子电池的方法和电化学系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111142974.XA CN113881850B (zh) 2021-09-28 2021-09-28 同时回收锂离子电池正极和负极的方法

Publications (2)

Publication Number Publication Date
CN113881850A true CN113881850A (zh) 2022-01-04
CN113881850B CN113881850B (zh) 2022-09-06

Family

ID=79007445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111142974.XA Active CN113881850B (zh) 2021-09-28 2021-09-28 同时回收锂离子电池正极和负极的方法

Country Status (1)

Country Link
CN (1) CN113881850B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115744932A (zh) * 2022-11-04 2023-03-07 苏州第一元素纳米技术有限公司 一种金属锂的提取方法
WO2023051017A1 (zh) * 2021-09-28 2023-04-06 华东理工大学 一种回收退役锂离子电池的方法和电化学系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102965508A (zh) * 2012-11-02 2013-03-13 中南大学 一种废旧锂电池正极材料电解处理方法
CN106025421A (zh) * 2016-08-12 2016-10-12 合肥国轩高科动力能源有限公司 一种锂电池电极的电镀剥离回收方法
CN108270045A (zh) * 2018-01-05 2018-07-10 昆明理工大学 一种废旧锂电池正极材料的电化学浸出方法
CN110453071A (zh) * 2018-08-06 2019-11-15 南方科技大学 从废旧锂电池中回收金属的方法及其装置
CN110820014A (zh) * 2019-12-16 2020-02-21 山东理工大学 从废旧锂离子电池负极片中回收石墨片和金属的方法
CN111411366A (zh) * 2020-04-26 2020-07-14 华中科技大学 一种固相电解回收磷酸铁锂废料中金属离子的方法
CN112251776A (zh) * 2020-10-22 2021-01-22 中钢集团南京新材料研究院有限公司 一种从废旧锂电池正极材料中回收金属的方法
CN112938949A (zh) * 2021-03-04 2021-06-11 广东邦普循环科技有限公司 利用锂电池废旧负极石墨制备石墨烯的方法和石墨烯

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102965508A (zh) * 2012-11-02 2013-03-13 中南大学 一种废旧锂电池正极材料电解处理方法
CN106025421A (zh) * 2016-08-12 2016-10-12 合肥国轩高科动力能源有限公司 一种锂电池电极的电镀剥离回收方法
CN108270045A (zh) * 2018-01-05 2018-07-10 昆明理工大学 一种废旧锂电池正极材料的电化学浸出方法
CN110453071A (zh) * 2018-08-06 2019-11-15 南方科技大学 从废旧锂电池中回收金属的方法及其装置
CN110820014A (zh) * 2019-12-16 2020-02-21 山东理工大学 从废旧锂离子电池负极片中回收石墨片和金属的方法
CN111411366A (zh) * 2020-04-26 2020-07-14 华中科技大学 一种固相电解回收磷酸铁锂废料中金属离子的方法
CN112251776A (zh) * 2020-10-22 2021-01-22 中钢集团南京新材料研究院有限公司 一种从废旧锂电池正极材料中回收金属的方法
CN112938949A (zh) * 2021-03-04 2021-06-11 广东邦普循环科技有限公司 利用锂电池废旧负极石墨制备石墨烯的方法和石墨烯

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023051017A1 (zh) * 2021-09-28 2023-04-06 华东理工大学 一种回收退役锂离子电池的方法和电化学系统
CN115744932A (zh) * 2022-11-04 2023-03-07 苏州第一元素纳米技术有限公司 一种金属锂的提取方法
CN115744932B (zh) * 2022-11-04 2024-01-26 苏州第一元素纳米技术有限公司 一种金属锂的提取方法

Also Published As

Publication number Publication date
CN113881850B (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
CN109256597B (zh) 一种从废旧钴酸锂电池中回收锂和钴的方法及系统
CN109234524B (zh) 一种从废旧三元锂电池中综合回收有价金属的方法及系统
JP3452769B2 (ja) 電池の処理方法
CN113881850B (zh) 同时回收锂离子电池正极和负极的方法
CN113881851B (zh) 采用多层电极结构同时回收锂离子电池正极和负极的方法
Fan et al. Separation and recovery of valuable metals from spent lithium-ion batteries via concentrated sulfuric acid leaching and regeneration of LiNi1/3Co1/3Mn1/3O2
JP2017115179A (ja) 有価物の回収方法
CN107326181A (zh) 废旧锂离子电池剥离浸出一步完成的回收方法
CN111270072B (zh) 一种废旧磷酸铁锂电池正极材料的回收利用方法
CN112117507B (zh) 一种废旧锂离子电池正极材料高效回收与再生的方法
CN108486376A (zh) 一种浸出废旧锂离子电池正极材料中金属的方法
WO2017118955A1 (en) Process for recovering metal values from spent lithium ion batteries with high manganese content
CN109256596B (zh) 一种逆向制备铝掺杂三元前驱体的方法及系统
Rácz et al. Electrolytic recovery of Mn3O4 and Zn from sulphuric acid leach liquors of spent zinc–carbon–MnO2 battery powder
US20210317547A1 (en) Process for recovering metals from recycled rechargeable batteries
CN101499547A (zh) 一种废锂离子电池正极材料的回收方法
CN108270045A (zh) 一种废旧锂电池正极材料的电化学浸出方法
JP7317761B2 (ja) リチウムイオン電池廃棄物の処理方法
CN112645362B (zh) 一种氯化物型含锂盐水电化学提锂制备碳酸锂的方法
CN110257631B (zh) 一种分离废旧锂离子电池正极中锂和其他金属的方法
WO2023051017A1 (zh) 一种回收退役锂离子电池的方法和电化学系统
CN103221557B (zh) 含镍酸性溶液的制造方法
CN115181866B (zh) 一种联合浸出剂及其在正极浸出中的应用
CN111403842A (zh) 废旧锂电池正极材料的回收方法和球形氧化镍材料及应用
CN111048862A (zh) 一种高效回收锂离子电池正负极材料为超级电容器电极材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant