CN110820014A - 从废旧锂离子电池负极片中回收石墨片和金属的方法 - Google Patents

从废旧锂离子电池负极片中回收石墨片和金属的方法 Download PDF

Info

Publication number
CN110820014A
CN110820014A CN201911290300.7A CN201911290300A CN110820014A CN 110820014 A CN110820014 A CN 110820014A CN 201911290300 A CN201911290300 A CN 201911290300A CN 110820014 A CN110820014 A CN 110820014A
Authority
CN
China
Prior art keywords
electrode
lithium ion
ion battery
lithium
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911290300.7A
Other languages
English (en)
Other versions
CN110820014B (zh
Inventor
张亚莉
陈霞
楚玮
曹宁
崔洪友
王鸣
王晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201911290300.7A priority Critical patent/CN110820014B/zh
Publication of CN110820014A publication Critical patent/CN110820014A/zh
Application granted granted Critical
Publication of CN110820014B publication Critical patent/CN110820014B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

本发明涉及回收废旧锂离子电池技术领域,具体涉及一种从废旧锂离子电池负极片中回收石墨片和金属的方法。将废旧锂离子电池的负极片缠绕在绝缘板上与外电源的正极相连,导电基体与外电源的负极相连,电解液为铜盐溶液,进行电解,得到含锂溶液;将惰性电极与外电源的正极相连,自制电极与外电源的负极相连,电解液为含锂溶液,通电电解得到锂离子镶嵌的自制电极;将锂离子镶嵌的自制电极与外电源的正极相连,惰性电极与外电源的负极相连,电解液为氢氧化锂溶液,进行电解,金属锂进入溶液中,蒸发溶液,得到氢氧化锂固体。本发明得到的氢氧化锂纯度高,金属锂的回收率高,同时也回收了金属铜和石墨片。

Description

从废旧锂离子电池负极片中回收石墨片和金属的方法
技术领域
本发明涉及回收废旧锂离子电池技术领域,具体涉及一种从废旧锂离子电池负极片中回收石墨片和金属的方法。
背景技术
随着新能源汽车的逐步产业化和规模化,作为最关键组件的动力电池将在未来几年逐渐进入批量报废阶段,由此带来的新能源汽车产业发展与环境、资源之间矛盾将越来越突出。动力电池能否得到有效回收利用,不仅直接影响新能源汽车产业的可持续发展,也会影响国家节能减排、“美丽中国”建设等战略的实现。在国家提出的循环经济“减量化、资源化、再利用、无害化”的战略目标下,更多的回收有价金属二次资源,以环境可接受的清洁方式处置残余废弃物则是实现这一目标的工作重点。不管是从环保、经济利益、社会价值的角度,还是从资源可持续性发展的角度,以及为国家战略资源如稀土、镍等进行动态储备,回收再利用动力电池具有重要的战略意义。废旧电池负极片中包含铜箔、粘结剂、石墨,锂离子等成分。铜箔和锂离子是宝贵的有价金属资源,石墨可以进行修复后再生利用,以免危害环境。
国内外产业界和学术界都在致力于负极片的回收。中国专利CN 109216822A公开一种废旧锂离子电池负极材料的回收方法。该方法包括以下步骤:将废旧锂离子电池负极极片进行第一次热处理,以使其中的粘结剂碳化形成负极粉,得到预处理极片;分离预处理极片中的负极粉;对负极粉进行第二次热处理,以使负极粉中的SEI膜分解,得到活化负极粉;酸洗去除活化负极粉中的锂,得到酸洗产物;对酸洗产物进行还原处理,得到负极粉回收产物。该专利采用热处理、酸洗等方法回收金属箔和所述负极粉,但该方法不能回收负极片中的锂。
中国专利CN109088119A公开一种回收废旧石墨系锂离子电池负极片中锂的方法,包括以下步骤:步骤一、将废旧石墨系锂离子电池充满电;步骤二、把步骤一所得充满电的电池拆解,得负极片、正极片、隔膜和电池壳;步骤三、将步骤二所得负极片置于150-550℃的温度下进行热处理;步骤四、向步骤三热处理后的负极片按照1:10-1:3的固液比加入水,搅拌0.5-4h后得到固液混合物;步骤五、用20-80目的震动筛对步骤四所得固液混合物进行过滤,得金属铜、含石墨粉的水溶液;步骤六、向步骤五所得的含石墨粉的水溶液中加入硫酸或盐酸调节溶液的pH值至0.5-2.0,然后过滤即得石墨粉、含锂化合物的溶液。该方法可从1kg废旧石墨系锂离子电池的负极片中分离出17g以上的锂。该专利采用热处理-水洗-酸处理的方法处理负极片。该方法所得产品纯度较低。
中国专利CN 106207301A公开一种电解回收废旧锂离子电池的负极材料及铜箔的方法。包括将废旧锂离子电池进行充分放电后拆解,取出负极片;将负极片置于电解槽中作为阳极,以导电板作为阴极,在电解槽中加入电解液;通电进行电解,使铜箔溶解并转移到阴极导电板上;负极材料落入电解液中,通过过滤得负极材料。该专利虽然回收了负极材料和铜箔,但没有将金属锂从负极材料中分离出来。
发明内容
本发明的目的是提供一种从废旧锂离子电池负极片中回收石墨片和金属的方法,该方法得到的氢氧化锂纯度高,金属锂的回收率高,同时也回收了金属铜和石墨片。
本发明所述的从废旧锂离子电池负极片中回收石墨片和金属的方法,包括以下步骤:
(1)将废旧锂离子电池的负极片缠绕在绝缘板上与外电源的正极相连,导电基体与外电源的负极相连,电解液为铜盐溶液,进行电解,电解结束后分离出金属铜和石墨片,得到含锂溶液;
(2)将惰性电极与外电源的正极相连,自制电极与外电源的负极相连,电解液为步骤(1)得到的含锂溶液,进行电解,得到锂离子镶嵌的自制电极;
(3)将步骤(2)得到的锂离子镶嵌的自制电极与外电源的正极相连,惰性电极与外电源的负极相连,电解液为氢氧化锂溶液,进行电解,电解结束后锂离子镶嵌的自制电极上的锂进入溶液中,蒸发溶液,得到氢氧化锂固体。
其中:
步骤(1)中,导电基体为铜板、铅板、二氧化钛板或铂板;铜盐溶液为硫酸铜溶液、硝酸铜溶液或磷酸铜溶液中的一种或多种,铜盐溶液的浓度为5-30g/L;绝缘板为玻璃板或塑料板。
步骤(1)中,电解电压为3-30V,电解时间为10-480min;废旧锂离子电池的负极片与导电基体的间距为1-20cm。
步骤(1)中,将废旧锂离子电池的负极片缠绕在绝缘板上,用夹子夹住最上端裸露的铜箔,夹持高度为1-10mm。
步骤(1)中,通电电解,直至负极片几乎完全脱落,只剩下夹住的那部分铜箔,停止通电,静置10-60min,用漏勺将漂浮在电解液表面的石墨和粘结剂等有机物的薄片捞出,然后过滤电解液,滤饼为金属铜,滤液为含锂溶液。
步骤(2)中,自制电极的制备为:将物质A、高纯石墨与聚偏氟乙烯混合均匀形成粉末,将有机溶剂加入至粉末中,研磨成浆料,将浆料均匀涂覆在铜箔或石墨板上,真空干燥,冷却制得。
物质A为氧化钴、氧化镍、氧化锰或磷酸铁中的一种或多种;物质A、高纯石墨与聚偏氟乙烯的质量比为1-20:1:1。
有机溶剂为N-甲基吡咯烷酮,有机溶剂与物质A的用量比为5-10:4-7,有机溶剂以ml计,物质A以g计;干燥温度为80-200℃,干燥时间为10-24h。
步骤(2)中,电解电压为3-30V,电解时间为0.5-12h,惰性电极与自制电极的间距为1-20cm;惰性电极为铂片电极、铜片电极、石墨板电极或铝片电极。
步骤(3)中,电解电压为3-30V,电解时间为0.5-12h,锂离子镶嵌的自制电极与惰性电极的间距为1-20cm。
步骤(3)中,氢氧化锂溶液的浓度为2-5g/L;惰性电极与步骤(2)中的惰性电极相同。
本发明的有益效果如下:
本发明步骤(1)中,将废旧锂离子电池的负极片缠绕在绝缘板上与外电源的正极相连,导电基体与外电源的负极相连,电解液为铜盐溶液,进行电解;铜箔在正极失去电子,经过电场作用迁移到负极,在负极得到电子变成铜单质,沉落到电极底部;脱离铜箔后的石墨片在粘结剂作用下仍保持薄片形状,漂浮在电解液表面,通过漏勺就可以分离出来。铜箔经过滤从电解液中分离出来,负极片中的锂在电场力作用下,溶解进入电解液中,得到含锂溶液。
本发明通过将负极片缠绕在绝缘板上再与外电源的正极相连,铜箔变成铜单质,沉落到底部,并且使得金属锂进入溶液中。
本发明步骤(2)中,将惰性电极与外电源的正极相连,自制电极与外电源的负极相连,电解质溶液为步骤(1)得到的含锂溶液,进行电解,锂离子在电场力作用下,向自制电极方向移动,逐步镶嵌在自制电极表面,实现了锂离子与混合溶液的分离。
本发明步骤(3)中,将步骤(2)得到的锂离子镶嵌的自制电极与外电源的正极相连,惰性电极与外电源的负极相连,电解液为氢氧化锂溶液,通电后,锂离子在电场力作用下,再次进入溶液中,蒸发溶液,得到高纯氢氧化锂固体。
本发明不仅回收了负极片中的金属锂,还回收了负极片中的铜箔和石墨片。更重要的是本发明通过步骤(2)将含锂溶液中的锂离子镶嵌在自制电极表面,再通过步骤(3)将自制电极表面的锂离子电解到电解液中,对电解液进行蒸发,最终得到氢氧化锂固体。本发明通过步骤(2)和步骤(3)的共同作用,提高了氢氧化锂固体的纯度,金属锂的回收率高。本发明得到的氢氧化锂固体的纯度在99.0%以上,金属锂的回收率在90.0%以上,金属铜的回收率为90.0%以上,纯度为94.0%以上,石墨片全部回收。
具体实施方式
以下结合实施例对本发明做进一步描述。
实施例1
将废旧锂离子电池负极片5.41g(其中锂的含量为0.01g、铜箔的含量为3.47g)缠绕在玻璃板上与外电源的正极相连,用夹子夹住负极片最上端裸露的铜箔,夹持高度为5mm;铅板与外电源的负极相连,废旧锂离子电池负极片与铅板的间距为20cm。将浓度为20g/L的硫酸铜作为电解液,于30V电压下进行通电电解。通电100min,负极片全部从玻璃板上脱落下来,停止通电,电解结束后,静置30min,用漏勺将漂浮在电解液表面的石墨薄片和粘结剂等有机物的薄片捞出,然后过滤电解液,滤饼为金属铜,滤液为含锂溶液。
(2)制备自制电极:将5g氧化钴、0.25g高纯石墨和0.25g聚偏氟乙烯(PVDF)混合均匀形成粉末,将8ml N-甲基吡咯烷酮(NMP)加入到混合好的粉末中研磨调浆,将调好的浆料均匀的涂覆在铜箔上,在100℃的真空干燥箱中保温干燥20小时,冷却后使用。
将铂片电极与外电源的正极相连,上述自制电极与外电源的负极相连,铂片电极与自制电极的间距为15cm;将步骤(1)得到的含锂溶液作为电解液,于10V电压下进行通电电解3小时,得到锂离子镶嵌的自制电极。
(3)将步骤(2)得到的锂离子镶嵌的自制电极与外电源的正极相连,铂片电极与外电源的负极相连,锂离子镶嵌的自制电极与铂片电极的间距为20cm。将50mL浓度为4g/L的氢氧化锂溶液作为电解液,于10V电压下进行通电电解3小时,电解结束后锂离子镶嵌的自制电极上的锂进入溶液中,将溶液在100℃下蒸发,得到高纯氢氧化锂固体0.2342g。氢氧化锂的纯度99.1%,锂的回收率为93.0%;铜的质量为3.4g,铜的回收率为96.0%,纯度为98%,石墨片全部回收。
实施例2
(1)将废旧锂离子电池负极片3.43g(其中锂的含量为0.0054g、铜箔的含量为2.2g)缠绕在玻璃板上与外电源的正极相连,用夹子夹住负极片最上端裸露的铜箔,夹持高度为3mm;铜板与外电源的负极相连,废旧锂离子电池负极片与铜板的间距为5cm。将浓度为30g/L的硫酸铜作为电解液,于15V电压下进行通电电解。通电150min,负极片全部从玻璃板上脱落下来,停止通电,电解结束后,静置60min,用漏勺将漂浮在电解液表面的石墨薄片和粘结剂等有机物的薄片捞出,然后过滤电解液,滤饼为金属铜,滤液为含锂溶液。
(2)制备自制电极:以4.5g氧化锰、0.3g高纯石墨和0.3g聚偏氟乙烯(PVDF)混合均匀形成粉末,将6ml N-甲基吡咯烷酮(NMP)加入到混合好的粉末中研磨调浆,将调好的浆料均匀的涂覆在铜箔上,在120℃的真空干燥箱中保温干燥15小时,冷却后使用。
将铜片电极与外电源的正极相连,上述自制电极与外电源的负极相连,铜片电极与自制电极的间距为20cm;将步骤(1)得到的含锂溶液作为电解液,于20V电压下进行通电电解1.5小时,得到锂离子镶嵌的自制电极。
(3)将步骤(2)得到的锂离子镶嵌的自制电极与外电源的正极相连,铜片电极与外电源的负极相连,锂离子镶嵌的自制电极与铜片电极的间距为15cm。将50ml浓度为5g/L的氢氧化锂溶液作为电解液,于15V电压下进行通电电解2小时,电解结束后锂离子镶嵌的自制电极上的锂进入溶液中,将溶液在100℃下蒸发,得到高纯氢氧化锂固体0.2696g。氢氧化锂的纯度99.3%,锂的回收率为95.0%;铜的质量为2.15g,铜的回收率为95.8%,纯度为98%,石墨片全部回收。
实施例3
(1)将废旧锂离子电池负极片5.2g(其中锂的含量为0.012g、铜箔的含量为3.3g)缠绕在塑料板上与外电源的正极相连,用夹子夹住负极片最端裸露的铜箔,夹持高度为5mm;铂板与外电源的负极相连,废旧锂离子电池负极片与铂板的间距为10cm。将浓度为10g/L的硫酸铜作为电解液,于10V电压下进行通电电解。通电200min,负极片全部从塑料板上脱落下来,停止通电,电解结束后,静置20min,用漏勺将漂浮在电解液表面的石墨薄片和粘结剂等有机物的薄片捞出,然后过滤电解液,滤饼为金属铜,滤液为含锂溶液。
(2)制备自制电极:以4g氧化钴、0.2g高纯石墨和0.2g聚偏氟乙烯(PVDF)混合均匀形成粉末,将5ml N-甲基吡咯烷酮(NMP)加入到混合好的粉末中研磨调浆,将调好的浆料均匀的涂覆在铜箔上,在150℃的真空干燥箱中保温干燥18小时,冷却后使用。
将铜片电极与外电源的正极相连,上述自制电极与外电源的负极相连,铜片电极与自制电极的间距为10cm;将步骤(1)得到的含锂溶液作为电解液,于20V电压下进行通电电解2小时,得到锂离子镶嵌的自制电极。
(3)将步骤(2)得到的锂离子镶嵌的自制电极与外电源的正极相连,铜片电极与外电源的负极相连,锂离子镶嵌的自制电极与铜片电极的间距为20cm。将50ml浓度为2.5g/L的氢氧化锂溶液作为电解液,于20V电压下进行通电电解2.5小时,电解结束后锂离子镶嵌的自制电极上的锂进入溶液中,将溶液在100℃下蒸发,得到高纯氢氧化锂固体0.1635g。氢氧化锂的纯度99.5%,锂的回收率为91.0%;铜的质量为3.14g,铜的回收率为91.3%,纯度为96%,石墨片全部回收。
实施例4
(1)将废旧锂离子电池负极片4.52g(其中锂的含量为0.0094g、铜箔的含量为2.9g)缠绕在玻璃板上与外电源的正极相连,用夹子夹住负极片最上端裸露的铜箔,夹持高度为2mm;二氧化钛板与外电源的负极相连,废旧锂离子电池负极片与二氧化钛板的间距为15cm。将浓度为15g/L的硫酸铜作为电解液,于20V电压下进行通电电解。通电300min,负极片全部从玻璃板上脱落下来,停止通电,电解结束后,静置50min,用漏勺将漂浮在电解液表面的石墨薄片和粘结剂等有机物的薄片捞出,然后过滤电解液,滤饼为金属铜,滤液为含锂溶液。
(2)制备自制电极:以4g氧化镍、0.2g高纯石墨和0.2g聚偏氟乙烯(PVDF)混合均匀形成粉末,将10ml N-甲基吡咯烷酮(NMP)加入到混合好的粉末中研磨调浆,将调好的浆料均匀的涂覆在石墨板上,在180℃的真空干燥箱中保温干燥16小时,冷却后使用。
将铂片电极与外电源的正极相连,上述自制电极与外电源的负极相连,铂片电极与自制电极的间距为12cm;将步骤(1)得到的含锂混合溶液作为电解液,于25V电压下进行通电电解2.5小时,得到锂离子镶嵌的自制电极。
(3)将步骤(2)得到的锂离子镶嵌的自制电极与外电源的正极相连,铂片电极与外电源的负极相连,锂离子镶嵌的自制电极与铂片电极的间距为15cm。将50ml浓度为4g/L的氢氧化锂溶液作为电解液,于25V电压下进行通电电解1.5小时,电解结束后锂离子镶嵌的自制电极上的锂进入溶液中,将溶液在100℃下蒸发,得到高纯氢氧化锂固体0.2323g。氢氧化锂的纯度99.5%,锂的回收率为96.0%;铜的质量为2.79g,铜的回收率为90.4%,纯度为94%,石墨片全部回收。
实施例5
(1)将废旧锂离子电池负极片5.09g(其中锂的含量为0.0858g、铜箔的含量为3.21g)缠绕在玻璃板上与外电源的正极相连,用夹子夹住负极片最上端裸露的铜箔,夹持高度为2mm;铜板与外电源的负极相连,废旧锂离子电池负极片与铜板的间距为5cm。将浓度为10g/L的硫酸铜作为电解液,于5V电压下进行通电电解。通电150min,负极片全部从玻璃板上脱落下来,停止通电,电解结束后,静置20min,用漏勺将漂浮在电解液表面的石墨薄片和粘结剂等有机物的薄片捞出,然后过滤电解液,滤饼为金属铜,滤液为含锂溶液。
(2)制备自制电极:以6g氧化钴、0.3g高纯石墨和0.3g聚偏氟乙烯(PVDF)混合均匀形成粉末,将6ml N-甲基吡咯烷酮(NMP)加入到混合好的粉末中研磨调浆,将调好的浆料均匀的涂覆在石墨板上,在200℃的真空干燥箱中保温干燥10小时,冷却后使用。
将铜片电极与外电源的正极相连,上述自制电极与外电源的负极相连,铜片电极与自制电极的间距为18cm;将步骤(1)得到的含锂溶液作为电解液,于30V电压下进行通电电解3小时,得到锂离子镶嵌的自制电极。
(3)将步骤(2)得到的锂离子镶嵌的自制电极与外电源的正极相连,铜片电极与外电源的负极相连,锂离子镶嵌的自制电极与铜片电极的间距为10cm。将50ml浓度为5g/L的氢氧化锂溶液作为电解液,于30V电压下进行通电电解2小时,电解结束后锂离子镶嵌的自制电极上的锂进入溶液中,将溶液在100℃下蒸发,得到高纯氢氧化锂固体0.5320g。氢氧化锂的纯度99.2%,锂的回收率为93.8%;铜的质量为3.14g,铜的回收率为94.9%,纯度为97%,石墨片全部回收。
对比例1
将实施例1的步骤(1)中的废旧锂离子电池负极片不缠绕在玻璃板上,直接与外电源的正极相连,其余步骤相同。电解过程中,铜箔溶解并转移到导电基体上。电解结束后,过滤电解液,无滤饼形成。
通过对比实施例1与对比例1得知,本发明先将负极片缠绕在绝缘板上再与外电源的正极相连的方法,使得铜箔直接变成铜单质,沉落在电解液底部,通过过滤,就能够得到金属铜。因此本发明回收金属铜的方法更加简便。

Claims (10)

1.一种从废旧锂离子电池负极片中回收石墨片和金属的方法,其特征在于包括以下步骤:
(1)将废旧锂离子电池的负极片缠绕在绝缘板上与外电源的正极相连,导电基体与外电源的负极相连,电解液为铜盐溶液,进行电解,电解结束后分离出金属铜和石墨片,得到含锂溶液;
(2)将惰性电极与外电源的正极相连,自制电极与外电源的负极相连,电解液为步骤(1)得到的含锂溶液,进行电解,得到锂离子镶嵌的自制电极;
(3)将步骤(2)得到的锂离子镶嵌的自制电极与外电源的正极相连,惰性电极与外电源的负极相连,电解液为氢氧化锂溶液,进行电解,电解结束后锂离子镶嵌的自制电极上的锂进入溶液中,蒸发溶液,得到氢氧化锂固体。
2.根据权利要求1所述的从废旧锂离子电池负极片中回收石墨片和金属的方法,其特征在于:步骤(1)中,导电基体为铜板、铅板、二氧化钛板或铂板;铜盐溶液为硫酸铜溶液、硝酸铜溶液或磷酸铜溶液中的一种或多种,铜盐溶液的浓度为5-30g/L;绝缘板为玻璃板或塑料板。
3.根据权利要求1所述的从废旧锂离子电池负极片中回收石墨片和金属的方法,其特征在于:步骤(1)中,电解电压为3-30V,电解时间为10-480min;废旧锂离子电池的负极片与导电基体的间距为1-20cm。
4.根据权利要求1所述的从废旧锂离子电池负极片中回收石墨片和金属的方法,其特征在于:步骤(2)中,自制电极的制备为:将物质A、高纯石墨与聚偏氟乙烯混合均匀形成粉末,将有机溶剂加入至粉末中,研磨成浆料,将浆料均匀涂覆在铜箔或石墨板上,真空干燥,冷却制得。
5.根据权利要求4所述的从废旧锂离子电池负极片中回收石墨片和金属的方法,其特征在于:物质A为氧化钴、氧化镍、氧化锰或磷酸铁中的一种或多种;物质A、高纯石墨与聚偏氟乙烯的质量比为1-20:1:1。
6.根据权利要求4所述的从废旧锂离子电池负极片中回收石墨片和金属的方法,其特征在于:有机溶剂为N-甲基吡咯烷酮,有机溶剂与物质A的用量比为5-10:4-7,有机溶剂以ml计,物质A以g计;干燥温度为80-200℃,干燥时间为10-24h。
7.根据权利要求1所述的从废旧锂离子电池负极片中回收石墨片和金属的方法,其特征在于:步骤(2)中,电解电压为3-30V,电解时间为0.5-12h。
8.根据权利要求1所述的从废旧锂离子电池负极片中回收石墨片和金属的方法,其特征在于:步骤(2)中,惰性电极与自制电极的间距为1-20cm;惰性电极为铂片电极、铜片电极、石墨板电极或铝片电极。
9.根据权利要求1所述的从废旧锂离子电池负极片中回收石墨片和金属的方法,其特征在于:步骤(3)中,电解电压为3-30V,电解时间为0.5-12h,锂离子镶嵌的自制电极与惰性电极的间距为1-20cm。
10.根据权利要求1所述的从废旧锂离子电池负极片中回收石墨片和金属的方法,其特征在于:步骤(3)中,氢氧化锂溶液的浓度为2-5g/L;惰性电极与步骤(2)中的惰性电极相同。
CN201911290300.7A 2019-12-16 2019-12-16 从废旧锂离子电池负极片中回收石墨片和金属的方法 Active CN110820014B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911290300.7A CN110820014B (zh) 2019-12-16 2019-12-16 从废旧锂离子电池负极片中回收石墨片和金属的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911290300.7A CN110820014B (zh) 2019-12-16 2019-12-16 从废旧锂离子电池负极片中回收石墨片和金属的方法

Publications (2)

Publication Number Publication Date
CN110820014A true CN110820014A (zh) 2020-02-21
CN110820014B CN110820014B (zh) 2021-04-02

Family

ID=69545534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911290300.7A Active CN110820014B (zh) 2019-12-16 2019-12-16 从废旧锂离子电池负极片中回收石墨片和金属的方法

Country Status (1)

Country Link
CN (1) CN110820014B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113881850A (zh) * 2021-09-28 2022-01-04 华东理工大学 同时回收锂离子电池正极和负极的方法
CN113881851A (zh) * 2021-09-28 2022-01-04 华东理工大学 采用多层电极结构同时回收锂离子电池正极和负极的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198081A (en) * 1991-03-04 1993-03-30 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Method and electrode for electrochemical recovery of lithium value from aqueous solution
CN104577243A (zh) * 2014-11-24 2015-04-29 北京化工大学 一种利用锂离子载体从含锂离子溶液中回收锂资源的方法
CN105937038A (zh) * 2016-06-17 2016-09-14 天齐锂业股份有限公司 电化学法回收磷酸铁锂中的锂的方法
CN105937039A (zh) * 2016-06-17 2016-09-14 天齐锂业股份有限公司 电化学法回收锂电池正极材料中的锂的方法
CN106170340A (zh) * 2012-09-19 2016-11-30 国家科学和技术研究委员会(Conicet) 从水性溶液中低影响地回收锂
CN106207301A (zh) * 2016-08-11 2016-12-07 合肥国轩高科动力能源有限公司 一种电解回收废旧锂离子电池的负极材料及铜箔的方法
CN109609977A (zh) * 2019-02-20 2019-04-12 长江师范学院 提取锂的电极结构及其制造方法和应用
CN109778218A (zh) * 2019-02-01 2019-05-21 南京大学 一种电化学制氢与提锂联产的装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198081A (en) * 1991-03-04 1993-03-30 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Method and electrode for electrochemical recovery of lithium value from aqueous solution
CN106170340A (zh) * 2012-09-19 2016-11-30 国家科学和技术研究委员会(Conicet) 从水性溶液中低影响地回收锂
CN104577243A (zh) * 2014-11-24 2015-04-29 北京化工大学 一种利用锂离子载体从含锂离子溶液中回收锂资源的方法
CN105937038A (zh) * 2016-06-17 2016-09-14 天齐锂业股份有限公司 电化学法回收磷酸铁锂中的锂的方法
CN105937039A (zh) * 2016-06-17 2016-09-14 天齐锂业股份有限公司 电化学法回收锂电池正极材料中的锂的方法
CN106207301A (zh) * 2016-08-11 2016-12-07 合肥国轩高科动力能源有限公司 一种电解回收废旧锂离子电池的负极材料及铜箔的方法
CN109778218A (zh) * 2019-02-01 2019-05-21 南京大学 一种电化学制氢与提锂联产的装置及方法
CN109609977A (zh) * 2019-02-20 2019-04-12 长江师范学院 提取锂的电极结构及其制造方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
夏静 等: "废锂离子电池负极活性材料的分析测试", 《化工进展》 *
王振延等: "《石墨深加工技术》", 30 June 2017, 哈尔滨工业大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113881850A (zh) * 2021-09-28 2022-01-04 华东理工大学 同时回收锂离子电池正极和负极的方法
CN113881851A (zh) * 2021-09-28 2022-01-04 华东理工大学 采用多层电极结构同时回收锂离子电池正极和负极的方法

Also Published As

Publication number Publication date
CN110820014B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
CN108470951B (zh) 一种废旧镍钴锰三元锂离子电池中有价金属的回收方法
CN109256597B (zh) 一种从废旧钴酸锂电池中回收锂和钴的方法及系统
CN110620278B (zh) 一种废旧磷酸铁锂电池正极材料的回收方法
CN109234524B (zh) 一种从废旧三元锂电池中综合回收有价金属的方法及系统
CN106910889A (zh) 一种从废旧磷酸铁锂电池中再生正极活性物质的方法
CN104810566B (zh) 一种废旧磷酸铁锂动力电池绿色回收处理方法
CN110112481A (zh) 废旧磷酸铁锂电池循环利用制备磷酸铁锂正极材料的方法
CN109256596B (zh) 一种逆向制备铝掺杂三元前驱体的方法及系统
CN111270072B (zh) 一种废旧磷酸铁锂电池正极材料的回收利用方法
WO2017215283A1 (zh) 电化学法回收磷酸铁锂中的锂的方法
CN111411366B (zh) 一种固相电解回收磷酸铁锂废料中金属离子的方法
CN104241724A (zh) 一种从锂离子电池回收物制备电池级碳酸锂的方法
CN103035977A (zh) 一种从废旧锂离子电池中分离回收锂的方法
CN110820014B (zh) 从废旧锂离子电池负极片中回收石墨片和金属的方法
CN111088430A (zh) 一种锂电池正极废弃浆料的回收处理方法
CN102285673A (zh) 一种从电动汽车磷酸铁锂动力电池中回收锂和铁的方法
CN110983050B (zh) 从废旧锂离子电池正极片中回收高纯锂的方法
CN101673829A (zh) 废旧锌锰电池的回收处理方法
CN111430831A (zh) 一种废旧锂离子电池负极材料的回收方法
CN108288737B (zh) 一种从废旧锂电池正极材料中回收六氟磷酸锂的方法
CN115058598A (zh) 一种废旧钠离子电池的回收方法
CN109659642B (zh) 分离废旧锂离子电池正极片中铝箔和正极活性物质的方法
CN110144460A (zh) 一种锂离子电池正极废料中金属的浸出及回收工艺
CN109825708A (zh) 一种废碱性锌锰电池中正负极物质的回收方法
CN107768762B (zh) 一种铅酸蓄电池报废湿板回用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant