WO2023050386A1 - 控制方法、装置及车辆 - Google Patents

控制方法、装置及车辆 Download PDF

Info

Publication number
WO2023050386A1
WO2023050386A1 PCT/CN2021/122376 CN2021122376W WO2023050386A1 WO 2023050386 A1 WO2023050386 A1 WO 2023050386A1 CN 2021122376 W CN2021122376 W CN 2021122376W WO 2023050386 A1 WO2023050386 A1 WO 2023050386A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
collision
time
target
airbag
Prior art date
Application number
PCT/CN2021/122376
Other languages
English (en)
French (fr)
Inventor
段贵江
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/122376 priority Critical patent/WO2023050386A1/zh
Priority to CN202180085514.XA priority patent/CN116648392A/zh
Publication of WO2023050386A1 publication Critical patent/WO2023050386A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/34Protecting non-occupants of a vehicle, e.g. pedestrians
    • B60R21/36Protecting non-occupants of a vehicle, e.g. pedestrians using airbags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences

Definitions

  • the present application relates to the technical field of vehicle control, in particular, to a control method device and a vehicle.
  • the current technology is generally considered from the perspective of the safety of the people in the vehicle.
  • protective equipment such as safety airbags inside the vehicle
  • the safety airbags in the vehicle are activated when the vehicle is stressed, so as to improve the safety of the driver in the vehicle. or passenger safety.
  • the purpose of the embodiments of the present application is to provide a control method device and a vehicle.
  • the driving safety of the vehicle can be improved.
  • a control method provided in an embodiment of the present application, applied to a vehicle includes:
  • the collision time and the relative position of the collision between the vehicle and the target are determined.
  • the environmental data of the vehicle include: the position of the target, the speed of the target, and the movement of the target one or more types of information in the track;
  • protective equipment is activated.
  • the protective equipment includes: a target airbag; and activating the protective equipment according to the collision time and/or the relative collision position includes:
  • a target airbag is determined from a plurality of airbags installed in multiple positions outside the vehicle, and the target airbag is activated.
  • one or more airbags installed at multiple locations outside the vehicle can be determined as protective equipment based on the relative position of the collision, which can protect the vehicle's external structure and target objects.
  • the activating the protection device according to the collision time and/or the relative location of the collision includes:
  • the target airbag is a protective device
  • the determining the target airbag according to the time of collision, the relative position of the collision and the activation time of multiple airbags installed in multiple positions outside the vehicle includes:
  • the target airbag is screened out from the initial airbag group as the protective equipment.
  • the target airbag that can meet the activation time as the protective equipment, so that the vehicle can effectively open the target airbag before a possible collision, so that it can be more Good realization of vehicle protection.
  • the activation of the protection device includes:
  • the start time is determined according to the time of collision and the start-up time of the protective equipment, the time difference between the start-up time and the time of collision is greater than or equal to the start-up time of the protective equipment, and the time difference between the start-up time and the time of collision The time difference is less than the sum of the startup time of the protective device and the specified delay time;
  • said protective device is activated.
  • the protection device that can meet the time requirement can be determined in combination with the specified delay time.
  • the method also includes:
  • the activating the protective equipment according to the collision time and/or the relative location of the collision includes:
  • the protective equipment can also be determined in combination with the possible hazard coverage area, so that the protective equipment required by the hazard coverage area can be better met.
  • the protective equipment includes: a target airbag; the protective equipment of the vehicle determined according to the collision time, the relative location of the collision and/or the event hazard coverage area , and activate the protective equipment, including:
  • the target number of target airbags is determined, and the target number of target airbags is activated.
  • a certain amount of safety protection equipment can also be determined based on the possible hazard coverage area, so that the hazard coverage area can be better matched, so as to realize the protection of the target object and the vehicle.
  • the determining the collision time and the relative position of the collision between the vehicle and the target according to the driving data of the vehicle and the environment data of the vehicle includes:
  • the collision time and the relative position of the collision between the vehicle and the target are determined.
  • the collision time and the relative collision position are determined based on the trajectory of the target and the vehicle, which can better take into account the position changes of the vehicle and the target, so that the determined collision time and the relative collision position can be more accurate. precise.
  • control device including:
  • the first determination module is configured to determine the collision time and relative position of the vehicle and the target object according to the driving data of the vehicle and the environment data of the vehicle, the environment data of the vehicle includes: the position of the object, One or more information in the speed of the target object and the trajectory of the target object;
  • An activation module configured to activate the protection device according to the collision time and/or the collision relative position.
  • an embodiment of the present application provides a vehicle, including: a memory and an electronic control unit;
  • the memory stores machine-readable instructions executable by the electronic control unit, which when executed by the electronic control unit perform the first aspect above, or the first aspect when adjusting the environment in the vehicle The steps of the method in any one of the possible embodiments.
  • control method, device and vehicle of the present application can predict the environment around the vehicle in advance, and when there is a potential danger around the vehicle, the location of the danger can be predicted in advance, so that the protective equipment can be effectively activated, To improve the safety of the vehicle and the safety of people inside the vehicle.
  • Fig. 1 is a schematic block diagram of a vehicle provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a vehicle provided in an embodiment of the present application.
  • FIG. 3 is a flowchart of a control method provided in an embodiment of the present application.
  • FIG. 4 is a flow chart of part of the control method provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of an actual scene corresponding to the control method provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of another actual scene corresponding to the control method provided in the embodiment of the present application.
  • Fig. 7 is a block diagram of a control device provided by an embodiment of the present application.
  • Icons 100-vehicle; 110-electronic control unit; 120-acquisition equipment; 130-radar; 140-protective equipment; 150-battery.
  • the inventor of the present application noticed that the research on the safety of the vehicle is more about the research on the safety of the people in the vehicle.
  • airbags are installed inside the vehicle, and the airbags in the vehicle are activated when the vehicle is stressed, so as to improve the safety of the driver or passengers in the vehicle.
  • the danger may be occurring, and it may be relatively late to deploy the airbag at this time.
  • the safety of the vehicle is not limited to the safety of the driver or passengers in the vehicle; the danger to the vehicle may also be related to the safety of the vehicle structure and the surrounding objects of the vehicle.
  • the power battery will be arranged on the chassis to realize the integrated design of the chassis and battery. This integrated design can realize the arrangement of more power batteries on the vehicle to extend the cruising range of the vehicle and strengthen the chassis structure.
  • the collision and collapse space at the chassis position has become smaller. This makes when a vehicle collision occurs, the vehicle's impact acceleration is greater, and the occupants of the vehicle are more susceptible to the stretching injury of the collision acceleration, not just the collision injury.
  • the passenger seat may be a ring seat based on different riding needs, making the airbag layout inside the vehicle relatively more difficult.
  • the inventors of the present application researched and found that when there is a potential danger, whether the protective equipment owned by the vehicle and whether the protective equipment on the vehicle can be activated in time directly affects the protective result of the vehicle. Based on this, on the one hand, it is possible to improve the arrangement of the protective equipment of the vehicle, and also set user-protective airbags outside the vehicle, so as to realize the protection of the vehicle structure and surrounding objects. On the other hand, possible dangers can be predicted in advance, so that the protective equipment can be activated in advance, so that the protective equipment can play a better role.
  • ECU Electronic Control Unit
  • driving computer Electronic Control Unit
  • CAN bus Controller Area Network, controller area network bus.
  • control method control device and vehicle provided by the present application through several embodiments, which can improve vehicle safety.
  • FIG. 1 is a schematic structural diagram of a vehicle 100 provided by some embodiments of the present application.
  • the vehicle 100 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle, or an extended-range vehicle.
  • the vehicle 100 may include a plurality of electronic control units 110 , and communication between each electronic control unit is performed through a CAN bus.
  • the electronic control unit may include a microprocessor, a memory, an input/output interface, an analog-to-digital converter, and a large-scale integrated circuit such as shaping and driving.
  • the memory may be, but not limited to, random access memory RAM, read only memory ROM, programmable read only memory PROM, erasable read only memory EPROM, electrically erasable read only memory EEPROM and so on.
  • the memory is used to store a program, and the microprocessor executes the program after receiving an execution instruction, and the steps performed by the vehicle 100 defined by the process disclosed in any embodiment of the present invention can be applied to the microprocessor, Or implemented by a microprocessor.
  • a microprocessor may be an integrated circuit chip with signal processing capabilities.
  • each electronic control unit on the vehicle 100 can be used to deal with a class of problems on the vehicle.
  • the vehicle 100 may include an electronic control unit for responding to commands sent by the vehicle key.
  • the vehicle 100 may include another electronic control unit for executing commands required for parking operations.
  • the vehicle 100 may include another electronic control unit for executing an instruction to activate the protective equipment on the vehicle in response.
  • the vehicle 100 may further include a collection device 120 and a radar 130 .
  • the collection device 120 may be a camera, which is used to collect image data or video data around the vehicle 100 .
  • the collection device 120 can also be a microphone, which is used to collect sound data around the vehicle 100 .
  • the radar 130 may include a front lidar 130 , may also be an ultrasonic radar 130 , and may also be a millimeter wave radar 130 .
  • the laser radar 130 can generate laser beams to detect information such as positions and speeds of objects around the vehicle 100 .
  • the ultrasonic radar 130 can transmit an ultrasonic signal, and when the ultrasonic signal encounters an obstacle, an echo signal is generated. After receiving the echo signal, the ultrasonic radar 130 can determine the position of objects around the vehicle 100 based on the ultrasonic signal and the echo signal. information such as speed.
  • the radar 130 may be installed on the hood of the vehicle 100 , may also be installed on the rear bumper of the vehicle 100 , may also be installed on the side of the vehicle 100 and so on.
  • the radar 130 can also be installed on the hood of the vehicle 100 , the rear bumper of the vehicle 100 and the side of the vehicle 100 to detect relevant information of objects in different directions of the vehicle 100 .
  • the vehicle 100 in this embodiment may also include protective equipment 140 .
  • the protective device 140 may be an airbag.
  • one or more airbags may be installed inside the vehicle 100 .
  • airbags may be installed in front of each seat.
  • one or more airbags may also be installed on the exterior of the vehicle 100 .
  • the airbag outside the vehicle 100 may be installed on the chassis of the vehicle 100 .
  • the airbags on the outside of the vehicle 100 may be respectively arranged at various positions of the vehicle 100 .
  • three airbags may be arranged in front of the vehicle 100
  • two airbags may be arranged in front of the vehicle 100
  • four airbags may be arranged on both sides of the vehicle 100 .
  • the protective device 140 can also be an alarm.
  • the alarm can be an audible and visual alarm, or a microphone for outputting an alarm prompt.
  • equipment such as a vehicle speed sensor and an inertial navigation sensor may also be installed on the vehicle 100 .
  • the driving data of the vehicle can be detected through the vehicle speed sensor and the inertial navigation sensor.
  • a battery 150 may also be provided inside the vehicle 100 , and the battery 150 may be provided at the bottom, head or tail of the vehicle 100 .
  • the battery 150 can be used for power supply of the vehicle, for example, the battery 150 can be used as an operating power source of the vehicle 100 .
  • the vehicle 100 may also include a motor, and the electronic control unit included in the vehicle 100 may also be used to control the battery 150 to supply power to the motor, for example, for starting, navigating, and working power requirements of the vehicle.
  • the battery 150 can be used not only as an operating power source for the vehicle 100, but also as a driving power source for the vehicle 100, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle.
  • the vehicle 100 in this embodiment can be used to execute each step in each method provided in the embodiment of this application.
  • the implementation process of the control method will be described in detail below through several embodiments.
  • FIG. 3 is a flow chart of the control method provided by the embodiment of the present application. The specific process shown in FIG. 3 will be described below.
  • Step 210 according to the driving data of the vehicle and the environment data of the vehicle, determine the collision time and the relative location of the collision between the vehicle and the target.
  • the driving data of the vehicle may include one or more items of data such as driving speed, driving direction, driving acceleration, vehicle corner, vehicle steering, and vehicle speed.
  • driving speed When the vehicle is at rest, the vehicle's traveling speed and traveling acceleration are both zero.
  • driving speed of the vehicle When the vehicle is in the driving state, the driving speed of the vehicle is a non-zero value. Based on the driving data of the vehicle, the driving trajectory of the vehicle can be determined.
  • the vehicle's driving speed, driving direction, driving acceleration, vehicle turning angle, vehicle steering, and vehicle rotational speed information may be calculated by an electronic control unit on the vehicle.
  • the electronic control unit on the vehicle for calculating the vehicle state may calculate various driving data of the vehicle at preset time intervals.
  • the preset time interval may be half a second, one second, three seconds, five seconds and so on.
  • the environment data of the vehicle is used to characterize the distribution of objects in the environment around the vehicle, the movement speed of each object, and the like.
  • the environmental data of the vehicle includes: one or more information on the position of the target, the speed of the target, and the trajectory of the target.
  • the environmental data of the vehicle may also be image data, video data, and the like.
  • the attributes of the target object may be dynamic objects such as people, animals, and other vehicles, or static objects such as trees and wire posts.
  • the image environment data may be recognized by a deep learning algorithm to determine that objects existing in the environment of the vehicle are attributes.
  • whether there is an object that may collide with the vehicle in the environment of the vehicle can be calculated through the driving data of the vehicle and the environment data of the vehicle, so as to further determine the possible collision time and the relative location of the collision.
  • the collision time and the relative location of the target object may be determined according to the position of the vehicle at each time point and the position of each object in the environment of the vehicle at each time point.
  • the location of each object in the vehicle environment at different time points can be determined according to the environmental data of the vehicle; then, at each time point, whether the position of each object in the vehicle environment is consistent The location of the vehicle is the same.
  • the location of each object in the vehicle environment at different time points can be determined according to the vehicle's environmental data; the location of the vehicle at different time points can be determined according to the vehicle's driving data. Then, it is determined at each point in time whether the position of the object in the environment of the vehicle is the same as the position of the vehicle.
  • the location of the vehicle at different time points is determined according to the driving data of the vehicle. Then, it is determined at each point in time whether the position of the vehicle is the same as the position of the static object.
  • the first time point can be determined as the collision time, and the location where the collision occurs can be determined as the relative location of the collision.
  • the duration between two adjacent time points can be set according to requirements.
  • two adjacent time points may be two seconds, three seconds, etc.; for another example, two adjacent time points may be half a second, one second, etc. in duration.
  • a first position relationship representing the relationship between time and position of the vehicle may be constructed; a second position relationship representing the position relationship of various objects in the environment of the vehicle may be constructed. Wherein, when there are multiple objects in the environment of the vehicle, each object may correspond to a second position relationship.
  • intersection point If there is an intersection point between the first positional relationship and the second positional relationship of the target, it indicates that the vehicle may collide with the target, and the time corresponding to the intersection is the collision time, and the position corresponding to the intersection is the relative position of the collision.
  • the first trajectory of the vehicle may be determined according to the driving data of the vehicle
  • the second trajectory of the target may be determined according to the environmental data
  • the first trajectory of the object may be determined according to the first trajectory and the second trajectory to determine the collision time and the relative position of the vehicle with the target.
  • the position where the first motion track and the second motion track overlap is determined as the relative position of the collision .
  • the relative speed of the vehicle and the target can also be determined based on the driving speed of the vehicle and the speed of the target.
  • the relative speed between the vehicle and the target object may also be decomposed according to the first direction and the second direction, so as to determine the relative speed perpendicular to the collision position of the vehicle.
  • the first direction may be a direction perpendicular to the collision position of the vehicle
  • the second direction may be a direction perpendicular to the first direction.
  • Step 220 according to the collision time and/or the relative location of the collision, activate the protective equipment.
  • the protective equipment that can be activated in time can be determined according to the collision time.
  • an airbag that can be deployed before the collision time may be selected from a plurality of airbags installed in front of the vehicle.
  • the time required to deploy the first airbag, the second airbag and the third airbag among the airbags in front of the vehicle are respectively t1, t2 and t3, wherein t1>t2>t3.
  • the collision time is the time after t4, and if t1>t4>t2, the second airbag and the third airbag can be successfully deployed before the collision occurs, and the second airbag or the third airbag can be selected as the protective equipment .
  • the larger airbag among the second airbag and the third airbag can be selected as the protective equipment.
  • the airbag closest to the colliding vehicle site can be used as a protective device.
  • the airbag acting on the first side can be used as the protective equipment.
  • two sides all comprise four safety airbags, if the left side in the example shown in Figure 2 is the first side, then any one of the four safety airbags on the left side can be or multiple airbags as protective equipment.
  • the airbag installed on the vehicle may be a target airbag selected from a plurality of airbags installed on the vehicle.
  • step 220 may include step 221 and step 222 .
  • Step 221 according to the relative position of the collision, determine the predicted collision position on the vehicle.
  • the relative position of the collision is located directly in front of the vehicle, and the driving direction of the vehicle is forward, then the predicted collision position on the vehicle is determined to be at the front of the vehicle.
  • the relative collision position is located at the left front of the vehicle, and the vehicle is traveling in a forward direction, and the target moves along a direction perpendicular to the vehicle's traveling direction, then the predicted collision position on the vehicle is determined to be the left side of the vehicle.
  • the location of the vehicle at the time of the collision can also be determined according to the driving data of the vehicle. Then, the position of the target at the time of collision is determined according to one or more data of the position of the target, the speed of the target, and the trajectory of the target in the environmental data of the vehicle, so as to determine the position of the target at the time of collision. The relative position of the vehicle and the target, based on the relative position of the vehicle and the target to determine the predicted collision position.
  • Step 222 according to the predicted collision position, determine a target airbag from a plurality of airbags installed in multiple positions outside the vehicle, and activate the target airbag.
  • the target airbag may be selected from the airbags that are safely released from the front of the vehicle.
  • the target object is relatively large, if the target object collides with the vehicle and the force-bearing area exceeds the protective area of a single airbag, multiple airbags can be selected as the target airbag.
  • the determined airbag can more accurately protect the vehicle and the target; furthermore, the airbag can provide a cushioning effect when the vehicle collides with the target, and also The impact on the occupants inside the vehicle can be reduced, thereby also improving the safety of the occupants inside the vehicle.
  • step 220 may include: determining a target airbag according to the collision time, the relative location of the collision, and activation times of multiple airbags installed at multiple positions outside the vehicle, and activating the target airbag.
  • determining the target airbag according to the collision time, the relative location of the collision, and the activation time of multiple airbags installed at multiple locations outside the vehicle includes: Among the airbags at each position, the initial airbag group whose activation time is less than the time difference between the collision time and the current time is screened out; according to the relative position of the collision, the target airbag is screened out as the protective equipment from the initial airbag group.
  • the activation time of the airbag may be the time required for the maximum volume of the airbag after the detonation command is issued.
  • the time difference between the collision time and the current time is T
  • the detonation command of the airbag needs to pass td seconds before the detonation can be triggered to reach the maximum volume of the airbag, and it is necessary to satisfy: td ⁇ T to achieve the maximum volume of the airbag .
  • the airbags whose detonation time to the maximum volume is less than or equal to the time T can be selected as the initial airbag group. Then, an airbag capable of forming a blockage with the target object is selected from the initial airbag group as the target airbag.
  • the airbag By considering the time of the airbag, the airbag can be fully deployed before the collision occurs, so that the effect of the airbag can be maximized, and the vehicle and related personnel can be protected.
  • the collision time can be set before the air leak time.
  • the specified delay time length may be the time length F1 between the moment when the airbag is deployed to the maximum volume and the air leakage begins to occur. Then the airbags whose start-up time satisfies: td ⁇ T ⁇ (td+F1) can be selected as the initial airbag group.
  • the collision delay time F2 can represent the delay time between issuing an instruction and executing the instruction when the airbag needs to be activated, and the selected activation time satisfies: td
  • the airbags with ⁇ T ⁇ (td+F2) are used as the initial airbag group.
  • the time difference between the maximum volume of the airbag and the collision time can be reduced.
  • the above-mentioned activation of the protective equipment includes: determining the activation time according to the collision time and the activation duration of the protective equipment, the time difference between the activation time and the collision time is greater than or equal to the activation duration of the protective equipment, the The time difference between the starting time and the collision time is less than the sum of the starting time of the protective device and the specified delay time; at the starting time, the protective device is started.
  • the current time T does not satisfy the condition of td ⁇ T ⁇ (td+F), and the current T satisfies T>(td+F), then the start time ts can be determined, and the time difference between ts and the collision time is T1, and the T1 satisfies The condition td ⁇ T1 ⁇ (td+F).
  • control method may further include: according to the driving data of the vehicle and the environmental data of the vehicle, determine the corresponding The incident hazard coverage area.
  • the attribute of the target object may be determined according to the environmental data of the vehicle, and the size of the target object determines the coverage area of the event hazard.
  • the relative speed between the vehicle and the target can also be determined according to the vehicle's driving speed and driving acceleration in the vehicle's driving data, and the target's speed and target's trajectory in the vehicle's environment data.
  • the event hazard coverage area is determined. The faster the relative speed of the vehicle and the target, the larger the coverage area of the event hazard; the slower the relative speed of the vehicle and the target, the smaller the coverage area of the event hazard.
  • step 220 may include: determining the protective equipment of the vehicle according to the collision time, the relative location of the collision and/or the event hazard coverage area, and activating the protective equipment.
  • the protective equipment includes: a target airbag; determining the protective equipment of the vehicle according to the collision time, the relative position of the collision and/or the event hazard coverage area, and activating the protective equipment, including: according to the Determine the target number of safety protection equipment required for the event hazard coverage area; determine the target number of target airbags according to the collision time and the relative position of the collision, and activate the target number of target airbags.
  • multiple airbags may be screened out as protective equipment.
  • airbags at multiple locations may be selected as protective equipment.
  • the airbags on the front and side of the vehicle can be used as protective equipment.
  • each airbag on the vehicle and the event hazard coverage area determine the airbag whose sum of the areas covered by the deployment to the maximum volume of the multiple airbags is greater than the event hazard coverage area as the target airbag.
  • the target number N may satisfy: N ⁇ S/ ⁇ *R 2 , where S represents the event hazard coverage area.
  • the event hazard coverage area involves the front of the vehicle, and between the A, B, and C pillars on both sides of the relatively weak vehicle, then the target number N can also be satisfied: N ⁇ (C front width+Dac*2 )/(R*2), Cw indicates the width of the front of the vehicle, and Dac indicates the distance from the A-pillar to the C-pillar of the vehicle.
  • the airbags can better cover the event hazard coverage area, thereby improving the protection of the vehicle and reducing the damage to the target object.
  • the control method in this embodiment may further include: determining the event hazard level corresponding to the target object according to the attributes of the target object in the environmental data of multiple orientations and the relative speed between the target object and the vehicle.
  • the event hazard level may be a high hazard value.
  • the event hazard level may be a high hazard value.
  • the event hazard level may be a high hazard value.
  • the event hazard level can be a medium hazard value.
  • the event hazard level can be a medium hazard value.
  • first designated speed, second designated speed and third designated speed may be values set according to requirements.
  • the second designated speed may be greater than the first designated speed
  • the third designated speed may be lower than the first designated speed
  • one or more airbags can be determined as protective equipment according to the collision time and the relative location of the collision;
  • the target airbag and alarm are determined as protective equipment.
  • the control method is applied to a vehicle 100, and the target object is another vehicle 100' traveling from north to south, wherein the vehicle 100 travels from south to north at a speed of V1, and the vehicle 100
  • the width of is b1 meters, and the angle between the speed of the vehicle 100 and the east-west direction is ⁇ 1°.
  • the front of the vehicle 100 is provided with a radar 130, which can be used to detect the distance from the vehicle 100'.
  • the front of the vehicle 100 is also equipped with an airbag.
  • the vehicle 100 detects that it will collide with the vehicle 100 ′, and it takes t4 seconds from the command of the airbag at the front of the vehicle 100 to the deployment of the airbag to the maximum volume.
  • the speed of the vehicle 100' is V2
  • the width of the vehicle is b2 meters
  • the vehicle travels from north to south
  • the angle between the vehicle speed and the east-west direction is ⁇ 1°
  • the distance between the vehicle 100' and the vehicle 100 is A meters.
  • the electronic control unit of the vehicle 100 that controls the airbag can be in (T2– At time t4), the front airbag of the vehicle 100 is activated. As shown in Figure 5, the airbags at points P1, P2 can be deployed.
  • the vehicle 100 is traveling from south to north at a speed V3, and the length of the vehicle 100 is a3 meters, and the width is b3 meters.
  • the target object is a vehicle 100" coming from the side.
  • the length of the vehicle 100" is a4 meters, and the width is b4 meters.
  • the speed of the vehicle 100" is V4. It travels from southeast to northwest.
  • the velocity component on the north-south axis is V42, and the velocity component parallel to the north-south axis is V41.
  • the distance between the point Pa on the left front side of the vehicle 100" and the center point of the vehicle 100 is S2 meters, and the angle between the distance and the north-south direction is ⁇ 2°.
  • the coordinates of the point Pa on the left front side of the vehicle 100 can be calculated as (S2*Sin ⁇ 2, S2*Cos ⁇ 2);
  • T3 (S2*Sin ⁇ 2–b3/2)/V42;
  • the coordinates of the collision point B in the collision relative position are (b3/2, (S2*Cos ⁇ 2+V41*T3));
  • the relative position of the collision is at the position of the vehicle 100 shown by the dotted line in FIG. 6 .
  • the collision time needs to meet the conditions: T3 ⁇ (t5+F);
  • the electronic control unit controlling the side airbags of the vehicle 100 may activate the side airbags of the vehicle 100 at time (T3-t5). As shown in Figure 6, the airbags at points P3, P4, P5 can be deployed.
  • the embodiment of the present application also provides a control device corresponding to the control method. Since the problem-solving principle of the device in the embodiment of the present application is similar to that of the aforementioned control method embodiment, the device in this embodiment For implementation, reference may be made to the descriptions in the embodiments of the above methods, and repeated descriptions will not be repeated.
  • FIG. 7 is a schematic diagram of functional modules of the control device provided by the embodiment of the present application. Each module in the control device in this embodiment is used to execute each step in the above method embodiment.
  • the control device includes: a first determining module 310 and a starting module 320; wherein,
  • the first determining module 310 is configured to determine the vehicle, the collision time and the relative position of the target object according to the driving data of the vehicle and the environment data of the vehicle.
  • the environment data of the vehicle includes: the position of the object, the location of the object One or more information in the velocity and trajectory of the target object;
  • the activation module 320 is configured to activate the protection device according to the collision time and/or the relative location of the collision.
  • the protection device includes: a target airbag; an activation module 320, configured to:
  • a target airbag is determined from a plurality of airbags installed in multiple positions outside the vehicle, and the target airbag is activated.
  • the startup module 320 is configured to:
  • a target airbag Determining a target airbag according to the collision time, the relative location of the collision, and the activation times of a plurality of airbags installed in multiple locations outside the vehicle, where the target airbag is a protective device;
  • the startup module 320 is also used to:
  • the target airbag is screened out from the initial airbag group as the protective equipment.
  • the startup module 320 is also used to:
  • the start time is determined according to the collision time and the start-up time of the protective equipment, the time difference between the start-up time and the collision time is greater than or equal to the start-up time of the protective equipment, and the time difference between the start-up time and the collision time is less than the time difference of the protective equipment.
  • the protective device is activated.
  • control device may also include:
  • the second determining module is used to determine the event hazard coverage area corresponding to the target object according to the driving data of the vehicle and the environmental data of the vehicle;
  • the above startup module 320 is also used for:
  • the relative location of the collision and/or the event hazard coverage area the protective equipment of the vehicle is determined, and the protective equipment is activated.
  • the protection device includes: a target airbag; the above-mentioned activation module 320 is also used for:
  • the collision time and the collision relative position determine the target number of target airbags, and activate the target number of target airbags.
  • the first determination module 310 is configured to:
  • the collision time and the relative position of the collision between the vehicle and the target are determined.
  • an embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is run by a processor, the steps of the control method in the foregoing method embodiments are executed.
  • the computer program product of the control method provided by the embodiments of the present application includes a computer-readable storage medium storing program codes, and the instructions contained in the program codes can be used to execute the steps of the control method in the above method embodiments. For details, see The foregoing method embodiments are not described in detail here.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that contains one or more programmable logic functions for implementing specified logical functions. Execute instructions. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified function or action , or may be implemented by a combination of dedicated hardware and computer instructions.
  • each functional module in each embodiment of the present application may be integrated to form an independent part, each module may exist independently, or two or more modules may be integrated to form an independent part.
  • this function is realized in the form of a software function module and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes.
  • relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is a relationship between these entities or operations. There is no such actual relationship or order between them.
  • the term “comprises”, “comprises” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device. Without further limitations, an element defined by the statement "comprising" does not exclude the presence of additional identical elements in the process, method, article or device comprising the element.

Abstract

控制方法、装置及车辆,涉及车辆控制技术领域。控制方法包括:根据车辆(100)的行驶数据以及车辆(100)的环境数据,确定车辆(100)与目标物的碰撞时间以及碰撞相对位置,车辆(100)的环境数据包括:目标物的位置、目标物的速度、目标物的运动轨迹中的一种或多种信息;根据碰撞时间和/或碰撞相对位置,启动防护设备(140)。

Description

控制方法、装置及车辆 技术领域
本申请涉及车辆控制技术领域,具体而言,涉及一种控制方法装置及车辆。
背景技术
关于车辆的安全问题,目前的技术一般是从车内人员的安全角度考虑,通过在车辆内部设置安全气囊等防护设备,在车辆受力的时候启动车内的安全气囊,以提高车内驾驶员或乘客的安全。
发明内容
有鉴于此,本申请实施例的目的在于提供一种控制方法装置及车辆。能够提高车辆行驶的安全性。
本申请实施例提供的一种控制方法,应用于车辆,包括:
根据车辆的行驶数据以及所述车辆的环境数据,确定所述车辆与目标物的碰撞时间以及碰撞相对位置,所述车辆的环境数据包括:目标物的位置、目标物的速度、目标物的运动轨迹中的一种或多种信息;
根据所述碰撞时间和/或所述碰撞相对位置,启动防护设备。
在一可选的实施方式中,所述防护设备包括:目标安全气囊;所述根据所述碰撞时间和/或所述碰撞相对位置,启动所述防护设备,包括:
根据所述碰撞相对位置,确定出所述车辆上的预测碰撞位;
根据所述预测碰撞位,从多个安装在所述车辆外部多个位置的安全气囊中确定出目标安全气囊,并启动所述目标安全气囊。
在上述实施方式中,可以基于碰撞相对位置确定出一个或多个安装在所述车辆外部多个位置的安全气囊作为防护设备,能够实现对车辆外部结构的保护和目标物的保护。
在一可选的实施方式中,所述根据所述碰撞时间和/或所述碰撞相对位置,启动所述防护设备,包括:
根据所述碰撞时间、所述碰撞相对位置以及多个安装在所述车辆外部多个位置的安全气囊的启动时间,确定目标安全气囊,所述目标安全气囊为防护设备;
启动所述目标安全气囊。
在一可选的实施方式中,所述根据所述碰撞时间、所述碰撞相对位置以及多个安装在所述车辆外部多个位置的安全气囊的启动时间,确定出目标安全气囊,包括:
从多个安装在所述车辆外部多个位置的安全气囊中,筛选出启动时长小于所述碰撞时间与当前时间的时间差的初始安全气囊组;
根据所述碰撞相对位置,从所述初始安全气囊组中,筛选出目标安全气囊为防护设备。
在上述实施方式中,还可以基于碰撞时间和碰撞相对位置确定出能够满足启动时间的目标安全气囊为防护设备,可以使车辆在可能发生碰撞之前能够有效地打开目标安全气囊,从而也就能够更好的实现车辆的保护。
在一可选的实施方式中,所述启动所述防护设备,包括:
根据所述碰撞时间以及所述防护设备的启动时长,确定出启动时间,所述启动时间与所述碰撞时间的时间差大于或等于所述防护设备的启动时长,所述启动时间与所述碰撞时间的时间差小于所述防护设备的启动时长与指定延迟时长之和;
在所述启动时间,启动所述防护设备。
在上述实施方式中,可以结合指定延迟时长,确定出能够满足时间需求的防护设备。
在一可选的实施方式中,所述方法还包括:
根据所述车辆的行驶数据以及所述车辆的环境数据,确定出所述目标物对应的事件危害覆盖面积;
所述根据所述碰撞时间和/或所述碰撞相对位置,启动所述防护设备,包括:
根据所述碰撞时间、所述碰撞相对位置和/或所述事件危害覆盖面积,确定出所述车辆的防护设备,并启动所述防护设备。
在上述实施方式中,还可以结合出可能导致的危害覆盖面积确定出防护设备,从而可以更好地满足危害覆盖面积所需的防护设备。
在一可选的实施方式中,所述防护设备包括:目标安全气囊;所述根据所述碰撞时间、所述碰撞相对位置和/或所述事件危害覆盖面积,确定出所述车辆的防护设备,并启动所述防护设备,包括:
根据所述事件危害覆盖面积,确定所需安全防护设备的目标数量;
根据所述碰撞时间和所述碰撞相对位置,确定出所述目标数量的目标安全气囊,并启动所述目标数量的目标安全气囊。
在上述实施方式中,还可以基于可能的危害覆盖面积确定出一定数量的安全防护设备,从而可以更好地匹配该危害覆盖面积,以实现对目标物和车辆的保护。
在一可选的实施方式中,所述根据所述车辆的行驶数据以及所述车辆的环境数据,确定所述车辆与所述目标物的碰撞时间以及碰撞相对位置,包括:
根据所述车辆的行驶数据,确定出所述车辆的第一运动轨迹;
根据所述环境数据,确定出所述目标物的第二运动轨迹;
根据所述第一运动轨迹和所述第二运动轨迹,确定出所述车辆与所述目标物的碰撞时间以及碰撞相对位置。
在上述实施方式中,基于目标物和车辆的轨迹确定出碰撞时间以及碰撞相对位置,能够更好地考虑到车辆和目标物的位置变化情况,从而使确定出的碰撞时间以及碰撞相对位置能够更加准确。
第二方面,本申请实施例提供一种控制装置,包括:
第一确定模块,用于根据所述车辆的行驶数据以及所述车辆的环境数据,确定所述车辆与目标物的碰撞时间以及碰撞相对位置,所述车辆的环境数据包括:目标物的位置、目标物的速度、目标物的运动轨迹中的一种或多种信息;
启动模块,用于根据所述碰撞时间和/或所述碰撞相对位置,启动所述防护设备。
第三方面,本申请实施例提供一种车辆,包括:存储器、电子控制单元;
所述存储器存储有所述电子控制单元可执行的机器可读指令,当调节汽车内的环境时,所述机器可读指令被所述电子控制单元执行时执行上述第一方面,或第一方面的任一种可能的实施方式中的方法的步骤。
与现有技术相比,本申请的控制方法、装置及车辆,能够提前预判车辆周边的环境,在车辆周边存在潜在危险时,可以提前预估危险发生的位置,从而可以有效启动防护设备,以提高车辆的安全和车辆内部的人员的安全。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的车辆的方框示意图;
图2为本申请实施例提供的车辆的结构示意图;
图3为本申请实施例提供的控制方法的流程图;
图4为本申请实施例提供的控制方法的部分的流程图;
图5为本申请实施例提供的控制方法对应的实际场景示意图;
图6为本申请实施例提供的控制方法对应的另一实际场景示意图;
图7为本申请实施例提供的控制装置的模块示意图。
图标:100-车辆;110-电子控制单元;120-采集设备;130-雷达;140-防护设备;150-电池。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行描述。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
本申请发明人注意到,针对车辆的安全上的研究更多的是关于在车内人员的安全性的研究。例如,车辆内部设置安全气囊,在车辆受力的时候启动车内的安全气囊,以提高车内驾驶员或乘客的安全。但是车辆在受力时,往往危险可能正在发生了,此时再弹出安全气囊可能时机相对较晚。
本申请的发明人还注意到,车辆的安全问题,不仅仅在于车内的驾驶员或乘客的安全;在车辆的危险还可能会是关于车辆结构以及车辆周边物体的安全。尤其是在电动汽车领域,动力电池会被布置到底盘,实现底盘与电池的一体化设计。该一体化设计,可以实现再车辆上布置更多的动力电池,以延长车辆续航里程,也加固了底盘结构。但与传统燃油车相比,在底盘位置的碰撞溃缩空间变小了。这使得当车辆碰撞发生时,车辆的受撞加速度更大,车内人员更容易受到碰撞加速度的拉伸伤害,而不仅仅只是碰撞受伤。另外,对于半开放道路的自动驾驶L4的特种车辆,基于不同的乘坐需求,乘客座位可能是环座,导致车辆内部的安全气囊布局也相对更加为困难。
为了提高车辆的安全,本申请发明人研究发现,在已经存在潜在危险的时候,车辆所拥有的防护设备以及车辆上的防护设备是否能够及时启动该直接影响到车辆的防护结果。基于此,一方面,可以从车辆的防护设备的布置上进行改进,在车辆外部也设置用户防护的安全气囊,以实现在车辆结构以及周边物体的保护。另一方面,可以提前预测可能存在的危险,以提前启动防护设备,以使防护设备更好地发挥作用。
为便于理解,先对本申请使用到的专业名称进行解释:
电子控制单元:Electronic Control Unit,简称ECU,又称行车电脑;
CAN总线:Controller Area Network,控制器局域网络总线。
下面通过几个实施例描述本申请提供的能够提高车辆安全的控制方法、控制装置和车辆。
为便于对本实施例进行理解,首先对执行本申请实施例所公开的控制方法的车辆进行详细介绍。
请参照图1,图1为本申请一些实施例提供的车辆100的结构示意图。车辆100可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。
车辆100可以包括多个电子控制单元110,各个电子控制单元之间通过CAN总线进行通信。
其中,电子控制单元可以包括微处理器、存储器、输入/输出接口、模数转换器以及整形、驱动等大规模集成电路组成。
其中,存储器可以是,但不限于,随机存取存储器RAM,只读存储器ROM,可编程只读存储器PROM,可擦除只读存储器EPROM,电可擦除只读存储器EEPROM等。其中,存储器用于存储程序,微处理器在接收到执行指令后,执行所述程序,本发明实施例任一实施例揭示的过程定义的车辆100所执行的步骤可以应用于微处理器中,或者由微处理器实现。
微处理器可能是一种集成电路芯片,具有信号的处理能力。
其中,车辆100上的每个电子控制单元可以用于处理车辆上的一类问题。例如,车辆100上可以包括一电子控制单元,用于响应车钥匙发送的指令。再例如,车辆100上可以包括另一电子控制单元,用于执行泊车操作所需指令。再例如,车辆100上可以包括再一电子控制单元,用于执行响应启动车辆上的防护设备的指令。
在一可选的实施方式中,车辆100还可以包括采集设备120和雷达130。
该采集设备120可以是摄像头,该摄像头用于采集车辆100周边的图像数据或视频数据。该采集设备120还可以是麦克风,该麦克风用于采集车辆100周边的声音数据。
其中,雷达130可以包括前激光雷达130,也可以是超声波雷达130,还可以是毫米波雷达130。
该激光雷达130可以发生激光束探测车辆100周边的物体的位置、速度等信息。
该超声波雷达130可以发射超声波信号,当超声波信号遇到障碍物时产生回波信号,超声波雷达130接收到回波信号后,可以基于超声波信号和回波信号确定出车辆100周边的物体的位置、速度等信息。
可选地,该雷达130可以安装在车辆100的车盖上,还可以安装在车辆100的车尾保险杠上,还可以安装在车辆100的侧面等。当然,还可以在车辆100的车盖、车辆100的车尾保险杠以及车辆100的侧面均安装雷达130,以检测车辆100的不同方位上的物体的相关信息。
本实施例中的车辆100还可以包括防护设备140。
该防护设备140可以是安全气囊。
可选地,该车辆100的内部可以安装一个或多个安全气囊。例如,每个座位前方可以安装有安全气囊。
可选地,该车辆100的外部也可以安装有一个或多个安全气囊。车辆100外部的安全气囊可以安装在车辆100的底盘上。
如图2所示,车辆100的外部的安全气囊可以分别布置在车辆100的各个位置。在图2所示的实例中,该车辆100的前方可以布置三个安全气囊,该车辆100的前方可以布置两个安全气囊,该车辆100的两侧分别布置四个安全气囊。
该防护设备140还可以是报警器。例如,该报警器可以是声光报警器,还可以是用于输出报警提示的麦克风。
在一些可选的实施例中,车辆100上还可以安装有车速传感器、惯导传感器等设备。通过该车速传感器和惯导传感器可以检测得到车辆的行驶数据。
进一步地,车辆100的内部还可以设置有电池150,电池150可以设置在车辆100的底部或头部或尾部。电池150可以用于车辆的供电,例如,电池150可以作为车辆100的操作电源。车辆100还可以包括马达,车辆100上所包括的电子控制单元还可以用于控制电池150为马达供电,例如,用于车辆的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池150不仅可以作为车辆100的操作电源,还可以作为车辆100的驱动电源,代替或部分地代替燃油或天然气为车辆提供驱动动力。
本实施例中的车辆100可以用于执行本申请实施例提供的各个方法中的各个步骤。下面通过几个实施例详细描述控制方法的实现过程。
本实施例提供一种控制方法,该控制方法可以应用于车辆。请参阅图3,是本申请实施例提供的控制方法的流程图。下面将对图3所示的具体流程进行阐述。
步骤210,根据车辆的行驶数据以及该车辆的环境数据,确定该车辆与目标物的碰撞时间以及碰撞相对位置。
车辆的行驶数据可以包括行驶速度、行驶方向、行驶加速度、车辆的转角、车辆转向、车辆的转速度等数据中的一项或多项。当该车辆处于静止状态下时,车辆的行驶速度和行驶加速度都为零。当该车辆处于行驶状态下时,车辆的行驶速度为非零数值。基于车辆的行驶数据可以确定出车辆的行驶轨迹。
示例性地,可以通过车辆上的电子控制单元计算车辆的行驶速度、行驶方向、行驶加速度、车辆的转角、车辆转向、车辆的转速度信息等。
可选地,车辆上用于计算车辆状态的电子控制单元可以按照预设时间间隔计算出车辆的各项行驶数据。该预设时间间隔可以是半秒、一秒、三秒、五秒等。
该车辆的环境数据用于表征该车辆周边的环境中的物体分布、各物体的行动速度等。
该车辆的环境数据包括:目标物的位置、目标物的速度、目标物的运动轨迹中的一种或多种信息。该车辆的环境数据还可以是图像数据、视频数据等。
该目标物的属性可以是人、动物、其它车辆等动态的物体,也可以是树木、电线柱等静态物。示例性地,可以通过深度学习算法对图像环境数据进行识别,以确定出车辆的环境中存在的物体是属性。
本实施例中,通过该车辆的行驶数据以及该车辆的环境数据可以计算出车辆的环境中是否存在可能与车辆发生碰撞的目标物,以进一步地确定出可能发生碰撞时间以及碰撞相对位置。
在一可选的实现方式中,可以根据车辆在各个时间点的位置与车辆的环境中的各个物体在各个时间点的位置确定出目标物的碰撞时间以及碰撞相对位置。
当车辆处于静止状态时,可以根据车辆的环境数据,确定出车辆环境中的各个物体的在不同时间点所在位置;然后,确定出各个时间点,车辆的环境中的各个物体的位置是否与静止的车辆的位置相同。
当车辆处于行驶状态时,可以根据车辆的环境数据,确定出车辆环境中的各个物体的在不同时间点所在位置;根据车辆的行驶数据确定车辆在不同时间点所在位置。然后,确定出各个时间点,车辆的环境中的物体的位置是否与车辆的位置相同。
当车辆处于行驶状态,车辆的环境中存在的物体是静态物时,根据车辆的行驶数据确定车辆在不同时间点所在位置。然后,确定出各个时间点,车辆的位置是否与静态的物体的位置是否相同。
若在第一时间点,车辆的位置与目标物的位置相同,则表示车辆与目标物在第一时间点会发生碰撞。则该第一时间点则可以确定为碰撞时间,碰撞发生的位置则确定为碰撞相对位置。
示例性地,相邻两个时间点之间的时长可以按照需求设定。例如,相邻两个时间点可以是两秒、三秒等;再例如,相邻两个时间点可以是半秒、一秒等时长。
在另一可选的实现方式中,可以构建用于表征车辆的时间与位置的关系的第一位置关系;构建用于表征车辆的环境中的各个物体的位置的关系的第二位置关系。其中,车辆的环境中的多个物体时,每个物体可以对应有一项第二位置关系。
若第一位置关系与目标物的第二位置关系存在交点时,则表示车辆与该目标物可能存在碰撞,且该交点对应的时间则为碰撞时间,该交点对应的位置为碰撞相对位置。
在另一可选的实现方式中,可以根据该车辆的行驶数据,确定出该车辆的第一运动轨迹,根据该环境数据,确定出该目标物的第二运动轨迹,根据该第一运动轨迹和该第二运动轨迹,确定出该车辆与该目标物的碰撞时间以及碰撞相对位置。
示例性地,若第二时间点,第一运动轨迹和第二运动轨迹重合,若将第二时间点确定为碰撞时间,该第一运动轨迹和第二运动轨迹重合的位置确定为碰撞相对位置。
可选地,还可以基于车辆的行驶速度和目标物的速度,确定出车辆与目标物的相对速度。示例性地,还可以根据车辆与目标物的相对速度按照第一方向和第二方向分解,以确定出垂直于车辆的碰撞位置的相对速度。该第一方向可以是垂直于车辆的碰撞位置,第二方向可以是垂直于第一方向的方向。
步骤220,根据该碰撞时间和/或该碰撞相对位置,启动防护设备。
可选地,可以根据该碰撞时间,确定出能够及时启动的防护设备。
示例性地,目标物位于车辆的前方,则可以从安装在车辆前方的多个安全气囊中选出能够在碰撞时间之前打开的安全气囊。例如,车辆前方的安全气囊中的第一安全气囊、第二安全气囊和第三安全气囊的打开所需时长分别为t1、t2、t3,其中,t1>t2>t3。碰撞时间为t4时长之后的时间,且该t1>t4>t2,则在碰撞发生之前可以成功打开第二安全气囊和第三安全气囊,则可以选择第二安全气囊或第三安全气囊作为防护设备。
进一步地,还可以选取能够在碰撞时间之前打开,且最大的安全气囊。以上述实例为例,可以选择第二安全气囊与第三安全气囊中更大的安全气囊作为防护设备。
可选地,可以根据碰撞相对位置,确定出发生碰撞时目标物会撞击至车辆上的碰撞车辆部位。因此,可以将与该碰撞车辆部位最近的安全气囊作为防护设备。例如,该碰撞车辆部位为车辆的第一侧面,则可以将作用于第一侧面的安全气囊作为防护设备。以图2所示的实例举例说明,两个侧面均包括四个安全气囊,若图2所示的实例 中的左侧为第一侧面,则可以将左侧的四个安全气囊中的任意一个或多个安全气囊作为防护设备。
通过上述的实现方法,可以在碰撞发生之前提前进行检测,有效预测可能发生碰撞的时间和位置,基于预测得到的碰撞时间和碰撞相对位置,提供降低或避免危险的防护设备,从而可以提高车内人员、车辆以及车辆周边环境的安全。
根据本申请的一些实施例,可选地,车辆上安装的安全气囊,上述的防护设备可以是从安装在车辆上的多个安全气囊筛选出的目标安全气囊。如图4所示,步骤220可以包括步骤221和步骤222。
步骤221,根据该碰撞相对位置,确定出该车辆上的预测碰撞位。
示例性地,该碰撞相对位置位于车辆的正前方,且该车辆的行驶方向为向前行驶,则车辆上的预测碰撞位确定为车头处。
示例性地,该碰撞相对位置位于车辆的左前方,且该车辆的行驶方向为向前行驶,且目标物沿垂直于车辆行驶方式移动,则车辆上的预测碰撞位确定为车辆左侧。
示例性地,也可以根据车辆的行驶数据,确定出在碰撞时间该车辆所处位置。然后,根据车辆的环境数据中的目标物的位置、目标物的速度、目标物的运动轨迹中的一种或多种数据确定出在碰撞时间该目标物的位置,以此确定出在碰撞时间车辆与目标物的相对位置,基于该车辆与目标物的相对位置确定出预测碰撞位。
步骤222,根据该预测碰撞位,从多个安装在该车辆外部多个位置的安全气囊中确定出目标安全气囊,并启动该目标安全气囊。
可选地,车辆上的预测碰撞位为车头时,则可以从安全再车头出的安全气囊中选出目标安全气囊。
若目标物相对较大,目标物与车辆若发生碰撞时受力面积超过单个安全气囊的防护面积时,则可以筛选出多个安全气囊作为目标安全气囊。
通过基于预测碰撞位确定出目标安全气囊,能够使确定出的安全气囊能够更准确地实现对车辆和目标物的防护;进一步地,安全气囊能够在车辆与目标物碰撞时提供缓冲的作用,也能够降低对车辆内部人员的冲击,从而也可以提高车辆内部人员的安全性。
根据本申请的一些实施例,考虑不同的安全气囊启动时间可能不同,不同的突发时间给予车辆的响应时间不同,因此,要实现有效防护,则需要在碰撞发生之前安全 气囊被完全打开。基于此考虑,步骤220可以包括:根据该碰撞时间、该碰撞相对位置以及多个安装在该车辆外部多个位置的安全气囊的启动时间,确定目标安全气囊,启动该目标安全气囊。
可选地,上述的根据该碰撞时间、该碰撞相对位置以及多个安装在该车辆外部多个位置的安全气囊的启动时间,确定出目标安全气囊,包括:从多个安装在该车辆外部多个位置的安全气囊中,筛选出启动时长小于该碰撞时间与当前时间的时间差的初始安全气囊组;根据该碰撞相对位置,从该初始安全气囊组中,筛选出目标安全气囊为防护设备。
该安全气囊的启动时长可以为引爆指令发出后安全气囊的最大体积所需时长。
示例性地,碰撞时间与当前时间的时间差为T,在安全气囊的引爆指令需经过td秒,才能触发引爆达到安全气囊的最大体积,则需满足:td≤T才能够实现安全气囊达到最大体积。
因此,可以筛选出引爆至最大体积所需时长小于或等于时长T的安全气囊作为初始安全气囊组。然后,从该初始安全气囊组选出能够与目标物形成阻断的安全气囊作为目标安全气囊。
通过对安全气囊时间的考虑,可以在碰撞发生之前能够完全展开安全气囊,从而可以最大程度的发挥安全气囊的作用,也就能够给予车辆和相关人员保护。
考虑安全气囊在展开至最大体积后,随时间可能会开始变形漏气,因此,为了更好地保持安全气囊的作用,可以使碰撞时间能够在漏气时间之前。该指定延迟时长可以为安全气囊展开至最大体积的时刻与开始发生漏气之间的时长F1。则可以选出启动时长满足:td≤T<(td+F1)的安全气囊为作为初始安全气囊组。
考虑车辆上的控制安全气囊的控制系统可能设置有碰撞延迟时长F2,则碰撞延迟时长F2可以表示在需要启动安全气囊时,发出指令到执行指令之间的延迟时间,选出启动时长满足:td≤T<(td+F2)的安全气囊为作为初始安全气囊组。
可选地,筛选出的初始安全气囊组也可以满足:td≤T<(td+F),其中,F=min(F1,F2)。
通过设置上述的碰撞延迟时长F2可以降低安全气囊处于最大体积与碰撞时间之间的时间差。
可选地,上述的启动该防护设备,包括:根据该碰撞时间以及该防护设备的启动时长,确定出启动时间,该启动时间与该碰撞时间的时间差大于或等于该防护设备的启动时长,该启动时间与该碰撞时间的时间差小于该防护设备的启动时长与指定延迟时长之和;在该启动时间,启动该防护设备。
若当前时间与碰撞时间的时间差为T,且当前已经无法回避碰撞时,则需要考虑启动防护设备。但是当前时间T不满足td≤T<(td+F)的条件,当前T满足T>(td+F),则可以确定出启动时间ts,ts与碰撞时间的时间差为T1,且该T1满足条件td≤T1<(td+F)。
通过上述方式选出满足要求的安全气囊,在能实现在碰撞之前展开至最大面积的同时,还能够满足安全气囊不发生泄露,在碰撞发生时,该安全气囊还能够保持至最大体积,从而可以更好地发挥安全气囊的作用。
根据本申请的一些实施例,不同的目标物与车辆发生的碰撞影响的面积不同,基于此,控制方法还可以包括:根据该车辆的行驶数据以及该车辆的环境数据,确定出该目标物对应的事件危害覆盖面积。
示例性地,可以根据车辆的环境数据确定出目标物的属性,目标物的大小确定出事件危害覆盖面积。其中,该目标物越大,事件危害覆盖面积越大;该目标物越小,事件危害覆盖面积越小。
可选地,还可以根据车辆的行驶数据中的车辆的行驶速度和行驶加速度,与车辆的环境数据中的目标物的速度、目标物的运动轨迹,确定出车辆与目标物的相对速度。
结合目标物的大小和车辆与目标物的相对速度,确定出事件危害覆盖面积。车辆与目标物的相对速度越快,事件危害覆盖面积越大;车辆与目标物的相对速度越慢,事件危害覆盖面积越小。
在此基础上,步骤220可以包括:根据该碰撞时间、该碰撞相对位置和/或该事件危害覆盖面积,确定出该车辆的防护设备,并启动该防护设备。
示例性地,该防护设备包括:目标安全气囊;该根据该碰撞时间、该碰撞相对位置和/或该事件危害覆盖面积,确定出该车辆的防护设备,并启动该防护设备,包括:根据该事件危害覆盖面积,确定所需安全防护设备的目标数量;根据该碰撞时间和该 碰撞相对位置,确定出该目标数量的目标安全气囊,并启动该目标数量的目标安全气囊。
示例性地,在事件危害覆盖面积大于一个安全气囊的面积时,可以筛选出多个安全气囊作为防护设备。
示例性地,事件危害覆盖面积涉及到车辆的多个位置时,可以选出多个位置上的安全气囊作为防护设备。例如,事件危害覆盖面积涉及车头和车辆侧面,则可以将车头和车辆侧面上的安全气囊作为防护设备。
可选地,可以根据车辆上的各个安全气囊的最大半径R,以及事件危害覆盖面积,确定出多个安全气囊的展开至最大体积所覆盖的面积之和大于事件危害覆盖面积的安全气囊作为目标安全气囊。
示例性地,该目标数量N可以满足:N≥S/π*R 2,S表示事件危害覆盖面积。
示例性地,该事件危害覆盖面积涉及到车头,及相对薄弱的车辆的两侧面的A,B,C柱之间,则该目标数量N还可以满足:N≥(C车头宽度+Dac*2)/(R*2),Cw表示车头宽度,Dac表示车A柱至C柱的距离。
通过选择合适数量的安全气囊,可以使安全气囊能够更好地覆盖事件危害覆盖面积,从而可以提高对车辆的保护,也能够降低对目标物的危害。
考虑不同的碰撞事件所对应的危害程度可能不同,因此,还可以基于不同的危害程度提供不同的防护措施。
本实施例中的控制方法还可以包括:根据多个方位的该环境数据中的目标物的属性、该目标物与车辆的相对速度,确定出该目标物对应的事件危害等级。
示例性地,当车辆内有人,未佩戴安全带,且目标物与车辆的相对速度大于第一指定速度时,则事件危害等级可以为高危害度值。
当车辆内有人,已佩戴安全带,目标物与车辆的相对速度大于第二指定速度时,则事件危害等级可以为高危害度值。
当目标物为人,目标物与车辆的相对速度大于第三指定速度时,则事件危害等级可以为高危害度值。
当目标物为车辆或其他高刚度的非人物体,且车辆内没有人员,事件危害等级可以为中危害度值。
当目标物为狗,羊等柔性非人物体,且车辆内没有人员,则事件危害等级可以为中危害度值。
其中,上述的第一指定速度、第二指定速度和第三指定速度可以是按照需求设定的值。例如,该第二指定速度可以为大于第一指定速度,第三指定速度可以小于第一指定速度。
示例性地,若该事件危害等级为危害程度低时,可以根据该碰撞时间、该碰撞相对位置,确定一个或多个安全气囊作为防护设备;
示例性地,若该事件危害等级为危害程度高时,根据该碰撞时间、该碰撞相对位置,确定目标安全气囊和报警器为防护设备。
通过上述预先设定危害等级,可以匹配更合适的防护设备,在提高安全性的同时,还可以合理选择防护设备的类型和数量,降低防护设备的浪费使用的情况。
下面通过几个实例,描述本申请实施例提供的控制方法。
在一个实例中,如图5所示,该控制方法应用于车辆100,目标物为由北向南方向行驶的另一车辆100',其中,车辆100以V1的速度由南向北行驶,车辆100的宽为b1米,车辆100的车速与东西方向的夹角为α1°。
该车辆100的车头上设置有雷达130,该类的可以用于检测与车辆100'的距离。该车辆100的车头还安装有安全气囊。
在图5所示的实例中,车辆100检测到会与车辆100'发生碰撞,车辆100的车头的安全气囊指令下达至安全气囊展开至最大体积需时t4秒。
车辆100'的速度为V2,车宽b2米,从北向南方向行驶,车速与东西方向的夹角为θ1°,车辆100'与车辆100相距A米。
通过车辆100的行驶数据和车辆100'的行驶数据,可以计算得到车辆100与车辆100'的碰撞碰撞时间为:T2=(A/(V1*Sinα1+V2*Sinθ1))。
若Max(b1/2,b2/2)/(V1*Cosα1+V2*Cosθ1)>T2,且T2≤(t4+F)时,则车辆100的控制安全气囊的电子控制单元可以在(T2–t4)时刻,启动车辆100的车头的安全气囊。如图5所示,可以打开点P1、P2处的安全气囊。
在一个实例中,如图6所示,在即将碰撞的短时间内,车辆100以速度V3,从南往北行驶,车辆100的长a3米,宽b3米。目标物为侧向驶来的车辆100”,车辆100” 的长a4米,宽b4米,车辆100”的速度为V4,从东南向西北方向行驶,与东西向夹角为θ2°,其垂直于南北轴线的速度分量为V42,平行于南北轴线的速度分量为V41。车辆100”的左前侧Pa点,与车辆100中心点的距离为S2米,距离与南北向夹角为α2°。
车辆100安全气囊指令下达至安全气囊完全展开,需时t5秒。
则若定义车辆100中心点为坐标原点(0,0),根据几何原理,可算得车辆100”的左前侧Pa点的坐标为(S2*Sinα2,S2*Cosα2);
由此,可计算得到碰撞时间:T3=(S2*Sinα2–b3/2)/V42;
车辆100至碰撞时间的会由南向北行驶的距离为S1=V3*T3;
碰撞相对位置中的相撞点B的坐标为(b3/2,(S2*Cosα2+V41*T3));
碰撞点B距离车辆100右侧中心距离=(S1-(S2*Cosα2+V41*T3));
根据上述场景,可计算出碰撞相对位置处于如图6所示的虚线车辆100所在位置。
需要碰撞时间满足条件:T3≤(t5+F);
则控制车辆100的侧面的安全气囊的电子控制单元可以在(T3–t5)时刻,车辆100的侧面的安全气囊。如图6所示,可以打开点P3、P4、P5处的安全气囊。
基于同一申请构思,本申请实施例中还提供了与控制方法对应的控制装置,由于本申请实施例中的装置解决问题的原理与前述的控制方法实施例相似,因此本实施例中的装置的实施可以参见上述方法的实施例中的描述,重复之处不再赘述。
请参阅图7,是本申请实施例提供的控制装置的功能模块示意图。本实施例中的控制装置中的各个模块用于执行上述方法实施例中的各个步骤。控制装置包括:第一确定模块310和启动模块320;其中,
第一确定模块310,用于根据该车辆的行驶数据以及该车辆的环境数据,确定该车辆,目标物的碰撞时间以及碰撞相对位置,该车辆的环境数据包括:目标物的位置、目标物的速度、目标物的运动轨迹中的一种或多种信息;
启动模块320,用于根据该碰撞时间和/或该碰撞相对位置,启动该防护设备。
一种可能的实施方式中,该防护设备包括:目标安全气囊;启动模块320,用于:
根据该碰撞相对位置,确定出该车辆上的预测碰撞位;
根据该预测碰撞位,从多个安装在该车辆外部多个位置的安全气囊中确定出目标安全气囊,并启动该目标安全气囊。
一种可能的实施方式中,启动模块320,用于:
根据该碰撞时间、该碰撞相对位置以及多个安装在该车辆外部多个位置的安全气囊的启动时间,确定目标安全气囊,该目标安全气囊为防护设备;
启动该目标安全气囊。
一种可能的实施方式中,启动模块320,还用于:
从多个安装在该车辆外部多个位置的安全气囊中,筛选出启动时长小于该碰撞时间与当前时间的时间差的初始安全气囊组;
根据该碰撞相对位置,从该初始安全气囊组中,筛选出目标安全气囊为防护设备。
一种可能的实施方式中,启动模块320,还用于:
根据该碰撞时间以及该防护设备的启动时长,确定出启动时间,该启动时间与该碰撞时间的时间差大于或等于该防护设备的启动时长,该启动时间与该碰撞时间的时间差小于该防护设备的启动时长与指定延迟时长之和;
在该启动时间,启动该防护设备。
一种可能的实施方式中,控制装置还可以包括:
第二确定模块,用于根据该车辆的行驶数据以及该车辆的环境数据,确定出该目标物对应的事件危害覆盖面积;
上述的启动模块320,还用于:
根据该碰撞时间、该碰撞相对位置和/或该事件危害覆盖面积,确定出该车辆的防护设备,并启动该防护设备。
一种可能的实施方式中,该防护设备包括:目标安全气囊;上述的启动模块320,还用于:
根据该事件危害覆盖面积,确定所需安全防护设备的目标数量;
根据该碰撞时间和该碰撞相对位置,确定出该目标数量的目标安全气囊,并启动该目标数量的目标安全气囊。
一种可能的实施方式中,第一确定模块310,用于:
根据该车辆的行驶数据,确定出该车辆的第一运动轨迹;
根据该环境数据,确定出该目标物的第二运动轨迹;
根据该第一运动轨迹和该第二运动轨迹,确定出该车辆与该目标物的碰撞时间以及碰撞相对位置。
此外,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述方法实施例中该的控制方法的步骤。
本申请实施例所提供的控制方法的计算机程序产品,包括存储了程序代码的计算机可读存储介质,该程序代码包括的指令可用于执行上述方法实施例中该的控制方法的步骤,具体可参见上述方法实施例,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本申请的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,该模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
该功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM, Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括该要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上该仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上该,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种控制方法,应用于车辆,其特征在于,包括:
    根据所述车辆的行驶数据以及所述车辆的环境数据,确定所述车辆与目标物的碰撞时间以及碰撞相对位置,所述车辆的环境数据包括:目标物的位置、目标物的速度、目标物的运动轨迹中的一种或多种信息;
    根据所述碰撞时间和/或所述碰撞相对位置,启动防护设备。
  2. 根据权利要求1所述的方法,其特征在于,所述防护设备包括:目标安全气囊;所述根据所述碰撞时间和/或所述碰撞相对位置,启动所述防护设备,包括:
    根据所述碰撞相对位置,确定出所述车辆上的预测碰撞位;
    根据所述预测碰撞位,从多个安装在所述车辆外部多个位置的安全气囊中确定出目标安全气囊,并启动所述目标安全气囊。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述碰撞时间和/或所述碰撞相对位置,启动所述防护设备,包括:
    根据所述碰撞时间、所述碰撞相对位置以及多个安装在所述车辆外部多个位置的安全气囊的启动时间,确定目标安全气囊,所述目标安全气囊为防护设备;
    启动所述目标安全气囊。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述碰撞时间、所述碰撞相对位置以及多个安装在所述车辆外部多个位置的安全气囊的启动时间,确定出目标安全气囊,包括:
    从多个安装在所述车辆外部多个位置的安全气囊中,筛选出启动时长小于所述碰撞时间与当前时间的时间差的初始安全气囊组;
    根据所述碰撞相对位置,从所述初始安全气囊组中,筛选出目标安全气囊为防护设备。
  5. 根据权利要求1所述的方法,其特征在于,所述启动所述防护设备,包括:
    根据所述碰撞时间以及所述防护设备的启动时长,确定出启动时间,所述启动时间与所述碰撞时间的时间差大于或等于所述防护设备的启动时长,所述启动时间与所述碰撞时间的时间差小于所述防护设备的启动时长与指定延迟时长之和;
    在所述启动时间,启动所述防护设备。
  6. 根据权利要求1-5任意一项所述的方法,其特征在于,所述方法还包括:
    根据所述车辆的行驶数据以及所述车辆的环境数据,确定出所述目标物对应的事件危害覆盖面积;
    所述根据所述碰撞时间和/或所述碰撞相对位置,启动所述防护设备,包括:
    根据所述碰撞时间、所述碰撞相对位置和/或所述事件危害覆盖面积,确定出所述车辆的防护设备,并启动所述防护设备。
  7. 根据权利要求6所述的方法,其特征在于,所述防护设备包括:目标安全气囊;所述根据所述碰撞时间、所述碰撞相对位置和/或所述事件危害覆盖面积,确定出所述车辆的防护设备,并启动所述防护设备,包括:
    根据所述事件危害覆盖面积,确定所需安全防护设备的目标数量;
    根据所述碰撞时间和所述碰撞相对位置,确定出所述目标数量的目标安全气囊,并启动所述目标数量的目标安全气囊。
  8. 根据权利要求1所述的方法,其特征在于,所述根据所述车辆的行驶数据以及所述车辆的环境数据,确定所述车辆与所述目标物的碰撞时间以及碰撞相对位置,包括:
    根据所述车辆的行驶数据,确定出所述车辆的第一运动轨迹;
    根据所述环境数据,确定出所述目标物的第二运动轨迹;
    根据所述第一运动轨迹和所述第二运动轨迹,确定出所述车辆与所述目标物的碰撞时间以及碰撞相对位置。
  9. 一种控制装置,应用于车辆,其特征在于,包括:
    第一确定模块,用于根据车辆的行驶数据以及所述车辆的环境数据,确定所述车辆与目标物的碰撞时间以及碰撞相对位置,所述车辆的环境数据包括:目标物的位置、目标物的速度、目标物的运动轨迹中的一种或多种信息;
    启动模块,用于根据所述碰撞时间和/或所述碰撞相对位置,启动防护设备。
  10. 一种车辆,其特征在于,包括:存储器、电子控制单元;
    所述存储器存储有所述电子控制单元可执行的机器可读指令,当调节汽车内的环境时,所述机器可读指令被所述电子控制单元执行时执行如权利要求1至8任一所述的方法的步骤。
PCT/CN2021/122376 2021-09-30 2021-09-30 控制方法、装置及车辆 WO2023050386A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/122376 WO2023050386A1 (zh) 2021-09-30 2021-09-30 控制方法、装置及车辆
CN202180085514.XA CN116648392A (zh) 2021-09-30 2021-09-30 控制方法、装置及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122376 WO2023050386A1 (zh) 2021-09-30 2021-09-30 控制方法、装置及车辆

Publications (1)

Publication Number Publication Date
WO2023050386A1 true WO2023050386A1 (zh) 2023-04-06

Family

ID=85781200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122376 WO2023050386A1 (zh) 2021-09-30 2021-09-30 控制方法、装置及车辆

Country Status (2)

Country Link
CN (1) CN116648392A (zh)
WO (1) WO2023050386A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930368A (ja) * 1995-07-21 1997-02-04 Toyota Motor Corp 歩行者保護用エアバッグ装置
US6025796A (en) * 1996-12-09 2000-02-15 Crosby, Ii; Robert G. Radar detector for pre-impact airbag triggering
US20060091653A1 (en) * 2004-11-04 2006-05-04 Autoliv Asp, Inc. System for sensing impending collision and adjusting deployment of safety device
US20140156147A1 (en) * 2012-12-04 2014-06-05 Hyundai Motor Company External airbag deployment method and system
US20140156145A1 (en) * 2012-12-04 2014-06-05 Hyundai Motor Company External airbag deployment method and system
CN103863232A (zh) * 2012-12-10 2014-06-18 现代自动车株式会社 外部安全气囊展开方法和系统
CN104828004A (zh) * 2014-11-20 2015-08-12 北汽福田汽车股份有限公司 车辆的控制方法、系统及车辆
US20160059855A1 (en) * 2014-09-01 2016-03-03 Honda Research Institute Europe Gmbh Method and system for post-collision manoeuvre planning and vehicle equipped with such system
JP2017202802A (ja) * 2016-05-13 2017-11-16 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
US20180229684A1 (en) * 2017-02-14 2018-08-16 Kiomars Anvari Protection for moving equipments and objects
CN108973916A (zh) * 2017-06-05 2018-12-11 上海汽车集团股份有限公司 一种碰撞保护系统及方法
CN110293931A (zh) * 2018-03-23 2019-10-01 上海汽车集团股份有限公司 一种车外安全气囊控制系统及方法
CN113291251A (zh) * 2021-07-08 2021-08-24 上海安亭地平线智能交通技术有限公司 车辆碰撞中的安全防护方法和装置、电子设备和介质

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930368A (ja) * 1995-07-21 1997-02-04 Toyota Motor Corp 歩行者保護用エアバッグ装置
US6025796A (en) * 1996-12-09 2000-02-15 Crosby, Ii; Robert G. Radar detector for pre-impact airbag triggering
US20060091653A1 (en) * 2004-11-04 2006-05-04 Autoliv Asp, Inc. System for sensing impending collision and adjusting deployment of safety device
US20140156147A1 (en) * 2012-12-04 2014-06-05 Hyundai Motor Company External airbag deployment method and system
US20140156145A1 (en) * 2012-12-04 2014-06-05 Hyundai Motor Company External airbag deployment method and system
CN103863232A (zh) * 2012-12-10 2014-06-18 现代自动车株式会社 外部安全气囊展开方法和系统
US20160059855A1 (en) * 2014-09-01 2016-03-03 Honda Research Institute Europe Gmbh Method and system for post-collision manoeuvre planning and vehicle equipped with such system
CN104828004A (zh) * 2014-11-20 2015-08-12 北汽福田汽车股份有限公司 车辆的控制方法、系统及车辆
JP2017202802A (ja) * 2016-05-13 2017-11-16 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
US20180229684A1 (en) * 2017-02-14 2018-08-16 Kiomars Anvari Protection for moving equipments and objects
CN108973916A (zh) * 2017-06-05 2018-12-11 上海汽车集团股份有限公司 一种碰撞保护系统及方法
CN110293931A (zh) * 2018-03-23 2019-10-01 上海汽车集团股份有限公司 一种车外安全气囊控制系统及方法
CN113291251A (zh) * 2021-07-08 2021-08-24 上海安亭地平线智能交通技术有限公司 车辆碰撞中的安全防护方法和装置、电子设备和介质

Also Published As

Publication number Publication date
CN116648392A (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
JP6448154B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
US7617048B2 (en) Method for determining an accident risk between a first object with at least one second object
US10807594B2 (en) Vehicle control device, vehicle control method, and vehicle control program
Hamid et al. Autonomous emergency braking system with potential field risk assessment for frontal collision mitigation
JP6344695B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6197815B2 (ja) 乗員保護制御装置、乗員保護制御プログラム、及び車両
US20180194354A1 (en) Vehicle control apparatus, vehicle control method, and vehicle control program
JP6795909B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
US20190283758A1 (en) Vehicle control device, vehicle control method, and storage medium
JP2018536955A (ja) 自律車両の方向性を示すためのアクティブ化照明を構成するシステム
CN109843654B (zh) 气囊装置及车辆
JP6304504B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
CN106114494A (zh) 一种用于车辆的倒车辅助防碰撞系统及方法
US8949153B2 (en) Energy absorbing shield and system for small urban vehicles
CN109532743A (zh) 无人驾驶车辆的控制方法、装置、设备和存储介质
CN111674348A (zh) 一种缓冲车辆碰撞的方法、装置及车辆
US11964652B2 (en) Method for operating a motor vehicle in a collision situation and motor vehicle
JP2009146203A (ja) 車両用安全支援装置
JP2016168932A (ja) 車両挙動制御装置、車両挙動制御プログラム、及び車両
WO2023050386A1 (zh) 控制方法、装置及车辆
CN104590185A (zh) 汽车儿童行人保护装置
JP7135978B2 (ja) 自動車用演算装置
CN113306550B (zh) 车辆紧急避险方法及装置、车载设备及存储介质
JP2024515996A (ja) 低エネルギー衝撃の衝突検出
JP2007048102A (ja) 車室内の音警報システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958957

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180085514.X

Country of ref document: CN