WO2023050203A1 - 非连续接收模式确定方法、装置、通信设备和存储介质 - Google Patents

非连续接收模式确定方法、装置、通信设备和存储介质 Download PDF

Info

Publication number
WO2023050203A1
WO2023050203A1 PCT/CN2021/121868 CN2021121868W WO2023050203A1 WO 2023050203 A1 WO2023050203 A1 WO 2023050203A1 CN 2021121868 W CN2021121868 W CN 2021121868W WO 2023050203 A1 WO2023050203 A1 WO 2023050203A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
error
drx
terminal
data packets
Prior art date
Application number
PCT/CN2021/121868
Other languages
English (en)
French (fr)
Inventor
牟勤
乔雪梅
熊可欣
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/121868 priority Critical patent/WO2023050203A1/zh
Publication of WO2023050203A1 publication Critical patent/WO2023050203A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present application relates to the technical field of wireless communication but is not limited to the technical field of wireless communication, and particularly relates to a method, device, communication device and storage medium for determining a Discontinuous Reception (DRX, Discontinuous Reception) mode.
  • DRX Discontinuous Reception
  • the fifth generation (5G, 5 th Generation) cellular mobile communication network uses the DRX mechanism to reduce the energy consumption of the terminal, and achieves the purpose of power saving by configuring the sleep duration in the DRX sleep cycle for the terminal.
  • the DRX sleep cycle includes: activation time and non-activation time. The terminal performs data transmission during the activation time, and stops data transmission during the non-activation time, that is, the sleep time, so as to save power.
  • the embodiments of the present disclosure provide a method, an apparatus, a communication device, and a storage medium for determining a discontinuous reception mode.
  • a method for determining a discontinuous reception DRX mode includes:
  • the determining the DRX mode adopted by the terminal according to the error includes:
  • the error is within a preset range, including at least one of the following:
  • the M errors corresponding to the M data packets are greater than or equal to the first error threshold, and M is a natural number less than or equal to the overrun threshold;
  • the cumulative sum of the errors respectively corresponding to the data packets transmitted within the error monitoring period is less than the second error threshold.
  • the M data packets include:
  • the method also includes:
  • update M In response to the error corresponding to one of the data packets being smaller than the first error threshold, update M by using a difference between M minus 1.
  • the error is outside the preset range, including at least one of the following:
  • the N errors corresponding to the N data packets respectively are greater than or equal to a first error threshold, where N is greater than the threshold of an exceeding number, where N is a positive integer;
  • the accumulated sum of the errors respectively corresponding to the data packets transmitted in the error monitoring period is greater than or equal to the second error threshold.
  • the N data packets include:
  • the method also includes:
  • N is updated by using a difference between N minus 1.
  • the determining the DRX mode adopted by the terminal according to the error includes:
  • the determination of the error of the predicted moment when the data packet arrives at the terminal includes:
  • the error of the predicted time when the data packet arrives at the terminal is determined within a second time period when the terminal adopts the second mode.
  • the method also includes:
  • the first mode is adopted after the terminal adopts the second mode for a duration reaching a third duration.
  • the first error threshold adopted by the terminal in the first mode is different from the first error threshold adopted by the terminal in the second mode
  • the second error threshold adopted by the terminal in the first mode is different from the second error threshold adopted by the terminal in the second mode.
  • the DRX configuration includes: configuration of a DRX sleep cycle.
  • the duration of the DRX sleep cycle configured in the second mode includes: the minimum duration in the time interval between each data packet arriving at the terminal within a predetermined configuration period;
  • the duration of the DRX sleep cycle configured in the second mode is a preset fixed duration.
  • the method also includes:
  • an apparatus for determining a discontinuous reception DRX mode includes:
  • a monitoring module configured to determine an error in the predicted moment when the data packet arrives at the terminal
  • the first determining module is configured to determine the DRX mode adopted by the terminal according to the error, wherein the DRX mode includes: determining the first mode of the DRX configuration according to the predicted time when the data packet arrives and the corresponding one of the preset DRX configuration Second mode.
  • the first determination module is specifically configured as:
  • the error is within a preset range, including at least one of the following:
  • the M errors corresponding to the M data packets are greater than or equal to the first error threshold, and M is a natural number less than or equal to the overrun threshold;
  • the cumulative sum of the errors respectively corresponding to the data packets transmitted within the error monitoring period is less than the second error threshold.
  • the M data packets include:
  • the device also includes:
  • the first calculation module is configured to update M by using a difference between M minus 1 in response to the error corresponding to one of the data packets being smaller than the first error threshold.
  • the error is outside the preset range, including at least one of the following:
  • the N errors corresponding to the N data packets respectively are greater than or equal to a first error threshold, where N is greater than the threshold of an exceeding number, where N is a positive integer;
  • the accumulated sum of the errors respectively corresponding to the data packets transmitted in the error monitoring period is greater than or equal to the second error threshold.
  • the N data packets include:
  • the device also includes:
  • the second calculation module is configured to update N by using a difference between N minus 1 in response to the error corresponding to one of the data packets being smaller than the first error threshold.
  • the first determination module is specifically configured as:
  • the monitoring module is specifically configured as:
  • the error of the predicted time when the data packet arrives at the terminal is determined within a second time period when the terminal adopts the second mode.
  • the device also includes:
  • the control module is configured to adopt the first mode after the terminal adopts the second mode for a duration reaching a third duration.
  • the first error threshold adopted by the terminal in the first mode is different from the first error threshold adopted by the terminal in the second mode
  • the second error threshold adopted by the terminal in the first mode is different from the second error threshold adopted by the terminal in the second mode.
  • the DRX configuration includes: configuration of a DRX sleep cycle.
  • the duration of the DRX sleep cycle configured in the second mode includes: the minimum duration in the time interval between each data packet arriving at the terminal within a predetermined configuration period;
  • the duration of the DRX sleep cycle configured in the second mode is a preset fixed duration.
  • the device also includes:
  • the second determination module is configured to determine the DRX configured in the first mode based on the end time of the activation time in the DRX sleep cycle, and the interval between the predicted times corresponding to the data packets after the end time The length of inactive time in the sleep cycle.
  • a communication device including a processor, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable program.
  • the program When the program is executed, the steps of the method for determining the discontinuous reception mode described in the first aspect are executed.
  • a storage medium on which an executable program is stored, wherein, when the executable program is executed by a processor, the method for determining a discontinuous reception mode as described in the first aspect is implemented. step.
  • a discontinuous reception mode determination method, device, communication device and storage medium are provided according to the embodiments of the present disclosure.
  • the network side device and/or the terminal determines the accuracy of the predicted time when the data packet arrives at the terminal (that is, the error between the predicted time and the actual value time); determine the DRX mode adopted by the terminal according to the error, wherein the DRX mode,
  • the method includes: determining the first mode of the DRX configuration and the second mode corresponding to the preset DRX configuration according to the predicted arrival time of the data packet.
  • the first mode or the second mode is selected to determine the DRX configuration, and the DRX configuration that adapts to the change of the error is selected to reduce the error caused by the fact that the DRX configuration cannot accurately adapt to the actual arrival of the data packet. Data transmission delay and increased power consumption issues.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • Fig. 2 is a schematic flowchart of a method for determining a discontinuous reception mode according to an exemplary embodiment
  • Fig. 3 is a schematic flowchart of another method for determining a discontinuous reception mode according to an exemplary embodiment
  • Fig. 4 is a schematic flowchart of another method for determining a discontinuous reception mode according to an exemplary embodiment
  • Fig. 5 is a schematic flowchart of another method for determining a discontinuous reception mode according to an exemplary embodiment
  • Fig. 6 is a schematic flowchart of another method for determining a discontinuous reception mode according to an exemplary embodiment
  • Fig. 7 is a block diagram of an apparatus for determining a discontinuous reception mode according to an exemplary embodiment
  • Fig. 8 is a block diagram showing an apparatus for determining a discontinuous reception mode according to an exemplary embodiment.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several terminals 11 and several base stations 12 .
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN), and the terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or called a "cellular" phone) and a
  • the computer of the IoT terminal for example, may be a fixed, portable, pocket, hand-held, built-in computer or vehicle-mounted device.
  • Station For example, Station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote terminal), an access terminal (access terminal), a user device (user terminal), a user agent (user agent), a user device (user device), or a user terminal (user equipment, UE).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be a vehicle-mounted device, for example, a trip computer with a wireless communication function, or a wireless communication device connected externally to the trip computer.
  • the terminal 11 may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as a Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, New Generation Radio Access Network).
  • the MTC system the MTC system.
  • the base station 12 may be an evolved base station (eNB) adopted in a 4G system.
  • the base station 12 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it generally includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, radio link layer control protocol (Radio Link Control, RLC) layer, media access control (Media Access Control, MAC) layer protocol stack;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • a physical (Physical, PHY) layer protocol stack is set in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 12 .
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a technical standard of a next-generation mobile communication network based on 5G.
  • an E2E (End to End, end-to-end) connection can also be established between the terminals 11.
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle to everything (V2X) communication Wait for the scene.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in the wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity, MME).
  • MME Mobility Management Entity
  • the network management device can also be other core network devices, such as Serving GateWay (SGW), Public Data Network Gateway (Public Data Network GateWay, PGW), policy and charging rule functional unit (Policy and Charging Rules Function, PCRF) or Home Subscriber Server (Home Subscriber Server, HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network Gateway
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • Executors involved in the embodiments of the present disclosure include, but are not limited to: UEs such as mobile phone terminals supporting cellular mobile communications, and base stations.
  • An application scenario of the embodiments of the present disclosure is: usually, a fixed sleep time is used in the DRX sleep cycle, but this method cannot adapt to changes in the arrival time of data packets, which may cause a relatively large time delay.
  • AI artificial intelligence
  • a recurrent neural network can be used to predict the arrival time of the data packet.
  • Long short-term memory network LSTM
  • the jitter delay sequence of historical data packet arrival can be used as training data to train the LSTM model, and then when each data packet arrives, the trained model is used to predict the jitter delay value of the next data packet arrival.
  • this exemplary embodiment provides a method for determining a discontinuous reception mode.
  • the method for determining a discontinuous reception mode can be applied to a network-side device and/or a terminal of a cellular mobile communication system, including:
  • Step 201 Determine the error of the predicted time when the data packet arrives at the terminal
  • Step 202 Determine the DRX mode adopted by the terminal according to the error, wherein the DRX mode includes: determining the first mode of the DRX configuration and the second mode corresponding to the preset DRX configuration according to the predicted arrival time of the data packet.
  • the method disclosed in this embodiment can be executed by a network side device in cellular mobile communication, for example, by a core network device, or by a terminal.
  • the terminal may include: a mobile phone using cellular mobile communication technology for wireless communication, etc.
  • the forecast moment is determined by a forecast model.
  • the preset DRX configuration is determined according to the configuration of the base station side or the communication protocol, or the preset DRX configuration in the terminal, or the DRX configuration used by the terminal before; therefore, the preset DRX configuration can also be called It is the default DRX configuration.
  • the predictive model can be a learning model with artificial intelligence.
  • the prediction model can be trained based on the delay jitter of historical data packet arrival as training data, and predict the time when the data packet arrives at the terminal.
  • the predictive model can use a recurrent neural network, such as a long short-term memory network.
  • the network measurement device and/or the terminal can monitor the error of the predicted arrival time of the data packet.
  • the network testing device and/or the terminal may determine the error of the predicted time based on the difference between the actual time when the data packet arrives at the terminal and the predicted time.
  • the prediction time may be determined by the prediction model as mentioned above.
  • the DRX configuration includes: configuration of a DRX sleep cycle.
  • the configuration of the DRX sleep cycle may include but not limited to: configuration of the active time (on time) in the DRX sleep cycle, and/or configuration of the inactive time (off time) in the DRX sleep cycle, and/or configuration of the duration of the DRX sleep cycle wait.
  • the inactive time may also be referred to as sleep time.
  • the DRX sleep cycle type may include: DRX long sleep cycle and/or DRX short sleep cycle. Exemplarily, in the same set of configurations, the duration of the DRX long sleep cycle is usually longer than the duration of the DRX short sleep cycle.
  • the terminal can currently adopt the first mode or the second mode.
  • the DRX mode currently adopted by the terminal may be the default DRX mode in the initial state, or may be the DRX mode previously determined by the method disclosed in this embodiment, or may be the DRX mode determined by other methods.
  • the network testing equipment and/or terminal can determine the end time of the terminal inactivation time and/or the start time of the activation time through the predicted time when the data packet arrives at the terminal, and then adjust the DRX in real time according to the predicted time Configuration of the sleep cycle.
  • the configuration of the DRX sleep cycle can be flexibly adjusted according to the change of the predicted arrival time of the data packet.
  • the network side device and/or the terminal can perform data packet transmission according to the preset DRX configuration. Since the DRX configuration usually adopts a fixed DRX configuration, which cannot be adjusted in real time, and adapts to changes in the arrival time of data packets, a large delay will be generated.
  • the first mode is used when there is no sudden change in the data packet, and the DRX is flexibly adjusted according to the arrival of the data packet; when the data packet is suddenly changed, for example, when there is a large error in the prediction time, the first mode is used to reduce the occurrence of large delays , to save power.
  • the determined error may be an error corresponding to one data packet, or an error corresponding to a predetermined number of data packets or data packets within a predetermined time length (hereinafter referred to as errors of multiple data packets).
  • the errors of multiple data packets can be the errors corresponding to the multiple data packets respectively; they can also be the statistical results of the errors corresponding to the multiple data packets respectively, including but not limited to, error accumulation value, arithmetic mean value, weighted mean value, etc.
  • the error threshold can be determined based on the setting issued by the network side or based on the communication protocol. If the error does not exceed the threshold, the first mode is adopted, and if the error exceeds the threshold, the second mode is adopted.
  • the first mode or the second mode is selected to determine the DRX configuration, and the DRX configuration that adapts to the change of the error is selected to reduce the error caused by the fact that the DRX configuration cannot accurately adapt to the actual arrival of the data packet. Data transmission delay and increased power consumption issues.
  • the use of the first mode or the second mode may be determined by the network side device and/or the terminal.
  • the network side device may configure the terminal to adopt the first mode or the second mode.
  • the terminal may notify the network side device of the mode adopted by the terminal through uplink information or other means.
  • the determining the DRX mode adopted by the terminal according to the error includes:
  • the DRX configuration determined based on the predicted time can adapt the transmission of data packets, and/or, the delay and power consumption generated by the DRX configuration determined in the first mode based on the predicted time are within an acceptable range, and/or, The time delay and power consumption generated by the DRX configuration determined in the first mode based on the predicted time are better than the time delay and power consumption generated by the DRX configuration determined in the second mode. Therefore, it can be determined to adopt the first mode.
  • the DRX configuration determined based on the predicted time in the first mode cannot adapt to the transmission of data packets, and/or, the delay and power consumption generated by the DRX configuration determined based on the predicted time in the first mode are in an unacceptable range, and/or The time delay and power consumption generated by the DRX configuration determined in the first mode based on the predicted time are worse than the time delay and power consumption generated by the DRX configuration determined in the second mode. Therefore, it can be determined to adopt the second mode.
  • the error in determining the DRX mode adopted by the terminal according to the error may be an error corresponding to one data packet, or may be an error corresponding to multiple data packets.
  • the errors of multiple data packets can be the errors corresponding to the multiple data packets respectively; they can also be the statistical results of the errors corresponding to the multiple data packets respectively, including but not limited to, error accumulation value, arithmetic mean value, weighted mean value, etc.
  • the preset range may be determined based on a setting issued by the network side or based on a communication protocol. In another possible implementation manner, the preset range may be determined based on the impact of errors on the first mode. The preset range needs to satisfy that when the error is within the preset range, the DRX configuration determined in the first mode can adapt to the actual arrival of data packets, and/or have better delay and power consumption than the second mode.
  • the first mode can be used to flexibly determine the DRX configuration. Changes in data packets reduce data transmission delays.
  • the second mode is used to determine the DRX configuration, which can reduce the large data generated by the DRX configuration determined by the first mode being unable to accurately adapt to the actual arrival of the data packet due to excessive error. Transmission delay and increased power consumption issues.
  • the error is within a preset range, including at least one of the following:
  • the M errors corresponding to the M data packets are greater than or equal to the first error threshold, and M is a natural number less than or equal to the overrun threshold; the data packets transmitted in the error monitoring period correspond to the The accumulated sum of errors is less than the second error threshold.
  • the M may be determined based on a setting issued by the network side or based on a communication protocol. For example, the value of M can be determined directly. Another example is to determine M data packets transmitted within a time interval, that is, only determine a time interval, and M is determined according to the actual transmission within the time interval; and the time interval can be based on the settings issued by the network side or Determined based on the communication protocol.
  • the network testing device and/or the terminal may determine whether the error is within a preset range when using the first mode, and if the error is within the preset range, keep using the first mode.
  • the network testing device and/or the terminal may also determine whether the error is within a preset range when using the second mode, and if the error is within the preset range, use the first mode.
  • the first error threshold and the number of overrun thresholds may be preset. Errors greater than a first error threshold are counted. When the error is greater than or equal to the first error threshold, the count value M is increased by 1. If M is less than or equal to the threshold of the number of overruns, the DRX configuration may be determined in the first mode.
  • each error is accumulated. If the accumulated error value within the error monitoring period is less than or equal to the second error threshold, the DRX configuration may be determined in the first mode. The accumulated value can be cleared at the beginning and/or end of the error monitoring period to reduce the impact on subsequent error monitoring periods.
  • the DRX mode may be determined solely based on the first error threshold, the DRX mode may also be determined solely based on the second error threshold, or the DRX mode may be jointly determined in combination with the first error threshold and the second error threshold. For example, when in the second mode, when it is determined to adopt the first mode based on both the first error threshold and the second error threshold, the first mode is adopted, otherwise the second mode remains adopted; or, when in the first mode, based on When both the first error threshold and the second error threshold determine that the second mode is adopted, the second mode is adopted; otherwise, the first mode remains adopted.
  • any one or more of the preset range, the first error threshold, and the second error threshold can be based on the settings issued by the network side Either it is determined based on the communication protocol; or it is determined based on the influence of the error on the first mode respectively.
  • the first error threshold adopted by the terminal in the first mode is different from the first error threshold adopted by the terminal in the second mode
  • the second error threshold adopted by the terminal in the first mode is different from the second error threshold adopted by the terminal in the second mode.
  • the requirements for switching from the first mode to the second mode may be different from the requirements for switching from the second mode to the first mode.
  • the requirements for switching from the second mode to the first mode may be stricter than the requirements for switching from the first mode to the second mode.
  • the first error threshold used in the first mode may be greater than the first error threshold used in the second mode.
  • the second error threshold used in the first mode may also be greater than the second error threshold used in the second mode.
  • the M data packets include:
  • Data with errors greater than or equal to the first error threshold that occur consecutively may be counted.
  • the first mode if the error occurs continuously greater than or equal to the first error threshold, it indicates that there is a large deviation in the prediction time, and the DRX configuration determined at the prediction time in the first mode cannot match the data packet. Need to switch to the second mode.
  • the sporadic error greater than or equal to the first error threshold has little impact on the DRX configuration.
  • the method also includes:
  • the DRX configuration may be determined in the first mode. In this way, it is realized that the DRX mode is switched only when large errors occur continuously. If M is 0, you can no longer subtract 1.
  • the error is outside the preset range, including at least one of the following:
  • the N errors corresponding to the N data packets respectively are greater than or equal to a first error threshold, where N is greater than the threshold of an exceeding number, where N is a positive integer;
  • the accumulated sum of the errors respectively corresponding to the data packets transmitted in the error monitoring period is greater than or equal to the second error threshold.
  • the N may be determined based on a setting issued by the network side or based on a communication protocol. For example, the value of N can be determined directly. Another example is to determine the N data packets transmitted in a time interval, that is, only determine a time interval, and N is determined according to the actual transmission in the time interval; and the time interval can be based on the setting issued by the network side or Determined based on the communication protocol.
  • the network testing device and/or the terminal may determine whether the error is outside the preset range when using the first mode, and if the error is outside the preset range, use the second mode.
  • the network testing device and/or the terminal may also determine whether the error is outside the preset range when using the second mode, and keep using the second mode if the error is outside the preset range.
  • the first error threshold and the number of overrun thresholds may be preset. Errors greater than a first error threshold are counted. When the error is greater than or equal to the first error threshold, the count value N is increased by 1. If N is greater than the threshold of times of overruns, the second mode may be used to determine the DRX configuration.
  • the N data packets include:
  • Data with errors greater than or equal to the first error threshold that occur consecutively may be counted.
  • the first mode if the error occurs continuously greater than or equal to the first error threshold, it indicates that there is a large deviation in the prediction time, and the DRX configuration determined at the prediction time in the first mode cannot match the data packet. Need to switch to the second mode.
  • the sporadic error greater than or equal to the first error threshold has little impact on the DRX configuration.
  • the method also includes:
  • the second mode may be used to determine the DRX configuration. In this way, it is realized that the DRX mode is switched only when large errors occur continuously. If N is 0, you can no longer subtract 1.
  • the second error threshold and the error monitoring period can be preset. During the error monitoring period, each error is accumulated. If the accumulated error value within the error monitoring period is less than or equal to the second error threshold, the DRX configuration may be determined in the first mode. The accumulated value can be cleared at the beginning and/or end of the error monitoring period to reduce the impact on subsequent error monitoring periods.
  • This exemplary embodiment provides a method for determining a discontinuous reception mode, which can be applied to electronic equipment in a cellular mobile communication system; wherein the network side equipment and/or terminal has at least one preset DRX configuration and A DRX configuration based on the predicted moment.
  • the electronic device determines whether to continue using the current DRX configuration based on the predicted time or switch to the preset DRX configuration according to the error.
  • the electronic device of the cellular mobile communication system may be a network side device and/or a terminal of the cellular mobile communication system.
  • the electronic device when the electronic device uses the preset DRX configuration (second mode), it can determine whether to switch to the DRX configuration based on the predicted time based on the preset switching condition (first mode), or continue to use the current preset DRX configuration (second mode). It should be noted that this embodiment may be implemented independently, or may be implemented in combination with the previous embodiments.
  • the determining the DRX mode adopted by the terminal according to the error includes:
  • a certain switching condition can be set, and when the condition is satisfied, the base station can control the terminal, or the terminal can switch the DRX mode.
  • the duration of the second mode When the duration of the second mode is within the first duration, no prediction model or the like is used to determine the predicted arrival time of the data packet. Generally, the sudden change of data packets lasts for a period of time. Therefore, setting the first duration can reduce frequent switching between the first mode and the second mode, and reduce resource consumption of network testing equipment and/or terminals.
  • the first duration may be determined according to the duration of the burst of data packets or the configuration of the network side or the communication protocol.
  • the predicted arrival time of the data packet is determined, and errors are monitored.
  • the error is within the preset range, it is determined that the terminal switches to the first mode; when the error is outside the preset range, it is determined that the terminal continues to use the second mode. And at the same time or before or after the next second mode duration reaches the first duration, the judgment of DRX mode switching is performed again.
  • the determination of the error of the predicted moment when the data packet arrives at the terminal includes:
  • the error of the predicted time when the data packet arrives at the terminal is determined within a second time period when the terminal adopts the second mode.
  • certain switching conditions can be set.
  • the base station can control the terminal, or the terminal can actively switch to the DRX mode.
  • the second duration of adopting the second mode may be within the entire duration of adopting the second mode, or within a partial duration of the second duration; it may be determined according to network side configuration or a communication protocol.
  • the predicted arrival time of the data packet may be determined, and an error may be monitored.
  • the error is within the preset range, it is determined that the terminal switches to the first mode; when the error is outside the preset range, it is determined that the terminal continues to use the second mode. And in the next process of adopting the second mode, the judgment of DRX mode switching is performed again.
  • the method also includes:
  • the first mode is adopted after the terminal adopts the second mode for a duration reaching a third duration.
  • the judgment of DRX mode switching may not be performed, but the first mode is directly switched to. That is, after the second mode is used to reach the third duration, the predicted arrival time of the data packet is no longer determined, but the DRX configuration is directly determined by the first mode.
  • the duration of the DRX sleep cycle configured in the second mode includes: the minimum duration in the time interval between each data packet arriving at the terminal within a predetermined configuration period;
  • the duration of the DRX sleep cycle configured in the second mode is a preset fixed duration.
  • the duration of the DRX sleep cycle can be set according to the rule of recent data packet arrival before entering the second mode each time, or a preset fixed duration can be adopted.
  • the method for configuring the duration of the DRX sleep cycle in the second mode may include: the network testing device and/or the terminal may monitor the arrival time interval of the terminal data packet within the predetermined configuration period, and may set the arrival time interval of each data packet within the predetermined configuration period
  • the minimum duration is determined as the duration of the DRX sleep cycle.
  • the duration of the DRX sleep cycle may include: the duration of the DRX short sleep cycle.
  • the method for setting the duration of the DRX sleep cycle in the second mode may further include: setting a fixed duration of the DRX long sleep cycle, a duration of the DRX short sleep cycle, and a duration a of the DRX short sleep cycle.
  • the method also includes:
  • the network testing device and/or terminal predicts the arrival time of the next data packet according to the arrival time of the historical data packet, and configures DRX sleep for the terminal according to the predicted time The length of inactive time in the cycle.
  • the duration T of the inactive time predicted time when the next data packet will arrive-the end time of the active time in the current DRX sleep cycle.
  • the base station sets T as the length of inactive time (off time) in the next DRX sleep cycle.
  • the base station also sets two sleep cycle thresholds T min and T max , and compares T with the two sleep cycle thresholds. If T ⁇ T min , the terminal remains active; if T min ⁇ T ⁇ T max , the terminal enters DRX In the short sleep cycle, the sleep time is T; if T>T max , the terminal enters the DRX long sleep cycle, and the sleep time is T.
  • This example provides a method for determining the DRX configuration mode
  • the base station can configure two DRX modes for the terminal, namely an artificial intelligence DRX (AI-DRX) mode, which is the first mode, and a fixed DRX (Fixed-DRX) mode, which is the second mode.
  • AI-DRX artificial intelligence DRX
  • WiFixed-DRX fixed DRX
  • the network testing device and/or terminal predicts the arrival time of the next data packet according to the arrival time of the historical data packet, and calculates the time for the terminal according to the predicted time Configure the length of the inactive time in the DRX sleep cycle.
  • the duration T of the inactive time predicted time when the next data packet will arrive-the end time of the active time in the current DRX sleep cycle.
  • the base station sets T as the length of inactive time (off time) in the next DRX sleep cycle.
  • the base station also sets two sleep cycle thresholds T min and T max , and compares T with the two sleep cycle thresholds. If T ⁇ T min , the terminal remains active; if T min ⁇ T ⁇ T max , the terminal enters DRX In the short sleep cycle, the sleep time is T; if T>T max , the terminal enters the DRX long sleep cycle, and the sleep time is T.
  • the sleep time is the inactive time in the DRX sleep cycle.
  • a fixed sleep cycle is adopted.
  • the DRX sleep cycle can be set according to the recent arrival of data packets before entering the Fixed-DRX mode each time, or a preset value can be adopted.
  • AI-DRX each time the AI method is used to predict the arrival time of data packets, the predicted time is compared with the actual time when the real data packets arrive, and the prediction error is recorded. In this way, the error is monitored in real time, and when the error meets the preset condition, the base station configures the terminal to switch to the Fixed-DRX mode.
  • the error judgment condition for the terminal to switch from AI-DRX mode to Fixed-DRX mode can be:
  • the error exceeds the error threshold the number of overruns is increased by 1.
  • the terminal switches to the Fixed-DRX mode and clears the recorded number of overruns to zero.
  • Optional items can also be set.
  • the prediction error is less than the error threshold and the number of overruns is greater than zero, the number of overruns will be reduced by 1. This option can ensure that the DRX mode is switched only when large errors occur continuously.
  • the base station controls the terminal to switch to the Fixed-DRX mode;
  • the second error judgment condition setting a second error threshold and an error monitoring period.
  • an error monitoring period each error is accumulated, and the accumulated prediction error is cleared at the end of the error detection period/time when the terminal enters the Fixed-DRX mode. If the accumulated prediction error exceeds the error threshold, the base station controls the terminal to switch to the Fixed-DRX mode.
  • the fixed sleep cycle setting method can be:
  • Fixed-DRX mode sleep cycle setting method 1 set fixed DRX long sleep cycle, DRX short sleep cycle, DRX short sleep cycle duration a. Each time after entering the Fixed-DRX mode, the terminal first enters the DRX short sleep cycle, and if no data packet arrives for a consecutive DRX short sleep cycle, it enters the DRX long sleep cycle;
  • Fixed-DRX mode sleep cycle setting method 2 Every time you prepare to switch to Fixed-DRX mode, monitor the terminal data packet arrival interval in the near future, if the data packet arrival time interval is less than the fixed DRX sleep cycle, set the Fixed - The DRX sleep cycle within the DRX duration is set to the minimum detected packet arrival time interval.
  • the DRX sleep cycle may be a DRX short sleep cycle
  • Switching conditions can be:
  • Handover judgment condition 1 In the Fixed-DRX mode, continue to use the AI method to predict the arrival time of data packets and monitor errors. When the error is small enough (judgment method is the same as error judgment condition 1 or 2), switch back to AI-DRX mode.
  • Switching judgment condition 2 Set the duration of Fixed-DRX. In Fixed-DRX mode, no longer predict the arrival time of data packets. When the duration of Fixed-DRX mode is reached, switch back to AI-DRX mode.
  • Handover judgment condition three set the Fixed-DRX duration, and do not predict the arrival time of the data packet within the Fixed-DRX duration. When the duration of the Fixed-DRX mode is reached, start to predict the arrival time of the data packet, and monitor the error. When the error is small enough (the judgment method is the same as the error judgment condition 1 or 2), switch back to the AI-DRX mode; when If the handover condition is not satisfied, the Fixed-DRX mode is still used, and the handover condition is judged again when the next Fixed-DRX mode duration is reached.
  • FIG. 3 it is a flowchart of a method for determining a mode based on DRX configuration provided by this embodiment. Specific steps are as follows:
  • Step 301 the base station configures the terminal in AI-DRX mode, and sets sleep cycle thresholds T min and T max .
  • the base station uses the AI prediction model to determine the predicted arrival time of the next data packet of the terminal.
  • Step 303 the base station configures the duration of the inactive time (off time) in the DRX sleep cycle of the terminal according to the predicted time of the data packet.
  • step 303 may include the following steps:
  • Step 303a the base station calculates the duration of the terminal inactivation time (off time) according to the arrival time of the next data packet, as follows:
  • Inactive time T in the DRX sleep cycle predicted arrival time of the next predicted data packet - actual arrival time of the current data packet - active time (Active Time), where Active Time is the continuous active time of the terminal after the arrival of the current data packet .
  • Step 303b the base station compares T with two sleep cycle thresholds respectively, if T ⁇ T min , the terminal remains active; if T min ⁇ T ⁇ T max , the terminal enters the DRX short sleep cycle, and the sleep time is T; if T>T max , the terminal enters the DRX long sleep cycle, and the sleep time is T.
  • the sleep time is the inactive time in the DRX sleep cycle. .
  • step 303c the base station configures the sleep state and sleep time of the terminal according to the sleep cycle threshold comparison result.
  • Step 304 the base station monitors the error. After the base station determines the predicted time each time, it compares the predicted time with the actual time when the data packet arrives to obtain an error, and monitors the error according to the error judgment conditions.
  • Step 305 if the base station monitors that the error satisfies the error judgment condition, execute step 306; otherwise, the terminal remains in the AI-DRX mode.
  • Step 306 the base station configures the terminal in Fixed-DRX mode, and configures the DRX sleep cycle with a fixed value.
  • Step 307 the base station judges whether a preset DRX mode switching judgment condition is satisfied. If satisfied, the base station controls the terminal to switch back to the AI-DRX mode; otherwise, the terminal remains in the Fixed-DRX mode.
  • step 305 the specific steps of a way for the base station to determine the DRX mode through the error judgment condition are as follows:
  • Step 3051 the base station sets a first error threshold and a threshold for the number of times of exceeding the limit. Indicates that when the number of detected errors exceeding the first error threshold reaches the exceeding number threshold, the error judgment condition is met.
  • Step 3052 after each data packet arrives, compare the error for the data packet with the first error threshold.
  • Step 3053 if the error is greater than the first error threshold, add 1 to the number of overruns.
  • the number of overruns is decremented by 1. If this option is included, it indicates that the error judgment condition is met only when large errors occur continuously.
  • Step 3054 if the number of times of exceeding the limit is greater than the threshold of the number of times of exceeding the limit, then execute step 3055; otherwise, keep in the AI-DRX mode and continue to monitor errors.
  • Step 3055 judging that the error judging condition is met, clearing the number of overrun times, and controlling the terminal to switch to the Fixed-DRX mode.
  • step 305 the base station determines another mode of DRX mode through the error judgment condition.
  • the specific steps are as follows:
  • Step 305A the base station sets a second error threshold and an error monitoring period. When it is detected that the accumulated error within the error monitoring period exceeds the second error threshold, it is determined that the error determination condition is satisfied.
  • the error monitoring period may be a time period, or may be the number of data packet arrivals, that is, to monitor the error within a period of time or to predict the arrival time of several data packets.
  • Step 305B after each error is generated, it is first judged whether the error monitoring period is over. If the current error monitoring period is over, execute step 305C; otherwise, directly execute step 305D.
  • Step 305C clear the accumulated error.
  • Step 305D accumulating the current error into the accumulated error.
  • step 305E if the accumulated error exceeds the second error threshold, execute step 305F; otherwise, maintain the AI-DRX mode and continue to monitor errors.
  • Step 305F judging that the error judging condition is satisfied, clearing the accumulated prediction error, and controlling the terminal to switch to the Fixed-DRX mode.
  • step 307 the specific steps of a mode in which the base station determines the DRX mode through the handover judgment condition are as follows:
  • the base station sets the duration of the Fixed-DRX mode and error judgment conditions.
  • the principle of the error judgment condition is similar to that of switching from the AI-DRX mode to the Fixed-DRX mode, and will not be repeated here.
  • the relevant parameters in the error judgment condition can be flexibly set as required.
  • Step 3072 after the base station controls the terminal to enter the Fixed-DRX mode, it starts counting from zero.
  • Step 3073 monitor whether the duration of the Fixed-DRX mode reaches the first duration, and if so, execute step 3074; otherwise, continue to count and monitor the time.
  • Step 3074 the base station starts to predict the arrival time of the data packet, and monitors the error.
  • Step 3075 judging whether the error judging condition is met, and if so, go to step 3076; otherwise, keep the Fixed-DRX mode and start counting from zero.
  • Step 3076 the base station controls the terminal to switch to the AI-DRX mode.
  • the embodiment of the present invention also provides an apparatus for determining a discontinuous reception mode, which is applied to network-side equipment and/or terminals for wireless communication.
  • the apparatus 100 for determining a discontinuous reception mode includes:
  • the monitoring module 110 is configured to determine the error of the predicted time when the data packet arrives at the terminal;
  • the first determination module 120 is configured to determine the DRX mode adopted by the terminal according to the error, wherein the DRX mode includes: determining that the first mode of the DRX configuration corresponds to the preset DRX configuration according to the predicted time when the data packet arrives of the second mode.
  • the first determining module 120 is specifically configured as:
  • the error is within a preset range, including at least one of the following:
  • the M errors corresponding to the M data packets are greater than or equal to the first error threshold, and M is a natural number less than or equal to the overrun threshold;
  • the cumulative sum of the errors respectively corresponding to the data packets transmitted within the error monitoring period is less than the second error threshold.
  • the M data packets include:
  • the device also includes:
  • the first calculating module 130 is configured to update M by using a difference between M minus 1 in response to the error corresponding to one of the data packets being smaller than the first error threshold.
  • the error is outside the preset range, including at least one of the following:
  • the N errors corresponding to the N data packets respectively are greater than or equal to a first error threshold, where N is greater than the threshold of an exceeding number, where N is a positive integer;
  • the accumulated sum of the errors respectively corresponding to the data packets transmitted in the error monitoring period is greater than or equal to the second error threshold.
  • the N data packets include:
  • the device also includes:
  • the second calculating module 140 is configured to update N by using a difference between N minus 1 in response to the error corresponding to one of the data packets being smaller than the first error threshold.
  • the first determining module 120 is specifically configured as:
  • the monitoring module 110 is specifically configured as:
  • the device also includes:
  • the control module 150 is configured to adopt the first mode after the duration of the terminal adopting the second mode reaches a third duration.
  • the first error threshold adopted by the terminal in the first mode is different from the first error threshold adopted by the terminal in the second mode
  • the second error threshold adopted by the terminal in the first mode is different from the second error threshold adopted by the terminal in the second mode.
  • the DRX configuration includes: configuration of a DRX sleep cycle.
  • the duration of the DRX sleep cycle configured in the second mode includes: the minimum duration in the time interval between each data packet arriving at the terminal within a predetermined configuration period;
  • the duration of the DRX sleep cycle configured in the second mode is a preset fixed duration.
  • the device also includes:
  • the second determining module 160 is configured to determine, based on the end time of the activation time in the DRX sleep cycle, the interval between the predicted times corresponding to the data packets after the end time, to determine the The length of the inactive time in the DRX sleep cycle.
  • the monitoring module 110, the first determination module 120, the first calculation module 130, the second calculation module 140, the control module 150 and the second determination module 160 etc. may be controlled by one or more central processing units (CPUs) , Central Processing Unit), graphics processor (GPU, Graphics Processing Unit), baseband processor (BP, baseband processor), application-specific integrated circuit (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), complex programmable logic device (CPLD, Complex Programmable Logic Device), field-programmable gate array (FPGA, Field-Programmable Gate Array), general-purpose processor, controller, microcontroller (MCU, Micro Controller Unit) , a microprocessor (Microprocessor), or other electronic components to implement the aforementioned method.
  • CPUs central processing units
  • CPUs Central Processing Unit
  • GPU Graphics Processing Unit
  • BP baseband processor
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • PLD programmable logic device
  • CPLD Complex Programmable Logic Device
  • Fig. 8 is a block diagram of an apparatus 3000 for determining a discontinuous reception mode according to an exemplary embodiment.
  • the apparatus 3000 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 3000 may include one or more of the following components: processing component 3002, memory 3004, power supply component 3006, multimedia component 3008, audio component 3010, input/output (I/O) interface 3012, sensor component 3014, and a communication component 3016.
  • the processing component 3002 generally controls the overall operations of the device 3000, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 may include one or more processors 3020 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 3002 may include one or more modules that facilitate interaction between processing component 3002 and other components. For example, processing component 3002 may include a multimedia module to facilitate interaction between multimedia component 3008 and processing component 3002 .
  • the memory 3004 is configured to store various types of data to support operations at the device 3000 . Examples of such data include instructions for any application or method operating on device 3000, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 3004 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 3006 provides power to various components of device 3000 .
  • Power components 3006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 3000 .
  • the multimedia component 3008 includes a screen that provides an output interface between the device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or a swipe action, but also detect duration and pressure associated with the touch or swipe operation.
  • the multimedia component 3008 includes a front camera and/or a rear camera. When the device 3000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 3010 is configured to output and/or input audio signals.
  • the audio component 3010 includes a microphone (MIC), which is configured to receive external audio signals when the device 3000 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 3004 or sent via communication component 3016 .
  • the audio component 3010 also includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 3014 includes one or more sensors for providing status assessments of various aspects of device 3000 .
  • the sensor component 3014 can detect the open/closed state of the device 3000, the relative positioning of components, such as the display and keypad of the device 3000, the sensor component 3014 can also detect a change in the position of the device 3000 or a component of the device 3000, the user Presence or absence of contact with device 3000, device 3000 orientation or acceleration/deceleration and temperature change of device 3000.
  • Sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 3014 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 3016 is configured to facilitate wired or wireless communication between the apparatus 3000 and other devices.
  • the device 3000 can access wireless networks based on communication standards, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 3016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 3000 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 3004 including instructions, which can be executed by the processor 3020 of the device 3000 to implement the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Abstract

本公开实施例是关于非连续接收模式确定方法、装置、通信设备和存储介质,网络侧设备和/或终端确定数据包达到终端的预测时刻的误差;根据所述误差确定终端采用的DRX模式,其中,所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。

Description

非连续接收模式确定方法、装置、通信设备和存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及非连续接收(DRX,Discontinuous Reception)模式确定方法、装置、通信设备和存储介质。
背景技术
在相关技术中,例如第五代(5G,5 th Generation)蜂窝移动通信网络利用DRX机制来降低终端的能耗,通过给终端配置DRX睡眠周期中睡眠时长的方式,来达到省电的目的。DRX睡眠周期包括:激活时间和非激活时间,终端在激活时间内进行数据传输,在非激活时间即睡眠时间内停止数据传输,起到省电的效果。
发明内容
有鉴于此,本公开实施例提供了一种非连续接收模式确定方法、装置、通信设备和存储介质。
根据本公开实施例的第一方面,提供一种非连续接收DRX模式确定方法,其中,所述方法包括:
确定数据包达到终端的预测时刻的误差;
根据所述误差确定终端采用的DRX模式,其中,所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。
在一个实施例中,所述根据所述误差确定终端采用的DRX模式,包括:
响应于所述误差处于预设范围内,确定所述终端采用所述第一模式;
或者,
响应于所述误差处于所述预设范围外,确定所述终端采用所述第二模式。
在一个实施例中,所述误差处于预设范围内,包括以下至少之一:
M个所述数据包分别对应的M个所述误差大于或等于第一误差阈值,M为小于或等于超限数量阈值的自然数;
在误差监控周期内传输的所述数据包分别对应的所述误差的累加之和,小于第二误差阈值。
在一个实施例中,M个所述数据包,包括:
连续的M个所述数据包。
在一个实施例中,所述方法还包括:
响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用M减1之差更新M。
在一个实施例中,所述误差处于所述预设范围外,包括以下至少之一:
N个所述数据包分别对应的N个所述误差大于或等于第一误差阈值,N为大于超限数量阈值,其中,N为正整数;
在误差监测周期内传输的所述数据包分别对应的所述误差的累加之和大于或等于第二误差阈值。
在一个实施例中,N个所述数据包,包括:
连续的N个所述数据包。
在一个实施例中,所述方法还包括:
响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用N减1之差更新N。
在一个实施例中,所述根据所述误差确定终端采用的DRX模式,包括:
在所述终端采用所述第二模式的持续时长达到第一时长之后,根据所 述误差确定所述终端采用的DRX模式。
在一个实施例中,所述确定数据包达到终端的预测时刻的误差,包括:
在所述终端采用第二模式的第二时长内,确定所述数据包达到所述终端的所述预测时刻的所述误差。
在一个实施例中,所述方法还包括:
在所述终端采用所述第二模式的持续时长达到第三时长之后,采用所述第一模式。
在一个实施例中,所述终端在第一模式下采用的第一误差阈值,不同于所述终端在第二模式下采用的第一误差阈值;
和/或,
所述终端在第一模式下采用的第二误差阈值,不同于所述终端在第二模式下采用的第二误差阈值。
在一个实施例中,所述DRX配置包括:DRX睡眠周期的配置。
在一个实施例中,通过所述第二模式配置的DRX睡眠周期时长,包括:预定配置时段内各数据包到达所述终端的时间间隔中的最小时长;
或者,
通过所述第二模式配置的DRX睡眠周期的时长为预设固定时长。
在一个实施例中,所述方法还包括:
基于DRX睡眠周期中激活时间的结束时刻,与所述结束时刻之后的数据包对应的所述预测时刻之间的间隔时长,确定所述第一模式配置的所述DRX睡眠周期中非激活时间的时长。
根据本公开实施例的第二方面,提供一种非连续接收DRX模式确定装置,其中,所述装置包括:
监控模块,配置为确定数据包达到终端的预测时刻的误差;
第一确定模块,配置为根据所述误差确定终端采用的DRX模式,其中, 所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。
在一个实施例中,所述第一确定模块,具体配置为:
响应于所述误差处于预设范围内,确定所述终端采用所述第一模式;
或者,
响应于所述误差处于所述预设范围外,确定所述终端采用所述第二模式。
在一个实施例中,所述误差处于预设范围内,包括以下至少之一:
M个所述数据包分别对应的M个所述误差大于或等于第一误差阈值,M为小于或等于超限数量阈值的自然数;
在误差监控周期内传输的所述数据包分别对应的所述误差的累加之和,小于第二误差阈值。
在一个实施例中,M个所述数据包,包括:
连续的M个所述数据包。
在一个实施例中,所述装置还包括:
第一计算模块,配置为响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用M减1之差更新M。
在一个实施例中,所述误差处于所述预设范围外,包括以下至少之一:
N个所述数据包分别对应的N个所述误差大于或等于第一误差阈值,N为大于超限数量阈值,其中,N为正整数;
在误差监测周期内传输的所述数据包分别对应的所述误差的累加之和大于或等于第二误差阈值。
在一个实施例中,N个所述数据包,包括:
连续的N个所述数据包。
在一个实施例中,所述装置还包括:
第二计算模块,配置为响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用N减1之差更新N。
在一个实施例中,所述第一确定模块,具体配置为:
在所述终端采用所述第二模式的持续时长达到第一时长之后,根据所述误差确定所述终端采用的DRX模式。
在一个实施例中,所述监控模块,具体配置为:
在所述终端采用第二模式的第二时长内,确定所述数据包达到所述终端的所述预测时刻的所述误差。
在一个实施例中,所述装置还包括:
控制模块,配置为在所述终端采用所述第二模式的持续时长达到第三时长之后,采用所述第一模式。
在一个实施例中,所述终端在第一模式下采用的第一误差阈值,不同于所述终端在第二模式下采用的第一误差阈值;
和/或,
所述终端在第一模式下采用的第二误差阈值,不同于所述终端在第二模式下采用的第二误差阈值。
在一个实施例中,所述DRX配置包括:DRX睡眠周期的配置。
在一个实施例中,通过所述第二模式配置的DRX睡眠周期时长,包括:预定配置时段内各数据包到达所述终端的时间间隔中的最小时长;
或者,
通过所述第二模式配置的DRX睡眠周期的时长为预设固定时长。
在一个实施例中,所述装置还包括:
第二确定模块,配置为基于DRX睡眠周期中激活时间的结束时刻,与所述结束时刻之后的数据包对应的所述预测时刻之间的间隔时长,确定所述第一模式配置的所述DRX睡眠周期中非激活时间的时长。
根据本公开实施例的第三方面,提供一种通信设备装置,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第一方面所述非连续接收模式确定方法的步骤。
根据本公开实施例的第四方面,提供一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如第一方面所述非连续接收模式确定方法的步骤。
根据本公开实施例提供的非连续接收模式确定方法、装置、通信设备和存储介质。网络侧设备和/或终端确定数据包达到终端的预测时刻的准确度(即预测时刻与实际值时刻之间的误差);根据所述误差确定终端采用的DRX模式,其中,所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。如此,基于预测时刻的误差,选择采用第一模式或第二模式确定DRX配置,选择适应误差变化的DRX配置,减少在误差过大,由于DRX配置无法准确适配数据包的实际到达情况产生的数据传输时延和功耗增加问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种非连续接收模式确定方法的流程示意图;
图3是根据一示例性实施例示出的另一种非连续接收模式确定方法的流程示意图;
图4是根据一示例性实施例示出的又一种非连续接收模式确定方法的流程示意图;
图5是根据一示例性实施例示出的再一种非连续接收模式确定方法的流程示意图;
图6是根据一示例性实施例示出的再一种非连续接收模式确定方法的流程示意图;
图7是根据一示例性实施例示出的一种非连续接收模式确定装置的框图;
图8是根据一示例性实施例示出的一种用于非连续接收模式确定的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。 取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home  Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
本公开实施例涉及的执行主体包括但不限于:支持蜂窝移动通信的手机终端等UE,以及基站等。
本公开实施例的一个应用场景为:通常,DRX睡眠周期中采用固定的睡眠时间时长,但是,这种方式无法适应数据包到达时间的变化,可能会导致较大的时延。
相关技术采用人工智能(AI)方法对终端数据包到达的时间进行预测,并依据预测结果来动态调整DRX睡眠周期的配置,使得终端准确地在数据包到来之前醒来,在没有数据包到达的时候进入睡眠状态,从而在保证数据传输时延的情况下,尽量降低终端能耗。
可以采用递归神经网络(RNN)对数据包到达的时间进行预测。长短期记忆网络(LSTM)是一种流行的RNN。可以将历史数据包到达的抖动时延序列作为训练数据来训练LSTM模型,然后在每个数据包到达时采用训练好的模型预测下一个数据包到达的抖动时延值。
采用人工智能模型预测结果来动态调整DRX的睡眠周期时长,在大多数情况下能够获得比较好的性能,预测的平均误差较小。但在数据包到达情况出现突变时,预测误差较大,若此时仍然依据预测结果调整DRX睡眠的配置,无法准确地适配数据包实际到达情况,可能会带来较大的时延、并产生多余的能耗。
因此,在数据包到达情况发生突变,AI预测结果不准确时,如何调整DRX的睡眠周期时长,适应数据包到达时间的变化,是亟待解决的问题。
如图2所示,本示例性实施例提供一种非连续接收模式确定方法,非连续接收模式确定方法可以应用于蜂窝移动通信系统的网络侧设备和/或终端中,包括:
步骤201:确定数据包达到终端的预测时刻的误差;
步骤202:根据所述误差确定终端采用的DRX模式,其中,所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。
本实施例公开的方法可以由蜂窝移动通信中网络侧设备执行,如可以由核心网设备执行,也可以由终端执行。终端可以包括:采用蜂窝移动通信技术进行无线通信的手机等。
在一个实施例中,所述预测时刻是由预测模型确定的。
在另一个实施例中,预设DRX配置是根据基站侧配置或是通信协议确定的,或是终端内预设的DRX配置,或是之前终端使用的DRX配置;因此预设DRX配置也可以称为默认DRX配置。
预测模型可以是具有人工智能学习模型。预测模型可以基于历史数据包到达的时延抖动作为训练数据进行训练,并对数据包到达终端的时间进行预测。这里,预测模型可以采用递归神经网络,如长短期记忆网络等。
由于数据包到达的随机性,存在突变的情况,因此,预测时刻存在有误差。尤其在数据包发生突变时,误差会变大。
网络测设备和/或终端等可以监控数据包达到的预测时刻的误差。
在一个实施例中,网络测设备和/或终端等可以基于数据包到达终端的实际时刻和预测时刻之间的差值,确定预测时刻的误差。其中,预测时刻可以为如前所述的是由预测模型确定的。
在一个实施例中,所述DRX配置包括:DRX睡眠周期的配置。
DRX睡眠周期的配置可以包括但不限于:DRX睡眠周期中激活时间(on time)的配置、和/或DRX睡眠周期中非激活时间(off time)的配置、和/或DRX睡眠周期时长的配置等。其中,非激活时间也可称为睡眠时间。DRX睡眠周期类型可以包括:DRX长睡眠周期和/或DRX短睡眠周期。示 例性地,在同一套配置中,DRX长睡眠周期时长通常大于DRX短睡眠周期时长。
终端当前可以采用第一模式,也可以采用第二模式。终端当前采用的DRX模式,可以是初始状态默认的DRX模式,也可以是之前通过本实施例公开的方法确定的DRX模式,还可以是通过其他方法确定的DRX模式。
在第一模式中,网络测设备和/或终端等通过数据包到达终端的预测时刻,可以确定终端非激活时间的结束时刻和/或激活时间的开始时刻等,进而可以根据预测时刻实时调整DRX睡眠周期的配置。采用第一模式,可以针对数据包到达的预测时间的变化,灵活调整DRX睡眠周期的配置。
在第二模式中,网络侧设备和/或终端可以按预设DRX配置进行数据包传输。由于DRX配置通常采用固定的DRX配置,无法实时调整,适应数据包达到时间的变化,会产生较大的时延。
但是,采用第一模式时,由于数据包突发等情况的存在,使得预测时刻产生较大的误差,进而使得DRX配置无法准确适配数据包的实际到达情况,在数据包突发等情况下相较第二模式产生更大的时延,产生更多的能耗。
因此,这里,可以基于误差,确定选择第一模式或第二模式。在数据包未发生突变时采用第一模式,根据数据包的到达情况灵活调整DRX;在数据包发生突变,例如预测时刻具有较大误差时,采用第一模式,减少出现较大时延的情况,节省电量。
这里,确定的误差可以是一个数据包对应的误差,也可以是预定数量的数据包或预定时间长度内的数据包对应的误差(以下都称为多个数据包的误差)。多个数据包的误差可以是多个数据包分别对应的误差;也可以是多个数据包分别对应的误差的统计结果,包括但不限于,误差累加值、算术平均值、加权平均值等。
在本公开实施例中,可以基于网络侧下发的设置或是基于通信协议确定误差的阈值,如果误差不超过阈值,则采用第一模式,如果误差超过阈值,则采用第二模式。
如此,基于预测时刻的误差,选择采用第一模式或第二模式确定DRX配置,选择适应误差变化的DRX配置,减少在误差过大,由于DRX配置无法准确适配数据包的实际到达情况产生的数据传输时延和功耗增加问题。
本实施例中,采用第一模式或第二模式可以由网络侧设备和/或终端确定。当由网络侧设备确定采用第一模式或第二模式时,可以由网络侧设备对终端进行配置采用第一模式或第二模式。当由终端确定采用第一模式或第二模式时,可以由终端通过上行信息等方式向网络侧设备通知终端采用的模式。
在一个实施例中,所述根据所述误差确定终端采用的DRX模式,包括:
响应于所述误差处于预设范围内,确定所述终端采用所述第一模式;
或者,
响应于所述误差处于所述预设范围外,确定所述终端采用所述第二模式。
误差处于预设范围内,说明确定的预测时间的准确性较高,误差可接受。第一模式基于该预测时间确定的DRX配置能够适配数据包的传输,和/或,第一模式基于该预测时间确定的DRX配置产生的时延和功耗处于可接受范围,和/或,第一模式基于该预测时间确定的DRX配置产生的时延和功耗优于第二模式确定DRX配置产生的时延和功耗。因此,可以确定采用第一模式。
误差处于预设范围外,说明确定的预测时间的准确性较低,误差不可接受。第一模式基于该预测时间确定的DRX配置不能够适配数据包的传输, 和/或,第一模式基于该预测时间确定的DRX配置产生的时延和功耗处于不可接受范围,和/或,第一模式基于该预测时间确定的DRX配置产生的时延和功耗差于第二模式确定DRX配置产生的时延和功耗。因此,可以确定采用第二模式。
根据所述误差确定终端采用的DRX模式中的误差可以是一个数据包对应的误差,也可以是多个数据包对应的误差。多个数据包的误差可以是多个数据包分别对应的误差;也可以是多个数据包分别对应的误差的统计结果,包括但不限于,误差累加值、算术平均值、加权平均值等。
在一种可能的实施方式中,该预设范围可以基于网络侧下发的设置或是基于通信协议确定。在另一种可能的实现方式中,预设范围可以基于误差对第一模式产生的影响确定。预设范围需要满足当误差处于预设范围内时,第一模式确定的DRX配置可以适配数据包的实际到达情况、和/或相对第二模式具有较佳的时延和功耗等。
如此,基于预测时刻的误差是否处于预设范围内,确定选择采用第一模式或第二模式确定DRX配置,一方面,误差处于预设范围内时,可以采用第一模式灵活确定DRX配置,适应数据包的变化,减少数据传输时延。另一方面,误差处于预设范围之外时,采用第二模式确定DRX配置,可以减少由于误差过大,第一模式确定的DRX配置无法准确适配数据包的实际到达情况产生的较大数据传输时延和功耗增加问题。
在一个实施例中,所述误差处于预设范围内,包括以下至少之一:
M个所述数据包分别对应的M个所述误差大于或等于第一误差阈值,M为小于或等于超限数量阈值的自然数;在误差监控周期内传输的所述数据包分别对应的所述误差的累加之和,小于第二误差阈值。
在一种可能的实施方式中,该M可以基于网络侧下发的设置或是基于通信协议确定。例如,可以直接确定M的数值。又例如或是确定一个时间 间隔内传输的M个数据包,即只确定一个时间间隔,而M是根据该时间间隔内的实际传输确定;而该时间间隔可以基于网络侧下发的设置或是基于通信协议确定。
这里,网络测设备和/或终端可以在采用第一模式时,确定误差是否处于预设范围内,如果误差处于预设范围内,则保持采用第一模式。网络测设备和/或终端也可以在采用第二模式时,确定误差是否处于预设范围内,如果误差处于预设范围内,则采用第一模式。
示例性地,可以预先设置第一误差阈值,以及超限次数阈值。对大于第一误差阈值的误差进行计数。当误差大于或等于第一误差阈值,计数值M加1。如果M小于或等于超限次数阈值,则可以采用第一模式确定DRX配置。
也可以预先设置第二误差阈值,以及误差监控周期。在误差监控周期内,将各误差进行累加。如果误差监控周期内误差的累加值小于或等于第二误差阈值,则可以采用第一模式确定DRX配置。可以在误差监控周期起始时刻和/或结束时刻对累加值清零,减少对后续误差监控周期的影响。
可以单独基于第一误差阈值确定DRX模式,也可以单独基于第二误差阈值确定DRX模式,还可以结合第一误差阈值和第二误差阈值共同确定DRX模式。例如,当在第二模式下,基于第一误差阈值和第二误差阈值均确定采用第一模式时,则采用第一模式,否则保持采用第二模式;或者,当在第一模式下,基于第一误差阈值和第二误差阈值均确定采用第二模式时,则采用第二模式,否则保持采用第一模式。
基于与之前描述相同的原理,在本公开的所有实施例中,该预设范围、第一误差阈值、第二误差阈值中的任意一个或多个,都是可以各自基于网络侧下发的设置或是基于通信协议确定;或是各自基于误差对第一模式产生的影响确定。
在一个实施例中,所述终端在第一模式下采用的第一误差阈值,不同于所述终端在第二模式下采用的第一误差阈值;
和/或,
所述终端在第一模式下采用的第二误差阈值,不同于所述终端在第二模式下采用的第二误差阈值。
从第一模式切换到第二模式的要求,可以与从第二模式切换到第一模式的要求不同。从第二模式切换到第一模式的要求可以严于从第一模式切换到第二模式的要求。
示例性的,在第一模式下采用的第一误差阈值,可以大于第二模式下采用的第一误差阈值。在第一模式下采用的第二误差阈值,也可以大于第二模式下采用的第二误差阈值。
在一个实施例中,M个所述数据包,包括:
连续的M个所述数据包。
可以对连续出现的误差大于或等于第一误差阈值的数据进行计数。在采用第一模式时,连续出现误差大于或等于第一误差阈值,说明预测时刻出现较大偏差,第一模式采用预测时刻确定的DRX配置无法匹配数据包。需要切换到第二模式。
而偶发的误差大于或等于第一误差阈值对DRX配置影响较小。
如此,通过连续出现的误差作为切换DRX模式的依据,可以提高判断DRX模式切换的准确性,减少偶发误差对判断DRX模式切换的干扰。
在一个实施例中,所述方法还包括:
响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用M减1之差更新M(即,M=M-1)。
响应于误差大于或等于第一误差阈值,将计数值M加1(即M=M+1);或响应于误差小于第一误差阈值,将计数值M减1(即M=M-1)。如果M 小于或等于超限次数阈值,则可以采用第一模式确定DRX配置。如此,实现只有在连续出现较大误差时才进行DRX模式的切换。如果M为0,可以不再减1。
在一个实施例中,所述误差处于所述预设范围外,包括以下至少之一:
N个所述数据包分别对应的N个所述误差大于或等于第一误差阈值,N为大于超限数量阈值,其中,N为正整数;
在误差监测周期内传输的所述数据包分别对应的所述误差的累加之和大于或等于第二误差阈值。
在一种可能的实施方式中,该N可以基于网络侧下发的设置或是基于通信协议确定。例如,可以直接确定N的数值。又例如或是确定一个时间间隔内传输的N个数据包,即只确定一个时间间隔,而N是根据该时间间隔内的实际传输确定;而该时间间隔可以基于网络侧下发的设置或是基于通信协议确定。
这里,网络测设备和/或终端可以在采用第一模式时,确定误差是否处于预设范围之外,如果误差处于预设范围之外,则采用第二模式。网络测设备和/或终端也可以在采用第二模式时,确定误差是否处于预设范围之外,如果误差处于预设范围之外,则保持采用第二模式。
示例性地,可以预先设置第一误差阈值,以及超限次数阈值。对大于第一误差阈值的误差进行计数。当误差大于或等于第一误差阈值,计数值N加1。如果N大于超限次数阈值,则可以采用第二模式确定DRX配置。
在一个实施例中,N个所述数据包,包括:
连续的N个所述数据包。
可以对连续出现的误差大于或等于第一误差阈值的数据进行计数。在采用第一模式时,连续出现误差大于或等于第一误差阈值,说明预测时刻出现较大偏差,第一模式采用预测时刻确定的DRX配置无法匹配数据包。 需要切换到第二模式。
而偶发的误差大于或等于第一误差阈值对DRX配置影响较小。
如此,通过连续出现的误差作为切换DRX模式的依据,可以提高判断DRX模式切换的准确性,减少偶发误差对判断DRX模式切换的干扰。
在一个实施例中,所述方法还包括:
响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用N减1之差更新N(即N=N+1)。
响应于误差大于或等于第一误差阈值,将计数值N加1(即N=N+1);或,响应于误差小于第一误差阈值,将计数值N减1(即N=N-1)。如果N大于超限次数阈值,则可以采用第二模式确定DRX配置。如此,实现只有在连续出现较大误差时才进行DRX模式的切换。如果N为0,可以不再减1。
示例性地,可以预先设置第二误差阈值,以及误差监控周期。在误差监控周期内,将各误差进行累加。如果误差监控周期内误差的累加值小于或等于第二误差阈值,则可以采用第一模式确定DRX配置。可以在误差监控周期起始时刻和/或结束时刻对累加值清零,减少对后续误差监控周期的影响。
本示例性实施例提供一种非连续接收模式确定方法,非连续接收模式确定方法可以应用于蜂窝移动通信系统的电子设备;其中所述网络侧设备和/或终端至少具有一个预设DRX配置和一个基于预测时刻的DRX配置。该电子设备在使用基于预测时刻的DRX配置时,根据误差确定采用是继续采用当前的基于预测时刻的DRX配置,还是切换到预设DRX配置。
其中,该蜂窝移动通信系统的电子设备,可以是蜂窝移动通信系统的网络侧设备和/或终端。
在另一个示例性实施例中,与前一个实施例想类似的,该电子设备在 使用预设DRX配置(第二模式)时,可以基于预设切换条件确定是否切换到基于预测时刻的DRX配置(第一模式),还是继续采用当前的预设DRX配置(第二模式)。需要说明的是,该实施例可以独立被执行,也可以结合之前的实施例一起被执行。
在一个实施例中,所述根据所述误差确定终端采用的DRX模式,包括:
在所述终端采用所述第二模式的持续时长达到第一时长之后,根据所述误差确定所述终端采用的DRX模式。
针对终端初始采用第二模式,或者,根据误差确定终端切换到第二模式,可以设置一定的切换条件,当满足条件时,可以由基站控制终端,或者由终端切换DRX模式。
可以在第二模式的持续时长处于第一时长之内,不再采用预测模型等确定数据包到达的预测时刻。通常数据包的突变会持续一段时间,因此,设置第一时长可以减少在第一模式和第二模式之间频繁切换,减少网络测设备和/或终端的资源消耗。第一时长,可以根据数据包突发的持续时长或网络侧配置或通信协议等确定。
在第二模式的第一时长之内,确定数据包到达的预测时刻,并对误差进行监测。当误差处于预设范围内,确定终端切换到第一模式;当误差处于预设范围外,确定终端继续采用第二模式。并且在下一个第二模式持续时间到达第一时长的同时或之前或之后,重新进行DRX模式切换的判断。
在一个实施例中,所述确定数据包达到终端的预测时刻的误差,包括:
在所述终端采用第二模式的第二时长内,确定所述数据包达到所述终端的所述预测时刻的所述误差。
针对终端初始采用第二模式,或者,根据误差确定终端切换到第二模式后,可以设置一定的切换条件,当满足条件时,可以由基站控制终端,或者由终端主动切换DRX模式。
这里,采用第二模式的第二时长,可以是采用第二模式的整个时长范围内,或第二时长的部分时长范围内;其可以根据网络侧配置或是通信协议确定。
示例性的,可以在使用第二模式的过程中,确定数据包到达的预测时刻,并对误差进行监测。当误差处于预设范围内,确定终端切换到第一模式;当误差处于预设范围外,确定终端继续采用第二模式。并且在下一个采用第二模式过程中重新进行DRX模式切换的判断。
在一个实施例中,所述方法还包括:
在所述终端采用所述第二模式的持续时长达到第三时长之后,采用所述第一模式。
这里,在采用第二模式达到第三时长之后,可以不再进行DRX模式切换的判断,而是直接切换到第一模式。即在采用第二模式达到第三时长之后,不再确定数据包到达的预测时刻,而是直接采用第一模式确定DRX配置。
在一个实施例中,通过所述第二模式配置的DRX睡眠周期时长,包括:预定配置时段内各数据包到达所述终端的时间间隔中的最小时长;
或者,
通过所述第二模式配置的DRX睡眠周期的时长为预设固定时长。
在第二模式中,DRX睡眠周期时长可以在每次进入第二模式前根据近期数据包到达的规律设定,也可以采用预设固定时长。
示例性的,第二模式配置DRX睡眠周期时长方法可以包括:网络测设备和/或终端可以监测预定配置时段内终端数据包到达的时间间隔,可以将预定配置时段内各数据包到达时间间隔的最小时长确定为DRX睡眠周期时长。这里,DRX睡眠周期时长可以包括:DRX短睡眠周期时长。
第二模式中DRX睡眠周期时长设置方法还可以包括:设置固定的DRX 长睡眠周期时长、DRX短睡眠周期时长、DRX短睡眠周期持续次数a。每次进入第二模式后,终端首先进入DRX短睡眠周期,若持续a个DRX短睡眠周期内都没有数据包到达,则进入DRX长睡眠周期;
在一个实施例中,所述方法还包括:
基于DRX睡眠周期中激活时间的结束时刻,与所述结束时刻之后的数据包对应的所述预测时刻之间的间隔时长,确定所述第一模式配置的所述DRX睡眠周期中非激活时间的时长。
在第一模式中,网络测设备和/或终端在每次有终端数据包到达时,依据历史数据包到达时间,对下一个数据包到达的时间进行预测,并依据预测时刻为终端配置DRX睡眠周期中非激活时间的时长。
非激活时间的时长T=预测的下一个数据包到达的预测时刻-当前DRX睡眠周期中激活时间的结束时刻。
基站将T设置为下一个DRX睡眠周期内非激活时间(off time)的时长。
示例性的,基站依据预测的下一个数据包到达的预测时刻,DRX睡眠周期中非激活时间T=预测的下一个数据包到达的预测时刻-当前数据包实际到达时间-活跃时长(Active Time),其中,当前数据包到达后终端用于解码数据包的活跃状态时长。
基站还设置两个睡眠周期阈值T min和T max,将T分别与两个睡眠周期阈值进行比较,若T<T min,则终端保持活跃状态;若T min<T<T max,终端进入DRX短睡眠周期,睡眠时间为T;若T>T max,则终端进入DRX长睡眠周期,睡眠时间为T。
以下结合上述任意实施例提供一个具体示例:
本示例提供一种DRX配置模式确定方法,
基站可以为终端配置两种DRX模式,分别为人工智能DRX(AI-DRX) 模式即第一模式,和固定DRX(Fixed-DRX)模式,即第二模式。
a)在AI-DRX模式中,网络测设备和/或终端在每次有终端数据包到达时,依据历史数据包到达时间,对下一个数据包到达的时间进行预测,并依据预测时刻为终端配置DRX睡眠周期中非激活时间的时长。
非激活时间的时长T=预测的下一个数据包到达的预测时刻-当前DRX睡眠周期中激活时间的结束时刻。
基站将T设置为下一个DRX睡眠周期内非激活时间(off time)的时长。
示例性的,基站依据预测的下一个数据包到达的预测时刻,DRX睡眠周期中非激活时间T=预测的下一个数据包到达的预测时刻-当前数据包实际到达时间-活跃时长(Active Time),其中,当前数据包到达后终端用于解码数据包的活跃状态时长。
基站还设置两个睡眠周期阈值T min和T max,将T分别与两个睡眠周期阈值进行比较,若T<T min,则终端保持活跃状态;若T min<T<T max,终端进入DRX短睡眠周期,睡眠时间为T;若T>T max,则终端进入DRX长睡眠周期,睡眠时间,睡眠时间为T。这里睡眠时间即DRX睡眠周期中非激活时间。
b)Fixed-DRX模式中,采用固定的睡眠周期。DRX睡眠周期可以在每次进入Fixed-DRX模式前根据近期数据包到达的规律设定,也可以采用预设值。
在AI-DRX中,每次采用AI方法对数据包到达时间进行预测时,都将预测时刻与真实数据包到达的实际时刻进行对比,记录预测误差。从而对误差进行实时监测,当误差满足预设条件,则基站对终端进行配置,使其切换到Fixed-DRX模式。终端从AI-DRX模式切换到Fixed-DRX模式的误差判断条件可以为:
误差判断条件一:设置第一误差阈值,以及超限次数阈值。当误差超过误差阈值,则超限次数加1。当超限次数超过超限次数阈值,终端切换到Fixed-DRX模式,且将记录的超限次数清零。还可以设置可选项,当预测误差小于误差阈值,且超限次数大于零,则超限次数减1。这种可选项可以保证当连续出现较大误差时才进行DRX模式的切换。当超限次数超过超限次数阈值,基站控制终端切换到Fixed-DRX模式;
误差判断条件二:设置第二误差阈值,以及误差监测周期。在一个误差监测周期内,将每次的误差累加,并在误差检测周期结束时/终端进入Fixed-DRX模式时间累计预测误差清零。若累计预测误差超过误差阈值,基站控制终端切换到Fixed-DRX模式。
基站控制终端切换至Fixed-DRX模式时,同时应该对Fixed-DRX模式中的固定睡眠周期进行设置。固定睡眠周期设置方法可以为:
Fixed-DRX模式睡眠周期设置方法一:设置固定的DRX长睡眠周期、DRX短睡眠周期、DRX短睡眠周期持续次数a。每次进入Fixed-DRX模式后,终端首先进入DRX短睡眠周期,若持续a个DRX短睡眠周期内都没有数据包到达,则进入DRX长睡眠周期;
Fixed-DRX模式睡眠周期设置方法二:每次准备切换到Fixed-DRX模式时,监测近期一段时间内终端数据包到达间隔,若数据包到达时间间隔小于固定的DRX睡眠周期,则将此次Fixed-DRX持续时间内的DRX睡眠周期设置为监测到的最小数据包到达时间间隔。这里,DRX睡眠周期可以是DRX短睡眠周期
在Fixed-DRX模式中,设置一定的切换条件,当满足条件时,基站控制终端切换回AI-DRX模式。切换条件可以为:
切换判断条件一:在Fixed-DRX模式中,继续采用AI方法对数据包到达时间进行预测,并监测误差。当误差足够小(判断方法同误差判断条件 一或二),切换回AI-DRX模式。
切换判断条件二:设置Fixed-DRX持续时长,在Fixed-DRX模式中不再对数据包到达时间进行预测,当Fixed-DRX模式持续时间到达后,切换回AI-DRX模式。
切换判断条件三:设置Fixed-DRX持续时长,在Fixed-DRX持续时长内不对数据包到达时间进行预测。当Fixed-DRX模式持续时间到达后,开始对数据包到达时间进行预测,并对误差进行监测,当误差足够小(判断方法同误差判断条件一或二),则切换回AI-DRX模式;当不满足切换条件,则仍采用Fixed-DRX模式,在下一个Fixed-DRX模式持续时间到达时重新进行切换条件判断。
如图3所示,为本实施例提供的一种基于DRX配置模式确定方法的流程图。具体步骤如下:
步骤301,基站将终端配置为AI-DRX模式,并设置睡眠周期阈值T min和T max
步骤302,基站采用AI预测模型确定终端下一个数据包到达的预测时刻。
步骤303,基站依据数据包预测时刻对终端DRX睡眠周期内非激活时间(off time)的时长进行配置。
进一步的,步骤303可包括为如下步骤:
步骤303a,基站依据下一个数据包到达时间计算终端非激活时间(off time)的时长,如下:
DRX睡眠周期中非激活时间T=预测的下一个数据包到达的预测时刻-当前数据包实际到达时间-活跃时长(Active Time),其中,Active Time为当前数据包到达后终端将持续的活跃时间。
步骤303b,基站将T分别与两个睡眠周期阈值进行比较,若T<T min, 则终端保持活跃状态;若T min<T<T max,终端进入DRX短睡眠周期,睡眠时间为T;若T>T max,则终端进入DRX长睡眠周期,睡眠时间,睡眠时间为T。这里睡眠时间即DRX睡眠周期中非激活时间。。
步骤303c,基站依据睡眠周期阈值比较得到的结果对终端的睡眠状态和睡眠时间进行配置。
步骤304,基站对误差进行监测。基站每次确定预测时刻后,将预测时刻与数据包到达实际时刻进行对比,得到误差,并依据误差判断条件对误差进行监测。
步骤305,若基站监测到误差满足误差判断条件,则执行步骤306,否则终端仍然保持在AI-DRX模式状态。
步骤306,基站将终端配置为Fixed-DRX模式,并采用固定值对DRX睡眠周期进行配置。
步骤307,基站判断是否满足预设的DRX模式切换判断条件。若满足,则基站控制终端切换回AI-DRX模式;否则,终端仍然保持在Fixed-DRX模式。
如图4所示,步骤305中基站通过误差判断条件确定DRX模式的一种方式的具体步骤如下:
步骤3051,基站设置第一误差阈值,以及超限次数阈值。表示当监测到误差超过第一误差阈值的次数达到超限次数阈值,即满足误差判断条件。
步骤3052,每次数据包到达后,将针对数据包的误差与第一误差阈值进行比较。
步骤3053,若误差大于第一误差阈值,则超限次数加1。可选的,若误差小于第一误差阈值,且超限次数大于零,则超限次数减1。若包含改该选项,则表明当连续出现较大误差时才判断为满足误差判断条件。
步骤3054,若超限次数大于超限次数阈值,则执行步骤3055;否则, 保持在AI-DRX模式继续监测误差。
步骤3055,判断为满足误差判断条件,将超限次数清零,并控制终端切换到Fixed-DRX模式。
如图5所示,步骤305中基站通过误差判断条件确定DRX模式的另一种方式的具体步骤如下:
步骤305A,基站设置第二误差阈值,以及误差监测周期。当监测到在误差监测周期内的累计误差超过第二误差阈值,则判断为满足误差判断条件。误差监测周期可以为时间段,也可以为数据包到达次数,即监测一段时间内的误差还是对若干个数据包到达时间进行预测产生的误差。
步骤305B,每次产生误差后,首先判断误差监测周期是否结束。若当前误差监测周期已结束,则执行步骤305C;否则,直接执行步骤305D。
步骤305C,将累计误差清零。
步骤305D,将当前误差累计到累计误差中。
步骤305E,若累计误差超过第二误差阈值,则执行步骤305F;否则,保持AI-DRX模式继续监测误差。
步骤305F,判断为满足误差判断条件,将累计预测误差清零,并控制终端切换到Fixed-DRX模式。
如图6所示,步骤307中基站通过切换判断条件确定DRX模式的一种方式的具体步骤如下:
步骤3071,基站设置Fixed-DRX模式持续时长以及误差判断条件。误差判断条件与从AI-DRX模式切换到Fixed-DRX模式的误差判断条件原理相似,在此不再赘述。误差判断条件内的相关参数可以依据需要灵活设置。
步骤3072,基站控制终端进入Fixed-DRX模式后,即从零开始计时。
步骤3073,监测Fixed-DRX模式持续时长是否到达第一时长,若到达,则执行步骤3074;否则,继续计时并监测时间。
步骤3074,基站开始对数据包到达时间进行预测,并对误差进行监测。
步骤3075,判断是否满足误差判断条件,若满足,则执行步骤3076;否则,则继续保持Fixed-DRX模式,并从零开始计时。
步骤3076,基站控制终端切换到AI-DRX模式。
本发明实施例还提供了一种非连续接收模式确定装置,应用于无线通信的网络侧设备和/或终端中,如图7所示,所述非连续接收模式确定装置100包括:
监控模块110,配置为确定数据包达到终端的预测时刻的误差;
第一确定模块120,配置为根据所述误差确定终端采用的DRX模式,其中,所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。
在一个实施例中,所述第一确定模块120,具体配置为:
响应于所述误差处于预设范围内,确定所述终端采用所述第一模式;
或者,
响应于所述误差处于所述预设范围外,确定所述终端采用所述第二模式。
在一个实施例中,所述误差处于预设范围内,包括以下至少之一:
M个所述数据包分别对应的M个所述误差大于或等于第一误差阈值,M为小于或等于超限数量阈值的自然数;
在误差监控周期内传输的所述数据包分别对应的所述误差的累加之和,小于第二误差阈值。
在一个实施例中,M个所述数据包,包括:
连续的M个所述数据包。
在一个实施例中,所述装置还包括:
第一计算模块130,配置为响应于一个所述数据包对应的所述误差小于 所述第一误差阈值,采用M减1之差更新M。
在一个实施例中,所述误差处于所述预设范围外,包括以下至少之一:
N个所述数据包分别对应的N个所述误差大于或等于第一误差阈值,N为大于超限数量阈值,其中,N为正整数;
在误差监测周期内传输的所述数据包分别对应的所述误差的累加之和大于或等于第二误差阈值。
在一个实施例中,N个所述数据包,包括:
连续的N个所述数据包。
在一个实施例中,所述装置还包括:
第二计算模块140,配置为响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用N减1之差更新N。
在一个实施例中,所述第一确定模块120,具体配置为:
在所述终端采用所述第二模式的持续时长达到第一时长之后,根据所述误差确定所述终端采用的DRX模式。
在一个实施例中,所述监控模块110,具体配置为:
在所述终端采用第二模式的第二时长内,监控所述数据包达到所述终端的所述预测时刻的所述误差。
在一个实施例中,所述装置还包括:
控制模块150,配置为在所述终端采用所述第二模式的持续时长达到第三时长之后,采用所述第一模式。
在一个实施例中,所述终端在第一模式下采用的第一误差阈值,不同于所述终端在第二模式下采用的第一误差阈值;
和/或,
所述终端在第一模式下采用的第二误差阈值,不同于所述终端在第二模式下采用的第二误差阈值。
在一个实施例中,所述DRX配置包括:DRX睡眠周期的配置。
在一个实施例中,通过所述第二模式配置的DRX睡眠周期时长,包括:预定配置时段内各数据包到达所述终端的时间间隔中的最小时长;
或者,
通过所述第二模式配置的DRX睡眠周期的时长为预设固定时长。
在一个实施例中,所述装置还包括:
第二确定模块160,配置为基于DRX睡眠周期中激活时间的结束时刻,与所述结束时刻之后的数据包对应的所述预测时刻之间的间隔时长,确定所述第一模式配置的所述DRX睡眠周期中非激活时间的时长。
在示例性实施例中,监控模块110、第一确定模块120、第一计算模块130、第二计算模块140、控制模块150和第二确定模块160等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,baseband processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图8是根据一示例性实施例示出的一种用于非连续接收模式确定的装置3000的框图。例如,装置3000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,装置3000可以包括以下一个或多个组件:处理组件3002,存储器3004,电源组件3006,多媒体组件3008,音频组件3010,输入/输 出(I/O)的接口3012,传感器组件3014,以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在装置3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统,一个或多个电源,及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当装置3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多 媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到装置3000的打开/关闭状态,组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变,用户与装置3000接触的存在或不存在,装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。 例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (32)

  1. 一种非连续接收DRX模式确定方法,其中,所述方法包括:
    确定数据包达到终端的预测时刻的误差;
    根据所述误差确定终端采用的DRX模式,其中,所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。
  2. 根据权利要求1所述的方法,其中,所述根据所述误差确定终端采用的DRX模式,包括:
    响应于所述误差处于预设范围内,确定所述终端采用所述第一模式;
    或者,
    响应于所述误差处于所述预设范围外,确定所述终端采用所述第二模式。
  3. 根据权利要求2所述的方法,其中,所述误差处于预设范围内,包括以下至少之一:
    M个所述数据包分别对应的M个所述误差大于或等于第一误差阈值,M为小于或等于超限数量阈值的自然数;
    在误差监控周期内传输的所述数据包分别对应的所述误差的累加之和,小于第二误差阈值。
  4. 根据权利要求3所述的方法,其中,M个所述数据包,包括:
    连续的M个所述数据包。
  5. 根据权利要求3所述的方法,其中,所述方法还包括:
    响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用M减1之差更新M。
  6. 根据权利要求2所述的方法,其中,所述误差处于所述预设范围外,包括以下至少之一:
    N个所述数据包分别对应的N个所述误差大于或等于第一误差阈值,N为大于超限数量阈值,其中,N为正整数;
    在误差监测周期内传输的所述数据包分别对应的所述误差的累加之和大于或等于第二误差阈值。
  7. 根据权利要求6所述的方法,其中,N个所述数据包,包括:
    连续的N个所述数据包。
  8. 根据权利要求6所述的方法,其中,所述方法还包括:
    响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用N减1之差更新N。
  9. 根据权利要求1所述的方法,其中,所述根据所述误差确定终端采用的DRX模式,包括:
    在所述终端采用所述第二模式的持续时长达到第一时长之后,根据所述误差确定所述终端采用的DRX模式。
  10. 根据权利要求1所述的方法,其中,所述监控数据包达到终端的预测时刻的误差,包括:
    在所述终端采用第二模式的第二时长内,确定所述数据包达到所述终端的所述预测时刻的所述误差。
  11. 根据权利要求1所述的方法,其中,所述方法还包括:
    在所述终端采用所述第二模式的持续时长达到第三时长之后,采用所述第一模式。
  12. 根据权利要求3至8任一项所述的方法,其中,
    所述终端在第一模式下采用的第一误差阈值,不同于所述终端在第二模式下采用的第一误差阈值;
    和/或,
    所述终端在第一模式下采用的第二误差阈值,不同于所述终端在第二 模式下采用的第二误差阈值。
  13. 根据权利要求1至11任一项所述的方法,其中,所述DRX配置包括一:DRX睡眠周期的配置。
  14. 根据权利要求13所述的方法,其中,
    通过所述第二模式配置的DRX睡眠周期时长,包括:预定配置时段内各数据包到达所述终端的时间间隔中的最小时长;
    或者,
    通过所述第二模式配置的DRX睡眠周期的时长为预设固定时长。
  15. 根据权利要求13所述的方法,其中,所述方法还包括:
    基于DRX睡眠周期中激活时间的结束时刻,与所述结束时刻之后的数据包对应的所述预测时刻之间的间隔时长,确定所述第一模式配置的所述DRX睡眠周期中非激活时间的时长。
  16. 一种非连续接收DRX模式确定装置,其中,所述装置包括:
    监控模块,配置为监控数据包达到终端的预测时刻的误差;
    第一确定模块,配置为根据所述误差确定终端采用的DRX模式,其中,所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。
  17. 根据权利要求16所述的装置,其中,所述第一确定模块,具体配置为:
    响应于所述误差处于预设范围内,确定所述终端采用所述第一模式;
    或者,
    响应于所述误差处于所述预设范围外,确定所述终端采用所述第二模式。
  18. 根据权利要求17所述的装置,其中,所述误差处于预设范围内,包括以下至少之一:
    M个所述数据包分别对应的M个所述误差大于或等于第一误差阈值,M为小于或等于超限数量阈值的自然数;
    在误差监控周期内传输的所述数据包分别对应的所述误差的累加之和,小于第二误差阈值。
  19. 根据权利要求18所述的装置,其中,M个所述数据包,包括:
    连续的M个所述数据包。
  20. 根据权利要求18所述的装置,其中,所述装置还包括:
    第一计算模块,配置为响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用M减1之差更新M。
  21. 根据权利要求17所述的装置,其中,所述误差处于所述预设范围外,包括以下至少之一:
    N个所述数据包分别对应的N个所述误差大于或等于第一误差阈值,N为大于超限数量阈值,其中,N为正整数;
    在误差监测周期内传输的所述数据包分别对应的所述误差的累加之和大于或等于第二误差阈值。
  22. 根据权利要求21所述的装置,其中,N个所述数据包,包括:
    连续的N个所述数据包。
  23. 根据权利要求21所述的装置,其中,所述装置还包括:
    第二计算模块,配置为响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用N减1之差更新N。
  24. 根据权利要求16所述的装置,其中,所述第一确定模块,具体配置为:
    在所述终端采用所述第二模式的持续时长达到第一时长之后,根据所述误差确定所述终端采用的DRX模式。
  25. 根据权利要求16所述的装置,其中,所述监控模块,具体配置为:
    在所述终端采用第二模式的第二时长内,监控所述数据包达到所述终端的所述预测时刻的所述误差。
  26. 根据权利要求16所述的装置,其中,所述装置还包括:
    控制模块,配置为在所述终端采用所述第二模式的持续时长达到第三时长之后,采用所述第一模式。
  27. 根据权利要求18至23任一项所述的装置,其中,
    所述终端在第一模式下采用的第一误差阈值,不同于所述终端在第二模式下采用的第一误差阈值;
    和/或,
    所述终端在第一模式下采用的第二误差阈值,不同于所述终端在第二模式下采用的第二误差阈值。
  28. 根据权利要求16至26任一项所述的装置,其中,所述DRX配置包括:DRX睡眠周期的配置。
  29. 根据权利要求28所述的装置,其中,
    通过所述第二模式配置的DRX睡眠周期时长,包括:预定配置时段内各数据包到达所述终端的时间间隔中的最小时长;
    或者,
    通过所述第二模式配置的DRX睡眠周期的时长为预设固定时长。
  30. 根据权利要求28所述的装置,其中,所述装置还包括:
    第二确定模块,配置为基于DRX睡眠周期中激活时间的结束时刻,与所述结束时刻之后的数据包对应的所述预测时刻之间的间隔时长,确定所述第一模式配置的所述DRX睡眠周期中非激活时间的时长。
  31. 一种通信设备装置,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至15任一项所述非连续接收模式确定方法的步骤。
  32. 一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求1至15任一项所述非连续接收模式确定方法的步骤。
PCT/CN2021/121868 2021-09-29 2021-09-29 非连续接收模式确定方法、装置、通信设备和存储介质 WO2023050203A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121868 WO2023050203A1 (zh) 2021-09-29 2021-09-29 非连续接收模式确定方法、装置、通信设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121868 WO2023050203A1 (zh) 2021-09-29 2021-09-29 非连续接收模式确定方法、装置、通信设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023050203A1 true WO2023050203A1 (zh) 2023-04-06

Family

ID=85781055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121868 WO2023050203A1 (zh) 2021-09-29 2021-09-29 非连续接收模式确定方法、装置、通信设备和存储介质

Country Status (1)

Country Link
WO (1) WO2023050203A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378329A (zh) * 2010-08-16 2012-03-14 华为技术有限公司 实现非连续接收的方法和装置
CN104170476A (zh) * 2012-01-16 2014-11-26 苹果公司 用于在非连续接收期间进行自适应接收器模式选择的方法和装置
EP3442148A1 (en) * 2017-08-11 2019-02-13 Panasonic Intellectual Property Corporation of America Bandwidth part adaptation in downlink communications
CN109462839A (zh) * 2018-11-26 2019-03-12 电子科技大学 一种基于自适应调整策略的drx机制通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378329A (zh) * 2010-08-16 2012-03-14 华为技术有限公司 实现非连续接收的方法和装置
CN104170476A (zh) * 2012-01-16 2014-11-26 苹果公司 用于在非连续接收期间进行自适应接收器模式选择的方法和装置
EP3442148A1 (en) * 2017-08-11 2019-02-13 Panasonic Intellectual Property Corporation of America Bandwidth part adaptation in downlink communications
CN109462839A (zh) * 2018-11-26 2019-03-12 电子科技大学 一种基于自适应调整策略的drx机制通信方法

Similar Documents

Publication Publication Date Title
WO2022000188A1 (zh) 用户设备辅助信息的上报方法及装置、用户设备、存储介质
WO2021007824A1 (zh) 唤醒信号处理、信息下发方法及装置、通信设备及介质
WO2022151199A1 (zh) 条件切换的方法、装置、通信设备及存储介质
WO2021207892A1 (zh) 监听信道的方法、装置、用户设备及存储介质
WO2021030974A1 (zh) 寻呼配置方法、装置、通信设备及存储介质
WO2022147772A1 (zh) 通信方法及装置、用户设备、网络设备、及存储介质
WO2020237446A1 (zh) 监听方法、信令下发方法及装置、通信设备及存储
WO2021012130A1 (zh) 监听处理、策略下发方法及装置、通信设备及存储
US20230413150A1 (en) Method and apparatus for determining target cell of ue, communication device, and storage medium
WO2022021033A1 (zh) 信息处理方法、装置、通信设备及存储介质
US20240064641A1 (en) Information configuration method and apparatus, and communication device and storage medium
WO2021120204A1 (zh) 信号测量方法、装置、通信设备及存储介质
WO2020258103A1 (zh) 监听方法、指示下发方法及装置、通信设备及存储
WO2023050203A1 (zh) 非连续接收模式确定方法、装置、通信设备和存储介质
WO2022205472A1 (zh) 上行传输时域资源的确定方法及装置、ue、网络设备及存储介质
US20230254771A1 (en) Information processing method and apparatus, and communication device and storage medium
WO2023123462A1 (zh) Bwp切换方法、装置、通信设备及存储介质
CN117941422A (zh) 非连续接收模式确定方法、装置、通信设备和存储介质
WO2022116013A1 (zh) 非连续接收参数的配置方法、装置、通信设备及存储介质
WO2024055217A1 (zh) 确定bfd放松状态的方法、装置、通信设备及存储介质
WO2022205398A1 (zh) 放松测量的方法、装置、通信设备及存储介质
WO2023000229A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022261983A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2023010357A1 (zh) Rrm测量的放松、信息处理方法及装置、设备及存储介质
WO2023283953A1 (zh) 通信处理方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958791

Country of ref document: EP

Kind code of ref document: A1