WO2023123462A1 - Bwp切换方法、装置、通信设备及存储介质 - Google Patents

Bwp切换方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2023123462A1
WO2023123462A1 PCT/CN2021/143935 CN2021143935W WO2023123462A1 WO 2023123462 A1 WO2023123462 A1 WO 2023123462A1 CN 2021143935 W CN2021143935 W CN 2021143935W WO 2023123462 A1 WO2023123462 A1 WO 2023123462A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
information
timing
specified duration
bandwidth
Prior art date
Application number
PCT/CN2021/143935
Other languages
English (en)
French (fr)
Inventor
牟勤
洪伟
赵中原
王雨竹
王靖壹
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180004822.5A priority Critical patent/CN116686355A/zh
Priority to PCT/CN2021/143935 priority patent/WO2023123462A1/zh
Publication of WO2023123462A1 publication Critical patent/WO2023123462A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to but not limited to the technical field of communication, and in particular relates to a BWP switching method, device, communication device and storage medium.
  • the Band Width Part is a subset of the total bandwidth of the cell.
  • the size of the receiving and sending bandwidth of the user equipment (UE) can be flexibly adjusted through the bandwidth adaptation in the new air interface (New Radio, NR), so that the receiving and sending bandwidth of the UE does not need to be as large as the bandwidth of the cell, so that the UE only needs to You can perform corresponding operations in the BWP configured in the system.
  • New Radio New Radio
  • the fifth generation communication technology (5G) NR can support BWP technology, which can save the energy consumption of UE.
  • BWP technology can save the energy consumption of UE.
  • more practical problems related to power consumption will appear, and these problems will bring greater challenges to UE energy saving. For example, for bursty or even non-stationary traffic patterns, using the traditional BWP switching method will result in longer access delay and/or higher power consumption.
  • Embodiments of the present disclosure provide a BWP switching method, device, communication device, and storage medium.
  • a BWP handover method performed by a base station, including:
  • Timing indication information indicates configuration of timing information; where the timing information is used for the UE to determine related operations of BWP handover according to the specified duration indicated by the timing information.
  • a BWP handover method performed by a UE, including:
  • a BWP switching device which is applied to a base station, including:
  • the first sending module is configured to send timing indication information, where the timing indication information indicates configuration timing information; where the timing information is used for the UE to determine related operations of BWP handover according to the specified duration indicated by the timing information.
  • a BWP switching device which is applied to a UE, including:
  • the second receiving module is configured to receive timing indication information
  • a processing module configured to configure timing information based on the timing indication information
  • the second determination module is configured to determine related operations of the BWP handover based on the specified duration indicated by the timing information.
  • a communication device wherein the communication device includes:
  • memory for storing processor-executable instructions
  • the processor is configured to implement the BWP switching method in any embodiment of the present disclosure when running the executable instruction.
  • a computer storage medium stores a computer executable program, and when the executable program is executed by a processor, the BWP switching method in any embodiment of the present disclosure is implemented.
  • the base station may send timing indication information to the UE, the timing indication information indicating configuration timing information; the timing information is used for the UE to determine related operations of the BWP handover according to the specified duration indicated by the timing information.
  • the base station can flexibly configure the specified duration of operations related to BWP switching for the UE (for example, configuring the duration of the UE to activate BWP), so that the UE can flexibly adjust the specified duration of operations related to BWP switching, for example, it can be implemented according to traffic patterns.
  • BWP adaptive switching thus, it can reduce the delay caused by switching BWP switching in time or the high power consumption caused by always working in a relatively large bandwidth.
  • FIG. 1 is a schematic structural diagram of a wireless communication system.
  • Fig. 2 is a flow chart showing a BWP handover method according to an exemplary embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram showing a BWP handover according to an exemplary embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram showing a BWP handover according to an exemplary embodiment of the present disclosure.
  • Fig. 5 is a flow chart showing a BWP switching method according to an exemplary embodiment of the present disclosure.
  • Fig. 6 is a flow chart showing a BWP switching method according to an exemplary embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram of an evaluation network according to an exemplary embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of a mobile network according to an exemplary embodiment of the present disclosure.
  • Fig. 9 is a flow chart showing a BWP switching method according to an exemplary embodiment of the present disclosure.
  • Fig. 10 is a flow chart showing a BWP handover method according to an exemplary embodiment of the present disclosure.
  • Fig. 11 is a flowchart showing a BWP switching method according to an exemplary embodiment of the present disclosure.
  • Fig. 12 is a flow chart showing a BWP switching method according to an exemplary embodiment of the present disclosure.
  • Fig. 13 is a block diagram showing a BWP switching device according to an exemplary embodiment of the present disclosure.
  • Fig. 14 is a block diagram showing a BWP switching device according to an exemplary embodiment of the present disclosure.
  • Fig. 15 is a block diagram of a UE according to an exemplary embodiment.
  • Fig. 16 is a block diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several user equipments 110 and several base stations 120 .
  • the user equipment 110 may be a device that provides voice and/or data connectivity to the user.
  • the user equipment 110 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN), and the user equipment 110 can be an Internet of Things user equipment, such as a sensor device, a mobile phone (or called a "cellular" phone) ) and computers with IoT user equipment, for example, can be fixed, portable, pocket, hand-held, built-in computer or vehicle-mounted devices.
  • RAN Radio Access Network
  • Station For example, Station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote user equipment (remote terminal), access user equipment (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user equipment (user equipment).
  • the user equipment 110 may also be equipment of an unmanned aerial vehicle.
  • the user equipment 110 may also be a vehicle-mounted device, for example, a trip computer with a wireless communication function, or a wireless user device connected externally to the trip computer.
  • the user equipment 110 may also be a roadside device, for example, may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the base station 120 may be a network side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as a Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as new air interface system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called the New Generation-Radio Access Network (NG-RAN).
  • NG-RAN New Generation-Radio Access Network
  • the base station 120 may be an evolved base station (eNB) adopted in a 4G system.
  • the base station 120 may also be a base station (gNB) adopting a centralized distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized distributed architecture it generally includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, radio link layer control protocol (Radio Link Control, RLC) layer, media access control (Medium Access Control, MAC) layer protocol stack;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • a physical (Physical, PHY) layer protocol stack is set in the distribution unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 120 .
  • a wireless connection may be established between the base station 120 and the user equipment 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a technical standard of a next-generation mobile communication network based on 5G.
  • an E2E (End to End, end-to-end) connection may also be established between user equipment 110.
  • vehicle-to-vehicle (V2V) communication vehicle-to-roadside equipment (vehicle to Infrastructure, V2I) communication and vehicle-to-pedestrian (V2P) communication in vehicle to everything (V2X) communication Wait for the scene.
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-roadside equipment
  • V2P vehicle-to-pedestrian
  • the above user equipment may be regarded as the terminal equipment in the following embodiments.
  • the foregoing wireless communication system may further include a network management device 130 .
  • the network management device 130 may be a core network device in a wireless communication system, for example, the network management device 130 may be a Mobility Management Entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC), MME).
  • the network management device can also be other core network devices, such as Serving GateWay (SGW), Public Data Network Gateway (Public Data Network GateWay, PGW), policy and charging rule functional unit (Policy and Charging Rules Function, PCRF) or Home Subscriber Server (Home Subscriber Server, HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network Gateway
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • the embodiments of the present disclosure list a plurality of implementation manners to clearly illustrate the technical solutions of the embodiments of the present disclosure.
  • those skilled in the art can understand that the multiple embodiments provided by the embodiments of the present disclosure can be executed independently, or combined with the methods of other embodiments in the embodiments of the present disclosure, and can also be executed alone or in combination It is then executed together with some methods in other related technologies; this is not limited in the embodiment of the present disclosure.
  • the UE can support one or more BWPs; for example, the UE can support 1 BWP or 2 BWPs or 4 BWPs.
  • the UE can activate one BWP in each time period, and receive control information and the like at the activated BWP.
  • a plurality refers to 2 or more than 2.
  • the BWP includes at least one of the following: initial BWP (Initial BWP), activation BWP (active BWP), and default BWP (default BWP).
  • initial BWP can be used for initial access
  • the activated BWP can be used to process services after the initial access is completed
  • the default BWP can be used to reduce power consumption when there is no service for a long time.
  • the UE can switch between different BWPs.
  • the active BWP can be switched to the default BWP, which can reduce power consumption and achieve the purpose of energy saving compared with the active BWP.
  • a handover manner based on physical downlink control information (Downlink Control Information, DCI) is provided.
  • DCI Downlink Control Information
  • the base station sends a DCI indicating to activate the BWP to the UE; if the UE receives the DCI, it can trigger the UE to perform BWP handover based on the activated BWP indicated in the DCI and the current handover of the UE to the BWP.
  • a BWP switching method based on a fixed duration is provided.
  • the base station sends a radio resource control (Radio Resource Control, RRC) signaling with a fixed duration to the UE; if the UE receives the RRC signaling, it can perform BWP switching based on the fixed duration carried in the RRC signaling. For example, if the UE does not receive DCI within a fixed duration, it will switch to the default BWP after the fixed duration; or if it receives DCI before the fixed duration, it will switch to the active BWP indicated by the DCI and restart the timer for timing; or if the UE If DCI is received when switching to the default BWP, switch to the active BWP indicated by the DCI.
  • RRC Radio Resource Control
  • an embodiment of the present disclosure provides a BWP handover method, which is executed by a base station, including:
  • Step S21 Send timing indication information, where the timing indication information indicates configuration timing information; where the timing information is used for the UE to determine related operations of the BWP handover according to the specified duration indicated by the timing information.
  • the base station may be various types of base stations, for example, it may be a 2G base station, a 3G base station, a 4G base station, a 5G base station or other evolved base stations.
  • the BWP switching method may also be performed by other network devices outside the base station.
  • the core network device may be various network functions (Network Function, NF), such as Access and Mobility Management Function (Access and Mobility Management Function, AMF).
  • NF Network Function
  • AMF Access and Mobility Management Function
  • the core network equipment may send the timing indication information to the base station, and the base station forwards the timing indication information to the UE.
  • the step S21 may be: sending timing indication information to the UE.
  • the UE may be various terminals; for example, but not limited to, it may be a mobile phone, a computer, a server, a wearable device, a game control platform, or a multimedia device.
  • the timing information indicates a specified duration; the specified duration is a duration for BWP handover.
  • step S21 determine the related operation of BWP handover according to the specified duration indicated by the timing information, including at least one of the following operations:
  • the bandwidth of the third BWP is greater than that of the second BWP bandwidth.
  • using the first BWP indicated by the predetermined transmission or the third BWP of the same type as the first BWP includes: continuing to work in the first BWP, or switching to the third BWP.
  • the first BWP or the second BWP can be the activated BWP of the above-mentioned embodiment; the second BWP can be the default BWP in the above-mentioned embodiment; the bandwidth of the activated BWP is greater than the bandwidth of the default BWP.
  • the scheduled transmission includes at least one of the following:
  • the scheduling information of the BWP includes at least one of the following:
  • Scheduling information of the third BWP wherein the third BWP and the first BWP belong to the same type of BWP, and have a larger bandwidth than the second BWP.
  • step S21 before the step S21, it includes: sending BWP configuration information to the UE.
  • An embodiment of the present disclosure provides a BWP handover method, executed by a base station, which may include: sending BWP configuration information to a UE.
  • the BWP configuration information includes: at least one active BWP and one default BWP.
  • at least one activated BWP includes: at least one first BWP and/or at least one second BWP.
  • the base station sends BWP configuration information to the UE;
  • the BWP configuration information can be used to indicate the active BWP and default BWP that the UE switches to; if the UE switches to the active BWP, if the UE generates a service request, the UE is activating the BWP for service transmission ; If the UE switches to the default BWP, if the UE has no service request, the UE performs DCI monitoring on the default BWP to maintain the basic connection.
  • the base station may configure m BWPs for the UE by sending BWP configuration information indicating BWPs to the UE.
  • the base station sends BWP configuration information indicating m BWPs to the UE, and the BWP configuration information is used for the UE to configure m BWPs.
  • the m BWPs can be respectively marked as: BWP 1 , BWP 2 , ..., BWP m-1 , and BWP m ; wherein, BWP 1 , BWP 2 , ..., and BWP m-1 are active BWPs; BWP m is the default BWP; wherein, m is an integer greater than 1.
  • the BWP configuration information can be sent through RRC signaling or DCI signaling.
  • the specified duration may be determined by the base station.
  • the specified duration may be any duration, or may be the duration of one service transmission, or may be longer than the duration of one service transmission.
  • the timing information includes: a specified duration.
  • the timing information may be used for the UE to switch to the second BWP when there is no scheduled transmission within the specified time period of using the first BWP. For example, as shown in FIG. 3 , if the UE has no scheduled transmission arrival within the specified duration (T') of the activated BWP (BWP 1 ), then the UE switches to the default BWP (BWP m ) when the specified duration of BWP 1 is reached.
  • the timing information may be used for switching to the scheduled BWP indicated by the scheduling information of the BWP when there is BWP scheduling information within the specified duration for the UE to use the first BWP, and re-determining the timing of the specified duration.
  • the scheduled BWP indicated by the BWP scheduling information may be the first BWP or the second BWP or any BWP of the same type as the first BWP.
  • the timing information may be used for the UE to continue working in the first BWP when there is scheduling information of the first BWP within the specified duration of the first BWP, and to re-determine the timing of the specified duration.
  • UE has the scheduling information of activating BWP 2 within the specified duration of activating BWP (BWP 2 ); then the UE continues to work on activating BWP 2 and restarts the timing of the specified duration of activating BWP 2 .
  • the timing information may be used for the UE to switch to the third BWP when there is scheduling information of the third BWP within the specified duration of using the first BWP, and to re-determine the timing of the specified duration.
  • UE has BWP 2 scheduling information within the specified duration of BWP activation (BWP 1 ); then UE switches to activate BWP 2 and restarts the timing of the specified duration of BWP 2 activation.
  • the timing information may be used for the UE to switch to the scheduled BWP indicated by the BWP scheduling information when the second BWP has the BWP scheduling information, and start timing for a specified duration. For example, as shown in Figure 4, if the UE is in the default BWP (BWP m ), if the scheduling information for activating BWP 3 is received; then the UE switches to activate BWP 3 and starts timing for the specified duration of activating BWP 3 .
  • the base station may send timing indication information to the UE, the timing indication information indicating configuration timing information; the timing information is used for the UE to determine related operations of BWP handover according to the specified duration indicated by the timing information.
  • the base station can flexibly configure the specified duration of operations related to BWP switching for the UE (for example, configuring the duration of the UE to activate BWP), so that the UE can flexibly adjust the specified duration of operations related to BWP switching, for example, it can be implemented according to traffic patterns.
  • BWP adaptive switching thus, it can reduce the delay caused by switching BWP switching in time or the high power consumption caused by always working in a relatively large bandwidth.
  • the timing information may be used for the UE to switch to the second BWP when there is no scheduled transmission within a specified time period of using the first BWP; wherein, the bandwidth of the second BWP is smaller than the bandwidth of the first BWP.
  • the UE can be switched to the second BWP with a relatively small bandwidth when there is no scheduled transmission within the specified time period of the first BWP with a relatively large bandwidth.
  • the timing information may also use the scheduled BWP indicated by the BWP scheduling information when there is BWP scheduling information within the specified time period for the UE to use the first BWP. For example, when there is scheduling information of the first BWP, continue to work in the first BWP or switch to the second BWP when there is scheduling information of the second BWP. In this way, BWP adaptive switching according to traffic patterns and the like can be further realized.
  • the timing information can also be switched to the scheduled BWP indicated by the scheduling information of the BWP when the UE is in the second BWP, that is, when the default BWP has BWP scheduling information, that is, switched to the active BWP .
  • the embodiment of the present disclosure can switch from the default BWP to the activated BWP in time for service transmission, etc., and can reduce the time delay of service transmission and the like.
  • the embodiment of the present disclosure can reduce the delay while reducing the power consumption of the UE; and can also effectively perform BWP adaptive switching according to the traffic pattern.
  • the timing information is used for the UE to switch to the second BWP when there is no scheduled transmission within a specified time period of using the first BWP within a configuration period.
  • An embodiment of the present disclosure provides a BWP handover method, which is executed by a base station, including: sending timing indication information, wherein the timing indication information indicates configuration timing information; wherein the timing information is used for UE to indicate according to the timing information within a configuration period
  • the timing duration determines the related operations of BWP switching.
  • the timing information is used for the UE to switch to the second BWP when there is no scheduled transmission within the specified time period of using the first BWP within a configuration period; or, for the UE to use the first BWP within a configuration period
  • the configuration period can be determined by the base station.
  • the base station determines to send N times of BWP scheduling information to the UE; the difference between the time when the first BWP scheduling information is delivered and the time when the Nth BWP scheduling information is delivered is a configuration cycle; where N is An integer greater than or equal to 1.
  • the base station sends BWP scheduling information to the UE once, and one service reaches the UE. This one transaction can be regarded as one scheduled transmission. That is, every N times when the scheduling information of the BWP arrives at the UE is a configuration period.
  • the base station determines that N scheduled transmissions arrive at the UE; the difference between the time when the first scheduled transmission arrives at the UE and the time when the Nth scheduled transmission arrives at the UE is a configuration period; where N is an integer greater than or equal to 1 . That is, every N scheduled transmissions arriving at the UE is a configuration period.
  • the base station may determine the predetermined time interval as a configuration period.
  • the embodiment of the present disclosure may send a piece of timing information for each configuration period to indicate the specified duration of the scheduled BWP within the configuration period. In this way, on the one hand, it is possible to flexibly adjust the specified duration for the UE to switch to active BWP within a configuration period; UE power consumption.
  • the timing indication information is sent, including one of the following:
  • An embodiment of the present disclosure provides a BWP handover method, executed by a base station, which may include: sending DCI carrying timing indication information, or sending RRC signaling carrying timing indication information.
  • the DCI may further include: scheduling information of the BWP.
  • the base station sends DCI to the UE, the first predetermined bit of the DCI carries BWP scheduling information and the second predetermined bit of the DCI carries timing indication information; the BWP scheduling information indicates the scheduled BWP; the timing indication information indicates Configured timing information.
  • the timing information may include a specified duration.
  • Both the first predetermined bit and the second predetermined bit may be one or more bits. Both the first predetermined bit and the second predetermined bit may be a certain predetermined field in DCI; for example, the first predetermined bit may be a bandwidth part indicator (Bandwidth part indicator) field of DCI, and the second predetermined The bits may be a timer indication field of the DCI.
  • Both the first predetermined bit and the second predetermined bit may be a certain predetermined field in DCI; for example, the first predetermined bit may be a bandwidth part indicator (Bandwidth part indicator) field of DCI, and the second predetermined The bits may be a timer indication field of the DCI.
  • the timing indication information may be carried by the first DCI, and the scheduling information of the BWP may be carried by at least one second DCI.
  • the base station sends a first DCI to the UE, and the first DCI carries timing indication information; the base station sends one or more second DCIs to the UE, where one second DCI carries a BWP scheduling information; the BWP scheduling information indicates Scheduled BWP.
  • the DCI can be any format of DCI; for example, it can be DCI 0, DCI 1, DCI2, DCI 1_1, or DCI x, etc.
  • the predetermined bit in the DCI that carries the timing indication information may be any predetermined bit in the DCI, or may be a reserved bit, or may be a predetermined bit after the predetermined bit that carries the scheduling information of the BWP.
  • the specified duration is the specified duration for the scheduled BWP within a configuration period; then the configuration of the specified duration of the BWP scheduled within the configuration period can be implemented in at least one of the following ways:
  • the base station may send a DCI before the start time of the configuration period, and the DCI carries timing indication information.
  • the base station may carry timing indication information in the DCI carrying the scheduling information of the first BWP within the configuration period and send it. For example, the base station sends the first DCI, and the first DCI carries the scheduling information of the first BWP and indication timing information; the scheduling information of the first BWP indicates the first BWP indicating scheduling within the configuration period.
  • the base station may send timing indication information in the DCI carrying the scheduling information of the first BWP in the configuration period and the DCI carrying the scheduling information of at least one other BWP in the configuration period.
  • the base station sends a first DCI and at least one second DCI; wherein, the first DCI carries scheduling information and timing indication information of the first BWP, and the scheduling information of the first BWP indicates the first BWP indicating scheduling within the configuration period;
  • the second DCI carries scheduling information and timing indication information of the second BWP, and the scheduling information of the second BWP indicates BWPs indicating scheduling other than the first BWP indicating scheduling within the configuration period.
  • the base station may carry timing indication information in the DCI carrying the scheduling information of each BWP within the configuration period and send it. For example, the base station sends N DCIs in one configuration period, wherein one DCI carries one BWP scheduling information and timing indication information; N is the number of times the BWP scheduling information reaches the UE in one configuration period.
  • the timing indication information can be sent through the DCI; then the original function of the base station to deliver the DCI can be realized through a DCI, for example, the scheduling of the BWP can be realized, and the function of sending the timing indication information in the DCI can also be realized; That is, two functions can be realized through one DCI. In this way, the utilization rate of the DCI is improved and the signaling overhead is reduced, that is, the power consumption of the base station and the UE can be reduced.
  • the configuration of the specified duration of the BWP in the entire configuration cycle can also be implemented through a DCI, which can further reduce the power consumption of the base station and the UE, and realize energy saving.
  • one RRC signaling can also serve two functions; it can improve the utilization rate of RRC signaling and reduce signaling overhead, that is, it can reduce Power consumption of the base station and UE.
  • an embodiment of the present disclosure provides a BWP handover method, which is performed by a base station and may include:
  • Step S51 Based on the historical BWP switching information of at least one configuration period, determine the specified duration; wherein, the BWP switching information includes: the BWP to which the UE switches when the BWP scheduling information arrives at the UE at least once.
  • the specified duration is the specified duration in step S21; the configuration period is the configuration period in the above-mentioned embodiments.
  • the specified duration may be the specified duration of one or more BWPs used by the UE, or may also be the specified duration of the BWPs used by the UE within one configuration period or multiple configuration periods.
  • the BWP used by U may refer to the first BWP and/or the third BWP, or other BWPs of the same type as the first BWP and/or the third BWP.
  • the specified duration is determined, including:
  • the specified duration is determined; the predetermined number is greater than or equal to 1.
  • An embodiment of the present disclosure provides a BWP switching method, which is executed by a base station, and may include: determining a specified duration based on the BWP switching information of the previous configuration cycle; or based on the BWP switching information of a predetermined number of configuration cycles adjacent to the current configuration cycle, Determine the specified duration.
  • the predetermined number is a number greater than or equal to one.
  • the BWP switching information includes the BWP to which the UE switches when the scheduling information of N times of BWPs arrives at the UE within a configuration period.
  • the configuration period BWP handover information can be marked as: here, Indicates that when the scheduling information of the Nth BWP arrives at the UE, the BWP to which the UE switches is BWP N .
  • the base station configures m BWPs for the UE; the m BWPs can be marked as: BWP 1 , BWP 2 , ..., and BWP m ; then the BWP switching information in the kth configuration cycle can be marked as: where i ⁇ 1 2...m ⁇ .
  • the BWP switching information in the kth configuration cycle can be marked as: where i ⁇ 1 2...m ⁇ .
  • k is an integer greater than 0. If the k is 1, the BWP switching information in the first configuration cycle is
  • the step S51 may be: determining the specified duration of the next configuration cycle based on the specified duration of a historical configuration cycle.
  • the step S51: may be: determine the specified duration of the next configuration cycle based on the average value of the specified durations of multiple historical configuration cycles.
  • the step S51 may be: determining the specified duration of the next configuration cycle based on the weight coefficients corresponding to the specified durations of multiple historical configuration cycles and the specified durations of each configuration cycle.
  • the weight coefficients corresponding to the historical configuration cycles closer to the current configuration cycle are larger; and the sum of the weight coefficients corresponding to each configuration cycle is equal to 1.
  • determining the specified duration of the next configuration period may also be: determining the specified duration of one or more BWPs used by the UE, or the specified duration of the BWPs used by the UE in one configuration period or multiple configuration periods.
  • Step S51 may be: determining the specified duration based on the BWP switching information and the deep learning model.
  • the specified duration determined here may be: determine the specified duration of one or more BWPs used by the UE, or determine the specified duration of the BWP used by the UE in one configuration cycle or multiple configuration cycles, or determine the UE to use in the next configuration cycle.
  • the BWP switching information in at least one historical configuration period can be used, that is, the specified duration can be determined according to the activated BWP used by the UE in a period of history; in this way, the UE can be accurately estimated.
  • the specified duration of the BWP to be used thus, it is convenient for the UE to update the specified duration of the BWP, and it is possible to switch the BWP by using the traffic mode and the like.
  • an embodiment of the present disclosure provides a BWP handover method, which is performed by a base station and may include:
  • Step S61 Determine the specified duration based on the BWP switching information and the deep learning model.
  • the BWP switching information is the BWP switching information in step S51; the specified duration is the specified duration in step S21 or step S51.
  • the step S61 may be: based on the BWP switching information and the deep learning model, determine the specified duration for the UE to use at least one BWP, or the specified duration for using the BWP within at least one configuration period.
  • the deep learning model may be any realizable deep learning model; for example, it may be a reinforcement learning model.
  • the reinforcement learning model can also be any realizable reinforcement learning model; for example, it can be an action-evaluation algorithm model.
  • the action-evaluation algorithm model may include: an action network and an evaluation network.
  • the action network can be used to determine the predetermined duration; the evaluation network can be used to determine the evaluation index of the predetermined duration; the action network can determine the specified duration based on the evaluation index of the predetermined duration.
  • this step S61 may include:
  • predetermined duration Based on the evaluation network of BWP switching information, predetermined duration and deep learning model, determine the evaluation index for predetermined duration;
  • the specified duration is determined.
  • An embodiment of the present disclosure provides a BWP handover method, executed by a base station, which may include:
  • Step S61a Based on the BWP switching information and selection strategy, determine the predetermined duration
  • Step S61b Based on the BWP switching information, the predetermined duration and the evaluation network of the deep learning model, determine the evaluation index for the predetermined duration;
  • Step S61c Based on the BWP switching information, the predetermined duration, the evaluation index and the action network of the deep learning model, determine the specified duration.
  • Step S61a It may also be: input the BWP switching information into the mobile network to obtain a predetermined duration; the mobile network is a mobile network configured with a selection strategy.
  • An embodiment of the present disclosure provides a BWP handover method, which is executed by a base station, and may include: determining a predetermined duration based on BWP handover information and a selection strategy.
  • Step S61b may be:
  • the duration of the second BWP in one configuration period refers to: the duration during which the UE switches to the second BWP in one configuration period.
  • the second BWP refers to the default BWP.
  • An embodiment of the present disclosure provides a BWP handover method, executed by a base station, which may include:
  • Step S61b1 Determine the reward index based on the ratio of the duration of the second BWP to the predetermined duration in a historical configuration period;
  • Step S61b2 Input the BWP switching information and the reward index into the evaluation network to obtain the evaluation index for the predetermined duration.
  • the step S61b1 may be: based on the ratio between the duration of the second BWP and the predetermined duration in the kth configuration period, determine the reward index for the kth configuration period.
  • the duration T default and predetermined duration T interval of the second BWP in the kth configuration cycle are obtained; the proportion of energy-saving time is calculated based on the ratio of T default and T interval Based on the energy-saving time ratio, the reward index R ⁇ (s k , a k ) is determined.
  • the reward index for the kth configuration cycle may be: R k (s k , a k ).
  • This step S161b2 may be: input the BWP switching information and the reward index into the input layer of the evaluation network, and input the output result of the input layer into the hidden layer of the M layer of the evaluation network; input the output result of the hidden layer of the evaluation network into To the output layer of the evaluation network to obtain the evaluation index for the predetermined duration; wherein, M is an integer greater than 0.
  • the evaluation network includes an input layer, M hidden layers and an output layer.
  • the input layer can be marked as ⁇ ' i ;
  • the input layer is composed of N+1 neural networks, and its input is state and reward;
  • the state can be the BWP switching information of the kth configuration cycle
  • the reward is the reward index R k (s k , a k ); each element of the input layer is connected one-to-one with a separate neuron, that is, N neurons are used to transmit N elements in the state set s k , And one neuron is used to transmit R k (s k , a k ).
  • the hidden layer has M layers, which can be marked as ⁇ ' 1 , ⁇ ' 2 , ... and ⁇ ' M ; the M hidden layers are used to evaluate the mapping relationship between the input and output of the network.
  • the first hidden layer ⁇ '1 is used to mix the state, that is, to mix the BWP switching information of the kth configuration cycle;
  • the output of the lth neuron of the first hidden layer ⁇ '1 is:
  • ⁇ ' 1,lj is the weight of the connection between the input layer ⁇ ' i and the l-th neuron of the first hidden layer ⁇ ' 1 ;
  • x' j is the output of the j -th neuron in the input layer ⁇ ' i ;
  • b' 1,l is the bias of the lth neuron of the first hidden layer ⁇ ' 1 .
  • the second hidden layer ⁇ ' 2 is similar to the first hidden layer ⁇ ' 1 , but the second hidden layer is used for mixed state and reward; the remaining hidden layers, such as the 3rd to Mth hidden layers ⁇ ' 3 ,... and ⁇ ' M approximate the relationship between mixed input and output in the form of full connection, that is, the output of the i-1th hidden layer is the input of the i-th hidden layer, where i is greater than 3 and An integer less than or equal to M.
  • This one output layer can be marked as ⁇ ' o ; the output layer uses a linear rectification unit (ReLU) as an activation function to output an evaluation index for a predetermined duration; for example, the state value function can be used
  • ⁇ k is the discount factor
  • s o is the given initial state
  • ⁇ (s k ) is the action network in the state
  • V k (s) is an evaluation index of the corresponding predetermined duration of the kth configuration cycle.
  • the step S161b2 may be: determining the evaluation index of the predetermined duration based on the evaluation index of the predetermined duration corresponding to the kth configuration cycle, the evaluation index and the reward index corresponding to the k+1th configuration cycle.
  • the determined evaluation index of the predetermined duration may be regarded as the evaluation index of the k+1th configuration cycle.
  • the A ⁇ (s k , a k ) can also be regarded as a time difference error.
  • Step S61c may be: input BWP switching information, predetermined duration, and evaluation index into the input layer of the action network, and input the output result of the input layer into the hidden layer of the M layer of the action network; output the hidden layer of the action network The result is input to the output layer of the action network to obtain the specified duration; wherein, M is an integer greater than 0.
  • the evaluation network includes an input layer, M hidden layers and an output layer.
  • the input layer can be marked as ⁇ ' i ;
  • the input layer is composed of N+2 neural networks, and its input is the state, action and time difference error;
  • the state can be the BWP switching information of the kth configuration cycle.
  • the action is the predetermined duration T interval of the kth configuration cycle;
  • the time difference error can be the evaluation index A ⁇ (s k , a k ) corresponding to the predetermined duration of the kth configuration cycle;
  • each element of the input layer is related to A single neuron is connected one-to-one, that is, N neurons are used to transmit N elements in the state set s k , 1 neuron is used to transmit T interval and 1 neuron is used to transmit A ⁇ (s k , a k ).
  • the hidden layer has M layers, which can be marked as ⁇ ' 1 , ⁇ ' 2 , ... and ⁇ ' M ; the M hidden layers are used to evaluate the mapping relationship between the input and output of the network.
  • the first hidden layer ⁇ '1 is used to mix the state, that is, to mix the BWP switching information of the kth configuration cycle;
  • the output of the lth neuron of the first hidden layer ⁇ '1 is:
  • ⁇ ' 1,lj is the weight of the connection between the input layer ⁇ ' i and the l-th neuron of the first hidden layer ⁇ ' 1 ;
  • x' j is the weight of the j-th neuron in the input layer ⁇ ' i Output;
  • b' 1,l is the bias of the lth neuron of the first hidden layer ⁇ ' 1 .
  • the second hidden layer ⁇ ' 2 is similar to the first hidden layer ⁇ ' 1 , but the second hidden layer is used for mixed state, action and time difference error; the remaining hidden layers, such as the 3rd to Mth
  • the hidden layers ⁇ ' 3 , ... and ⁇ ' M approximate the relationship between the mixed input and the output in a fully connected form, that is, the output of the i-1th hidden layer is the input of the i-th hidden layer, where i is an integer greater than 3 and less than or equal to M.
  • This one output layer can be marked as ⁇ ' o ; the output layer uses the linear rectification unit (ReLU) as the activation function, and outputs the specified duration; for example, it can be obtained by to obtain the specified duration T′ Timer ; where, is the strategy parameter vector, is the policy feature vector.
  • the specified duration T′ Timer may be the specified duration of the k+1th configuration cycle.
  • the specified duration can be obtained through one operation of steps S61a, S61b and S61c.
  • step S61a can be performed once, and steps S61b and S61c can be repeated multiple times to obtain the specified duration.
  • the operation of steps S61b and S61c is repeated multiple times, including: inputting the evaluation index determined in p-1 times of S61b, the BWP switching information and the predetermined duration into the action network in step S61c of the p-1 times, and obtaining the p-1 times
  • the designated duration of the p-1 time; and the designated time length of the p-1 time is input into the evaluation network of the p-th S61b as the p-th predetermined time length and the BWP switching information to obtain the p-th evaluation index; such a cycle, Until multiple (for example, P times) cycles end.
  • p is an integer greater than 1 and less than or equal to P;
  • P is an integer greater than 1.
  • the number of cycles of P times can be determined by the base station.
  • the aforementioned action network may be an action network trained based on a neural network
  • the aforementioned evaluation network may be an evaluation network trained based on a neural network
  • the BWP switching information of at least one configuration cycle can be strengthened through reinforcement learning to determine whether the UE is in the current configuration cycle (or the next configuration cycle). Use the specified duration of the BWP. In this way, it is possible to continuously increase the designated time for using the BWP of the UE based on the traffic pattern, and obtain an accurate designated time for using the BWP that adapts to the change of the traffic pattern; thereby realizing a more energy-saving and accurate BWP switching method.
  • the following BWP handover method is performed by the UE, which is similar to the description of the above-mentioned BWP handover method performed by the base station; and, for the technical details not disclosed in the embodiment of the BWP handover method performed by the UE, please refer to The description of an example of the BWP handover method performed by the base station will not be described in detail here.
  • an embodiment of the present disclosure provides a BWP handover method, which is performed by the UE, including:
  • Step S91 receiving timing indication information
  • Step S92 Configure timing information based on the timing indication information
  • Step S93 Based on the specified duration indicated by the timing information, determine related operations of BWP switching.
  • the timing indication information is the timing indication information in step S21; the timing information is the timing information in step S21; the first BWP, the second BWP, the scheduled transmission and the specified duration are respectively the first BWP, second BWP, scheduled transmission and specified duration.
  • This step S93 may include:
  • the timing information when it is determined that there is a scheduled transmission within the specified duration of using the first BWP, use the first BWP indicated by the scheduled transmission or the third BWP of the same type as the first BWP, and re-determine the timing of the specified duration; the third BWP The bandwidth of is greater than the bandwidth of the second BWP.
  • An embodiment of the present disclosure provides a BWP handover method, executed by a UE, which may include:
  • the timing information when it is determined that there is a scheduled transmission within the specified duration of using the first BWP, use the first BWP indicated by the scheduled transmission or the third BWP of the same type as the first BWP, and re-determine the timing of the specified duration; the third BWP The bandwidth of is greater than the bandwidth of the second BWP.
  • the scheduled transmission includes at least one of the following:
  • the scheduling information of the BWP includes at least one of the following:
  • Scheduling information of the third BWP wherein the third BWP and the first BWP belong to the same type of BWP, and have a larger bandwidth than the second BWP.
  • An embodiment of the present disclosure provides a BWP switching method, which is executed by the UE, and may include: based on the timing information, determining to switch to the scheduled BWP indicated by the BWP scheduling information when there is BWP scheduling information within the specified duration of using the first BWP, and Re-timing for the specified duration.
  • the UE determines that there is scheduling information of the first BWP within the specified duration of using the first BWP; then the UE continues to work on the first BWP scheduled according to the scheduling information of the first BWP, and re-determines the first BWP Timing of the specified duration.
  • the UE determines that there is scheduling information of the third BWP within the specified duration of using the first BWP; then the UE switches to the scheduling information of the third BWP indicating the scheduled third BWP, and re-determines the scheduling information of the third BWP Timing for the specified duration.
  • the UE determines that there is service transmission of the first BWP within a specified time period using the first BWP; then the UE continues to work in the first BWP.
  • An embodiment of the present disclosure provides a BWP switching method, which is executed by the UE, and may include: based on the timing information, when determining that there is BWP scheduling information when using the second BWP, switching to the scheduled BWP indicated by the BWP scheduling information, and starting to specify the duration or based on the timing information, determine to continue working in the second BWP when there is no scheduled transmission when using the second BWP.
  • timing indication information is received, including one of the following:
  • Receive RRC signaling carrying timing indication information.
  • An embodiment of the present disclosure provides a BWP handover method performed by a UE, which may include: receiving DCI carrying timing indication information, or receiving RRC signaling carrying timing indication information.
  • an embodiment of the present disclosure provides a BWP handover method, which is executed by a communication device, and the communication device includes: a base station and a UE; the method may include the following steps:
  • the base station can configure m-1 activated BWPs and a default BWP for the UE;
  • the identification information (BWP ID) of the m-1 BWPs can be 1, 2, ... and m-1 respectively;
  • the identification information is m; wherein, m is an integer greater than 1.
  • the activated BWP may be the first BWP and/or the third BWP in the above embodiment; the default BWP may be the second BWP in the above embodiment.
  • Step S101 the base station sends DCI carrying BWP scheduling information to the UE, wherein the BWP scheduling information indicates a scheduled active BWP.
  • the base station if it receives notification information from the core network equipment indicating that the UE is scheduled to transmit, it sends DCI to the UE through physical downlink control information (Physical Downlink Control Channel, PDCCH); wherein, the DCI carries the BWP Scheduling information.
  • PDCCH Physical Downlink Control Channel
  • the base station sends DCI 1_1, and the partial bandwidth indication field of DCI1_1 carries BWP scheduling information, and the BWP scheduling information indicates the scheduled active BWP.
  • Step S102 UE activates BWP based on DCI configuration
  • the UE if the UE receives the DCI carrying the BWP scheduling information and indicates the scheduled active BWP based on the BWP scheduling information, configure the active BWP used by the UE.
  • Step S103 UE starts a timer (Timer);
  • the UE starts a timer and starts counting from zero.
  • the timer is to be restarted, reset the timer to zero and start counting.
  • the timing duration of the timer is a specified duration for activating the BWP.
  • Step S104 UE detects whether DCI is received before the timer expires; if yes, execute step S102; if not, execute step S105;
  • the DCI if the UE detects whether a DCI is received before the timer expires, the DCI carries BWP scheduling information, and the BWP scheduling information indicates the scheduled active BWP; if yes, perform step S102; if not, Execute step S105.
  • Step S105 UE switches to default BWP.
  • the UE switches to the default BWP after the timer expires.
  • an embodiment of the present disclosure provides a BWP handover method, which is executed by a communication device, and the communication device includes: a base station and a UE; the method may include the following steps:
  • Step S111 If the base station determines that the number of times the BWP scheduling information reaches the UE reaches N times, it is determined as a configuration period;
  • the base station starts a timer and counts from zero, and every N times when the BWP scheduling information arrives at the UE, it is determined as a configuration period; N is an integer greater than 0.
  • the base station sends the scheduling information of the BWP to the UE once, that is, a service reaches the UE once.
  • Step S112 the base station acquires BWP switching information of at least one configuration period
  • the base station obtains the BWP switching information of the last configuration period from historical information.
  • the last configuration cycle is the kth configuration cycle; the base station obtains the BWP switching information of the kth configuration cycle as: Among them, i ⁇ 1 2...m ⁇ .
  • Step S113 the base station determines the specified duration based on the BWP switching information and the reinforcement learning model of at least one configuration cycle;
  • the reinforcement learning model includes an action network and an evaluation network.
  • step S113 includes:
  • Step S113a the base station determines a predetermined duration based on a selection strategy; the selection strategy is a selection strategy for BWP handover information.
  • Step S113b the base station evaluates based on the predetermined duration of evaluating the network to obtain an evaluation index.
  • R ⁇ (s k , a k ) is the reward index
  • is the discount factor
  • V ⁇ (s k+1 ) is the evaluation index corresponding to the k+1th configuration cycle
  • V ⁇ (s k ) is the evaluation index corresponding to the kth configuration cycle.
  • Step S113c The base station updates the predetermined duration based on the evaluation index and the mobile network to obtain the specified duration. For example, the base station inputs the evaluation index obtained in step S113b into the mobile network, which can be based on Get the specified duration.
  • the specified duration may be used as the specified duration for the UE to use the BWP in the k+2th configuration period.
  • Step S114 the base station sends DCI to the UE, wherein the DCI carries timing information indicating a specified duration; wherein the timing information is used for the UE to update the specified duration for activating the BWP.
  • the base station sends DCI 1_1 to the UE, wherein the partial bandwidth indication field of DCI 1_1 carries BWP scheduling information and the timer indication field of DCI1_1 carries timing indication information; wherein, the BWP scheduling information indicates the activation of scheduling BWP: Timing indication information carries timing information indicating a specified duration. If the UE receives DCI1_1, based on the BWP scheduling information carried in the DCI 1_1 partial bandwidth indication field, it switches to the active BWP indicated by the BWP scheduling information scheduling; and based on the timer indication information carried in the DCI1_1 timer indication field, based on the timing update the specified time period for activating the BWP.
  • a method for determining a specified duration based on an action network is provided; the method can be implemented based on an action network as shown in FIG. 8 ; the action network includes an input layer, M hidden layers, and an output layer.
  • the method can include:
  • the input layer can be marked as ⁇ ' i ; the input layer is composed of N+2 neural networks, and its input is the state, action and time difference error; the state can be the BWP switching information of the kth configuration cycle; the action is a predetermined duration T interval of the kth configuration cycle; the time difference error may be an evaluation index A ⁇ (s k , a k ) of the predetermined duration corresponding to the kth configuration cycle.
  • Each element of the input layer is connected one-to-one with a single neuron, that is, N neurons are used to transmit N elements in the state set sk , 1 neuron is used to transmit T interval , and 1 neuron is used to transmit for the transmission of A ⁇ (s k , a k ).
  • Hidden layer There are M hidden layers in total, which can be marked as ⁇ ' 1 , ⁇ ' 2 , ... and ⁇ ' M ; the M hidden layers are used to evaluate the mapping relationship between the input and output of the network.
  • the first hidden layer ⁇ '1 is used to mix the state, that is, to mix the BWP switching information of the kth configuration cycle;
  • the output of the lth neuron of the first hidden layer ⁇ '1 is:
  • ⁇ ' 1,lj is the weight of the connection between the input layer ⁇ ' i and the l-th neuron of the first hidden layer ⁇ ' 1 ;
  • x' j is the weight of the j-th neuron in the input layer ⁇ ' i Output;
  • b' 1,l is the bias of the lth neuron of the first hidden layer ⁇ ' 1 .
  • the second hidden layer ⁇ ' 2 is similar to the first hidden layer ⁇ ' 1 , but the second hidden layer is used for mixed state, action and time difference error; the remaining hidden layers, such as the 3rd to Mth
  • the hidden layers ⁇ ' 3 , ... and ⁇ ' M approximate the relationship between the mixed input and the output in a fully connected form, that is, the output of the i-1th hidden layer is the input of the i-th hidden layer, where i is an integer greater than 3 and less than or equal to M.
  • Output layer The output layer can be marked as ⁇ ' o ; the output layer uses a linear rectification unit (ReLU) as an activation function, and outputs a specified duration; for example, it can be passed to obtain the specified duration T′ Timer ; where, is the policy parameter vector, is the policy feature vector.
  • ReLU linear rectification unit
  • a method for determining an evaluation index based on an evaluation network is provided; the method can be implemented based on an action network as shown in FIG. 7 ; the action network includes an input layer, M hidden layers, and an output layer.
  • the method can include:
  • the input layer can be marked as ⁇ ' i ; the input layer is composed of N+1 neural networks, and its input is state and reward; the state can be the BWP switching information of the kth configuration cycle
  • the reward is the reward index R ⁇ (s k , a k ); the reward index can be based on the proportion of energy-saving time Determine, wherein, T default is the duration of the second BWP within a configuration period, and T interval is a predetermined duration corresponding to a configuration period.
  • the reward index corresponding to the kth configuration cycle is R k (s k , a k ); each element of the input layer is connected to a single neuron one-to-one, that is, N neurons are used to transmit the state set s N elements in k and 1 neuron are used to transmit R k (s k , a k ).
  • Hidden layer There are M layers in total, which can be marked as ⁇ ' 1 , ⁇ ' 2 , ... and ⁇ ' M ; the M hidden layers are used to evaluate the mapping relationship between the input and output of the network.
  • the first hidden layer ⁇ '1 is used to mix the state, that is, to mix the BWP switching information of the kth configuration cycle;
  • the output of the lth neuron of the first hidden layer ⁇ '1 is:
  • ⁇ ' 1,lj is the weight of the connection between the input layer ⁇ ' i and the l-th neuron of the first hidden layer ⁇ ' 1 ;
  • x' j is the weight of the j- th neuron in the input layer ⁇ ' i Output;
  • b' 1,l is the bias of the lth neuron of the first hidden layer ⁇ ' 1 .
  • the second hidden layer ⁇ ' 2 is similar to the first hidden layer ⁇ ' 1 , but the second hidden layer is used for mixed state and reward; the remaining hidden layers, such as the 3rd to Mth hidden layers ⁇ ' 3 ,... and ⁇ ' M approximate the relationship between mixed input and output in the form of full connection, that is, the output of the i-1th hidden layer is the input of the i-th hidden layer, where i is greater than 3 and An integer less than or equal to M.
  • Output layer The input layer can be marked as ⁇ ' o ; the output layer uses the linear rectification unit (ReLU) as the activation function to output the evaluation index for the predetermined duration; for example, the state value function can be used
  • ⁇ k is the discount factor
  • s o is the given initial state
  • ⁇ (s k ) is the action network in the state
  • the A ⁇ (s k , a k ) can also be regarded as a time difference error.
  • an embodiment of the present disclosure provides a BWP handover method, which is performed by a base station; the method may include the following steps:
  • Step S121 the base station determines the BWP switching information of the current configuration cycle and the energy-saving time ratio of the previous configuration cycle based on the determined predetermined duration;
  • the current configuration cycle may be considered as the k+1th configuration cycle
  • the previous configuration cycle may be considered as the kth configuration cycle.
  • the base station determines the BWP switching information of the current configuration cycle based on the determined predetermined duration: sk+1 ; the base station determines the proportion of energy-saving time
  • the proportion of energy-saving time can be used as the reward index R ⁇ (s k , a k ) of the mobile network.
  • Step S122 The evaluation network of the base station uses the BWP switching information of the previous configuration cycle and the current configuration cycle to obtain the evaluation indicators for the predetermined duration of the previous configuration cycle and the current configuration cycle;
  • the evaluation network of the base station uses the previous configuration cycle and the corresponding reward index to determine the evaluation index V ⁇ (s k ) of the kth configuration cycle; and based on the evaluation network, the current configuration cycle and the corresponding Reward index, determine the evaluation index V ⁇ (s k+1 ) of the k+1th configuration cycle.
  • Step S123 Obtain the time difference error based on the previous configuration cycle and the evaluation index and reward index for the predetermined duration of the current configuration cycle;
  • the time difference error is an evaluation index; V ⁇ (s k ) can be considered as a state value function of the previous state; V ⁇ (s k+1 ) can be considered as a state value function of the current state.
  • Step S124 the base station stores the BWP switching information of the current configuration cycle, the specified duration and the duty cycle of the energy-saving time;
  • Step S125 The evaluation network of the base station uses the average value of the time difference error to perform gradient update to obtain the time difference error after training;
  • the evaluation network of the base station uses the average value of the time difference error as a loss function to perform stochastic gradient update, which can be expressed as the following formula: ⁇ k+1 ⁇ k + ⁇ A ⁇ (s k ,a k ) ; Among them, ⁇ represents the learning rate; A ⁇ (s k , a k ) is the time difference error after training.
  • Step S126 The action network of the base station uses the post-training time difference error obtained by the evaluation network to perform a gradient update on the selection strategy to obtain a trained selection strategy.
  • the action network of the base station performs a gradient update on the selection strategy based on the trained time difference error obtained by the evaluation network, which can be expressed as the following formula: Among them, ⁇ represents the learning rate, and ⁇ ⁇ (s k , a k ) is the selection strategy after training.
  • a BWP switching device is provided, which is applied to a base station, including:
  • the first sending module 51 is configured to send timing indication information, where the timing indication information indicates configuration timing information; where the timing information is used for the UE to determine related operations of BWP handover according to the timing duration indicated by the timing information.
  • An embodiment of the present disclosure provides a BWP switching device, which is applied to a base station, and may include: a first sending module 51 configured to send timing indication information, where the timing indication information indicates configuration timing information; where the timing information uses the first Switching to a second BWP when there is no scheduled transmission within a specified time period of a BWP; wherein, the bandwidth of the second BWP is smaller than the bandwidth of the first BWP.
  • An embodiment of the present disclosure provides a BWP switching device, which is applied to a base station, and may include: a first sending module 51 configured to send timing indication information, where the timing indication information indicates configuration timing information; where the timing information uses the first When there is a scheduled transmission within the specified duration of a BWP, use the first BWP indicated by the scheduled transmission or the third BWP of the same type as the first BWP, and re-determine the timing of the specified duration; the bandwidth of the third BWP is greater than that of the second BWP bandwidth.
  • the scheduled transmission includes at least one of the following:
  • the scheduling information of the BWP includes at least one of the following:
  • Scheduling information of the third BWP wherein the third BWP and the first BWP belong to the same type of BWP, and have a larger bandwidth than the second BWP.
  • the timing information is used for the UE to switch to the scheduled BWP indicated by the BWP scheduling information when there is BWP scheduling information within the specified duration of using the first BWP, and re-determine the timing of the specified duration.
  • An embodiment of the present disclosure provides a BWP switching device, which is applied to a base station, and includes: a first sending module 51 configured to send timing indication information, where the timing indication information indicates configuration timing information; where the timing information is used for providing When there is BWP scheduling information for the specified duration of the first BWP, the UE switches to the scheduled BWP indicated by the BWP scheduling information, and re-determines the timing of the specified duration.
  • the timing information is used for the UE to continue working in the first BWP when there is scheduling information of the first BWP within the specified duration of using the first BWP, and re-determine the timing of the specified duration.
  • An embodiment of the present disclosure provides a BWP switching device, which is applied to a base station, and includes: a first sending module 51 configured to send timing indication information, where the timing indication information indicates configuration timing information; where the timing information is used for providing When the scheduling information of the first BWP is available within the specified duration of using the first BWP, the UE continues to work in the first BWP, and re-determines the timing of the specified duration.
  • An embodiment of the present disclosure provides a BWP switching device applied to a base station, including: a first sending module 51 configured to send DCI carrying timing indication information.
  • An embodiment of the present disclosure provides a BWP switching device applied to a base station, including: a first sending module 51 configured to send RRC signaling carrying timing indication information.
  • An embodiment of the present disclosure provides a BWP switching device, which is applied to a base station, including: a first determination module configured to determine a specified duration based on historical BWP switching information of at least one configuration period; wherein, the BWP switching information includes: at least The BWP that the UE switches to when the scheduling information of a BWP arrives at the UE.
  • An embodiment of the present disclosure provides a BWP switching device applied to a base station, including: a first determination module configured to determine a specified duration based on BWP switching information in a previous configuration period.
  • An embodiment of the present disclosure provides a BWP switching device applied to a base station, including: a first determination module configured to determine a specified duration based on BWP switching information and a deep learning model.
  • An embodiment of the present disclosure provides a BWP switching device applied to a base station, including:
  • the first determining module is configured to determine the predetermined duration based on the BWP switching information and the selection strategy;
  • the first determination module is configured to determine the evaluation index for the predetermined duration based on the BWP switching information, the predetermined duration and the evaluation network of the deep learning model;
  • the first determination module is also configured to determine the specified duration based on the BWP switching information, the predetermined duration, the evaluation index and the action network of the deep learning model.
  • An embodiment of the present disclosure provides a BWP switching device applied to a base station, including: inputting BWP switching information into a mobile network configured with a selection strategy, and determining a predetermined duration.
  • An embodiment of the present disclosure provides a BWP switching device applied to a base station, including:
  • the first determination module is configured to determine the reward index based on the ratio of the duration of the second BWP and the predetermined duration in a historical configuration cycle;
  • the first determination module is configured to input the BWP switching information and the reward index into the evaluation network, so as to obtain the evaluation index for the predetermined duration.
  • An embodiment of the present disclosure provides a BWP switching device applied to a base station, including: a first determination module configured to input BWP switching information, a predetermined duration, and an evaluation index into a mobile network to obtain a specified duration.
  • an embodiment of the present disclosure provides a BWP switching device, which is applied to a UE, including:
  • the second receiving module 61 is configured to receive timing indication information
  • the processing module 62 is configured to configure timing information based on the timing indication information
  • the second determining module 63 is configured to determine related operations of the BWP switching based on the specified duration indicated by the timing information.
  • An embodiment of the present disclosure provides a BWP switching device, which is applied to a UE, and may include: a second determination module 63 configured to determine, based on the timing information, that when there is no scheduled transmission within the specified duration of using the first BWP Switching to the second BWP, where the bandwidth of the second BWP is smaller than the bandwidth of the first BWP.
  • An embodiment of the present disclosure provides a BWP switching device, which is applied to a UE, and may include: a second determining module 63 configured to determine, based on the timing information, when there is a scheduled transmission within the specified duration of using the first BWP , using the first BWP indicated by the scheduled transmission or a third BWP of the same type as the first BWP, and re-determining the timing of the specified duration; the bandwidth of the third BWP is greater than that of the second BWP bandwidth.
  • the scheduled transmission includes at least one of the following:
  • the scheduling information of the BWP includes at least one of the following:
  • Scheduling information of the third BWP wherein the third BWP and the first BWP belong to the same type of BWP, and have a larger bandwidth than the second BWP.
  • An embodiment of the present disclosure provides a BWP switching device, which is applied to a UE, and includes: a second determination module 63 configured to switch to the BWP when there is BWP scheduling information within a specified duration of using the first BWP based on timing information. Scheduled BWP indicated by the scheduling information, and re-determine the timing of the specified duration.
  • An embodiment of the present disclosure provides a BWP switching device, which is applied to a UE, and includes: a second determination module 63 configured to determine, based on timing information, to switch to the BWP scheduling information indicated by the BWP scheduling information when using the second BWP BWP, and start timing for the specified duration.
  • An embodiment of the present disclosure provides a BWP switching apparatus, which is applied to a UE, and includes: a second determining module 63 configured to, based on timing information, determine to continue working in the second BWP when there is no scheduled transmission when using the second BWP.
  • An embodiment of the present disclosure provides a BWP switching apparatus, which is applied to a UE, and includes: a second receiving module 61 configured to receive DCI carrying timing indication information.
  • An embodiment of the present disclosure provides a BWP switching device, which is applied to a UE, and includes: a second receiving module 61 configured to receive RRC signaling carrying timing indication information.
  • An embodiment of the present disclosure provides a communication device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to implement the BWP switching method in any embodiment of the present disclosure when running the executable instruction.
  • the communication device may be a base station or a UE.
  • the processor may include various types of storage media, which are non-transitory computer storage media, and can continue to memorize and store information thereon after the user equipment is powered off.
  • the processor may be connected to the memory through a bus, etc., for reading the executable program stored on the memory, for example, at least one of the methods shown in FIGS. 2 , 5 , 6 , 9 to 12 .
  • An embodiment of the present disclosure further provides a computer storage medium, where a computer executable program is stored in the computer storage medium, and when the executable program is executed by a processor, the BWP switching method in any embodiment of the present disclosure is implemented. For example, at least one of the methods shown in FIGS. 2 , 5 , 6 , 9 to 12 .
  • Fig. 15 is a block diagram showing a user equipment 800 according to an exemplary embodiment.
  • user equipment 800 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • user equipment 800 may include one or more of the following components: processing component 802, memory 804, power supply component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814 , and the communication component 816.
  • the processing component 802 generally controls the overall operations of the user device 800, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components. For example, processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802 .
  • the memory 804 is configured to store various types of data to support operations at the user equipment 800 . Examples of such data include instructions for any application or method operating on user device 800, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 806 provides power to various components of the user equipment 800 .
  • Power components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for user device 800 .
  • the multimedia component 808 includes a screen providing an output interface between the user device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the user equipment 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), which is configured to receive external audio signals when the user equipment 800 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 804 or sent via communication component 816 .
  • the audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor component 814 includes one or more sensors for providing user equipment 800 with status assessments of various aspects.
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the user device 800, the sensor component 814 can also detect the user device 800 or a component of the user device 800 The position change of the user device 800, the presence or absence of contact of the user with the user device 800, the orientation or acceleration/deceleration of the user device 800 and the temperature change of the user device 800.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the user equipment 800 and other devices.
  • the user equipment 800 can access a wireless network based on communication standards, such as WiFi, 4G or 5G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • user equipment 800 may be powered by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A programmable gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A programmable gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 804 including instructions, which can be executed by the processor 820 of the user equipment 800 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • an embodiment of the present disclosure shows a structure of a base station.
  • the base station 900 may be provided as a network side device.
  • base station 900 includes processing component 922 , which further includes one or more processors, and a memory resource represented by memory 932 for storing instructions executable by processing component 922 , such as application programs.
  • the application program stored in memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions, so as to perform any of the aforementioned methods applied to the base station.
  • Base station 900 may also include a power component 926 configured to perform power management of base station 900, a wired or wireless network interface 950 configured to connect base station 900 to a network, and an input-output (I/O) interface 958.
  • the base station 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or similar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种BWP切换方法、装置、通信设备及存储介质;该BWP由基站执行,包括:发送定时指示信息,其中,定时指示信息,指示配置定时信息;其中,定时信息,用于供UE根据该定时信息指示的指定时长确定BWP切换的相关操作(S21)。

Description

BWP切换方法、装置、通信设备及存储介质 技术领域
本公开涉及但不限于通信技术领域,尤其涉及一种BWP切换方法、装置、通信设备及存储介质。
背景技术
带宽部分(Band Width Part,BWP)是小区总带宽的一个子集带宽。可通过新空口(New Radio,NR)中的带宽自适应灵活调整用户设备(User Equipment,UE)接收和发送带宽大小,使得UE接收和发送带宽不需要与小区的带宽一样大,使得UE只需在系统配置的该BWP内进行相应的操作即可。
第五代通信技术(5G)NR中可支持BWP技术,可以节约UE的能耗。然而,随着互联网技术的不断发展,在转向5G的过程中需要支持多种多样特性的广泛应用,会有更多的功耗相关的实际问题显现,这些问题为UE节能带来更大挑战。例如对于突发甚至非平稳的流量模式时,使用传统的BWP切换方法将导致更长的访问延迟和/或更高的功耗。
发明内容
本公开实施例提供一种BWP切换方法、装置、通信设备及存储介质。
根据本公开的第一方面,提供一种BWP切换方法,由基站执行,包括:
发送定时指示信息,其中,定时指示信息,指示配置定时信息;其中,定时信息,用于供UE根据定时信息指示的指定时长确定BWP切换的相关操作。
根据本公开的第二方面,提供一种BWP切换方法,由UE执行,包括:
接收定时指示信息;
基于定时指示信息,配置定时信息;
基于定时信息指示指定时长,确BWP的切换的相关操作。
根据本公开的第三方面,提供一种BWP切换装置,应用于基站,包括:
第一发送模块,被配置为发送定时指示信息,其中,定时指示信息,指示配置定时信息;其中,定时信息,用于供UE根据定时信息指示的指定时长确定BWP切换的相关操作。
根据本公开的第四方面,提供一种BWP切换装置,应用于UE,包括:
第二接收模块,被配置为接收定时指示信息;
处理模块,被配置为基于定时指示信息,配置定时信息;
第二确定模块,被配置为基于定时信息指示的指定时长,确定BWP切换的相关操作。
根据本公开的第五方面,提供一种通信设备,其中,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现本公开任意实施例的BWP切换方法。
根据本公开的第六方面,提供一种计算机存储介质,其中,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的BWP切换方法。
本公开实施例提供的技术方案可以包括以下有益效果:
在本公开实施例中,可以通过基站向UE发送定时指示信息,该定时指示信息指示配置定时信息;该定时信息用于供UE根据定时信息指示的指定时长确定BWP切换的相关操作。如此可以通过基站给UE灵活配置执行BWP切换的相关操作的指定时长(例如配置UE使用激活BWP的持续时长),使得UE可以灵活的调整BWP切换的相关操作的指定时长,例如可以实现根据流量模式等的BWP的自适应切换;从而可以降低由于切换BWP切换不及时所带来的延时或者始终工作在相对较大的带宽所带来的高功耗。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
图1是一种无线通信系统的结构示意图。
图2是根据本公开一示例性实施例示出的一种BWP切换方法的流程图。
图3是根据本公开一示例性实施例示出的一种BWP切换的示意图。
图4是根据本公开一示例性实施例示出的一种BWP切换的示意图。
图5是根据本公开一示例性实施例示出的一种BWP切换方法的流程图。
图6是根据本公开一示例性实施例示出的一种BWP切换方法的流程图。
图7是根据本公开一示例性实施例示出的一种评价网络的示意图。
图8是根据本公开一示例性实施例示出的一种行动网络的示意图。
图9是根据本公开一示例性实施例示出的一种BWP切换方法的流程图。
图10是根据本公开一示例性实施例示出的一种BWP切换方法的流程图。
图11是根据本公开一示例性实施例示出的一种BWP切换方法的流程图。
图12是根据本公开一示例性实施例示出的一种BWP切换方法的流程图。
图13是根据本公开一示例性实施例示出的一种BWP切换装置的框图。
图14是根据本公开一示例性实施例示出的一种BWP切换装置的框图。
图15是根据一示例性实施例示出的一种UE的框图。
图16是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为新一代无线接入网(New Generation-Radio Access Network,NG-RAN)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体接入控制(Medium Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的车对车(vehicle to vehicle,V2V)通信、车对路边设备(vehicle to Infrastructure,V2I)通信和车对人(vehicle to pedestrian,V2P)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了便于本领域内技术人员理解,本公开实施例列举了多个实施方式以对本公开实施例的技术方案进行清晰地说明。当然,本领域内技术人员可以理解,本公开实施例提供的多个实施例,可以被单独执行,也可以与本公开实施例中其他实施例的方法结合后一起被执行,还可以单独或结合后与其他相关技术中的一些方法一起被执行;本公开实施例并不对此作出限定。
为了更好地理解本公开任意实施例所描述的方法,首先对BWP相关内容进行部分说明:
在一个实施例中,根据UE的终端能力,UE可以支持一个或多个BWP;例如,UE可支持1个BWP或者2个BWP或者4个BWP。这里,UE在每个时间段可激活的BWP为一个,并在该激活BWP接收控制信息等。在本公开的一些实施例中,多个是指2个或者2个以上。
在一个实施例中,BWP包括以下至少之一:初始BWP(Initial BWP)、激活BWP(active BWP)、及默认BWP(default BWP)。这里,初始BWP可用于初始接入;激活BWP可用于初始接入完成 后对业务进行处理;默认BWP可用于长时间没有业务时降低功耗。
在一个实施例中,UE可以在不同BWP进行切换。例如,可以由激活BWP切换到默认BWP,如此相对与一直工作在激活BWP来说,可以降低功耗,达到节能目的。
在一个实施例中,提供一种基于物理下行控制信息(Downlink Control Information,DCI)的切换方式。例如,基站向UE发送携带指示激活BWP的DCI;若UE接收到DCI,可基于DCI中指示的激活BWP与UE当前切换到BWP,则触发UE进行BWP切换。
在另一个实施例中,提供一种基于固定时长进行BWP的切换方式。例如,基站向UE发送携带固定时长的无线资源控制(Radio Resource Control,RRC)信令;若UE接收到RRC信令,可基于RRC信令中携带的固定时长进行BWP切换。例如UE若在固定时长没有接收到DCI,则在固定时长后切换到默认BWP;或者若在固定时长之前接收到DCI,则切换到DCI指示的激活BWP并重新启动定时器进行计时;或者若UE切换到默认BWP时接收到DCI,则切换到DCI指示的激活BWP。
如图2所示,本公开实施例提供一种BWP切换方法,由基站执行,包括:
步骤S21:发送定时指示信息,其中,定时指示信息,指示配置定时信息;其中,定时信息,用于供UE根据定时信息指示的指定时长确定BWP切换的相关操作。
该基站可以是各种类型的基站,例如可以是2G基站、3G基站、4G基站、5G基站或其它演进型基站。
在本公开的一些实施例中,该BWP切换方法也可以是由基站外的其它网络设备执行。例如可以是由除基站外的其它接入网设备,或者由核心网设备执行。这里,该核心网设备可以是各种网络功能(Network Function,NF),如可以是接入与移动性管理功能(Access and Mobility Management Function,AMF)。例如,若BWP切换方法由核心网设备执行时,可以是核心网设备将定时指示信息发送给基站,基站再将定时指示信息转发给UE。
该步骤S21可以是:向UE发送定时指示信息。该UE可以是各种终端;例如可以是但不限于是手机、计算机、服务器、可穿戴设备、游戏控制平台或多媒体设备等。
该定时信息指示指定时长;该指定时长为针对BWP切换的时长。
该步骤S21中根据定时信息指示的指定时长确定BWP切换的相关操作,包括以下的至少一种操作:
使用第一BWP的指定时长内无预定传输时切换到第二BWP;其中,第二BWP的带宽,小于第一BWP的带宽;
使用第一BWP的指定时长内有预定传输时,使用预定传输指示的第一BWP或者与第一BWP同类型的第三BWP,并重新确定指定时长的计时;第三BWP的带宽,大于第二BWP的带宽。
这里,使用预定传输指示的第一BWP或者与第一BWP同类型的第三BWP,包括:继续工作在第一BWP,或者,切换到第三BWP。
在一个实施例中,第一BWP或者第二BWP可以为上述实施例的激活BWP;第二BWP可以为 上述实施例中默认BWP;该激活BWP的带宽大于默认BWP的带宽。
该预定传输包括以下至少之一:
BWP的调度信息;
第一BWP的业务传输。
该BWP的调度信息包括以下至少之一:
第一BWP的调度信息;
第三BWP的调度信息,其中,第三BWP和第一BWP属于相同类型的BWP,且比第二BWP的带宽大。
在一个实施例中,在该步骤S21之前,包括:向UE发送BWP配置信息。
本公开实施例提供一种BWP切换方法,由基站执行,可包括:向UE发送BWP配置信息。
该BWP配置信息,包括:至少一个激活BWP,及一个默认BWP。这里,至少一个激活BWP包括:至少一个第一BWP和/或至少一个第二BWP。
示例性的,基站向UE发送BWP配置信息;该BWP配置信息,可用于指示UE切换到的激活BWP及默认BWP;若UE切换在激活BWP,若UE发生业务请求,UE在激活BWP进行业务传输;若UE切换在默认BWP,若UE无业务请求时,UE在默认BWP进行DCI监听,以保持基本连接。
示例性的,基站可通过向UE发送指示BWP的BWP配置信息,以给UE配置m个BWP。例如,基站向UE发送指示m个BWP的BWP配置信息,BWP配置信息用于供UE配置m个BWP。这里,该m个BWP可分别标记为:BWP 1、BWP 2、……、BWP m-1、及BWP m;其中,BWP 1、BWP 2、……、及BWP m-1为激活BWP;BWP m为默认BWP;其中,m为大于1的整数。
该BWP配置信息可通过RRC信令或者DCI信令发送。
该指定时长可以是基站确定的。该指定时长可以是任意时长,或者可以是一次业务传输的时长,或者大于一次业务传输的时长等。在一个实施例中,定时信息包括:指定时长。
该定时信息,可用于供UE使用第一BWP的指定时长内无预定传输时切换到第二BWP。例如,如图3所示,UE在激活BWP(BWP 1)的指定时长(T’)内没有预定传输到达,则在BWP 1的指定时长达到时,UE切换到默认BWP(BWP m)。
该定时信息,可用于供UE使用第一BWP的指定时长内有BWP的调度信息时,切换到BWP的调度信息所指示调度的BWP,并重新确定指定时长的计时。
该BWP调度信息所指示调度的BWP可以是第一BWP或者第二BWP或者与第一BWP同类型的任意一个BWP。
示例性的,该定时信息,可用于供UE使用第一BWP的指定时长内有第一BWP的调度信息时继续工作在第一BWP,并重新确定指定时长的计时。例如,如图3所示UE在激活BWP(BWP 2)的指定时长内有激活BWP 2的调度信息;则UE继续工作在激活BWP 2,并重新开始激活BWP 2的指定时长的计时。
示例性的,该定时信息,可用于供UE使用第一BWP的指定时长内有第三BWP的调度信息时 切换到第三BWP,并重新确定指定时长的计时。例如,如图4所示UE在激活BWP(BWP 1)的指定时长内有BWP 2的调度信息;则UE切换到激活BWP 2,并重新开始激活BWP 2的指定时长的计时。
该定时信息,可用于供UE在第二BWP时有BWP的调度信息时切换到BWP调度信息所指示调度的BWP,并开始指定时长的计时。例如,如图4所示,若UE在默认BWP(BWP m),若接收到激活BWP 3的调度信息;则UE切换到激活BWP 3,并开始激活BWP 3的指定时长的计时。
如此,在本公开实施例中,可以通过基站向UE发送定时指示信息,该定时指示信息指示配置定时信息;该定时信息用于供UE根据定时信息指示的指定时长确定BWP切换的相关操作。如此可以通过基站给UE灵活配置执行BWP切换的相关操作的指定时长(例如配置UE使用激活BWP的持续时长),使得UE可以灵活的调整BWP切换的相关操作的指定时长,例如可以实现根据流量模式等的BWP的自适应切换;从而可以降低由于切换BWP切换不及时所带来的延时或者始终工作在相对较大的带宽所带来的高功耗。
在本公开实施例中,该定时信息可用于供UE使用第一BWP的指定时长内无预定传输时切换到第二BWP;其中,第二BWP的带宽小于第一BWP的带宽。如此,可以使得UE在相对较大带宽的第一BWP的指定时长内无预定传输时切换到相对较小带宽的第二BWP,相对UE始终工作在相对较大的第一BWP来说,可以降低UE的功耗,实现UE的节能。
且,在本公开实施例中,该定时信息也可以在UE使用第一BWP的指定时长内有BWP的调度信息时,使用BWP的调度信息所指示调度的BWP。例如,有第一BWP的调度信息时继续工作在第一BWP或者有第二BWP的调度信息时切换到第二BWP。如此可以进一步实现根据流量模式等的BWP自适应切换。
且,在本公开实施例中,该定时信息也可以在UE在第二BWP时,即默认BWP时有BWP的调度信息时,切换到BWP的调度信息所指示调度的BWP,即切换到激活BWP。如此,本公开实施例也可以及时的由默认BWP切换到激活BWP进行业务传输等,能够降低业务传输等的时延。
如此本公开实施例可以在降低UE的功耗的前提下,兼顾延时的降低;并还能根据流量模式有效地进行BWP自适应切换。
在一些实施例中,定时信息,用于供UE在一个配置周期内使用第一BWP的指定时长内无预定传输时切换到第二BWP。
本公开实施例提供一种BWP切换方法,由基站执行,包括:发送定时指示信息,其中,定时指示信息,指示配置定时信息;其中,定时信息用于供UE在一个配置周期内根据定时信息指示的定时长确定BWP切换的相关操作。
示例性的,定时信息,用于供UE在一个配置周期内使用第一BWP的指定时长内无预定传输时切换到第二BWP;或者,用于供UE在一个配置周期内使用第一BWP的指定时长内有预定出传输时,切换到使用预定传输指示的第一BWP或者与第一BWP同类型的第三BWP,并重新确定指定时长的计时;第三BWP的带宽,大于第二BWP的带宽。
该配置周期可由基站确定。
例如,基站确定向UE发送N次BWP的调度信息;从第1次BWP的调度信息下发的时间至第N次BWP的调度信息下发的时间的差值为一个配置周期;其中,N为大于或等于1的整数。这里,基站向UE发送一次BWP的调度信息,则有一次业务达到UE。该一次业务可认为是一次预定传输。即每隔N次BWP的调度信息到达UE为一个配置周期。
又如,基站确定N次预定传输到达UE;从第1次预定传输到达UE的时间至第N次预定传输到达UE的时间的差值为一个配置周期;其中,N为大于或等于1的整数。即每隔N次预定传输到达UE为一个配置周期。
再如,基站可以确定预定时间间隔为一个配置周期。
如此,本公开实施例可以针对每个配置周期发送一个定时信息,以指示该配置周期内调度的BWP的指定时长。如此,一方面,可以灵活的调整UE在一个配置周期内切换到激活BWP的指定时长,另一方面,可以在对于一个配置周期内的BWP的切换只需发送一次定时指示信息,从而可以进一步节省UE的功耗。
该步骤S21中发送定时指示信息,包括以下之一:
发送携带定时指示信息的DCI;
发送携带定时指示信息的RRC信令。
本公开实施例提供一种BWP切换方法,由基站执行,可包括:发送携带定时指示信息的DCI,或者发送携带定时指示信息的RRC信令。
在一个实施例中,该DCI还可包括:BWP的调度信息。例如,基站向UE发送DCI,该DCI的第一预定比特位携带BWP的调度信息及该DCI的第二预定比特位携带定时指示信息;该BWP的调度信息指示调度的BWP;该定时指示信息指示配置的定时信息。这里,该定时信息可包括指定时长。
该第一预定比特位及第二预定比特位均可以是一个或个比特。该第一预定比特位及该第二预定比特位均可以是DCI中的某个预定字段;例如,该第一预定比特位可以是DCI的带宽部分指示(Bandwidth part indicator)字段,该第二预定比特位可以是DCI的定时器指示字段。
在另一个实施例中,可以通过第一DCI携带定时指示信息,及至少一个第二DCI携带BWP的调度信息。例如,基站向UE发送一个第一DCI,该第一DCI携带定时指示信息;基站向UE发送一个或多个第二DCI,其中,一个第二DCI携带一个BWP调度信息;该BWP的调度信息指示调度的BWP。
这里,该DCI可以是任意一种格式的DCI;例如可以是DCI 0、DCI 1、DCI2、DCI 1_1,或者DCI x等。
这里,该DCI中携带定时指示信息的预定比特位可以是DCI中任意预定比特位,或者可以是预留比特位,或者可以是携带BWP的调度信息的预定比特位之后的预定比特位。
这里,若该指定时长是针对一个配置周期内的调度的BWP的指定时长;则可以是以下至少之一的方式实现对该配置周期内调度的BWP的指定时长的配置:
方式一:基站可以在该配置周期的开始时刻前发送一个DCI,该DCI中携带定时指示信息。
方式二:基站可以在配置周期内的携带第一个BWP的调度信息的DCI中携带定时指示信息发送。例如,基站发送第一DCI,第一DCI中携带第一BWP的调度信息及指示定时信息;第一BWP的调度信息,指示配置周期内指示调度的第一个BWP。
方式三:基站可以在配置周期内携带的第一个BWP的调度信息的DCI及携带配置周期内其它至少一个BWP的调度信息的DCI中,携带定时指示信息发送。例如,基站发送第一DCI及至少一个第二DCI;其中,第一DCI中携带第一BWP的调度信息及定时指示信息,第一BWP的调度信息指示配置周期内指示调度的第一个BWP;第二DCI中携带第二BWP的调度信息及定时指示信息,第二BWP的调度信息指示配置周期内除指示调度的第一个BWP外的其它指示调度的BWP。
方式三:基站可以在配置周期内携带每个BWP的调度信息的DCI中携带定时指示信息发送。例如,基站在一个配置周期内发送N个DCI,其中,一个DCI中携带一个BWP的调度信息及定时指示信息;N为一个配置周期内BWP的调度信息到达UE的次数。
在本公开实施例中,可以通过DCI发送定时指示信息;则可以通过一个DCI实现基站下发DCI的原本的功能,例如实现BWP的调度,还能实现DCI中定时指示信息的下发的功能;即可以通过一个DCI实现两个功能。如此提高了DCI的利用率及降低信令的开销、即可以降低基站及UE的功耗等。若针对一个配置周期的BWP的指定时长的配置时,还可以通过一个DCI实现对整个配置周期内BWP的指定时长的配置,能够进一步降低基站及UE的功耗,实现节能。
在本公开实施例中,若通过RRC信令发送定时指示信息,也可以实现一个RRC信令起到两个功能的作用;可以提高RRC信令的利用率及降低信令的开销、即可以降低基站及UE的功耗。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图5所示,本公开实施例提供一种BWP切换方法,由基站执行,可包括:
步骤S51:基于历史的至少一个配置周期的BWP切换信息,确定指定时长;其中,BWP切换信息,包括:至少一次BWP的调度信息到达UE时UE切换到的BWP。
本公开的一些实施例中,指定时长为步骤S21中指定时长;配置周期为上述实施例中的配置周期。
例如,该指定时长可以针对UE使用的一个或多个BWP的指定时长,或者,也可以是针对UE在一个配置周期或者多个配置周期内使用的BWP的指定时长。这里,U使用的BWP可以是指第一BWP和/或第三BWP,或者与第一BWP和/或第三BWP同类型的其它BWP。
该步骤S51中基于历史的至少一个配置周期的BWP切换信息,确定指定时长,包括:
基于上一个配置周期的BWP切换信息,确定指定时长;
基于上上个配置周期的BWP切换信息,确定指定时长;
基于与当前配置周期邻近的预定数量的配置周期的BWP切换信息,确定指定时长;预定数量为 大于或等于1的数量。
本公开实施例提供一种BWP切换方法,由基站执行,可包括:基于上一个配置周期的BWP切换信息,确定指定时长;或者基于与当前配置周期邻近的预定数量的配置周期的BWP切换信息,确定指定时长。预定数量为大于或等于1的数量。
该BWP切换信息,包括一个配置周期内N次BWP的调度信息到达UE时UE切换到的BWP。
例如,若一个配置周期内,第1次至第N次BWP的调度信息依次到达UE时,UE依次切换到的BWP为:BWP 1、BWP 2、……、及BWP N;则该配置周期的BWP切换信息可标记为:
Figure PCTCN2021143935-appb-000001
这里,
Figure PCTCN2021143935-appb-000002
表示第N次BWP的调度信息到达UE时UE切换到的BWP为BWP N
又如,若基站给UE配置m个BWP;该m个BWP可分别标记为:BWP 1、BWP 2、……、及BWP m;则在第k个配置周期的BWP切换信息可标记为:
Figure PCTCN2021143935-appb-000003
其中i∈{1 2…m}。这里,
Figure PCTCN2021143935-appb-000004
表示第N次BWP的调度信息达到UE时UE切换到的BWP为BWP i。这里,k为大于0的整数。若该k为1,则第1个配置周期的BWP切换信息为
Figure PCTCN2021143935-appb-000005
该步骤S51,可以是:基于历史的一个配置周期的指定时长,确定下一个配置周期的指定时长。该步骤S51:可以是:基于历史的多个配置周期的指定时长的平均值,确定下一个配置周期的指定时长。
该步骤S51,可以是:基于历史的多个配置周期的指定时长与各配置周期的指定时长对应的权重系数,确定下一个配置周期的指定时长。与当前配置周期越邻近的历史的配置周期对应的权重系数越大;且各配置周期对应的权重系数之和等于1。
上述示例中,确定下一个配置周期的指定时长也可以是:确定UE使用的一个或多个BWP的指定时长,或者,UE在一个配置周期或者多个配置周期内使用的BWP的指定时长。
步骤S51,可以是:基于BWP切换信息及深度学习模型,确定指定时长。这里确定的指定时长可以是:确定UE使用的一个或多个BWP的指定时长,或者确定UE在一个配置周期或者多个配置周期内使用的BWP的指定时长,或者确定UE在下一个配置周期内使用的BWP的指定时长。
如此,在本公开实施例中,可以通过历史的至少一个配置周期内的BWP切换信息,即可以根据历史的一段时间内UE使用的激活BWP的情况确定指定时长;如此可以准确预估出UE所需使用的BWP的指定时长;从而也方便UE更新使用BWP的指定时长,可以更加使用流量模式等切换BWP。
如图6所示,本公开实施例提供一种BWP切换方法,由基站执行,可包括:
步骤S61:基于BWP切换信息及深度学习模型,确定指定时长。
在本公开的一些实施例中,BWP切换信息为步骤S51中BWP切换信息;指定时长为步骤S21或者步骤S51中指定时长。
该步骤S61,可以是:基于BWP切换信息及深度学习模型,确定UE使用至少一个BWP的指定时长,或者至少一个配置周期内使用BWP的指定时长。
该深度学习模型可以是任意一种可实现的深度学习模型;例如可以是强化学习模型等。该强化学习模型也可以是任意一种可实现的强化学习模型;例如可以是行动-评价算法模型。
该行动-评价算法模型,可包括:行动网络和评价网络。该行动网络可用于确定预定时长;该评价网络可用于确定出该预定时长的评价指标;该行动网络可基于预定时长的评价指标,确定指定时长。
例如,该步骤S61,可包括:
基于BWP切换信息及选择策略,确定预定时长;
基于BWP切换信息、预定时长及深度学习模型的评价网络,确定对预定时长的评价指标;
基于BWP切换信息、预定时长、评价指标及深度学习模型的行动网络,确定指定时长。
本公开实施例提供一种BWP切换方法,由基站执行,可包括:
步骤S61a:基于BWP切换信息及选择策略,确定预定时长;
步骤S61b:基于BWP切换信息、预定时长及深度学习模型的评价网络,确定对预定时长的评价指标;
步骤S61c:基于BWP切换信息、预定时长、评价指标及深度学习模型的行动网络,确定指定时长。
该步骤S61a:可以是:基于BWP切换信息及选择策略,计算预定时长。例如,若选择策略为:π θ(a k,s k)。该第k个配置周期的选择策略可为:
Figure PCTCN2021143935-appb-000006
其中,
Figure PCTCN2021143935-appb-000007
则可以基于该选择策略确定出预定时长为:T interval=μ(s k)。
步骤S61a:也可以是:将BWP切换信息输入行动网络,以获得预定时长;该行动网络为配置选择策略的行动网络。
本公开实施例提供一种BWP切换方法,由基站执行,可包括:基于BWP切换信息及选择策略,确定预定时长。
步骤S61b,可以是:
基于历史的一个配置周期内第二BWP的持续时长及预定时长的比值,确定奖励指标;
将BWP切换信息及奖励指标输入到评价网络,以获得对预定时长的评价指标。
该一个配置周期内第二BWP的持续时长是指:一个配置周期内UE切换在第二BWP的时长。该第二BWP是指默认BWP。
本公开实施例提供一种BWP切换方法,由基站执行,可包括:
步骤S61b1:基于历史的一个配置周期内第二BWP的持续时长及预定时长的比值,确定奖励指标;
步骤S61b2:将BWP切换信息及奖励指标输入到评价网络,以获得对预定时长的评价指标。
该步骤S61b1,可以是:基于第k个配置周期内第二BWP的持续时长及预定时长的比值,确定第k个配置周期的奖励指标。
示例性的,获取第k个配置周期内第二BWP的持续时长T default及预定时长T interval;基于T default及T interval比值计算出节能时间占比
Figure PCTCN2021143935-appb-000008
基于该节能时间占比,确定奖励指标R π(s k,a k)。该第k个配置周期的奖励指标可为:R k(s k,a k)。
该步骤S161b2,可以是:将BWP切换信息及奖励指标输入到评价网络的输入层,并将输入层的输出结果输入到评价网络的M层的隐藏层;将评价网络的隐藏层的输出结果输入到评价网络的输出层,以获得对预定时长的评价指标;其中,M为大于0的整数。
示例性的,如图7所示,评价网络包括一个输入层、M个隐藏层及一个输出层。以第k个配置周期对应的奖励指标为例。该一个输入层可标记为φ' i;输入层由N+1个神经网络组成,其输入为状态与奖励;该状态可为第k个配置周期的BWP切换信息
Figure PCTCN2021143935-appb-000009
该奖励为奖励指标R k(s k,a k);输入层的每个元素都与一个单独的神经元一对一连接,即N个神经元用于传输状态集s k中N个元素,以及1个神经元用于传输R k(s k,a k)。该隐藏层有M个层,可分别标记为φ' 1、φ' 2、……及φ' M;该M个隐藏层用于评价网络的输入与输出之间的映射关系。其中,第1个隐藏层φ' 1用来混合状态,即用来混合第k个配置周期的BWP切换信息;第1个隐藏层φ' 1的第l个神经元的输出为:
Figure PCTCN2021143935-appb-000010
ω' 1,l.j是输入层φ' i与第1个隐藏层φ' 1的第l个神经元之间连接的权重;x' j是输入层φ' i的第 j个神经元的输出;b' 1,l是第1个隐藏层φ' 1的第l个神经元的偏置。第2个隐藏层φ' 2是与第1个隐藏层φ' 1类似的方式,但第2个隐藏层是用于混合状态及奖励;其余隐藏层,如第3至第M个隐藏层φ' 3、……及φ' M以全连接的形式近似混合输入与输出之间的关系,即第i-1个隐藏层的输出为第i个隐藏层的输入,其中,i为大于3且小于或等于M的整数。该一个输出层可标记为φ' o;输出层使用线性整流单元(ReLU)作为激活函数,输出对预定时长的评价指标;例如,可通过状态值函数
Figure PCTCN2021143935-appb-000011
获得评价指标V π(s);其中,γ k为折现因子,R k(s k,a k)奖励指标,s o为给定的初始状态,及π(s k)是行动网络在状态 集s k下的选择策略。这里,V k(s)为第k个配置周期的对应的预定时长的评价指标。
该步骤S161b2,可以是:基于第k个配置周期对应的预定时长的评价指标、第k+1个配置周期对应的评价指标及奖励指标,确定预定时长的评价指标。该确定出的预定时长的评价指标可认为是第k+1个配置周期的评价指标。
示例性的,基于上述图7的实施例,获取预定时长的评价指标为:A π(s k,a k)=R π(s k,a k)+γV π(s k+1)-V π(s k);其中,R π(s k,a k)为奖励指标,γ为折现因子,V π(s k+1)为第k+1个配置周期对应的评价指标,V π(s k)为第k个配置周期对应的评价指标。这里,该A π(s k,a k)也可认为是时间差分误差。
步骤S61c,可以是:将BWP切换信息、预定时长、评价指标输入到行动网络的输入层,并将输入层的输出结果输入到行动网络的M层的隐藏层;将行动网络的隐藏层的输出结果输入到行动网络的输出层,以获得指定时长;其中,M为大于0的整数。
示例性的,如图8所示,评价网络包括一个输入层、M个隐藏层及一个输出层。该一个输入层可标记为φ' i;输入层由N+2个神经网络组成,其输入为状态、动作及时间差分误差;该状态可为第k个配置周期的BWP切换信息
Figure PCTCN2021143935-appb-000012
该动作为第k个配置周期的预定时长T interval;该时间差分误差可为第k个配置周期对应的预定时长的评价指标A π(s k,a k);输入层的每个元素都与一个单独的神经元一对一连接,即N个神经元用于传输状态集s k中N个元素、1个神经元用于传输T interval以及1个神经元用于传输A π(s k,a k)。该隐藏层有M个层,可分别标记为φ' 1、φ' 2、……及φ' M;该M个隐藏层用于评价网络的输入与输出之间的映射关系。其中,第1个隐藏层φ' 1用来混合状态,即用来混合第k个配置周期的BWP切换信息;第1个隐藏层φ' 1的第l个神经元的输出为:
Figure PCTCN2021143935-appb-000013
其中,ω' 1,l.j是输入层φ' i与第1个隐藏层φ' 1的第l个神经元之间连接的权重;x' j是输入层φ' i的第j个神经元的输出;b' 1,l是第1个隐藏层φ' 1的第l个神经元的偏置。第2个隐藏层φ' 2是与第1个隐藏层φ' 1类似的方式,但第2个隐藏层是用于混合状态、动作及时间差分误差;其余隐藏层,如第3至第M个隐藏层φ' 3、……及φ' M以全连接的形式近似混合输入与输出之间的关系,即第i-1个隐藏层的输出为第i个隐藏层的输入,其中,i为大于3且小于或等于M的整数。该一个输出层可标记为φ' o;输出层使用线性整流单元(ReLU)作为激活函数,输出指定时长;例如,可通过
Figure PCTCN2021143935-appb-000014
以获得指定时长T′ Timer;其中,
Figure PCTCN2021143935-appb-000015
为策略参数向量,
Figure PCTCN2021143935-appb-000016
为策略特征向量。该指定时长T′ Timer可为第k+1个配置周期的指定时长。
在一些实施例中,可以通过一次步骤S61a、S61b及S61c的操作,以获得指定时长。
在另一些实施例中,可以通过一次步骤S61a、及多次循环步骤S61b及S61c的操作,以获得指定时长。这里多次循环步骤S61b及S61c操作,包括:将p-1次S61b中确定出的评价指标、BWP切换信息及预定时长输入到第p-1次步骤S61c中行动网络,获得第p-1次的指定时长;并将第p-1次的指定时长作为第p次的预定时长、与BWP切换信息输入到第p次的S61b的评价网络中,以获得第p次的评价指标;如此循环,直到多次(例如P次)循环结束。这里,p为大于1且小于或等于P的整数;P为大于1的整数。这里P次循环次数可由基站确定。
在一些实施例中,上述行动网络可以是基于神经网络训练后的行动网络,上述评价网络可以是基于神经网络训练后的评价网络。
在本公开实施例中,可以通过强化学习等对至少一个配置周期的BWP切换信息,例如对上一个配置周期的BWP切换信息加强学习,以确定出UE在当前配置周期(或者下一次配置周期)使用BWP的指定时长。如此可实现基于流量模式的不断调增UE使用BWP的指定时长,得到准确的适应流量模式变化的使用BWP的指定时长;从而实现更加节能且准确的BWP切换的方式。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
以下一种BWP切换方法,是由UE执行的,与上述由基站执行的BWP切换方法的描述是类似的;且,对于由UE执行的BWP切换方法实施例中未披露的技术细节,请参照由基站执行的BWP切换方法示例的描述,在此不做详细描述说明。
如图9所示,本公开实施例提供一种BWP切换方法,由UE执行,包括:
步骤S91:接收定时指示信息;
步骤S92:基于定时指示信息,配置定时信息;
步骤S93:基于定时信息指示的指定时长,确定BWP切换的相关操作。
在本公开的一些实施例中,定时指示信息为步骤S21中定时指示信息;定时信息为步骤S21中定时信息;第一BWP、第二BWP、预定传输及指定时长分别为上述实施例中第一BWP、第二BWP、预定传输及指定时长。
该步骤S93,可包括:
基于定时信息,确定使用第一BWP的指定时长内无预定传输时切换到第二BWP,其中,第二BWP的带宽,小于第一BWP的带宽;
基于定时信息,确定使用第一BWP的指定时长内有预定传输时,使用预定传输指示的第一BWP或者与第一BWP的同类型的第三BWP,并重新确定指定时长的计时;第三BWP的带宽,大于第 二BWP的带宽。
本公开实施例提供一种BWP切换方法,由UE执行,可包括:
基于定时信息,确定使用第一BWP的指定时长内无预定传输时切换到第二BWP,其中,第二BWP的带宽,小于第一BWP的带宽;
基于定时信息,确定使用第一BWP的指定时长内有预定传输时,使用预定传输指示的第一BWP或者与第一BWP的同类型的第三BWP,并重新确定指定时长的计时;第三BWP的带宽,大于第二BWP的带宽。
该预定传输包括以下至少之一:
BWP的调度信息;
第一BWP的业务传输。
该BWP的调度信息包括以下至少之一:
第一BWP的调度信息;
第三BWP的调度信息,其中,第三BWP和第一BWP属于相同类型的BWP,且比第二BWP的带宽大。
本公开实施例提供一种BWP切换方法,由UE执行,可包括:基于定时信息,确定使用第一BWP的指定时长内有BWP的调度信息时切换到BWP的调度信息所指示调度的BWP,并重新确定指定时长的计时。
示例性的,UE基于定时信息,确定使用第一BWP的指定时长内有第一BWP的调度信息;则UE继续工作在第一BWP的调度信息指示调度的第一BWP,并重新确定第一BWP的指定时长的计时。
示例性的,UE基于定时信息,确定使用第一BWP的指定时长内有第三BWP的调度信息;则UE切换到第三BWP的调度信息指示调度的第三BWP,并重新确定第三BWP的指定时长的计时。
示例性的,UE基于定时信息,确定使用第一BWP的指定时长内有第一BWP的业务传输;则UE继续工作在第一BWP。
本公开实施例提供一种BWP切换方法,由UE执行,可包括:基于定时信息,确定使用第二BWP时有BWP的调度信息时,切换到BWP调度信息所指示调度的BWP,并开始指定时长的计时;或者基于定时信息,确定使用第二BWP时无预定传输时继续工作在第二BWP。
该步骤S91中接收定时指示信息,包括以下之一:
接收携带定时指示信息的DCI;
接收携带定时指示信息的RRC信令。
本公开实施例提供一种BWP切换方法,由UE执行,可包括:接收携带定时指示信息的DCI,或者接收携带定时指示信息的RRC信令。
以上实施方式,具体可以参考基站侧的表述,在此不再赘述。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也 可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
为了进一步解释本公开任意实施例,以下提供几个具体实施例。
示例一
如图10所示,本公开实施例提供一种BWP切换方法,由通信设备执行,通信设备包括:基站和UE;该方法可包括以下步骤:
这里,基站可为UE配置m-1个激活BWP及一个默认BWP;该m-1个BWP的标识信息(BWP ID)可分别为1、2、……及m-1;该一个默认BWP的标识信息为m;其中,m为大于1的整数。该激活BWP可为上述实施例的第一BWP和/或第三BWP;该默认BWP可为上述实施例的第二BWP。
步骤S101:基站向UE发送携带BWP的调度信息的DCI,其中,BWP的调度信息指示调度的激活BWP。
在一个可选实施例中,基站若接收到核心网设备发送的指示UE预定传输达到的通知信息,通过物理下行控制信息(Physical Downlink Control Channel,PDCCH)向UE发送DCI;其中,DCI携带BWP的调度信息。例如,基站发送DCI 1_1,DCI1_1的部分带宽指示字段携带BWP的调度信息,该BWP的调度信息指示调度的激活BWP。
步骤S102:UE基于DCI配置激活BWP;
在一个可选实施例中,UE若接收到携带BWP的调度信息的DCI,并基于BWP的调度信息指示调度的激活BWP,配置UE使用的激活BWP。
步骤S103:UE启动定时器(Timer);
在一个可选实施例中,UE启动定时器,从零开始计时。这里,若要重新启动定时器,则将定时器归零启动计时。
在一个可选实施例中,该定时器的定时时长为激活BWP的指定时长。
步骤S104:UE检测在定时器超时之前是否接收到DCI;若是,执行步骤S102;若否,执行步骤S105;
在一个可选实施例中,若UE检测在定时器超时之前是否接收到DCI,该DCI中携带BWP的调度信息,该BWP的调度信息指示调度的激活BWP;若是,执行步骤S102;若否,执行步骤S105。
步骤S105:UE切换到默认BWP。
在一个可选实施例中,UE在定时器超时后,切换到默认BWP。
示例二
如图11所示,本公开实施例提供一种BWP切换方法,由通信设备执行,通信设备包括:基站和UE;该方法可包括以下步骤:
步骤S111:基站若确定BWP的调度信息到达UE的次数达到N次,确定为一个配置周期;
在一个可选实施例中,基站启动定时器,从零开始计时,每N次BWP的调度信息到达UE,则确定为一个配置周期;该N为大于0的整数。
这里,基站向UE发送一次BWP的调度信息,即为有一次业务达到UE。
步骤S112:基站获取至少一个配置周期的BWP切换信息;
在一可选实施例中,基站从历史信息中获取上一个配置周期的BWP切换信息。例如该上一个配置周期为第k个配置周期;基站获取第k个配置周期的BWP切换信息为:
Figure PCTCN2021143935-appb-000017
其中,i∈{1 2…m}。
步骤S113:基站基于至少一个配置周期的BWP切换信息及强化学习模型,确定指定时长;
这里,该强化学习模型包括行动网络和评价网络。
在一个可选实施例中,该步骤S113,包括:
步骤S113a:基站基于选择策略,确定预定时长;该选择策略是针对BWP切换信息的选择策略。例如第k个配置周期的选择策略为
Figure PCTCN2021143935-appb-000018
基于该选择策略确定第k个配置周期的预定时长T interval=μ(s k)。
步骤S113b:基站基于评价网络预定时长进行评价,以获得评价指标。例如,获得更新后的第k+1个配置周期的评价指标为A π(s k,a k)=R π(s k,a k)+γV π(s k+1)-V π(s k)其中,R π(s k,a k)为奖励指标,γ为折现因子,V π(s k+1)为第k+1个配置周期对应的评价指标,V π(s k)为第k个配置周期对应的评价指标。
步骤S113c:基站基于评价指标及行动网络,对预定时长进行更新,以获得指定时长。例如,基站由步骤S113b获得的评价指标输入到行动网络,可基于
Figure PCTCN2021143935-appb-000019
获取到指定时长。该指定时长可作为UE在第k+2个配置周期内使用BWP的指定时长。
步骤S114:基站向UE发送DCI,其中,DCI携带指示指定时长的定时信息;其中,定时信息用于供UE更新使用激活BWP的指定时长。
在一个可选实施例中,基站向UE发送DCI 1_1,其中DCI 1_1的部分带宽指示字段携带BWP的调度信息及DCI1_1的定时器指示字段携带定时指示信息;其中,BWP的调度信息指示调度的激活BWP;定时指示信息携带指示指定时长的定时信息。UE若接收到DCI1_1,基于DCI 1_1的部分带宽指示字段携带的BWP的调度信息,切换到BWP的调度信息调度指示的激活BWP;以及基于DCI1_1的定时器指示字段携带的定时器指示信息,基于定时器指示信息携带的指定时长,更新激活BWP的指定时长。
这里,提供一种基于行动网络确定指定时长的方法;该方法可基于如图8所示的行动网络实现;该行动网络包括一个输入层、M个隐藏层及一个输出层。该方法可包括:
输入层:输入层可标记为φ' i;输入层由N+2个神经网络组成,其输入为状态、动作及时间差分 误差;该状态可为第k个配置周期的BWP切换信息
Figure PCTCN2021143935-appb-000020
该动作为第k个配置周期的预定时长T interval;该时间差分误差可为第k个配置周期对应的预定时长的评价指标A π(s k,a k)。输入层的每个元素都与一个单独的神经元一对一连接,即N个神经元用于传输状态集s k中N个元素、1个神经元用于传输T interval以及1个神经元用于传输A π(s k,a k)。
隐藏层:共有M个隐藏层,可分别标记为φ' 1、φ' 2、……及φ' M;该M个隐藏层用于评价网络的输入与输出之间的映射关系。
其中,第1个隐藏层φ' 1用来混合状态,即用来混合第k个配置周期的BWP切换信息;第1个隐藏层φ' 1的第l个神经元的输出为:
Figure PCTCN2021143935-appb-000021
其中,ω' 1,l.j是输入层φ' i与第1个隐藏层φ' 1的第l个神经元之间连接的权重;x' j是输入层φ' i的第j个神经元的输出;b' 1,l是第1个隐藏层φ' 1的第l个神经元的偏置。
第2个隐藏层φ' 2是与第1个隐藏层φ' 1类似的方式,但第2个隐藏层是用于混合状态、动作及时间差分误差;其余隐藏层,如第3至第M个隐藏层φ' 3、……及φ' M以全连接的形式近似混合输入与输出之间的关系,即第i-1个隐藏层的输出为第i个隐藏层的输入,其中,i为大于3且小于或等于M的整数。
输出层:输出层可标记为φ' o;输出层使用线性整流单元(ReLU)作为激活函数,输出指定时长;例如,可通过
Figure PCTCN2021143935-appb-000022
以获得指定时长T′ Timer;其中,
Figure PCTCN2021143935-appb-000023
为策略参数向量,
Figure PCTCN2021143935-appb-000024
为策略特征向量。
这里,提供一种基于评价网络确定评价指标的方法;该方法可基于如图7所示的行动网络实现;该行动网络包括一个输入层、M个隐藏层及一个输出层。该方法可包括:
输入层:输入层可标记为φ' i;输入层由N+1个神经网络组成,其输入为状态与奖励;该状态可为第k个配置周期的BWP切换信息
Figure PCTCN2021143935-appb-000025
该奖励为奖励指标R π(s k,a k);该奖励指标可以基于节能时间占比
Figure PCTCN2021143935-appb-000026
确定,其中,T default为一个配置周期内第二BWP的持续时长,及T interval为一个配置周期对应的预定时长。例如第k个配置周期对应的奖励指标为R k(s k,a k);输入层的每个元素都与一个单独的神经元一对一连接,即N个神经元用 于传输状态集s k中N个元素,以及1个神经元用于传输R k(s k,a k)。
隐藏层:共有M个层,可分别标记为φ' 1、φ' 2、……及φ' M;该M个隐藏层用于评价网络的输入与输出之间的映射关系。
其中,第1个隐藏层φ' 1用来混合状态,即用来混合第k个配置周期的BWP切换信息;第1个隐藏层φ' 1的第l个神经元的输出为:
Figure PCTCN2021143935-appb-000027
其中,ω' 1,l.j是输入层φ' i与第1个隐藏层φ' 1的第l个神经元之间连接的权重;x' j是输入层φ' i的第 j个神经元的输出;b' 1,l是第1个隐藏层φ' 1的第l个神经元的偏置。
第2个隐藏层φ' 2是与第1个隐藏层φ' 1类似的方式,但第2个隐藏层是用于混合状态及奖励;其余隐藏层,如第3至第M个隐藏层φ' 3、……及φ' M以全连接的形式近似混合输入与输出之间的关系,即第i-1个隐藏层的输出为第i个隐藏层的输入,其中,i为大于3且小于或等于M的整数。
输出层:输入层可标记为φ' o;输出层使用线性整流单元(ReLU)作为激活函数,输出对预定时长的评价指标;例如,可通过状态值函数
Figure PCTCN2021143935-appb-000028
获得评价指标V π(s);其中,γ k为折现因子,R k(s k,a k)奖励指标,s o为给定的初始状态,及π(s k)是行动网络在状态集s k下的选择策略。这里,V k(s)为第k个配置周期的对应的预定时长的评价指标。
获取预定时长的评价指标为:A π(s k,a k)=R π(s k,a k)+γV π(s k+1)-V π(s k);其中,R π(s k,a k)为奖励指标,γ为折现因子,V π(s k+1)为第k+1个配置周期对应的评价指标,V π(s k)为第k个配置周期对应的评价指标。这里,该A π(s k,a k)也可认为是时间差分误差。
示例三
如图12所示,本公开实施例提供一种BWP切换方法,由基站执行;该方法可包括以下步骤:
步骤S121:基站基于确定的预定时长,确定当前配置周期的BWP切换信息及上一个配置周期的节能时间占比;
这里,当前配置周期可认为是第k+1个配置周期,上一个配置周期可认为是第k个配置周期。
在一个可选实施例中,基站基于确定的预定时长,确定当前配置周期的BWP切换信息:s k+1;基站确定出节能时间占比
Figure PCTCN2021143935-appb-000029
该节能时间占比可作为行动网络的奖励指标R π(s k,a k)。
步骤S122:基站的评价网络利用上一个配置周期及当前配置周期的BWP切换信息,得到上一个配置周期及当前配置周期针对预定时长的评价指标;
在一个可选实施例中,基站的评价网络利用上一个配置周期及对应的奖励指标,确定第k个配 置周期的评价指标V π(s k);以及基于评价网络利用当前配置周期及对应的奖励指标,确定第k+1个配置周期的评价指标V π(s k+1)。
步骤S123:基于上一个配置周期、当前配置周期针对预定时长的评价指标及奖励指标,得到时间差分误差;
在一个可选实施例中,基站基于V π(s k)、V π(s k+1)、及R π(s k,a k),确定时间差分误差A π(s k,a k)=R π(s k,a k)+γV π(s k+1)-V π(s k)。这里,该时间差分误差为评价指标;V π(s k)可认为是上一个状态的状态值函数;V π(s k+1)可认为是当前状态的状态值函数。
步骤S124:基站存储当前配置周期的BWP切换信息、指定时长以及节能时间占空比;
步骤S125:基站的评价网络利用时间差分误差的平均值进行梯度更新,以获得训练后的时间差分误差;
在一个可选实施例中,基站的评价网络利用时间差分误差的平均值作为损失函数进行随机梯度更新,可表示为以下公式:ω k+1←ω k+βA π(s k,a k);其中,β表示学习率;A π(s k,a k)为训练后的时间差分误差。
步骤S126:基站的行动网络利用评价网络得到的训练后的时间差分误差,对选择策略进行梯度更新,以获训练后的选择策略。
在一个可选实施例中,基站的行动网络基于评价网络得到的训练后的时间差分误差,对选择策略进行梯度更新,可表示为以下公式:
Figure PCTCN2021143935-appb-000030
其中,η表示学习率,π θ(s k,a k)为训练后的选择策略。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图13所示,提供一种BWP切换装置,应用于基站,包括:
第一发送模块51,被配置为发送定时指示信息,其中,定时指示信息,指示配置定时信息;其中,定时信息,用于供UE根据定时信息指示的定时时长确定BWP切换的相关操作。
本公开实施例提供一种BWP切换装置,应用于基站,可包括:第一发送模块51,被配置为发送定时指示信息,其中,定时指示信息,指示配置定时信息;其中,定时信息,使用第一BWP的指定时长内无预定传输时切换到第二BWP;其中,第二BWP的带宽,小于第一BWP的带宽。
本公开实施例提供一种BWP切换装置,应用于基站,可包括:第一发送模块51,被配置为发送定时指示信息,其中,定时指示信息,指示配置定时信息;其中,定时信息,使用第一BWP的指定时长内有预定传输时,使用预定传输指示的第一BWP或者与第一BWP同类型的第三BWP,并重新确定指定时长的计时;第三BWP的带宽,大于第二BWP的带宽。
在一些实施例中,预定传输包括以下至少之一:
BWP的调度信息;
第一BWP的业务传输。
在一些实施例中,BWP的调度信息包括以下至少之一:
第一BWP的调度信息;
第三BWP的调度信息,其中,第三BWP和第一BWP属于相同类型的BWP,且比第二BWP的带宽大。
在一些实施例中,定时信息,用于供UE使用第一BWP的指定时长内有BWP的调度信息时切换到BWP的调度信息所指示调度的BWP,并重新确定指定时长的计时。
本公开实施例提供一种BWP切换装置,应用于基站,包括:第一发送模块51,被配置为发送定时指示信息,其中,定时指示信息,指示配置定时信息;其中,定时信息,用于供UE使用第一BWP的指定时长有BWP的调度信息时切换到BWP的调度信息所指示调度的BWP,并重新确定指定时长的计时。
在一些实施例中,定时信息,用于供UE使用第一BWP的指定时长内有第一BWP的调度信息时继续工作在第一BWP,并重新确定指定时长的计时。
本公开实施例提供一种BWP切换装置,应用于基站,包括:第一发送模块51,被配置为发送定时指示信息,其中,定时指示信息,指示配置定时信息;其中,定时信息,用于供UE使用第一BWP的指定时长内有第一BWP的调度信息时继续工作在第一BWP,并重新确定指定时长的计时。
本公开实施例提供一种BWP切换装置,应用于基站,包括:第一发送模块51,被配置为发送携带定时指示信息的DCI。
本公开实施例提供一种BWP切换装置,应用于基站,包括:第一发送模块51,被配置为发送携带定时指示信息的RRC信令。
本公开实施例提供一种BWP切换装置,应用于基站,包括:第一确定模块,被配置为基于历史的至少一个配置周期的BWP切换信息,确定指定时长;其中,BWP切换信息,包括:至少一次BWP的调度信息到达UE时UE切换到的BWP。
本公开实施例提供一种BWP切换装置,应用于基站,包括:第一确定模块,被配置为基于上一个配置周期的BWP切换信息,确定指定时长。
本公开实施例提供一种BWP切换装置,应用于基站,包括:第一确定模块,被配置为基于BWP切换信息及深度学习模型,确定指定时长。
本公开实施例提供一种BWP切换装置,应用于基站,包括:
第一确定模块,被配置为基于BWP切换信息及选择策略,确定预定时长;
第一确定模块,被配置为基于BWP切换信息、预定时长及深度学习模型的评价网络,确定对预定时长的评价指标;
第一确定模块,还被配置为基于BWP切换信息、预定时长、评价指标及深度学习模型的行动网 络,确定指定时长。
本公开实施例提供一种BWP切换装置,应用于基站,包括:将BWP切换信息输入到被配置有选择策略的行动网络,确定预定时长。
本公开实施例提供一种BWP切换装置,应用于基站,包括:
第一确定模块,被配置为基于历史的一个配置周期内第二BWP的持续时长及预定时长的比值,确定奖励指标;
第一确定模块,被配置为将BWP切换信息及奖励指标输入到评价网络,以获得对预定时长的评价指标。
本公开实施例提供一种BWP切换装置,应用于基站,包括:第一确定模块,被配置为将BWP切换信息、预定时长、及评价指标输入到行动网络,以获得指定时长。
如图14所示,本公开实施例提供一种BWP切换装置,应用于UE,包括:
第二接收模块61,被配置为接收定时指示信息;
处理模块62,被配置为基于定时指示信息,配置定时信息;
第二确定模块63,被配置为基于定时信息指示的指定时长,确定BWP切换的相关操作。
本公开实施例提供一种BWP切换装置,应用于UE,可包括:第二确定模块63,被配置为基于所述定时信息,确定所述使用第一BWP的所述指定时长内无预定传输时切换到第二BWP,其中,所述第二BWP的带宽,小于所述第一BWP的带宽。
本公开实施例提供一种BWP切换装置,应用于UE,可包括:第二确定模块63,被配置为基于所述定时信息,确定使用所述第一BWP的所述指定时长内有预定传输时,使用所述预定传输指示的第一BWP或者与所述第一BWP的同类型的第三BWP,并重新确定所述指定时长的计时;所述第三BWP的带宽,大于所述第二BWP的带宽。
在一些实施例中,预定传输包括以下至少之一:
BWP的调度信息;
第一BWP的业务传输。
在一些实施例中,BWP的调度信息包括以下至少之一:
第一BWP的调度信息;
第三BWP的调度信息,其中,第三BWP和第一BWP属于相同类型的BWP,且比第二BWP的带宽大。
本公开实施例提供一种BWP切换装置,应用于UE,包括:第二确定模块63,被配置为基于定时信息,确定使用第一BWP的指定时长内有BWP的调度信息时,切换到BWP的调度信息所指示调度的BWP,并重新确定指定时长的计时。
本公开实施例提供一种BWP切换装置,应用于UE,包括:第二确定模块63,被配置为基于定时信息,确定使用第二BWP时有BWP的调度信息时切换到BWP调度信息所指示的BWP,并开始指定时长的计时。
本公开实施例提供一种BWP切换装置,应用于UE,包括:第二确定模块63,被配置为基于定时信息,确定使用第二BWP时无预定传输时继续工作在第二BWP。
本公开实施例提供一种BWP切换装置,应用于UE,包括:第二接收模块61,被配置为接收携带定时指示信息的DCI。
本公开实施例提供一种BWP切换装置,应用于UE,包括:第二接收模块61,被配置为接收携带定时指示信息的RRC信令。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的装置,可以被单独执行,也可以与本公开实施例中一些装置或相关技术中的一些装置一起被执行。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供一种通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现本公开任意实施例的BWP切换方法。
在一个实施例中,通信设备可以为基站或者UE。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在用户设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2、5、6、9至图12所示的方法的至少其中之一。
本公开实施例还提供一种计算机存储介质,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的BWP切换方法。例如,如图2、5、6、9至图12所示的方法的至少其中之一。
关于上述实施例中的装置或者存储介质,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图15是根据一示例性实施例示出的一种用户设备800的框图。例如,用户设备800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图15,用户设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制用户设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上 述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在用户设备800的操作。这些数据的示例包括用于在用户设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为用户设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为用户设备800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述用户设备800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当用户设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当用户设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为用户设备800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为用户设备800的显示器和小键盘,传感器组件814还可以检测用户设备800或用户设备800一个组件的位置改变,用户与用户设备800接触的存在或不存在,用户设备800方位或加速/减速和用户设备800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于用户设备800和其他设备之间有线或无线方式的通信。用户设备800 可以接入基于通信标准的无线网络,如WiFi,4G或5G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,用户设备800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由用户设备800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图16所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图16,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (13)

  1. 一种带宽部分BWP切换方法,其中,由基站执行,包括:
    发送定时指示信息,其中,所述定时指示信息,指示配置定时信息;其中,所述定时信息,用于供用户设备UE根据所述定时信息指示的指定时长确定BWP切换的相关操作。
  2. 根据权利要求1所述的方法,其中,所述方法包括:
    基于历史的至少一个配置周期的BWP切换信息,确定所述指定时长;其中,所述BWP切换信息,包括:至少一次BWP的调度信息到达所述UE时所述UE切换到的BWP。
  3. 根据权利要求2所述的方法,其中,所述基于历史的至少一个配置周期的BWP切换信息,确定所述指定时长,包括:
    基于所述BWP切换信息及深度学习模型,确定所述指定时长。
  4. 根据权利要求3所述的方法,其中,所述基于所述BWP切换信息及深度学习模型,确定所述指定时长,包括:
    基于所述BWP切换信息及选择策略,确定预定时长;
    基于所述BWP切换信息、所述预定时长及所述深度学习模型的评价网络,确定对所述预定时长的评价指标;
    基于所述BWP切换信息、所述预定时长、所述评价指标及所述深度学习模型的行动网络,确定所述指定时长。
  5. 根据权利要求1所述的方法,其中,所述根据所述定时信息指示的指定时长确定BWP切换的相关操作,包括以下之一:
    使用第一BWP的指定时长内无预定传输时切换到第二BWP;其中,所述第二BWP的带宽,小于所述第一BWP的带宽;
    使用第一BWP的所述指定时长内有所述预定传输时,使用所述预定传输指示的所述第一BWP或者与所述第一BWP同类型的第三BWP,并重新确定所述指定时长的计时;所述第三BWP的带宽,大于所述第二BWP的带宽。
  6. 根据权利要求1所述的方法,其中,所述发送定时指示信息,包括以下之一:
    发送携带所述定时指示信息的下行控制信息DCI;
    发送携带所述定时指示信息的RRC信令。
  7. 一种带宽部分BWP切换方法,其中,由用户设备UE执行,包括:
    接收定时指示信息;
    基于所述定时指示信息,配置定时信息;
    基于所述定时信息指示的指定时长,确定BWP切换的相关操作。
  8. 根据权利要求7所述的方法,其中,所述基于所述定时信息指示的指定时长,确定BWP切换的相关操作,包括以下之一:
    基于所述定时信息,确定所述使用第一BWP的所述指定时长内无预定传输时切换到第二BWP, 其中,所述第二BWP的带宽,小于所述第一BWP的带宽;
    基于所述定时信息,确定使用所述第一BWP的所述指定时长内有所述预定传输时,使用所述预定传输指示的第一BWP或者与所述第一BWP的同类型的第三BWP,并重新确定所述指定时长的计时;所述第三BWP的带宽,大于所述第二BWP的带宽。
  9. 根据权利要求1所述的方法,其中,所述接收定时指示信息,包括以下之一:
    接收携带所述定时指示信息的下行控制信息DCI;
    接收携带所述定时指示信息的RRC信令。
  10. 一种带宽部分BWP切换装置,其中,应用于基站,包括:
    第一发送模块,被配置为发送定时指示信息,其中,所述定时指示信息,指示配置定时信息;其中,所述定时信息,用于供用户设备UE根据所述定时信息指示的指定时长确定BWP切换的相关操作。
  11. 一种带宽部分BWP切换装置,其中,应用于用户设备UE,包括:
    第二接收模块,被配置为接收定时指示信息;
    处理模块,被配置为基于所述定时指示信息,配置定时信息;
    第二确定模块,被配置为基于所述定时信息指示的指定时长,确定BWP切换的相关操作。
  12. 一种通信设备,其中,所述通信设备,包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器被配置为:用于运行所述可执行指令时,实现权利要求1至6、或者权利要求7至9任一项所述的带宽部分BWP切换方法。
  13. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现权利要求1至6、或权利要求7至9任一项所述的带宽部分BWP方法。
PCT/CN2021/143935 2021-12-31 2021-12-31 Bwp切换方法、装置、通信设备及存储介质 WO2023123462A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180004822.5A CN116686355A (zh) 2021-12-31 2021-12-31 Bwp切换方法、装置、通信设备及存储介质
PCT/CN2021/143935 WO2023123462A1 (zh) 2021-12-31 2021-12-31 Bwp切换方法、装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143935 WO2023123462A1 (zh) 2021-12-31 2021-12-31 Bwp切换方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023123462A1 true WO2023123462A1 (zh) 2023-07-06

Family

ID=86997176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143935 WO2023123462A1 (zh) 2021-12-31 2021-12-31 Bwp切换方法、装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN116686355A (zh)
WO (1) WO2023123462A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886804A (zh) * 2018-06-26 2018-11-23 北京小米移动软件有限公司 Bwp切换方法、装置及存储介质
CN109804662A (zh) * 2019-01-08 2019-05-24 北京小米移动软件有限公司 带宽部分切换的方法及装置
CN109803422A (zh) * 2017-11-17 2019-05-24 展讯通信(上海)有限公司 一种资源激活的方法及相关设备
CN111432478A (zh) * 2019-01-10 2020-07-17 电信科学技术研究院有限公司 一种bwp切换方法、终端及网络侧设备
CN111587600A (zh) * 2018-01-12 2020-08-25 上海诺基亚贝尔股份有限公司 用于在多带宽部分上通信的方法、设备和计算机可读存储介质
CN112351496A (zh) * 2019-08-09 2021-02-09 华为技术有限公司 一种通信方法及装置
CN112584506A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 一种确定生效时间的方法及装置
US20210234764A1 (en) * 2018-06-04 2021-07-29 Datang Mobile Communications Equipment Co.,Ltd Method and apparatus for configuring transmission bandwidth, and device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803422A (zh) * 2017-11-17 2019-05-24 展讯通信(上海)有限公司 一种资源激活的方法及相关设备
CN111587600A (zh) * 2018-01-12 2020-08-25 上海诺基亚贝尔股份有限公司 用于在多带宽部分上通信的方法、设备和计算机可读存储介质
US20210234764A1 (en) * 2018-06-04 2021-07-29 Datang Mobile Communications Equipment Co.,Ltd Method and apparatus for configuring transmission bandwidth, and device
CN108886804A (zh) * 2018-06-26 2018-11-23 北京小米移动软件有限公司 Bwp切换方法、装置及存储介质
CN109804662A (zh) * 2019-01-08 2019-05-24 北京小米移动软件有限公司 带宽部分切换的方法及装置
CN111432478A (zh) * 2019-01-10 2020-07-17 电信科学技术研究院有限公司 一种bwp切换方法、终端及网络侧设备
CN112351496A (zh) * 2019-08-09 2021-02-09 华为技术有限公司 一种通信方法及装置
CN112584506A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 一种确定生效时间的方法及装置

Also Published As

Publication number Publication date
CN116686355A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2022000188A1 (zh) 用户设备辅助信息的上报方法及装置、用户设备、存储介质
WO2021243618A1 (zh) 一种资源调度的方法、装置、通信设备及存储介质
WO2021007824A1 (zh) 唤醒信号处理、信息下发方法及装置、通信设备及介质
WO2021207892A1 (zh) 监听信道的方法、装置、用户设备及存储介质
WO2021196133A1 (zh) Rrc状态改变的方法、装置、通信设备及存储介质
WO2021168664A1 (zh) 通信方法、装置及计算机存储介质
WO2021030974A1 (zh) 寻呼配置方法、装置、通信设备及存储介质
WO2021243600A1 (zh) 数据传输处理方法、装置、用户设备及存储介质
WO2020237446A1 (zh) 监听方法、信令下发方法及装置、通信设备及存储
WO2020258103A1 (zh) 监听方法、指示下发方法及装置、通信设备及存储
WO2021012130A1 (zh) 监听处理、策略下发方法及装置、通信设备及存储
WO2021007789A1 (zh) 信息处理方法、装置及计算机存储介质
WO2021114050A1 (zh) 非连续接收drx的处理方法、装置及计算机存储介质
WO2023245576A1 (zh) Ai模型确定方法、装置、通信设备及存储介质
WO2021196216A1 (zh) 寻呼处理方法、装置、用户设备、基站及存储介质
WO2022021033A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2021114049A1 (zh) 非连续接收的处理方法及装置
WO2023123462A1 (zh) Bwp切换方法、装置、通信设备及存储介质
WO2023050350A1 (zh) Cfr的确定方法、装置、通信设备及存储介质
WO2023060490A1 (zh) 能力信息的上报方法、装置、通信设备及存储介质
WO2022147662A1 (zh) 测量间隙调度方法及装置、通信设备及存储介质
WO2021227081A1 (zh) 转移业务的方法、装置、通信设备及存储介质
WO2023050203A1 (zh) 非连续接收模式确定方法、装置、通信设备和存储介质
WO2021109002A1 (zh) 信息处理方法、装置、基站、用户设备及存储介质
WO2022116013A1 (zh) 非连续接收参数的配置方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180004822.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969807

Country of ref document: EP

Kind code of ref document: A1