WO2022116013A1 - 非连续接收参数的配置方法、装置、通信设备及存储介质 - Google Patents

非连续接收参数的配置方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2022116013A1
WO2022116013A1 PCT/CN2020/133171 CN2020133171W WO2022116013A1 WO 2022116013 A1 WO2022116013 A1 WO 2022116013A1 CN 2020133171 W CN2020133171 W CN 2020133171W WO 2022116013 A1 WO2022116013 A1 WO 2022116013A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
discontinuous reception
parameter
terminal
characteristic data
Prior art date
Application number
PCT/CN2020/133171
Other languages
English (en)
French (fr)
Inventor
牟勤
洪伟
赵中原
王靖壹
贾超
Original Assignee
北京小米移动软件有限公司
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司, 北京邮电大学 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/133171 priority Critical patent/WO2022116013A1/zh
Priority to CN202080003799.3A priority patent/CN114846854B/zh
Priority to US18/255,532 priority patent/US20230422343A1/en
Publication of WO2022116013A1 publication Critical patent/WO2022116013A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of wireless communication but is not limited to the technical field of wireless communication, and in particular, relates to a method, apparatus, communication device and storage medium for configuring discontinuous reception (DRX) parameters.
  • DRX discontinuous reception
  • the power consumption of an electronic device directly affects the battery life of the electronic device for network communication. Therefore, the power consumption of electronic equipment is defined as one of the key technical performance indicators of network communication. Since the New Radio (NR, New Radio) system supports high-speed data transmission, burst data transmission can be completed in a very short time. An effective way to save energy is for electronic devices to access the network in an energy-saving mode. In this manner, unless the network notifies the electronic device to access the network, the electronic device will stay in the energy saving mode, which is beneficial to the energy saving of the electronic device.
  • NR New Radio
  • a discontinuous reception (DRX, Discontinuous Reception) mode can be used to make the electronic device work in the energy-saving mode.
  • Embodiments of the present disclosure disclose a method, apparatus, communication device, and storage medium for configuring discontinuous reception (DRX) parameters.
  • DRX discontinuous reception
  • a method for configuring discontinuous reception (DRX) parameters is provided, wherein, applied to a base station, the method includes:
  • the first discontinuous reception (DRX) transmission characteristic data configure discontinuous reception (DRX) parameters of the terminal; wherein, the first discontinuous reception (DRX) transmission characteristic data is the terminal at a historical moment Discontinuous reception (DRX) transmission characteristic data for discontinuous reception (DRX) transmission.
  • the performing discontinuous reception (DRX) parameter configuration of the terminal includes:
  • the discontinuous reception (DRX) parameter of the terminal In response to that the discontinuous reception (DRX) parameter of the terminal is not configured at the current moment, configure the first discontinuous reception (DRX) parameter as the discontinuous reception (DRX) parameter of the terminal; wherein the first discontinuous reception (DRX) parameter is Discontinuous reception (DRX) parameters are determined based on the first discontinuous reception (DRX) transmission characteristic data;
  • discontinuous reception (DRX) parameter of the terminal being configured as a second discontinuous reception (DRX) parameter at the current moment
  • DRX discontinuous reception
  • performing a discontinuous reception (DRX) parameter of the terminal according to a matching result between the first discontinuous reception (DRX) parameter and the second discontinuous reception (DRX) parameter configuration including:
  • the terminal's discontinuous reception (DRX) parameter is not reconfigured.
  • the method includes:
  • the trained neural network model uses the first discontinuous reception (DRX) transmission feature A neural network model for predicting service types trained with data; wherein, the second discontinuous reception (DRX) transmission characteristic data is discontinuous reception (DRX) transmission in which the terminal performs discontinuous reception (DRX) transmission at the current moment characteristic data;
  • the first discontinuous reception (DRX) parameter is determined according to the predicted traffic type.
  • the determining the first discontinuous reception (DRX) parameter according to the predicted service type includes:
  • the first discontinuous reception (DRX) parameter is determined from a plurality of predetermined discontinuous reception (DRX) parameters; wherein the power consumption thresholds of different service types are different ; the predetermined discontinuous reception (DRX) parameters are discontinuous reception (DRX) parameters for discontinuous reception (DRX) transmission at historical moments.
  • the determining the first discontinuous reception (DRX) parameter from a plurality of predetermined discontinuous reception (DRX) parameters according to the power consumption threshold corresponding to the predicted service type includes:
  • the first non-continuous reception (DRX) parameter is determined from a plurality of predetermined discontinuous reception (DRX) parameters according to at least the power consumption threshold and the mapping relationship between the power consumption threshold and the predetermined discontinuous reception (DRX) parameter. Continuous reception (DRX) parameters.
  • the discontinuous reception (DRX) transmission characteristic data includes: discontinuous reception (DRX) transmission characteristic data obtained from an operation maintenance management (OAM) network element.
  • OAM operation maintenance management
  • the discontinuous reception (DRX) transmission characteristic data includes at least one of the following: data of traffic performance, data of channel transmission performance, and data of energy consumption.
  • an apparatus for configuring discontinuous reception (DRX) parameters wherein, when applied to a base station, the apparatus includes a configuration module, wherein,
  • the configuration module is configured to: configure discontinuous reception (DRX) parameters of the terminal according to the first discontinuous reception (DRX) transmission characteristic data; wherein, the first discontinuous reception (DRX) transmission characteristic
  • the data is discontinuous reception (DRX) transmission characteristic data for the terminal to perform discontinuous reception (DRX) transmission at historical moments.
  • the configuration module is also configured to:
  • the discontinuous reception (DRX) parameter of the terminal In response to that the discontinuous reception (DRX) parameter of the terminal is not configured at the current moment, configure the first discontinuous reception (DRX) parameter as the discontinuous reception (DRX) parameter of the terminal; wherein the first discontinuous reception (DRX) parameter is Discontinuous reception (DRX) parameters are determined based on the first discontinuous reception (DRX) transmission characteristic data;
  • discontinuous reception (DRX) parameter of the terminal being configured as a second discontinuous reception (DRX) parameter at the current moment
  • DRX discontinuous reception
  • the configuration module is further configured to:
  • the terminal's discontinuous reception (DRX) parameter is not reconfigured.
  • the apparatus further includes a determining module, wherein the determining module is configured to:
  • the trained neural network model uses the first discontinuous reception (DRX) transmission feature A neural network model for predicting service types trained with data; wherein, the second discontinuous reception (DRX) transmission characteristic data is discontinuous reception (DRX) transmission in which the terminal performs discontinuous reception (DRX) transmission at the current moment characteristic data;
  • the first discontinuous reception (DRX) parameter is determined according to the predicted traffic type.
  • the determining module is further configured to:
  • the first discontinuous reception (DRX) parameter is determined from a plurality of predetermined discontinuous reception (DRX) parameters; wherein the power consumption thresholds of different service types are different ; the predetermined discontinuous reception (DRX) parameters are discontinuous reception (DRX) parameters for discontinuous reception (DRX) transmission at historical moments.
  • the determining module is further configured to:
  • the first non-continuous reception (DRX) parameter is determined from a plurality of predetermined discontinuous reception (DRX) parameters according to at least the power consumption threshold and the mapping relationship between the power consumption threshold and the predetermined discontinuous reception (DRX) parameter. Continuous reception (DRX) parameters.
  • the configuration module is further configured to: the discontinuous reception (DRX) transmission characteristic data includes: discontinuous reception (DRX) transmission characteristic data obtained from an operation maintenance management (OAM) network element .
  • OAM operation maintenance management
  • the configuration module is further configured to: the discontinuous reception (DRX) transmission characteristic data includes at least one of the following: data of traffic performance, data of channel transmission performance, and data of energy consumption.
  • DRX discontinuous reception
  • a communication device comprising:
  • a memory for storing the processor-executable instructions
  • the processor is configured to: when executing the executable instructions, implement the method described in any embodiment of the present disclosure.
  • a computer storage medium stores a computer-executable program, and when the executable program is executed by a processor, implements the method described in any embodiment of the present disclosure.
  • the DRX parameter configuration of the terminal is performed according to the first discontinuous reception (DRX) transmission characteristic data; wherein, the first discontinuous reception (DRX) transmission characteristic data is
  • the terminal performs discontinuous reception (DRX) transmission characteristic data of discontinuous reception (DRX) transmission at historical moments.
  • the terminal may perform discontinuous reception (DRX) parameter configuration of the terminal according to the first discontinuous reception (DRX) transmission characteristic data, since the first discontinuous reception (DRX) transmission characteristic data is different
  • the discontinuous reception (DRX) parameters of the terminal configured based on the first discontinuous reception (DRX) transmission characteristic data can be more suitable for the terminal in different discontinuous reception (DRX) parameters.
  • DRX) transmission scenario data transmission so that the terminal can better meet the power consumption requirements in different discontinuous reception (DRX) transmission scenarios, prolong the battery life of the terminal, and improve user experience.
  • FIG. 1 is a schematic structural diagram of a wireless communication system.
  • Fig. 2 is a schematic diagram showing a discontinuous reception (DRX) cycle according to an exemplary embodiment.
  • Fig. 3 is a schematic flowchart of a method for configuring discontinuous reception (DRX) parameters according to an exemplary embodiment.
  • FIG. 4 is a schematic flowchart of a base station acquiring discontinuous reception (DRX) transmission characteristic data from an operation maintenance management (OAM) network element according to an exemplary embodiment.
  • DRX discontinuous reception
  • OAM operation maintenance management
  • Fig. 5 is a schematic flowchart of a method for configuring discontinuous reception (DRX) parameters according to an exemplary embodiment.
  • Fig. 6 is a schematic flowchart of a method for configuring discontinuous reception (DRX) parameters according to an exemplary embodiment.
  • Fig. 7a is a schematic flowchart of a method for configuring discontinuous reception (DRX) parameters according to an exemplary embodiment.
  • Fig. 7b is a schematic diagram of a wireless communication system according to an exemplary embodiment.
  • FIG. 8 is a schematic flowchart of a method for configuring discontinuous reception (DRX) parameters according to an exemplary embodiment.
  • Fig. 9 is a schematic flowchart of a method for configuring discontinuous reception (DRX) parameters according to an exemplary embodiment.
  • Fig. 10 is a schematic flowchart of a method for configuring discontinuous reception (DRX) parameters according to an exemplary embodiment.
  • FIG. 11 is a schematic flowchart of a method for configuring discontinuous reception (DRX) parameters according to an exemplary embodiment.
  • Fig. 12 is a schematic flowchart of a method for configuring discontinuous reception (DRX) parameters according to an exemplary embodiment.
  • Fig. 13 is a schematic diagram of an apparatus for configuring discontinuous reception (DRX) parameters according to an exemplary embodiment.
  • FIG. 14 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • Fig. 15 is a block diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the terms “greater than” or “less than” are used herein when characterizing the relationship of size. However, those skilled in the art can understand that the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of "less than or equal to”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several user equipments 110 and several base stations 120 .
  • the user equipment 110 may be a device that provides voice and/or data connectivity to the user.
  • User equipment 110 may communicate with one or more core networks via a Radio Access Network (RAN), and user equipment 110 may be IoT user equipment such as sensor devices, mobile phones (or "cellular" phones) ) and a computer with IoT user equipment, for example, may be stationary, portable, pocket-sized, hand-held, computer-built or vehicle-mounted.
  • RAN Radio Access Network
  • IoT user equipment such as sensor devices, mobile phones (or "cellular" phones)
  • a computer with IoT user equipment for example, may be stationary, portable, pocket-sized, hand-held, computer-built or vehicle-mounted.
  • station Ses, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile station
  • remote station remote station
  • access terminal remote user equipment
  • the user equipment 110 may also be a device of an unmanned aerial vehicle.
  • the user equipment 110 may also be an in-vehicle device, for example, a trip computer with a wireless communication function, or a wireless user equipment connected to an external trip computer.
  • the user equipment 110 may also be a roadside device, for example, may be a street light, a signal light, or other roadside devices with a wireless communication function.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication (the 4th generation mobile communication, 4G) system, also known as a long term evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as New Radio System or 5G NR System.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the base station 120 may be an evolved base station (eNB) used in the 4G system.
  • the base station 120 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 120 and the user equipment 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the user equipments 110 .
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle-to-everything (V2X) communication etc. scene.
  • the above-mentioned user equipment may be regarded as the terminal equipment of the following embodiments.
  • the above wireless communication system may further include a network management device 130 .
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 130 is not limited in this embodiment of the present disclosure.
  • DRX discontinuous reception
  • a discontinuous reception (DRX) cycle includes an active period and a sleep period.
  • a wake-up signal is introduced in the radio resource control (RRC, Radio Resource Control) connected state, and the wake-up signal (WUS) can indicate whether the terminal is Monitoring of the Physical Downlink Control Channel (PDCCH) is required.
  • RRC Radio Resource Control
  • PDCCH Physical Downlink Control Channel
  • the wake-up signal instructs the terminal to sleep in the next discontinuous reception (DRX) cycle. Otherwise, the terminal monitors the physical downlink control channel (PDCCH) in the next active period of discontinuous reception (DRX).
  • PDCCH physical downlink control channel
  • the base station may dynamically adjust discontinuous reception (DRX) parameters configured for the terminal based on specific parameters.
  • the specific parameters may be wireless communication quality, amount of data to be transmitted, time delay requirements, and the like.
  • the base station may configure a plurality of different discontinuous reception (DRX) parameters for the terminal.
  • DRX discontinuous reception
  • the base station may select one discontinuous reception (DRX) parameter from a plurality of different discontinuous reception (DRX) parameters to perform discontinuous reception (DRX) parameter configuration of the terminal.
  • DRX discontinuous reception
  • the base station selects a discontinuous reception (DRX) parameter from a plurality of discontinuous reception (DRX) parameters based on data traffic, mobility, energy consumption, etc. to configure the discontinuous reception (DRX) parameters.
  • DRX discontinuous reception
  • the terminal when selecting the discontinuous reception (DRX) parameter, since the base station needs to use the auxiliary information of the terminal, the terminal needs to report some auxiliary information in real time, for example, the terminal needs to report the discontinuous reception (DRX) recommended by the terminal in real time. ) parameter configuration information, traffic characteristic information and mobility information, etc. Since the transmission of the above auxiliary information requires periodic communication between the terminal and the base station, this will increase signaling overhead. Secondly, there is a delay in the communication between the terminal and the base station, which causes the base station to be unable to obtain real-time auxiliary information in time, and to make decisions that conform to the timely scenario.
  • DRX discontinuous reception
  • the terminal has limited computing capability, and cannot accurately calculate and recommend suitable discontinuous reception (DRX) parameters.
  • the auxiliary information sent by the terminal to the base station may involve data privacy, which may bring security risks.
  • this embodiment provides a method for configuring discontinuous reception (DRX) parameters, wherein, when applied to a base station, the method includes:
  • Step 31 Perform discontinuous reception (DRX) parameter configuration of the terminal according to the first discontinuous reception (DRX) transmission characteristic data; wherein, the first discontinuous reception (DRX) transmission characteristic data is for the terminal to perform discontinuous reception (DRX) at historical moments.
  • Discontinuous reception (DRX) transmission characteristic data for reception (DRX) transmission is for the terminal to perform discontinuous reception (DRX) at historical moments.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a roadside unit (RSU, Road Side Unit), a smart home terminal, an industrial sensing device, and/or a medical device, and the like.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a roadside unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensing device, and/or a medical device, and the like.
  • the base station is an interface device for the terminal to access the network.
  • the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a base station of a fifth generation mobile communication (5G) network, or other evolved base station.
  • 3G third generation mobile communication
  • 4G fourth generation mobile communication
  • 5G fifth generation mobile communication
  • discontinuous reception (DRX) transmission may be data transmission according to configured discontinuous reception (DRX) parameters.
  • the data transmission may be that the terminal receives or sends data.
  • the discontinuous reception (DRX) parameters may include at least: a discontinuous reception (DRX) period.
  • the discontinuous reception (DRX) parameters further include: configuration parameters of the inactive timer and/or configuration parameters of the power saving signal, and the like.
  • a discontinuous reception (DRX) period includes an active period and a sleep period.
  • the terminal when in the active period of the discontinuous reception (DRX) cycle, the terminal can receive and/or transmit data; when in the dormant period of the discontinuous reception (DRX) cycle, the terminal cannot receive data and/or send.
  • the antenna and/or the transceiver of the terminal are in an activated state, and can receive and/or transmit uplink and downlink data.
  • the power consumption of the terminal operating in the active period of the discontinuous reception (DRX) cycle is greater than the power consumption of the terminal operating in the dormant period of the discontinuous reception (DRX) cycle.
  • the data transmission based on the discontinuous reception (DRX) cycle can effectively reduce the power consumption of the terminal.
  • the duration of the active period of the discontinuous reception (DRX) cycle may be determined according to the power consumption requirement of the terminal.
  • the duration of the active period of the discontinuous reception (DRX) cycle may be less than the duration threshold.
  • the duration of the activation period of the discontinuous reception (DRX) cycle may be greater than the duration threshold. In this way, the duration of the active period of the discontinuous reception (DRX) cycle can be adapted to the required power consumption of the terminal.
  • a wake-up signal (WUS, Wake Up Signal) is introduced in the radio resource control (RRC) connected state, and the wake-up signal (WUS) can indicate whether the terminal is Monitoring of the Physical Downlink Control Channel (PDCCH) is required.
  • RRC radio resource control
  • PDCCH Physical Downlink Control Channel
  • the terminal if no downlink data is sent, the terminal is instructed to perform sleep in the next discontinuous reception (DRX) period; otherwise, the physical downlink control channel (PDCCH) continues to be performed in the next active period of discontinuous reception (DRX) monitoring.
  • DRX discontinuous reception
  • PDCCH physical downlink control channel
  • the base station periodically acquires discontinuous reception (DRX) transmission data.
  • DRX discontinuous reception
  • the data transmitted by discontinuous reception (DRX) includes data of at least one of the following that the terminal is associated with the discontinuous reception (DRX) transmission process: historical data of service traffic, historical data of transmission conditions, user buffering Historical data of zone capacity and historical data of discontinuous reception (DRX) parameters.
  • the historical data of service traffic includes: data such as traffic, time information, duration information and sending rate of a data stream transmission received by the base station of the data stream sent by the network side to the terminal.
  • the historical data of the transmission conditions includes data such as the transmission rate, delay, and congestion of the downlink channel from the base station to the terminal.
  • the historical data of discontinuous reception (DRX) parameters includes: discontinuous reception (DRX) cycle information, discontinuous reception (DRX) on-timer information, and discontinuous reception (DRX) inactivity timer information etc. data.
  • the historical data of the buffer capacity of the user is data of the remaining capacity of the buffer area of the terminal at the historical moment.
  • the discontinuous reception (DRX) transmission feature data may be feature data obtained after feature extraction is performed on the discontinuous reception (DRX) transmission data by using a feature extraction algorithm.
  • the discontinuous reception (DRX) transmission characteristic data may be characteristic data obtained by performing characteristic extraction on the discontinuous reception (DRX) transmission data by using a principal component analysis (PCA Principal Component Analysis) algorithm.
  • PCA Principal Component Analysis Principal Component Analysis
  • the base station may acquire discontinuous reception (DRX) transmission characteristic data from an operation maintenance management (OAM, Operation Administration and Maintenance) network element.
  • OAM Operation Administration and Maintenance
  • the steps for the base station to obtain discontinuous reception (DRX) transmission characteristic data from the operation maintenance management (OAM) network element including:
  • Step a The base station sends a data subscription request to an operation maintenance management (OAM) network element.
  • OAM operation maintenance management
  • the base station may encapsulate the discontinuous reception (DRX) transmission characteristic data information that needs to be acquired into a message, and send it to an operation maintenance management (OAM) network element through a data subscription request.
  • DRX discontinuous reception
  • OAM operation maintenance management
  • Step b After receiving the data subscription request from the base station, the operation maintenance management (OAM) network element determines whether there is discontinuous reception (DRX) transmission characteristic data requested by the base station, and sends notification information to the base station whether the data is successfully subscribed.
  • OAM operation maintenance management
  • Step c In response to the success of subscribing the data, the operation maintenance management (OAM) network element obtains the storage address of the data file subscribed by the base station.
  • the data file includes discontinuous reception (DRX) transmission characteristic data required by the base station.
  • DRX discontinuous reception
  • Step d the operation maintenance management (OAM) network element sends a notification that the data file is ready to the base station and sends the storage address of the data file to the base station.
  • OAM operation maintenance management
  • Step e the base station acquires the data file from the storage area indicated by the storage address.
  • the base station may acquire the data file from the storage area by a file transfer method based on a file transfer protocol (FTP, File Transfer Protocol) or a secure file transfer protocol (SFTP, Secure File Transfer Protocol).
  • FTP file transfer protocol
  • SFTP secure file transfer protocol
  • the first discontinuous reception (DRX) transmission characteristic data may be discontinuous reception (DRX) transmission characteristic data that the terminal performs discontinuous reception (DRX) transmission within a predetermined historical period.
  • the base station when subscribing to discontinuous reception (DRX) transmission characteristic data, the base station may carry the information of the predetermined historical period in the data subscription request. In this way, the operation maintenance management (OAM) network element may determine that the data requested by the base station to subscribe is the first discontinuous reception (DRX) transmission characteristic data for the terminal to perform discontinuous reception (DRX) transmission within a predetermined historical period.
  • OAM operation maintenance management
  • the first discontinuous reception (DRX) transmission characteristic data of the discontinuous reception (DRX) transmission in the historical period may be used to predict the discontinuous reception (DRX) parameters to obtain the first discontinuous reception (DRX) DRX) parameter, and use the first discontinuous reception (DRX) parameter to configure the discontinuous reception (DRX) parameter of the terminal.
  • a neural network model may be used to predict discontinuous reception (DRX) parameters to obtain the first discontinuous reception (DRX) parameters.
  • the neural network model is a network model trained by using the first discontinuous reception (DRX) transmission characteristic data for discontinuous reception (DRX) transmission in a historical period.
  • the first discontinuous reception (DRX) parameter can be obtained after inputting the second discontinuous reception (DRX) transmission characteristic data of the terminal performing discontinuous reception (DRX) transmission at the current moment into the neural network model.
  • the terminal does not need to recommend the first discontinuous reception (DRX) parameter to the base station, but performs prediction based on the neural network model to obtain the first discontinuous reception (DRX) parameter.
  • the time delay of data interaction between the base station and the terminal can be reduced, and the signaling overhead can also be reduced. ) parameter brings the delay.
  • the duration of the history period may be set to be greater than the set duration; when the error requirement of the first discontinuous reception (DRX) parameter is greater than the error threshold , you can set the duration of the historical period to be less than the set duration. In this way, the set duration of the historical period can be adaptively adjusted according to the error of the first discontinuous reception (DRX) parameter.
  • the first discontinuous reception (DRX) parameters may be configured as discontinuous reception (DRX) parameters of the terminal.
  • the first discontinuous reception (DRX) parameters may be reconfigured as discontinuous reception (DRX) parameters of the terminal.
  • configuring discontinuous reception (DRX) parameters for the terminal includes sending a first discontinuous reception (DRX) parameter to the terminal.
  • the base station re-establishes a radio resource control (RRC) connection with the terminal.
  • the base station sends the first discontinuous reception (DRX) parameter to the terminal through radio resource control (RRC) signaling.
  • the terminal configures the first discontinuous reception (DRX) parameter carried in the radio resource control (RRC) signaling as the discontinuous reception (DRX) parameter of the terminal.
  • the radio resource control (RRC) connection is released.
  • the terminal may configure discontinuous reception (DRX) parameters of the terminal according to the first discontinuous reception (DRX) transmission characteristic data, because different first discontinuous reception (DRX) transmission characteristic data correspond to Different discontinuous reception (DRX) transmission scenarios, thus, the discontinuous reception (DRX) parameters of the terminal configured based on the first discontinuous reception (DRX) transmission characteristic data can be more suitable for the terminal to transmit in different discontinuous reception (DRX)
  • the data transmission in the scenario enables the terminal to better meet the power consumption requirements in different discontinuous reception (DRX) transmission scenarios, prolong the battery life of the terminal, and improve the user experience.
  • this embodiment provides a method for configuring discontinuous reception (DRX) parameters, wherein the method includes:
  • Step 51 In response to that the discontinuous reception (DRX) parameter of the terminal is not configured at the current moment, configure the first discontinuous reception (DRX) parameter as the discontinuous reception (DRX) parameter of the terminal; wherein the first discontinuous reception (DRX) parameter is (DRX) parameters are determined based on the first discontinuous reception (DRX) transmission characteristic data;
  • Step 52 In response to the discontinuous reception (DRX) parameter of the terminal being configured as the second discontinuous reception (DRX) parameter at the current moment, according to the first discontinuous reception (DRX) parameter and the second discontinuous reception (DRX) parameter The matching result between them is used to configure discontinuous reception (DRX) parameters of the terminal.
  • it may be a neural network model trained based on the first discontinuous reception (DRX) transmission characteristic data of the terminal performing discontinuous reception (DRX) transmission at historical moments, to predict the discontinuous reception (DRX) for the terminal
  • the first discontinuous reception (DRX) parameter of the parameter configuration may be a neural network model trained based on the first discontinuous reception (DRX) transmission characteristic data of the terminal performing discontinuous reception (DRX) transmission at historical moments, to predict the discontinuous reception (DRX) for the terminal The first discontinuous reception (DRX) parameter of the parameter configuration.
  • the second discontinuous reception (DRX) characteristic data currently undergoing discontinuous reception (DRX) transmission may be input into a neural network model trained based on the first discontinuous reception (DRX) transmission characteristic data, and the The first discontinuous reception (DRX) parameter configured in the discontinuous reception (DRX) parameter of the terminal.
  • the terminal when the discontinuous reception (DRX) parameter of the terminal is not configured at the current moment, the terminal does not perform discontinuous reception (DRX) transmission.
  • the terminal in response to the terminal needing to perform discontinuous reception (DRX) transmission, the terminal sends a request message for configuring discontinuous reception (DRX) parameters to the base station.
  • the base station In response to the base station receiving the discontinuous reception (DRX) parameter request message, the base station configures discontinuous reception (DRX) parameters of the terminal.
  • configuring the discontinuous reception (DRX) parameter of the terminal includes sending the first discontinuous reception (DRX) parameter to the terminal.
  • the base station re-establishes a radio resource control (RRC) connection with the terminal.
  • the base station sends the first discontinuous reception (DRX) parameter to the terminal through radio resource control (RRC) signaling.
  • the terminal configures the first discontinuous reception (DRX) parameter carried in the radio resource control (RRC) signaling as the discontinuous reception (DRX) parameter of the terminal.
  • the radio resource control (RRC) connection is released.
  • the first discontinuous reception (DRX) parameter may be a set including a plurality of discontinuous reception (DRX) parameters.
  • the second discontinuous reception (DRX) parameter may also be a set including a plurality of discontinuous reception (DRX) parameters.
  • the types of discontinuous reception (DRX) parameters included in the first discontinuous reception (DRX) parameter and the second discontinuous reception (DRX) parameter are the same.
  • the first discontinuous reception (DRX) parameter when the first discontinuous reception (DRX) parameter is not equal to a discontinuous reception (DRX) parameter corresponding to any one of the second discontinuous reception (DRX) parameters, the first discontinuous reception (DRX) DRX) parameters do not match the second discontinuous reception (DRX) parameters.
  • the first discontinuous reception (DRX) parameter when the first discontinuous reception (DRX) parameter is equal to the discontinuous reception (DRX) parameters corresponding to all categories of the second discontinuous reception (DRX) parameters, the first discontinuous The parameters match the second discontinuous reception (DRX) parameters.
  • the first discontinuous reception (DRX) parameter when the difference between the first discontinuous reception (DRX) parameter and the discontinuous reception (DRX) parameter corresponding to any of the second discontinuous reception (DRX) parameters is not within a threshold range , the first discontinuous reception (DRX) parameter does not match the second discontinuous reception (DRX) parameter.
  • the first discontinuous reception (DRX) parameter matches the second discontinuous reception (DRX) parameter.
  • the matching result between the first discontinuous reception (DRX) parameter and the second discontinuous reception (DRX) parameter may be that the first discontinuous reception (DRX) parameter is greater than, less than or equal to the second discontinuous reception (DRX) parameter Receive (DRX) parameters.
  • the first discontinuous reception (DRX) parameter and the Two discontinuous reception (DRX) parameters do not match.
  • the first discontinuous reception (DRX) parameter and the second discontinuous reception (DRX) parameter are equal to the second discontinuous reception (DRX) parameter in response to the first discontinuous reception (DRX) parameter and the second discontinuous reception (DRX) parameter being equal to the second discontinuous reception (DRX) parameter.
  • Discontinuous reception (DRX) parameter matching is used to determine whether the first discontinuous reception (DRX) parameter and the second discontinuous reception (DRX) parameter is equal to the second discontinuous reception (DRX) parameter.
  • the matching result between the first discontinuous reception (DRX) parameter and the second discontinuous reception (DRX) parameter may be the first discontinuous reception (DRX) parameter and the second discontinuous reception (DRX)
  • the difference between the parameters is either within or outside the threshold range.
  • the first discontinuous reception (DRX) parameter and the second discontinuous reception (DRX) parameter are Continuous reception (DRX) parameter matching.
  • the first discontinuous reception (DRX) parameter and the second discontinuous reception (DRX) parameter are Continuous reception (DRX) parameters do not match.
  • this embodiment provides a method for configuring discontinuous reception (DRX) parameters, wherein the method includes:
  • Step 61 In response to the mismatch between the first discontinuous reception (DRX) parameter and the second discontinuous reception (DRX) parameter, reconfigure the first discontinuous reception (DRX) parameter as the discontinuous reception (DRX) parameter of the terminal;
  • Step 62 In response to the first discontinuous reception (DRX) parameter matching the second discontinuous reception (DRX) parameter, do not reconfigure the discontinuous reception (DRX) parameter of the terminal.
  • the first discontinuous reception (DRX) parameter in response to the difference between the first discontinuous reception (DRX) parameter and the second discontinuous reception (DRX) parameter being outside a threshold range, the first discontinuous reception (DRX) parameter is reconfigured to DRX parameters of the terminal. In response to the difference between the first discontinuous reception (DRX) parameter and the second discontinuous reception (DRX) parameter being within the threshold range, the terminal's discontinuous reception (DRX) parameter is not reconfigured.
  • the first discontinuous reception (DRX) parameter is reconfigured as the terminal's discontinuous reception (DRX) in response to the first discontinuous reception (DRX) parameter not being equal to the second discontinuous reception (DRX) parameter parameter.
  • the terminal's discontinuous reception (DRX) parameter is not reconfigured.
  • reconfiguring discontinuous reception (DRX) parameters of the terminal includes sending first discontinuous reception (DRX) parameters to the terminal.
  • the base station re-establishes a radio resource control (RRC) connection with the terminal.
  • the base station sends the first discontinuous reception (DRX) parameter to the terminal through radio resource control (RRC) signaling.
  • the terminal configures the first discontinuous reception (DRX) parameter carried in the radio resource control (RRC) signaling as the discontinuous reception (DRX) parameter of the terminal.
  • the terminal After the terminal receives discontinuous reception (DRX) parameters, it releases the radio resource control (RRC) connection.
  • this embodiment provides a method for configuring discontinuous reception (DRX) parameters, wherein the method includes:
  • Step 71 Input the second discontinuous reception (DRX) transmission characteristic data into the trained neural network model to determine the predicted service type; wherein, the trained neural network model is to utilize the first discontinuous reception (DRX) transmission characteristic data The trained neural network model for predicting service types; wherein, the second discontinuous reception (DRX) transmission characteristic data is the discontinuous reception (DRX) transmission characteristic data that the terminal performs discontinuous reception (DRX) transmission at the current moment;
  • Step 72 Determine a first discontinuous reception (DRX) parameter according to the predicted service type.
  • the neural network model may be set in the base station, or may be set in other communication nodes outside the base station.
  • the neural network model acquires first discontinuous reception (DRX) transmission characteristic data of the terminal performing discontinuous reception (DRX) transmission at historical moments.
  • DRX discontinuous reception
  • the first discontinuous reception (DRX) transmission characteristic data is obtained by the base station from an operation maintenance management (OAM) network element.
  • OAM operation maintenance management
  • the communication node needs to acquire discontinuous reception (DRX) transmission characteristic data from the base station.
  • DRX discontinuous reception
  • the neural network model is set in a server other than the base station, and the wireless communication system includes a terminal, a base station, an operation maintenance management (OAM) network element and a server provided with the neural network model.
  • OAM operation maintenance management
  • the neural network model classifies the discontinuous reception (DRX) transmission characteristic data.
  • the method for classifying the first discontinuous reception (DRX) transmission characteristic data includes: after the neural network model receives the first discontinuous reception (DRX) transmission characteristic data, according to a random sampling method, from A% of the first discontinuous reception (DRX) transmission feature data is randomly selected from the total data set as a training set, and (100-a)% of the first discontinuous reception (DRX) transmission feature data is selected as a test set. For example, if a is 80, the data is divided into a training set and a test set according to the ratio of 4:1, which are respectively recorded as the training set D train and the test set D test .
  • the structure of the neural network model includes: an input layer, an output layer, a hidden layer, a connection mode between each layer, and the like.
  • the number of input layer nodes may be determined according to the number of types of first discontinuous reception (DRX) transmission characteristic data of the sample, for example, N number of input layer nodes may be set. Among them, N is a positive integer greater than or equal to 1.
  • each input layer node corresponds to one type of first discontinuous reception (DRX) transmission feature data in the neural network model used for neural network model training.
  • DRX discontinuous reception
  • the number of hidden layers can be set to L layers, and L can be determined according to the size of N, wherein the number of nodes of each hidden layer can be set to M, and the size of M is based on the generalization ability of the neural network model Sure.
  • L and M are positive integers greater than or equal to 1.
  • the output layer is used for outputting results, and the number of nodes in the output layer can be set to S.
  • S is a positive integer greater than or equal to 1.
  • the output result may be the probability that the predicted service is the target service type service.
  • the hidden layer and the input layer are fully connected, and the hidden layer and the hidden layer are also fully connected, and the activation function used is the relu function.
  • the hidden layer and the output layer are fully connected, and the activation function used is a softmax function.
  • the data value in the process of model training, may be transferred in a forward transfer manner, and the gradient value may be transferred in a reverse transfer manner.
  • the number of learning times may be set to T times, and the setting of the number of learning times is determined according to the training speed of the neural network model and the training accuracy of the neural network model.
  • T is a positive integer greater than 1.
  • the learning rate can be set as ⁇ and ⁇ , and the selection of the learning rate is determined according to the generalization ability of the neural network model.
  • ⁇ and ⁇ are natural numbers.
  • the loss function selects a cross-entropy function.
  • the method of weight initialization selects random weight initialization.
  • the batch size of the data is set to B, and the value of B is determined according to the size of the input data set.
  • B is a positive integer greater than 1.
  • the neural network model uses the training set D train and the test set D test as samples, and performs the training of the neural network model according to the predetermined structure and hyperparameters of the neural network model.
  • the training set D train in each round of training, is first used to train the neural network model, and then the test set D test is used to detect the results of the trained neural network model.
  • the training is stopped, and the trained neural network model is obtained. If the error of the trained neural network is greater than the error threshold, the next round of training is continued until all rounds of training are completed.
  • the model training and calculation module first uses the training set D train , adopts the gradient descent method, calculates the training loss and gradient of the parameter ⁇ t , and updates the parameter ⁇ t :
  • represents the model parameter set to be updated
  • ⁇ and ⁇ represent the learning rate
  • L represents the loss function
  • t represents the iteration round
  • ⁇ t represents the model parameter set of the t-th iteration
  • D train represents the training set
  • D test represents the test set.
  • the model parameters ⁇ t+1 are obtained by updating:
  • this embodiment provides a method for configuring discontinuous reception (DRX) parameters, wherein the method includes:
  • Step 81 Determine a first discontinuous reception (DRX) parameter from a plurality of predetermined discontinuous reception (DRX) parameters according to the power consumption threshold corresponding to the predicted service type; wherein, the power consumption thresholds of different service types are different;
  • the predetermined discontinuous reception (DRX) parameter is a discontinuous reception (DRX) parameter for performing discontinuous reception (DRX) transmission at a historical time.
  • the predetermined discontinuous reception (DRX) parameter is a discontinuous reception (DRX) parameter for the terminal to perform discontinuous reception (DRX) transmission within a historical period.
  • DRX discontinuous reception
  • the deviation between the first discontinuous reception (DRX) parameter and the discontinuous reception (DRX) parameter used by the terminal is small, and the terminal can better adapt to the first discontinuous reception (DRX) parameter.
  • the predetermined discontinuous reception (DRX) parameter is a discontinuous reception (DRX) parameter for performing discontinuous reception (DRX) transmission within a historical period.
  • the predetermined discontinuous reception (DRX) parameters may be obtained from an operation maintenance management (OAM) network element.
  • OAM operation maintenance management
  • the subscription request may carry the information of the implementation time period.
  • the first discontinuous reception (DRX) with the power consumption threshold corresponding to the predicted service type may be determined according to the mapping relationship between multiple predetermined discontinuous reception (DRX) parameters and the corresponding power consumption )parameter.
  • this embodiment provides a method for configuring discontinuous reception (DRX) parameters, wherein the method includes:
  • Step 91 Determine the first discontinuous reception (DRX) from a plurality of predetermined discontinuous reception (DRX) parameters according to at least the power consumption threshold and the mapping relationship between the power consumption threshold and the predetermined discontinuous reception (DRX) parameters.
  • DRX DRX
  • each discontinuous reception (DRX) parameter corresponds to a power consumption threshold.
  • the first discontinuous reception (DRX) parameter may be determined from the plurality of predetermined discontinuous reception (DRX) parameters according to the mapping relationship between the plurality of predetermined discontinuous reception (DRX) parameters and the corresponding power consumption thresholds .
  • the power consumption generated by the data transmission is less than the power consumption threshold.
  • the base station pre-stores a mapping relationship between the power consumption threshold and a predetermined discontinuous reception (DRX) parameter.
  • DRX discontinuous reception
  • discontinuous reception (DRX) transmission characteristic data includes: discontinuous reception (DRX) transmission characteristic data obtained from an operation maintenance management (OAM) network element.
  • OAM operation maintenance management
  • discontinuous reception (DRX) transmission characteristic data includes at least one of the following: data of traffic performance, data of channel transmission performance, and data of energy consumption.
  • this embodiment provides a method for configuring discontinuous reception (DRX) parameters, including:
  • Step 101 The base station presets a set S including multiple discontinuous reception (DRX) parameters that can be selected by the terminal.
  • DRX discontinuous reception
  • Step 102 The base station acquires, from an operation maintenance management (OAM) network element, first discontinuous reception (DRX) transmission characteristic data of the terminal performing discontinuous reception (DRX) transmission within a first period of time.
  • OAM operation maintenance management
  • Step 103 the base station trains a neural network model for predicting a service type based on the first discontinuous reception (DRX) transmission characteristic data of the terminal performing discontinuous reception (DRX) transmission in the first time period.
  • DRX discontinuous reception
  • DRX discontinuous reception
  • Step 104 Input the discontinuous reception (DRX) transmission characteristic data of the discontinuous reception (DRX) transmission currently performed by the terminal into the trained neural network model for predicting the service type to obtain the predicted service type.
  • Step 105 Select a discontinuous reception (DRX) parameter from the set S as the first discontinuous reception (DRX) parameter according to the predicted service type.
  • DRX discontinuous reception
  • Step 106 Compare the first discontinuous reception (DRX) parameter with the discontinuous reception (DRX) parameter currently used by the terminal, in response to the first discontinuous reception (DRX) parameter and the discontinuous reception (DRX) parameter currently used by the terminal.
  • the parameters are not the same, and the first discontinuous reception (DRX) parameter is configured as the terminal's (DRX) parameter.
  • Step 107 The terminal performs discontinuous reception (DRX) transmission of the terminal according to the first discontinuous reception (DRX) parameter.
  • DRX discontinuous reception
  • this embodiment provides a method for configuring discontinuous reception (DRX) parameters, including:
  • Step 111 Number each group of discontinuous reception (DRX) parameters in the set S.
  • Step 112 Based on the prediction result of the service type, traverse each group of discontinuous reception (DRX) parameters in the set S according to the number, and calculate the function of the terminal performing discontinuous reception (DRX) transmission under the configuration of the discontinuous reception (DRX) parameters. consumption.
  • DRX discontinuous reception
  • Step 113 The base station determines a first discontinuous reception (DRX) parameter that meets the power consumption requirement according to the mapping relationship between each group of discontinuous reception (DRX) parameters and the corresponding power consumption.
  • meeting the power consumption requirement may be that the corresponding power consumption is less than the power consumption threshold.
  • this embodiment provides a method for configuring discontinuous reception (DRX) parameters, including:
  • Step 121 The base station acquires the first discontinuous reception (DRX) parameter, and compares it with the second discontinuous reception (DRX) parameter currently used by the terminal.
  • DRX discontinuous reception
  • Step 122 If the first discontinuous reception (DRX) parameter is different from the second discontinuous reception (DRX) parameter, the base station re-establishes a radio resource control (RRC) connection with the terminal.
  • RRC radio resource control
  • Step 123 The base station sends the first discontinuous reception (DRX) parameter to the terminal through radio resource control (RRC) signaling.
  • RRC radio resource control
  • Step 124 The terminal configures the first discontinuous reception (DRX) parameter carried in the radio resource control (RRC) signaling as the discontinuous reception (DRX) parameter of the terminal.
  • RRC radio resource control
  • Step 125 After the terminal completes the configuration of discontinuous reception (DRX) parameters, the terminal releases the radio resource control (RRC) connection.
  • RRC radio resource control
  • an embodiment of the present disclosure provides an apparatus for configuring discontinuous reception (DRX) parameters, wherein, when applied to a base station, the apparatus includes a configuration module 131, wherein,
  • the configuration module 131 is configured to: perform discontinuous reception (DRX) parameter configuration of the terminal according to the first discontinuous reception (DRX) transmission characteristic data; wherein, the first discontinuous reception (DRX) transmission characteristic data is for the terminal in the Discontinuous reception (DRX) transmission characteristic data for discontinuous reception (DRX) transmission at historical time.
  • DRX discontinuous reception
  • the configuration module 131 is also configured to:
  • the first discontinuous reception (DRX) parameter of the terminal is configured as the discontinuous reception (DRX) parameter of the terminal; wherein the first discontinuous reception (DRX) the parameters are determined based on the first discontinuous reception (DRX) transmission characteristic data;
  • discontinuous reception (DRX) parameter of the terminal being configured as the second discontinuous reception (DRX) parameter at the current moment, according to the difference between the first discontinuous reception (DRX) parameter and the second discontinuous reception (DRX) parameter According to the matching result, configure discontinuous reception (DRX) parameters of the terminal.
  • the configuration module 131 is further configured to:
  • the terminal's discontinuous reception (DRX) parameter is not reconfigured.
  • the apparatus further includes a determination module 132, wherein the determination module 132 is configured to:
  • the trained neural network model is the prediction trained by using the first discontinuous reception (DRX) transmission characteristic data The neural network model of the service type; wherein, the second discontinuous reception (DRX) transmission characteristic data is the discontinuous reception (DRX) transmission characteristic data that the terminal performs discontinuous reception (DRX) transmission at the current moment;
  • a first discontinuous reception (DRX) parameter is determined according to the predicted traffic type.
  • the determining module 132 is further configured to:
  • the first discontinuous reception (DRX) parameter is determined from a plurality of predetermined discontinuous reception (DRX) parameters; wherein, the power consumption thresholds of different service types are different;
  • the continuous reception (DRX) parameter is a discontinuous reception (DRX) parameter for performing discontinuous reception (DRX) transmission at a historical time.
  • the determining module 132 is further configured to:
  • the configuration module 131 is further configured to: discontinuous reception (DRX) transmission characteristic data, including: discontinuous reception (DRX) transmission characteristic data obtained from an operation maintenance management (OAM) network element.
  • DRX discontinuous reception
  • OAM operation maintenance management
  • the configuration module 131 is further configured to: discontinuous reception (DRX) transmission characteristic data, including at least one of the following: data of traffic performance, data of channel transmission performance, and data of energy consumption.
  • DRX discontinuous reception
  • Embodiments of the present disclosure provide a communication device, the communication device includes:
  • memory for storing processor-executable instructions
  • the processor is configured to: when executing the executable instructions, implement the method applied to any embodiment of the present disclosure.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to memorize and store information on the communication device after the power is turned off.
  • the processor can be connected to the memory through a bus or the like, and is used to read the executable program stored on the memory.
  • An embodiment of the present disclosure further provides a computer storage medium, wherein the computer storage medium stores a computer-executable program, and when the executable program is executed by a processor, the method of any embodiment of the present disclosure is implemented.
  • an embodiment of the present disclosure provides a structure of a terminal.
  • the present embodiment provides a terminal 800, which may specifically be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc. .
  • the terminal 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and communication component 816.
  • the processing component 802 generally controls the overall operations of the terminal 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 can include one or more processors 820 to execute instructions to perform all or some of the steps of the methods described above.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at device 800 . Examples of such data include instructions for any application or method operating on the terminal 800, contact data, phonebook data, messages, pictures, videos, and the like. Memory 804 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply component 806 provides power to various components of terminal 800 .
  • Power supply components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to terminal 800 .
  • Multimedia component 808 includes screens that provide an output interface between terminal 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. A touch sensor can sense not only the boundaries of a touch or swipe action, but also the duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front-facing camera and/or a rear-facing camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC) that is configured to receive external audio signals when the terminal 800 is in an operating mode, such as a calling mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 814 includes one or more sensors for providing various aspects of the status assessment of terminal 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the terminal 800, the sensor component 814 can also detect the position change of the terminal 800 or a component of the terminal 800, the user The presence or absence of contact with the terminal 800, the orientation or acceleration/deceleration of the terminal 800 and the temperature change of the terminal 800.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between terminal 800 and other devices.
  • the terminal 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • terminal 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 804 including instructions, which are executable by the processor 820 of the terminal 800 to perform the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • an embodiment of the present disclosure shows a structure of a base station.
  • the base station 900 may be provided as a network-side device.
  • base station 900 includes processing component 922, which further includes one or more processors, and a memory resource represented by memory 932 for storing instructions executable by processing component 922, such as application programs.
  • An application program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the aforementioned methods applied to the base station.
  • the base station 900 may also include a power supply assembly 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to a network, and an input output (I/O) interface 958.
  • Base station 900 may operate based on an operating system stored in memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种非连续接收(DRX)参数的配置方法,其中,应用于基站中,该方法,包括:根据第一非连续接收(DRX)传输特征数据,进行终端的非连续接收(DRX)参数配置;其中,第一非连续接收(DRX)传输特征数据,为终端在历史时刻进行非连续接收(DRX)传输的非连续接收(DRX)传输特征数据。

Description

非连续接收参数的配置方法、装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种非连续接收(DRX)参数的配置方法、装置、通信设备及存储介质。
背景技术
电子设备的功耗直接影响电子设备进行网络通信的续航时间。因此,电子设备的功耗被定义为网络通信的关键技术性能指标之一。由于新空口(NR,New Radio)系统支持高速数据传输,能够在很短的时间内完成突发性数据传输。一种有效的节能方式是电子设备在节能模式下进行网络接入。该方式下,除非网络通知电子设备进行网络接入,否则电子设备会停留在节能模式下,这有利于电子设备的节能。
相关技术中,可以采用非连续接收(DRX,Discontinuous Reception)方式让电子设备工作在该节能方式下。
发明内容
本公开实施例公开了一种非连续接收(DRX)参数的配置方法、装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供一种非连续接收(DRX)参数的配置方法,其中,应用于基站,所述方法,包括:
根据第一非连续接收(DRX)传输特征数据,进行所述终端的非连续接收(DRX)参数配置;其中,所述第一非连续接收(DRX)传输特征数据,为所述终端在历史时刻进行非连续接收(DRX)传输的非连续接收(DRX)传输特征数据。
在一个实施例中,所述进行所述终端的非连续接收(DRX)参数配置,包括:
响应于在当前时刻所述终端的非连续接收(DRX)参数未被配置,将第一非连续接收(DRX)参数配置为所述终端的非连续接收(DRX)参数;其中,所述第一非连续接收(DRX)参数是基于所述第一非连续接收(DRX)传输特征数据确定的;
或者,
响应于在当前时刻所述终端的非连续接收(DRX)参数被配置为第二非连续接收(DRX)参数,根据所述第一非连续接收(DRX)参数与所述第二非连续接收(DRX)参数之间的匹配结果,进行所述终端的非连续接收(DRX)参数配置。
在一个实施例中,所述根据所述第一非连续接收(DRX)参数与所述第二非连续接收(DRX)参数之间的匹配结果,进行所述终端的非连续接收(DRX)参数配置,包括:
响应于所述第一非连续接收(DRX)参数与所述第二非连续接收(DRX)参数不匹配,将所述第一非连续接收(DRX)参数重新配置为所述终端的非连续接收(DRX)参数;
或者,
响应于所述第一非连续接收(DRX)参数与所述第二非连续接收(DRX)参数匹配,不重新配置所述终端的非连续接收(DRX)参数。
在一个实施例中,所述方法,包括:
将第二非连续接收(DRX)传输特征数据输入训练后的神经网络模型,确定预测业务类型;其中,所述训练后的神经网络模型,为利用所述第一非连续接收(DRX)传输特征数据训练的预测业务类型的神经网络模型;其中,所述第二非连续接收(DRX)传输特征数据,为所述终端在当前时刻进行非连续接收(DRX)传输的非连续接收(DRX)传输特征数据;
根据所述预测业务类型,确定所述第一非连续接收(DRX)参数。
在一个实施例中,所述根据所述预测业务类型,确定所述第一非连续接收(DRX)参数,包括:
根据所述预测业务类型对应的功耗阈值,从多个预定的非连续接收(DRX)参数中确定出所述第一非连续接收(DRX)参数;其中,不同的业务类型的功耗阈值不同;所述预定的非连续接收(DRX)参数,为在历史时刻进行非连续接收(DRX)传输的非连续接收(DRX)参数。
在一个实施例中,所述根据所述预测业务类型对应的功耗阈值,从多个预定的非连续接收(DRX)参数中确定出所述第一非连续接收(DRX)参数,包括:
至少根据所述功耗阈值,以及功耗阈值与所述预定的非连续接收(DRX)参数之间的映射关系,从多个预定的非连续接收(DRX)参数中确定出所述第一非连续接收(DRX)参数。
在一个实施例中,所述非连续接收(DRX)传输特征数据,包括:从操作维护管理(OAM)网元获取的非连续接收(DRX)传输特征数据。
在一个实施例中,所述非连续接收(DRX)传输特征数据,包括以下至少之一:流量性能的数据、信道传输性能的数据和能耗的数据。
根据本公开实施例的第二方面,提供一种非连续接收(DRX)参数的配置装置,其中,应用于基站中,所述装置包括配置模块,其中,
所述配置模块,被配置为:根据第一非连续接收(DRX)传输特征数据,进行所述终端的非连续接收(DRX)参数配置;其中,所述第一非连续接收(DRX)传输特征数据,为所述终端在历史时刻进行非连续接收(DRX)传输的非连续接收(DRX)传输特征数据。
在一个实施例中,
所述配置模块,还被配置为:
响应于在当前时刻所述终端的非连续接收(DRX)参数未被配置,将 第一非连续接收(DRX)参数配置为所述终端的非连续接收(DRX)参数;其中,所述第一非连续接收(DRX)参数是基于所述第一非连续接收(DRX)传输特征数据确定的;
或者,
响应于在当前时刻所述终端的非连续接收(DRX)参数被配置为第二非连续接收(DRX)参数,根据所述第一非连续接收(DRX)参数与所述第二非连续接收(DRX)参数之间的匹配结果,进行所述终端的非连续接收(DRX)参数配置。
在一个实施例中,所述配置模块,还被配置为:
响应于所述第一非连续接收(DRX)参数与所述第二非连续接收(DRX)配置不匹配,将所述第一非连续接收(DRX)参数重新配置为所述终端的非连续接收(DRX)参数;
或者,
响应于所述第一非连续接收(DRX)参数与所述第二非连续接收(DRX)参数匹配,不重新配置所述终端的非连续接收(DRX)参数。
在一个实施例中,所述装置还包括确定模块,其中,所述确定模块,被配置为:
将第二非连续接收(DRX)传输特征数据输入训练后的神经网络模型,确定预测业务类型;其中,所述训练后的神经网络模型,为利用所述第一非连续接收(DRX)传输特征数据训练的预测业务类型的神经网络模型;其中,所述第二非连续接收(DRX)传输特征数据,为所述终端在当前时刻进行非连续接收(DRX)传输的非连续接收(DRX)传输特征数据;
根据所述预测业务类型,确定所述第一非连续接收(DRX)参数。
在一个实施例中,所述确定模块,还被配置为:
根据所述预测业务类型对应的功耗阈值,从多个预定的非连续接收(DRX)参数中确定出所述第一非连续接收(DRX)参数;其中,不同的 业务类型的功耗阈值不同;所述预定的非连续接收(DRX)参数,为在历史时刻进行非连续接收(DRX)传输的非连续接收(DRX)参数。
在一个实施例中,所述确定模块,还被配置为:
至少根据所述功耗阈值,以及功耗阈值与所述预定的非连续接收(DRX)参数之间的映射关系,从多个预定的非连续接收(DRX)参数中确定出所述第一非连续接收(DRX)参数。
在一个实施例中,所述配置模块,还被配置为:所述非连续接收(DRX)传输特征数据,包括:从操作维护管理(OAM)网元获取的非连续接收(DRX)传输特征数据。
在一个实施例中,所述配置模块,还被配置为:所述非连续接收(DRX)传输特征数据,包括以下至少之一:流量性能的数据、信道传输性能的数据和能耗的数据。
根据本公开实施例的第三方面,提供一种通信设备,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公开任意实施例所述的方法。
根据本公开实施例的第四方面,提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的方法。
本公开实施例中,根据第一非连续接收(DRX)传输特征数据,进行所述终端的非连续接收(DRX)参数配置;其中,所述第一非连续接收(DRX)传输特征数据,为所述终端在历史时刻进行非连续接收(DRX)传输的非连续接收(DRX)传输特征数据。这里,所述终端可以根据所述第一非连续接收(DRX)传输特征数据进行所述终端的非连续接收(DRX)参数配 置,由于不同的所述第一非连续接收(DRX)传输特征数据对应不同的非连续接收(DRX)传输场景,如此,基于第一非连续接收(DRX)传输特征数据配置的所述终端的非连续接收(DRX)参数能够更加适应于终端在不同非连续接收(DRX)传输场景下的数据传输,使得所述终端能够更好地满足不同非连续接收(DRX)传输场景下的功耗要求,延长了所述终端的续航时间,提升了用户体验。
附图说明
图1是一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种非连续接收(DRX)周期的示意图。
图3是根据一示例性实施例示出的一种非连续接收(DRX)参数的配置方法的流程示意图。
图4是根据一示例性实施例示出的一种基站从操作维护管理(OAM)网元获取非连续接收(DRX)传输特征数据的流程示意图。
图5是根据一示例性实施例示出的一种非连续接收(DRX)参数的配置方法的流程示意图。
图6是根据一示例性实施例示出的一种非连续接收(DRX)参数的配置方法的流程示意图。
图7a是根据一示例性实施例示出的一种非连续接收(DRX)参数的配置方法的流程示意图。
图7b是根据一示例性实施例示出的一种无线通信系统的示意图。
图8是根据一示例性实施例示出的一种非连续接收(DRX)参数的配置方法的流程示意图。
图9是根据一示例性实施例示出的一种非连续接收(DRX)参数的配置方法的流程示意图。
图10是根据一示例性实施例示出的一种非连续接收(DRX)参数的配置方法的流程示意图。
图11是根据一示例性实施例示出的一种非连续接收(DRX)参数的配置方法的流程示意图。
图12是根据一示例性实施例示出的一种非连续接收(DRX)参数的配置方法的流程示意图。
图13是根据一示例性实施例示出的一种非连续接收(DRX)参数的配置装置的示意图。
图14是根据一示例性实施例示出的一种终端的结构示意图。
图15是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。 取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该 无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是 其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了更好地理解本公开任一个实施例所描述的技术方案,首先,对终端进行数据传输的节能方式进行说明。
采用非连续接收(DRX)传输方式进行数据的传输能够有效地实现节能。
在一个实施例中,请参见图2,非连续接收(DRX)周期包括激活期和休眠期。
在一个实施例中,在无线资源控制(RRC,Radio Resource Control)连接态引入了唤醒信号(WUS),唤醒信号(WUS)可以在每个非连续接收(DRX)的激活期到来之前指示终端是否需要进行物理下行控制信道(PDCCH)的监听。
在一个实施例中,若无下行数据发送,唤醒信号(WUS)指示终端在下一个非连续接收(DRX)周期进行休眠。否则,终端在下一个非连续接收(DRX)的激活期进行物理下行控制信道(PDCCH)的监听。
在一个实施例中,基站可以基于特定参数动态地调整给终端配置的非连续接收(DRX)参数。这里,特定参数可以是无线通信质量、待传输数据量和时延要求等。
在一个实施例中,基站可以给终端配置多个不同的非连续接收(DRX)参数。
在一个实施例中,基站可以从多个不同的非连续接收(DRX)参数中选择一个非连续接收(DRX)参数进行终端的非连续接收(DRX)参数配 置。
在一个实施例中,基站基于数据流量、移动性和能耗等从多个非连续接收(DRX)参数中选择一个非连续接收(DRX)参数进行非连续接收(DRX)参数的配置。
上述实施例中,首先,选择非连续接收(DRX)参数时,由于基站需要使用终端的辅助信息,因此,终端需要实时上报一些辅助信息,例如,终端需要实时上报终端推荐的非连续接收(DRX)参数配置信息、流量特性信息和移动性信息等,由于上述辅助信息的传输需要终端与基站进行周期性通信,这会增加信令的开销。其次,终端与基站进行通信会有时延,这会导致基站不能够及时获得实时的辅助信息,不能做出符合适时场景的决策。再有,终端选择非连续接收(DRX)参数和与基站的通信都需要消耗电能,导致能耗高。且终端的计算能力有限,不能够准确地计算并推荐合适的非连续接收(DRX)参数。还有,终端给基站发送的辅助信息可能涉及数据隐私,会带来安全隐患。
如图3所示,本实施例中提供一种非连续接收(DRX)参数的配置方法,其中,应用于基站中,该方法,包括:
步骤31、根据第一非连续接收(DRX)传输特征数据,进行终端的非连续接收(DRX)参数配置;其中,第一非连续接收(DRX)传输特征数据,为终端在历史时刻进行非连续接收(DRX)传输的非连续接收(DRX)传输特征数据。
在一个实施例中,终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
在一个实施例中,基站为终端接入网络的接口设备。基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信 (4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
在一个实施例中,非连续接收(DRX)传输可以是根据配置的非连续接收(DRX)参数进行数据传输。这里,数据传输可以是终端接收或者发送数据。
在一个实施例中,非连续接收(DRX)参数可至少包括:非连续接收(DRX)周期。
在另一个实施例中,非连续接收(DRX)参数还包括:非激活定时器的配置参数和/或节能信号的配置参数等。
在一个实施例中,非连续接收(DRX)周期包括:激活期和休眠期。
在一个实施例中,当处于非连续接收(DRX)周期的激活期,终端能够进行数据的接收和/或发送;当处于非连续接收(DRX)周期的休眠期,终端不能够进行数据的接收和/或发送。例如,在激活期,终端的天线和/或收发机处于启动的状态,能够接收和/或发送上下行数据。
这里,终端工作在非连续接收(DRX)周期的激活期的功耗大于终端工作在非连续接收(DRX)周期的休眠期的功耗。基于非连续接收(DRX)周期进行数据的传输能够有效地减少终端的功耗。
在一个实施例中,非连续接收(DRX)周期的激活期的时长可以根据终端对功耗的要求确定。
在一个实施例中,当终端的要求功耗小于功耗阈值时,非连续接收(DRX)周期的激活期的时长,可以小于时长阈值。当终端的要求功耗可以大于功耗阈值时,非连续接收(DRX)周期的激活期的时长,可以大于时长阈值。这样,非连续接收(DRX)周期的激活期的时长可以适应于终端的要求功耗。
在一个实施例中,在无线资源控制(RRC)连接态引入了唤醒信号(WUS,Wake Up Signal),唤醒信号(WUS)可以在每个非连续接收(DRX)的激活期到来之前指示终端是否需要进行物理下行控制信道(PDCCH)的 监听。
在一个实施例中,若无下行数据发送,则指示终端在下一个非连续接收(DRX)周期进行休眠;否则,继续对下一个非连续接收(DRX)的激活期进行物理下行控制信道(PDCCH)的监听。
在一个实施例中,基站会周期性地获取非连续接收(DRX)传输的数据。
在一个实施例中,非连续接收(DRX)传输的数据,包括终端与非连续接收(DRX)传输过程关联的以下至少之一的数据:业务流量的历史数据、传输条件的历史数据、用户缓冲区容量的历史数据和非连续接收(DRX)参数的历史数据。在一个实施例中,业务流量的历史数据,包括:基站接收到的网络侧发送给终端的数据流的流量、时刻信息、一次数据流传输所占用的时长信息和发送速率等的数据。
在一个实施例中,传输条件的历史数据,包括:基站到终端的下行信道的传输速率、时延和阻塞情况等的数据。
在一个实施例中,非连续接收(DRX)参数的历史数据,包括:非连续接收(DRX)周期信息、非连续接收(DRX)的开启定时器信息和非连续接收DRX的非激活定时器信息等的数据。
在一个实施例中,用户缓冲区容量的历史数据,为在历史时刻终端的缓存区剩余容量的数据。在一个实施例中,非连续接收(DRX)传输特征数据,可以是采用特征提取算法对非连续接收(DRX)传输的数据进行特征提取后获得的特征数据。例如,非连续接收(DRX)传输特征数据可以是利用主成分分析(PCA Principal Component Analysis)算法对非连续接收(DRX)传输的数据进行特征提取获得的特征数据。
在一个实施例中,基站可以是从操作维护管理(OAM,Operation Administration and Maintenance)网元获取非连续接收(DRX)传输特征数据。
请参见图4、基站从操作维护管理(OAM)网元获取非连续接收(DRX)传输特征数据的步骤,包括:
步骤a、基站向操作维护管理(OAM)网元发送数据订阅请求。
这里,可以是基站将需要获取的非连续接收(DRX)传输特征数据信息封装成报文,通过数据订阅请求发送给操作维护管理(OAM)网元。
步骤b、操作维护管理(OAM)网元在接收到基站的数据订阅请求后,确定是否有基站请求的非连续接收(DRX)传输特征数据,并向基站发送是否成功订阅数据的通知信息。
步骤c、响应于订阅数据成功,操作维护管理(OAM)网元获取基站订阅的数据文件的存储地址。这里,数据文件包括基站需要的非连续接收(DRX)传输特征数据。
步骤d、操作维护管理(OAM)网元向基站发送数据文件准备完毕的通知并将数据文件的存储地址发送给基站。
步骤e、基站从该存储地址指示的存储区域获取数据文件。
这里,基站可以是基于文件传输协议(FTP,File Transfer Protocol)或者安全的文件传输协议(SFTP,Secure File Transfer Protocol)的文件传输方式从存储区域获取数据文件。
在一个实施例中,第一非连续接收(DRX)传输特征数据,可以是终端在预定的历史时段内进行非连续接收(DRX)传输的非连续接收(DRX)传输特征数据。
在一个实施例中,基站在订阅非连续接收(DRX)传输特征数据时,可以在数据订阅请求中携带该预定的历史时段的信息。如此,操作维护管理(OAM)网元可以确定基站请求订阅的数据为终端在预定的历史时段内进行非连续接收(DRX)传输的第一非连续接收(DRX)传输特征数据。
在一个实施例中,可以是利用历史时段内进行非连续接收(DRX)传输的第一非连续接收(DRX)传输特征数据进行非连续接收(DRX)参数 的预测,获得第一非连续接收(DRX)参数,并利用该第一非连续接收(DRX)参数进行终端的非连续接收(DRX)参数的配置。
在一个实施例中,可以是利用神经网络模型进行非连续接收(DRX)参数的预测,获得第一非连续接收(DRX)参数。这里,神经网络模型为利用历史时段内进行非连续接收(DRX)传输的第一非连续接收(DRX)传输特征数据进行训练的网络模型。将终端在当前时刻进行非连续接收(DRX)传输的第二非连续接收(DRX)传输特征数据输入该神经网络模型后可以获得第一非连续接收(DRX)参数。
如此,终端无需向基站推荐第一非连续接收(DRX)参数,而是基于神经网络模型进行预测,获得第一非连续接收(DRX)参数。这样,可以减少基站与终端之间进行数据交互的时延,并减少信令开销,同时,还能够减少终端预估推荐的非连续接收(DRX)参数和向基站发送推荐的非连续接收(DRX)参数带来的时延。
在一个实施例中,当第一非连续接收(DRX)参数的误差要求小于误差阈值时,可以设置历史时段的时长大于设置时长;当第一非连续接收(DRX)参数的误差要求大于误差阈值时,可以设置历史时段的时长小于设置时长。如此,历史时段的设置时长可以根据第一非连续接收(DRX)参数的误差做适应性调整。
在一个实施例中,当终端未被配置非连续接收(DRX)参数时,可以将第一非连续接收(DRX)参数配置为终端的非连续接收(DRX)参数。
在一个实施例中,当终端配置了非连续接收(DRX)参数时,可以将第一非连续接收(DRX)参数重新配置为终端的非连续接收(DRX)参数。
在一个实施例中,对终端的非连续接收(DRX)参数进行配置包括将第一非连续接收(DRX)参数发送给终端。
在一实施例中,基站重新建立与终端的无线资源控制(RRC)连接。基站将第一非连续接收(DRX)参数通过无线资源控制(RRC)信令发送 给终端。终端将无线资源控制(RRC)信令中携带的第一非连续接收(DRX)参数配置为终端的非连续接收(DRX)参数。在终端完成对非连续接收(DRX)参数的配置后,释放无线资源控制(RRC)连接。
在本公开实施例中,首先,终端可以根据第一非连续接收(DRX)传输特征数据进行终端的非连续接收(DRX)参数配置,由于不同的第一非连续接收(DRX)传输特征数据对应不同的非连续接收(DRX)传输场景,如此,基于第一非连续接收(DRX)传输特征数据配置的终端的非连续接收(DRX)参数能够更加适应于终端在不同非连续接收(DRX)传输场景下的数据传输,使得终端能够更好地满足不同非连续接收(DRX)传输场景下的功耗要求,延长了终端的续航时间,提升了用户体验。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图5所示,本实施例中提供一种非连续接收(DRX)参数的配置方法,其中,该方法,包括:
步骤51、响应于在当前时刻终端的非连续接收(DRX)参数未被配置,将第一非连续接收(DRX)参数配置为终端的非连续接收(DRX)参数;其中,第一非连续接收(DRX)参数是基于第一非连续接收(DRX)传输特征数据确定的;
步骤52、响应于在当前时刻终端的非连续接收(DRX)参数被配置为第二非连续接收(DRX)参数,根据第一非连续接收(DRX)参数与第二非连续接收(DRX)参数之间的匹配结果,进行终端的非连续接收(DRX)参数配置。
在一个实施例中,可以是基于终端在历史时刻进行非连续接收(DRX)传输的第一非连续接收(DRX)传输特征数据训练的神经网络模型,预测 用于终端的非连续接收(DRX)参数配置的第一非连续接收(DRX)参数。
在一个实施例中,可以是将当前进行非连续接收(DRX)传输的第二非连续接收(DRX)特征数据输入基于第一非连续接收(DRX)传输特征数据训练的神经网络模型,获得用于终端的非连续接收(DRX)参数配置的第一非连续接收(DRX)参数。
在一个实施例中,在当前时刻终端的非连续接收(DRX)参数未被配置时,终端不进行非连续接收(DRX)传输。
在一个实施例中,响应于终端需要进行非连续接收(DRX)传输,终端向基站发送配置非连续接收(DRX)参数的请求消息。响应于基站接收到该非连续接收(DRX)参数的请求消息,基站对终端的非连续接收(DRX)参数进行配置。这里,对终端的非连续接收(DRX)参数进行配置包括将第一非连续接收(DRX)参数发送给终端。
在一实施例中,基站重新建立与终端的无线资源控制(RRC)连接。基站将第一非连续接收(DRX)参数通过无线资源控制(RRC)信令发送给终端。终端将无线资源控制(RRC)信令中携带的第一非连续接收(DRX)参数配置为终端的非连续接收(DRX)参数。在终端完成对非连续接收(DRX)参数的配置后,释放无线资源控制(RRC)连接。
在一个实施例中,第一非连续接收(DRX)参数可以是包括多个非连续接收(DRX)参数的集合。第二非连续接收(DRX)参数也可以是包括多个非连续接收(DRX)参数的集合。其中,第一非连续接收(DRX)参数和第二非连续接收(DRX)参数包含的非连续接收(DRX)参数的种类相同。
在一个实施例中,当第一非连续接收(DRX)参数与第二非连续接收(DRX)参数中的任一种类对应的非连续接收(DRX)参数不相等时,第一非连续接收(DRX)参数与第二非连续接收(DRX)参数不匹配。
在一个实施例中,当第一非连续接收(DRX)参数与第二非连续接收 (DRX)参数中的所有种类对应的非连续接收(DRX)参数相等时,第一非连续接收(DRX)参数与第二非连续接收(DRX)参数匹配。
在一个实施例中,当第一非连续接收(DRX)参数与第二非连续接收(DRX)参数中的任一种类对应的非连续接收(DRX)参数之间的差值不在阈值范围内时,第一非连续接收(DRX)参数与第二非连续接收(DRX)参数不匹配。
在一个实施例中,当第一非连续接收(DRX)参数与第二非连续接收(DRX)参数中的所有种类对应的非连续接收(DRX)参数之间的差值在阈值范围内时,第一非连续接收(DRX)参数与第二非连续接收(DRX)参数匹配。
在一个实施例中,第一非连续接收(DRX)参数与第二非连续接收(DRX)参数之间的匹配结果可以是第一非连续接收(DRX)参数大于、小于或等于第二非连续接收(DRX)参数。在一个实施例中,响应于第一非连续接收(DRX)参数与第二非连续接收(DRX)参数不等于第二非连续接收(DRX)参数,第一非连续接收(DRX)参数与第二非连续接收(DRX)参数不匹配。
在一个实施例中,响应于第一非连续接收(DRX)参数与第二非连续接收(DRX)参数等于第二非连续接收(DRX)参数,第一非连续接收(DRX)参数与第二非连续接收(DRX)参数匹配。
在一个实施例中,第一非连续接收(DRX)参数与第二非连续接收(DRX)参数之间的匹配结果可以是第一非连续接收(DRX)参数与第二非连续接收(DRX)参数之间的差值在阈值范围内或阈值范围外。
在一个实施例中,响应于第一非连续接收(DRX)参数与第二非连续接收(DRX)参数之间的差值在阈值范围内,第一非连续接收(DRX)参数与第二非连续接收(DRX)参数匹配。
在一个实施例中,响应于第一非连续接收(DRX)参数与第二非连续 接收(DRX)参数之间的差值在阈值范围外,第一非连续接收(DRX)参数与第二非连续接收(DRX)参数不匹配。需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图6所示,本实施例中提供一种非连续接收(DRX)参数的配置方法,其中,该方法,包括:
步骤61、响应于第一非连续接收(DRX)参数与第二非连续接收(DRX)参数不匹配,将第一非连续接收(DRX)参数重新配置为终端的非连续接收(DRX)参数;
步骤62、响应于第一非连续接收(DRX)参数与第二非连续接收(DRX)参数匹配,不重新配置终端的非连续接收(DRX)参数。
在一个实施例中,响应于第一非连续接收(DRX)参数与第二非连续接收(DRX)参数之间的差值在阈值范围外,将第一非连续接收(DRX)参数重新配置为终端的DRX参数。响应于第一非连续接收DRX参数与第二非连续接收(DRX)参数之间的差值在阈值范围内,不重新配置终端的非连续接收(DRX)参数。
在一个实施例中,响应于第一非连续接收(DRX)参数不等于第二非连续接收(DRX)参数,将第一非连续接收(DRX)参数重新配置为终端的非连续接收(DRX)参数。响应于第一非连续接收(DRX)参数等于第二非连续接收(DRX)参数,不重新配置终端的非连续接收(DRX)参数。
在一个实施例中,对终端的非连续接收(DRX)参数进行重新配置包括将第一非连续接收(DRX)参数发送给终端。
在一实施例中,基站重新建立与终端的无线资源控制(RRC)连接。基站将第一非连续接收(DRX)参数通过无线资源控制(RRC)信令发送给终端。终端将无线资源控制(RRC)信令中携带的第一非连续接收(DRX) 参数配置为终端的非连续接收(DRX)参数。在终端接收到非连续接收(DRX)参数后,释放无线资源控制(RRC)连接。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图7a所示,本实施例中提供一种非连续接收(DRX)参数的配置方法,其中,该方法,包括:
步骤71、将第二非连续接收(DRX)传输特征数据输入训练后的神经网络模型,确定预测业务类型;其中,训练后的神经网络模型,为利用第一非连续接收(DRX)传输特征数据训练的预测业务类型的神经网络模型;其中,第二非连续接收(DRX)传输特征数据,为终端在当前时刻进行非连续接收(DRX)传输的非连续接收(DRX)传输特征数据;
步骤72、根据预测业务类型,确定第一非连续接收(DRX)参数。
在一个实施例中,神经网络模型可以是设置在基站内,也可以是设置在基站外的其它通信节点内。
在一个实施例中,神经网络模型会获取终端在历史时刻进行非连续接收(DRX)传输的第一非连续接收(DRX)传输特征数据。
在一个实施例中,第一非连续接收(DRX)传输特征数据是基站从操作维护管理(OAM)网元获取的。
在一个实施例中,若神经网络模型设置在基站外的其它通信节点内,该通信节点需要从基站获取非连续接收(DRX)传输特征数据。
在一个实施例中,请参见图7b,神经网络模型设置在基站之外的服务器中,该无线通信系统包括终端、基站、操作维护管理(OAM)网元和设置有神经网络模型的服务器。
在一个实施例中,神经网络模型在获取第一非连续接收(DRX)传输 特征数据后,会对非连续接收(DRX)传输特征数据进行分类。
在一个实施例中,对第一非连续接收(DRX)传输特征数据进行分类的方式包括:神经网络模型在接收到第一非连续接收(DRX)传输特征数据后,按照随机抽样的方法,从总数据集中随机抽取a%的第一非连续接收(DRX)传输特征数据作为训练集,抽取(100-a)%的第一非连续接收(DRX)传输特征数据作为测试集。例如,a为80,按照4:1的比例将数据划分为训练集和测试集,分别记为训练集D train和测试集D test
在一个实施例中,神经网络模型的结构包括:输入层、输出层、隐藏层以及各层之间的连接方式等。
在一个实施例中,输入层节点数可以根据样本的第一非连续接收(DRX)传输特征数据的类型数量确定,例如,可以设置N个输入层节点数。其中,N为大于或等于1的正整数。
在一个实施例中,每个输入层节点对应神经网络模型中用于神经网络模型训练的一种类型的第一非连续接收(DRX)传输特征数据。
在一个实施例中,隐藏层的层数可以设置为L层,L可以根据N的大小确定,其中,每个隐藏层的节点数可以设置为M,M的大小根据神经网络模型的泛化能力确定。其中,L和M为大于或等于1的正整数。
在一个实施例中,输出层用于输出结果,输出层的节点数可以设置为S个。其中,S为大于或等于1的正整数。这里,输出结果可以是预测的业务为目标业务类型业务的概率。
在一个实施例中,隐藏层与输入层之间是全连接,且隐藏层与隐藏层之间也是全连接,采用的激活函数为relu函数。
在一个实施例中,隐藏层与输出层之间是全连接,采用的激活函数为softmax函数。
在一个实施例中,在模型训练的过程中,可以采用前向传递方式来传递数据值,采用反向传递方式来传递梯度值。
在一个实施例中,对于神经网络模型的超参数,学习次数可以设置为T次,学习次数的设置根据神经网络模型训练速度和神经网络模型训练精度确定。其中,T为大于1的正整数。
在一个实施例中,学习率可以设置为α和β,学习率的选择根据神经网络模型的泛化能力确定。其中,α和β为自然数。
在一个实施例中,损失函数选择交叉熵函数。
在一个实施例中,权重初始化的方法选择随机权重初始化。
在一个实施例中,数据的批量大小设置为B,根据输入数据集的大小确定B的值。其中,B为大于1的正整数。
在一个实施例中,神经网络模型将训练集D train和测试集D test作为样本,根据预定的神经网络模型的结构和超参数,进行神经网络模型的训练。
在一个实施例中,在每一轮次的训练中,首先使用训练集D train进行神经网络模型的训练,然后使用测试集D test来检测所训练的神经网络模型的结果,如果训练后的神经网络模型的误差小于误差阈值,就停止训练,得到训练后的神经网络模型。如果训练后的神经网络的的误差大于误差阈值,就继续进行下一轮次的训练过程,直至完成所有轮次的训练过程。
在一个实施例中,模型训练和计算模块首先利用训练集D train,采用梯度下降方法,计算参数θ t的训练损失和梯度,并更新得到参数φ t
Figure PCTCN2020133171-appb-000001
其中,θ表示待更新的模型参数集合,α和β表示学习率,L表示损失函数,t表示迭代轮次,θ t表示第t轮迭代的模型参数集合,D train表示训练集,D test表示测试集。
根据φ t在测试集D test的测试损失和梯度,更新得到模型参数θ t+1
Figure PCTCN2020133171-appb-000002
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的 一些方法一起被执行。
如图8所示,本实施例中提供一种非连续接收(DRX)参数的配置方法,其中,该方法,包括:
步骤81、根据预测业务类型对应的功耗阈值,从多个预定的非连续接收(DRX)参数中确定出第一非连续接收(DRX)参数;其中,不同的业务类型的功耗阈值不同;预定的非连续接收(DRX)参数,为在历史时刻进行非连续接收(DRX)传输的非连续接收(DRX)参数。
在一个实施例中,预定的非连续接收(DRX)参数为终端在历史时段内进行非连续接收(DRX)传输的非连续接收(DRX)参数。如此,第一非连续接收(DRX)参数与终端使用过的非连续接收(DRX)参数之间的偏差小,终端能够更好地适应该第一非连续接收(DRX)参数。
在一个实施例中,预定的非连续接收(DRX)参数,为在历史时段内进行非连续接收(DRX)传输的非连续接收(DRX)参数。
在一个实施例中,预定的非连续接收(DRX)参数可以是从操作维护管理(OAM)网元获取的。在从操作维护管理(OAM)网元订阅预定的非连续接收(DRX)参数的数据时,订阅请求中可以携带实施时间段的信息。
在一个实施例中,可以是根据多个预定的非连续接收(DRX)参数与对应的功耗之间的映射关系,确定出与预测业务类型对应的功耗阈值的第一非连续接收(DRX)参数。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图9所示,本实施例中提供一种非连续接收(DRX)参数的配置方法,其中,该方法,包括:
步骤91、至少根据功耗阈值,以及功耗阈值与预定的非连续接收(DRX)参数之间的映射关系,从多个预定的非连续接收(DRX)参数中确定出第一非连续接收(DRX)参数。
在一个实施例中,每个非连续接收(DRX)参数都对应一个功耗阈值。可以是根据多个预定的非连续接收(DRX)参数与对应的功耗阈值之间的映射关系,从多个预定的非连续接收(DRX)参数中确定出第一非连续接收(DRX)参数。利用该第一非连续接收(DRX)参数进行数据传输时,数据传输产生的功耗小于功耗阈值。
在一个实施例中,基站预先存储有功耗阈值与预定的非连续接收(DRX)参数之间的映射关系。
在一个实施例中,非连续接收(DRX)传输特征数据,包括:从操作维护管理(OAM)网元获取的非连续接收(DRX)传输特征数据。
在一个实施例中,非连续接收(DRX)传输特征数据,包括以下至少之一:流量性能的数据、信道传输性能的数据和能耗的数据。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
为了更好地理解本公开任一实施例,以下通过示例性实施例对本公开方案进行进一步说明:
示例1:
请参见图10,本实施例中提供一种非连续接收(DRX)参数的配置方法,包括:
步骤101、基站预设包含多个可供终端选择的非连续接收(DRX)参数的集合S。
步骤102、基站从操作维护管理(OAM)网元获取终端在第一时段内 进行非连续接收(DRX)传输的第一非连续接收(DRX)传输特征数据。
步骤103、基站基于终端在第一时段内进行非连续接收(DRX)传输的第一非连续接收(DRX)传输特征数据,训练用于预测业务类型的神经网络模型。
步骤104、将终端当前进行非连续接收(DRX)传输的非连续接收(DRX)传输特征数据,输入训练后的用于预测业务类型的神经网络模型,获得预测业务类型。
步骤105、根据预测业务类型,从集合S中选择一个非连续接收(DRX)参数作为第一非连续接收(DRX)参数。
步骤106、将第一非连续接收(DRX)参数与终端当前使用的非连续接收(DRX)参数进行比较,响应于第一非连续接收(DRX)参数与终端当前使用的非连续接收(DRX)参数不相同,将第一非连续接收(DRX)参数配置为终端的(DRX)参数。
步骤107、终端根据第一非连续接收(DRX)参数进行终端的非连续接收(DRX)传输。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
示例2:
请参见图11,本实施例中提供一种非连续接收(DRX)参数的配置方法,包括:
步骤111、将集合S中的每一组非连续接收(DRX)参数进行编号。
步骤112、基于业务类型的预测结果,根据编号遍历集合S中每一组非连续接收(DRX)参数,计算在该非连续接收(DRX)参数配置下终端进行非连续接收(DRX)传输的功耗。
步骤113、基站根据每一组非连续接收(DRX)参数及对应功耗的映射关系,确定符合功耗要求的第一非连续接收(DRX)参数。这里,符合功耗要求可以是对应的功耗小于功耗阈值。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
示例3:
请参见图12、本实施例中提供一种非连续接收(DRX)参数的配置方法,包括:
步骤121、基站获取第一非连续接收(DRX)参数,并与终端当前使用的第二非连续接收(DRX)参数进行比较。
步骤122、如果第一非连续接收(DRX)参数与第二非连续接收(DRX)参数不一样,基站重新建立与终端的无线资源控制(RRC)连接。
步骤123、基站将第一非连续接收(DRX)参数通过无线资源控制(RRC)信令发送给终端。
步骤124、终端将无线资源控制(RRC)信令中携带的第一非连续接收参数(DRX)配置为终端的非连续接收(DRX)参数。
步骤125、在终端完成对非连续接收(DRX)参数的配置后,释放无线资源控制(RRC)连接。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图13所示,本公开实施例中提供一种非连续接收(DRX)参数的配置装置,其中,应用于基站,装置包括配置模块131,其中,
配置模块131,被配置为:根据第一非连续接收(DRX)传输特征数据,进行终端的非连续接收(DRX)参数配置;其中,第一非连续接收(DRX)传输特征数据,为终端在历史时刻进行非连续接收(DRX)传输的非连续接收(DRX)传输特征数据。
在一个实施例中,
配置模块131,还被配置为:
响应于在当前时刻终端的非连续接收(DRX)参数未被配置,将第一非连续接收(DRX)参数配置为终端的非连续接收(DRX)参数;其中,第一非连续接收(DRX)参数是基于第一非连续接收(DRX)传输特征数据确定的;
或者,
响应于在当前时刻终端的非连续接收(DRX)参数被配置为第二非连续接收(DRX)参数,根据第一非连续接收(DRX)参数与第二非连续接收(DRX)参数之间的匹配结果,进行终端的非连续接收(DRX)参数配置。
在一个实施例中,配置模块131,还被配置为:
响应于第一非连续接收(DRX)参数与第二非连续接收(DRX)参数不匹配,将第一非连续接收(DRX)参数重新配置为终端的非连续接收(DRX)参数;
或者,
响应于第一非连续接收(DRX)参数与第二非连续接收(DRX)参数匹配,不重新配置终端的非连续接收(DRX)参数。
在一个实施例中,该装置还包括确定模块132,其中,确定模块132,被配置为:
将第二非连续接收(DRX)传输特征数据输入训练后的神经网络模型,确定预测业务类型;其中,训练后的神经网络模型,为利用第一非连续接 收(DRX)传输特征数据训练的预测业务类型的神经网络模型;其中,第二非连续接收(DRX)传输特征数据,为终端在当前时刻进行非连续接收(DRX)传输的非连续接收(DRX)传输特征数据;
根据预测业务类型,确定第一非连续接收(DRX)参数。
在一个实施例中,确定模块132,还被配置为:
根据预测业务类型对应的功耗阈值,从多个预定的非连续接收(DRX)参数中确定出第一非连续接收(DRX)参数;其中,不同的业务类型的功耗阈值不同;预定的非连续接收(DRX)参数,为在历史时刻进行非连续接收(DRX)传输的非连续接收(DRX)参数。
在一个实施例中,确定模块132,还被配置为:
至少根据功耗阈值,以及功耗阈值与预定的非连续接收(DRX)参数之间的映射关系,从多个预定的非连续接收(DRX)参数中确定出第一非连续接收(DRX)参数。
在一个实施例中,配置模块131,还被配置为:非连续接收(DRX)传输特征数据,包括:从操作维护管理(OAM)网元获取的非连续接收(DRX)传输特征数据。
在一个实施例中,配置模块131,还被配置为:非连续接收(DRX)传输特征数据,包括以下至少之一:流量性能的数据、信道传输性能的数据和能耗的数据。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供一种通信设备,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现应用于本公开 任意实施例的方法。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序。
本公开实施例还提供一种计算机存储介质,其中,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的方法。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
如图14所示,本公开一个实施例提供一种终端的结构。
参照图14所示终端800本实施例提供一种终端800,该终端具体可是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图14,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令, 联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在终端800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如组件为终端800的显示器和小键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图15所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图15,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (18)

  1. 一种非连续接收DRX参数的配置方法,其中,应用于基站,所述方法,包括:
    根据第一DRX传输特征数据,进行所述终端的DRX参数配置;其中,所述第一DRX传输特征数据,为所述终端在历史时刻进行DRX传输的DRX传输特征数据。
  2. 根据权利要求1所述的方法,其中,所述进行所述终端的DRX参数配置,包括:
    响应于在当前时刻所述终端的DRX参数未被配置,将第一DRX参数配置为所述终端的DRX参数;其中,所述第一DRX参数是基于所述第一DRX传输特征数据确定的;
    或者,
    响应于在当前时刻所述终端的DRX参数被配置为第二DRX参数,根据所述第一DRX参数与所述第二DRX参数之间的匹配结果,进行所述终端的DRX参数配置。
  3. 根据权利要求2所述的方法,其中,所述根据所述第一DRX参数与所述第二DRX参数之间的匹配结果,进行所述终端的DRX参数配置,包括:
    响应于所述第一DRX参数与所述第二DRX参数不匹配,将所述第一DRX参数重新配置为所述终端的DRX参数;
    或者,
    响应于所述第一DRX参数与所述第二DRX参数匹配,不重新配置所述终端的DRX参数。
  4. 根据权利要求2所述的方法,其中,所述方法,包括:
    将第二DRX传输特征数据输入训练后的神经网络模型,确定预测业务 类型;其中,所述训练后的神经网络模型,为利用所述第一DRX传输特征数据训练的预测业务类型的神经网络模型;其中,所述第二DRX传输特征数据,为所述终端在当前时刻进行DRX传输的DRX传输特征数据;
    根据所述预测业务类型,确定所述第一DRX参数。
  5. 根据权利要求4所述的方法,其中,所述根据所述预测业务类型,确定所述第一DRX参数,包括:
    根据所述预测业务类型对应的功耗阈值,从多个预定的DRX参数中确定出所述第一DRX参数;其中,不同的业务类型的功耗阈值不同;所述预定的DRX参数,为在历史时刻进行DRX传输的DRX参数。
  6. 根据权利要求5所述的方法,其中,所述根据所述预测业务类型对应的功耗阈值,从多个预定的DRX参数中确定出所述第一DRX参数,包括:
    至少根据所述功耗阈值,以及功耗阈值与所述预定的非连续接收DRX参数之间的映射关系,从多个预定的DRX参数中确定出所述第一DRX参数。
  7. 根据权利要求1所述的方法,其中,所述DRX传输特征数据,包括:从操作维护管理OAM网元获取的DRX传输特征数据。
  8. 根据权利要求1所述的方法,其中,所述DRX传输特征数据,包括以下至少之一:流量性能的数据、信道传输性能的数据和能耗的数据。
  9. 一种非连续接收DRX参数的配置装置,其中,应用于基站,所述装置包括配置模块,其中,
    所述配置模块,被配置为:根据第一DRX传输特征数据,进行所述终端的DRX参数配置;其中,所述第一DRX传输特征数据,为所述终端在历史时刻进行DRX传输的DRX传输特征数据。
  10. 根据权利要求9所述的装置,其中,
    所述配置模块,还被配置为:
    响应于在当前时刻所述终端的DRX参数未被配置,将第一DRX参数配置为所述终端的DRX参数;其中,所述第一DRX参数是基于所述第一DRX传输特征数据确定的;
    或者,
    响应于在当前时刻所述终端的DRX参数被配置为第二DRX参数,根据所述第一DRX参数与所述第二DRX参数之间的匹配结果,进行所述终端的DRX参数配置。
  11. 根据权利要求10所述的装置,其中,所述配置模块,还被配置为:
    响应于所述第一DRX参数与所述第二DRX参数不匹配,将所述第一DRX参数重新配置为所述终端的DRX参数;
    或者,
    响应于所述第一DRX参数与所述第二DRX参数匹配,不重新配置所述终端的DRX参数。
  12. 根据权利要求10所述的装置,其中,所述装置还包括确定模块,其中,所述确定模块,被配置为:
    将第二DRX传输特征数据输入训练后的神经网络模型,确定预测业务类型;其中,所述训练后的神经网络模型,为利用所述第一DRX传输特征数据训练的预测业务类型的神经网络模型;其中,所述第二DRX传输特征数据,为所述终端在当前时刻进行DRX传输的DRX传输特征数据;
    根据所述预测业务类型,确定所述第一DRX参数。
  13. 根据权利要求12所述的装置,其中,所述确定模块,还被配置为:
    根据所述预测业务类型对应的功耗阈值,从多个预定的DRX参数中确定出所述第一DRX参数;其中,不同的业务类型的功耗阈值不同;所述预定的DRX参数,为在历史时刻进行DRX传输的DRX参数。
  14. 根据权利要求13所述的装置,其中,所述确定模块,还被配置为:
    至少根据所述功耗阈值,以及功耗阈值与所述预定的非连续接收DRX 参数之间的映射关系,从多个预定的DRX参数中确定出所述第一DRX参数。
  15. 根据权利要求9所述的装置,其中,所述配置模块,还被配置为:所述DRX传输特征数据,包括:从操作维护管理OAM网元获取的DRX传输特征数据。
  16. 根据权利要求9所述的装置,其中,所述配置模块,还被配置为:所述DRX传输特征数据,包括以下至少之一:流量性能的数据、信道传输性能的数据和能耗的数据。
  17. 一种通信设备,其中,包括:
    天线;
    存储器;
    处理器,分别与所述天线及存储器连接,被配置为通执行存储在所述存储器上的计算机可执行指令,控制所述天线的收发,并能够实现权利要求1至8任一项提供的方法。
  18. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后能够实现权利要求1至8任一项提供的方法。
PCT/CN2020/133171 2020-12-01 2020-12-01 非连续接收参数的配置方法、装置、通信设备及存储介质 WO2022116013A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/133171 WO2022116013A1 (zh) 2020-12-01 2020-12-01 非连续接收参数的配置方法、装置、通信设备及存储介质
CN202080003799.3A CN114846854B (zh) 2020-12-01 2020-12-01 非连续接收参数的配置方法、装置、通信设备及存储介质
US18/255,532 US20230422343A1 (en) 2020-12-01 2020-12-01 Method and apparatus for configuring discontinuous reception parameter, and communication device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133171 WO2022116013A1 (zh) 2020-12-01 2020-12-01 非连续接收参数的配置方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022116013A1 true WO2022116013A1 (zh) 2022-06-09

Family

ID=81852912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133171 WO2022116013A1 (zh) 2020-12-01 2020-12-01 非连续接收参数的配置方法、装置、通信设备及存储介质

Country Status (3)

Country Link
US (1) US20230422343A1 (zh)
CN (1) CN114846854B (zh)
WO (1) WO2022116013A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024141189A1 (en) * 2022-12-28 2024-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Determination of inactive edrx configurations for user equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024164189A1 (zh) * 2023-02-08 2024-08-15 北京小米移动软件有限公司 参数配置方法及装置、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008086649A1 (en) * 2007-01-08 2008-07-24 Huawei Technologies Co., Ltd. Forwarding learnt state information to target node at mobility
CN103546925A (zh) * 2012-07-16 2014-01-29 中兴通讯股份有限公司 在长期演进系统中进行DRX参数调整的方法及eNB
CN107787034A (zh) * 2017-10-19 2018-03-09 广东欧珀移动通信有限公司 非连续接收周期配置方法、系统、移动终端及存储介质
CN109462839A (zh) * 2018-11-26 2019-03-12 电子科技大学 一种基于自适应调整策略的drx机制通信方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155038A (zh) * 2006-09-29 2008-04-02 中兴通讯股份有限公司 获取多媒体广播/组播业务服务质量的方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008086649A1 (en) * 2007-01-08 2008-07-24 Huawei Technologies Co., Ltd. Forwarding learnt state information to target node at mobility
CN103546925A (zh) * 2012-07-16 2014-01-29 中兴通讯股份有限公司 在长期演进系统中进行DRX参数调整的方法及eNB
CN107787034A (zh) * 2017-10-19 2018-03-09 广东欧珀移动通信有限公司 非连续接收周期配置方法、系统、移动终端及存储介质
CN109462839A (zh) * 2018-11-26 2019-03-12 电子科技大学 一种基于自适应调整策略的drx机制通信方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024141189A1 (en) * 2022-12-28 2024-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Determination of inactive edrx configurations for user equipment

Also Published As

Publication number Publication date
CN114846854B (zh) 2023-10-03
CN114846854A (zh) 2022-08-02
US20230422343A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
WO2022056788A1 (zh) 通信方法及装置、网络设备、ue及存储介质
WO2021196133A1 (zh) Rrc状态改变的方法、装置、通信设备及存储介质
WO2021007824A1 (zh) 唤醒信号处理、信息下发方法及装置、通信设备及介质
WO2021207892A1 (zh) 监听信道的方法、装置、用户设备及存储介质
WO2021030974A1 (zh) 寻呼配置方法、装置、通信设备及存储介质
WO2021243600A1 (zh) 数据传输处理方法、装置、用户设备及存储介质
WO2020237446A1 (zh) 监听方法、信令下发方法及装置、通信设备及存储
CN111344993B (zh) 监听方法、指示下发方法及装置、通信设备及存储
WO2023193211A1 (zh) Rsrp门限确定方法、装置、通信设备及存储介质
WO2021012130A1 (zh) 监听处理、策略下发方法及装置、通信设备及存储
WO2022116013A1 (zh) 非连续接收参数的配置方法、装置、通信设备及存储介质
US20230133309A1 (en) Network data collection method
WO2022077232A1 (zh) 无线通信方法及装置、通信设备及存储介质
WO2022021033A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2023065256A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022147662A1 (zh) 测量间隙调度方法及装置、通信设备及存储介质
WO2021227081A1 (zh) 转移业务的方法、装置、通信设备及存储介质
WO2022016450A1 (zh) 逻辑信道复用方法及装置、通信设备及存储介质
WO2023197327A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2023245448A1 (zh) 一种信息传输方法、装置、通信设备及存储介质
WO2022261983A1 (zh) 信息处理方法、装置、通信设备及存储介质
RU2783839C1 (ru) Способ контроля и устройство связи
WO2024055217A1 (zh) 确定bfd放松状态的方法、装置、通信设备及存储介质
WO2023206529A1 (zh) 一种系统消息传输方法、装置、通信设备及存储介质
WO2023205955A1 (zh) 无线通信方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963861

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18255532

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963861

Country of ref document: EP

Kind code of ref document: A1