WO2023193211A1 - Rsrp门限确定方法、装置、通信设备及存储介质 - Google Patents

Rsrp门限确定方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2023193211A1
WO2023193211A1 PCT/CN2022/085667 CN2022085667W WO2023193211A1 WO 2023193211 A1 WO2023193211 A1 WO 2023193211A1 CN 2022085667 W CN2022085667 W CN 2022085667W WO 2023193211 A1 WO2023193211 A1 WO 2023193211A1
Authority
WO
WIPO (PCT)
Prior art keywords
rsrp
threshold value
rsrp threshold
antenna
configuration information
Prior art date
Application number
PCT/CN2022/085667
Other languages
English (en)
French (fr)
Inventor
牟勤
张娟
胡子泉
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280001054.2A priority Critical patent/CN115053473A/zh
Priority to PCT/CN2022/085667 priority patent/WO2023193211A1/zh
Publication of WO2023193211A1 publication Critical patent/WO2023193211A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to but is not limited to the field of communication technology, and in particular, to an RSRP threshold determination method, device, communication equipment and storage medium.
  • NB-IoT narrow band Internet of things
  • MTC Machine Type Communication
  • a new type of user equipment (User Equipment, UE) is currently proposed to cover mid-range IoT devices; the new UE can be a reduced capability (RedCap) UE, or the new UE is a new air interface lightweight (NR-lite)UE.
  • This new type of UE usually needs to meet one of the following requirements: low cost, complexity, a certain degree of coverage increase or decrease, and power saving.
  • the antenna structure of this RedCap UE has been reduced.
  • the current protocol does not differentiate between their Reference Signal Received Power (RSRP) thresholds. This will cause UEs with different antenna structures to be unable to select a suitable RSRP threshold for themselves.
  • RSRP Reference Signal Received Power
  • Embodiments of the present disclosure disclose RSRP threshold determination methods, devices, communication equipment, and storage media.
  • a method for determining an RSRP threshold is provided, which is executed by a network device and includes:
  • the configuration information packet is used to indicate reference signal received power (RSRP) threshold related parameters corresponding to the UE of at least one antenna structure; wherein, under the same frequency range (Frequency Range, FR) RSRP thresholds corresponding to UEs with different antenna structures are different.
  • RSRP reference signal received power
  • a method for determining an RSRP threshold is provided, which is executed by a UE and includes:
  • Receive configuration information where the configuration information is used to indicate RSRP threshold related parameters corresponding to UEs with at least one antenna structure; wherein RSRP threshold values corresponding to UEs with different antenna structures under the same FR are different;
  • RSRP threshold related parameters of the UE Based on the configuration information and the UE's antenna structure, determine the RSRP threshold related parameters of the UE.
  • an RSRP threshold determination device which is applied to network equipment and includes:
  • the sending module is configured to send configuration information, where the configuration information is used to indicate RSRP threshold related parameters corresponding to user equipment UE of at least one antenna structure; wherein, the RSRP threshold values corresponding to UEs with different antenna structures under the same FR different.
  • an RSRP threshold determination device applied to UE, including:
  • the receiving module is configured to receive configuration information, wherein the configuration information is used to indicate RSRP threshold related parameters corresponding to UEs with at least one antenna structure; wherein, RSRP threshold values corresponding to UEs with different antenna structures under the same FR different;
  • a processing module based on the configuration information and the antenna structure of the UE, determines the RSRP threshold related parameters of the UE.
  • a communication device includes:
  • Memory used to store instructions executable by the processor
  • the processor is configured to implement the RSRP threshold determination method of any embodiment of the present disclosure when running executable instructions.
  • a computer storage medium stores a computer executable program.
  • the executable program is executed by a processor, the RSRP threshold determination method of any embodiment of the present disclosure is implemented.
  • configuration information can be sent to the UE through the network device, where the configuration information is used to indicate the RSRP threshold related parameters of the UE with at least one antenna structure; wherein, the configuration information corresponding to the UE with different antenna structures under the same FR
  • the RSRP threshold values are different.
  • different RSRP threshold-related parameters can be configured for UEs with different antenna structures under the same FR, that is, appropriate RSRP threshold-related parameters can be configured according to the transmission performance of different antenna structures.
  • Figure 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment.
  • Figure 2 is a flowchart of a method for determining an RSRP threshold according to an exemplary embodiment.
  • Figure 3 is a flowchart of a method for determining an RSRP threshold according to an exemplary embodiment.
  • Figure 4 is a flow chart of a method for determining an RSRP threshold according to an exemplary embodiment.
  • Figure 5 is a flowchart of a method for determining an RSRP threshold according to an exemplary embodiment.
  • Figure 6 is a flowchart of a method for determining an RSRP threshold according to an exemplary embodiment.
  • Figure 7 is a flowchart of a method for determining an RSRP threshold according to an exemplary embodiment.
  • Figure 8 is a block diagram of an RSRP threshold determination device according to an exemplary embodiment.
  • Figure 9 is a block diagram of an RSRP threshold determination device according to an exemplary embodiment.
  • Figure 10 is a block diagram of an RSRP threshold determination device according to an exemplary embodiment.
  • Figure 11 is a block diagram of a UE according to an exemplary embodiment.
  • Figure 12 is a block diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or "when” or "in response to determining.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology.
  • the wireless communication system may include several user equipments 110 and several base stations 120.
  • user equipment 110 may be a device that provides voice and/or data connectivity to a user.
  • the user equipment 110 may communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the user equipment 110 may be an Internet of Things user equipment, such as a sensor device, a mobile phone (or a "cellular" phone) ) and computers with IoT user equipment, which may be, for example, fixed, portable, pocket-sized, handheld, computer-built-in, or vehicle-mounted devices.
  • the user equipment 110 may also be equipment of an unmanned aerial vehicle.
  • the user equipment 110 may also be a vehicle-mounted device, for example, it may be an on-board computer with a wireless communication function, or a wireless user equipment connected to an external on-board computer.
  • the user equipment 110 may also be a roadside device, for example, it may be a streetlight, a signal light or other roadside device with a wireless communication function.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system can be the 4th generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as the Long Term Evolution (LTE) system; or the wireless communication system can also be a 5G system, Also called new air interface system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called the New Generation-Radio Access Network (NG-RAN).
  • NG-RAN New Generation-Radio Access Network
  • the base station 120 may be an evolved base station (eNB) used in the 4G system.
  • the base station 120 may also be a base station (gNB) that adopts a centralized distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is equipped with a protocol stack including the Packet Data Convergence Protocol (PDCP) layer, the Radio Link Control protocol (Radio Link Control, RLC) layer, and the Media Access Control (Medium Access Control, MAC) layer;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • the distribution unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation of the base station 120.
  • a wireless connection may be established between the base station 120 and the user equipment 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on the next generation mobile communication network technology standard of 5G.
  • an E2E (End to End, end-to-end) connection can also be established between user equipments 110 .
  • vehicle-to-vehicle (V2V) communication vehicle-to-roadside equipment (vehicle to Infrastructure, V2I) communication and vehicle-to-person (vehicle to pedestrian, V2P) communication in vehicle networking communication (vehicle to everything, V2X) Wait for the scene.
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-roadside equipment
  • V2P vehicle-to-person communication in vehicle networking communication
  • V2X vehicle networking communication
  • the above user equipment can be considered as the terminal equipment of the following embodiments.
  • the above-mentioned wireless communication system may also include a network management device 130.
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device can also be other core network devices, such as serving gateway (Serving GateWay, SGW), public data network gateway (Public Data Network GateWay, PGW), policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or Home Subscriber Server (HSS), etc.
  • serving gateway Serving GateWay, SGW
  • public data network gateway Public Data Network GateWay, PGW
  • Policy and Charging Rules Policy and Charging Rules
  • PCRF Policy and Charging Rules
  • HSS Home Subscriber Server
  • the embodiments of the present disclosure enumerate multiple implementations to clearly describe the technical solutions of the embodiments of the present disclosure.
  • the multiple embodiments provided in the embodiments of the present disclosure can be executed alone or in combination with the methods of other embodiments in the embodiments of the present disclosure. They can also be executed alone or in combination. It is then executed together with some methods in other related technologies; the embodiments of the present disclosure do not limit this.
  • the NR system defines a Reference Signal Received Power (RSRP) based on a Synchronization Signal block (SSB) and a Channel State Information-Reference Signal (CSI-RS).
  • RSRP Reference Signal Received Power
  • SSB Synchronization Signal block
  • CSI-RS Channel State Information-Reference Signal
  • the following RSRP threshold is defined in the random access process or beam recovery:
  • rsrp-ThresholdSSB Reference signal received power threshold of synchronization signal block
  • the reference signal received power threshold value of the channel state information reference signal (rsrp-ThresholdCSI-RS);
  • the reference signal received power threshold of the synchronization signal block during random access (msgA-RSRP-ThresholdSSB);
  • Random access reference signal received power threshold (msgA-RSRP-Threshold);
  • Beam failure recovery refers to the received power threshold (rsrp-ThresholdBFR).
  • each RSRP threshold can be as follows:
  • UE may select the SS block and corresponding PRACH resource for path-loss estimation and (re)transmission based on SS blocks that satisfies the threshold (see TS 38.213[13]).
  • L1-RSRP threshold used for determining whether a candidate beam may be used by the UE to attempt contention free random access to recover from beam failure (see TS 38.213[13], clause 6).
  • the UE selects SUL carrier to perform random access based on this threshold(see TS 38.321[3],clause 5.1.1). The value applies to all the BWPs.
  • the UE selects 2-step random access type to perform random access based on this threshold(see TS 38.321[3],clause 5.1.1).This field is only present if both 2-step and 4-step RA type are configured for the BWP.
  • UE may select the SS block and corresponding PRACH resource for path-loss estimation and (re)transmission based on SS blocks that satisfies the threshold (see TS 38.213[13]).
  • rsrp-ThresholdCSI-RS is equal to rsrp-ThresholdSSB in BeamFailureRecoveryConfig IE.
  • the UE can select SSB and corresponding RPACH resources based on the SSB that meets the threshold (rsrp-ThresholdSSB) for path loss estimation and retransmission;
  • the UE selects the SUL carrier to perform random access based on the threshold (rsrp-ThresholdSSB-SUL); this rsrp-ThresholdSSB-SUL is applicable to all bandwidths.
  • all bandwidths include at least one of the following: including bandwidth dedicated to RedCap UEs, bandwidth dedicated to ordinary UEs, and bandwidth shared by RedCap UEs and ordinary UEs.
  • msgA-RSRP-Threshold based on the threshold (msgA-RSRP-Threshold), select the 2-step random access type to perform random access; only when configuring 2-step random access and 4-step random access for BWP, indicate msgA-RSRP -Threshold field will appear.
  • the UE can select the SSB and corresponding PRACH resources based on the SSB that meets the threshold (msgA-RSRP-ThresholdSSB) for path loss estimation and retransmission.
  • rsrp-ThresholdCSI-RS the RSRP threshold value of the 4-step random access type selection CSI-RS; if the random access process is initiated for beam failure recovery, the threshold (rsrp-ThresholdCSI-RS) is equal to the beam failure recovery configuration information rsrp-ThresholdSSB in unit (IE).
  • the RedCap UE supports at least one of the following antenna structures:
  • RedCap UE in FR1 supports the antenna structure of 2 receiving antennas or 1 receiving antenna;
  • the RedCap UE in FR2 supports the antenna structure of 2 receiving antennas; and each receiving antenna has N antenna elements or each receiving antenna contains antenna elements; where N can be an integer greater than 1.
  • an embodiment of the present disclosure provides a method for determining an RSRP threshold, which is executed by a network device, including:
  • Step S21 Send configuration information, where the configuration information is used to indicate RSRP threshold-related parameters corresponding to UEs with at least one antenna structure; wherein, RSRP threshold values corresponding to UEs with different antenna structures under the same FR are different.
  • the RSRP threshold related parameters corresponding to different antenna structures under the same FR are different.
  • the RSRP threshold related parameters corresponding to different antenna structures under different FRs are the same or different.
  • different antenna structures under different FRs use the same RSRP threshold-related parameters; for example, the RSRP threshold-related parameters corresponding to the first antenna structure under FR1 are the same as the RSRP corresponding to the first antenna structure under FR2.
  • Threshold related parameters can be the same or different.
  • the network device can configure corresponding RSRP threshold-related parameters for the UE according to the antenna structure supported by the UE. In another implementation manner, the network device can determine the RSRP threshold related parameters of the UE based on the antenna structure supported by the UE and the frequency range (FR) in which the UE is located.
  • FR frequency range
  • the network device may be, but is not limited to, an access network device or a core network device.
  • the access network equipment may be various types of base stations; for example, it may be a 2G base station, a 3G base station, a 4G base station, a 5G base station or other evolved base stations.
  • the core network equipment may be, but is not limited to, various entities or network element functions of the core network.
  • This step 21 may be: the network device sends configuration information to the UE.
  • the UE may be various mobile terminals or fixed terminals.
  • the UE may be, but is not limited to, a mobile phone, a computer, a server, a wearable device, a game control platform or a multimedia device, etc.
  • the UE can be a RedCap UE or a 5G NR-lite UE, etc.
  • the core network device sends the configuration information, it may be: the core network device sends the configuration information to the base station and sends the configuration information to the UE.
  • This step S21 may be: the network device sends a system message to the UE, and the system message carries configuration information.
  • the system message may be SIB-X; for example, it may be SIB1, SIB2, SIB3, SIB4, SIB5, or SIB11, etc.
  • the configuration information may be sent through any kind of message; for example, an RRC message or a paging message; there is no restriction on the message used to send the configuration information.
  • This step S21 may be: the network device sends configuration information to one or more UEs.
  • the configuration information may be sent to multiple UEs in a cell.
  • the configuration information may include: at least one antenna structure and RSRP threshold related parameters corresponding to the antenna structure.
  • the UE can determine the RSRP threshold related parameters corresponding to the antenna structure of the UE through the antenna structure and configuration information of the UE.
  • the configuration information is used to indicate RSRP threshold related parameters corresponding to the UE of at least one antenna structure under at least one FR.
  • FR includes but is not limited to at least one of the following: a first frequency range and a second frequency range.
  • the first frequency range may be FR1; the second frequency range may be FR2.
  • the configuration information is used to indicate the RSRP threshold related parameters corresponding to the UE of at least one antenna structure in the first frequency range, and/or is used to indicate the UE of at least one antenna structure in the second frequency range. Corresponding RSRP threshold related parameters.
  • the configuration information may include: at least one antenna structure under at least one FR and RSRP threshold related parameters corresponding to the antenna structure under the FR.
  • the antenna structure of the UE includes but is not limited to at least one of the following:
  • the antenna structure of the UE in the first frequency range includes: an antenna structure of 1 or 2 receiving antennas or an antenna structure of M receiving antennas; where M is an integer greater than 1 ;
  • the antenna structure of the UE in the second frequency range includes: 2 receiving antennas, and the antenna elements of each receiving antenna are a first predetermined number or a second predetermined number of antenna structures ; Wherein, the first predetermined number is different from the second predetermined number; wherein the frequency ranges included in the first frequency range and the second frequency range are different.
  • the first frequency range includes: FR1; and/or the second frequency range includes: FR2.
  • the frequency range corresponding to FR1 may be 450MHz to 6000MHz; the frequency range corresponding to FR2 may be: 24250MHz to 52600MHz.
  • the first frequency range and the second frequency range can be any frequency range, as long as the upper limit of the first frequency range is less than the lower limit of the second frequency range, or the first frequency range only needs to be satisfied.
  • the central value of the frequency range only needs to be smaller than the central value of the second frequency range.
  • the antenna structure of the UE under FR1 may be: an antenna structure including 1 receiving antenna or 2 receiving antennas; the antenna structure of the UE under FR1 may be: including 2 receiving antennas and each receiving antenna includes N antenna elements.
  • RSRP threshold related parameters include but are not limited to at least one of the following:
  • the RSRP threshold value includes at least one of the following:
  • the reference signal received power threshold of the synchronization signal block (rsrp-ThresholdSSB) is used to enable the UE to determine whether to allow the selection of the PRACH resource corresponding to the SSB whose RSRP is greater than rsrp-ThresholdSSB to perform operations;
  • the reference signal received power threshold (rsrp-ThresholdCSI-RS) of the channel state information reference signal is used to enable the UE to determine whether to allow the selection of CSI-RS with RSRP greater than rsrp-ThresholdCSI-RS to perform operations;
  • the reference signal received power threshold of the synchronization signal block during random access (msgA-RSRP-ThresholdSSB) is used to enable the UE to determine whether to allow the RPACH operation of MsgA corresponding to the SSB whose RSRP is greater than msgA-RSRP-ThresholdSSB to be selected;
  • the random access reference signal received power threshold (msgA-RSRP-Threshold) is used to enable the UE to determine whether to select the 2-step random access type to perform random access, and/or determine whether to allow the selection of RSRP greater than msgA-RSRP-Threshold.
  • RACH resources perform random access;
  • the reference received power threshold (rsrp-ThresholdBFR) for beam failure recovery is used to enable the UE to determine whether to select RACH resources with an RSRP greater than rsrp-ThresholdBFR to perform random access when recovering from beam failure.
  • the configuration information is used to indicate at least one of the following:
  • the RSRP threshold value corresponding to the UE with at least 2 receiving antennas in the first frequency range is the first RSRP threshold
  • the RSRP threshold value corresponding to the UE with one receiving antenna in the first frequency range is the second RSRP threshold value and/or the offset threshold value is the first offset threshold value; wherein, the second RSRP threshold value is less than The first RSRP threshold value;
  • the RSRP threshold value corresponding to a UE in which the antenna elements of each receiving antenna in the second frequency range are the first predetermined number of antenna structures is the third RSRP threshold value;
  • the corresponding RSRP threshold is the fourth RSRP threshold and/or the offset threshold is the second offset threshold.
  • the first predetermined quantity is greater than the second predetermined quantity; the third RSRP is greater than the fourth RSRP.
  • the second offset threshold value refers to an offset compared with the third RSRP threshold.
  • the third RSRP threshold is -100 and the second offset threshold is -10, then it can be determined that the antenna elements of each receiving antenna in the second frequency range are the RSRP gates corresponding to the UEs with the second predetermined number of antenna structures.
  • the configuration information is used to indicate at least one of the following:
  • the RSRP threshold value corresponding to the antenna structure of the UE supporting 2 receiving antennas is the first RSRP threshold value
  • the RSRP threshold value corresponding to the antenna structure of the UE supporting one receiving antenna is the second RSRP threshold value and/or the offset threshold value is the first offset threshold value;
  • the corresponding RSRP threshold value of the antenna structure in which each receiving antenna of the UE includes N antenna elements is the third RSRP threshold value
  • Each receiving antenna of the UE under FR2 includes The RSRP threshold value corresponding to the antenna structure of the antenna element is the fourth RSRP threshold value and/or the offset threshold value is the second offset threshold value; where, N is an even number greater than 1.
  • the first RSRP threshold is the same as the third RSRP threshold; and/or the second RSRP threshold is the same as the fourth RSRP threshold; and/or the first offset threshold The value is the same as the second offset threshold value.
  • the first RSRP threshold is different from the third RSRP threshold; and/or the second RSRP threshold is different from the fourth RSRP threshold; and/or the first offset gate The limit value is different from the second offset threshold value.
  • configuration information can be sent to the UE through the network device, where the configuration information includes: RSRP threshold related parameters of at least one antenna structure of the UE; where the configuration information is used for UEs with different antenna structures to determine the corresponding RSRP threshold related parameters.
  • the configuration information includes: RSRP threshold related parameters of at least one antenna structure of the UE; where the configuration information is used for UEs with different antenna structures to determine the corresponding RSRP threshold related parameters.
  • an embodiment of the present disclosure provides a method for determining an RSRP threshold, which is executed by a network device, including:
  • Step S31 Based on the antenna structure of the UE, determine the RSRP threshold related parameters of the UE.
  • the antenna structure may be the antenna structure in the above step S21; the RSRP threshold related parameters are the RSRP threshold related parameters in the above step S21; the first frequency range may be the first frequency range in the above embodiment; The second frequency range may be the second frequency range in the above embodiment.
  • the RSRP threshold related parameters corresponding to different antenna structures under different FRs are the same or different.
  • different antenna structures under different FRs use the same RSRP threshold related parameters.
  • the RSRP threshold-related parameters corresponding to the first antenna structure under FR1 and the RSRP threshold-related parameters corresponding to the first antenna structure under FR2 may be the same or different.
  • step S31 includes:
  • the RSRP threshold value of the UE is determined.
  • an embodiment of the present disclosure provides a method for determining an RSRP threshold, which is executed by a network device and may include:
  • Step S41 Determine the RSRP threshold of the UE based on the antenna structure of the number of receiving antennas supported by the UE; and/or determine the RSRP threshold of the UE based on the antenna structure of the number of antenna elements of each receiving antenna of the UE.
  • Embodiments of the present disclosure provide an RSRP threshold determination method, which is executed by a network device and may include: determining the RSRP threshold value of the UE based on the number of receiving antennas supported by the UE, the antenna structure, and the frequency range in which the UE operates.
  • Embodiments of the present disclosure provide a method for determining an RSRP threshold, which is executed by a network device and may include: determining the RSRP threshold of the UE based on the antenna structure of the number of antenna elements of each receiving antenna of the UE and the frequency range in which the UE operates.
  • the RSRP threshold of the UE is determined based on the antenna structure of the number of receiving antennas supported by the UE, including:
  • the RSRP threshold value of the UE In response to the antenna structure in which the UE supports at least two receiving antennas in the first frequency range, determine the RSRP threshold value of the UE to be the first RSRP threshold value; or,
  • the RSRP threshold value of the UE In response to the antenna structure in which the UE supports one receiving antenna in the first frequency range, determine the RSRP threshold value of the UE to be the second RSRP threshold value;
  • the first RSRP threshold value is greater than the second RSRP threshold value.
  • Embodiments of the present disclosure provide an RSRP threshold determination method, which is executed by a network device and may include: in response to an antenna structure in which the UE supports at least two receiving antennas in a first frequency range, determining the RSRP threshold value of the UE to be the first RSRP threshold value.
  • the network device determines that the UE under FR1 supports an antenna structure of at least two receiving antennas, it determines that the RSRP threshold of the UE is the first RSRP threshold.
  • the first RSRP threshold value may be the RSRP threshold value used by the UE specified in traditional 3GPP Release 15 and/or Release 16.
  • the first RSRP threshold value may be an RSRP threshold value used by ordinary UEs.
  • Embodiments of the present disclosure provide an RSRP threshold determination method, which is executed by a network device and may include: in response to the antenna structure of the UE supporting one receiving antenna in the first frequency range, determining the RSRP threshold value of the UE to be the second RSRP threshold. limit.
  • the network device determines that the UE under FR2 supports an antenna structure of one receiving antenna, it determines that the RSRP threshold of the UE is the second RSRP threshold.
  • the second RSRP threshold value can be a separate RSRP threshold value defined by the network device, or the second RSRP threshold value can be an RSRP threshold value specified in the wireless communication protocol; only the second RSRP threshold value can be The RSRP threshold value only needs to be smaller than the first RSRP threshold value.
  • the second RSRP threshold value is less than the RSRP threshold value used by the UE specified in 3GPP Release 15 and/or Release 16.
  • different RSRP thresholds can be set for the antenna structures of different receiving antennas supported by the UE under FR1; the size of the RSRP threshold is positively correlated with the number of receiving antennas supported by the UE.
  • first RSRP threshold RSRP threshold
  • second RSRP threshold the RSRP threshold
  • the RSRP threshold of the UE is determined based on the antenna structure of the number of antenna elements of each receiving antenna of the UE, including:
  • determining the RSRP threshold value of the UE In response to the antenna elements of each receiving antenna of the UE being the first predetermined number of antenna structures in the second frequency range, determining the RSRP threshold value of the UE to be the third RSRP threshold value; or,
  • determining the RSRP threshold value of the UE In response to the antenna elements of each receiving antenna of the UE being a second predetermined number of antenna structures in the second frequency range, determining the RSRP threshold value of the UE to be the fourth RSRP threshold value;
  • the first predetermined number is greater than the second predetermined number; the third RSRP threshold value is greater than the fourth RSRP threshold value.
  • the first predetermined amount may be 2 times the second predetermined amount.
  • Embodiments of the present disclosure provide an RSRP threshold determination method, which is executed by a network device and may include: in response to the antenna elements of each receiving antenna of the UE being a first predetermined number of antenna structures in the second frequency range, determining the RSRP threshold of the UE. The value is the third RSRP threshold value.
  • the first predetermined number is N; where N is an integer greater than 0.
  • the network device determines that each receiving antenna of the UE under FR2 has an antenna structure with N antenna elements, it determines that the RSRP threshold of the UE is the third RSRM threshold.
  • the third RSRP threshold may be the RSRP threshold used by legacy R15 and/or R16 UEs.
  • the third RSRP threshold value is equal to the first RSRP threshold value. In another embodiment, the third RSRP threshold value is not equal to the first RSRP threshold value.
  • Embodiments of the present disclosure provide a method for determining an RSRP threshold, which is executed by a network device and may include: in response to the fact that the antenna elements of each receiving antenna of the UE are a second predetermined number of antenna structures in the second frequency range, determining the RSRP threshold of the UE. The value is the fourth RSRP threshold value.
  • the second predetermined amount is Among them, N is an even number greater than 0.
  • the RSRP threshold value of the UE is determined to be the fourth RSRP threshold value.
  • the fourth RSRP threshold value can be a separate RSRP threshold value defined by the network device, or the fourth RSRP threshold value can be an RSRP threshold value specified in the wireless communication protocol; only the fourth RSRP threshold value can be The RSRP threshold value only needs to be smaller than the third RSRP threshold value.
  • the fourth RSRP threshold value is equal to the second RSRP threshold value. In another embodiment, the fourth RSRP threshold value is not equal to the second RSRP threshold value.
  • each receiving antenna of the UE includes a different number of antenna elements under FR2
  • different RSRP threshold values can be set; the size of the RSRP threshold value is consistent with the antenna elements supported by each receiving antenna of the UE. Quantity is positively correlated.
  • a UE with a relatively complex antenna structure can set a relatively high RSRP threshold value, so that the RSRP measurement value required for operations such as allowing the UE to access is also relatively high; or a UE with a relatively simple antenna structure can set a relatively high RSRP threshold value.
  • the RSRP threshold value is relatively low, so that the RSRP measurement value required for operations such as allowing the UE to access is also relatively low; this allows UEs with different antenna structures to set appropriate RSRP threshold values to facilitate different antenna structures.
  • the UE can access the cell based on appropriate RSRP measurement values.
  • step S31 includes:
  • the offset threshold value of the UE is determined.
  • Embodiments of the present disclosure provide a method for determining an RSRP threshold, which is executed by a network device and may include: determining the offset threshold value of the UE based on the number of receiving antennas supported by the UE, the antenna structure, and the frequency range in which the UE operates.
  • an embodiment of the present disclosure provides a method for determining an RSRP threshold, which is executed by a network device and may include:
  • Step S51 Determine the RSRP threshold of the UE based on the antenna structure of the number of receiving antennas supported by the UE; and/or determine the RSRP threshold of the UE based on the antenna structure of the number of antenna elements of each receiving antenna of the UE.
  • the offset threshold of the UE is determined based on the antenna structure of the number of receiving antennas supported by the UE, including:
  • the offset threshold value of the UE is determined to be the first offset threshold value.
  • Embodiments of the present disclosure provide a method for determining an RSRP threshold value, which is executed by a network device and may include: based on the fact that the UE supports one receiving antenna structure in the first frequency range, determining the offset threshold value of the UE as the first offset threshold value.
  • the network device determines that the UE supports an antenna structure of one receiving antenna under FR1, it determines the RSRP threshold as the second RSRP threshold and/or determines the offset threshold of the UE as the first offset. Move the threshold value.
  • the first offset threshold value can be any value.
  • the sum of the first RSRP threshold and the first offset threshold is the second RSRP threshold.
  • the offset threshold of the UE is zero.
  • Embodiments of the present disclosure provide a method for determining an RSRP threshold, which is executed by a network device and may include: determining the offset threshold of the UE based on the antenna structure of the number of antenna elements of each receiving antenna of the UE and the frequency range in which the UE operates.
  • the offset threshold of the UE is determined based on the antenna structure of the number of antenna elements of each receiving antenna of the UE, including:
  • the offset threshold value of the UE is determined to be the second offset threshold value.
  • Embodiments of the present disclosure provide a method for determining an RSRP threshold value, which is executed by a network device and may include: determining the offset of the UE based on an antenna structure in which the antenna elements of each receiving antenna of the UE are a second predetermined number in the second frequency range.
  • the threshold value is the second offset threshold value.
  • the RSRP threshold is determined to be the fourth RSRP threshold and/or the offset threshold of the UE is determined to be the second offset threshold.
  • the second offset threshold value may be any value.
  • the second offset threshold value may be equal to or unequal to the first offset threshold value.
  • the sum of the third RSRP threshold and the second offset threshold is the fourth RSRP threshold.
  • the offset threshold of the UE is zero.
  • an offset threshold can be determined for a UE with a relatively simple antenna structure compared to a UE with a relatively complex antenna structure; so that a UE with a relatively simple antenna structure can determine an offset threshold based on the offset gate
  • the limit value corrects the RSRP threshold value to obtain the RSRP threshold value suitable for the UE antenna structure.
  • Embodiments of the present disclosure provide a method for determining an RSRP threshold value, which is executed by a network device and may include: obtaining an offset threshold value based on a wireless communication protocol; or setting an offset threshold value in advance.
  • the configuration information is used to indicate at least one antenna and is also used to indicate RSRP threshold-related parameters corresponding to UEs of a predetermined power level; wherein, the RSRP threshold-related parameters corresponding to UEs of a predetermined power level, Including: the fourth RSRP threshold and/or the second offset threshold.
  • the configuration information includes: RSRP threshold related parameters of at least one power level UE; the RSRP threshold related parameters include: RSRP threshold value and/or offset threshold value.
  • the configuration information may include: UEs of at least one power level and RSRP threshold-related parameters corresponding to the power level.
  • the RSRP threshold parameters of the UE can also be determined based on the UE of different power levels.
  • the configuration information includes: RSRP threshold-related parameters corresponding to the UE of the predetermined power level; wherein the RSRP threshold-related parameters corresponding to the UE of the predetermined power level include: the fourth RSRP threshold value and/or the third RSRP threshold value. Two offset thresholds.
  • the predetermined power level may be the PC7 power level.
  • the antenna elements of each receiving antenna of the UE under FR2 can be The antenna structure of each determines the PC7 power level.
  • the configuration information includes: the RSRP threshold corresponding to the PC7 power level UE is the second RSRP threshold and/or the second offset threshold.
  • the UE can also be made to determine whether it is at the predetermined power level; if so, the RSRP threshold related parameters corresponding to the predetermined power level of the UE can be determined based on the configuration information. This allows the UE to effectively determine the appropriate RSRP threshold and/or offset threshold for the UE through multiple methods.
  • the following RSRP threshold determination method is performed by the UE, which is similar to the description of the above RSRP threshold determination method performed by the network device; and, for the technical details not disclosed in the embodiment of the RSRP threshold determination method performed by the UE , please refer to the description of the example of the RSRP threshold determination method performed by the network device, and will not be described in detail here.
  • an embodiment of the present disclosure provides a method for determining an RSRP threshold, which is executed by the UE and includes:
  • Step S61 Receive configuration information, where the configuration information is used to indicate RSRP threshold related parameters corresponding to the UE of at least one antenna structure;
  • UEs with different antenna structures under the same FR have different RSRP thresholds
  • Step S62 Determine the RSRP threshold related parameters of the UE based on the configuration information and the antenna structure of the UE.
  • the configuration information may be the configuration information in the above-mentioned step S21; the antenna structure may be the antenna structure in the above-mentioned step S21; and the RSRP threshold-related parameters may be the RSRP threshold-related parameters in the above-mentioned step S21.
  • the RSRP threshold related parameters include at least one of the following:
  • the RSRP threshold value includes at least one of the following:
  • the reference signal received power threshold of the synchronization signal block (rsrp-ThresholdSSB) is used to enable the UE to determine whether to allow the selection of the PRACH resource corresponding to the SSB whose RSRP is greater than rsrp-ThresholdSSB to perform operations;
  • the reference signal received power threshold (rsrp-ThresholdCSI-RS) of the channel state information reference signal is used to enable the UE to determine whether to allow the selection of CSI-RS with RSRP greater than rsrp-ThresholdCSI-RS to perform operations;
  • the reference signal received power threshold of the synchronization signal block during random access (msgA-RSRP-ThresholdSSB) is used to enable the UE to determine whether to allow the UE to select the PRACH resource corresponding to MsgA with an SSB whose RSRP is greater than msgA-RSRP-ThresholdSSB to perform operations. ;
  • the random access reference signal received power threshold (msgA-RSRP-Threshold) is used to enable the UE to determine whether to select the 2-step random access type to perform random access, and/or determine whether to allow the selection of RSRP greater than msgA-RSRP-Threshold.
  • RACH resources perform random access;
  • the reference received power threshold (rsrp-ThresholdBFR) for beam failure recovery is used to enable the UE to determine whether to select RACH resources with an RSRP greater than rsrp-ThresholdBFR to perform random access when recovering from beam failure.
  • the configuration information may be used to indicate RSRP threshold related parameters corresponding to the UE of at least one antenna structure under at least one FR.
  • the configuration information may be used to indicate the RSRP threshold related parameters corresponding to the UE of at least one antenna structure in the first frequency range, and/or may be used to indicate the RSRP corresponding to the UE of at least one antenna structure in the second frequency range. Threshold related parameters.
  • This configuration information can be used to indicate at least one of the following:
  • the RSRP threshold value corresponding to the UE with at least 2 receiving antennas in the first frequency range is the first RSRP threshold
  • the RSRP threshold value corresponding to the UE of one receiving antenna in the first frequency range is the second RSRP threshold value and/or the offset threshold value is the first offset threshold value; wherein, the second RSRP threshold value The value is less than the first RSRP threshold value;
  • the RSRP threshold value corresponding to a UE in which the antenna elements of each receiving antenna in the second frequency range are the first predetermined number of antenna structures is the third RSRP threshold value;
  • the RSRP threshold corresponding to a UE whose antenna elements of each receiving antenna is a second predetermined number of antenna structures is the fourth RSRP threshold and/or the offset threshold is the second offset gate. limit;
  • the first predetermined number is greater than the second predetermined number; and the third RSRP is greater than the fourth RSRP.
  • the configuration information is used to indicate at least one of the following:
  • the RSRP threshold value corresponding to the antenna structure of the UE supporting 2 receiving antennas is the first RSRP threshold value
  • the RSRP threshold value corresponding to the antenna structure of the UE supporting one receiving antenna is the second RSRP threshold value and/or the offset threshold value is the first offset threshold value;
  • the corresponding RSRP threshold value of the antenna structure in which each receiving antenna of the UE includes N antenna elements is the third RSRP threshold value
  • Each receiving antenna of the UE under FR2 includes The RSRP threshold value corresponding to the antenna structure of the antenna element is the fourth RSRP threshold value and/or the offset threshold value is the second offset threshold value; where, N is an even number greater than 1.
  • Embodiments of the present disclosure provide an RSRP threshold determination method, which is executed by a UE, including: based on the RSRP threshold related parameters of the UE, determining whether the UE is allowed to access the cell and/or whether to perform beam recovery related operations.
  • Embodiments of the present disclosure provide a method for determining an RSRP threshold, which is executed by the UE and may include:
  • RSRP threshold value Based on the UE's RSRP measurement value being greater than or equal to the RSRP threshold value, determine that the UE is allowed to access the cell and/or perform beam recovery related operations;
  • the UE Based on the RSRP measurement value of the UE being less than the RSRP threshold, it is determined that the UE is not allowed to access the cell and/or perform beam recovery related operations.
  • performing beam recovery related operations may be but is not limited to: selecting SSBs and/or CSI-RSs greater than the RSRP threshold for random access.
  • the UE can accurately determine whether the current UE is suitable for accessing the cell and/or perform beam recovery related operations by judging the size of the RSRP measurement value and the RSRP threshold value. In this way, the probability of the UE accessing the cell and/or the success rate of beam recovery can be improved, or the waste of resources caused by accessing the cell at inappropriate times or performing beam recovery operations can be reduced.
  • step S62 includes:
  • the offset threshold value increased by the UE is determined.
  • Embodiments of the present disclosure provide an RSRP determination method, which is executed by a UE, including:
  • the offset threshold value increased by the UE is determined.
  • the first frequency range and the second frequency range are respectively the first frequency range and the second frequency range in the above embodiments.
  • Embodiments of the present disclosure provide an RSRP determination method, which is executed by a UE, including: determining the RSRP threshold value corresponding to the UE based on configuration information, the antenna structure of the UE, and the frequency range in which the UE operates.
  • Embodiments of the present disclosure provide an RSRP determination method, which is executed by a UE, including: determining an offset threshold value increased by the UE based on configuration information, the antenna structure of the UE, and the frequency range in which the UE operates.
  • the RSRP threshold value corresponding to the UE is determined based on the configuration information and the antenna structure of the UE, including:
  • the RSRR threshold value corresponding to the UE In response to the antenna structure in which the UE supports at least two receiving antennas in the first frequency range, determine the RSRR threshold value corresponding to the UE to be the first RSRP threshold value based on the configuration information; or,
  • the RSRP threshold value corresponding to the UE is determined to be the second RSRP threshold value based on the configuration information; wherein the first RSRP threshold value is greater than the second threshold value value.
  • Embodiments of the present disclosure provide an RSRP determination method, executed by a UE, including: in response to an antenna structure in which the UE supports at least two receiving antennas in a first frequency range, determining the RSRR threshold value corresponding to the UE to be the first based on configuration information. RSRP threshold value.
  • the UE under FR1 is determined to be a UE that supports an antenna structure of two receiving antennas; the UE obtains configuration information, which is at least used to indicate: the UE under FR1 supports an RSRP gate corresponding to an antenna structure of two receiving antennas.
  • the limit value is the first RSRP threshold value; then the UE determines that the RSRP threshold value corresponding to the UE is the first RSRP threshold value.
  • Embodiments of the present disclosure provide an RSRP determination method, executed by a UE, including: in response to an antenna structure in which the UE supports one receiving antenna in a first frequency range, determining the RSRP threshold value corresponding to the UE to be the second RSRP based on configuration information. threshold value.
  • the UE under FR1 is determined to be a UE that supports an antenna structure of one receiving antenna; the UE obtains configuration information, and the configuration information is at least used to refer to: the RSRP gate corresponding to the antenna structure that the UE under FR1 supports.
  • the limit value is the second RSRP threshold value; then the UE determines that the RSRP threshold value corresponding to the UE is the second RSRP threshold value.
  • the RSRP threshold value corresponding to the UE is determined based on the configuration information and the antenna structure of the UE, including:
  • each receiving antenna of the UE In response to the antenna elements of each receiving antenna of the UE being a second predetermined number of antenna structures in the second frequency range, it is determined based on the configuration information that the RSRP threshold value corresponding to the UE is the fourth RSRP threshold value; wherein the first predetermined number is greater than The second predetermined number; the third RSRP threshold value is greater than the fourth RSRP threshold value.
  • Embodiments of the present disclosure provide an RSRP determination method, executed by a UE, including: in response to the fact that the antenna elements of each receiving antenna of the UE are a first predetermined number of antenna structures in the second frequency range, determining the RSRP gate corresponding to the UE based on the configuration information.
  • the limit value is the third RSRP threshold value.
  • the UE under FR2 determines an antenna structure with N antenna elements for each receiving antenna; the UE obtains configuration information, which is at least used to indicate that the UE under FR2 has N antenna elements for each receiving antenna.
  • the RSRP threshold value corresponding to the antenna structure is the third RSRP threshold value; then the UE determines that the RSRP threshold value corresponding to the UE is the third RSRP threshold value.
  • Embodiments of the present disclosure provide an RSRP determination method, executed by a UE, including: in response to the fact that the antenna elements of each receiving antenna of the UE are a second predetermined number of antenna structures in the second frequency range, determining the RSRP gate corresponding to the UE based on the configuration information.
  • the limit value is the fourth RSRP threshold value.
  • the UE under FR2 determines that the antenna elements of each receiving antenna are antenna structures; the UE obtains configuration information, which is at least used to indicate: the antenna elements of each receiving antenna of the UE under FR2 are The RSRP threshold value corresponding to the antenna structure is the fourth RSRP threshold value; then the UE determines that the RSRP threshold value corresponding to the UE is the fourth RSRP threshold value.
  • the offset threshold value increased by the UE is determined, including:
  • the offset threshold value increased by the UE is determined to be the first offset threshold value.
  • Embodiments of the present disclosure provide an RSRP threshold determination method, executed by a UE, including: in response to the UE supporting one receiving antenna structure in a first frequency range, determining the offset threshold value increased by the UE as the first offset threshold value.
  • the UE under FR1 is determined to be a UE that supports an antenna structure of one receiving antenna; the UE obtains configuration information, which is at least used to indicate: the threshold corresponding to the antenna structure of one receiving antenna that the UE under FR1 supports.
  • the value is the second RSRP threshold value and/or the offset threshold value is the first offset threshold value; then the UE determines that the RSRP threshold value corresponding to the UE is the second RSRP threshold value and/or increases
  • the offset threshold value of is the first offset threshold value.
  • the UE under FR1 is determined to be a UE that supports 1 based on the antenna structure of the receiving antenna, and the offset threshold obtained by the UE is the first offset threshold; then the UE can also be based on the first threshold and The sum of the first offset threshold values determines the second RSRP threshold value of the UE; where the first threshold value is the RSRP threshold value corresponding to the antenna structure of the UE supporting two receiving antennas under FR1.
  • determining the offset threshold value increased by the UE based on the configuration information and the antenna structure of the UE includes: responding to the second predetermined number of antenna elements in each receiving antenna of the UE in the second frequency range. , determine the offset threshold value of the UE as the second offset threshold value.
  • Embodiments of the present disclosure provide a method for determining an RSRP threshold, which is executed by a UE, including: in response to the antenna elements of each receiving antenna of the UE being a second predetermined number of antenna structures in the second frequency range, determining the offset threshold value of the UE is the second offset threshold.
  • the UE under FR2 determines that the antenna elements of each receiving antenna are antenna structures; the UE obtains configuration information, which is at least used to indicate: the antenna elements of each receiving antenna of the UE under FR2 are The RSRP threshold value corresponding to the antenna structure is the fourth RSRP threshold value and/or the offset threshold value is the second offset threshold value; then the UE determines that the RSRP threshold value corresponding to the UE is the third RSRP threshold value.
  • the four RSRP thresholds and/or the increased offset threshold are the second offset thresholds.
  • the UE under FR2 determines that the antenna elements of each receiving antenna are UE with an antenna structure, and the offset threshold value obtained by the UE is the second offset threshold value; then the UE can also determine the UE's offset threshold based on the sum of the third RSRP threshold value and the second offset threshold value.
  • the fourth RSRP threshold value wherein, the third RSRP threshold value is determined by the UE under FR2 as the antenna element of each receiving antenna as The RSRP threshold value corresponding to the antenna structure.
  • the increased offset threshold corresponding to different antenna structures can be obtained.
  • the increased offset threshold corresponding to the UE supporting one antenna structure of FR1 can be obtained, or the antenna elements of each receiving antenna of FR2 can be obtained as
  • the antenna structures corresponding to the increased offset threshold value can accurately correct the RSRP threshold values corresponding to these antenna structures; thus, a relatively accurate RSRP threshold value can be obtained. This is conducive to UEs with these antenna structures making relatively accurate decisions on whether to access the cell and/or perform beam recovery related operations.
  • the configuration information is used to indicate RSRP threshold-related parameters corresponding to at least one power level UE; the RSRP threshold-related parameters include: RSRP threshold value and/or offset threshold value.
  • the configuration information includes: RSRP threshold-related parameters corresponding to the UE of the predetermined power level; wherein the RSRP threshold-related parameters corresponding to the UE of the predetermined power level include: the fourth RSRP threshold value and/or the third RSRP threshold value. Two offset thresholds.
  • the predetermined power level may be the PC7 power level.
  • the antenna elements of each receiving antenna of the UE under FR2 can be The antenna structure determines the PC7 power level.
  • the configuration information is used to indicate that the RSRP threshold value corresponding to the UE of the PC7 power level is the fourth RSRP threshold value and/or the offset threshold value is the second offset threshold value.
  • step S62 includes:
  • each receiving antenna of the UE In response to the antenna elements of each receiving antenna of the UE being a second predetermined number of antenna structures in the second frequency range, determining that the UE is at a predetermined power level;
  • the RSRP threshold value corresponding to the UE is the fourth RSRP threshold value and/or the offset threshold value increased by the UE is the second offset threshold value.
  • this embodiment of the present disclosure provides an RSRP threshold determination method, which is executed by the UE, including:
  • Step S71 In response to the fact that the antenna elements of each receiving antenna of the UE in the second frequency range are a second predetermined number of antenna structures, determine that the UE is at a predetermined power level;
  • Step S72 Based on the predetermined power level and configuration information, determine the RSRP threshold value corresponding to the UE as the fourth RSRP threshold value and/or the offset threshold value increased by the UE as the second offset threshold value.
  • the antenna elements of each receiving antenna are: antenna structure, it is determined that the UE is in the PC7 power level; the UE obtains configuration information, where the configuration information is used to indicate that the RSRP threshold corresponding to the PC7 power level is the fourth RSRP threshold and/or offset threshold The limit value is the second offset threshold value; then the power level based on the UE is the PC7 power level and configuration information. It is determined that the RSRP threshold value of the UE is the fourth RSRP threshold value and the offset threshold value increased by the UE is Second offset threshold.
  • embodiments of the present disclosure can obtain the power level of the UE through the antenna structure of the UE, and determine the RSRP threshold related parameters of the UE based on the power level of the UE.
  • the UE can also obtain the RSRP threshold-related parameters based on the UE's predetermined power level, which provides a variety of ways to obtain the RSRP threshold-related parameters of the UE.
  • Embodiments of the present disclosure provide an RSRP threshold determination method, executed by a UE, including: in response to the current power level of the UE being a predetermined power level, determining that the RSRP threshold value corresponding to the UE is the fourth RSRP threshold value and/or the UE increases The offset threshold value of is the second offset threshold value.
  • the UE determines that the power level of the UE is the PC7 power level; the UE obtains configuration information, where the configuration information is used to indicate that the RSRP threshold value corresponding to the PC7 power level is the fourth RSRP threshold value and/or offset
  • the threshold value is the second offset threshold value; then, based on the power level of the UE being the PC7 power level and the configuration information, the UE determines that the RSRP threshold value of the UE is the fourth RSRP threshold value and the offset threshold increased by the UE.
  • the value is the second offset threshold value.
  • the RSRP threshold and offset threshold of the UE can also be directly determined based on the power level of the UE and the obtained configuration information including the power level and corresponding RSRP threshold-related parameters. This can be applied to more scenarios in which RSRP threshold-related parameters corresponding to the UE are determined.
  • Embodiments of the present disclosure provide a method for determining an RSRP threshold, which is executed by a communication device.
  • the communication device includes: a network device and a UE; the method for determining the RSRP threshold includes:;
  • Step S81 The network device sends configuration information, where the configuration information is used to indicate the RSRP threshold value corresponding to the UE of at least one antenna structure;
  • the RSRP threshold value includes but is not limited to at least one of the following:
  • the configuration information is used to indicate at least one of the following:
  • the RSRP threshold value corresponding to the antenna structure of the UE supporting 2 receiving antennas is the first RSRP threshold value
  • the RSRP threshold value corresponding to the antenna structure of the UE supporting one receiving antenna is the second RSRP threshold value
  • the corresponding RSRP threshold value of the antenna structure in which each receiving antenna of the UE includes N antenna elements is the third RSRP threshold value
  • Each receiving antenna of the UE under FR2 includes The RSRP threshold value corresponding to the antenna structure of two antenna elements is the fourth RSRP threshold value; where N is an even number greater than 1.
  • the first RSRP threshold value and the second RSRP threshold value can both be equal to the RSRP threshold value used by the R15 or R16 UE; the second RSRP threshold value and the second RSRP threshold value can both be defined RSRP threshold value. It only needs to meet the defined RSRP threshold, which is smaller than the RSRP threshold used by R15 or R16 UEs.
  • Step S82 The network device sends configuration information, where the configuration information is used to indicate the offset threshold value corresponding to the UE of at least one antenna structure;
  • the configuration information is used to indicate at least one of the following:
  • the offset threshold value corresponding to the antenna structure of the UE supporting one receiving antenna is the first offset threshold value
  • Each receiving antenna of the UE under FR2 includes The offset threshold value corresponding to the antenna structure of the antenna element is the second offset threshold value; where, N is an even number greater than 1.
  • both the first offset threshold value and the second offset threshold value may be preset by the network device, or both may be determined based on the wireless communication protocol.
  • the first RSRP threshold value and the third RSRP threshold value corresponding to a UE that supports an antenna structure of two receiving antennas under FR2 can be used.
  • An offset threshold value is used to determine the second RSRP threshold value of a UE with an antenna structure that supports one receiving antenna under FR1.
  • the receiving antennas supported under FR2 include For a UE with an antenna structure of N antenna elements, it can be determined that each receiving antenna supported by FR2 includes The fourth RSRP threshold value of the UE in the antenna structure of the antenna element.
  • Step S83 The network device sends configuration information, where the configuration information is used to indicate RSRP threshold-related parameters corresponding to the UE of a predetermined power level.
  • the configuration information is used to indicate that the RSRP threshold corresponding to the PC7 power level is the fourth RSRP threshold and/or the offset threshold is the second offset threshold.
  • the receiving antennas supported under FR2 include For a UE with an antenna structure of two antenna elements, the power level of the UE is determined to be the PC7 power level; if the UE receives the configuration information, it can be determined based on the configuration information that the RSRP threshold of the UE is the fourth RSRP threshold and/or offset.
  • the shift threshold value is the second offset threshold value.
  • an RSRP threshold determination device is applied to network equipment, including:
  • the sending module 61 is configured to send configuration information, where the configuration information is used to indicate RSRP threshold related parameters corresponding to UEs with at least one antenna structure, wherein the RSRP threshold values corresponding to UEs with different antenna structures under the same frequency range FR different.
  • an embodiment of the present disclosure provides an RSRP threshold determination device, which is applied to network equipment and may include:
  • the first processing module 62 is configured to determine the RSRP threshold related parameters of the UE based on the antenna structure of the UE.
  • the RSRP threshold related parameters include at least one of the following:
  • the configuration information is used to indicate RSRP threshold related parameters corresponding to the UE of at least one antenna structure under at least one FR.
  • the configuration information is used to indicate the RSRP threshold related parameters corresponding to the UE of at least one antenna structure in the first frequency range, and/or is used to indicate at least one antenna structure in the second frequency range.
  • RSRP threshold related parameters corresponding to the UE are used to indicate the RSRP threshold related parameters corresponding to the UE.
  • the configuration information is used to indicate at least one of the following:
  • the RSRP threshold value corresponding to the antenna structure of the UE supporting 2 receiving antennas is the first RSRP threshold value
  • the RSRP threshold value corresponding to the antenna structure of the UE supporting one receiving antenna is the second RSRP threshold value and/or the offset threshold value is the first offset threshold value;
  • the corresponding RSRP threshold value of the antenna structure in which each receiving antenna of the UE includes N antenna elements is the third RSRP threshold value
  • Each receiving antenna of the UE under FR2 includes The RSRP threshold value corresponding to the antenna structure of the antenna element is the fourth RSRP threshold value and/or the offset threshold value is the second offset threshold value; where, N is an even number greater than 1.
  • the RSRP threshold value includes at least one of the following:
  • the reference signal received power threshold of the synchronization signal block (rsrp-ThresholdSSB) is used to enable the UE to determine whether to allow the selection of the PRACH resource corresponding to the SSB whose RSRP is greater than rsrp-ThresholdSSB to perform operations;
  • the reference signal received power threshold (rsrp-ThresholdCSI-RS) of the channel state information reference signal is used to enable the UE to determine whether to allow the selection of CSI-RS with RSRP greater than rsrp-ThresholdCSI-RS to perform operations;
  • the reference signal received power threshold of the synchronization signal block during random access (msgA-RSRP-ThresholdSSB) is used to enable the UE to determine whether to allow the PRACH resource of MsgA corresponding to the SSB with RSRP greater than msgA-RSRP-ThresholdSSB to be selected to perform operations;
  • the random access reference signal received power threshold (msgA-RSRP-Threshold) is used to enable the UE to determine whether to select the 2-step random access type to perform random access, and/or determine whether to allow the selection of RSRP greater than msgA-RSRP-Threshold.
  • RACH resources perform random access;
  • the reference received power threshold (rsrp-ThresholdBFR) for beam failure recovery is used to enable the UE to determine whether to select RACH resources with an RSRP greater than rsrp-ThresholdBFR to perform random access when recovering from beam failure.
  • the network device may be, but is not limited to: an access network device or a core network device.
  • Embodiments of the present disclosure provide an RSRP threshold determination device, which is applied to network equipment and may include:
  • the first processing module 62 is configured to determine the RSRP threshold value of the UE based on the antenna structure of the number of receiving antennas supported by the UE;
  • the first processing module 62 is configured to determine the RSRP threshold value of the UE based on the antenna structure of the number of antenna elements of each receiving antenna of the UE.
  • Embodiments of the present disclosure provide an RSRP threshold determination device, which is applied to network equipment and may include:
  • the first processing module 62 is configured to determine the RSRP threshold value of the UE based on the antenna structure of the number of receiving antennas supported by the UE and the FR in which the UE operates;
  • the first processing module 62 is configured to determine the RSRP threshold of the UE based on the antenna structure of the number of antenna elements of each receiving antenna of the UE and the FR in which the UE operates.
  • Embodiments of the present disclosure provide an RSRP threshold determination device, which is applied to network equipment and may include: a first processing module 62 configured to determine that the UE responds to the antenna structure of the UE supporting at least two receiving antennas in the first frequency range.
  • the RSRP threshold value is the first RSRP threshold value.
  • Embodiments of the present disclosure provide an RSRP threshold determination device, which is applied to network equipment and may include: a first processing module 62 configured to determine the UE's RSRP threshold determination device in response to the antenna structure of the UE supporting one receiving antenna in the first frequency range.
  • the RSRP threshold value is the second RSRP threshold value; wherein the first RSRP threshold value is greater than the second RSRP threshold value.
  • Embodiments of the present disclosure provide an RSRP threshold determination device, which is applied to network equipment and may include: a first processing module 62 configured to respond to a first predetermined number of antenna elements of each receiving antenna of the UE in the second frequency range.
  • the antenna structure determines the RSRP threshold of the UE as the third RSRP threshold.
  • Embodiments of the present disclosure provide an RSRP threshold determination device, which is applied to network equipment and may include: a first processing module 62 configured to respond to a second predetermined number of antenna elements of each receiving antenna of the UE in the second frequency range.
  • the antenna structure determines that the RSRP threshold of the UE is a fourth RSRP threshold; wherein the first predetermined number is greater than the second predetermined number; and the third RSRP threshold is greater than the fourth RSRP threshold.
  • Embodiments of the present disclosure provide an RSRP threshold determination device, which is applied to network equipment and may include: a first processing module 62 configured to determine the offset threshold value of the UE in response to the antenna structure of the number of receiving antennas supported by the UE.
  • Embodiments of the present disclosure provide an RSRP threshold determination device, which is applied to network equipment and may include: a first processing module 62 configured to determine the offset threshold of the UE in response to the antenna structure of the number of antenna elements of each receiving antenna of the UE. value.
  • Embodiments of the present disclosure provide an RSRP threshold determination device, which is applied to network equipment and may include: a first processing module 62 configured to determine the offset of the UE in response to the UE supporting one receiving antenna structure in the first frequency range.
  • the threshold value is the first offset threshold value.
  • Embodiments of the present disclosure provide an RSRP threshold determination device, which is applied to network equipment and may include: a first processing module 62 configured to respond to a second predetermined number of antenna elements of each receiving antenna of the UE in the second frequency range.
  • the antenna structure determines the offset threshold value of the UE as the second offset threshold value.
  • the first frequency range includes: FR1; and/or the second frequency range includes: FR2.
  • Embodiments of the present disclosure provide an RSRP threshold determination device, which is applied to network equipment and may include: a first processing module 62 configured to obtain an offset threshold value based on a wireless communication protocol.
  • Embodiments of the present disclosure provide an RSRP threshold determination device, which is applied to network equipment and may include: a first processing module 62 configured to preset an offset threshold value.
  • the configuration information is used to indicate the RSRP threshold-related parameters corresponding to the UE of the predetermined power level; wherein the RSRP threshold-related parameters corresponding to the UE of the predetermined power level include: a fourth RSRP threshold value and/or or the second offset threshold.
  • an embodiment of the present disclosure provides an RSRP threshold determination device, which is applied to UE and includes:
  • the receiving module 71 is configured to receive configuration information, where the configuration information is used to indicate RSRP threshold related parameters corresponding to UEs with at least one antenna structure; wherein, RSRP thresholds corresponding to UEs with different antenna structures under the same frequency range FR The values are different;
  • the second processing module 72 is configured to determine the RSRP threshold related parameters of the UE based on the configuration information and the antenna structure of the UE.
  • the configuration information is used to indicate the RSRP threshold related parameters corresponding to the UE of at least one antenna structure under at least one of the FRs.
  • the configuration information is used to indicate the RSRP threshold related parameters corresponding to the UE of at least one antenna structure in the first frequency range, and/or is used to indicate at least one antenna structure in the second frequency range.
  • RSRP threshold related parameters corresponding to the UE are used to indicate the RSRP threshold related parameters corresponding to the UE.
  • the configuration information is used to indicate at least one of the following:
  • the RSRP threshold value corresponding to the antenna structure of the UE supporting 2 receiving antennas is the first RSRP threshold value
  • the RSRP threshold value corresponding to the antenna structure of the UE supporting one receiving antenna is the second RSRP threshold value and/or the offset threshold value is the first offset threshold value;
  • the corresponding RSRP threshold value of the antenna structure in which each receiving antenna of the UE includes N antenna elements is the third RSRP threshold value
  • Each receiving antenna of the UE under FR2 includes The RSRP threshold value corresponding to the antenna structure of the antenna element is the fourth RSRP threshold value and/or the offset threshold value is the second offset threshold value; where, N is an even number greater than 1.
  • Embodiments of the present disclosure provide an RSRP threshold determination device, which is applied to UE and includes:
  • the second processing module 72 is configured to determine whether the UE is allowed to access the cell and/or whether to perform beam recovery related operations based on the RSRP threshold related parameters of the UE.
  • the RSRP threshold related parameters include at least one of the following:
  • the RSRP threshold value includes at least one of the following:
  • the reference signal received power threshold of the synchronization signal block (rsrp-ThresholdSSB) is used by the UE to determine whether to allow the selection of an SSB with an RSRP greater than rsrp-ThresholdSSB to perform operations on the corresponding PRACH resource;
  • the reference signal received power threshold value of the channel state information reference signal (rsrp-ThresholdCSI-RS) is used by the UE to determine whether to allow the selection of CSI-RS with RSRP greater than rsrp-ThresholdCSI-RS to perform operations;
  • the reference signal received power threshold of the synchronization signal block during random access (msgA-RSRP-ThresholdSSB) is used by the UE to determine whether to allow the PRACH resource of MsgA corresponding to the SSB with RSRP greater than msgA-RSRP-ThresholdSSB to be selected to perform operations;
  • the random access reference signal received power threshold (msgA-RSRP-Threshold) is used by the UE to determine whether to select the 2-step random access type to perform random access, and/or determine whether to allow the selection of a RSRP greater than msgA-RSRP-Threshold.
  • RACH resources perform random access;
  • the reference received power threshold (rsrp-ThresholdBFR) for beam failure recovery is used by the UE to determine whether to select RACH resources with RSRP greater than rsrp-ThresholdBFR to perform random access when recovering from beam failure.
  • Embodiments of the present disclosure provide an RSRP determination device, which is applied to a UE and includes: a second processing module 72 configured to determine the RSRP threshold value corresponding to the UE based on the configuration information and the antenna structure of the UE.
  • Embodiments of the present disclosure provide an RSRP determination device, applied to a UE, including: a second processing module 72 configured to determine an offset threshold value increased by the UE based on configuration information and the antenna structure of the UE.
  • Embodiments of the present disclosure provide an RSRP determination device, applied to a UE, including: a second processing module 72 configured to determine the UE based on the configuration information in response to the antenna structure of the UE supporting at least two receiving antennas in the first frequency range.
  • the corresponding RSRR threshold value is the first RSRP threshold value.
  • Embodiments of the present disclosure provide an RSRP determination device, applied to a UE, including: a second processing module 72 configured to respond to the antenna structure of the UE supporting one receiving antenna in the first frequency range, and determine the UE corresponding to the UE based on the configuration information.
  • the RSRP threshold value is the second RSRP threshold value; wherein, the first RSRP threshold value is greater than the second threshold value.
  • Embodiments of the present disclosure provide an RSRP determination device, applied to a UE, including: a second processing module 72 configured to respond to a first predetermined number of antenna structures in which the antenna elements of each receiving antenna of the UE are in the second frequency range, The RSRP threshold value corresponding to the UE is determined to be the third RSRP threshold value based on the configuration information.
  • Embodiments of the present disclosure provide an RSRP determination device, applied to a UE, including: a second processing module 72 configured to respond to a second predetermined number of antenna structures in which the antenna elements of each receiving antenna of the UE are in the second frequency range,
  • the RSRP threshold corresponding to the UE is determined to be a fourth RSRP threshold based on the configuration information; wherein the first predetermined number is greater than the second predetermined number; and the third RSRP threshold is greater than the fourth RSRP threshold.
  • Embodiments of the present disclosure provide an RSRP determination device, applied to a UE, including: a second processing module 72 configured to determine the offset threshold increased by the UE in response to the UE supporting one receiving antenna structure in the first frequency range. The value is the first offset threshold value.
  • Embodiments of the present disclosure provide an RSRP determination device, applied to a UE, including: a second processing module 72 configured to respond to a second predetermined number of antenna structures in which the antenna elements of each receiving antenna of the UE are in the second frequency range, The offset threshold value of the UE is determined to be the second offset threshold value.
  • the configuration information is used to indicate the RSRP threshold-related parameters corresponding to the UE of the predetermined power level; wherein the RSRP threshold-related parameters corresponding to the UE of the predetermined power level include: a fourth RSRP threshold value and/or or the second offset threshold.
  • Embodiments of the present disclosure provide an RSRP determination device, applied to UE, including:
  • the second processing module 72 is configured to determine that the UE is at a predetermined power level in response to the antenna elements of each receiving antenna of the UE being a second predetermined number of antenna structures in the second frequency range;
  • the second processing module 72 is configured to determine, based on the predetermined power level and configuration information, that the RSRP threshold value corresponding to the UE is the fourth RSRP threshold value and/or the offset threshold value increased by the UE is the second offset threshold value. value.
  • Embodiments of the present disclosure provide an RSRP determination device, applied to a UE, including: a second processing module 72 configured to determine that the RSRP threshold value corresponding to the UE is the fourth RSRP in response to the current power level of the UE being a predetermined power level.
  • the threshold value and/or the offset threshold value increased by the UE is the second offset threshold value.
  • the first frequency range includes: FR1; and/or the second frequency range includes: FR2.
  • An embodiment of the present disclosure provides a communication device, including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to implement the RSRP threshold determination method of any embodiment of the present disclosure when running executable instructions.
  • communication equipment may include but is not limited to at least one of: core network equipment, access network equipment, and UE.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to memorize the information stored thereon after the user equipment is powered off.
  • the processor may be connected to the memory through a bus or the like, and be used to read the executable program stored on the memory, for example, at least one of the methods shown in FIGS. 2 to 7 .
  • An embodiment of the present disclosure also provides a computer storage medium.
  • the computer storage medium stores a computer executable program.
  • the executable program is executed by a processor, the RSRP threshold determination method of any embodiment of the present disclosure is implemented. For example, at least one of the methods shown in FIGS. 2 to 7 .
  • Figure 11 is a block diagram of a user equipment 800 according to an exemplary embodiment.
  • the user device 800 may be a mobile phone, a computer, a digital broadcast user device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • user equipment 800 may include one or more of the following components: a processing component 802 , a memory 804 , a power supply component 806 , a multimedia component 808 , an audio component 810 , an input/output (I/O) interface 812 , and a sensor component 814 , and communication component 816.
  • a processing component 802 may include one or more of the following components: a processing component 802 , a memory 804 , a power supply component 806 , a multimedia component 808 , an audio component 810 , an input/output (I/O) interface 812 , and a sensor component 814 , and communication component 816.
  • a processing component 802 may include one or more of the following components: a processing component 802 , a memory 804 , a power supply component 806 , a multimedia component 808 , an audio component 810 , an input/output (I/O) interface 812 , and a sensor component 814 , and communication component 8
  • Processing component 802 generally controls the overall operations of user device 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operations at user device 800 . Examples of such data include instructions for any application or method operating on user device 800, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 804 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 806 provides power to various components of user equipment 800.
  • Power supply components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to user device 800 .
  • Multimedia component 808 includes a screen that provides an output interface between the user device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 808 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 810 is configured to output and/or input audio signals.
  • audio component 810 includes a microphone (MIC) configured to receive external audio signals when user device 800 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 804 or sent via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 814 includes one or more sensors that provide various aspects of status assessment for user device 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the user device 800, the sensor component 814 can also detect the user device 800 or a component of the user device 800. position changes, the presence or absence of user contact with user device 800 , user device 800 orientation or acceleration/deceleration and temperature changes of user device 800 .
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between user device 800 and other devices.
  • User equipment 800 may access a wireless network based on a communication standard, such as WiFi, 4G or 5G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 816 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • user equipment 800 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A programmable gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A programmable gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 804 including instructions, which can be executed by the processor 820 of the user device 800 to complete the above method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • an embodiment of the present disclosure shows the structure of a base station.
  • the base station 900 may be provided as a network side device.
  • base station 900 includes a processing component 922, which further includes one or more processors, and memory resources represented by memory 932 for storing instructions, such as application programs, executable by processing component 922.
  • the application program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the foregoing methods applied to the base station, for example, the methods shown in FIGS. 4 to 10 .
  • Base station 900 may also include a power supply component 926 configured to perform power management of base station 900, a wired or wireless network interface 950 configured to connect base station 900 to a network, and an input/output (I/O) interface 958.
  • Base station 900 may operate based on an operating system stored in memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Near-Field Transmission Systems (AREA)
  • Transceivers (AREA)

Abstract

本公开实施例提供一种RSRP门限确定方法、装置、通信设备及存储介质;RSRP门限确定方法包括:发送配置信息,其中,配置信息,用于指示至少一种天线结构的UE对应的RSRP门限相关参数;其中,同一频率范围FR下不同天线结构的UE对应的RSRP门限值不同(S21)。

Description

RSRP门限确定方法、装置、通信设备及存储介质 技术领域
本公开涉及但不限于通信技术领域,尤其涉及一种RSRP门限确定方法、装置、通信设备及存储介质。
背景技术
在第四代移动通信技术(4G)的长期演进(Long Term Evolution,LTE)系统中,为了支持物联网(Internet of Thing,IoT)业务,提出了机器类通信(Machine Type Communication,MTC)和窄带物联网(Narrow band Internet of thing,NB-IoT)两大技术;该两大技术主要针对相对低速率、高时延等的场景。例如,NB-IoT设备,目前最大仅能支持几百kbps的速率;又如,MTC设备,目前最大只能支持几Mbps的速率。同时随着物联网业务的不断发展,比如视频监控、智能家居、可穿戴式设备及工业传感器监测等业务的普及;两大技术中设备通常要求几十或者上百Mbps的速率以及要求相对较高的时延。如此4G LET中的MTC及NB-IoT中设备无法满足不断发展的物联网业务的需求。
目前提出了一种新型的用户设备(User Equipment,UE)来覆盖中端物联网设备;该新型的UE可以是降低能力(Reduced capability,RedCap)UE,或者该新型的UE是新空口轻量级(NR-lite)UE。该新型的UE通常需要满足以下之一的要求:低造价、地复杂度,一定程度的覆盖增减及功率节省。该RedCap UE相对于NR中的中高端UE来说,其天线结构进行了缩减。而对于不同天线结构的UE,目前协议并未对其参考信号接收功率(Reference Signal Received Power,RSRP)门限做区分,如此会导致不同的天线结构的UE无法选择合适自己的RSRP门限。
发明内容
本公开实施例公开RSRP门限确定方法、装置、通信设备及存储介质。
根据本公开的第一方面,提供一种RSRP门限确定方法,由网络设备执行,包括:
发送配置信息,其中,配置信息包,用于指示至少一种天线结构的UE对应的参考信号接收功率(Reference Signal Received Power,RSRP)门限相关参数;其中,同一频率范围(Frequency Range,FR)下不同天线结构的UE对应的RSRP门限值不同。
根据本公开的第二方面,提供一种RSRP门限确定方法,由UE执行,包括:
接收配置信息,其中,配置信息,用于指示至少一种天线结构的UE对应的RSRP门限相关参数;其中,同一FR下不同天线结构的UE对应的RSRP门限值不同;
基于配置信息及UE的天线结构,确定UE的RSRP门限相关参数。
根据本公开的第三方面,提供一种RSRP门限确定装置,应用于网络设备,包括:
发送模块,被配置为发送配置信息,其中,配置信息,用于指示至少一种天线结构的用户设备UE对应的RSRP门限相关参数;其中,同一FR下不同天线结构的UE对应的RSRP门限值不同。
根据本公开的第四方面,提供一种RSRP门限确定装置,应用于UE,包括:
接收模块,被配置为接收配置信息,其中,所述配置信息,用于指示至少一种天线结构的UE对应的RSRP门限相关参数;其中,同一FR下不同天线结构的UE对应的RSRP门限值不同;
处理模块,基于所述配置信息及所述UE的天线结构,确定所述UE的所述RSRP门限相关参数。
根据本公开的第五方面,提供一种通信设备,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现本公开任意实施例的RSRP门限确定方法。
根据本公开的第六方面,提供一种计算机存储介质,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的RSRP门限确定方法。
本公开实施例提供的技术方案可以包括以下有益效果:
在本公开实施例中,可以通过网络设备向UE发送配置信息,其中,配置信息,用于指示至少一种天线结构的UE的RSRP门限相关参数;其中,同一FR下不同天线结构的UE对应的RSRP门限值不同。如此,可以对于同一FR下不同天线结构的UE配置不同的RSRP门限相关参数,即针对不同天线结构的传输性能配置合适的RSRP门限相关参数。
如此,一方面可以降低对于天线结构相对复杂的UE因配置过低的RSRP门限接入小区后通信质量不佳情况出现;另一方面可以降低对于天线结构相对简单的UE因配置相对过高的RSRP门限而导致的资源浪费情况的出现。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种RSRP门限确定方法的流程图。
图3是根据一示例性实施例示出的一种RSRP门限确定方法的流程图。
图4是根据一示例性实施例示出的一种RSRP门限确定方法的流程图。
图5是根据一示例性实施例示出的一种RSRP门限确定方法的流程图。
图6是根据一示例性实施例示出的一种RSRP门限确定方法的流程图。
图7是根据一示例性实施例示出的一种RSRP门限确定方法的流程图。
图8是根据一示例性实施例示出的一种RSRP门限确定装置的框图。
图9是根据一示例性实施例示出的一种RSRP门限确定装置的框图。
图10是根据一示例性实施例示出的一种RSRP门限确定装置的框图。
图11是根据一示例性实施例示出的一种UE的框图。
图12是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为新一代无线接入网(New Generation-Radio Access Network,NG-RAN)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体接入控制(Medium Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的车对车(vehicle to vehicle,V2V)通信、车对路边设备(vehicle to Infrastructure,V2I)通信和车对人(vehicle to pedestrian,V2P)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了便于本领域内技术人员理解,本公开实施例列举了多个实施方式以对本公开实施例的技术方案进行清晰地说明。当然,本领域内技术人员可以理解,本公开实施例提供的多个实施例,可以被单独执行,也可以与本公开实施例中其他实施例的方法结合后一起被执行,还可以单独或结合后与其他相关技术中的一些方法一起被执行;本公开实施例并不对此作出限定。
为了更好地理解本公开任一个实施例所描述的技术方案,首先,对相关技术中的RSRP门限进 行部分说明:
在一些实施例中,NR系统定义基于同步信号块(Synchronization Signal block,SSB)和信道状态信号参考信号(Channel State Information-Reference Signal,CSI-RS)的参考信号接收功率(Reference Signal Received Power,RSRP)。例如在随机接入过程或者波束恢复中定义了如下的RSRP门限值:
同步信号块的参考信号接收功率门限值(rsrp-ThresholdSSB);
信道状态信息参考信号的参考信号接收功率门限值(rsrp-ThresholdCSI-RS);
超级上行同步信号块的参考信号接收功率门限值rsrp-ThresholdSSB-SUL;
随机接入时同步信号块的参考信号接收功率门限值(msgA-RSRP-ThresholdSSB);
随机接入参考信号接收功率门限值(msgA-RSRP-Threshold);
波束失败恢复参考接收功率门限值(rsrp-ThresholdBFR)。
这里,各RSRP门限值的用处可以如下所示:
rsrp-ThresholdSSB:
UE may select the SS block and corresponding PRACH resource for path-loss estimation and (re)transmission based on SS blocks that satisfy the threshold(see TS 38.213[13]).
rsrp-ThresholdSSB:
L1-RSRP threshold used for determining whether a candidate beam may be used by the UE to attempt contention free random access to recover from beam failure(see TS 38.213[13],clause 6).
rsrp-ThresholdSSB-SUL:
The UE selects SUL carrier to perform random access based on this threshold(see TS 38.321[3],clause 5.1.1).The value applies to all the BWPs.
msgA-RSRP-Threshold:
The UE selects 2-step random access type to perform random access based on this threshold(see TS 38.321[3],clause 5.1.1).This field is only present if both 2-step and 4-step RA type are configured for the BWP.
msgA-RSRP-ThresholdSSB:
UE may select the SS block and corresponding PRACH resource for path-loss estimation and(re)transmission based on SS blocks that satisfy the threshold(see TS 38.213[13]).
rsrp-ThresholdCSI-RS:
an RSRP threshold for the selection of CSI-RS for 4-step RA type.If the Random Access procedure is initiated for beam failure recovery,rsrp-ThresholdCSI-RS is equal to rsrp-ThresholdSSB in BeamFailureRecoveryConfig IE。
即:
rsrp-ThresholdSSB,UE可基于满足阈值(rsrp-ThresholdSSB)的SSB来选择SSB和对应的RPACH资源,以用于路径损耗估计和重传;
rsrp-ThresholdSSB,用于确定候选波束是否可被UE用来尝试无竞争随机接入以从波束故障中恢复的L1-RSRP阈值。
rsrp-ThresholdSSB-SUL,UE基于该阈值(rsrp-ThresholdSSB-SUL)选择SUL载波来执行随机接入;该rsrp-ThresholdSSB-SUL适用于所有的带宽。其中,所有的带宽包括以下的至少一种:包括专用于RedCap UE的带宽、专用于普通UE的带宽、RedCap UE和普通UE共用的带宽。
msgA-RSRP-Threshold,基于该阈值(msgA-RSRP-Threshold)选择2步随机接入类型来执行随机接入;只有在为BWP配置2步随机接入和4步随机接入,指示msgA-RSRP-Threshold的字段才会出现。
msgA-RSRP-ThresholdSSB,UE可基于满足阈值(msgA-RSRP-ThresholdSSB)的SSB来选择SSB和对应的PRACH资源,以用于路径损耗估计和重传。
rsrp-ThresholdCSI-RS,4步随机接入类型选择CSI-RS的RSRP门限值;若针对波束失败恢复发起的随机接入过程,该阈值(rsrp-ThresholdCSI-RS)等于波束失败恢复配置的信息单元(IE)中的rsrp-ThresholdSSB。
在一些实施例中,RedCap UE支持以下至少之一的天线结构:
在FR1的RedCap UE支持2根接收天线或者1根接收天线的天线结构;
在FR2的RedCap UE支持2根接收天线的天线结构;且各接收天线上有N个天线振子或者各接收天线包含
Figure PCTCN2022085667-appb-000001
个天线振子;其中,N可为大于1的整数。
如图2所示,本公开实施例提供一种RSRP门限确定方法,由网络设备执行,包括:
步骤S21:发送配置信息,其中,配置信息,用于指示至少一种天线结构的UE对应的RSRP门限相关参数;其中,同一FR下不同天下结构的UE对应的RSRP门限值不同。
在一种实现方式中,同一FR下不同天线结构对应的RSRP门限相关参数不同。
在另一种实现方式中,在本公开的每一个实施例中,不同FR下不同天线结构对应的RSRP门限相关参数相同或者不同。当然,有可能出现不同FR下的不同天线结构采用相同的RSRP门限相关参数;例如,在FR1下的第一种天线结构对应的RSRP门限相关参数,与FR2下的第一种天线结构对应的RSRP门限相关参数,既可以相同,也可以不同。
在一种实现方式中,网络设备可根据UE支持的天线结构,对UE配置对应的RSRP门限相关参数。在另一种实现方式中,网路设备可根据UE支持的天线结构和UE所在的频率范围(FR),确定UE的RSRP门限相关参数。
这里,该网络设备可以是但不限于是接入网设备或者核心网设备。该接入网设备可以是各种类型基站;例如可以是2G基站、3G基站、4G基站、5G基站或其它演进型基站。该核心网设备可以是但不限于是核心网的各种实体或者网元功能。
该步骤21,可以是:网络设备向UE发送配置信息。这里,该UE可以是各种移动终端或固定终端。例如,该UE可以是但不限于是手机、计算机、服务器、可穿戴设备、游戏控制平台或多媒体设备等。例如,该UE可以是RedCap UE或者5G NR-lite UE等。
这里,若是核心网设备发送配置信息,则可以是:核心网设备将配置信息发送给基站,将配置信息发送给UE。
该步骤S21,可以是:网络设备向UE发送系统消息,系统消息中携带配置信息。该系统消息可以是SIB-X;例如可以是SIB1、SIB2、SIB3、SIB4、SIB5、或者SIB11等。
该步骤S21中可以是通过任意一种消息发送配置信息;例如RRC消息或者寻呼消息等;在此不对发送配置信息的消息作限制。
该步骤S21,可以是:网络设备向一个或多个UE发送配置信息。在本公开的一些实施例中,多个是指2个或2个以上。当网络设备向多个UE发送配置信息时,可以是向一个小区内的多个UE发送配置信息。
这里,配置信息可包括:至少一种天线结构与该天线结构对应的RSRP门限相关参数。如此,UE可以通过UE的天线结构及配置信息,确定出与UE的天线结构对应的RSRP门限相关参数。
在一些实施例中,配置信息,用于指示至少一种FR下的至少一种天线结构的UE对应的RSRP门限相关参数。这里,FR包括但不限于以下至少之一:第一频率范围及第二频率范围。该第一频率范围可以是FR1;该第二频率范围可以是FR2。
示例性的,配置信息,用于指示第一频率范围下的至少一种天线结构的UE对应的RSRP门限相关参数,和/或,用于指示第二频率范围下的至少一种天线结构的UE对应的RSRP门限相关参数。
这里,配置信息可包括:至少一种FR下的至少一种天线结构与该FR下该天线结构对应的RSRP门限相关参数。
在一些实施例中,UE的天线结构包括但不限于以下至少之一:
第一频率范围下UE的天线结构;其中,第一频率范围下的UE天线结构包括:1根或者2根接收天线的天线结构或者M根接收天线的天线结构;其中,M为大于1的整数;
第二频率范围下UE的天线结构;其中,第二频率范围下的UE天线结构包括:2根接收天线接收天线,且各接收天线的天线振子为第一预定数量或者第二预定数量的天线结构;其中,第一预定数量与第二预定数量不同;其中,第一频率范围与第二频率范围所包括的频率范围不同。
在一个实施例中,第一频率范围包括:FR1;和/或,第二频率范围包括:FR2。示例性的,FR1对应的频率范围可为450MHz至6000MHz;FR2对应的频率范围可为:24250MHz至52600MHz。
当然,在其它实施例中,第一频率范围和第二频率范围可以是任意频率范围,只需满足第一频率范围的上限值小于第二频率范围的下限值、或者只需满足第一频率范围的中心值小于第二频率范围的中心值即可。
示例性的,FR1下UE的天线结构可以是:包括1根接收天线或者2根接收天线的天线结构;FR1下UE的天线结构可以是:包括2根接收天线且各接收天线包括N个天线振子的天线结构,或者包括2根接收天线且各接收天线包括
Figure PCTCN2022085667-appb-000002
个天线振子的天线结构;其中,N为大于1的偶数。
在一些实施例中,RSRP门限相关参数,包括但不限于以下至少之一:
RSRP门限值;
偏移门限值。
在一些实施例中,RSRP门限值,包括但以下至少之一:
同步信号块的参考信号接收功率门限值(rsrp-ThresholdSSB),用于使UE确定是否允许选择RSRP大于rsrp-ThresholdSSB的SSB所对应的PRACH资源执行操作;
信道状态信息参考信号的参考信号接收功率门限值(rsrp-ThresholdCSI-RS),用于使UE确定是否允许选择RSRP大于rsrp-ThresholdCSI-RS的CSI-RS执行操作;
随机接入时同步信号块的参考信号接收功率门限值(msgA-RSRP-ThresholdSSB),用于使UE确定是否允许选择RSRP大于msgA-RSRP-ThresholdSSB的SSB所对应的MsgA的RPACH执行操作;
随机接入参考信号接收功率门限值(msgA-RSRP-Threshold),用于使UE确定是否选择2步随机接入类型执行随机接入,和/或确定是否允许选择RSRP大于msgA-RSRP-Threshold的RACH资源执行随机接入;
波束失败恢复参考接收功率门限值(rsrp-ThresholdBFR),用于使UE确定在波束失败恢复时是否允许选择RSRP大于rsrp-ThresholdBFR的RACH资源执行随机接入。
在一些实施例中,配置信息,用于指示以下至少之一:
第一频率范围下至少2根接收天线的UE对应的RSRP门限值为第一RSRP门限;
第一频率范围下1根接收天线的UE对应的RSRP门限值为第二RSRP门限值和/或偏移门限值为第一偏移门限值;其中,第二RSRP门限值小于第一RSRP门限值;
第二频率范围下各接收天线的天线振子为第一预定数量的天线结构的UE对应的RSRP门限值为第三RSRP门限值;
第二频率范围下各接收天线的天线振子为第二预定数量的天线结构的UE对应的RSRP门限值为第四RSRP门限值和/或偏移门限值为第二偏移门限值;
其中,第一预定数量大于第二预定数量;第三RSRP大于第四RSRP。
其中,第一偏移门限值是指,相比较第一RSRP门限的一个偏移量。例如,第一RSRP门限为100,第一偏移门限值为10,则可以确定第一频率范围下1根接收天线的UE对应的RSRP门限值(为第二RSRP门限值)为100-10=90。又如,第一RSRP门限为-100,第一偏移门限值为-10,则可以确定第一频率范围下1根接收天线的UE对应的RSRP门限值(为第二RSRP门限值)为-100+(-10)=(-110)。
相同的,其中,第二偏移门限值是指,相比较第三RSRP门限的一个偏移量。例如,第三RSRP门限为100,第二偏移门限值为10,则可以确定第二频率范围下各接收天线的天线振子为第二预定数量的天线结构的UE对应的RSRP门限值(第四RSRP门限值)为100-10=90。又如,第三RSRP门限为-100,第二偏移门限值为-10,则可以确定第二频率范围下各接收天线的天线振子为第二预定数量的天线结构的UE对应的RSRP门限值(为第四RSRP门限值)为-100+(-10)=(-110)。
示例性的,该配置信息用于指示以下至少之一:
FR1下UE支持2根接收天线的天线结构对应的RSRP门限值为第一RSRP门限值;
FR1下UE支持1根接收天线的天线结构对应的RSRP门限值为第二RSRP门限值和/或偏移门限值为第一偏移门限值;
FR2下UE各接收天线包括N个天线振子的天线结构的对应的RSRP门限值为第三RSRP门限值;
FR2下UE各接收天线包括
Figure PCTCN2022085667-appb-000003
个天线振子的天线结构对应的RSRP门限值为第四RSRP门限值和/或偏移门限值为第二偏移门限值;其中,N为大于1的偶数。
在一个实施例中,第一RSRP门限值与第三RSRP门限值相同;和/或,第二RSRP门限值与第四RSRP门限值相同;和/或,第一偏移门限值与第二偏移门限值相同。
在另一个实施例中,第一RSRP门限值与第三RSRP门限值不同;和/或,第二RSRP门限值与第四RSRP门限值不同;和/或,第一偏移门限值与第二偏移门限值不同。
在本公开实施例中,可以通过网络设备向UE发送配置信息,其中,配置信息包括:至少一种天线结构的UE的RSRP门限相关参数;其中,配置信息,用于不同天线结构的UE确定对应的RSRP门限相关参数。如此,可以对于同一FR下不同天线结构的UE配置不同的RSRP门限相关参数,即针对不同天线结构的传输性能配置合适的RSRP门限相关参数。如此,一方面可以降低对于天线结构相对复杂的UE因配置过低的RSRP门限接入小区后通信质量不佳情况出现;另一方面可以降低对于天线结构相对简单的UE因配置相对过高的RSRP门限而导致的资源浪费情况的出现。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图3所示,本公开实施例提供一种RSRP门限确定方法,由网络设备执行,包括:
步骤S31:基于UE的天线结构,确定UE的RSRP门限相关参数。
在本公开的一些实施例中,天线结构可以为上述步骤S21的天线结构;RSRP门限相关参数为上述步骤S21的RSRP门限相关参数;第一频率范围可以为上述实施例中第一频率范围;第二频率范围可以为上述实施例中第二频率范围。
不同天线结构对应的RSRP门限相关参数不同。
在另一种实现方式中,不同FR下不同天线结构对应的RSRP门限相关参数相同或者不同。当然,有可能出现不同FR下的不同天线结构采用相同的RSRP门限相关参数。例如,在FR1下的第一种天线结构对应的RSRP门限相关参数,与FR2下的第一种天线结构对应的RSRP门限相关参数,既可以相同,也可以不同。
在一些实施例中,步骤S31,包括:
基于UE支持的接收天线数量的天线结构,确定UE的RSRP门限值;
和/或,
基于UE各接收天线的天线振子数量的天线结构,确定UE的RSRP门限值。
如图4所示,本公开实施例提供一种RSRP门限确定方法,由网络设备执行,可包括:
步骤S41:基于UE支持的接收天线数量的天线结构,确定UE的RSRP门限值;和/或,基于UE各接收天线的天线振子数量的天线结构,确定UE的RSRP门限值。
本公开实施例提供一种RSRP门限确定方法,由网络设备执行,可包括:基于UE支持的接收天线数量的天线结构及UE工作的频率范围,确定UE的RSRP门限值。
本公开实施例提供一种RSRP门限确定方法,由网络设备执行,可包括:基于UE各接收天线的天线振子数量的天线结构及UE工作的频率范围,确定UE的RSRP门限值。
在一些实施例中,该步骤S41中基于UE支持的接收天线数量的天线结构,确定UE的RSRP门限值,包括:
响应于在第一频率范围下UE支持至少2根接收天线的天线结构,确定UE的RSRP门限值为第一RSRP门限值;或者,
响应于在第一频率范围下UE支持1根接收天线的天线结构,确定UE的RSRP门限值为第二RSRP门限值;
其中,第一RSRP门限值大于第二RSRP门限值。
本公开实施例提供一种RSRP门限确定方法,由网络设备执行,可包括:响应于在第一频率范围下UE支持至少2根接收天线的天线结构,确定UE的RSRP门限值为第一RSRP门限值。
示例性的,网络设备若确定出FR1下的UE支持至少2根接收天线的天线结构,则确定该UE的RSRP门限值为第一RSRP门限值。这里,该第一RSRP门限值可以是传统3GPP Release 15和/或Release 16中规定的UE使用的RSRP门限值。或,第一RSRP门限值可以是普通UE使用的RSRP门限值。
本公开实施例提供一种RSRP门限确定方法,由网络设备执行,可包括:响应于在第一频率范围下UE支持1根接收天线的天线结构,确定UE的RSRP门限值为第二RSRP门限值。
示例性的,网络设备若确定出FR2下的UE支持1根接收天线的天线结构,确定该UE的RSRP门限值为第二RSRP门限值。这里,该第二RSRP门限值可以是网络设备定义的一个单独的RSRP门限值,或者该第二RSRP门限值可以是无线通信协议中规定的一个RSRP门限值;只需该第二RSRP门限值小于第一RSRP门限值即可。或,第二RSRP门限值小于3GPP Release 15和/或Release 16中规定的UE使用的RSRP门限值。
如此,在本公开实施例中,对于FR1下UE支持的不同接收天线的天线结构,可设置不同的RSRP门限值;该RSRP门限值的大小与UE支持的接收天线的数量呈正相关。如此可以使得天线结构相对复杂的UE设置相对较高RSRP门限值(第一RSRP门限值),从而使得该UE被允许接入等操作所需测量的RSRR测量值也相对较高;或者使得天线结构相对简单的UE设置相对较低RSRP门限值,从而使得该UE被允许接入等操作所需测量的RSRP测量值也相对较低(第二RSRP门限值); 如此可以使得不同天线结构的UE设置合适的RSRP门限值以便于不同天线结构的UE能基于合适的RSRP测量值接入小区等。若使用基于合适的RSRP测量接入小区等,可以提高接入小区后UE的稳定性等。
在一些实施例中,该步骤S41中基于UE各接收天线的天线振子数量的天线结构,确定UE的RSRP门限值,包括:
响应于在第二频率范围下UE各接收天线的天线振子为第一预定数量的天线结构,确定UE的RSRP门限值为第三RSRP门限值;或者,
响应于在第二频率范围下UE各接收天线的天线振子为第二预定数量的天线结构,确定UE的RSRP门限值为第四RSRP门限值;
其中,第一预定数量大于第二预定数量;第三RSRP门限值大于第四RSRP门限值。
在一个实施例中,第一预定数量可以是第二预定数量的2倍。
本公开实施例提供一种RSRP门限确定方法,由网络设备执行,可包括:响应于在第二频率范围下UE各接收天线的天线振子为第一预定数量的天线结构,确定UE的RSRP门限值为第三RSRP门限值。
在一个实施例中,第一预定数量为N;其中,N为大于0的整数。
示例性的,网络设备若确定出FR2下UE各接收天线的天线振子为N个的天线结构,则确定该UE的RSRP门限值为第三RSRM门限值。这里,该第三RSRP门限值可以是传统R15和/或R16的UE使用的RSRP门限值。
在一个实施例中,第三RSRP门限值与第一RSRP门限值相等。在另一个实施例中,第三RSRP门限值与第一RSRP门限值不相等。
本公开实施例提供一种RSRP门限确定方法,由网络设备执行,可包括:响应于在第二频率范围下UE各接收天线的天线振子为第二预定数量的天线结构,确定UE的RSRP门限值为第四RSRP门限值。
在一个实施例中,第二预定数量为
Figure PCTCN2022085667-appb-000004
其中,N为大于0的偶数。
示例性的,网络设备若确定出FR2下UE各接收天线的天线振子为
Figure PCTCN2022085667-appb-000005
个的天线结构,则确定该UE的RSRP门限值为第四RSRP门限值。这里,该第四RSRP门限值可以是网络设备定义的一个单独的RSRP门限值,或者该第四RSRP门限值可以是无线通信协议中规定的一个RSRP门限值;只需该第四RSRP门限值小于第三RSRP门限值即可。
在一个实施例中,第四RSRP门限值与第二RSRP门限值相等。在另一个实施例中,第四RSRP门限值与第二RSRP门限值不相等。
如此,在本公开实施例中,对于FR2下UE各接收天线包括不同数量天线振子的天线结构,可设置不同的RSRP门限值;该RSRP门限值大小与UE各接收天线支持的天线振子的数量呈正相关。 如此可以使得天线结构相对复杂的UE设置相对较高的RSRP门限值,从而使得该UE被允许接入等操作所需测量的RSRP测量值也相对较高;或者使得天线结构相对简单的UE设置相对较低RSRP门限值,从而使得该UE被允许接入等操作所需测量的RSRP测量值也相对较低;如此可以使得不同天线结构的UE设置合适的RSRP门限值以便于不同天线结构的UE能基于合适的RSRP测量值接入小区等。
在一些实施例中,步骤S31,包括:
基于UE支持的接收天线数量的天线结构,确定UE的偏移门限值;
和/或,
基于UE各接收天线的天线振子数量的天线结构,确定UE的偏移门限值。
这里,偏移门限值是指,相比较RSRP门限的一个偏移量。例如,RSRP门限为100,偏移门限值为10;则可以确定UE对应的RSRP门限值为100-10=90。
本公开实施例提供一种RSRP门限确定方法,由网络设备执行,可包括:基于UE支持的接收天线数量的天线结构及UE工作的频率范围,确定UE的偏移门限值。
如图5所示,本公开实施例提供一种RSRP门限确定方法,由网络设备执行,可包括:
步骤S51:基于UE支持的接收天线数量的天线结构,确定UE的RSRP门限值;和/或,基于UE各接收天线的天线振子数量的天线结构,确定UE的RSRP门限值。
在一些实施例中,该步骤S51中基于UE支持的接收天线数量的天线结构,确定UE的偏移门限值,包括:
基于在第一频率范围下UE支持1根接收天线结构,确定UE的偏移门限值为第一偏移门限值。
本公开实施例提供一种RSRP门限值确定方法,由网络设备执行,可包括:基于在第一频率范围下UE支持1根接收天线结构,确定UE的偏移门限值为第一偏移门限值。
示例性的,网络设备若确定出FR1下UE支持1根接收天线的天线结构,则确定该RSRP门限值为第二RSRP门限值和/或确定UE的偏移门限值为第一偏移门限值。这里,第一偏移门限值可以是任意值。
在一个实施例中,第一RSRP门限值及第一偏移门限值之和为第二RSRP门限值。
这里,若UE为FR1下支持2根接收天线的天线结构的UE,则该UE的偏移门限值为零。
本公开实施例提供一种RSRP门限确定方法,由网络设备执行,可包括:基于UE各接收天线的天线振子数量的天线结构及UE工作的频率范围,确定UE的偏移门限值。
在一些实施例中,该步骤S51中基于UE各接收天线的天线振子数量的天线结构,确定UE的偏移门限值,包括:
基于在第二频率范围下UE各接收天线的天线振子为第二预定数量的天线结构,确定UE的偏移门限值为第二偏移门限值。
本公开实施例提供一种RSRP门限值确定方法,由网络设备执行,可包括:基于在第二频率范围下UE各接收天线的天线振子为第二预定数量的天线结构,确定UE的偏移门限值为第二偏移门限 值。
示例性的,网络设备若确定出FR2下UE各接收天线的天线振子为
Figure PCTCN2022085667-appb-000006
个的天线结构,则确定该RSRP门限值为第四RSRP门限值和/或确定UE的偏移门限值为第二偏移门限值。这里,第二偏移门限值可以是任意值。该第二偏移门限值可以与第一偏移门限值相等或者不相等。
在一个实施例中,第三RSRP门限值及第二偏移门限值之和为第四RSRP门限值。
这里,若UE为FR2下各接收天线的天线振子为N个的天线结构,则该UE偏移门限值为零。
如此,在本公开实施例中,可以对天线结构相对较为简单的UE,确定相对与天线结构相对复杂的UE确定一个偏移门限值;使得天线结构相对较为简单的UE可以基于该偏移门限值修正RSRP门限值,从而得到合适该UE天线结构的RSRP门限值。
本公开实施例提供一种RSRP门限值确定方法,由网络设备执行,可包括:基于无线通信协议,获取偏移门限值;或者,预先设置偏移门限值。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
在一些实施例中,配置信息,用于指示至少一种天线还用于指示预定功率等级的UE对应的RSRP门限相关参数;其中,所述预定功率等级的UE对应的RSRP门限值相关参数,包括:第四RSRP门限值和/或第二偏移门限值。
在一些实施例中,配置信息包括:至少一个功率等级的UE的RSRP门限相关参数;RSRP门限相关参数包括:RSRP门限值和/或偏移门限值。
这里,配置信息可包括:至少一个功率等级的UE及与该功率等级对应的RSRP门限相关参数。
如此,本公开实施例,还可以基于不同的功率等级的UE,确定出该UE的RSRP门限参数。
在一些实施例中,配置信息包括:预定功率等级的UE对应的RSRP门限相关参数;其中,预定功率等级的UE对应的RSRP门限值相关参数,包括:第四RSRP门限值和/或第二偏移门限值。
在一个实施例中,预定功率等级可以是PC7功率等级。这里,可以对FR2下UE各接收天线的天线振子为
Figure PCTCN2022085667-appb-000007
个的天线结构,确定PC7功率等级。
在一个实施例中,配置信息包括:PC7功率等级的UE对应的RSRP门限值为第二RSRP门限值和/或第二偏移门限值。
如此,在本公开实施例中,也可以使得UE确定自身是否为预定功率等级;若是可以基于配置信息确定与UE的预定功率等级对应的RSRP门限相关参数。如此可以使得UE可通过多种方式有效确定出UE合适的RSRP门限值和/或偏移门限值。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
以下一种RSRP门限确定方法,是由UE执行的,与上述由网络设备执行的RSRP门限确定方法的描述是类似的;且,对于由UE执行的RSRP门限确定方法实施例中未披露的技术细节,请参照由网络设备执行的RSRP门限确定方法示例的描述,在此不做详细描述说明。
如图6所示,本公开实施例提供一种RSRP门限确定方法,其中,由UE执行,包括:
步骤S61:接收配置信息,其中,配置信息,用于指示至少一种天线结构的UE对应的RSRP门限相关参数;
其中,同一FR下不同天线结构的UE对应的RSRP门限值不同;
步骤S62:基于配置信息及UE的天线结构,确定UE的RSRP门限相关参数。
在本公开的一些实施例中,配置信息可以为上述步骤21中配置信息;天线结构可以为上述步骤S21中天线结构;RSRP门限相关参数可以上述步骤S21中RSRP门限相关参数。
例如,该RSRP门限相关参数,包括以下至少之一:
RSRP门限值;
偏移门限值。
又如,RSRP门限值,包括但以下至少之一:
同步信号块的参考信号接收功率门限值(rsrp-ThresholdSSB),用于使UE确定是否允许选择RSRP大于rsrp-ThresholdSSB的SSB所对应的PRACH资源执行操作;
信道状态信息参考信号的参考信号接收功率门限值(rsrp-ThresholdCSI-RS),用于使UE确定是否允许选择RSRP大于rsrp-ThresholdCSI-RS的CSI-RS执行操作;
随机接入时同步信号块的参考信号接收功率门限值(msgA-RSRP-ThresholdSSB),用于使UE确定是否允许选择RSRP大于msgA-RSRP-ThresholdSSB的SSB所的对应的MsgA的PRACH资源执行操作;
随机接入参考信号接收功率门限值(msgA-RSRP-Threshold),用于使UE确定是否选择2步随机接入类型执行随机接入,和/或确定是否允许选择RSRP大于msgA-RSRP-Threshold的RACH资源执行随机接入;
波束失败恢复参考接收功率门限值(rsrp-ThresholdBFR),用于使UE确定在波束失败恢复时是否允许选择RSRP大于rsrp-ThresholdBFR的RACH资源执行随机接入。
再如,该配置信息,可用于指示至少一种FR下的至少一种天线结构的UE对应的RSRP门限相关参数。
该配置信息,可用于指示第一频率范围下的至少一种天线结构的UE对应的RSRP门限相关参数,和/或,可用于指示第二频率范围下的至少一种天线结构的UE对应的RSRP门限相关参数。
该配置信息,可用于指示以下至少之一:
第一频率范围下至少2根接收天线的UE对应的RSRP门限值为第一RSRP门限;
第一频率范围下1根接收天线的UE对应的RSRP门限值为第二RSRP门限值和/或偏移门限值为第一偏移门限值;其中,所述第二RSRP门限值小于所述第一RSRP门限值;
第二频率范围下各接收天线的天线振子为第一预定数量的天线结构的UE对应的RSRP门限值为第三RSRP门限值;
第二频率范围下各接收天线的天线振子为第二预定数量的天线结构的UE对应的RSRP门限值为第四RSRP门限值和/或偏移门限值为所述第二偏移门限值;
其中,所述第一预定数量大于所述第二预定数量;所述第三RSRP大于所述第四RSRP。
示例性的,该配置信息用于指示以下至少之一:
FR1下UE支持2根接收天线的天线结构对应的RSRP门限值为第一RSRP门限值;
FR1下UE支持1根接收天线的天线结构对应的RSRP门限值为第二RSRP门限值和/或偏移门限值为第一偏移门限值;
FR2下UE各接收天线包括N个天线振子的天线结构的对应的RSRP门限值为第三RSRP门限值;
FR2下UE各接收天线包括
Figure PCTCN2022085667-appb-000008
个天线振子的天线结构对应的RSRP门限值为第四RSRP门限值和/或偏移门限值为第二偏移门限值;其中,N为大于1的偶数。
本公开实施例提供一种RSRP门限确定方法,由UE执行,包括:基于UE的RSRP门限相关参数,确定UE是否允许接入小区和/或是否执行波束恢复相关操作。
本公开实施例提供一种RSRP门限确定方法,由UE执行,可包括:
基于UE的RSRP测量值大于或等于RSRP门限值,确定UE允许接入小区和/或执行波束恢复相关操作;
或者,
基于UE的RSRP测量值小于RSRP门限值,确定UE不允许接入小区和/或执行波束恢复相关操作。
这里,执行波束恢复相关操作,可以是但不限于是:选择大于RSRP门限值的SSB和/或CSI-RS进行随机接入。
如此,本公开实施例中,UE可通过判断RSRP测量值与RSRP门限值的大小,准确确定当前UE是否合适接入小区和/或执行波束恢复相关操作。如此可以提高UE接入小区的概率和/或波束恢复成功的成功率,或者可以降低因在不合适的时机接入小区或者执行波束恢复操作所导致的资源的浪费等。
在一些实施例中,步骤S62,包括:
基于配置信息及UE的天线结构,确定UE对应的RSRP门限值;
或者,
基于配置信息及UE的天线结构,确定UE增加的偏移门限值。
本公开实施例提供一种RSRP确定方法,由UE执行,包括:
基于配置信息及UE的天线结构,确定UE对应的RSRP门限值;或者,
基于配置信息及UE的天线结构,确定UE增加的偏移门限值。
在本公开的一些实施例中,第一频率范围和第二频率范围范围分别为上述实施例中第一频率范围和第二频率范围。
本公开实施例提供一种RSRP确定方法,由UE执行,包括:基于配置信息、UE的天线结构及UE工作的频率范围,确定UE对应的RSRP门限值。
本公开实施例提供一种RSRP确定方法,由UE执行,包括:基于配置信息、UE的天线结构及UE工作的频率范围,确定UE增加的偏移门限值。
在一些实施例中,基于配置信息及UE的天线结构,确定UE对应的RSRP门限值,包括:
响应于在第一频率范围下UE支持至少2根接收天线的天线结构,基于配置信息确定UE对应的RSRR门限值为第一RSRP门限值;或者,
响应于在第一频率范围下UE支持1根接收天线的天线结构,基于配置信息确定UE对应的RSRP门限值为第二RSRP门限值;其中,第一RSRP门限值大于第二门限值。
本公开实施例提供一种RSRP确定方法,由UE执行,包括:响应于在第一频率范围下UE支持至少2根接收天线的天线结构,基于配置信息确定UE对应的RSRR门限值为第一RSRP门限值。
示例性的,FR1下的UE确定为支持2根接收天线的天线结构的UE;该UE获取配置信息,该配置信息至少用于指示:FR1下UE支持2根接收天线的天线结构对应的RSRP门限值为第一RSRP门限值;则该UE确定出与该UE对应的RSRP门限值为第一RSRP门限值。
本公开实施例提供一种RSRP确定方法,由UE执行,包括:响应于在第一频率范围下UE支持1根接收天线的天线结构,基于配置信息确定UE对应的RSRP门限值为第二RSRP门限值。
示例性的,FR1下的UE确定为支持1根接收天线的天线结构的UE;该UE获取配置信息,该配置信息至少用于指:FR1下UE支持1根接收天线的天线结构对应的RSRP门限值为第二RSRP门限值;则该UE确定出与该UE对应的RSRP门限值为第二RSRP门限值。
在一些实施例中,基于配置信息及UE的天线结构,确定UE对应的RSRP门限值,包括:
响应于在第二频率范围下UE各接收天线的天线振子为第一预定数量的天线结构,基于配置信息确定UE对应的RSRP门限值为第三RSRP门限值;或者,
响应于在第二频率范围下UE各接收天线的天线振子为第二预定数量的天线结构,基于配置信息确定UE对应的RSRP门限值为第四RSRP门限值;其中,第一预定数量大于第二预定数量;第三RSRP门限值大于第四RSRP门限值。
本公开实施例提供一种RSRP确定方法,由UE执行,包括:响应于在第二频率范围下UE各接收天线的天线振子为第一预定数量的天线结构,基于配置信息确定UE对应的RSRP门限值为第三RSRP门限值。
示例性的,FR2下的UE确定为各接收天线的天线振子为N个的天线结构;该UE获取配置信息,该配置信息至少用于指示:FR2下UE各接收天线的天线振子为N个的天线结构对应的RSRP门限值为第三RSRP门限值;则该UE确定出与该UE对应的RSRP门限值为第三RSRP门限值。
本公开实施例提供一种RSRP确定方法,由UE执行,包括:响应于在第二频率范围下UE各接收天线的天线振子为第二预定数量的天线结构,基于配置信息确定UE对应的RSRP门限值为第四RSRP门限值。
示例性的,FR2下的UE确定为各接收天线的天线振子为
Figure PCTCN2022085667-appb-000009
个的天线结构;该UE获取配置信息,该配置信息至少用于指示:FR2下UE各接收天线的天线振子为
Figure PCTCN2022085667-appb-000010
个的天线结构对应的RSRP门限值为第四RSRP门限值;则该UE确定出与该UE对应的RSRP门限值为第四RSRP门限值。
在一些实施例中,基于配置信息及UE的天线结构,确定UE增加的偏移门限值,包括:
响应于在第一频率范围下UE支持1根接收天线结构,确定UE增加的偏移门限值为第一偏移门限值。
本公开实施例提供一种RSRP门限确定方法,由UE执行,包括:响应于在第一频率范围下UE支持1根接收天线结构,确定UE增加的偏移门限值为第一偏移门限值。
示例性的,FR1下的UE确定为支持1根接收天线的天线结构的UE;该UE获取配置信息,该配置信息至少用于指示:FR1下UE支持1根接收天线的天线结构对应的门限值为第二RSRP门限值和/或偏移门限值为第一偏移门限值;则该UE确定出与该UE对应的RSRP门限值为第二RSRP门限值和/或增加的偏移门限值为第一偏移门限值。
这里,若FR1下的UE确定为支持1根据接收天线的天线结构的UE,且该UE获取到偏移门限值为第一偏移门限值;则UE也可以基于第一门限值及第一偏移门限值之和,确定UE的第二RSRP门限值;其中,该第一门限值为FR1下UE支持2根接收天线的天线结构对应的RSRP门限值。
在一些实施例中,基于配置信息及UE的天线结构,确定UE增加的偏移门限值,包括:响应于在第二频率范围下UE各接收天线的天线振子为第二预定数量的天线结构,确定UE的偏移门限值为第二偏移门限值。
本公开实施例提供一种RSRP门限确定方法,由UE执行,包括:响应于在第二频率范围下UE各接收天线的天线振子为第二预定数量的天线结构,确定UE的偏移门限值为第二偏移门限值。
示例性的,FR2下的UE确定为各接收天线的天线振子为
Figure PCTCN2022085667-appb-000011
个的天线结构;该UE获取配置信息,该配置信息至少用于指示:FR2下UE各接收天线的天线振子为
Figure PCTCN2022085667-appb-000012
个的天线结构对应的RSRP门限值为第四RSRP门限值和/或偏移门限值为第二偏移门限值;则该UE确定出与该UE对应的RSRP门限值为第四RSRP门限值和/或增加的偏移门限值为第二偏移门限值。
这里,若FR2下的UE确定为各接收天线的天线振子为
Figure PCTCN2022085667-appb-000013
个的天线结构UE,且该UE获取到偏移门限值为第二偏移门限值;则UE也可以基于第三RSRP门限值及第二偏移门限值之和,确定UE的第四RSRP门限值;其中,该第三RSRP门限值为FR2下的UE确定为各接收天线的天线振子 为
Figure PCTCN2022085667-appb-000014
个的天线结构对应的RSRP门限值。
如此,可以通过获取不同天线结构对应的增加的偏移门限值,例如获取FR1的UE支持1根天线结构对应增加的偏移门限值,或者FR2的各接收天线的天线振子为
Figure PCTCN2022085667-appb-000015
的天线结构对应增加的偏移门限值,可以准确修正该些天线结构对应的RSRP的门限值;从而可以获得相对较为精准的RSRP门限值。如此有利于该些天线结构的UE对是否接入小区和/或执行波束恢复相关操作等做相对精准的判决。
在一些实施例中,配置信息,用于指示至少一个功率等级的UE对应的RSRP门限相关参数;RSRP门限相关参数包括:RSRP门限值和/或偏移门限值。
在一些实施例中,配置信息包括:预定功率等级的UE对应的RSRP门限相关参数;其中,预定功率等级的UE对应的RSRP门限值相关参数,包括:第四RSRP门限值和/或第二偏移门限值。
在一个实施例中,预定功率等级可以是PC7功率等级。这里,可以对FR2下UE各接收天线的天线振子为
Figure PCTCN2022085667-appb-000016
的天线结构,确定PC7功率等级。
在一个实施例中,配置信息,用于指示PC7功率等级的UE对应的RSRP门限值为第四RSRP门限值和/或偏移门限值为第二偏移门限值。
在一些实施例中,步骤S62,包括:
响应于在第二频率范围下的UE各接收天线的天线振子为第二预定数量的天线结构,确定UE为预定功率等级;
基于预定功率等级及配置信息,确定UE对应的RSRP门限值为第四RSRP门限值和/或UE增加的偏移门限值为第二偏移门限值。
如图7所示,本公开实施例提供一种RSRP门限确定方法,由UE执行,包括:
步骤S71:响应于在第二频率范围下的UE各接收天线的天线振子为第二预定数量的天线结构,确定UE为预定功率等级;
步骤S72:基于预定功率等级及配置信息,确定UE对应的RSRP门限值为第四RSRP门限值和/或UE增加的偏移门限值为第二偏移门限值。
示例性的,FR2下的UE为各接收天线的天线振子为
Figure PCTCN2022085667-appb-000017
个的天线结构,则确定该UE为PC7功率等级;该UE获取配置信息,其中,配置信息用于指示:PC7功率等级对应的RSRP门限值为第四RSRP门限值和/或偏移门限值为第二偏移门限值;则UE基于的功率等级为PC7功率等级及配置信息,确定出UE的RSRP门限值为第四RSRP门限值及UE增加的偏移门限值为第二偏移门限值。
如此,本公开实施例可以通过UE的天线结构获取UE的功率等级,并基于UE的功率等级确定出UE的RSRP门限相关参数。如此当UE无法获得包括天线结构及对应的RSRP门限相关参数的配置信息时,也可以基于UE的预定功率等级获得RSRP门限相关参数,提供了多种获得UE的RSRP 门限相关参数的方式。
本公开实施例提供一种RSRP门限确定方法,由UE执行,包括:响应于UE的当前功率等级为预定功率等级,确定UE对应的RSRP门限值为第四RSRP门限值和/或UE增加的偏移门限值为第二偏移门限值。
示例性的,UE确定UE的功率等级为PC7功率等级;该UE获取配置信息,其中,配置信息用于指示:PC7功率等级对应的RSRP门限值为第四RSRP门限值和/或偏移门限值为第二偏移门限值;则UE基于UE的功率等级为PC7功率等级及配置信息,确定出UE的RSRP门限值为第四RSRP门限值及UE增加的偏移门限值为第二偏移门限值。
如此,在本公开实施例中,也可以基于UE所在的功率等级及获取的包括功率等级与对应的RSRP门限相关参数的配置信息,直接确定出UE的RSRP门限值及偏移门限值。如此可以适用更多确定UE对应的RSRP门限相关参数的场景。
以上实施方式,具体可以参考网络设备侧的表述,在此不再赘述。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
为了进一步解释本公开任意实施例,以下提供一个具体实施例。
本公开实施例提供一种RSRP门限确定方法,由通信设备执行,通信设备包括:网络设备及UE;该RSRP门限确定方法包括:;
步骤S81:网络设备发送配置信息,其中,配置信息,用于指示至少一种天线结构的UE对应的RSRP门限值;
这里,RSRP门限值包括但不限于以下至少之一:
rsrp-ThresholdSSB;
rsrp-ThresholdCSI-RS;
msgA-RSRP-ThresholdSSB;
msgA-RSRP-Threshold;
及rsrp-ThresholdBFR。
示例性的,配置信息用于指示以下至少之一:
FR1下UE支持2根接收天线的天线结构对应的RSRP门限值为第一RSRP门限值;
FR1下UE支持1根接收天线的天线结构对应的RSRP门限值为第二RSRP门限值;
FR2下UE各接收天线包括N个天线振子的天线结构的对应的RSRP门限值为第三RSRP门限值;
FR2下UE各接收天线包括
Figure PCTCN2022085667-appb-000018
个天线振子的天线结构对应的RSRP门限值为第四RSRP门限值;其中,N为大于1的偶数。
这里,第一RSRP门限值、第二RSRP门限值均可与R15或R16的UE使用的RSRP门限值相等;第二RSRP门限值、第二RSRP门限值均可以为定义的RSRP门限值。只需满足该定义的RSRP门限值,小于R15或者R16的UE使用的RSRP门限值即可。
步骤S82:网络设备发送配置信息,其中,配置信息,用于指示至少一种天线结构的UE对应的偏移门限值;
示例性的,配置信息用于指示以下至少之一:
FR1下UE支持1根接收天线的天线结构对应的偏移门限值为第一偏移门限值;
FR2下UE各接收天线包括
Figure PCTCN2022085667-appb-000019
个天线振子的天线结构对应的偏移门限值为第二偏移门限值;其中,N为大于1的偶数。
这里,第一偏移门限值及第二偏移门限值均可以是网络设备预先设置,或者均可以是基于无线通信协议确定的。
UE获取到偏移门限值后,例如,对于FR1下支持1根接收天线的天线结构的UE,可基于FR2下支持2根接收天线的天线结构的UE对应的第一RSRP门限值及第一偏移门限值,确定FR1下支持1根接收天线的天线结构的UE的第二RSRP门限值。又如,对于FR2下支持各接收天线包括
Figure PCTCN2022085667-appb-000020
个天线振子的天线结构的UE,可基于FR2下支持各接收天线包括N天线振子的天线结构的UE的第三RSRP门限值及第二偏移门限值,确定FR2下支持各接收天线包括
Figure PCTCN2022085667-appb-000021
个天线振子的天线结构的UE的第四RSRP门限值。
步骤S83:网络设备发送配置信息,其中,配置信息,用于指示预定功率等级的UE对应的RSRP门限相关参数。
示例性的,配置信息用于指示:PC7功率等级对应的RSRP门限值为第四RSRP门限值和/或偏移门限值为第二偏移门限值。如此,对于FR2下支持各接收天线包括
Figure PCTCN2022085667-appb-000022
个天线振子的天线结构的UE,确定UE的功率等级为PC7功率等级;若该UE接收到配置信息,可基于配置信息确定出UE的RSRP门限值为第四RSRP门限值和/或偏移门限值为第二偏移门限值。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图8所示,一种RSRP门限确定装置,应用于网络设备,包括:
发送模块61,被配置为发送配置信息,其中,配置信息,用于指示至少一种天线结构的UE对应的RSRP门限相关参数其中,同一频率范围FR下不同天线结构的UE对应的RSRP门限值不同。
如图9所示,本公开实施例提供一种RSRP门限确定装置,应用于网络设备,可包括:
第一处理模块62,被配置为基于UE的天线结构,确定UE的RSRP门限相关参数。
在一些实施例中,RSRP门限相关参数,包括以下至少之一:
RSRP门限值;
偏移门限值。
在一些实施例中,配置信息,用于指示至少一种FR下的至少一种天线结构的UE对应的RSRP门限相关参数。
在一些实施例中,配置信息,用于指示第一频率范围下的至少一种天线结构的UE对应的RSRP门限相关参数,和/或,用于指示第二频率范围下的至少一种天线结构的UE对应的RSRP门限相关参数。
在一些实施例中,配置信息用于指示以下至少之一:
FR1下UE支持2根接收天线的天线结构对应的RSRP门限值为第一RSRP门限值;
FR1下UE支持1根接收天线的天线结构对应的RSRP门限值为第二RSRP门限值和/或偏移门限值为第一偏移门限值;
FR2下UE各接收天线包括N个天线振子的天线结构的对应的RSRP门限值为第三RSRP门限值;
FR2下UE各接收天线包括
Figure PCTCN2022085667-appb-000023
个天线振子的天线结构对应的RSRP门限值为第四RSRP门限值和/或偏移门限值为第二偏移门限值;其中,N为大于1的偶数。
在一些实施例中,RSRP门限值,包括以下至少之一:
同步信号块的参考信号接收功率门限值(rsrp-ThresholdSSB),用于使UE确定是否允许选择RSRP大于rsrp-ThresholdSSB的SSB所对应的PRACH资源执行操作;
信道状态信息参考信号的参考信号接收功率门限值(rsrp-ThresholdCSI-RS),用于使UE确定是否允许选择RSRP大于rsrp-ThresholdCSI-RS的CSI-RS执行操作;
随机接入时同步信号块的参考信号接收功率门限值(msgA-RSRP-ThresholdSSB),用于使UE确定是否允许选择RSRP大于msgA-RSRP-ThresholdSSB的SSB所对应的MsgA的PRACH资源执行操作;
随机接入参考信号接收功率门限值(msgA-RSRP-Threshold),用于使UE确定是否选择2步随机接入类型执行随机接入,和/或确定是否允许选择RSRP大于msgA-RSRP-Threshold的RACH资源执行随机接入;
波束失败恢复参考接收功率门限值(rsrp-ThresholdBFR),用于使UE确定在波束失败恢复时是否允许选择RSRP大于rsrp-ThresholdBFR的RACH资源执行随机接入。
在一些实施例中,网络设备可以是但不限于是:接入网设备或者核心网设备。
本公开实施例提供一种RSRP门限确定装置,应用于网络设备,可包括:
第一处理模块62,被配置为基于UE支持的接收天线数量的天线结构,确定UE的RSRP门限值;
和/或,
第一处理模块62,被配置为基于UE各接收天线的天线振子数量的天线结构,确定UE的RSRP门限值。
本公开实施例提供一种RSRP门限确定装置,应用于网络设备,可包括:
第一处理模块62,被配置为基于UE支持的接收天线数量的天线结构和UE工作的FR,确定UE的RSRP门限值;
和/或,
第一处理模块62,被配置为基于UE各接收天线的天线振子数量的天线结构和UE工作的FR,确定UE的RSRP门限值。
本公开实施例提供一种RSRP门限确定装置,应用于网络设备,可包括:第一处理模块62,被配置为响应于在第一频率范围下UE支持至少2根接收天线的天线结构,确定UE的RSRP门限值为第一RSRP门限值。
本公开实施例提供一种RSRP门限确定装置,应用于网络设备,可包括:第一处理模块62,被配置为响应于在第一频率范围下UE支持1根接收天线的天线结构,确定UE的RSRP门限值为第二RSRP门限值;其中,第一RSRP门限值大于第二RSRP门限值。
本公开实施例提供一种RSRP门限确定装置,应用于网络设备,可包括:第一处理模块62,被配置为响应于在第二频率范围下UE各接收天线的天线振子为第一预定数量的天线结构,确定UE的RSRP门限值为第三RSRP门限值。
本公开实施例提供一种RSRP门限确定装置,应用于网络设备,可包括:第一处理模块62,被配置为响应于在第二频率范围下UE各接收天线的天线振子为第二预定数量的天线结构,确定UE的RSRP门限值为第四RSRP门限值;其中,第一预定数量大于第二预定数量;第三RSRP门限值大于第四RSRP门限值。
本公开实施例提供一种RSRP门限确定装置,应用于网络设备,可包括:第一处理模块62,被配置为响应于UE支持的接收天线数量的天线结构,确定UE的偏移门限值。
本公开实施例提供一种RSRP门限确定装置,应用于网络设备,可包括:第一处理模块62,被配置为响应于UE各接收天线的天线振子数量的天线结构,确定UE的偏移门限值。
本公开实施例提供一种RSRP门限确定装置,应用于网络设备,可包括:第一处理模块62,被配置为响应于在第一频率范围下UE支持1根接收天线结构,确定UE的偏移门限值为第一偏移门限值。
本公开实施例提供一种RSRP门限确定装置,应用于网络设备,可包括:第一处理模块62,被配置为响应于在第二频率范围下UE各接收天线的天线振子为第二预定数量的天线结构,确定UE的偏移门限值为第二偏移门限值。
在一些实施例中,第一频率范围包括:FR1;和/或,第二频率范围包括:FR2。
本公开实施例提供一种RSRP门限确定装置,应用于网络设备,可包括:第一处理模块62,被 配置为基于无线通信协议,获取偏移门限值。
本公开实施例提供一种RSRP门限确定装置,应用于网络设备,可包括:第一处理模块62,被配置为预先设置偏移门限值。
在一些实施例中,配置信息,用于指示预定功率等级的UE对应的RSRP门限相关参数;其中,预定功率等级的UE对应的RSRP门限值相关参数,包括:第四RSRP门限值和/或第二偏移门限值。
如图10所示,本公实施例提供一种RSRP门限确定装置,应用于UE,包括:
接收模块71,被配置为接收配置信息,其中,配置信息,用于指示至少一种天线结构的UE对应的RSRP门限相关参数;其中,同一频率范围FR下不同天线结构的UE对应的RSRP门限值不同;
第二处理模块72,被配置为基于配置信息及UE的天线结构,确定UE的RSRP门限相关参数。
在一些实施例中,所述配置信息,用于指示至少一种所述FR下的至少一种天线结构的UE对应的所述RSRP门限相关参数。
在一些实施例中,配置信息,用于指示第一频率范围下的至少一种天线结构的UE对应的RSRP门限相关参数,和/或,用于指示第二频率范围下的至少一种天线结构的UE对应的RSRP门限相关参数。
在一些实施例中,配置信息用于指示以下至少之一:
FR1下UE支持2根接收天线的天线结构对应的RSRP门限值为第一RSRP门限值;
FR1下UE支持1根接收天线的天线结构对应的RSRP门限值为第二RSRP门限值和/或偏移门限值为第一偏移门限值;
FR2下UE各接收天线包括N个天线振子的天线结构的对应的RSRP门限值为第三RSRP门限值;
FR2下UE各接收天线包括
Figure PCTCN2022085667-appb-000024
个天线振子的天线结构对应的RSRP门限值为第四RSRP门限值和/或偏移门限值为第二偏移门限值;其中,N为大于1的偶数。
本公开实施例提供一种RSRP门限确定装置,应用于UE,包括:
第二处理模块72,被配置为基于UE的RSRP门限相关参数,确定UE是否允许接入小区和/或是否执行波束恢复相关操作。
在一些实施例中,RSRP门限相关参数,包括以下至少之一:
RSRP门限值;
偏移门限值。
在一些实施例中,RSRP门限值,包括以下至少之一:
同步信号块的参考信号接收功率门限值(rsrp-ThresholdSSB),用于UE确定是否允许选择RSRP大于rsrp-ThresholdSSB的SSB所对对应的PRACH资源执行操作;
信道状态信息参考信号的参考信号接收功率门限值(rsrp-ThresholdCSI-RS),用于UE确定是否允许选择RSRP大于rsrp-ThresholdCSI-RS的CSI-RS执行操作;
随机接入时同步信号块的参考信号接收功率门限值(msgA-RSRP-ThresholdSSB),用于UE确定是否允许选择RSRP大于msgA-RSRP-ThresholdSSB的SSB所对应的MsgA的PRACH资源执行操作;
随机接入参考信号接收功率门限值(msgA-RSRP-Threshold),用于UE确定是否选择2步随机接入类型执行随机接入,和/或确定是否允许选择RSRP大于msgA-RSRP-Threshold的RACH资源执行随机接入;
波束失败恢复参考接收功率门限值(rsrp-ThresholdBFR),用于UE确定在波束失败恢复时是否允许选择RSRP大于rsrp-ThresholdBFR的RACH资源执行随机接入。
本公开实施例提供一种RSRP确定装置,应用于UE,包括:第二处理模块72,被配置为基于配置信息及UE的天线结构,确定UE对应的RSRP门限值。
本公开实施例提供一种RSRP确定装置,应用于UE,包括:第二处理模块72,被配置为基于配置信息及UE的天线结构,确定UE增加的偏移门限值。
本公开实施例提供一种RSRP确定装置,应用于UE,包括:第二处理模块72,被配置为响应于在第一频率范围下UE支持至少2根接收天线的天线结构,基于配置信息确定UE对应的RSRR门限值为第一RSRP门限值。
本公开实施例提供一种RSRP确定装置,应用于UE,包括:第二处理模块72,被配置为响应于在第一频率范围下UE支持1根接收天线的天线结构,基于配置信息确定UE对应的RSRP门限值为第二RSRP门限值;其中,第一RSRP门限值大于第二门限值。
本公开实施例提供一种RSRP确定装置,应用于UE,包括:第二处理模块72,被配置为响应于在第二频率范围下UE各接收天线的天线振子为第一预定数量的天线结构,基于配置信息确定UE对应的RSRP门限值为第三RSRP门限值。
本公开实施例提供一种RSRP确定装置,应用于UE,包括:第二处理模块72,被配置为响应于在第二频率范围下UE各接收天线的天线振子为第二预定数量的天线结构,基于配置信息确定UE对应的RSRP门限值为第四RSRP门限值;其中,第一预定数量大于第二预定数量;第三RSRP门限值大于第四RSRP门限值。
本公开实施例提供一种RSRP确定装置,应用于UE,包括:第二处理模块72,被配置为响应于在第一频率范围下UE支持1根接收天线结构,确定UE增加的偏移门限值为第一偏移门限值。
本公开实施例提供一种RSRP确定装置,应用于UE,包括:第二处理模块72,被配置为响应于在第二频率范围下UE各接收天线的天线振子为第二预定数量的天线结构,确定UE的偏移门限值为第二偏移门限值。
在一些实施例中,配置信息,用于指示预定功率等级的UE对应的RSRP门限相关参数;其中,预定功率等级的UE对应的RSRP门限值相关参数,包括:第四RSRP门限值和/或第二偏移门限值。
本公开实施例提供一种RSRP确定装置,应用于UE,包括:
第二处理模块72,被配置为响应于在第二频率范围下的UE各接收天线的天线振子为第二预定 数量的天线结构,确定UE为预定功率等级;
第二处理模块72,被配置为基于预定功率等级及配置信息,确定UE对应的RSRP门限值为第四RSRP门限值和/或UE增加的偏移门限值为第二偏移门限值。
本公开实施例提供一种RSRP确定装置,应用于UE,包括:第二处理模块72,被配置为响应于UE的当前功率等级为预定功率等级,确定UE对应的RSRP门限值为第四RSRP门限值和/或UE增加的偏移门限值为第二偏移门限值。
在一些实施例中,第一频率范围包括:FR1;和/或,第二频率范围包括:FR2。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的装置,可以被单独执行,也可以与本公开实施例中一些装置或相关技术中的一些装置一起被执行。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供一种通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现本公开任意实施例的RSRP门限确定方法。
在一个实施例中,通信设备可以包括但不限于至少之一:核心网设备、接入网设备、及UE。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在用户设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2至图7所示的方法的至少其中之一。
本公开实施例还提供一种计算机存储介质,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的RSRP门限确定方法。例如,如图2至图7所示的方法的至少其中之一。
关于上述实施例中的装置或者存储介质,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图11是根据一示例性实施例示出的一种用户设备800的框图。例如,用户设备800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图11,用户设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制用户设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在用户设备800的操作。这些数据的示例包括用于在用户设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为用户设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为用户设备800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述用户设备800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当用户设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当用户设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为用户设备800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为用户设备800的显示器和小键盘,传感器组件814还可以检测用户设备800或用户设备800一个组件的位置改变,用户与用户设备800接触的存在或不存在,用户设备800方位或加速/减速和用户设备800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器, 压力传感器或温度传感器。
通信组件816被配置为便于用户设备800和其他设备之间有线或无线方式的通信。用户设备800可以接入基于通信标准的无线网络,如WiFi,4G或5G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,用户设备800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由用户设备800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图12所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图12,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法,例如,如图4至图10所示方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (34)

  1. 一种RSRP门限确定方法,其中,由网络设备执行,包括:
    发送配置信息,其中,所述配置信息,用于指示至少一种天线结构的用户设备UE对应的参考信号接收功率RSRP门限相关参数;其中,同一频率范围FR下不同天线结构的UE对应的RSRP门限值不同。
  2. 根据权利要求1所述的方法,其中,所述配置信息,用于指示至少一种所述FR下的至少一种天线结构的UE对应的所述RSRP门限相关参数。
  3. 根据权利要求1所述的方法,其中,所述RSRP门限相关参数,包括以下至少之一:
    RSRP门限值;
    偏移门限值。
  4. 根据权利要求2或3所述的方法,其中,所述配置信息,用于指示以下至少之一:
    第一频率范围下至少2根接收天线的UE对应的RSRP门限值为第一RSRP门限;
    第一频率范围下1根接收天线的UE对应的RSRP门限值为第二RSRP门限值和/或偏移门限值为第一偏移门限值;其中,所述第二RSRP门限值小于所述第一RSRP门限值;
    第二频率范围下各接收天线的天线振子为第一预定数量的天线结构的UE对应的RSRP门限值为第三RSRP门限值;
    第二频率范围下各接收天线的天线振子为第二预定数量的天线结构的UE对应的RSRP门限值为第四RSRP门限值和/或偏移门限值为所述第二偏移门限值;
    其中,所述第一预定数量大于所述第二预定数量;所述第三RSRP大于所述第四RSRP。
  5. 根据权利要求1或2所述的方法,其中,所述方法包括:
    基于所述UE的天线结构,确定所述UE的所述RSRP门限相关参数。
  6. 根据权利要求5所述的方法,其中,所述基于所述UE的天线结构,确定所述UE的所述RSRP门限相关参数,包括:
    基于所述UE支持的接收天线数量的天线结构,确定所述UE的所述RSRP门限值;
    和/或,
    基于所述UE各接收天线的天线振子数量的天线结构,确定所述UE的所述RSRP门限值。
  7. 根据权利要求6所述的方法,其中,所述基于所述UE支持的接收天线数量的天线结构,确定所述UE的所述RSRP门限值,包括:
    响应于在第一频率范围下所述UE支持至少2根接收天线的天线结构,确定所述UE的所述RSRP门限值为第一RSRP门限值;
    或者,
    响应于在第一频率范围下所述UE支持1根接收天线的天线结构,确定所述UE的RSRP门限值为第二RSRP门限值;
    其中,所述第一RSRP门限值大于所述第二RSRP门限值。
  8. 根据权利要求6所述的方法,其中,所述基于所述UE各接收天线的天线振子数量的天线结构,确定所述UE的所述RSRP门限值,包括:
    响应于在第二频率范围下所述UE各接收天线的天线振子为第一预定数量的天线结构,确定所述UE的所述RSRP门限值为第三RSRP门限值;
    或者,
    响应于在第二频率范围下所述UE各接收天线的天线振子为第二预定数量的天线结构,确定所述UE的所述RSRP门限值为第四RSRP门限值;
    其中,所述第一预定数量大于所述第二预定数量;所述第三RSRP门限值大于所述第四RSRP门限值。
  9. 根据权利要求5所述的方法,其中,所述基于所述UE的天线结构,确定所述UE的所述RSRP门限相关参数,包括:
    基于所述UE支持的接收天线数量的天线结构,确定所述UE的所述偏移门限值;
    和/或,
    基于所述UE各接收天线的天线振子数量的天线结构,确定所述UE的所述偏移门限值。
  10. 根据权利要求9所述的方法,其中,所述基于所述UE支持的接收天线数量的天线结构,确定所述UE的所述偏移门限值,包括:
    响应于在第一频率范围下所述UE支持1根接收天线结构,确定所述UE的所述偏移门限值为第一偏移门限值。
  11. 根据权利要求9所述的方法,其中,所述基于所述UE各接收天线的天线振子数量的天线结构,确定所述UE的所述偏移门限值,包括:
    响应于在第二频率范围下所述UE各接收天线的天线振子为第二预定数量的天线结构,确定所述UE的偏移门限值为第二偏移门限值。
  12. 根据权利要求4所述的方法,其中,
    所述第一频率范围包括:FR1;
    和/或,
    所述第二频率范围包括:FR2。
  13. 根据权利要求3所述的方法,其中,所述RSRP门限值,包括以下至少之一:
    同步信号块的参考信号接收功率门限值rsrp-ThresholdSSB,用于UE使确定是否允许选择RSRP大于rsrp-ThresholdSSB的SSB所对应的PRACH资源执行操作;
    信道状态信息参考信号的参考信号接收功率门限值rsrp-ThresholdCSI-RS,用于使UE确定是否允许选择RSRP大于rsrp-ThresholdCSI-RS的CSI-RS执行操作;
    随机接入时同步信号块的参考信号接收功率门限值msgA-RSRP-ThresholdSSB,用于使UE确定是否允许选择RSRP大于msgA-RSRP-ThresholdSSB的SSB所对应的MsgA的PRACH资源执行操作;
    随机接入参考信号接收功率门限值msgA-RSRP-Threshold,用于使UE确定是否选择2步随机接入类型执行随机接入,和/或确定是否允许选择RSRP大于msgA-RSRP-Threshold的RACH资源执行随机接入;
    波束失败恢复参考接收功率门限值rsrp-ThresholdBFR,用于使UE确定在波束失败恢复时是否允许选择RSRP大于rsrp-ThresholdBFR的RACH资源执行随机接入。
  14. 根据权利要求3所述的方法,其中,所述方法包括:
    基于无线通信协议,获取所述偏移门限值;
    或者,
    预先设置所述偏移门限值。
  15. 根据权利要求1或2所述的方法,其中,所述配置信息,还用于指示预定功率等级的UE对应的RSRP门限相关参数;其中,所述预定功率等级的UE对应的RSRP门限值相关参数,包括:第四RSRP门限值和/或第二偏移门限值。
  16. 一种RSRP门限确定方法,其中,由用户设备UE执行,包括:
    接收配置信息,其中,所述配置信息,用于指示至少一种天线结构的UE对应的参考信号接收功率RSRP门限相关参数;其中,同一频率范围FR下不同天线结构的UE对应的RSRP门限值不同;
    基于所述配置信息及所述UE的天线结构,确定所述UE的所述RSRP门限相关参数。
  17. 根据权利要求16所述的方法,其中,所述方法还包括:
    基于所述UE的所述RSRP门限相关参数,确定所述UE是否允许接入小区和/或是否执行波束恢复相关操作。
  18. 根据权利要求16所述的方法,其中,所述配置信息,用于指示至少一种所述FR下的至少一种天线结构的UE对应的所述RSRP门限相关参数。
  19. 根据权利要求16所述的方法,其中,所述RSRP门限相关参数,包括以下至少之一:
    RSRP门限值;
    偏移门限值。
  20. 根据权利要求18或19所述的方法,其中,所述配置信息,用于指示以下至少之一:
    第一频率范围下至少2根接收天线的UE对应的RSRP门限值为第一RSRP门限;
    第一频率范围下1根接收天线的UE对应的RSRP门限值为第二RSRP门限值和/或偏移门限值为第一偏移门限值;其中,所述第二RSRP门限值小于所述第一RSRP门限值;
    第二频率范围下各接收天线的天线振子为第一预定数量的天线结构的UE对应的RSRP门限值为第三RSRP门限值;
    第二频率范围下各接收天线的天线振子为第二预定数量的天线结构的UE对应的RSRP门限值为第四RSRP门限值和/或偏移门限值为所述第二偏移门限值;
    其中,所述第一预定数量大于所述第二预定数量;所述第三RSRP大于所述第四RSRP。
  21. 根据权利要求16至19任一项所述的方法,其中,所述基于所述配置信息及所述UE的天 线结构,确定所述UE的所述RSRP门限相关参数,包括:
    基于所述配置信息及所述UE的天线结构,确定所述UE对应的所述RSRP门限值;
    或者,
    基于所述配置信息及所述UE的天线结构,确定所述UE增加的偏移门限值。
  22. 根据权利要求21所述的方法,其中,所述基于所述配置信息及所述UE的天线结构,确定所述UE对应的所述RSRP门限值,包括:
    响应于在第一频率范围下所述UE支持至少2根接收天线的天线结构,基于所述配置信息确定所述UE对应的所述RSRR门限值为第一RSRP门限值;
    或者,
    响应于在第一频率范围下所述UE支持1根接收天线的天线结构,基于所述配置信息确定所述UE对应的所述RSRP门限值为第二RSRP门限值;
    其中,所述第一RSRP门限值大于所述第二门限值。
  23. 根据权利要求21所述的方法,其中,所述基于所述配置信息及所述UE的天线结构,确定所述UE对应的所述RSRP门限值,包括:
    响应于在第二频率范围下所述UE各接收天线的天线振子为第一预定数量的天线结构,基于所述配置信息确定所述UE对应的所述RSRP门限值为第三RSRP门限值;
    或者,
    响应于在第二频率范围下所述UE各接收天线的天线振子为第二预定数量的天线结构,基于所述配置信息确定所述UE对应的所述RSRP门限值为第四RSRP门限值;
    其中,所述第一预定数量大于所述第二预定数量;所述第三RSRP门限值大于所述第四RSRP门限值。
  24. 根据权利要求21所述的方法,其中,所述基于所述配置信息及所述UE的天线结构,确定所述UE增加的偏移门限值,包括:
    响应于在第一频率范围下所述UE支持1根接收天线结构,确定所述UE增加的所述偏移门限值为所述第一偏移门限值。
  25. 根据权利要求21所述的方法,其中,所述基于所述配置信息及所述UE的天线结构,确定所述UE增加的偏移门限值,包括:
    响应于在第二频率范围下所述UE各接收天线的天线振子为第二预定数量的天线结构,确定所述UE的偏移门限值为第二偏移门限值。
  26. 根据权利要求16至19任一项所述的方法,其中,所述配置信息,至少用于指示预定功率等级的UE对应的RSRP门限相关参数;其中,所述预定功率等级的UE对应的RSRP门限值相关参数,包括:第四RSRP门限值和/或第二偏移门限值。
  27. 根据权利要求26所述的方法,其中,所述基于所述配置信息及所述UE的天线结构,确定所述UE的所述RSRP门限相关参数,包括:
    响应于在第二频率范围下的所述UE各接收天线的天线振子为第二预定数量的天线结构,确定所述UE为预定功率等级;
    基于所述预定功率等级及配置信息,确定所述UE对应的所述RSRP门限值为所述第四RSRP门限值和/或所述UE增加的所述偏移门限值为所述第二偏移门限值。
  28. 根据权利要求26所述的方法,其中,所述方法包括:
    响应于所述UE的当前功率等级为所述预定功率等级,确定所述UE对应的所述RSRP门限值为所述第四门限值或者所述UE增加的所述偏移门限值为所述第二偏移门限值。
  29. 根据权利要求18、22至25的任一项所述的方法,其中,
    所述第一频率范围包括:FR1;
    和/或,
    所述第二频率范围包括:FR2。
  30. 根据权利要求19所述的方法,其中,所述RSRP门限值,包括以下至少之一:
    同步信号块的参考信号接收功率门限值rsrp-ThresholdSSB,用于使UE确定是否允许选择RSRP大于rsrp-ThresholdSSB的SSB所对应的PRACH资源执行操作;
    信道状态信息参考信号的参考信号接收功率门限值rsrp-ThresholdCSI-RS,用于使UE确定是否允许选择RSRP大于rsrp-ThresholdCSI-RS的CSI-RS执行操作;
    随机接入时同步信号块的参考信号接收功率门限值msgA-RSRP-ThresholdSSB,用于使UE确定是否允许选择RSRP大于msgA-RSRP-ThresholdSSB的SSB所对应的MsgA的PRACH资源执行操作;
    随机接入参考信号接收功率门限值msgA-RSRP-Threshold,用于使UE确定是否选择2步随机接入类型执行随机接入,和/或确定是否允许选择RSRP大于msgA-RSRP-Threshold的RACH资源执行随机接入;
    波束失败恢复参考接收功率门限值rsrp-ThresholdBFR,用于使UE确定在波束失败恢复时是否允许选择RSRP大于rsrp-ThresholdBFR的RACH资源执行随机接入。
  31. 一种RSRP门限确定装置,其中,应用于网络设备,包括:
    发送模块,被配置为发送配置信息,其中,所述配置信息,用于指示至少一种天线结构的用户设备UE对应的参考信号接收功率RSRP门限相关参数;其中,同一频率范围FR下不同天线结构的UE对应的RSRP门限值不同。
  32. 一种RSRP门限确定装置,其中,应用于用户设备UE,包括:
    接收模块,被配置为接收配置信息,其中,所述配置信息,用于指示至少一种天线结构的UE对应的参考信号接收功率RSRP门限相关参数;其中,同一频率范围FR下不同天线结构的UE对应的RSRP门限值不同;
    处理模块,基于所述配置信息及所述UE的天线结构,确定所述UE的所述RSRP门限相关参数。
  33. 一种通信设备,其中,所述通信设备,包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器被配置为:用于运行所述可执行指令时,实现权利要求1至15、或者权利要求16至30任一项所述的RSRP门限确定方法。
  34. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现权利要求1至15、或者权利要求16至30任一项所述的RSRP门限确定方法。
PCT/CN2022/085667 2022-04-07 2022-04-07 Rsrp门限确定方法、装置、通信设备及存储介质 WO2023193211A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001054.2A CN115053473A (zh) 2022-04-07 2022-04-07 Rsrp门限确定方法、装置、通信设备及存储介质
PCT/CN2022/085667 WO2023193211A1 (zh) 2022-04-07 2022-04-07 Rsrp门限确定方法、装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085667 WO2023193211A1 (zh) 2022-04-07 2022-04-07 Rsrp门限确定方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023193211A1 true WO2023193211A1 (zh) 2023-10-12

Family

ID=83168383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085667 WO2023193211A1 (zh) 2022-04-07 2022-04-07 Rsrp门限确定方法、装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN115053473A (zh)
WO (1) WO2023193211A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114902585A (zh) * 2022-04-08 2022-08-12 北京小米移动软件有限公司 一种阈值确定方法/装置/设备及存储介质
CN116830671B (zh) * 2023-05-06 2024-05-07 北京小米移动软件有限公司 Trp选择方法及装置、通信设备、通信系统及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210195654A1 (en) * 2019-12-20 2021-06-24 Qualcomm Incorporated Methods and apparatus for indicating and switching ue capabilities
CN113056926A (zh) * 2021-02-24 2021-06-29 北京小米移动软件有限公司 一种网络接入方法、网络接入装置及存储介质
CN113170344A (zh) * 2021-03-19 2021-07-23 北京小米移动软件有限公司 一种随机接入方法、随机接入装置及存储介质
CN113455076A (zh) * 2021-05-10 2021-09-28 北京小米移动软件有限公司 资源配置方法、装置、通信设备和存储介质
WO2022019817A1 (en) * 2020-07-20 2022-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Cell selection with coverage recovery for reduced capability user equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022006721A1 (zh) * 2020-07-06 2022-01-13 北京小米移动软件有限公司 通信方法、通信装置及存储介质
CN114175833A (zh) * 2020-07-10 2022-03-11 北京小米移动软件有限公司 通信方法、装置、设备及存储介质
CN111989867B (zh) * 2020-07-14 2023-04-04 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质
WO2022061555A1 (zh) * 2020-09-22 2022-03-31 华为技术有限公司 通信方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210195654A1 (en) * 2019-12-20 2021-06-24 Qualcomm Incorporated Methods and apparatus for indicating and switching ue capabilities
WO2022019817A1 (en) * 2020-07-20 2022-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Cell selection with coverage recovery for reduced capability user equipment
CN113056926A (zh) * 2021-02-24 2021-06-29 北京小米移动软件有限公司 一种网络接入方法、网络接入装置及存储介质
CN113170344A (zh) * 2021-03-19 2021-07-23 北京小米移动软件有限公司 一种随机接入方法、随机接入装置及存储介质
CN113455076A (zh) * 2021-05-10 2021-09-28 北京小米移动软件有限公司 资源配置方法、装置、通信设备和存储介质

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
OPPO: "Discussion on reduced number of UE Rx branches", 3GPP DRAFT; R1-2107250, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 7 August 2021 (2021-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052038245 *
OPPO: "Mechanism in higher&PHY layer for Reduced Capability NR Devices", 3GPP DRAFT; R1-2107252, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 7 August 2021 (2021-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052038247 *
OPPO: "Mechanism in higher&PHY layer for Reduced Capability NR Devices", 3GPP DRAFT; R1-2109084, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 2 October 2021 (2021-10-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052058044 *
OPPO: "Mechanism in higher&PHY layer for Reduced Capability NR Devices", 3GPP DRAFT; R1-2111324, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211111 - 20211119, 5 November 2021 (2021-11-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052074201 *
OPPO: "Other considerations for reduced UE capability", 3GPP DRAFT; R1-2104786, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052011027 *

Also Published As

Publication number Publication date
CN115053473A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2022099520A1 (zh) 接入控制信息处理方法及装置、通信设备及存储介质
WO2021203309A1 (zh) 配置测量信息传输方法及装置、通信设备及存储介质
WO2022056788A1 (zh) 通信方法及装置、网络设备、ue及存储介质
WO2022052024A1 (zh) 参数配置方法、装置、通信设备和存储介质
WO2023193211A1 (zh) Rsrp门限确定方法、装置、通信设备及存储介质
WO2021258364A1 (zh) 用户直连通信方法及装置、用户设备、存储介质
WO2022183456A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022236639A1 (zh) 资源配置方法、装置、通信设备和存储介质
WO2022120751A1 (zh) 通信方法及装置、接入设备、终端及存储介质
WO2021007789A1 (zh) 信息处理方法、装置及计算机存储介质
WO2023065255A1 (zh) 小区重选方法、装置、通信设备及存储介质
WO2021174510A1 (zh) 无线网络接入方法、装置、通信设备及存储介质
WO2022147662A1 (zh) 测量间隙调度方法及装置、通信设备及存储介质
WO2022006759A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021227081A1 (zh) 转移业务的方法、装置、通信设备及存储介质
EP4057551A1 (en) Downlink control information configuration method and apparatus, and communication device and storage medium
WO2023201660A1 (zh) Rsrp门限参数确定方法、装置、通信设备及存储介质
WO2023197327A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2022222145A1 (zh) 终端能力信息的上报方法、装置、通信设备及存储介质
WO2023197330A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2023201741A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2024007274A1 (zh) 接纳控制方法、装置、通信设备及存储介质
WO2023197274A1 (zh) 资源配置的方法、装置、通信设备及存储介质
WO2023221025A1 (zh) 波束确定方法、装置、通信设备及存储介质
WO2024000124A1 (zh) 寻呼协商方法、装置、通信设备及存储介质