WO2022236639A1 - 资源配置方法、装置、通信设备和存储介质 - Google Patents

资源配置方法、装置、通信设备和存储介质 Download PDF

Info

Publication number
WO2022236639A1
WO2022236639A1 PCT/CN2021/092902 CN2021092902W WO2022236639A1 WO 2022236639 A1 WO2022236639 A1 WO 2022236639A1 CN 2021092902 W CN2021092902 W CN 2021092902W WO 2022236639 A1 WO2022236639 A1 WO 2022236639A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel measurement
prach resource
different
antennas
measurement result
Prior art date
Application number
PCT/CN2021/092902
Other languages
English (en)
French (fr)
Inventor
牟勤
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180001507.7A priority Critical patent/CN113455076B/zh
Priority to PCT/CN2021/092902 priority patent/WO2022236639A1/zh
Priority to BR112023023504A priority patent/BR112023023504A2/pt
Priority to KR1020237042655A priority patent/KR20240005098A/ko
Priority to EP21941215.2A priority patent/EP4340484A1/en
Publication of WO2022236639A1 publication Critical patent/WO2022236639A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/328Reference signal received power [RSRP]; Reference signal received quality [RSRQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of wireless communication but is not limited to the technical field of wireless communication, and in particular relates to a resource configuration method, device, communication device and storage medium.
  • REDCAP lightweight user equipment
  • the signal receiving capability of the light user equipment After the capability of the light user equipment such as antenna and bandwidth is reduced, the signal receiving capability of the light user equipment will be affected. In the original standard, there may be problems in the coverage of many channels, and a coverage enhancement solution needs to be introduced.
  • the embodiments of the present disclosure provide a resource configuration method, device, communication device, and storage medium. Based on the number of antennas of the UE and the channel measurement results, jointly determine the PRACH resources corresponding to the coverage enhancement level, reduce the deviation caused by determining the coverage enhancement requirements only based on the channel measurement results, and then improve the accuracy of selecting PRACH resources indicating coverage enhancement, and reduce The unstable signal transmission caused by adopting too low coverage enhancement level, or the high power consumption problem caused by adopting too high coverage enhancement level.
  • a resource configuration method is provided, wherein the method is executed by an access network device, and the method includes:
  • PRACH Physical Random Access Channel
  • the determining the PRACH resource according to the number of antennas of the UE and the channel measurement results includes:
  • the PRACH resource is determined according to the channel measurement result obtained by the channel measurement.
  • the determining the PRACH resource according to the number of antennas of the UE and the channel measurement results includes:
  • a PRACH resource set includes at least one PRACH resource.
  • the threshold ranges of the channel measurement results corresponding to the same PRACH resource set are different.
  • the channel measurement result threshold ranges corresponding to different antenna numbers are the same, and the channel measurement result threshold ranges corresponding to different antenna numbers correspond to different PRACH resource sets.
  • the threshold ranges of the channel measurement results corresponding to different numbers of antennas are different, and the PRACH resource sets corresponding to the threshold ranges of the channel measurement results of different numbers of antennas are different.
  • the channel measurement result includes a Reference Signal Received Power (RSRP) value.
  • RSRP Reference Signal Received Power
  • a resource configuration device wherein the device includes:
  • the determining module is configured to determine the PRACH resource according to the number of antennas of the UE and the channel measurement results.
  • the determination module is specifically used for:
  • the determination module is specifically used for:
  • a PRACH resource set includes at least one PRACH resource.
  • the threshold ranges of the channel measurement results corresponding to the same PRACH resource set are different.
  • the channel measurement result threshold ranges corresponding to different antenna numbers are the same, and the channel measurement result threshold ranges corresponding to different antenna numbers correspond to different PRACH resource sets.
  • the threshold ranges of the channel measurement results corresponding to different numbers of antennas are different, and the PRACH resource sets corresponding to the threshold ranges of the channel measurement results of different numbers of antennas are different.
  • the channel measurement result includes a Reference Signal Received Power (RSRP) value.
  • RSRP Reference Signal Received Power
  • a communication device including a processor, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable The program executes the steps of the resource configuration method described in the first aspect.
  • a computer-readable storage medium for storing instructions, and when the instructions are executed, the method described in the first aspect is implemented.
  • the resource configuration method, device, communication device and storage medium provided by the embodiments of the present disclosure.
  • the PRACH resources are determined according to the number of antennas of the UE and channel measurement results. In this way, based on the number of antennas of the UE and the channel measurement results, the PRACH resources corresponding to the coverage enhancement level are jointly determined to reduce the deviation caused by determining the coverage enhancement requirements only based on the channel measurement results, thereby improving the accuracy of selecting PRACH resources indicating coverage enhancement , to reduce the instability of signal transmission due to the use of too low coverage enhancement level, or the high power consumption caused by the use of too high coverage enhancement level.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • Fig. 2 is a schematic flowchart of a resource allocation method according to an exemplary embodiment
  • Fig. 3 is a block diagram of a device for configuring resources according to an exemplary embodiment
  • Fig. 4 is a block diagram showing an apparatus for resource configuration according to an exemplary embodiment.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several terminals 11 and several base stations 12 .
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN), and the terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or called a "cellular" phone) and a
  • the computer of the IoT terminal for example, may be a fixed, portable, pocket, hand-held, built-in computer or vehicle-mounted device.
  • Station For example, Station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote terminal), an access terminal (access terminal), a user device (user terminal), a user agent (user agent), a user device (user device), or a user terminal (user equipment, UE).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be a vehicle-mounted device, for example, a trip computer with a wireless communication function, or a wireless communication device connected externally to the trip computer.
  • the terminal 11 may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as a Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, New Generation Radio Access Network).
  • the MTC system the MTC system.
  • the base station 12 may be an evolved base station (eNB) adopted in a 4G system.
  • the base station 12 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it generally includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, radio link layer control protocol (Radio Link Control, RLC) layer, media access control (Media Access Control, MAC) layer protocol stack;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • a physical (Physical, PHY) layer protocol stack is set in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 12 .
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a technical standard of a next-generation mobile communication network based on 5G.
  • an E2E (End to End, end-to-end) connection can also be established between the terminals 11.
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle to everything (V2X) communication Wait for the scene.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in the wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity, MME).
  • MME Mobility Management Entity
  • the network management device can also be other core network devices, such as Serving GateWay (SGW), Public Data Network Gateway (Public Data Network GateWay, PGW), policy and charging rule functional unit (Policy and Charging Rules Function, PCRF) or Home Subscriber Server (Home Subscriber Server, HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network Gateway
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • Executors involved in the embodiments of the present disclosure include, but are not limited to: user equipment (UE, User Equipment) such as mobile terminals that use cellular mobile communication network technology for wireless communication.
  • UE user equipment
  • User Equipment such as mobile terminals that use cellular mobile communication network technology for wireless communication.
  • An application scenario of the embodiment of the present disclosure is the uplink channel of UE such as REDCAP, for example: message 3 (Msg 3) in four-step random access, physical uplink control channel (PUCCH, Physical Uplink Control Channel), unicast (unicast) Physical Uplink Shared Channel (PUSCH, Physical Uplink Shared Channel), etc. need to be covered in some cases
  • Specific PRACH resources can be divided and used for the UE to indicate the coverage enhancement method that needs to be used by the base station in the subsequent uplink transmission.
  • the terminal may further request the network to perform coverage enhancement to what extent.
  • the network side can infer the channel quality of the UE according to the detected PRACH resources or further understand the degree of coverage enhancement required by the UE.
  • the UE can determine the corresponding PRACH resource through the SS-RSRP measurement result: the RSRP threshold range where the RSRP value is located.
  • UEs In the current network, different types of UEs exist at the same time, for example, enhanced mobile broadband (eMBB, Enhanced Mobile Broadband) terminals and Redcaps exist in the network at the same time. Different types of UEs have different numbers of receiving antennas. For example: 1 receiving antenna (1Rx), 2 receiving antennas (2Rx) and 4 receiving antennas (4Rx) exist in the network at the same time.
  • 1Rx 1 receiving antenna
  • 2 receiving antennas (2Rx) and 4 receiving antennas (4Rx) exist in the network at the same time.
  • RSRP-1Rx ⁇ RSRP-2Rx ⁇ RSRP-4Rx When UEs with different receiving antennas measure RSRP, usually the UE with more antennas has a higher measured RSRP, that is, RSRP-1Rx ⁇ RSRP-2Rx ⁇ RSRP-4Rx.
  • UEs with different receiving antennas may have only one Tx, that is, UEs with different receiving antennas actually have the same uplink coverage performance. If different UEs use different numbers of Rx to measure RSRP, and then select PRACH resources to represent coverage enhancement requirements according to the measured RSRP, it cannot actually represent accurate coverage enhancement requirements. For example, the RSRP measured by 4 Rx is higher than the RSRP measured by 1 Rx, then according to the current rules, the PRACH resources selected by the two are also different, and the coverage enhancement requirements represented by the PRACH resources are also different. In the end, it will result that the uplink coverage of the 4Rx terminal is not enhanced enough, or the uplink coverage of the 1Rx terminal is over-enhanced.
  • this exemplary embodiment provides a resource configuration method, which can be applied to a UE in wireless communication, including:
  • Step 201 Determine PRACH resources according to the number of antennas of the UE and channel measurement results.
  • the steps of the method in this embodiment may be executed by a UE such as a Redcap or an eMBB terminal.
  • different PRACH resources are used to indicate different coverage enhancement levels to the base station, that is, different PRACH resources can indicate different coverage enhancement levels to the base station.
  • the base station may determine the coverage enhancement level of the UE's uplink transmission according to the PRACH resources used by the UE.
  • the uplink transmission of the UE includes but is not limited to: random access messages such as Msg 3, uplink transmission of information using PUCCH resources and/or PUSCH resources, etc.
  • the coverage enhancement level may be an uplink coverage enhancement level.
  • it may be a coverage enhancement level for Msg 3 transmission, and/or a coverage enhancement level for transmission using PUCCH resources and/or PUSCH resources.
  • the UE may use different PRACH resources to indicate different coverage enhancement levels to the base station.
  • the UE can use the receiving antenna to perform channel measurement to obtain channel measurement results.
  • the UE may use the transmit antenna to transmit uplink data. Coverage enhancement levels are associated with transmit antennas.
  • different PRACH resources may include: different time domain resources, and/or different frequency domain resources, and/or different random access preambles and the like.
  • the channel measurement result may be a measurement result obtained by the UE performing channel measurement.
  • the UE can measure downlink signals of the base station, such as Tracking Reference Signal (TRS, Tracking Reference Signal) and/or Channel State Information Reference Signal (CSI-RS, Channel State Information Reference Signal), etc. to obtain channel measurement results.
  • the number of antennas of the UE may include the number of antennas used for channel measurement.
  • the channel measurement result includes a Reference Signal Received Power (RSRP) value.
  • RSRP Reference Signal Received Power
  • the RSRP value is a key parameter of wireless signal strength, which is the average value of signal power received on all resource elements (RE, Resource Element) carrying reference signals in a certain symbol.
  • RSRP values obtained by performing RSRP measurement with different numbers of antennas may be different.
  • the antenna used for RSRP measurement may be a receive antenna of the UE.
  • the UE does not consider the number of antennas for RSRP measurement, but determines the PRACH resource indicating the coverage enhancement level based on the measured RSRP value.
  • the indicated coverage enhancement level does not meet the requirements of actual coverage enhancement.
  • the PRACH resource indicating the coverage enhancement level may be jointly determined based on the number of antennas performing RSRP measurement and the RSRP value.
  • the RSRP value obtained by performing RSRP measurement on different numbers of antennas can be compensated, and/or adjusted to determine the RSRP threshold range of the PRACH resource so that the coverage enhancement level associated with the determined PRACH resource can meet actual needs.
  • the PRACH selected for the two RSRP values The resources are also different, and the coverage enhancement requirements associated with the PRACH resources are also different. Generally, a UE with a higher RSRP value will select a lower level of coverage enhancement, and a UE with a lower RSRP value will select a higher level of coverage enhancement.
  • the RSRP measurement is performed, the number of receive antennas for measuring the RSRP value is not distinguished, and the PRACH resource is only determined based on the RSRP value, resulting in a UE with 4 receive antennas
  • the uplink coverage of the UE is not enhanced enough, or the uplink coverage of the UE with one receiving antenna is too enhanced.
  • the measured RSRP value may be compensated based on the number of antennas performing RSRP measurement, so that the coverage enhancement level determined according to the compensated RSRP value may meet the actual requirement of uplink coverage.
  • the RSRP threshold range corresponding to different PRACH resources can also be adjusted according to the number of antennas for RSRP measurement, so that the coverage enhancement level determined according to the RSRP values measured by different antenna numbers can meet the actual demand for uplink coverage.
  • the PRACH resources corresponding to the coverage enhancement level are jointly determined to reduce the deviation caused by determining the coverage enhancement requirements only based on the channel measurement results, thereby improving the accuracy of selecting PRACH resources indicating coverage enhancement , to reduce the instability of signal transmission due to the use of too low coverage enhancement level, or the high power consumption caused by the use of too high coverage enhancement level.
  • the determining the PRACH resource according to the number of antennas of the UE and the channel measurement results includes:
  • the PRACH resource is determined according to the channel measurement result obtained by the channel measurement.
  • the channel measurement may be RSRP measurement
  • the channel measurement result may be an RSRP value. It may be stipulated by means of a communication protocol that when the UE uses the RSRP value to determine the PRACH resource and then indicates the coverage enhancement requirement, only one antenna may be used for RSRP measurement.
  • the RSRP measurement is performed by using one antenna, so that UEs with different numbers of antennas can determine the RSRP value with relatively close signal receiving capabilities.
  • the RSRP values measured by the RSRP measurement are closer, and then a unified standard can be adopted, that is, the RSRP threshold range determines the PRACH resource indicating the coverage enhancement level.
  • the determined coverage enhancement level can better meet the actual coverage enhancement requirements.
  • the determining the PRACH resource according to the number of antennas of the UE and the channel measurement results includes:
  • a PRACH resource set includes at least one PRACH resource.
  • the same UE or different UEs may use different numbers of antennas to perform RSRP measurement.
  • Corresponding RSRP threshold ranges can be set for different numbers of antennas.
  • the RSRP threshold ranges corresponding to different antenna quantity settings may be the same or different.
  • the same number of antennas may have multiple RSRP threshold ranges, and the PRACH resource sets corresponding to different RSRP threshold ranges may be different.
  • the coverage enhancement levels associated with the PRACH resources in the same PRACH resource set are the same. Therefore, different RSRP threshold ranges correspond to different requirements for coverage enhancement levels.
  • the UE may determine the RSRP threshold range according to the number of antennas used for RSRP measurement, and determine the PRACH resource indicating the coverage enhancement level based on the RSRP threshold range where the measured RSRP value is located.
  • the RSRP threshold range corresponding to the number of antennas can be set for different antenna numbers, and then the accurate PRACH resource can be determined by comparing the obtained RSRP value with the RSRP threshold range, that is, the accurate coverage enhancement level can be determined. Reduce the unstable signal transmission caused by using too low coverage enhancement level, or the high power consumption caused by using too high coverage enhancement level.
  • the threshold ranges of the channel measurement results corresponding to the same PRACH resource set are different.
  • different RSRP threshold ranges may be used.
  • the same number of antennas may have multiple RSRP threshold ranges corresponding to different PRACH resource sets.
  • the RSRP threshold ranges corresponding to the three PRACH resource sets are R1 ⁇ R2 respectively , R2 ⁇ R3 and >R3.
  • the RSRP threshold ranges corresponding to the three PRACH resource sets are R1' ⁇ R2', R2' ⁇ R3' and >R3' respectively.
  • the RSRP threshold ranges corresponding to the 3 PRACH resource sets are R1" ⁇ R2", R2" ⁇ R3" and >R3".
  • R1, R2, R3, R1', R2 ', R3', R1", R2", and R3" represent RSRP thresholds, respectively.
  • the channel measurement result threshold ranges corresponding to different antenna numbers are the same, and the channel measurement result threshold ranges corresponding to different antenna numbers correspond to different PRACH resource sets.
  • the same RSRP threshold range may be used, and different PRACH resources corresponding to the same RSRP threshold range with different antenna numbers are different.
  • the same number of antennas may correspond to multiple RSRP threshold ranges corresponding to different PRACH resource sets.
  • the RSRP threshold ranges are all ⁇ R1, R1-R2 and >R2.
  • the PRACH resource sets corresponding to the same RSRP threshold range are different. That is, even if the RSRPs measured by different numbers of antennas have the same RSRP threshold, the determined PRACH resource sets are different, that is, the selected coverage enhancements are different.
  • the same RSRP threshold range corresponds to different PRACH resources, reducing the inaccurate selection of PRACH resources caused by using the same PRACH resource selection criteria without distinguishing the number of antennas, and improving the accuracy of PRACH resource determination.
  • the threshold ranges of the channel measurement results corresponding to different numbers of antennas are different, and the PRACH resource sets corresponding to the threshold ranges of the channel measurement results of different numbers of antennas are different.
  • RSRP threshold ranges may be used, and the RSRP threshold ranges of different antenna numbers correspond to different PRACH resources.
  • RSRP threshold ranges are different, and the PRACH corresponding to each RSRP threshold range Resources can also be different.
  • This example provides four methods for determining PRACH resources.
  • Method 1 Pre-defined by the protocol, when the terminal uses RSRP to determine the PRACH resource, and then indicates the coverage enhancement level, only 1Rx is used for measurement at this time
  • Method 2 As shown in Table 2, when the terminal determines the PRACH resource and/or determines the level of uplink coverage enhancement that needs to be performed, different receiving antennas use different RSRP threshold ranges (range)
  • Method 3 As shown in Table 3, when the terminal is determining the PRACH resource and/or determining the level of uplink coverage enhancement that needs to be performed, the PRACH resources used by terminals with different receiving antennas with the same RSRP threshold range are different
  • Method 4 As shown in Table 4, when the terminal determines the PRACH resource and/or determines the level of uplink coverage enhancement that needs to be performed, the RSRP threshold ranges and corresponding PRACH resources used by terminals with different receiving antennas are different
  • the device 100 includes:
  • the determining module 110 is configured to determine PRACH resources according to the number of antennas of the UE and channel measurement results.
  • the determining module 110 is specifically configured to:
  • the PRACH resource is determined according to the channel measurement result obtained by the channel measurement.
  • the determining module 110 is specifically configured to:
  • a PRACH resource set includes at least one PRACH resource.
  • the threshold ranges of the channel measurement results corresponding to the same PRACH resource set are different.
  • the channel measurement result threshold ranges corresponding to different antenna numbers are the same, and the channel measurement result threshold ranges corresponding to different antenna numbers correspond to different PRACH resource sets.
  • the threshold ranges of the channel measurement results corresponding to different numbers of antennas are different, and the PRACH resource sets corresponding to the threshold ranges of the channel measurement results of different numbers of antennas are different.
  • the channel measurement result includes a Reference Signal Received Power (RSRP) value.
  • RSRP Reference Signal Received Power
  • the determining module 110 and the like may be implemented by one or more central processing units (CPU, Central Processing Unit), graphics processing units (GPU, Graphics Processing Unit), baseband processors (BP, baseband processor), application Application Specific Integrated Circuit (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), Field Programmable Gate Array (FPGA, Field- Programmable Gate Array), a general-purpose processor, a controller, a microcontroller (MCU, Micro Controller Unit), a microprocessor (Microprocessor), or other electronic components to implement the aforementioned method.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • BP baseband processor
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • a general-purpose processor a controller, a microcontroller (MCU
  • Fig. 4 is a block diagram of an apparatus 3000 for resource configuration according to an exemplary embodiment.
  • the apparatus 3000 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 3000 may include one or more of the following components: processing component 3002, memory 3004, power supply component 3006, multimedia component 3008, audio component 3010, input/output (I/O) interface 3012, sensor component 3014, and a communication component 3016.
  • Processing component 3002 generally controls the overall operations of device 3000, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 may include one or more processors 3020 to execute instructions to complete all or part of the steps of the above method.
  • processing component 3002 may include one or more modules that facilitate interaction between processing component 3002 and other components.
  • processing component 3002 may include a multimedia module to facilitate interaction between multimedia component 3008 and processing component 3002 .
  • the memory 3004 is configured to store various types of data to support operations at the device 3000 . Examples of such data include instructions for any application or method operating on device 3000, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 3004 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 3006 provides power to various components of device 3000 .
  • Power components 3006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 3000 .
  • the multimedia component 3008 includes a screen that provides an output interface between the device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or a swipe action, but also detect duration and pressure associated with the touch or swipe operation.
  • the multimedia component 3008 includes a front camera and/or a rear camera. When the device 3000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 3010 is configured to output and/or input audio signals.
  • the audio component 3010 includes a microphone (MIC), which is configured to receive external audio signals when the device 3000 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 3004 or sent via communication component 3016 .
  • the audio component 3010 also includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 3014 includes one or more sensors for providing status assessments of various aspects of device 3000 .
  • the sensor component 3014 can detect the open/closed state of the device 3000, the relative positioning of components, such as the display and keypad of the device 3000, the sensor component 3014 can also detect a change in the position of the device 3000 or a component of the device 3000, the user Presence or absence of contact with device 3000, device 3000 orientation or acceleration/deceleration and temperature change of device 3000.
  • Sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 3014 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 3016 is configured to facilitate wired or wireless communication between the apparatus 3000 and other devices.
  • the device 3000 can access wireless networks based on communication standards, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 3016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 3000 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 3004 including instructions, which can be executed by the processor 3020 of the device 3000 to implement the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Abstract

本公开实施例是关于资源配置方法、装置、通信设备和存储介质,用户设备(UE)根据UE的天线数量和信道测量结果,确定物理随机接入信道(PRACH)资源。基于UE的天线数量和信道测量结果,共同确定与覆盖增强等级对应的PRACH资源,减少只依据信道测量结果确定覆盖增强需求而产生的偏差,进而提高选择指示覆盖增强的PRACH资源的准确性,减少由于采用过低覆盖增强等级产生的信号传输不稳定、或者由于采用过高覆盖增强等级产生的高功耗问题。

Description

资源配置方法、装置、通信设备和存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及资源配置方法、装置、通信设备和存储介质。
背景技术
目前3GPP开展了轻量用户设备(REDCAP,Reduced capability NR devices)项目研究,项目目标是在和版本15/16(Release 15/16,R15/16)终端共存的情况下,减少UE的复杂度,节省成本。
轻量用户设备在天线和带宽等能力缩减后,会影响轻量用户设备的信号接收能力。原有标准中很多信道覆盖可能会存在问题,需要引入覆盖增强方案。
发明内容
有鉴于此,本公开实施例提供了一种资源配置方法、装置、通信设备和存储介质。基于UE的天线数量和信道测量结果,共同确定与覆盖增强等级对应的PRACH资源,减少只依据信道测量结果确定覆盖增强需求而产生的偏差,进而提高选择指示覆盖增强的PRACH资源的准确性,减少由于采用过低覆盖增强等级产生的信号传输不稳定、或者由于采用过高覆盖增强等级产生的高功耗问题。
根据本公开实施例的第一方面,提供一种资源配置方法,其中,所述方法被接入网设备执行,所述方法包括:
根据UE的天线数量和信道测量结果,确定物理随机接入信道(PRACH,Physical Random Access Channel)资源。
在一个实施例中,所述根据UE的天线数量和信道测量结果,确定PRACH资源,包括:
确定采用1根天线进行信道测量;
根据所述信道测量获得的信道测量结果,确定所述PRACH资源。
在一个实施例中,所述根据UE的天线数量和信道测量结果,确定PRACH资源,包括:
根据用于信道测量的天线数量,确定对应的信道测量结果阈值范围;
从根据测量的信道测量结果所在信道测量结果阈值范围对应的PRACH资源集中确定PRACH资源;其中,一个PRACH资源集包括至少一个PRACH资源。
在一个实施例中,针对不同天线数量,同一PRACH资源集对应的所述信道测量结果阈值范围不同。
在一个实施例中,不同天线数量对应的所述信道测量结果阈值范围相同,并且不同天线数量对应的所述信道测量结果阈值范围所对应的PRACH资源集不同。
在一个实施例中,不同天线数量对应的所述信道测量结果阈值范围不同,并且不同天线数量的所述信道测量结果阈值范围所对应的PRACH资源集不同。
在一个实施例中,所述信道测量结果包括参考信号接收功率RSRP值。
根据本公开实施例的第二方面,提供一种资源配置装置,其中,所述装置包括:
确定模块,用于根据UE的天线数量和信道测量结果,确定PRACH资源。
在一个实施例中,所述确定模块,具体用于:
确定采用1根天线进行信道测量;
根据采所述信道测量获得的信道测量结果,确定所述PRACH资源。
在一个实施例中,所述确定模块,具体用于:
根据用于信道测量的天线数量,确定对应的信道测量结果阈值范围;
从根据测量的信道测量结果所在信道测量结果阈值范围对应的PRACH资源集中确定PRACH资源;其中,一个PRACH资源集包括至少一个PRACH资源。
在一个实施例中,针对不同天线数量,同一PRACH资源集对应的所述信道测量结果阈值范围不同。
在一个实施例中,不同天线数量对应的所述信道测量结果阈值范围相同,并且不同天线数量对应的所述信道测量结果阈值范围所对应的PRACH资源集不同。
在一个实施例中,不同天线数量对应的所述信道测量结果阈值范围不同,并且不同天线数量的所述信道测量结果阈值范围所对应的PRACH资源集不同。
在一个实施例中,所述信道测量结果包括参考信号接收功率RSRP值。
根据本公开实施例的第三方面,提供一种通信设备,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第一方面所述资源配置方法的步骤。
根据本公开实施例的第四方面,提供一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如第一方面所述的方法被实现。
本公开实施例提供的资源配置方法、装置、通信设备以及存储介质。根据UE的天线数量和信道测量结果,确定PRACH资源。如此,基于UE的天线数量和信道测量结果,共同确定与覆盖增强等级对应的PRACH资源,减少只依据信道测量结果确定覆盖增强需求而产生的偏差,进而提高 选择指示覆盖增强的PRACH资源的准确性,减少由于采用过低覆盖增强等级产生的信号传输不稳定、或者由于采用过高覆盖增强等级产生的高功耗问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种资源配置方法的流程示意图;
图3是根据一示例性实施例示出的一种资源配置装置的框图;
图4是根据一示例性实施例示出的一种用于资源配置的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来 描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系 统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其 它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
本公开实施例涉及的执行主体包括但不限于:采用蜂窝移动通信网络技术进行无线通信的手机终端等用户设备(UE,User Equipment)等。
本公开实施例的一个应用场景为,REDCAP等UE的上行信道,例如:四步随机接入中的消息3(Msg 3),物理上行链路控制信道(PUCCH,Physical Uplink Control Channel),单播(unicast)物理上行共享信道(PUSCH,Physical Uplink Shared Channel)等在某些情况下需要进行覆盖增强
特定的PRACH资源可以分割出来,用于由UE来指示需要在后续的上行传输中需要基站使用的覆盖增强手段。或者,终端可以进一步要求网络进行哪种程度的覆盖增强。网络端可以根据检测到的PRACH资源推断出UE所处的信道质量或者更进一步的了解到UE所要求的覆盖增强程度。
如表1所示,UE可通过SS-RSRP的测量结果:RSRP值所处的RSRP阈值范围确定对应的PRACH资源。
表1
Figure PCTCN2021092902-appb-000001
在当前的网络中,同时存在不同类型的UE,例如:网络中同时存在有增强移动宽带(eMBB,Enhanced Mobile Broadband)终端以及Redcap等。 不同类型的UE具有的接收天线数量不同。例如:网络中同时存在有具有1根接收天线(1Rx)、2根接收天线(2Rx)和4根接收天线(4Rx)等。当具有不同接收天线的UE RSRP测量时,通常具有较多天线的UE测得的RSRP较高,即RSRP-1Rx<RSRP-2Rx<RSRP-4Rx。
具有不同接收天线的UE可能都只有1根Tx,即不同接收天线的UE实际上具有相同的上行覆盖性能。如果不同UE使用不同的数量的Rx来进行RSRP测量,再根据测量的RSRP来选择PRACH资源表征覆盖增强需求,实际上并不能表征准确的覆盖增强需求。例如,4根Rx测量出来的RSRP比1根Rx测量出来的RSRP要高,那么按照当前规则,那么两者所选择的PRACH资源也不同,进而PRACH资源所表征的覆盖增强需求也不同。最后会导致,4Rx终端的上行覆盖增强程度不够、或者对1Rx终端的上行覆盖进行过增强。
因此,针对具有不同接收天线的UE,如何选择PRACH资源,进而表征出准确的覆盖增强需求,是亟待解决的问题。
如图2所示,本示例性实施例提供一种资源配置方法,资源配置方法可以应用于无线通信的UE中,包括:
步骤201:根据UE的天线数量和信道测量结果,确定PRACH资源。
这里,可以由Redcap、eMBB终端等UE执行本实施例方法的步骤。
这里不同的PRACH资源用于向基站指示不同的覆盖增强等级,即不同的PRACH资源可以向基站指示不同的覆盖增强等级。基站可以根据UE所采用的PRACH资源确定UE的上行发送的覆盖增强等级。该UE的上行发送包括但不限于:Msg 3等随机接入消息,采用PUCCH资源和/或PUSCH资源传输信息的上行发送等
覆盖增强等级可以是上行覆盖增强等级。例如,可以是针对Msg 3传输的覆盖增强等级、和/或采用PUCCH资源和/或PUSCH资源传输的覆盖 增强等级。
UE可以采用不同的PRACH资源,向基站指示不同的覆盖增强等级。
UE可以采用接收天线进行信道测量获取信道测量结果。UE可以采用发送天线进行上行数据的发送。覆盖增强等级关联于发送天线。
在一个实施例中,不同的PRACH资源可以包括:不同的时域资源、和/或不同的频域资源、和/或不同的随机接入前导等。
这里,信道测量结果可以是UE进行信道测量的到的测量结果。UE可以对基站的下行信号,如跟踪参考信号(TRS,Tracking Reference Signal)和/或信道状态信息参考信号(CSI-RS,Channel State Information Reference Signal)等进行测量得到信道测量结果。UE的天线数量可以包括用于信道测量的天线数量。
在一个实施例中,所述信道测量结果包括参考信号接收功率RSRP值。
RSRP值是无线信号强度的关键参数,是在某个符号内承载参考信号的所有资源单元(RE,Resource Element)上接收到的信号功率的平均值。通过不同数量的天线进行RSRP测量得到的RSRP值可能不同。用于RSRP测量的天线可以是UE的接收天线。
相关技术中,UE不考虑进行RSRP测量的天线数量,而基于测量得到的RSRP值确定指示覆盖增强等级的PRACH资源。使得指示的覆盖增强等级不符合实际覆盖增强的需求。
本实施例中,可以基于进行RSRP测量的天线数量和RSRP值共同确定指示覆盖增强等级的PRACH资源。
由于不同数量的天线进行RSRP测量的到的RSRP值不同,不能准确反应覆盖增强的需求。因此可以通过对不同数量的天线进行RSRP测量的到的RSRP值进行补偿、和/或、调整确定PRACH资源的RSRP阈值范围的方式使得确定的PRACH资源所关联的覆盖增强等级可以满足实际需求
示例性的,由于具有4根接收天线的UE测量出来的RSRP值比具有1根接收天线的UE测量出来的RSRP值要高,那么按照相关技术的规则,那么针对两个RSRP值所选择的PRACH资源也不同,进而PRACH资源所关联的覆盖增强需求也不同。通常,针对较高RSRP值的UE会选择较低等级的覆盖增强,针对较低RSRP值的UE会选择较高等级的覆盖增强最后会导致。假设两个UE都具有相同数量的发送天线用于上行传输,如果进行RSRP测量时,不区分测量RSRP值的接收天线数量,仅基于RSRP值确定PRACH资源,引起的后果是具有4根接收天线UE的上行覆盖增强程度不够、或者具有1根接收天线UE的上行覆盖过增强。
这里,可以基于进行RSRP测量的天线数量,对测得RSRP值进行补偿,使得根据补偿后的RSRP值确定的覆盖增强等级可以符合上行覆盖的实际需求。也可以针对进行RSRP测量的天线数量调整不同PRACH资源对应的RSRP阈值范围,使得根据不同天线数量测得的RSRP值所确定的覆盖增强等级可以符合上行覆盖的实际需求。
如此,基于UE的天线数量和信道测量结果,共同确定与覆盖增强等级对应的PRACH资源,减少只依据信道测量结果确定覆盖增强需求而产生的偏差,进而提高选择指示覆盖增强的PRACH资源的准确性,减少由于采用过低覆盖增强等级产生的信号传输不稳定、或者由于采用过高覆盖增强等级产生的高功耗问题。
在一个实施例中,所述根据UE的天线数量和信道测量结果,确定PRACH资源,包括:
确定采用1根天线进行信道测量;
根据所述信道测量获得的信道测量结果,确定所述PRACH资源。
这里,信道测量可以是RSRP测量,信道测量结果可以是RSRP值。可以通过由通信协议等方式规定,当UE在使用RSRP值确定PRACH资源, 进而去指示覆盖增强需求时,可以只使用1根天线进行RSRP测量。
通过1根天线进行RSRP测量,使得具有不同数量天线的UE可以采用较为接近的信号接收能力确定RSRP值。在针对相同信号强度的情况下,RSRP测量测得的RSRP值更接近,进而可以采用统一的标准,即RSRP阈值范围确定指示覆盖增强等级的PRACH资源。使得确定的覆盖增强等级更能满足实际覆盖增强需求。
在一个实施例中,所述根据UE的天线数量和信道测量结果,确定PRACH资源,包括:
根据用于信道测量的天线数量,确定对应的信道测量结果阈值范围;
从根据测量的信道测量结果所在信道测量结果阈值范围对应的PRACH资源集中确定PRACH资源;其中,一个PRACH资源集包括至少一个PRACH资源。
同一个UE或者不同UE可以采用不同数量的天线进行RSRP测量。可以针对不同天线数量设置对应的RSRP阈值范围。不同天线数量设置对应的RSRP阈值范围可以相同也可以不同。同一天线数量可以具有多个RSRP阈值范围,不同RSRP阈值范围对应的PRACH资源集可以不同。相同PRACH资源集内的PRACH资源所关联的覆盖增强等级相同。因此,不同RSRP阈值范围对应覆盖增强等级需求不同。
UE可以根据用于RSRP测量的天线数量,确定RSRP阈值范围,并基于测量得到的RSRP值所在的RSRP阈值范围,确定指示覆盖增强等级的PRACH资源。
如此,针对不同的天线数量可以设置于天线数量对应的RSRP阈值范围,进而通过侧得的RSRP值与RSRP阈值范围对比确定准确的PRACH资源,即确定准确的覆盖增强等级。减少由于采用过低覆盖增强等级产生的信号传输不稳定、或者由于采用过高覆盖增强等级产生的高功耗问题。
在一个实施例中,针对不同天线数量,同一PRACH资源集对应的所述信道测量结果阈值范围不同。
这里,针对不同的用于RSRP测量的天线数量,可以使用不同的RSRP阈值范围。同一天线数量可以具有多个RSRP阈值范围分别对应于不同的PRACH资源集。
示例性的如表2所示,当采用1根天线进行RSRP测量时,3个PRACH资源集(PRACH set#1,PRACH set#2和PRACH set#3)对应的RSRP阈值范围分别为R1~R2,R2~R3和>R3。当采用两根天线进行RSRP测量时,3个PRACH资源集对应的RSRP阈值范围分别为R1’~R2’,R2’~R3’和>R3’。当采用4根天线进行RSRP测量时,3个PRACH资源集对应的RSRP阈值范围分别为R1”~R2”,R2”~R3”和>R3”。其中,R1、R2、R3、R1’、R2’、R3’、R1”、R2”、和R3”分别表示RSRP阈值。
表2
Figure PCTCN2021092902-appb-000002
如此,针对不同天线数量采用不同的RSRP阈值范围,减小由于不同 天线数量测得的RSRP值的差异,对确定PRACH资源确定产生的影响。提高PRACH资源确定的准确程度。
在一个实施例中,不同天线数量对应的所述信道测量结果阈值范围相同,并且不同天线数量对应的所述信道测量结果阈值范围所对应的PRACH资源集不同。
这里,针对不同的用于RSRP测量的天线数量,可以使用相同的RSRP阈值范围,并且不同天线数量的同一RSRP阈值范围对应的PRACH资源不同。同一天线数量可以对应于多个RSRP阈值范围分别对应于不同的PRACH资源集。
示例性的,如表3所示,当采用1根天线进行RSRP测量、两根天线进行RSRP测量、或4根天线进行RSRP测量时,RSRP阈值范围均为<R1、R1~R2和>R2。但是,针对不同天线数量,同一RSRP阈值范围对应的PRACH资源集不同。即不同数量天线测得的RSRP即使再同一RSRP阈值,确定的PRACH资源集也不同,即选择的覆盖增强不同。
表3
Figure PCTCN2021092902-appb-000003
Figure PCTCN2021092902-appb-000004
如此,针对不同天线数量,同一RSRP阈值范围对应于不同的PRACH资源,减小由于不区分天线数量,采用相同PRACH资源选择标准,产生的PRACH资源选择不准确问题,提高PRACH资源确定的准确性。
在一个实施例中,不同天线数量对应的所述信道测量结果阈值范围不同,并且不同天线数量的所述信道测量结果阈值范围所对应的PRACH资源集不同。
这里,针对不同的用于RSRP测量的天线数量,可以使用不同的RSRP阈值范围,并且不同天线数量的RSRP阈值范围对应的PRACH资源不同。
示例性的,如表4所示,当采用1根天线进行RSRP测量、两根天线进行RSRP测量、或4根天线进行RSRP测量时,RSRP阈值范围均不同,并且,各RSRP阈值范围对应的PRACH资源也可以不同。
表4
Figure PCTCN2021092902-appb-000005
如此,针对不同天线数量,建立独立的RSRP阈值范围,以及各RSRP阈值范围分别对应的PRACH资源。提高了PRACH资源选择的针对性,进 而提高PRACH资源选择的准确性。
以下结合上述任意实施例提供一个具体示例:
本示例提供四种方法用于确定PRACH资源。
方法一:通过协议预定义,当终端在使用RSRP确定PRACH资源,进而去指示覆盖增强等级时,此时只使用1Rx进行测量
方法二:如表2所示,当终端在确定PRACH资源和/或确定需要进行的上行覆盖增强等级时,不同的接收天线使用不同的RSRP阈值范围(range)
方法三:如表3所示,当终端在确定PRACH资源和/或确定需要进行的上行覆盖增强等级时,具有相同RSRP阈值范围的不同接收天线的终端所使用的PRACH资源不同
方法四:如表4所示,当终端在确定PRACH资源和/或确定需要进行的上行覆盖增强等级时,不同接收天线的终端所使用的RSRP阈值范围和对应的PRACH资源都不同
根据本实施例还提供一种资源配置装置,其中,可以应用于UE中,如图3所示,所述装置100包括:
确定模块110,用于根据UE的天线数量和信道测量结果,确定PRACH资源。
在一个实施例中,所述确定模块110,具体用于:
确定采用1根天线进行信道测量;
根据所述信道测量获得的信道测量结果,确定所述PRACH资源。
在一个实施例中,所述确定模块110,具体用于:
根据用于信道测量的天线数量,确定对应的信道测量结果阈值范围;
从根据测量的信道测量结果所在信道测量结果阈值范围对应的PRACH资源集中确定PRACH资源;其中,一个PRACH资源集包括至少 一个PRACH资源。
在一个实施例中,针对不同天线数量,同一PRACH资源集对应的所述信道测量结果阈值范围不同。
在一个实施例中,不同天线数量对应的所述信道测量结果阈值范围相同,并且不同天线数量对应的所述信道测量结果阈值范围所对应的PRACH资源集不同。
在一个实施例中,不同天线数量对应的所述信道测量结果阈值范围不同,并且不同天线数量的所述信道测量结果阈值范围所对应的PRACH资源集不同。
在一个实施例中,所述信道测量结果包括参考信号接收功率RSRP值。
在示例性实施例中,确定模块110等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,baseband processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图4是根据一示例性实施例示出的一种用于资源配置的装置3000的框图。例如,装置3000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图4,装置3000可以包括以下一个或多个组件:处理组件3002,存储器3004,电源组件3006,多媒体组件3008,音频组件3010,输入/输出(I/O)的接口3012,传感器组件3014,以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示,电话呼 叫,数据通信,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在装置3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统,一个或多个电源,及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当装置3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到装置3000的打开/关闭状态,组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变,用户与装置3000接触的存在或不存在,装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种资源配置方法,其中,所述方法被用户设备UE执行,所述方法包括:
    根据UE的天线数量和信道测量结果,确定物理随机接入信道PRACH资源。
  2. 根据权利要求1所述的方法,其中,所述根据UE的天线数量和信道测量结果,确定PRACH资源,包括:
    确定采用1根天线进行信道测量;
    根据所述信道测量获得的信道测量结果,确定所述PRACH资源。
  3. 根据权利要求1或2所述的方法,其中,所述根据UE的天线数量和信道测量结果,确定PRACH资源,包括:
    根据用于信道测量的天线数量,确定对应的信道测量结果阈值范围;
    从根据测量的信道测量结果所在信道测量结果阈值范围对应的PRACH资源集中确定PRACH资源;
    其中,一个PRACH资源集包括至少一个PRACH资源。
  4. 根据权利要求3所述的方法,其中,针对不同天线数量,同一PRACH资源集对应的所述信道测量结果阈值范围不同。
  5. 根据权利要求3所述的方法,其中,不同天线数量对应的所述信道测量结果阈值范围相同,并且不同天线数量对应的所述信道测量结果阈值范围所对应的PRACH资源集不同。
  6. 根据权利要求3所述的方法,其中,不同天线数量对应的所述信道测量结果阈值范围不同,并且不同天线数量的所述信道测量结果阈值范围所对应的PRACH资源集不同。
  7. 根据权利要求1或2所述的方法,其中,所述信道测量结果包括参考信号接收功率RSRP值。
  8. 一种资源配置装置,所述装置包括:
    确定模块,用于根据UE的天线数量和信道测量结果,确定物理随机接入信道PRACH资源。
  9. 根据权利要求8所述的装置,其中,所述确定模块,具体用于:
    确定采用1根天线进行信道测量;
    根据所述信道测量获得的信道测量结果,确定所述PRACH资源。
  10. 根据权利要求8或9所述的装置,其中,所述确定模块,具体用于:
    根据用于信道测量的天线数量,确定对应的信道测量结果阈值范围;
    从根据测量的信道测量结果所在信道测量结果阈值范围对应的PRACH资源集中确定PRACH资源;其中,一个PRACH资源集包括至少一个PRACH资源。
  11. 根据权利要求10所述的装置,其中,
    针对不同天线数量,同一PRACH资源集对应的所述信道测量结果阈值范围不同。
  12. 根据权利要求10所述的装置,其中,
    不同天线数量对应的所述信道测量结果阈值范围相同,并且不同天线数量对应的所述信道测量结果阈值范围所对应的PRACH资源集不同。
  13. 根据权利要求10所述的装置,其中,
    不同天线数量对应的所述信道测量结果阈值范围不同,并且不同天线数量的所述信道测量结果阈值范围所对应的PRACH资源集不同。
  14. 根据权利要求8或9所述的装置,其中,所述信道测量结果包括参考信号接收功率RSRP值。
  15. 一种通信设备,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至7任一项所述资源配置方法的步骤。
  16. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至7中任一项所述的方法被实现。
PCT/CN2021/092902 2021-05-10 2021-05-10 资源配置方法、装置、通信设备和存储介质 WO2022236639A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180001507.7A CN113455076B (zh) 2021-05-10 2021-05-10 资源配置方法、装置、通信设备和存储介质
PCT/CN2021/092902 WO2022236639A1 (zh) 2021-05-10 2021-05-10 资源配置方法、装置、通信设备和存储介质
BR112023023504A BR112023023504A2 (pt) 2021-05-10 2021-05-10 Método e aparelho para configuração de recursos, dispositivo de comunicação, e, meio de armazenamento legível por computador
KR1020237042655A KR20240005098A (ko) 2021-05-10 2021-05-10 리소스 설정 방법, 장치, 통신 장치 및 저장 매체(resource configuration method and apparatus, communication device, and storage medium)
EP21941215.2A EP4340484A1 (en) 2021-05-10 2021-05-10 Resource configuration method and apparatus, communication device, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092902 WO2022236639A1 (zh) 2021-05-10 2021-05-10 资源配置方法、装置、通信设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022236639A1 true WO2022236639A1 (zh) 2022-11-17

Family

ID=77819510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092902 WO2022236639A1 (zh) 2021-05-10 2021-05-10 资源配置方法、装置、通信设备和存储介质

Country Status (5)

Country Link
EP (1) EP4340484A1 (zh)
KR (1) KR20240005098A (zh)
CN (1) CN113455076B (zh)
BR (1) BR112023023504A2 (zh)
WO (1) WO2022236639A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193211A1 (zh) * 2022-04-07 2023-10-12 北京小米移动软件有限公司 Rsrp门限确定方法、装置、通信设备及存储介质
WO2023193278A1 (zh) * 2022-04-08 2023-10-12 北京小米移动软件有限公司 一种阈值确定方法/装置/设备及存储介质
CN115088289A (zh) * 2022-04-21 2022-09-20 北京小米移动软件有限公司 Rsrp门限参数确定方法、装置、通信设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109511156A (zh) * 2018-11-29 2019-03-22 华为技术有限公司 一种选择prach资源的方法及装置
CN110366262A (zh) * 2013-07-10 2019-10-22 三星电子株式会社 用于随机接入过程的覆盖增强的方法和装置
CN111106887A (zh) * 2018-10-29 2020-05-05 中国移动通信有限公司研究院 一种选择上行控制信道发射方式的方法及终端
CN111757488A (zh) * 2019-03-29 2020-10-09 中兴通讯股份有限公司 随机接入信号的发送、接收方法及装置
CN112752333A (zh) * 2019-10-31 2021-05-04 中国电信股份有限公司 上行信道功率控制方法、装置、终端以及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865374B (zh) * 2013-01-25 2023-09-29 交互数字专利控股公司 用于确定资源的方法和无线发射/接收单元
CN104254135B (zh) * 2013-06-27 2020-03-31 夏普株式会社 基站和用户设备及其方法
CN111130610A (zh) * 2018-11-01 2020-05-08 北京三星通信技术研究有限公司 信号传输方法、装置、电子设备及计算机可读存储介质
US11310836B2 (en) * 2019-08-19 2022-04-19 Samsung Electronics Co., Ltd. Repetition of PRACH preamble transmission for UEs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110366262A (zh) * 2013-07-10 2019-10-22 三星电子株式会社 用于随机接入过程的覆盖增强的方法和装置
CN111106887A (zh) * 2018-10-29 2020-05-05 中国移动通信有限公司研究院 一种选择上行控制信道发射方式的方法及终端
CN109511156A (zh) * 2018-11-29 2019-03-22 华为技术有限公司 一种选择prach资源的方法及装置
CN111757488A (zh) * 2019-03-29 2020-10-09 中兴通讯股份有限公司 随机接入信号的发送、接收方法及装置
CN112752333A (zh) * 2019-10-31 2021-05-04 中国电信股份有限公司 上行信道功率控制方法、装置、终端以及存储介质

Also Published As

Publication number Publication date
KR20240005098A (ko) 2024-01-11
CN113455076A (zh) 2021-09-28
EP4340484A1 (en) 2024-03-20
CN113455076B (zh) 2023-09-01
BR112023023504A2 (pt) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2022236639A1 (zh) 资源配置方法、装置、通信设备和存储介质
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021196214A1 (zh) 传输方法、装置及计算机存储介质
WO2022052024A1 (zh) 参数配置方法、装置、通信设备和存储介质
WO2020248107A1 (zh) 小区切换方法、装置及存储介质
WO2021114274A1 (zh) 无线通信方法、装置及存储介质
WO2021007789A1 (zh) 信息处理方法、装置及计算机存储介质
WO2022183456A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022120751A1 (zh) 通信方法及装置、接入设备、终端及存储介质
WO2022094882A1 (zh) 通信处理方法、装置、通信设备及存储介质
WO2021243723A1 (zh) 位置确定方法、装置、通信设备及存储介质
WO2021196216A1 (zh) 寻呼处理方法、装置、用户设备、基站及存储介质
WO2023193211A1 (zh) Rsrp门限确定方法、装置、通信设备及存储介质
WO2022193194A1 (zh) 一种带宽部分配置方法、带宽部分配置装置及存储介质
WO2021248284A1 (zh) 位置确定方法、装置、通信设备及存储介质
WO2022011577A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021120204A1 (zh) 信号测量方法、装置、通信设备及存储介质
WO2022205472A1 (zh) 上行传输时域资源的确定方法及装置、ue、网络设备及存储介质
WO2022147662A1 (zh) 测量间隙调度方法及装置、通信设备及存储介质
US20220408469A1 (en) Downlink control information configuration method and apparatus, and communication device and storage medium
WO2022193093A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022110195A1 (zh) 测量数据处理方法、装置、通信设备和存储介质
WO2022087868A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022213330A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022077377A1 (zh) 通信方法及装置、网络设备、用户设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941215

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18558304

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023568739

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023023504

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237042655

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237042655

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2021941215

Country of ref document: EP

Ref document number: 2023131133

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021941215

Country of ref document: EP

Effective date: 20231211

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112023023504

Country of ref document: BR

Free format text: ESCLARECA A DIVERGENCIA DO TITULO DA INVENCAO NA PETICAO 870230099138 ENTRE O TITULO QUE CONSTA NO FORMULARIO DA PETICAO E O TITULO QUE CONSTA NA EMENDA I QUE CONSTA ALTERACOES PARA A ENTRADA NA FASE NACIONAL DO RELATORIO DESCRITIVO E RESUMO. A EXIGENCIA DEVE SER RESPONDIDA EM ATE 60 (SESSENTA) DIAS DE SUA PUBLICACAO E DEVE SER REALIZADA POR MEIO DA PETICAO GRU CODIGO DE SERVICO 207.

REG Reference to national code

Ref country code: BR

Ref legal event code: ERR

Ref document number: 112023023504

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.5 NA RPI NO 2769 DE 30/01/2024 POR TER SIDO INDEVIDA.

ENP Entry into the national phase

Ref document number: 112023023504

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231109