WO2022061555A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2022061555A1
WO2022061555A1 PCT/CN2020/116940 CN2020116940W WO2022061555A1 WO 2022061555 A1 WO2022061555 A1 WO 2022061555A1 CN 2020116940 W CN2020116940 W CN 2020116940W WO 2022061555 A1 WO2022061555 A1 WO 2022061555A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
beams
probability
optional
target
Prior art date
Application number
PCT/CN2020/116940
Other languages
English (en)
French (fr)
Inventor
柴晓萌
徐修强
吴艺群
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/116940 priority Critical patent/WO2022061555A1/zh
Publication of WO2022061555A1 publication Critical patent/WO2022061555A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • a base station and a terminal in order to overcome path loss, usually use a directional high-gain antenna array to form a beam for communication.
  • beams are associated with communication resources.
  • the terminal selects a beam and communicates through the communication resources associated with the selected beam.
  • the present application provides a communication method and device, which can reduce the probability of resource collision between terminals.
  • a communication method is provided, and the method can be executed by a terminal device or a device supporting the functions of the terminal device (such as a chip system of the terminal device).
  • the method includes: receiving first indication information, selecting a target beam based on the first indication information, and determining uplink communication resources based on the target beam.
  • the first indication information is used to configure a first probability for each of the at least one first beam, and/or used to configure a preset reference signal for each of the at least one first beam
  • the threshold is not a cell-level RSRP threshold.
  • different first probabilities and/or preset RSRP thresholds can be configured for different beams of the terminal device through the first indication information. That is to say, the terminal equipment can not only select beams according to factors such as its own location, service characteristics, etc., but also select beams according to the first probability and/or preset RSRP threshold, reducing the number of terminal equipments that select some beams, and the selection of other beams. There are few terminal devices, resulting in the probability of resource collision between terminals.
  • the at least one first beam includes J first beams, and the first probability of the j-th first beam among the J first beams is p j ;
  • selecting the target beam based on the first indication information includes: selecting the jth first beam among the J first beams according to the probability p j as target beam, according to probability Select the second beam in the optional beams as the target beam; or, according to the probability p j *X/Y, select the jth first beam among the J first beams as the target beam, according to the probability Select the second beam in the optional beams as the target beam, where X represents the number of optional beams, and Y represents the number of beams sent by the network device;
  • selecting the target beam based on the first indication information includes: according to the probability Select the jth first beam in the optional beams as the target beam; or, according to the probability p j , select the jth first beam in the optional beams as the target beam; or, according to the probability p j *X/Y, select the Select the jth first beam in the beams as the target beam;
  • J and K are both positive integers; j is a non-negative integer; j is less than or equal to J.
  • first probabilities can be configured for different first beams through the first indication information. For example, for a first beam with a lower load, a first beam with a lower load is configured with a larger first probability through the first indication information; for a first beam with a higher load, the first indication information is used for the load A higher first beam configures a smaller first probability. In this way, the terminal device can select the first beam with a lower load with a larger probability, and select the first beam with a higher load with a smaller probability, so as to reduce the probability of resource collision between the terminal devices.
  • the selectable beams include the first beams whose measured RSRP value is greater than or equal to the cell-level RSRP threshold.
  • the optional beams include: a first beam whose RSRP measurement value is greater than or equal to a corresponding preset RSRP threshold;
  • the optional beams include: the RSRP measurement value is greater than or equal to the corresponding preset RSRP threshold, and the first beam is greater than or equal to the cell-level RSRP threshold.
  • different preset RSRP thresholds can be configured for different first beams through the first indication information. For example, for the first beam with a lower load, configure a smaller preset RSRP threshold for the first beam with a lower load through the first indication information; for the first beam with a higher load, use the first indication information for the first beam with a higher load.
  • the first beam with a higher load is configured with a larger preset RSRP threshold.
  • the probability that the low-load beam is judged to be an optional beam can be increased, and the terminal equipment can use the low-load beam to perform communication. The probability.
  • the probability that the high-load beam is judged to be an optional beam can be reduced, thereby reducing the use of the high-load beam by the terminal equipment to perform communication.
  • the probability of resource collision between terminals can also be reduced.
  • the present application provides a communication method, which can be executed by a terminal device or a device supporting the functions of the terminal device (such as a chip system of the terminal device).
  • the method includes:
  • the beam reselection indication information is received, based on the beam reselection indication information, after receiving the beam reselection indication information, a beam is selected based on the beam reselection indication information, and an uplink communication resource is determined based on the selected beam.
  • the beam reselection indication information is used to instruct the terminal device to perform beam reselection.
  • the terminal equipment can not only select beams according to its own location, service characteristics and other factors, but also select beams according to the beam reselection indication information, reducing the number of terminal equipments that select some beams and few terminal equipments to select other beams. The probability of resource collision between them.
  • the beam reselection indication information includes second indication information for indicating beams that are allowed to be selected.
  • the beam reselection indication information includes third indication information for indicating beams that are not allowed to be selected.
  • selecting beams based on beam reselection indication information includes:
  • the beam is selected based on the beam reselection indication information.
  • the beam reselection indication information is included in the uplink transmission feedback.
  • the uplink transmission feedback can be, for example, but not limited to, a random access response in a two-step random access process, or a random access response in a four-step random access process, or a physical uplink shared channel (PUSCH) )feedback of.
  • PUSCH physical uplink shared channel
  • it may be the second message (Msg2) in the four-step random access process, and another example may be a negative acknowledgement message (NACK) or a positive acknowledgement message (ACK) for the PUSCH.
  • a communication method is provided, and the method can be executed by a terminal device or a device supporting the functions of the terminal device (such as a chip system of the terminal device).
  • the method includes: receiving fourth indication information, and determining uplink communication resources for uplink transmission based on the fourth indication information;
  • the fourth indication information is used to configure uplink communication resources associated with multiple beams; the multiple beams include the first beam and/or the second beam; the number of uplink communication resources associated with the first beam and the uplink communication resources associated with the second beam Numbers vary.
  • the network device adopts a non-uniform resource allocation method, and different numbers of uplink communication resources can be configured for different beams. For example, more resources are configured for beams with serious collision, so the probability of resource collision between terminals can be reduced.
  • the fourth indication information is used to configure the number of uplink communication resources associated with the first beam and used to configure the number of uplink communication resources associated with the second beam.
  • the fourth indication information is used to configure the number of uplink communication resources associated with the second beam and an offset value
  • the offset value is used to indicate the number of uplink communication resources associated with the first beam and the number of uplink communication resources associated with the second beam. The offset between the number of uplink communication resources.
  • a communication method is provided, and the method can be executed by a network device or an apparatus supporting the function of the network device (such as a chip system of the network device).
  • the method includes: determining first indication information, and sending the first indication information;
  • the first indication information is used to configure a first probability for each of the at least one first beam, and/or used to configure a preset reference signal for each of the at least one first beam Received power RSRP threshold;
  • the first probability corresponding to the first beam is the configured probability of using the first beam; the preset RSRP threshold corresponding to the first beam is used to determine whether the first beam is an optional beam of the terminal device, and the preset RSRP threshold is not a cell-level RSRP threshold.
  • the at least one first beam includes J first beams, and the first probability of the j-th first beam among the J first beams is p j ;
  • selecting the target beam based on the first indication information includes: selecting the jth first beam among the J first beams according to the probability p j as target beam, according to probability Select the second beam in the optional beams as the target beam; or, according to the probability p j *X/Y, select the jth first beam among the J first beams as the target beam, according to the probability Select the second beam in the optional beams as the target beam, where X represents the number of optional beams, and Y represents the number of beams sent by the network device;
  • selecting the target beam based on the first indication information includes: according to the probability Select the jth first beam in the optional beams as the target beam; or, according to the probability p j , select the jth first beam in the optional beams as the target beam; or, according to the probability p j *X/Y, select the Select the jth first beam in the beams as the target beam;
  • J and K are both positive integers; j is a non-negative integer; j is less than or equal to J.
  • the selectable beams include the first beams whose measured RSRP value is greater than or equal to the cell-level RSRP threshold.
  • the optional beams include: a first beam whose RSRP measurement value is greater than or equal to a corresponding preset RSRP threshold;
  • the optional beams include: the RSRP measurement value is greater than or equal to the corresponding preset RSRP threshold, and the first beam is greater than or equal to the cell-level RSRP threshold.
  • a communication method is provided, and the method can be executed by a network device or an apparatus supporting the functions of the network device (such as a chip system of the network device).
  • the method includes: determining beam reselection indication information, and sending beam reselection indication information, where the beam reselection indication information is used to instruct a terminal device to perform beam reselection.
  • the beam reselection indication information includes second indication information for indicating beams that are allowed to be selected.
  • the beam reselection indication information includes third indication information for indicating beams that are not allowed to be selected.
  • the beam reselection indication information is included in the uplink transmission feedback.
  • a communication method is provided, and the method can be executed by a network device or an apparatus supporting the function of the network device (such as a chip system of the network device).
  • the method includes: determining fourth indication information, and sending the fourth indication information;
  • the fourth indication information is used to configure uplink communication resources associated with multiple beams; the multiple beams include the first beam and/or the second beam;
  • the number of uplink communication resources associated with the first beam is different from the number of uplink communication resources associated with the second beam.
  • the fourth indication information is used to configure the number of uplink communication resources associated with the first beam and used to configure the number of uplink communication resources associated with the second beam.
  • the fourth indication information is used to configure the number of uplink communication resources associated with the second beam and an offset value
  • the offset value is used to indicate the number of uplink communication resources associated with the first beam and the number of uplink communication resources associated with the second beam. The offset between the number of uplink communication resources.
  • a communication apparatus configured to be a terminal device or a device supporting the functions of the terminal device (such as a chip system of the terminal device).
  • the apparatus includes: a receiving module configured to receive first indication information; the first indication information is used to configure a first probability for each of the at least one first beam, and/or, for at least one first beam Each first beam in the beam is configured with a preset reference signal received power RSRP threshold;
  • a processing module configured to select a target beam based on the first indication information, and determine uplink communication resources based on the target beam;
  • the first probability corresponding to the first beam is the configured probability of using the first beam; the preset RSRP threshold corresponding to the first beam is used to determine whether the first beam is an optional beam of the terminal device, and the preset RSRP threshold is not a cell level RSRP threshold.
  • the at least one first beam includes J first beams, and the first probability of the j-th first beam among the J first beams is p j ;
  • selecting the target beam based on the first indication information includes: selecting the jth first beam among the J first beams according to the probability p j as target beam, according to probability Select the second beam in the optional beams as the target beam; or, according to the probability p j *X/Y, select the jth first beam among the J first beams as the target beam, according to the probability Select the second beam in the optional beams as the target beam, where X represents the number of optional beams, and Y represents the number of beams sent by the network device;
  • selecting the target beam based on the first indication information includes: according to the probability Select the jth first beam in the optional beams as the target beam; or, according to the probability p j , select the jth first beam in the optional beams as the target beam; or, according to the probability p j *X/Y, select the Select the jth first beam in the beams as the target beam;
  • J and K are both positive integers; j is a non-negative integer; j is less than or equal to J.
  • the selectable beams include the first beams whose measured RSRP value is greater than or equal to the cell-level RSRP threshold.
  • the optional beams include: a first beam whose RSRP measurement value is greater than or equal to a corresponding preset RSRP threshold;
  • the optional beams include: the RSRP measurement value is greater than or equal to the corresponding preset RSRP threshold, and the first beam is greater than or equal to the cell-level RSRP threshold.
  • a communication apparatus configured to be a terminal device or a device supporting the functions of the terminal device (such as a chip system of the terminal device).
  • the apparatus includes: a receiving module configured to receive beam reselection indication information, where the beam reselection indication information is used to instruct a terminal device to perform beam reselection;
  • the processing module is configured to, based on the beam reselection indication information, select a beam based on the beam reselection indication information after receiving the beam reselection indication information, and determine an uplink communication resource based on the selected beam.
  • the beam reselection indication information includes second indication information for indicating beams that are allowed to be selected.
  • the beam reselection indication information includes third indication information for indicating beams that are not allowed to be selected.
  • the processing module for selecting a beam based on the beam reselection indication information, includes:
  • the beam is selected based on the beam reselection indication information.
  • the beam reselection indication information is included in the uplink transmission feedback.
  • a communication apparatus configured to be a terminal device or an apparatus supporting the functions of the terminal device (such as a chip system of the terminal device).
  • the apparatus includes: a receiving module configured to receive fourth indication information, where the fourth indication information is used to configure uplink communication resources associated with multiple beams; the multiple beams include a first beam and/or a second beam;
  • a processing module configured to determine uplink communication resources for uplink transmission based on the fourth indication information
  • the number of uplink communication resources associated with the first beam is different from the number of uplink communication resources associated with the second beam.
  • the fourth indication information is used to configure the number of uplink communication resources associated with the first beam and used to configure the number of uplink communication resources associated with the second beam.
  • the fourth indication information is used to configure the number of uplink communication resources associated with the second beam and an offset value
  • the offset value is used to indicate the number of uplink communication resources associated with the first beam and the number of uplink communication resources associated with the second beam. The offset between the number of uplink communication resources.
  • a communication apparatus configured to be a network device or a device supporting the function of the network device (such as a chip system of the network device).
  • the apparatus includes: a processing module configured to determine first indication information; the first indication information is used to configure a first probability for each of the at least one first beam, and/or, for at least one first beam Each first beam in the beam is configured with a preset reference signal received power RSRP threshold;
  • a sending module configured to send the first indication information
  • the first probability corresponding to the first beam is the configured probability of using the first beam; the preset RSRP threshold corresponding to the first beam is used to determine whether the first beam is an optional beam of the terminal device, and the preset RSRP threshold is not a cell level RSRP threshold.
  • the at least one first beam includes J first beams, and the first probability of the j-th first beam among the J first beams is p j ;
  • selecting the target beam based on the first indication information includes: selecting the jth first beam among the J first beams according to the probability p j as target beam, according to probability Select the second beam in the optional beams as the target beam; or, according to the probability p j *X/Y, select the jth first beam among the J first beams as the target beam, according to the probability Select the second beam in the optional beams as the target beam, where X represents the number of optional beams, and Y represents the number of beams sent by the network device;
  • selecting the target beam based on the first indication information includes: according to the probability Select the jth first beam in the optional beams as the target beam; or, according to the probability p j , select the jth first beam in the optional beams as the target beam; or, according to the probability p j *X/Y, select the Select the jth first beam in the beams as the target beam;
  • J and K are both positive integers; j is a non-negative integer; j is less than or equal to J.
  • the selectable beams include the first beams whose measured RSRP value is greater than or equal to the cell-level RSRP threshold.
  • the optional beams include: a first beam whose RSRP measurement value is greater than or equal to a corresponding preset RSRP threshold;
  • the optional beams include: the RSRP measurement value is greater than or equal to the corresponding preset RSRP threshold, and the first beam is greater than or equal to the cell-level RSRP threshold.
  • a communication apparatus may be a network device or a device supporting the function of the network device (such as a chip system of the network device).
  • the device includes:
  • a determining module for determining beam reselection indication information
  • the sending module is configured to send beam reselection indication information, where the beam reselection indication information is used to instruct the terminal device to perform beam reselection.
  • the beam reselection indication information includes second indication information for indicating beams that are allowed to be selected.
  • the beam reselection indication information includes third indication information for indicating beams that are not allowed to be selected.
  • the beam reselection indication information is included in the uplink transmission feedback.
  • a twelfth aspect provides a communication apparatus, which may be a network device or a device supporting the function of the network device (such as a system-on-a-chip of the network device).
  • the device includes: a processing module for determining fourth indication information;
  • a sending module configured to send fourth indication information
  • the fourth indication information is used to configure uplink communication resources associated with multiple beams; the multiple beams include the first beam and/or the second beam;
  • the number of uplink communication resources associated with the first beam is different from the number of uplink communication resources associated with the second beam.
  • the fourth indication information is used to configure the number of uplink communication resources associated with the first beam and used to configure the number of uplink communication resources associated with the second beam.
  • the fourth indication information is used to configure the number of uplink communication resources associated with the second beam and an offset value
  • the offset value is used to indicate the number of uplink communication resources associated with the first beam and the number of uplink communication resources associated with the second beam. The offset between the number of uplink communication resources.
  • the present application provides a communication apparatus for implementing the functions of a terminal device in any of the foregoing aspects, or for implementing the functions of a network device in any of the foregoing aspects.
  • the present application provides a communication device having a function of implementing the communication method in any one of the above aspects.
  • This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a fifteenth aspect provides a communication device, comprising: a processor and a memory; the memory is used to store computer-executed instructions, and when the communication device is running, the processor executes the computer-executed instructions stored in the memory, so that the The communication apparatus performs the communication method according to any one of the above aspects.
  • a sixteenth aspect provides a communication device, comprising: a processor; the processor is configured to be coupled to a memory, and after reading an instruction in the memory, execute the communication method according to any one of the preceding aspects according to the instruction.
  • an embodiment of the present application provides a communication device, including: a processor and an interface circuit; the interface circuit is used to receive code instructions and transmit them to the processor; the processor is used to run the code instructions to execute any of the above The communication method of any one of the aspects.
  • an embodiment of the present application provides a communication device.
  • the device may be a chip system, and the chip system includes a processor, and optionally, a memory, for implementing the method described in any of the above aspects. Function.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a nineteenth aspect provides a communication apparatus, which may be a circuit system, the circuit system comprising a processing circuit configured to perform the communication method of any of the above aspects.
  • embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to execute the method of any one of the foregoing aspects.
  • the embodiments of the present application further provide a computer program product, including instructions, which, when executed on a computer, cause the computer to execute the method of any one of the foregoing aspects.
  • an embodiment of the present application provides a system, where the system includes a terminal device and a network device of any aspect.
  • FIG. 1 is a schematic diagram of a scenario of resource allocation between terminals according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a scenario of a communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a first probability and/or a preset RSRP threshold provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of an association between a resource and an SSB provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a scenario of a communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a scenario of a communication method provided by an embodiment of the present application.
  • 12-13 are schematic structural diagrams of a communication apparatus provided by an embodiment of the present application.
  • a beam is a communication resource. Beams can be divided into transmit beams and receive beams.
  • the transmitting beam refers to a beam with spatial directivity formed by the transmitting end device sending a signal with a certain beamforming weight.
  • the transmitter device may be a terminal; in the downlink direction, the transmitter device may be a network device.
  • the receiving beam refers to the receiving end device sending the signal with a certain beamforming weight, so that the receiving signal forms a beam with spatial directivity.
  • the receiving end device in the uplink direction, may be a network device; in the downlink direction, the receiving end device may be a terminal.
  • Different beams can be considered as different resources.
  • the same information or different information can be transmitted using (or through) different beams.
  • BPL Beam pair link
  • a beam pair usually includes a transmit beam of the transmitter device and a receive beam of the receiver device.
  • the beam-forming technology may be beamforming technology or other technical means.
  • Beamforming includes transmit beamforming and receive beamforming.
  • Transmit beamforming When a transmitter device with an antenna array sends a signal, a specific amplitude and phase are set on each antenna element of the antenna array, so that the transmitted signal has a certain spatial directivity, that is, the signal in certain directions The power is high, the signal power is low in some directions, and the direction with the highest signal power is the direction of the transmitting beam.
  • the antenna array includes a plurality of antenna elements, and the additional specific amplitude and phase are beamforming weights.
  • Receiving beamforming When the receiving end device with the antenna array receives the signal, a specific amplitude and phase are set on each antenna element of the antenna array, so that the power gain of the received signal is directional, that is, the received signal is directional. The power gain is high when the signal is received, and the power gain is low when the signal in certain directions is received. The direction with the highest power gain when receiving the signal is the direction of the receiving beam.
  • the antenna array includes a plurality of antenna elements, and the additional specific amplitude and phase are beamforming weights.
  • the signal is sent using a certain transmit beam, that is, the signal is sent using a certain beamforming weight.
  • a signal is received using a receive beam, i.e. a signal is received using a certain beamforming weight.
  • the network device sends the reference signal to the terminal through multiple transmission beams, wherein the reference signal is sent on a specific time-frequency resource through each transmission beam.
  • the terminal can determine the signal strength of different transmit beams by detecting the signal strengths of reference signals received on different time-frequency resources, and report the time-frequency resource index corresponding to one or more transmit beams with better signal strength, so that the network device can The corresponding relationship between the time-frequency resource index and the transmit beam determines the transmit beam used when sending signals to the terminal subsequently.
  • the reference signal may be, for example, but not limited to, at least one of the following reference signals: a reference signal in a synchronization signal block (synchronization signal/physical broadcast channel demodulation reference signal block, SS/PBCH block), or a channel state information reference signal (channel state information reference signal, CSI-RS).
  • the reference signal in the SS block may be, for example, but not limited to, at least one of the following reference signals: primary synchronization signal (PSS), secondary synchronization signal (secondary synchronization signal, SSS), physical broadcast channel demodulation Reference signal (physical broadcast channel demodulation reference signal, PBCH-DMRS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • SSS secondary synchronization signal
  • PBCH-DMRS physical broadcast channel demodulation Reference signal
  • the English of the synchronization signal block may also be abbreviated as SSB, that is, synchronization signal block.
  • the reference signal refers to a reference signal sent by a network device through a certain downlink beam and used for the terminal to select a beam.
  • the following embodiments mainly take the reference signal as an SSB as an example to describe the technical solutions of the embodiments of the present application. Here is a unified description.
  • Physical random access channel transmission opportunity (physical random access channel occasion, PRACH occasion, RO for short)
  • RO is usually used to represent a PRACH time-frequency resource for sending the preamble.
  • Preamble is divided into contention-based preamble and non-competition preamble.
  • first and second in the description and drawings of the present application are used to distinguish different objects, or to distinguish different processing of the same object, rather than to describe a specific order of the objects.
  • At least one means one or more.
  • “Plural” means two or more.
  • a and/or B which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • A/B can represent A or B.
  • references to the terms “comprising” and “having” in the description of this application, and any variations thereof, are intended to cover non-exclusive inclusion.
  • a process, method, system, product or device comprising a series of steps or units is not limited to the listed steps or units, but optionally also includes other unlisted steps or units, or optionally also Include other steps or units inherent to these processes, methods, products or devices.
  • the technical solutions provided in the embodiments of the present application can be applied to a communication system using beam communication, for example, a long term evolution (Long Term Evolution, LTE) communication system, a new radio interface (new radio interface) using the fifth generation (5th generation, 5G) communication technology , NR) communication system, future evolution system or multiple communication fusion systems and so on.
  • the technical solutions provided in this application can be applied to various application scenarios, such as machine to machine (M2M), macro-micro communication, enhanced mobile broadband (eMBB), ultra-reliable and ultra-low latency Communication (ultra-reliable & low latency communication, uRLLC) and massive IoT communication (massive machine type communication, mMTC) and other scenarios.
  • M2M machine to machine
  • eMBB enhanced mobile broadband
  • uRLLC ultra-reliable and ultra-low latency Communication
  • massive IoT communication massive machine type communication
  • These scenarios may include, but are not limited to: a communication scenario between a terminal device and a terminal device, a communication scenario between a network device and a network device, a communication scenario between a network device and a terminal device, and the like.
  • the following description is given by taking an example of application in a communication scenario between a network device and a terminal.
  • the communication system includes a network device, and one or more terminals (eg, terminal 1 to terminal 6 in FIG. 2 ) that communicate with the network device.
  • the network device involved in the embodiments of the present application is a device deployed in a wireless access network to provide a wireless communication function.
  • the network device may refer to the device that communicates with the wireless terminal through one or more cells on the air interface of the access network, wherein the device implementing the function of the network device may be a network device, or may be a device that supports the network device to realize the function.
  • a functional device such as a chip in a network device).
  • the network device may perform attribute management on the air interface.
  • the base station equipment may also coordinate attribute management of the air interface.
  • Network equipment includes various forms of macro base stations, micro base stations (also known as small cells), relay devices such as relay stations or chips of relay devices, transmission reception points (TRP), evolved network nodes (evolved).
  • the network equipment may be a base band unit (BBU) and a remote radio unit (RRU).
  • BBU base band unit
  • RRU remote radio unit
  • the network device can be a baseband pool (BBU pool) and an RRU.
  • the terminal involved in the embodiment of the present application may be a wireless terminal or a wired terminal.
  • a wireless terminal Including but not limited to in-vehicle devices, wearable devices, computing devices, chips built into computing devices, or other processing devices connected to wireless modems; may also include cellular phones, personal communication service (PCS) phones , cordless phones, session initiation protocol (SIP) phones, smart phones (smart phones), personal digital assistant (PDA) computers, tablet computers, laptop computers (laptop computers), wireless modems (modem), handheld device (handheld), wireless local loop (wireless local loop, WLL) station.
  • PCS personal communication service
  • SIP session initiation protocol
  • PDA personal digital assistant
  • modem modem
  • handheld device handheld
  • wireless local loop wireless local loop
  • the wireless terminal may also be a subscriber unit (subscriber unit, SU), a subscriber station (subscriber station, SS), a mobile station (mobile station, MB), a mobile station (mobile), a remote station (remote station, RS), a remote terminal ( remote terminal, RT), user terminal (user terminal, UT), terminal equipment (user device, UD), user equipment (user equipment, UE), wireless data card, subscriber unit (subscriber unit), machine type communication (machine type) communication, MTC) terminal (terminal), terminal device (terminal device), customer premise equipment (CPE), access terminal (access terminal, AT), access point (access Point, AP), user agent ( user agent, UA), etc.
  • subscriber unit subscriber unit
  • the device implementing the function of the terminal may be the terminal, or may be a device (such as a chip in the terminal) that supports the terminal to implement the function.
  • the devices mentioned above are collectively referred to as terminals.
  • the network device or terminal in FIG. 2 may be implemented by the communication apparatus in FIG. 3 .
  • the communication device includes: at least one processor 101 , a communication line 102 , a memory 103 and at least one communication interface 104 .
  • the processor 101 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors for controlling the execution of the programs of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 102 may include a path to communicate information between the aforementioned components.
  • the communication interface 104 using any transceiver-like device, is used to communicate with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), and the like.
  • devices or communication networks such as Ethernet, RAN, wireless local area networks (WLAN), and the like.
  • Memory 103 may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of information and instructions that can be stored It can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Access any other medium without limitation.
  • the memory may exist independently and be connected to the processor through the communication line 102 .
  • the memory can also be integrated with the processor.
  • the memory provided by the embodiments of the present application may generally be non-volatile.
  • the memory 103 is used for storing computer-executed instructions for executing the solutions of the present application, and the execution is controlled by the processor 101 .
  • the processor 101 is configured to execute the computer-executed instructions stored in the memory 103, thereby implementing the methods provided by the following embodiments of the present application.
  • the computer-executed instructions in the embodiment of the present application may also be referred to as application code, which is not specifically limited in the embodiment of the present application.
  • the processor 101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3 .
  • the communication apparatus may include multiple processors, for example, the processor 101 and the processor 107 in FIG. 3 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication apparatus may further include an output device 105 and an input device 106 .
  • the output device 105 is in communication with the processor 101 and can display information in a variety of ways.
  • the output device 105 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 106 is in communication with the processor 101 and can receive user input in a variety of ways.
  • the input device 106 may be a mouse, a keyboard, a touch screen device or a sensing device, or the like.
  • the base station can configure association parameters between beams and uplink resources for the UE. Subsequently, the terminal may select a beam and perform communication using the uplink resources associated with the beam based on the associated parameters configured by the base station.
  • the base station indicates the association between the PRACH resource and the beam corresponding to the SSB by configuring the association parameter between the SSB and the PRACH resource for the terminal.
  • the terminal can establish an association relationship between the PRACH resource and the SSB according to the association parameters configured by the base station and the association rules specified in the protocol.
  • the base station configures the UE with a cell-level reference signal receiving power (RSRP) threshold for selecting an SSB (or an RSRP threshold for selecting a beam corresponding to the SSB), and the cell-level RSRP threshold is based on the cell-level RSRP threshold. If configured, the same RSRP threshold is configured for terminals in the same cell.
  • RSRP cell-level reference signal receiving power
  • the UE measures the RSRP of each of the multiple SSBs. If there is at least one SSB whose measured RSRP is greater than or equal to the cell-level RSRP threshold (the SSB whose RSRP is greater than or equal to the cell-level RSRP threshold is called an optional SSB), the UE arbitrarily selects one SSB among the optional SSBs. Conversely, when there is no optional SSB, the UE arbitrarily selects an SSB based on, for example, its own policy. After that, the UE determines a PRACH resource among the PRACH resources associated with the selected SSB, and uses the PRACH resource to perform random access.
  • the number of PRACH resources associated with each SSB is equal.
  • the base station sends the ssb-perRACH-OccasionAndCB-PreamblesPerSSB parameter to the UE.
  • This parameter can be divided into two parts, one is ssb-perRACH-Occasion, which is used to indicate that one RO corresponds to several SSBs; the other is CB-PreamblesPerSSB, which is used to indicate how many contention-based preambles are mapped to each SSB.
  • the base station also informs the UE of the number and number of the sent SSBs.
  • the UE associates these SSBs with the PRACH time-frequency resources according to the association rules and association sequence between the PRACH time-frequency resources and the SSBs defined by the protocol.
  • Resource association refers to the preamble based on competition.
  • the association period is defined as starting from frame #0, in the predefined PRACH time-frequency resource configuration period set, satisfying the minimum PRACH time-frequency resource configuration period that associates all SSBs in the above-mentioned SSBs with PRACH time-frequency resources at least once .
  • an association period if there are still PRACH time-frequency resources or preambles that are not associated with the SSB after an integer number of mapping cycles, these PRACH time-frequency resources or preambles are not used for random access.
  • each SSB corresponds to two ROs, and each SSB corresponds to 52 contention-based preambles.
  • SSB1 corresponds to RO1 and RO2.
  • SSB1 corresponds to 52 contention-based preambles with a preamble index (index) of 0-51.
  • the SSB and PRACH resources are evenly associated, that is, the number of PRACH resources associated with each SSB is equal.
  • the UE selects an appropriate beam, and selects a resource from the PRACH resources corresponding to the beam for random access. In this way, it is equivalent to grouping UEs and resources with beams, selecting UEs of a certain beam to form a UE group, and selecting the resources used by the UEs of the beam to form a resource group.
  • the beam 1 shown in Figure 1 there may be many active terminals that select certain beams (such as beam 3 shown in Figure 1), so that the beam has a lot of load, and other beams (such as Figure 1) are selected.
  • the beam 1) shown has few active terminals, the other beams are lightly loaded. Since the number of PRACH resources associated with each beam is the same, UEs that select a high-load beam (eg, beam 3) are likely to have serious resource collisions, while most of the PRACH resources associated with a low-load beam are idle. That is to say, in the prior art, there is a phenomenon of unbalanced utilization of resources.
  • an embodiment of the present application provides a communication method.
  • the technical solutions in the embodiments of the present application will be described below with reference to the accompanying drawings in the embodiments of the present application.
  • a communication method provided by an embodiment of the present application includes the following steps:
  • the network device sends first indication information to the terminal.
  • the terminal device receives the first indication information.
  • the network device may be a network device in the communication system shown in FIG. 2 , such as a base station, and the terminal device may be a terminal device in the communication system shown in FIG. 2 .
  • the first indication information is used for configuring a first probability for each of the at least one first beam, and/or for configuring a preset RSRP threshold for each of the at least one first beam. That is, the first indication information is used to configure a first probability for each of the at least one first beam. Or, the first indication information is used to configure a preset RSRP threshold for each of the at least one first beam. Alternatively, the first indication information is used to configure a preset RSRP threshold for each of the at least one first beam, and is used to configure a first probability for each of the at least one first beam.
  • the second beam is a beam other than the first beam among the beams actually sent by the base station.
  • the first probability corresponding to the first beam is the configured probability of using the first beam; the preset RSRP threshold corresponding to the first beam is used to determine whether the first beam is an optional beam of the terminal device,
  • the preset RSRP threshold is not a cell-level RSRP threshold.
  • the network device carries the first indication information through a broadcast message.
  • the first probability of the first beam and/or the preset RSRP threshold is notified to the terminal devices within the coverage.
  • one or more optional beams may constitute a set of optional beams.
  • the terminal device selects a beam from the set of optional beams, and uses the resources corresponding to the selected beam to communicate.
  • Alternative sets of SSBs can also be used instead of the concept of sets of selectable beams.
  • the optional SSB set includes one or more optional SSBs.
  • the optional SSBs are the SSBs corresponding to the optional beams.
  • configuring the first probability for the first beam mentioned in the embodiments of this application can also be understood as “configuring the first probability for the reference signal corresponding to the first beam", for example, for the SSB corresponding to the first beam Configure the first probability.
  • configuring a preset RSRP for the first beam can also be understood as “configuring a preset RSRP for the reference signal corresponding to the first beam”.
  • select a certain beam can be understood as “according to this probability, select the reference signal (such as SSB) corresponding to the beam”, “according to a certain probability, select a certain beam as the target beam” can be understood as " According to a certain probability, the reference signal corresponding to the beam (for example, the SSB corresponding to the beam) is selected as the target reference signal (for example, called the target SSB).
  • select the reference signal such as SSB
  • the reference signal corresponding to the first beam may be referred to as the first reference signal for short, for example, the SSB corresponding to the first beam is referred to as the first SSB for short.
  • the reference signal corresponding to the second beam may be simply referred to as the second reference signal.
  • the SSB corresponding to the second beam may be referred to as the second SSB for short.
  • the reference signal corresponding to the target beam may be referred to as the target reference signal for short, for example, the SSB corresponding to the target beam may be referred to as the target SSB for short.
  • the following embodiments are mainly described by taking the reference signal as an SSB as an example, which will be uniformly described here, and will not be repeated below.
  • the first beam may refer to a beam with a load higher than a first load threshold.
  • the first load threshold can be flexibly set according to application scenarios.
  • the network device can detect the load of each beam, and when it is detected that the load of one or more beams is higher than the first load threshold, this part of the beam is regarded as the first beam, and the network device is the one or more beams.
  • Configure a first probability and/or a preset RSRP threshold for each of the first beams and indicate the first probability and/or preset configured for the first beam by sending first indication information to the terminal device RSRP threshold.
  • the first probability configured by the network device for the first beam is less than or equal to the first probability threshold (which can be flexibly set according to specific applications). That is to say, for the high-load beam, the network device configures the high-load beam with a smaller first probability. In this way, after the terminal device receives the first probability configured for the high-load beam, the terminal device can configure the high-load beam with a smaller probability. The high-load beam is selected, thereby reducing the resource collision probability between terminal devices.
  • the preset RSRP threshold configured by the network device for the first beam is greater than or equal to the first RSRP threshold (which can be flexibly set according to specific applications). It means that when the network device detects a high-load beam (or a beam with serious collision), a larger preset RSRP threshold is configured for the high-load beam. In this way, when the terminal device determines whether the high-load beam is an optional beam, because the preset RSRP threshold value is high, the probability that the high-load beam is judged to be an optional beam can be reduced, thereby reducing the terminal device's selection of the high-load beam. Probability of carrying beams.
  • the value of the first RSRP threshold may be greater than the cell-level RSRP threshold.
  • the specific value of the first RSRP threshold is not limited in this embodiment of the present application.
  • the base station detects that the load of beam 3 is higher than the first load threshold, and broadcasts first indication information, where the first indication information includes the first probability and/or prediction configured for beam 3.
  • the first indication information includes the first probability and/or prediction configured for beam 3.
  • UE1 selects the target beam based on the first indication information. For example, since the first probability configured by the base station for beam 3 is small, the probability of the terminal device selecting other beams (ie, beams other than beam 3) increases. For example, the terminal device selects beam 1 as the target beam.
  • the first beam may also refer to a beam whose load is lower than the second load threshold.
  • the second load threshold can be flexibly set according to application scenarios.
  • the network device can detect the load of each beam, and when it is detected that the load of one or more beams is lower than the second load threshold, this part of the beam is regarded as the first beam, and the network device is the one or more beams.
  • Each of the first beams is configured with a first probability and/or a preset RSRP threshold.
  • the first probability configured by the network device for the first beam is greater than or equal to the second probability threshold (which can be flexibly set according to specific applications). That is to say, for the low-load beam, the network device configures the low-load beam with a relatively large first probability. In this way, after the terminal device receives the first probability configured for the low-load beam, the terminal device can use the high probability The low-load beam is selected, thereby reducing the probability that the terminal device selects a high-load beam.
  • the first probability configured by the network device for it is smaller.
  • the lower the load of the first beam the greater the first probability that the network device configures it.
  • the network device configures the same first probability for each of the multiple first beams.
  • the preset RSRP configured by the network device for the first beam is less than or equal to the second RSRP threshold (which can be flexibly set according to specific applications). It means that after the network device detects a low-load beam (or a beam with less serious collision), a smaller preset RSRP threshold is configured for the low-load beam. In this way, when the terminal device determines whether the low-load beam is an optional beam, because the preset RSRP threshold value is low, the probability that the low-load beam is judged to be an optional beam can be increased, thereby improving the use of the low-load beam by the terminal device. The probability that the payload beam will perform communication.
  • the second RSRP threshold is smaller than the cell-level RSRP threshold.
  • the second RSRP threshold may also be set to other possible values, which are not limited in this embodiment of the present application.
  • the base station detects that the load of beam 1 is lower than the second load threshold, and broadcasts first indication information, where the first indication information includes the first probability and/or prediction configured for beam 1.
  • the first indication information includes the first probability and/or prediction configured for beam 1.
  • the first beam may also refer to other types of beams
  • the network device configures a first probability and/or a preset RSRP threshold for each of the one or more first beams. This embodiment of the present application does not specify a specific type of the first beam.
  • the first beam may be all beams actually sent by the base station.
  • the first beam is a beam with a relatively high signal strength.
  • the terminal device selects a target beam based on the first indication information.
  • S402 may have different implementation manners.
  • the three cases are described as follows.
  • the first indication information includes a first probability configured for each of the at least one first beam.
  • the at least one first beam includes J first beams, and the first probability of the j-th first beam among the J first beams is p j .
  • the optional beams include the first beam whose RSRP measurement value is greater than or equal to the cell-level RSRP threshold.
  • the optional beams include the above-mentioned J first beams and K second beams:
  • Selecting the target beam based on the first indication information includes: according to the probability p j , selecting the j-th first beam among the J first beams as the target beam, and according to the probability Select the second beam among the optional beams as the target beam.
  • the probability p j *X/Y select the j-th first beam among the J first beams as the target beam, and according to the probability The second beam in the optional beams is selected as the target beam, where X represents the number of optional beams, and Y represents the number of beams actually sent by the network device.
  • Selecting the target beam based on the first indication information includes: according to the probability Select the jth first beam in the optional beams as the target beam;
  • J and K are both positive integers; j is a non-negative integer; j is less than or equal to J.
  • a network device sends N (N is a positive integer) SSBs to the terminal device, which are SSB1-SSBN respectively.
  • the beam is the first beam) is configured with a first probability p2, and the SSB3 is configured with a first probability p3.
  • the terminal equipment measures the RSRP of each SSB in SSB1-SSBN, and uses the SSB whose measured RSRP value is greater than or equal to the cell-level RSRP threshold as an optional SSB.
  • the relationship between the RSRP measurement value of the terminal device and the cell-level RSRP threshold is shown in (a) of FIG. 6 .
  • the terminal device selects SSB1 as the target SSB with the probability of p1, and selects the target SSB from the K second SSBs (ie SSBN and SSBm) with the probability of (1-p1).
  • how the terminal device selects the target SSB among the K second SSBs may be implemented by the terminal device based on a preset policy. For example, one target SSB may be determined from the K second SSBs in an equal probability manner, that is, with a probability of (1-p1)/K, one second SSB is selected from the K second SSBs as the target SSB. Still referring to (a) in FIG. 6 , the terminal device selects SSBN as the target beam with a probability of (1-p1)/2, and selects SSBm as the target beam with a probability of (1-p1)/2. For another example, the terminal device selects an SSB with the highest RSRP measurement value from the second SSB as the target SSB.
  • SSB with the probability of p2/(p1+p2), select SSB2 as the target SSB.
  • the terminal device may select one SSB from the selectable SSB set as the target SSB according to the prior art. For example, the terminal device implements selection according to a strategy configured by itself, or selects with equal probability.
  • the terminal device only selects the target SSB from the set of optional SSBs according to the first probability. In other embodiments, the terminal device selects the SSB according to the first probability among all the SSBs actually sent by the network device. In this case, if the selected SSB does not belong to the set of optional SSBs, the terminal device reselects the SSB until the When the selected SSB belongs to the set of optional SSBs, it is determined that the selected SSB is the target SSB.
  • selecting the target beam based on the first indication information includes: selecting from the G first beams according to the probability p g The g-th first beam, according to the probability One second beam is selected from the H second beams.
  • p g represents the first probability of the g-th first beam among the G first beams.
  • the terminal device reselects the beam according to the above probability, and if the selected beam belongs to the set of optional beams, it is determined that the beam is the target beam.
  • the terminal device has the possibility of p1 to select SSB1, the possibility of p2 to select SSB2, the possibility of p3 to select SSB3, and the possibility of 1-p1-p2-p3 to select an SSB from SSBm, SSBN and other SSBs.
  • the terminal device re-selects the SSB in SSB1-SSBN, that is, there is a possibility of p1 to select SSB1, there is a possibility of p2 to select SSB2, and there is p3
  • selecting the target beam based on the first indication information includes: according to the probability p g *X/Y, from the G first beams Select the g-th first beam in the beam, according to the probability One second beam is selected from the H second beams.
  • p g represents the first probability of the g-th first beam among the G first beams.
  • X represents the number of optional beams, and Y represents the number of beams sent by the network device.
  • selecting the target beam based on the first indication information includes: selecting the g-th first beam in the first beams according to the probability p g . , if the selected beam does not belong to the optional beam set, the terminal device reselects the beam according to the above probability, that is, according to p g , selects the g-th first beam in the first beam, if the selected beam belongs to the optional beam set, then Determine this beam as the target beam.
  • selecting the target beam based on the first indication information includes: according to the probability The g-th first beam in the optional beams is selected as the target beam; or, according to the probability p g *X/Y, the g-th first beam in the optional beams is selected as the target beam.
  • the first indication information includes a preset RSRP threshold configured for each of the at least one first beam.
  • the preset RSRP threshold corresponding to the first beam is used to determine whether the first beam is an optional beam of the terminal equipment, and the preset RSRP threshold is not a cell-level RSRP threshold.
  • the preset RSRP thresholds of different first beams may be the same or different.
  • the preset RSRP of beam 1 is RSRP1
  • the preset RSRP threshold of beam 2 is RSRP2
  • the values of RSRP1 and RSRP2 may be the same or different.
  • the size of the preset RSRP threshold configured by the network device for the first beam is related to the load level of the first beam.
  • the first beam is a beam whose load is greater than or equal to the first load threshold.
  • the preset RSRP threshold of the first beam is greater than or equal to the first RSRP threshold.
  • the first beam is a beam whose load is less than or equal to the second load threshold.
  • the preset RSRP threshold of the first beam is less than or equal to the second RSRP threshold.
  • the optional beams include: a first beam whose RSRP measurement value is greater than or equal to a corresponding preset RSRP threshold, and a second beam whose RSRP measurement value is greater than or equal to a cell-level RSRP threshold.
  • the optional SSBs include: a first SSB whose RSRP measurement value is greater than or equal to the corresponding preset RSRP threshold, and a second SSB whose RSRP measurement value is greater than or equal to the cell-level RSRP threshold.
  • the SSB can be considered as the optional SSB of the terminal device .
  • the SSB may be regarded as an optional SSB of the terminal device.
  • the base station sends N SSBs to the terminal device, which are respectively SSB1-SSBN.
  • the base station has I (1 ⁇ I ⁇ N) SSBs, for example, ⁇ SSBm, SSBr, and SSBs ⁇ are configured with preset RSRP thresholds, respectively, ⁇ Tm, Tr, and Ts ⁇ .
  • the RSRP measurement value of the terminal device for SSBm is greater than the preset RSRP threshold of the SSBm
  • the RSRP measurement value of the SSBs is greater than the preset RSRP threshold of the SSBs
  • the RSRP measurement value of the SSBr is greater than the preset RSRP threshold of the SSBs.
  • the measured value is less than the preset RSRP threshold of the SSBr. Therefore, optional SSBs include SSBm and SSBs.
  • the RSRP measurement value of the terminal device for SSB1 is smaller than the cell-level RSRP threshold, and the RSRP measurement value for the SSBN is larger than the cell-level RSRP threshold. Therefore, the optional SSB of the terminal equipment includes the SSBN.
  • the optional SSBs of the terminal equipment include SSBm, SSBs and SSBNs shown in (b) of FIG. 6 .
  • the optional beams include: the RSRP measurement value is greater than or equal to the corresponding preset RSRP threshold, and the first beam is greater than or equal to the cell-level RSRP threshold, and the RSRP measurement value is greater than or equal to the cell-level RSRP threshold the second beam.
  • the optional SSB includes SSBm.
  • the optional SSB includes SSBN. That is, the optional SSBs of the terminal device include SSBm and SSBN shown in (c) of FIG. 6 .
  • the first indication information includes a preset RSRP threshold configured for each first beam, and a first probability configured for each first beam.
  • the case 3 can be regarded as a combination of the case 1 scheme and the case 2 scheme.
  • the first beam may refer to a beam with a load higher than a first load threshold.
  • the first probability configured by the network device for the first beam is less than or equal to the first probability threshold, and the preset RSRP threshold configured by the network device for the first beam is greater than or equal to the first RSRP threshold. It means that when the terminal device determines whether the first beam, that is, the high-load beam, is an optional beam, because the preset RSRP threshold value is high, the probability that the high-load beam is judged to be an optional beam can be reduced, thereby reducing the The probability that the terminal device selects this heavily loaded beam. Further, since the first probability that the high-load beam is configured is relatively small, the probability that the terminal device selects the high-load beam from the optional beams is further reduced.
  • the first beam may refer to a beam whose loading is lower than the second loading threshold.
  • the first probability configured by the network device for the first beam is greater than or equal to the second probability threshold, and the preset RSRP threshold configured by the network device for the first beam is less than or equal to the second RSRP threshold.
  • the network device sends N SSBs to the terminal device, which are respectively SSB1-SSBN.
  • the terminal device measures the RSRP of each SSB in SSB1-SSBN, and for an SSB configured with a preset RSRP threshold, the terminal device uses an SSB whose RSRP measurement value is greater than or equal to the corresponding preset RSRP threshold as an optional SSB; SSBs with preset RSRP thresholds are not configured, and the terminal equipment uses the SSBs whose measured RSRP values are greater than or equal to the cell-level RSRP thresholds as optional SSBs. Still referring to (d) of FIG.
  • the terminal device measures the RSRP of each SSB in SSB1-SSBN, and for an SSB configured with a preset RSRP threshold, the terminal device determines that the RSRP measurement value is greater than or equal to the corresponding preset RSRP threshold, and the RSRP measurement value is greater than or equal to the preset RSRP threshold.
  • An SSB with or equal to the cell-level RSRP threshold is used as an optional SSB; for an SSB not configured with a preset RSRP threshold, the terminal device uses an SSB whose RSRP measurement value is greater than or equal to the cell-level RSRP threshold as an optional SSB. Referring to (e) of FIG.
  • the base station finds that the load of beam 3 is relatively high by measuring the load of beam 1 to beam 3, then the base station sends the first indication information to the terminal device to indicate the first probability of beam 3 and/or Or preset RSRP threshold. Then, in the future, when the terminal equipment accesses the base station, the probability of selecting the beam 3 will decrease, and correspondingly, the probability of the terminal equipment selecting a low-load beam will increase, thereby reducing the terminal equipment selection of high-load beams. The probability of resource collision problems between them.
  • the terminal device determines uplink communication resources based on the target beam.
  • This S403 can also be understood as that the terminal device determines the uplink communication resource based on the target SSB.
  • the uplink communication resources are PRACH time-frequency resources
  • the terminal device determines the PRACH time-frequency resources associated with the target beam based on the target beam.
  • the target beam is beam 1 shown in FIG. 1 .
  • the SSB corresponding to beam 1 is SSB3 shown in (a) of FIG. 7 .
  • the uplink communication resources of the terminal device include RO4 and RO5 shown in (a) of FIG. 7 .
  • Terminal equipment can use RO4 and RO5 for random access. It should be understood that the load of the target beam 1 is relatively low. Therefore, the terminal equipment uses the PRACH time-frequency resources associated with the low-load beam 1 to perform random access, which can reduce the probability of resource collision with other terminal equipment.
  • the terminal device can use the selected PRACH time-frequency resources according to the direction of the target beam to send PRACH to the network device in the opposite direction of the direction.
  • the network device may transmit downlink data to the terminal device through the target beam.
  • the terminal device may transmit uplink data to the network device through the uplink beam corresponding to the target beam.
  • the uplink beam corresponding to the target beam that is, the uplink beam in the opposite direction to the target beam. In other words, the direction of the target beam and the direction of the corresponding uplink beam are consistent.
  • the terminal device determines the target beam based on the first indication information received from the network device.
  • the first indication information is used to indicate a first probability and/or a preset RSRP threshold configured for each of the at least one first beam. That is, the first indication information may configure different first probabilities and/or preset RSRP thresholds for different beams. Therefore, the terminal equipment can not only select beams according to factors such as its own location, service characteristics, etc., but also select beams according to the first probability and/or preset RSRP threshold, reducing the number of terminal equipments that select some beams, and the terminal equipments that select other beams. Rarely, resulting in the probability of resource collision between terminals.
  • the embodiment of the present application also provides a communication method, see FIG. 8 , the method includes:
  • the network device sends beam reselection indication information to the terminal device.
  • the terminal device receives beam reselection indication information from the network device.
  • the beam reselection indication information is used to instruct the terminal device to perform beam reselection.
  • the beam reselection indication information may include preset bits, for example, may include 1 bit, and the 1 bit is used to indicate whether the terminal device needs beam reselection.
  • the value of 1 bit is 1, indicating that the terminal device needs to reselect the beam, and the value is 0, indicating that the terminal device does not need to reselect the beam.
  • which bit value is specifically used to indicate that the beam needs to be reselected can be set separately, which is not limited in this embodiment of the present application.
  • the preset bits can also be defaulted.
  • the network device does not send beam reselection indication information to the terminal. to reduce signaling overhead.
  • the network device does not impose additional restrictions on the beam that the terminal device is allowed to select.
  • the network device does not impose additional restrictions on the beam that the terminal device is not allowed to select.
  • the network device sends beam reselection indication information, which is specifically implemented as: the network device sends uplink transmission feedback.
  • the uplink transmission feedback carries the beam reselection indication information.
  • the uplink transmission feedback can be, for example, but not limited to, a random access response in a two-step random access process, or a random access response in a four-step random access process, or a physical uplink shared channel (PUSCH) )feedback of.
  • PUSCH physical uplink shared channel
  • it may be the second message (Msg2) in the four-step random access process, and another example may be a negative acknowledgement message (NACK) or a positive acknowledgement message (ACK) for the PUSCH.
  • NACK negative acknowledgement message
  • ACK positive acknowledgement message
  • the beam reselection indication information includes second indication information for indicating a beam that is allowed to be selected.
  • the second indication information includes the reference signal index of the beam that is allowed to be selected, so as to instruct the terminal device to select the beam corresponding to the indicated reference signal index.
  • UE1 in a random access process, sends Msg1 to the base station to notify the base station that the UE1 has a random access request, so that the base station can estimate the relationship between itself and UE1. transmission delay, and send calibration information to UE1, so that UE1 can calibrate the uplink timing (uplink timing).
  • the base station receives Msg1 and sends Msg2 to UE1.
  • the Msg2 includes beam reselection indication information, the beam reselection indication information includes second indication information, and the second indication information includes the reference signal index of the beam that is allowed to be selected, such as the SSB of beam 1 Index (eg SSB1), SSB index of beam 2 (eg SSB2).
  • the UE1 selects a beam from the beams that are allowed to be selected, ie, the beam corresponding to SSB1 (beam 1) and the beam corresponding to SSB2 (beam 2) based on the Msg2.
  • the beam reselection indication includes third indication information for indicating a beam that is not allowed to be selected.
  • the third indication information includes reference signal indices of beams that are not allowed to be selected.
  • UE1 sends Msg1 to the base station, the base station receives Msg1, and sends Msg2 to UE1, where Msg2 includes beam reselection indication information, and the beam reselection indication information includes third indication information, and the third The indication information includes the reference signal index of the beam that is not allowed to be selected, such as the SSB index (such as SSB3) of beam 3 (highly loaded beam).
  • SSB index such as SSB3
  • the terminal device After receiving the beam reselection indication information, the terminal device selects a beam based on the beam reselection indication information.
  • the terminal device selects the beam based on the beam reselection indication information, which may be implemented as follows: within a configured time period, the terminal device selects the beam based on the beam reselection indication information. Specifically, the network device configures the period information for the terminal device, or the period information is predefined by the protocol. The time period information is used to indicate the effective time range of the beam reselection indication information, and the effective time range may be from the time when the terminal device receives the beam reselection indication information, and the length is the duration indicated by the time period.
  • the time period information may be carried in the same uplink transmission feedback as the beam reselection indication information, and the time period information may also be carried in broadcast information.
  • UE1 After UE1 receives Msg2, it parses the Msg2 and finds that the bit value of the preset bit is 1, indicating that the terminal device needs to reselect the beam. Then, the terminal device starts the timer Timer at the moment of receiving Msg2, and the timer duration is set to the duration indicated by the time period information. Before the Timer times out, UE1 selects a beam from the beams (such as beam 1 and beam 2) indicated by the second indication information. .
  • the terminal device selects the beam based on the beam reselection indication information, which may be implemented as: selecting the beam based on the beam reselection indication information within the configured number of uplink transmissions.
  • the uplink transmission can be, for example, but not limited to, PUSCH and PRACH.
  • the network device configures the number of times information for the terminal device, which is used to indicate the range of the number of uplink transmission times of the beam reselection indication information. ) uplink transmissions.
  • the number of uplink transmissions may be the number of PUSCH, or the number of PRACH, or the total number of PUSCH and PRACH.
  • the times information and the beam reselection indication information may be carried in the same uplink transmission feedback message, or may be carried in the broadcast information.
  • the number of times information can also be predefined by the protocol.
  • the base station sends N SSBs to UE1, which are SSB1-SSBN respectively, and UE1 selects SSB1 for random access.
  • the base station detects that the current resource collision of SSB1 is relatively serious, and instructs UE1 to reselect the beam in the feedback (such as Msg2) to UE1, then UE1 can only select SSBs other than SSB1 in its optional SSBs during the next random access. .
  • the uplink transmission feedback is applicable to the situation that the current uplink transmission is successful, and also applies to the situation that the current uplink transmission fails.
  • the terminal device determines uplink communication resources based on the selected beam.
  • an uplink communication resource (such as a PRACH time-frequency resource) associated with the SSB is determined.
  • a reference signal such as an SSB
  • an uplink communication resource such as a PRACH time-frequency resource
  • a terminal device selects a beam based on beam reselection indication information received from a network device. That is to say, the terminal equipment can not only select beams according to its own location, service characteristics and other factors, but also select beams according to the beam reselection indication information, reducing the number of terminal equipments that select certain beams, and the number of terminal equipments that select other beams. Probability of resource collision between terminals.
  • the network device when the load between beams is unbalanced, can adjust the load between beams through the first indication information or the beam reselection indication information, thereby reducing the number of terminal devices that select certain beams. Few terminal devices select other beams, resulting in the probability of resource collision between terminals.
  • the embodiment of the present application also provides a communication method, see FIG. 10 , the method includes:
  • the network device sends fourth indication information to the terminal device.
  • the terminal device receives the fourth indication information from the network device.
  • the fourth indication information is used to configure uplink communication resources associated with multiple beams.
  • the plurality of beams include the first beam and/or the second beam.
  • the number of uplink communication resources associated with the first beam is different from the number of uplink communication resources associated with the second beam.
  • the uplink communication resources may be time-frequency resources, such as PRACH time-frequency resources, or PUSCH time-frequency resources, or code-domain resources, such as preamble or DMRS, or space-domain resources, such as antenna ports, or other resources.
  • time-frequency resources such as PRACH time-frequency resources, or PUSCH time-frequency resources
  • code-domain resources such as preamble or DMRS
  • space-domain resources such as antenna ports, or other resources.
  • the fourth indication information is specifically used to configure the number of uplink resources associated with the first beam, and is used to configure the number of uplink resources associated with the second beam.
  • the base station broadcasts fourth indication information, and the fourth indication information indicates the number of ROs associated with beam 1 to beam 3 available to the base station, for example, the second beam, that is, beam 1 with low load (corresponding to SSB1) and beam 2 (corresponding to SSB2) are each associated with 2 ROs, and the first beam, that is, high-load beam 3 (corresponding to SSB3) is associated with 4 ROs.
  • the ROs associated with the three beams can be referred to in FIG. 7(b) and FIG. 7(c).
  • the fourth indication information is specifically used to configure the number of uplink communication resources associated with the second beam and an offset value
  • the offset value is used to indicate that the number of uplink communication resources associated with the first beam is associated with the second beam The offset between the number of uplink communication resources.
  • the network device configures the number of ROs associated with each second SSB (that is, a general SSB) in the second SSB set to be B through the fourth indication information.
  • the parameter ssb-perRACH-OccasionAndCB-PreamblesPerSSB is configured, and the offset value of the number of ROs associated with the first SSB and the number of ROs associated with the second SSB is a (or the offset value may also be predefined by the protocol).
  • the network device may also indicate the first set of SSBs through the fourth indication information. In this way, when the terminal device associates the uplink communication resources with the SSBs, each first SSB is associated with the above-mentioned B ROs and additionally a ROs.
  • the offset value is a
  • the number of uplink communication resources associated with the second beam is B
  • the number of uplink communication resources associated with the first beam may be a*B, or the number of uplink communication resources associated with the first beam is a+B, or, according to the number B of uplink communication resources associated with the second beam and the offset value a, other algorithms are used to calculate the number of uplink communication resources associated with the first beam.
  • the offset value can be configured independently for each beam.
  • the fourth indication information includes an offset value of 1 or an offset value of 2.
  • the offset value 1 is the offset value between the number of ROs associated with beam 1 and the number of ROs associated with beam 3
  • the offset value 2 is the offset value between the number of ROs associated with beam 2 and the number of ROs associated with beam 3.
  • Offset value 1 is the same or different from offset value 2.
  • the network device may also send the offset value through other messages (ie, information other than broadcast information).
  • the offset value a may also be predefined by the protocol.
  • sending the fourth indication information to the terminal device by the network device may be implemented as follows: the network device sends broadcast information to the terminal device, and the broadcast information includes the fourth indication information.
  • the terminal device determines uplink communication resources for uplink transmission based on the fourth indication information.
  • the base station increases the number of resources associated with one or more beams.
  • the terminal device may associate the beam with the corresponding uplink communication resource according to the fourth indication information.
  • the terminal device in each mapping cycle, first associates the SSBs actually sent by all network devices with PRACH resources according to the number B of PRACH resources associated with the second SSB, and then associates the first SSB with the PRACH resources.
  • Each first SSB in the set is additionally associated with a PRACH resources, and then the next mapping cycle is performed.
  • the mapping cycle refers to that the SSB actually sent by each network device is associated with the PRACH resource once according to the number of PRACH resources associated with it.
  • the association period includes at least one mapping cycle.
  • each mapping cycle the SSBs actually sent by all network devices are associated with PRACH resources according to the number of PRACH resources associated with them, that is, each first SSB is associated with B+a PRACH resources, each second SSB is associated with B PRACH resources, and then the next mapping cycle is performed.
  • the base station actually sends 4 SSBs, namely SSB1-SSB4, the network device indicates the first SSB set, which is SSB3, and the base station configures the second SSB set (that is, the general SSB, which is SSB1, SSB2, SSB4) associated with each of them.
  • the number of ROs is 2, and 52 preambles are associated with each of the 2 ROs, for example, configured by the parameter ssb-perRACH-OccasionAndCB-PreamblesPerSSB.
  • each mapping cycle in each mapping cycle, first associate 2 ROs with each SSB in SSB1-4, and associate 52 preambles with each RO in the 2 ROs, and then associate the SSB with 52 preambles.
  • SSB3 is additionally associated with 2 ROs, and each of the 2 ROs is associated with 52 preambles, see (b) of FIG. 7 .
  • SSB1 and SSB2 are associated with 2 ROs, and each of the 2 ROs is associated with 52 preambles, SSB3 is associated with 4 ROs, and Each of the 4 ROs is associated with 52 preambles, the SSB4 is associated with 2 ROs, and each of the 2 ROs is associated with 52 preambles, see (c) of FIG. 7 .
  • the terminal device determines the uplink communication resource based on the fourth indication information received from the network device.
  • the fourth indication information is that the number of uplink communication resources configured for the first beam is different from the number of uplink communication resources configured for the second beam, that is, the network device adopts a non-uniform resource allocation method, and different uplinks can be configured for different beams.
  • the number of communication resources for example, more resources are allocated for beams with serious collision, so the probability of resource collision between terminals can be reduced.
  • the terminal device and the network device include corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware, or in a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the terminal may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following is an example of dividing each function module corresponding to each function to illustrate:
  • the communication device includes a receiving module 1202 and a processing module 1201 .
  • the communication device is a terminal or a device supporting terminal functions (such as a chip system of a terminal), and the receiving module 1202 is configured to support the communication device to perform step S401 in FIG. 4 , step S801 in FIG. 8 , step S1001 in FIG. 10 , and /or other processes for the technical solutions described herein.
  • the processing module 1201 is configured to support the communication device to perform steps S402 and S403 in FIG. 4 , steps S802 and S803 in FIG. 8 , step S1002 in FIG.
  • the communication apparatus 1200 further includes a sending module 1203, configured to support the communication apparatus to send information to other network elements, and/or other processes used in the technical solutions described herein. All relevant contents of the steps involved in the foregoing method embodiments can be cited in the functional descriptions of the corresponding functional modules, which will not be repeated here.
  • the communication device 1200 may further include a storage module.
  • the sending module 1203 and the receiving module 1202 in FIG. 12 may be implemented by the communication interface 104 in FIG. 3
  • the processing module 1201 in FIG. 12 may be implemented by the processor in FIG. 3 101 and/or the processor 107.
  • the communication apparatus 1200 includes a storage module
  • the storage module may be implemented by the memory 103 in FIG. 3, which is not limited in this embodiment of the present application.
  • the communication device includes a sending module 1302 and a processing module 1301 .
  • the communication device is a network device or a device supporting the function of the network device (such as a chip system of the network device), and the sending module 1302 is configured to support the communication device to perform step S401 in FIG. 4 , step S801 in FIG. 8 , and steps in FIG. 10 . S1001, and/or other processes for the technical solutions described herein.
  • the processing module 1301 is configured to support the communication apparatus to determine the first indication information to the fourth indication information, and/or other processes for the technical solutions described herein.
  • the communication apparatus 1300 further includes a receiving module 1303 for supporting the communication apparatus to receive information from other network elements, and/or for other processes of the technical solutions described herein. All relevant contents of the steps involved in the foregoing method embodiments can be cited in the functional descriptions of the corresponding functional modules, which will not be repeated here.
  • the communication device 1300 may further include a storage module.
  • the sending module 1302 and the receiving module 1303 in FIG. 13 may be implemented by the communication interface 104 in FIG. 3
  • the processing module 1301 in FIG. 13 may be implemented by the processor in FIG. 3 101 and/or the processor 107.
  • the communication apparatus 1300 includes a storage module
  • the storage module may be implemented by the memory 103 in FIG. 3, which is not limited in this embodiment of the present application.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer instructions are stored; when the computer-readable storage medium runs on the terminal shown in FIG.
  • the communication method shown in FIG. 8 or FIG. 10 Alternatively, the network device is caused to execute the communication method shown in FIG. 4 , FIG. 8 or FIG. 10 .
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g. coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to transmit to another website site, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or data storage devices including one or more servers, data centers, etc., that can be integrated with the media.
  • Useful media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media, or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • Embodiments of the present application further provide a chip, the chip includes a processing module and a communication interface, where the communication interface is used for receiving an input signal and providing it to the processing module, and/or for processing the signal output generated by the processing module.
  • the processing is used to support the terminal to perform the communication method as shown in FIG. 4 , FIG. 8 or FIG. 10 .
  • the processing is used to support the network device to perform the communication method shown in FIG. 4 , FIG. 8 or FIG. 10 .
  • the processing module may execute code instructions to perform the communication method shown in FIG. 4 , FIG. 10 or FIG. 8 .
  • the code instruction can come from a memory inside the chip or from a memory outside the chip.
  • the processing module is a processor, a microprocessor or an integrated circuit integrated on the chip.
  • the communication interface can be an input-output circuit or a transceiver pin.
  • Embodiments of the present application further provide a computer program product containing computer instructions, which, when run on the terminal shown in FIG. 3 , enables the terminal to execute the communication method shown in FIG. 4 , FIG. 10 or FIG. 8 .
  • the terminal, computer storage medium, chip, and computer program product provided by the above-mentioned embodiments of the present application are all used to execute the method for license-free transmission provided above. Therefore, for the beneficial effects that can be achieved, reference may be made to the method provided above. The corresponding beneficial effects will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及装置,涉及通信技术领域,能够降低终端之间的资源碰撞概率。其中,通信方法包括:接收第一指示信息,并基于第一指示信息选择目标波束,并基于目标波束确定上行通信资源;第一指示信息用于为至少一个第一波束中每一第一波束配置一个第一概率,和/或,用于为至少一个第一波束中每一第一波束配置一个预设参考信号接收功率RSRP门限;第一波束对应的第一概率为配置的使用第一波束的概率;第一波束对应的预设RSRP门限用于确定第一波束是否为终端设备的可选波束,预设RSRP门限不是小区级RSRP门限。

Description

通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及通信方法及装置。
背景技术
在高频通信系统中,为了克服路损,基站和终端通常都会使用具有方向性的高增益的天线阵列形成波束(beam)来进行通信。通常,波束与通信资源关联。在通信过程中,终端选择波束,并通过所选波束关联的通信资源进行通信。
在选择波束的过程中,如图1所示,由于用户位置分布不均匀,以及业务分布的不均匀等特征,可能会出现选择某些波束的活跃终端很多,如此,导致该波束负载较多,终端之间的资源碰撞很严重,而选择其他波束的活跃终端很少,该其他波束的负载轻,资源利用率很低。如何降低终端之间的资源碰撞概率,成为亟待解决的问题。
发明内容
本申请提供一种通信方法及装置,能够降低终端之间资源碰撞的概率。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种通信方法,该方法可以由终端设备或支持终端设备功能的装置(比如终端设备的芯片系统)执行。该方法包括:接收第一指示信息,基于第一指示信息选择目标波束,并基于目标波束确定上行通信资源。
其中,第一指示信息用于为至少一个第一波束中每一第一波束配置一个第一概率,和/或,用于为至少一个第一波束中每一第一波束配置一个预设参考信号接收功率RSRP门限;第一波束对应的第一概率为配置的使用第一波束的概率;第一波束对应的预设RSRP门限用于确定第一波束是否为终端设备的可选波束,预设RSRP门限不是小区级RSRP门限。
如此,通过第一指示信息可以为终端设备的不同波束配置不同的第一概率和/或预设RSRP门限。也就是说,终端设备不仅可以根据自身位置,业务特性等因素选择波束,还可以根据第一概率和/或预设RSRP门限选择波束,降低选择某些波束的终端设备很多,选择另一些波束的终端设备很少,导致终端之间产生资源碰撞的概率。
在一种可能的设计中,至少一个第一波束包括J个第一波束,J个第一波束中第j个第一波束的第一概率为p j
在可选波束包括J个第一波束和K个第二波束的情况下,基于第一指示信息选择目标波束,包括:根据概率p j,选择J个第一波束中第j个第一波束为目标波束,根据概率
Figure PCTCN2020116940-appb-000001
选择可选波束中的第二波束为目标波束;或者,根据概率p j*X/Y,选择J个第一波束中第j个第一波束为目标波束,根据概率
Figure PCTCN2020116940-appb-000002
选择可选波束中的第二波束为目标波束,其中,X表示可选波束 的数量,Y表示网络设备发送波束的数量;
或者,在可选波束仅包括J个第一波束的情况下,基于第一指示信息选择目标波束,包括:根据概率
Figure PCTCN2020116940-appb-000003
选择可选波束中第j个第一波束为目标波束;或者,根据概率p j,选择可选波束中第j个第一波束为目标波束;或者,根据概率p j*X/Y,选择可选波束中第j个第一波束为目标波束;
其中,J、K均为正整数;j为非负整数;j小于或等于J。
如此,通过第一指示信息可以为不同第一波束配置不同的第一概率。比如,对于负载较低的第一波束,通过第一指示信息为该负载较低的第一波束配置较大的第一概率;对于负载较高的第一波束,通过第一指示信息为该负载较高的第一波束配置较小的第一概率。如此,终端设备能够以较大概率选择负载较低的第一波束,以较小概率选择负载较高的第一波束,以降低终端设备之间的资源碰撞概率。
在一种可能的设计中,可选波束包括RSRP测量值大于或等于小区级RSRP门限的第一波束。
在一种可能的设计中,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限的第一波束;
或者,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限,且大于或等于小区级RSRP门限的第一波束。
如此,通过第一指示信息可以为不同第一波束配置不同的预设RSRP门限。比如,对于负载较低的第一波束,通过第一指示信息为该负载较低的第一波束配置较小的预设RSRP门限;对于负载较高的第一波束,通过第一指示信息为该负载较高的第一波束配置较大的预设RSRP门限。如此,对于负载较低的第一波束,由于其对应的预设RSRP门限数值较低,因此能够提升该低负载波束被判为可选波束的概率,进而提升终端设备使用该低负载波束执行通信的概率。反之,对于负载较高的第一波束,由于其对应的预设RSRP门限数值较大,因此能够降低该高负载波束被判为可选波束的概率,进而降低终端设备使用该高负载波束执行通信的概率,也就能够降低终端之间资源碰撞的概率。
第二方面,本申请提供一种通信方法,该方法可以由终端设备或支持终端设备功能的装置(比如终端设备的芯片系统)执行。该方法包括:
接收波束重选指示信息,基于波束重选指示信息,自接收波束重选指示信息之后,基于波束重选指示信息选择波束,以及基于选择的波束,确定上行通信资源。
其中,波束重选指示信息用于指示终端设备执行波束重选。
如此,终端设备不仅可以根据自身位置,业务特性等因素选择波束,还可以根据波束重选指示信息选择波束,降低选择某些波束的终端设备很多,选择另一些波束的终端设备很少,导致终端之间产生资源碰撞的概率。
在一种可能的设计中,波束重选指示信息包括用于指示允许被选择的波束的第二指示信息。
在一种可能的设计中,波束重选指示信息包括用于指示不允许被选择的波束的第三指示信息。
在一种可能的设计中,基于波束重选指示信息选择波束,包括:
在配置的时段内,基于波束重选指示信息选择波束;
或者,在配置的上行传输次数内,基于波束重选指示信息选择波束。
在一种可能的设计中,波束重选指示信息包括在上行传输反馈中。
上行传输反馈比如可以但不限于是两步随机接入过程中的随机接入响应,或者是四步随机接入过程中的随机接入响应,或者针对物理上行共享信道(physical uplink shared channel,PUSCH)的反馈。比如可以是四步随机接入过程中的第二消息(Msg2),再比如可以是针对PUSCH的否定确认消息(NACK),肯定确认消息(ACK)。
第三方面,提供一种通信方法,该方法可以由终端设备或支持终端设备功能的装置(比如终端设备的芯片系统)执行。该方法包括:接收第四指示信息,基于第四指示信息,确定用于上行传输的上行通信资源;
其中,第四指示信息用于配置多个波束关联的上行通信资源;多个波束包括第一波束和/或第二波束;第一波束关联的上行通信资源数目与第二波束关联的上行通信资源数目不同。
如此,网络设备采用非均匀的资源分配方式,针对不同波束可以配置不同上行通信资源数目,比如,为碰撞严重的波束配置更多资源,因此,能够降低终端之间产生资源碰撞的概率。
在一种可能的设计中,第四指示信息用于配置第一波束关联的上行通信资源数目,以及用于配置第二波束关联的上行通信资源数目。
在一种可能的设计中,第四指示信息用于配置第二波束关联的上行通信资源数目和偏移值,偏移值用于指示第一波束关联的上行通信资源数目与第二波束关联的上行通信资源数目之间的偏移。
第四方面,提供一种通信方法,该方法可以由网络设备或支持网络设备功能的装置(比如网络设备的芯片系统)执行。该方法包括:确定第一指示信息,并发送第一指示信息;
其中,第一指示信息用于为至少一个第一波束中每一第一波束配置一个第一概率,和/或,用于为至少一个第一波束中每一第一波束配置一个预设参考信号接收功率RSRP门限;
第一波束对应的第一概率为配置的使用第一波束的概率;第一波束对应的预设RSRP门限用于确定第一波束是否为终端设备的可选波束,预设RSRP门限不是小区级RSRP门限。
在一种可能的设计中,至少一个第一波束包括J个第一波束,J个第一波束中第j个第一波束的第一概率为p j
在可选波束包括J个第一波束和K个第二波束的情况下,基于第一指示信息选择目标波束,包括:根据概率p j,选择J个第一波束中第j个第一波束为目标波束,根据概率
Figure PCTCN2020116940-appb-000004
选择可选波束中的第二波束为目标波束;或者,根据概 率p j*X/Y,选择J个第一波束中第j个第一波束为目标波束,根据概率
Figure PCTCN2020116940-appb-000005
选择可选波束中的第二波束为目标波束,其中,X表示可选波束的数量,Y表示网络设备发送波束的数量;
或者,在可选波束仅包括J个第一波束的情况下,基于第一指示信息选择目标波束,包括:根据概率
Figure PCTCN2020116940-appb-000006
选择可选波束中第j个第一波束为目标波束;或者,根据概率p j,选择可选波束中第j个第一波束为目标波束;或者,根据概率p j*X/Y,选择可选波束中第j个第一波束为目标波束;
其中,J、K均为正整数;j为非负整数;j小于或等于J。
在一种可能的设计中,可选波束包括RSRP测量值大于或等于小区级RSRP门限的第一波束。
在一种可能的设计中,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限的第一波束;
或者,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限,且大于或等于小区级RSRP门限的第一波束。
第五方面,提供一种通信方法,该方法可以由网络设备或支持网络设备功能的装置(比如网络设备的芯片系统)执行。该方法包括:确定波束重选指示信息,并发送波束重选指示信息,波束重选指示信息用于指示终端设备执行波束重选。
在一种可能的设计中,波束重选指示信息包括用于指示允许被选择的波束的第二指示信息。
在一种可能的设计中,波束重选指示信息包括用于指示不允许被选择的波束的第三指示信息。
在一种可能的设计中,波束重选指示信息包括在上行传输反馈中。
第六方面,提供一种通信方法,该方法可以由网络设备或支持网络设备功能的装置(比如网络设备的芯片系统)执行。该方法包括:确定第四指示信息,发送第四指示信息;
其中,第四指示信息用于配置多个波束关联的上行通信资源;多个波束包括第一波束和/或第二波束;
第一波束关联的上行通信资源数目与第二波束关联的上行通信资源数目不同。
在一种可能的设计中,第四指示信息用于配置第一波束关联的上行通信资源数目,以及用于配置第二波束关联的上行通信资源数目。
在一种可能的设计中,第四指示信息用于配置第二波束关联的上行通信资源数目和偏移值,偏移值用于指示第一波束关联的上行通信资源数目与第二波束关联的上行通信资源数目之间的偏移。
第七方面,提供一种通信装置,该装置可以是终端设备或支持终端设备功能的装置(比如终端设备的芯片系统)。该装置包括:接收模块,用于接收第一指示信息;第一指示信息用于为至少一个第一波束中每一第一波束配置一个第一概率,和/或,用于为至少一个第一波束中每一第一波束配置一个预设参考信号接收功率RSRP门限;
处理模块,用于基于第一指示信息选择目标波束,并基于目标波束确定上行通信资源;
其中,第一波束对应的第一概率为配置的使用第一波束的概率;第一波束对应的预设RSRP门限用于确定第一波束是否为终端设备的可选波束,预设RSRP门限不是小区级RSRP门限。
在一种可能的设计中,至少一个第一波束包括J个第一波束,J个第一波束中第j个第一波束的第一概率为p j
在可选波束包括J个第一波束和K个第二波束的情况下,基于第一指示信息选择目标波束,包括:根据概率p j,选择J个第一波束中第j个第一波束为目标波束,根据概率
Figure PCTCN2020116940-appb-000007
选择可选波束中的第二波束为目标波束;或者,根据概率p j*X/Y,选择J个第一波束中第j个第一波束为目标波束,根据概率
Figure PCTCN2020116940-appb-000008
选择可选波束中的第二波束为目标波束,其中,X表示可选波束的数量,Y表示网络设备发送波束的数量;
或者,在可选波束仅包括J个第一波束的情况下,基于第一指示信息选择目标波束,包括:根据概率
Figure PCTCN2020116940-appb-000009
选择可选波束中第j个第一波束为目标波束;或者,根据概率p j,选择可选波束中第j个第一波束为目标波束;或者,根据概率p j*X/Y,选择可选波束中第j个第一波束为目标波束;
其中,J、K均为正整数;j为非负整数;j小于或等于J。
在一种可能的设计中,可选波束包括RSRP测量值大于或等于小区级RSRP门限的第一波束。
在一种可能的设计中,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限的第一波束;
或者,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限,且大于或等于小区级RSRP门限的第一波束。
第八方面,提供一种通信装置,该装置可以是终端设备或支持终端设备功能的装置(比如终端设备的芯片系统)。该装置包括:接收模块,用于接收波束重选指示信息,波束重选指示信息用于指示终端设备执行波束重选;
处理模块,用于基于波束重选指示信息,自接收波束重选指示信息之后,基于波束重选指示信息选择波束,以及基于选择的波束,确定上行通信资源。
在一种可能的设计中,波束重选指示信息包括用于指示允许被选择的波束的第二指示信息。
在一种可能的设计中,波束重选指示信息包括用于指示不允许被选择的波束的第三指示信息。
在一种可能的设计中,处理模块,用于基于波束重选指示信息选择波束,包括:
在配置的时段内,基于波束重选指示信息选择波束;
或者,在配置的上行传输次数内,基于波束重选指示信息选择波束。
在一种可能的设计中,波束重选指示信息包括在上行传输反馈中。
第九方面,提供一种通信装置,该装置可以是终端设备或支持终端设备功能的装置(比如终端设备的芯片系统)。该装置包括:接收模块,用于接收第四指示信息,第四指示信息用于配置多个波束关联的上行通信资源;多个波束包括第一波束和/或第二波束;
处理模块,用于基于第四指示信息,确定用于上行传输的上行通信资源;
其中,第一波束关联的上行通信资源数目与第二波束关联的上行通信资源数目不同。
在一种可能的设计中,第四指示信息用于配置第一波束关联的上行通信资源数目,以及用于配置第二波束关联的上行通信资源数目。
在一种可能的设计中,第四指示信息用于配置第二波束关联的上行通信资源数目和偏移值,偏移值用于指示第一波束关联的上行通信资源数目与第二波束关联的上行通信资源数目之间的偏移。
第十方面,提供一种通信装置,该装置可以是网络设备或支持网络设备功能的装置(比如网络设备的芯片系统)。该装置包括:处理模块,用于确定第一指示信息;第一指示信息用于为至少一个第一波束中每一第一波束配置一个第一概率,和/或,用于为至少一个第一波束中每一第一波束配置一个预设参考信号接收功率RSRP门限;
发送模块,用于发送第一指示信息;
其中,第一波束对应的第一概率为配置的使用第一波束的概率;第一波束对应的预设RSRP门限用于确定第一波束是否为终端设备的可选波束,预设RSRP门限不是小区级RSRP门限。
在一种可能的设计中,至少一个第一波束包括J个第一波束,J个第一波束中第j个第一波束的第一概率为p j
在可选波束包括J个第一波束和K个第二波束的情况下,基于第一指示信息选择目标波束,包括:根据概率p j,选择J个第一波束中第j个第一波束为目标波束,根据概率
Figure PCTCN2020116940-appb-000010
选择可选波束中的第二波束为目标波束;或者,根据概率p j*X/Y,选择J个第一波束中第j个第一波束为目标波束,根据概率
Figure PCTCN2020116940-appb-000011
选择可选波束中的第二波束为目标波束,其中,X表示可选波束的数量,Y表示网络设备发送波束的数量;
或者,在可选波束仅包括J个第一波束的情况下,基于第一指示信息选择目标波束,包括:根据概率
Figure PCTCN2020116940-appb-000012
选择可选波束中第j个第一波束为目标波束;或者,根据概率p j,选择可选波束中第j个第一波束为目标波束;或者,根据概率p j*X/Y,选择可选波束中第j个第一波束为目标波束;
其中,J、K均为正整数;j为非负整数;j小于或等于J。
在一种可能的设计中,可选波束包括RSRP测量值大于或等于小区级RSRP门限的第一波束。
在一种可能的设计中,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限的第一波束;
或者,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限,且大于或等于小区级RSRP门限的第一波束。
第十一方面,提供一种通信装置,该装置可以是网络设备或支持网络设备功能的装置(比如网络设备的芯片系统)。该装置包括:
确定模块,用于确定波束重选指示信息;
发送模块,用于发送波束重选指示信息,波束重选指示信息用于指示终端设备执行波束重选。
在一种可能的设计中,波束重选指示信息包括用于指示允许被选择的波束的第二指示信息。
在一种可能的设计中,波束重选指示信息包括用于指示不允许被选择的波束的第三指示信息。
在一种可能的设计中,波束重选指示信息包括在上行传输反馈中。
第十二方面,提供一种通信装置,该装置可以是网络设备或支持网络设备功能的装置(比如网络设备的芯片系统)。该装置包括:处理模块,用于确定第四指示信息;
发送模块,用于发送第四指示信息;
其中,第四指示信息用于配置多个波束关联的上行通信资源;多个波束包括第一波束和/或第二波束;
第一波束关联的上行通信资源数目与第二波束关联的上行通信资源数目不同。
在一种可能的设计中,第四指示信息用于配置第一波束关联的上行通信资源数目,以及用于配置第二波束关联的上行通信资源数目。
在一种可能的设计中,第四指示信息用于配置第二波束关联的上行通信资源数目和偏移值,偏移值用于指示第一波束关联的上行通信资源数目与第二波束关联的上行通信资源数目之间的偏移。
第十三方面,本申请提供一种通信装置,用于实现上述任一方面中终端设备的功能,或用于实现上述任一方面中网络设备的功能。
第十四方面,本申请提供一种通信装置,该装置具有实现上述任一方面中任一项的通信方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十五方面,提供一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述任一方面中任一项的通信方法。
第十六方面,提供一种通信装置,包括:处理器;处理器用于与存储器耦合,并读取存储器中的指令之后,根据指令执行如上述任一方面中任一项的通信方法。
第十七方面,本申请实施例提供一种通信装置,包括:处理器和接口电路;接口电路,用于接收代码指令并传输至处理器;处理器,用于运行代码指令以执行如上述任一方面中任一项的通信方法。
第十八方面,本申请实施例提供了一种通信装置,该装置可以为芯片系统,该芯片系统包括处理器,可选的,还可以包括存储器,用于实现上述任一方面所描述方法 的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十九方面,提供一种通信装置,该装置可以为电路系统,电路系统包括处理电路,处理电路被配置为执行如上述任一方面中任一项的通信方法。
第二十方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方面的方法。
第二十一方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行上述任一方面的方法。
第二十二方面,本申请实施例提供了一种系统,系统包括任一方面的终端设备、网络设备。
附图说明
图1为本申请实施例提供的终端之间资源分配的场景示意图;
图2为本申请实施例提供的通信系统的架构示意图;
图3为本申请实施例提供的通信设备的结构示意图;
图4为本申请实施例提供的通信方法的流程示意图;
图5为本申请实施例提供的通信方法的场景示意图;
图6为本申请实施例提供的第一概率和/或预设RSRP门限的示意图;
图7为本申请实施例提供的资源与SSB之间关联的示意图;
图8为本申请实施例提供的通信方法的流程示意图;
图9为本申请实施例提供的通信方法的场景示意图;
图10为本申请实施例提供的通信方法的流程示意图;
图11为本申请实施例提供的通信方法的场景示意图;
图12-图13为本申请实施例提供的通信装置的结构示意图。
具体实施方式
为了便于理解本申请的技术方案,下面先对本申请实施例涉及的一些术语进行简单介绍。
1、波束(beam)
波束是一种通信资源。波束可以分为发射波束和接收波束。
其中,发射波束(或称发送波束),是指发射端设备以一定的波束赋形权值发送信号,使发送信号形成的具有空间指向性的波束。在上行方向上,发射端设备可以是终端;在下行方向上,发射端设备可以是网络设备。
接收波束,是指接收端设备以一定的波束赋形权值发送信号,使接收信号形成的具有空间指向性的波束。其中,在上行方向上,接收端设备可以是网络设备;在下行方向上,接收端设备可以是终端。
不同的波束可以认为是不同的资源。使用(或通过)不同的波束可以发送相同的信息或者不同的信息。
2、波束对(beam pair link,BPL)
波束对建立在波束的概念上。一个波束对通常包括发射端设备的一个发射波束和接收端设备的一个接收波束。
3、波束赋形
形成波束的技术可以是波束赋形技术或者其他技术手段。波束赋形包括发射波束赋形和接收波束赋形。
发射波束赋形:具有天线阵列的发射端设备发送信号时,在天线阵列的每个天线阵子上设置一个特定的幅度和相位,使得发送信号具有一定的空间指向性,即在某些方向上信号功率高,在某些方向上信号功率低,信号功率最高的方向即为发射波束的方向。该天线阵列包括多个天线阵子,所附加的特定的幅度和相位即为波束赋形权值。
接收波束赋形:具有天线阵列的接收端设备接收信号时,在天线阵列的每个天线阵子上设置一个特定的幅度和相位,使得接收信号的功率增益具有方向性,即接收某些方向上的信号时功率增益高,接收某些方向上的信号时功率增益低,接收信号时功率增益最高的方向就是接收波束的方向。该天线阵列包括多个天线阵子,所附加的特定的幅度和相位即为波束赋形权值。
使用某个发射波束发送信号,即使用某个波束赋形权值发送信号。
使用接收波束接收信号,即使用某个波束赋形权值接收信号。
4、波束扫描
通常,可以通过波束扫描来实现发射波束和接收波束的匹配(即实现波束对准)。具体的:网络设备通过多个发射波束向终端发送参考信号,其中,通过每一发射波束在一个特定的时频资源上发送参考信号。终端可以通过检测不同时频资源上接收到的参考信号的信号强度来确定不同发射波束的信号强度,上报信号强度较好的一个或多个发射波束对应的时频资源索引,以使得网络设备根据时频资源索引与发射波束之间的对应关系,确定后续向终端发送信号时所使用的发射波束。
其中,参考信号可以例如但不限于是以下参考信号中的至少一种:同步信号块(synchronization signal/physical broadcast channel demodulation reference signal block,SS/PBCH block)中的参考信号,或者信道状态信息参考信号(channel state information reference signal,CSI-RS)。其中,SS block 中的参考信号可以例如但不限于是以下参考信号中的至少一种:主同步信号(primary synchronization signal,PSS),辅同步信号(secondary synchronization signal,SSS),物理广播信道解调参考信号(physical broadcast channel demodulation reference signal,PBCH-DMRS)。在本申请实施例中,同步信号块的英文也可以简写为SSB,即synchronization signal block。
在本申请实施例中,如不加以特殊说明,参考信号均指的是网络设备通过某一下行波束发送的,用于终端选择波束的参考信号。且下述实施例主要以参考信号为SSB为例说明本申请实施例的技术方案。在此统一说明。
5、物理随机接入信道传输机会(physical random access channel occasion,PRACH occasion,简称RO)
在NR系统中,通常用RO表示一块用于发送preamble的PRACH时频资源。preamble分为基于竞争的preamble,以及非竞争的preamble。
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。
“至少一个”是指一个或者多个。
“多个”是指两个或两个以上。
“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。
字符“/”一般表示前后关联对象是一种“或”的关系,例如,A/B可以表示A或B。
此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请的说明书以及附图中“的(英文:of)”,相应的“(英文corresponding,relevant)”和“对应的(英文:corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例提供的技术方案可以应用于使用波束通信的通信系统,例如,长期演进(Long Term Evolution,LTE)通信系统,采用第五代(5th generation,5G)通信技术的新空口(new radio,NR)通信系统,未来演进系统或者多种通信融合系统等等。本申请提供的技术方案可以应用于多种应用场景,例如,机器对机器(machine to machine,M2M)、宏微通信、增强型移动互联网(enhanced mobile broadband,eMBB)、超高可靠超低时延通信(ultra-reliable&low latency communication,uRLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。这些场景可以包括但不限于:终端设备与终端设备之间的通信场景,网络设备与网络设备之间的通信场景,网络设备与终端设备之间的通信场景等。下文中均是以应用于网络设备和终端之间的通信场景中为例进行说明的。
参见图2,为本申请实施例所适用的通信系统的架构。该通信系统包括网络设备、以及与网络设备通信的一个或多个终端(例如图2中的终端1至终端6)。
其中,本申请实施例所涉及的网络设备是一种部署在无线接入网用以提供无线通信功能的装置。可选的,网络设备可以指接入网的空中接口上通过一个或多个小区与无线终端通信的设备,其中,实现网络设备的功能的装置可以是网络设备,也可以是支持网络设备实现该功能的装置(比如网络设备中的芯片)。可选的,网络设备可对空中接口进行属性管理。基站设备还可协调对空中接口的属性管理。网络设备包括各种形式的宏基站,微基站(也称为小站),诸如中继站的中继设备或中继设备的芯片,发送接收点(transmission reception point,TRP),演进型网络节点(evolved Node B,eNB),下一代网络节点(g Node B,gNB)、连接下一代核心网的演进型节点B(ng evolved Node B,ng-eNB)等。或者,在 分布式基站场景下,网络设备可以是基带单元(base band unit,BBU)和射频拉远单元(remote radio unit,RRU),在云无线接入网(cloud radio access Netowrk,CRAN)场景下,网络设备可以是基带池(BBU pool)和RRU。
可选的,本申请实施例中所涉及到的终端可以是无线终端,也可以是有线终端。包括但不限于车载设备、可穿戴设备、计算设备、计算设备内置的芯片或连接到无线调制解调器的其它处理设备;还可以包括蜂窝电话(cellular phone)、个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、智能电话(smart phone)、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、膝上型电脑(laptop computer)、无线调制解调器(modem)、手持设备(handheld)、无线本地环路(wireless local loop,WLL)站。无线终端还可以为用户单元(subscriber unit,SU)、用户站(subscriber station,SS)、移动站(mobile station,MB)、移动台(mobile)、远程站(remote station,RS)、远程终端(remote terminal,RT)、用户终端(user terminal,UT)、终端设备(user device,UD)、用户设备(user equipment,UE)、无线数据卡、用户单元(subscriber unit)、机器类型通信(machine type communication,MTC)终端(terminal)、终端设备(terminal device)、客户终端设备(customer premise equipment,CPE)、接入终端(access terminal,AT)、接入点(access Point,AP)、用户代理(user agent,UA)等。在本申请实施例中,实现终端的功能的装置可以是终端,也可以是支持终端实现该功能的装置(比如终端中的芯片)。为方便描述,本申请中,上面提到的设备统称为终端。
图2中的网络设备或者终端可以通过图3中的通信装置来实现。如图3所示,该通信装置包括:至少一个处理器101,通信线路102,存储器103以及至少一个通信接口104。
处理器101可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路102可包括一通路,在上述组件之间传送信息。
通信接口104,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。
存储器103可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路102与处理器相连接。存储器也可以和处理器集成在一起。本申请实施例提供的存储器通 常可以具有非易失性。其中,存储器103用于存储执行本申请方案的计算机执行指令,并由处理器101来控制执行。处理器101用于执行存储器103中存储的计算机执行指令,从而实现本申请下述实施例提供的方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器101可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置可以包括多个处理器,例如图3中的处理器101和处理器107。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置还可以包括输出设备105和输入设备106。输出设备105和处理器101通信,可以以多种方式来显示信息。例如,输出设备105可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备106和处理器101通信,可以以多种方式接收用户的输入。例如,输入设备106可以是鼠标、键盘、触摸屏设备或传感设备等。
目前,基站可以为UE配置波束和上行资源之间的关联参数。后续,终端可以选择波束,并基于基站配置的关联参数,使用该波束关联的上行资源执行通信。
以上行资源为PRACH资源为例,基站通过为终端配置SSB与PRACH资源之间的关联参数,来指示PRACH资源与SSB对应的波束之间的关联关系。终端根据基站配置的关联参数以及协议规定的关联规则,可以将PRACH资源与SSB建立关联关系。并且,基站给UE配置一个用于选择SSB的小区级参考信号接收功率(reference signal receiving power,RSRP)门限(或称用于选择该SSB对应波束的RSRP门限),该小区级RSRP门限是基于小区配置的,即为同一小区内的终端配置同一RSRP门限。后续,在每次随机接入尝试时,UE测量多个SSB中每一SSB的RSRP。如果存在至少一个所测量RSRP大于或等于小区级RSRP门限的SSB(RSRP大于或等于小区级RSRP门限的SSB称为可选SSB),则UE在可选SSB中任意选择一个SSB。反之,当不存在可选SSB,UE基于诸如自身策略任意选择一个SSB。之后,UE在所选SSB关联的PRACH资源中确定一个PRACH资源,并使用该PRACH资源进行随机接入。
在现有NR协议的关联规则中,每个SSB关联的PRACH资源数量是相等的。例如,基站向UE发送ssb-perRACH-OccasionAndCB-PreamblesPerSSB参数。该参数可分为两部分,一是ssb-perRACH-Occasion,用于表明一个RO对应几个SSB;二是CB-PreamblesPerSSB,用于表明每个SSB映射多少个基于竞争的preamble。同时,基站还将发送的SSB的数量和编号通知给UE,在每一关联周期内,UE按照协议定义的PRACH时频资源与SSB之间的关联规则以及关联顺序,将这些SSB与PRACH时频资源关联。其中,这里的preamble指的是基于竞争的preamble。
关联周期,定义为从帧#0开始,在预定义的PRACH时频资源的配置周期集合中,满足将上述SSB中所有SSB都与PRACH时频资源关联至少一次的最小PRACH时频资源 的配置周期。在一个关联周期内,如果经过整数个映射循环后,还存在未与SSB关联的PRACH时频资源或preamble,则这些PRACH时频资源或preamble不用于随机接入。
示例性的,SSB与RO或基于竞争的preamble之间的映射规则参见图7的(a),在一个关联周期内,每一SSB对应两个RO,每一SSB对应52个基于竞争的preamble。具体的,以SSB1为例,SSB1对应RO1和RO2。SSB1对应preamble索引(index)为0-51的52个基于竞争的preamble。
现有技术中,SSB与PRACH资源之间是均匀关联的,即每个SSB关联的PRACH资源的数量是相等的。UE选择合适的波束,并在该波束对应的PRACH资源中选择一个资源进行随机接入。如此,等效于用波束对UE和资源进行分组,选择某一波束的UE构成一个UE分组,选择该波束的UE所使用的资源构成一个资源分组。
如图1所示,某些场景下,可能会出现选择某些波束(如图1所示的波束3)的活跃终端很多,如此,导致该波束负载较多,而选择其他波束(比如图1所示的波束1)的活跃终端很少,该其他波束的负载轻。又由于每个波束关联的PRACH资源数目相同,因此,选择高负载波束(如波束3)的UE之间很可能资源碰撞严重,而低负载波束关联的PRACH资源大部分闲置。也就是说,现有技术中,存在资源利用不均衡的现象。
为解决上述技术问题,本申请实施例提供一种通信方法。下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
如图4所示,为本申请实施例提供的一种通信方法,该方法包括以下步骤:
S401、网络设备向终端发送第一指示信息。
相应的,终端设备接收第一指示信息。
其中,网络设备可以为图2所示通信系统中的网络设备,比如基站,终端设备可以为图2所示通信系统中的终端设备。第一指示信息用于为至少一个第一波束中每一第一波束配置一个第一概率,和/或,用于为至少一个第一波束中每一第一波束配置一个预设RSRP门限。即,第一指示信息用于为至少一个第一波束中每一第一波束配置一个第一概率。或者,第一指示信息用于为至少一个第一波束中每一第一波束配置一个预设RSRP门限。或者,第一指示信息用于为至少一个第一波束中每一第一波束配置一个预设RSRP门限,以及,用于为至少一个第一波束中每一第一波束配置一个第一概率。
第二波束为基站实际发送的波束中除了第一波束以外的波束。
本申请实施例中,第一波束对应的第一概率为配置的使用该第一波束的概率;第一波束对应的预设RSRP门限用于确定该第一波束是否为终端设备的可选波束,预设RSRP门限不是小区级RSRP门限。
作为一种可能的实现方式,网络设备通过广播消息携带第一指示信息。从而将第一波束的第一概率和/或预设RSRP门限通知给覆盖范围内的终端设备。
在本文中,一个或多个可选波束,可以构成可选波束集合。终端设备在可选波束集合中选择波束,并使用选择的波束对应的资源进行通信。也可以使用可选SSB集合,来代替可选波束集合的概念。可选SSB集合包括一个或多个可选SSB,可选SSB,即可选波束对应的SSB。
需要说明的是,本申请实施例中提及的“为第一波束配置第一概率”也可以理解为“为第一波束对应的参考信号配置第一概率”,比如为第一波束对应的SSB配置第一概率。类似的,“为第一波束配置预设RSRP”也可以理解为“为第一波束对应的参考信号配置预设RSRP”。“按照某一概率,选择某一波束”可以理解为“按照该概率,选择该波束对应的参考信号(比如SSB)”,“按照某一概率,选择某一波束为目标波束”可以理解为“按照某一概率,选择该波束对应的参考信号(比如该波束对应的SSB)为目标参考信号(比如称为目标SSB)”。
并且,为便于描述,第一波束对应的参考信号,可简称为第一参考信号,比如,第一波束对应的SSB,简称为第一SSB。类似的,第二波束对应的参考信号,可简称为第二参考信号。比如,第二波束对应的SSB,可简称为第二SSB。类似的,目标波束对应的参考信号,可简称为目标参考信号,比如,目标波束对应的SSB,可简称为目标SSB。下述实施例主要以参考信号为SSB为例进行说明,在此统一说明,下文不再赘述。
在一些实施例中,第一波束,可以指负载高于第一负载门限的波束。第一负载门限可以根据应用场景灵活设置。具体的,网络设备可以检测每一波束的负载,当检测到某一个或多个波束的负载高于第一负载门限,则将这部分波束视为第一波束,网络设备为该一个或多个第一波束中每一第一波束配置一个第一概率,和/或一个预设RSRP门限,并通过向终端设备发送第一指示信息来指示为第一波束配置的第一概率和/或预设RSRP门限。
相应的,在该实施例中,可选的,网络设备为第一波束配置的第一概率小于或等于第一概率门限(可根据具体应用灵活设置)。也就是说,对于高负载波束,网络设备为该高负载波束配置较小的第一概率,如此,终端设备在接收到为该高负载波束配置的第一概率之后,终端设备能够以较小概率选择该高负载波束,进而降低终端设备之间的资源碰撞概率。
相应的,在该实施例中,可选的,网络设备为第一波束配置的预设RSRP门限大于或等于第一RSRP门限(可根据具体应用灵活设置)。意味着,当网络设备检测到高负载波束(或称碰撞严重的波束)之后,为该高负载波束配置较大的预设RSRP门限。如此,当终端设备判断该高负载波束是否为可选波束时,由于该预设RSRP门限数值较高,因此能够降低该高负载波束被判为可选波束的概率,进而降低终端设备选择该高负载波束的概率。
可选的,第一RSRP门限的数值可以大于小区级RSRP门限。当然也可以设置为其他可能值,本申请实施例对第一RSRP门限的具体数值不做限定。
示例性的,参见图5的(a),基站检测到波束3的负载高于第一负载门限,其广播第一指示信息,第一指示信息包括为波束3配置的第一概率和/或预设RSRP门限。UE1基于该第一指示信息选择目标波束,比如,由于基站为波束3配置的第一概率较小,则终端设备选择其他波束(即波束3之外的波束)的概率有所增加。比如,终端设备选择波束1作为目标波束。
在另一些实施例中,可选的,第一波束,还可以指负载低于第二负载门限的波束。第二负载门限可以根据应用场景灵活设置。具体的,网络设备可以检测每 一波束的负载,当检测到某一个或多个波束的负载低于第二负载门限,则将这部分波束视为第一波束,网络设备为该一个或多个第一波束中每一第一波束配置一个第一概率,和/或一个预设RSRP门限。
相应的,在该实施例中,可选的,网络设备为第一波束配置的第一概率大于或等于第二概率门限(可根据具体应用灵活设置)。也就是说,对于低负载波束,网络设备为该低负载波束配置较大的第一概率,如此,终端设备在接收到为该低负载波束配置的第一概率之后,终端设备能够以较大概率选择该低负载波束,进而降低终端设备选择高负载波束的概率。
可选的,对于负载越高的第一波束,网络设备为其配置的第一概率越小。反之,负载越低的第一波束,网络设备为其配置的第一概率越大。或者,对于负载在一定区间内的多个第一波束,网络设备为多个第一波束中每一第一波束配置相同的第一概率。或者,还可以有其他配置方式,本申请实施例对此不进行限制。
相应的,在该实施例中,可选的,网络设备为第一波束配置的预设RSRP小于或等于第二RSRP门限(可根据具体应用灵活设置)。意味着,当网络设备检测到低负载波束(或称碰撞不严重的波束)之后,为该低负载波束配置较小的预设RSRP门限。如此,当终端设备判断该低负载波束是否为可选波束时,由于该预设RSRP门限数值较低,因此能够提升该低负载波束被判为可选波束的概率,进而提升终端设备使用该低负载波束执行通信的概率。
可选的,第二RSRP门限小于小区级RSRP门限,当然,第二RSRP门限还可以设置为其他可能的数值,本申请实施例不做限定。
示例性的,参见图5的(b),基站检测到波束1的负载低于第二负载门限,其广播第一指示信息,第一指示信息包括为波束1配置的第一概率和/或预设RSRP门限。
在另一些实施例中,第一波束还可以指其他类型波束,网络设备为一个或多个第一波束中每一第一波束配置第一概率和/或预设RSRP门限。本申请实施例不规定第一波束的具体类型。
示例性的,第一波束可以是基站实际发送的所有波束。再比如,第一波束为信号强度较大的波束。
S402、终端设备基于第一指示信息选择目标波束。
根据第一指示信息包括的具体内容,S402可以有不同的实现方式。如下分三种情况分别进行阐述。
情况1、第一指示信息包括为至少一个第一波束中每一第一波束配置的一个第一概率。
上述至少一个第一波束包括J个第一波束,J个第一波束中第j个第一波束的第一概率为p j
可选波束包括RSRP测量值大于或等于小区级RSRP门限的第一波束。
具体的,在一些实施例中,在可选波束包括上述J个第一波束和K个第二波束的情况下:
基于第一指示信息选择目标波束,包括:根据概率p j,选择J个第一波束中第 j个第一波束为目标波束,根据概率
Figure PCTCN2020116940-appb-000013
选择可选波束中的第二波束为目标波束。
或者,根据概率p j*X/Y,选择J个第一波束中第j个第一波束为目标波束,根据概率
Figure PCTCN2020116940-appb-000014
选择可选波束中的第二波束为目标波束,其中,X表示可选波束的数量,Y表示网络设备实际发送波束的数量。
在另一些实施例中,在可选波束仅包括J个第一波束的情况下:
基于第一指示信息选择目标波束,包括:根据概率
Figure PCTCN2020116940-appb-000015
选择可选波束中第j个第一波束为目标波束;
或者,根据概率p j,选择可选波束中第j个第一波束为目标波束;
或者,根据概率p j*M/N,选择可选波束中第j个第一波束为目标波束;
其中,J、K均为正整数;j为非负整数;j小于或等于J。
示例性的,网络设备(比如基站)向终端设备发送N(N为正整数)个SSB,分别为SSB1-SSBN。基站为I(I为正整数,I小于或等于N)=3个SSB配置了第一概率,例如为SSB1(其对应的波束为第一波束)配置一个第一概率p1,为SSB2(其对应的波束为第一波束)配置一个第一概率p2,为SSB3配置一个第一概率p3。终端设备测量SSB1-SSBN中每一SSB的RSRP,并将RSRP测量值大于或等于小区级RSRP门限的SSB作为可选SSB。
例如,终端设备的RSRP测量值与小区级RSRP门限之间的关系如图6中(a)所示。则根据图6中(a)所示,终端设备的可选SSB集合包括J(J小于或等于I)=1个配置有第一概率的第一SSB,即SSB1,以及K=2个未配置有第一概率的第二SSB,即SSBN和SSBm。那么,终端设备在确定目标波束时,以p1的概率选择SSB1作为目标SSB,以(1-p1)的概率从该K个第二SSB中(即SSBN和SSBm)选择目标SSB。
其中,终端设备在该K个第二SSB中如何选择目标SSB,可以由终端设备基于预设策略实现。比如,可以等概率方式从K个第二SSB中确定一个目标SSB,即以(1-p1)/K的概率,从K个第二SSB中选择一个第二SSB作为目标SSB。仍参见图6中(a),终端设备以(1-p1)/2的概率选择SSBN作为目标波束,以(1-p1)/2的概率选择SSBm作为目标波束。再比如,终端设备从第二SSB中选择RSRP测量值最高的一个SSB作为目标SSB。
再例如,可选SSB集合包括J=2个配置有第一概率的第一SSB(例如SSB1和SSB2)和K个未配置第一概率的第二SSB,则终端设备以p1的概率,选择SSB1作为目标SSB;以p2的概率,选择SSB2作为目标SSB,以(1-p1-p2)的概率,从K个第二SSB选择目标SSB。并且,示例性的,终端设备以(1-p1-p2)/K的概率,从K个第二SSB中选择一个第二SSB作为目标SSB。
再例如,终端设备的可选SSB集合只包括J=2个配置了第一概率的第一SSB(例如SSB1和SSB2),则终端设备以p1/(p1+p2)的概率,选择SSB1作为目标SSB;以p2/(p1+p2)的概率,选择SSB2作为目标SSB。
再比如,终端设备的可选SSB集合只包括K个未配置第一概率的第二SSB,则 终端设备可以按照现有技术在可选SSB集合中选择1个SSB作为目标SSB。例如,终端设备根据自身配置的策略实现选择,或者等概率选择。
上述实施例中,终端设备仅在可选SSB集合中根据第一概率选择目标SSB。在另一些实施例中,终端设备在网络设备实际发送的所有SSB中根据第一概率选择SSB,此种情况下,如果选择的SSB不属于可选SSB集合,则终端设备重新选择SSB,直到所选择的SSB属于可选SSB集合时,确定选择的该SSB为目标SSB。
具体的,在网络设备实际发送的波束包括G个第一波束和H个第二波束的情况下,基于第一指示信息选择目标波束,包括:根据概率p g,从G个第一波束中选择第g个第一波束,根据概率
Figure PCTCN2020116940-appb-000016
从H个第二波束中选择一个第二波束。p g表示G个第一波束中第g个第一波束的第一概率。
如果选择的波束不属于可选波束集合,则终端设备按照上述概率重新选择波束,如果选择的波束属于可选波束集合,则确定该波束为目标波束。
比如,基站发送的SSB包括图6中(a)所示的SSB(可选的,还包括其他SSB),其中,配置有第一概率的第一SSB包括G=3个SSB,即SSB1-SSB3,SSB1、SSB2、SSB3对应的第一概率分别为p1、p2、p3,未配置有第一概率的第二SSB包括H=2个SSB,即SSBm、SSBN等。那么,终端设备有p1的可能性选择SSB1,有p2的可能性选择SSB2,有p3的可能性选择SSB3,有1-p1-p2-p3的可能性从SSBm、SSBN等SSB中选择一个SSB。假设选择的SSB为SSB2或SSB3,则该SSB不属于可选SSB,那么,终端设备重新在SSB1-SSBN中选择SSB,即有p1的可能性选择SSB1,有p2的可能性选择SSB2,有p3的可能性选择SSB3,有1-p1-p2-p3的可能性从SSBm、SSBN等SSB中选择一个SSB,直至选择的SSB属于可选SSB,确定该SSB为目标SSB。
或者,在网络设备实际发送的波束包括G个第一波束和H个第二波束的情况下,基于第一指示信息选择目标波束,包括:根据概率p g*X/Y,从G个第一波束中选择第g个第一波束,根据概率
Figure PCTCN2020116940-appb-000017
从H个第二波束中选择一个第二波束。p g表示G个第一波束中第g个第一波束的第一概率。X表示可选波束的数量,Y表示网络设备发送波束的数量。
在另一些实施例中,在网络设备实际发送的波束全部为第一波束的情况下,基于第一指示信息选择目标波束,包括:根据概率p g,选择第一波束中第g个第一波束,如果选择的波束不属于可选波束集合,则终端设备按照上述概率重新选择波束,即按照p g,选择第一波束中第g个第一波束,如果选择的波束属于可选波束集合,则确定该波束为目标波束。
或者,在网络设备实际发送的波束全部为第一波束的情况下,基于第一指示信息选择目标波束,包括:根据概率
Figure PCTCN2020116940-appb-000018
选择可选波束中第g个第一波束为目标波束;或者,根据概率p g*X/Y,选择可选波束中第g个第一波束为目标波束。
情况2、第一指示信息包括为至少一个第一波束中每一第一波束配置的一个预设RSRP门限。其中,第一波束对应的预设RSRP门限用于确定第一波束是否为终 端设备的可选波束,预设RSRP门限不是小区级RSRP门限。
需要说明的是,不同第一波束的预设RSRP门限可能相同或不同。比如,波束1的预设RSRP为RSRP1,波束2的预设RSRP门限为RSRP2,RSRP1和RSRP2的数值可以相同或不同。
可选的,网络设备为第一波束配置的预设RSRP门限的大小,与该第一波束的负载高低有关。作为一种可能的实现方式,第一波束为负载大于或等于第一负载门限的波束。第一波束的预设RSRP门限大于或等于第一RSRP门限。作为另一种可能的实现方式,第一波束为负载小于或等于第二负载门限的波束。第一波束的预设RSRP门限小于或等于第二RSRP门限。具体实现可参见以上实施例。
在一些实施例中,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限的第一波束,以及RSRP测量值大于或等于小区级RSRP门限的第二波束。或者,可以理解为,可选SSB包括:RSRP测量值大于或等于对应预设RSRP门限的第一SSB,以及RSRP测量值大于或等于小区级RSRP门限的第二SSB。具体的,对于配置有预设RSRP门限的某一SSB,当终端设备对该SSB的RSRP测量值大于或者等于该SSB对应的预设RSRP门限时,该SSB可认为是该终端设备的可选SSB。对于未配置预设RSRP门限的某一SSB,当终端设备对该SSB的RSRP测量值大于或者等于小区级RSRP门限时,该SSB可认为是该终端设备的可选SSB。
示例性的,如图6的(b),基站向终端设备发送N个SSB,分别为SSB1-SSBN。基站为I(1≤I≤N)个SSB,例如{SSBm,SSBr和SSBs}分别配置预设RSRP门限,分别为{Tm,Tr和Ts}。
对于配置有预设RSRP门限的SSBm,SSBr和SSBs,终端设备对SSBm的RSRP测量值大于该SSBm的预设RSRP门限,对SSBs的RSRP测量值大于该SSBs的预设RSRP门限,对SSBr的RSRP测量值小于该SSBr的预设RSRP门限。因此,可选SSB包括SSBm和SSBs。
对于未配置有预设RSRP门限的SSB1和SSBN,终端设备对SSB1的RSRP测量值小于小区级RSRP门限,对SSBN的RSRP测量值大于小区级RSRP门限。因此,终端设备的可选SSB包括SSBN。
即,终端设备的可选SSB包括图6中(b)所示的SSBm,SSBs和SSBN。
或者,在另一些实施例中,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限,且大于或等于小区级RSRP门限的第一波束,以及RSRP测量值大于或等于小区级RSRP门限的第二波束。示例性的,图6的(b)中,对于配置有预设RSRP门限的SSBm,SSBr和SSBs,仅对SSBm的RSRP测量值大于该SSBm的预设RSRP门限,且大于小区级RSRP门限,因此,可选SSB包括SSBm。对于未配置有预设RSRP门限的SSB1和SSBN,可选SSB包括SSBN。即,终端设备的可选SSB包括图6中(c)所示的SSBm和SSBN。
情况3、第一指示信息包括为每一第一波束配置的一个预设RSRP门限,以及为每一第一波束配置的一个第一概率。
该情况3可以视为情况1方案、情况2方案的结合方案。
在一些实施例中,第一波束可以指负载高于第一负载门限的波束。可选的, 网络设备为第一波束配置的第一概率小于或等于第一概率门限,且网络设备为第一波束配置的预设RSRP门限大于或等于第一RSRP门限。意味着,当终端设备判断第一波束,即高负载波束是否为可选波束时,由于该预设RSRP门限数值较高,因此能够降低该高负载波束被判为可选波束的概率,进而降低终端设备选择该高负载波束的概率。进一步的,由于该高负载波束被配置的第一概率较小,那么,终端设备从可选波束中选择该高负载波束的概率进一步降低。
在另一些实施例中,第一波束可以指负载低于第二负载门限的波束。可选的,网络设备为第一波束配置的第一概率大于或等于第二概率门限,且网络设备为第一波束配置的预设RSRP门限小于或等于第二RSRP门限。意味着,当终端设备判断第一波束,即低负载波束是否为可选波束时,由于该预设RSRP门限数值较低,因此能够提升该低负载波束被判为可选波束的概率。进一步的,由于该低负载波束被配置的第一概率较大,那么,终端设备从可选波束中选择该低负载波束的概率会有所提升。
示例性的,如图6的(d),网络设备向终端设备发送N个SSB,分别为SSB1-SSBN。基站为N个SSB中的I=3个SSB,即SSBm、SSBr、SSBs分别配置一个预设RSRP门限以及第一概率,即为SSBm配置一个第一概率pm=20%,以及配置一个预设RSRP门限Tm,为SSBr配置一个第一概率pr=30%,以及配置一个预设RSRP门限Tr,为SSBs配置一个第一概率ps=50%,以及配置一个预设RSRP门限Ts。
在一些示例中,终端设备测量SSB1-SSBN中每一SSB的RSRP,对于配置有预设RSRP门限的SSB,终端设备将RSRP测量值大于或等于对应预设RSRP门限的SSB作为可选SSB;对于未配置有预设RSRP门限的SSB,终端设备将RSRP测量值大于或等于小区级RSRP门限的SSB作为可选SSB。仍参见图6的(d),终端设备的可选SSB集合包括J=2个配置有第一概率的第一SSB,即SSBm,SSBs,以及K=1个未配置有第一概率的第二SSB,即SSBN。那么,终端设备在确定目标波束时,以pm=20%的概率从可选SSB中选择SSBm作为目标SSB,以ps=50%的概率从可选SSB中选择SSBs作为目标SSB,以1-pm-ps=30%的概率选择SSBN作为目标SSB。
在另一些示例中,终端设备测量SSB1-SSBN中每一SSB的RSRP,对于配置有预设RSRP门限的SSB,终端设备将RSRP测量值大于或等于对应预设RSRP门限,且该RSRP测量值大于或等于小区级RSRP门限的SSB作为可选SSB;对于未配置有预设RSRP门限的SSB,终端设备将RSRP测量值大于或等于小区级RSRP门限的SSB作为可选SSB。参见图6的(e),终端设备的可选SSB集合包括J=1个配置有第一概率的第一SSB,即SSBm,以及K=2个未配置有第一概率的第二SSB,即SSBu和SSBN。那么,终端设备在确定目标波束时,以pm=20%的概率选择SSBm作为目标SSB,以1-pm=80%的概率从SSBu和SSBN中选择目标SSB。具体的,比如,终端设备以40%的概率选择SSBu作为目标SSB,以40%的概率选择SSBN作为目标SSB。
又比如,在图1中,基站通过测量波束1-波束3的负载,发现波束3的负载较高,则基站向终端设备发送第一指示信息,用于指示该波束3的第一概率和/或预设RSRP门限。那么,后续,终端设备接入基站时,选择该波束3的概率会有所下降,相应的,终端设备选择低负载波束的概率有所提升,进而降低终端设备选 择高负载波束带来的终端设备之间资源碰撞问题的概率。
S403、终端设备基于目标波束确定上行通信资源。
该S403也可以理解为,终端设备基于目标SSB确定上行通信资源。
以上行通信资源为PRACH时频资源为例,终端设备基于目标波束,确定与该目标波束关联的PRACH时频资源。比如,目标波束为图1所示的波束1。波束1对应的SSB为图7中(a)所示的SSB3。那么,终端设备的上行通信资源即包括图7中(a)所示的RO4和RO5。终端设备可以使用RO4、RO5进行随机接入。应理解,目标波束1的负载较低,因此,终端设备使用该低负载波束1关联的PRACH时频资源进行随机接入,能够降低与其他终端设备之间产生资源碰撞的概率。
可选的,在确定目标波束以及上行通信资源,比如PRACH时频资源后,终端设备可以根据目标波束的方向,使用选择的PRACH时频资源,在该方向的相反方向上向网络设备发送PRACH。如此,网络设备收到PRACH,可以根据SSB与PRACH时频资源之间的映射关系,反推出目标波束是终端选择的下行波束。这样一来,该终端设备和网络设备就知道用于相互通信的波束是目标波束。后续,网络设备可以通过该目标波束向该终端设备传输下行数据。该终端设备可以通过该目标波束对应的上行波束向该网络设备传输上行数据。该目标波束对应的上行波束,即与该目标波束方向相反的上行波束。或者可以说,目标波束的方向和其对应的上行波束的方向具有一致性。
本申请实施例提供的通信方法,终端设备基于从网络设备接收的第一指示信息确定目标波束。其中,第一指示信息用于指示为至少一个第一波束中每一第一波束配置的第一概率和/或预设RSRP门限。也就是说,第一指示信息可以为不同波束配置不同的第一概率和/或预设RSRP门限。因此,终端设备不仅可以根据自身位置,业务特性等因素选择波束,还可以根据第一概率和/或预设RSRP门限选择波束,降低选择某些波束的终端设备很多,选择另一些波束的终端设备很少,导致终端之间产生资源碰撞的概率。
本申请实施例还提供一种通信方法,参见图8,该方法包括:
S801、网络设备向终端设备发送波束重选指示信息。
相应的,终端设备从网络设备接收波束重选指示信息。
波束重选指示信息用于指示终端设备执行波束重选。
可选的,波束重选指示信息可以包括预设比特位,比如可以包括1比特,该1比特用于指示终端设备是否需要波束重选。示例性的,1比特的值为1,表示终端设备需要重选波束,值为0,表示终端设备不需重选波束。当然,具体使用哪一比特值指示需要重选波束,可以另行设定,本申请实施例不做限定。
可选的,终端设备不需重选波束时,预设比特位还可以缺省。或者,网络设备不向终端发送波束重选指示信息。以降低信令开销。
可选的,终端设备不需重选波束时,网络设备对允许终端设备选择的波束不做额外限制。
可选的,终端设备不需重选波束时,网络设备对不允许终端设备选择的波束不做额外限制。
作为一种可能的实现方式,网络设备发送波束重选指示信息,具体实现为:网络设备发送上行传输反馈。该上行传输反馈携带该波束重选指示信息。上行传输反馈比如可以但不限于是两步随机接入过程中的随机接入响应,或者是四步随机接入过程中的随机接入响应,或者针对物理上行共享信道(physical uplink shared channel,PUSCH)的反馈。比如可以是四步随机接入过程中的第二消息(Msg2),再比如可以是针对PUSCH的否定确认消息(NACK),肯定确认消息(ACK)。
可选的,波束重选指示信息包括用于指示允许被选择的波束的第二指示信息。
可选的,第二指示信息包括允许被选择的波束的参考信号索引,以便指示终端设备选择所指示的参考信号索引对应的波束。
示例性的,参见图9的(a),在某次随机接入过程中,UE1向基站发送Msg1,以便向基站通知该UE1有一个随机接入请求,使得基站能估计自己与UE1之间的传输时延,并向UE1下发校准信息,以使UE1校准上行定时(uplink timing)。基站接收到Msg1,向UE1发送Msg2,该Msg2包括波束重选指示信息,波束重选指示信息包括第二指示信息,第二指示信息包括允许被选择的波束的参考信号索引,比如波束1的SSB索引(比如SSB1)、波束2的SSB索引(比如SSB2)。如此,UE1在接收到Msg2之后,基于该Msg2在允许被选择的波束,即SSB1对应的波束(波束1)、SSB2对应的波束(波束2)中选择波束。
可选的,波束重选指示包括用于指示不允许被选择的波束的第三指示信息。可选的,第三指示信息包括不允许被选择的波束的参考信号索引。
示例性的,参见图9的(b),UE1向基站发送Msg1,基站接收到Msg1,向UE1发送Msg2,该Msg2包括波束重选指示信息,波束重选指示信息包括第三指示信息,第三指示信息包括不允许被选择的波束的参考信号索引,比如波束3(高负载波束)的SSB索引(比如SSB3)。如此,UE1在接收到Msg2之后,基于该Msg2选择波束,且其不选择SSB3对应的波束(即波束3)。
S802、自接收波束重选指示信息之后,终端设备基于波束重选指示信息选择波束。
可选的,终端设备基于波束重选指示信息选择波束,可以实现为:在配置的时段内,终端设备基于波束重选指示信息选择波束。具体的,由网络设备为终端设备配置时段信息,或者,由协议预定义该时段信息。该时段信息用于指示波束重选指示信息的有效时间范围,有效时间范围可以是从终端设备收到波束重选指示信息开始,长度为该时段指示的时长。
可选的,在网络设备配置时段信息的情况中,该时段信息可以与上述波束重选指示信息携带在同一个上行传输反馈中,该时段信息也可以携带在广播信息中。
示例性的,参见图9的(a),UE1接收到Msg2之后,解析该Msg2,发现预设比特位的比特值为1,表示终端设备需重选波束。那么,终端设备在接收到Msg2的时刻开启定时器Timer,Timer时长设置为时段信息指示的时长,在Timer超时之前,UE1在第二指示信息指示的波束(比如波束1、波束2)中选择波束。
或者,可选的,终端设备基于波束重选指示信息选择波束,可以实现为:在配置的上行传输次数内,基于波束重选指示信息选择波束。其中,上行传输比如 可以但不限于是PUSCH、PRACH。具体的,网络设备为终端设备配置次数信息,用于指示波束重选指示信息的上行传输次数范围,上行传输次数范围可以是自终端设备接收到波束重选指示信息后的V(V为正整数)次上行传输。上行传输次数可以是PUSCH次数,或者PRACH次数,或者PUSCH、PRACH的总次数。
可选的,次数信息可以与波束重选指示信息携带在同一上行传输反馈消息中,也可以携带在广播信息中。或者,次数信息也可以是协议预定义的。
示例性的,参见图9的(b),UE1接收到指示终端设备重选波束的Msg2之后,解析得到次数V=3,那么UE1在接收到Msg2之后的3次上行传输内,不能选择波束3。
再比如,基站向UE1发送N个SSB,分别为SSB1-SSBN,UE1选择SSB1进行随机接入。基站检测到SSB1当前的资源碰撞比较严重,则在对UE1的反馈(比如Msg2)中指示UE1重选波束,则UE1在下一次随机接入时只能在其可选SSB中选择除了SSB1以外的SSB。
需要说明的是,上行传输反馈,适用于当前上行传输成功的情况,也适用于当前上行传输失败的情况。
S803、终端设备基于选择的波束,确定上行通信资源。
具体的,基于波束对应的参考信号(比如SSB),确定该SSB关联的上行通信资源(比如PRACH时频资源)。本步骤的具体实现可参见上述实施例。
本申请实施例提供的通信方法,终端设备基于从网络设备接收的波束重选指示信息选择波束。也就是说,终端设备不仅可以根据自身位置,业务特性等因素选择波束,还可以根据波束重选指示信息选择波束,降低选择某些波束的终端设备很多,选择另一些波束的终端设备很少,导致终端之间产生资源碰撞的概率。
本申请实施例提供的通信方法,当出现波束间负载不均衡的情况时,网络设备能够通过第一指示信息或波束重选指示信息调整波束间负载,进而降低选择某些波束的终端设备很多,选择另一些波束的终端设备很少,导致终端之间产生资源碰撞的概率。
本申请实施例还提供一种通信方法,参见图10,该方法包括:
S1001、网络设备向终端设备发送第四指示信息。
相应的,终端设备从网络设备接收第四指示信息。
第四指示信息用于配置多个波束关联的上行通信资源。该多个波束包括第一波束和/或第二波束。其中,第一波束关联的上行通信资源数目与第二波束关联的上行通信资源数目不同。
可选的,上行通信资源可以是时频资源,例如PRACH时频资源,或者PUSCH时频资源,也可以是码域资源,例如preamble或者DMRS,也可以是空域资源,比如天线端口等,或者是其他资源。
作为一种可能的实现方式,第四指示信息具体用于配置第一波束关联的上行资源数目,以及用于配置第二波束关联的上行资源数目。示例性的,参见图11的(a),基站广播第四指示信息,第四指示信息指示该基站可用的波束1-波束3各自关联的RO数目,比如,第二波束,即低负载波束1(对应SSB1)、波束2(对 应SSB2)各关联2个RO,第一波束,即高负载波束3(对应SSB3)关联4个RO。这3个波束各自关联的RO可参见图7的(b)和图7的(c)。
作为一种可能的实现方式,第四指示信息具体用于配置第二波束关联的上行通信资源数目和偏移值,偏移值用于指示第一波束关联的上行通信资源数目与第二波束关联的上行通信资源数目之间的偏移。
以终端设备进行SSB与PRACH时频资源之间的关联为例,网络设备通过第四指示信息配置第二SSB集合中各第二SSB(即一般SSB)各自关联的RO数量为B,例如,通过参数ssb-perRACH-OccasionAndCB-PreamblesPerSSB配置,并配置第一SSB关联的RO数量与第二SSB关联的RO数量的偏移值为a(或者,偏移值也可以由协议预定义)。网络设备还可以通过第四指示信息指示第一SSB集合,如此,终端设备在进行上行通信资源和SSB的关联时,每个第一SSB除关联上述B个RO,额外再关联a个RO。
示例性的,例如偏移值是a,第二波束关联的上行通信资源数目为B,则第一波束关联的上行通信资源数目可以为a*B,或者第一波束关联的上行通信资源数目为a+B,或者,根据第二波束关联的上行通信资源数目B和偏移值a,采用其他算法计算第一波束关联的上行通信资源数目。
可选的,可以为每个波束独立配置偏移值。以图11的(b)为例,第四指示信息包括偏移值1或偏移值2。偏移值1为波束1关联的RO数目与波束3关联的RO数目之间的偏移值,偏移值2为波束2关联的RO数目与波束3关联的RO数目之间的偏移值。偏移值1与偏移值2相同或不同。
在另一些实施例中,网络设备也可以通过其他消息(即广播信息之外的信息)发送偏移值。
在另一些实施例中,偏移值a也可以由协议预定义。
作为一种可能的实现方式,网络设备向终端设备发送第四指示信息,可以实现为:网络设备向终端设备发送广播信息,广播信息包括第四指示信息。
S1002、终端设备基于第四指示信息,确定用于上行传输的上行通信资源。
在本实施中,基站增加1个或者多个波束关联的资源数量。
应理解,终端设备接收到第四指示信息后,可以根据该第四指示信息关联波束和相应上行通信资源。
可选的,按照预定义的映射顺顺序,在每个映射循环内,终端设备先将所有网络设备实际发送的SSB按照第二SSB关联的PRACH资源数量B与PRACH资源关联,再将第一SSB集合中每个第一SSB额外关联a个PRACH资源,然后进行下一个映射循环。映射循环指的是每个网络设备实际发送的SSB按照其关联的PRACH资源数量与PRACH资源关联一遍。关联周期包括至少一个映射循环。
或者,可选的,按照预定义的映射顺顺序,在每个映射循环内,所有网络设备实际发送的SSB按照其关联的PRACH资源数量与PRACH资源关联,即每个第一SSB关联B+a个PRACH资源,每个第二SSB关联B个PRACH资源,然后进行下一个映射循环。
示例性的,基站实际发送了4个SSB,分别为SSB1-SSB4,网络设备指示第一SSB集合,为SSB3,基站配置第二SSB集合(即一般SSB,为SSB1、SSB2、SSB4)各自关联的RO数量为2,且在该2个RO中每个RO上关联52个preamble,例如,通过参数ssb-perRACH-OccasionAndCB-PreamblesPerSSB配置。基站还可以指示或者由协议预定义第一SSB关联的RO数量与第二SSB关联的RO数量的偏移值为2,即每个第一SSB额外再关联2个RO,则SSB3关联2+2=4个RO,且在该4个RO中,每个RO上关联52个preamble。
可选的,按照预定义的映射顺顺序,在每个映射循环内,先将SSB1-4中每个SSB关联2个RO,以及该2个RO中每个RO上关联52个preamble,再将SSB3额外关联2个RO,以及该2个RO中每个RO上关联52个preamble,参见图7的(b)。
或者,可选的,按照预定义的映射顺顺序,在每个映射循环内,SSB1、SSB2关联2个RO,以及该2个RO中每个RO关联52个preamble,SSB3关联4个RO,以及该4个RO中每个RO关联52个preamble,SSB4关联2个RO,以及该2个RO中每个RO关联52个preamble,参见图7的(c)。
本申请实施例提供的通信方法,终端设备基于从网络设备接收的第四指示信息,确定上行通信资源。其中,第四指示信息为第一波束配置的上行通信资源数目与为第二波束配置的上行通信资源数目不同,也就是说,网络设备采用非均匀的资源分配方式,针对不同波束可以配置不同上行通信资源数目,比如,为碰撞严重的波束配置更多资源,因此,能够降低终端之间产生资源碰撞的概率。
可以理解的是,为了实现上述功能,终端设备、网络设备包含了执行每一个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件来实现,或者以硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端进行功能模块的划分,例如,可以对应每一个功能划分每一个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应每一个功能划分每一个功能模块为例进行说明:
如图12所示,为本申请实施例提供的一种通信装置1200的结构示意图。该通信装置包括接收模块1202、处理模块1201。该通信装置为终端或支持终端功能的装置(比如终端的芯片系统),接收模块1202用于支持通信装置执行图4中的步骤S401,图8中的步骤S801,图10中的步骤S1001,和/或用于本文描述的技术方案的其他过程。处理模块1201用于支持通信装置执行图4中的步骤S402,S403,图8中的步骤S802, S803,图10中的步骤S1002,和/或用于本文描述的技术方案的其他过程。可选的,通信装置1200还包括发送模块1203,用于支持通信装置向其他网元发送信息,和/或用于本文描述的技术方案的其他过程。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
可选的,通信装置1200还可包括存储模块。
作为一个示例,结合图3所示的终端,图12中的发送模块1203和接收模块1202可以由图3中的通信接口104来实现,图12中的处理模块1201可以由图3中的处理器101和/或处理器107来实现,若通信装置1200包括存储模块,存储模块可以由图3中的存储器103实现,本申请实施例对此不作任何限制。
如图13所示,为本申请实施例提供的一种通信装置1300的结构示意图。该通信装置包括发送模块1302、处理模块1301。该通信装置为网络设备或支持网络设备功能的装置(比如网络设备的芯片系统),发送模块1302用于支持通信装置执行图4中的步骤S401,图8中的步骤S801,图10中的步骤S1001,和/或用于本文描述的技术方案的其他过程。处理模块1301用于支持通信装置确定第一指示信息至第四指示信息,和/或用于本文描述的技术方案的其他过程。可选的,通信装置1300还包括接收模块1303,用于支持通信装置从其他网元接收信息,和/或用于本文描述的技术方案的其他过程。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
可选的,通信装置1300还可包括存储模块。
作为一个示例,结合图3所示的终端,图13中的发送模块1302和接收模块1303可以由图3中的通信接口104来实现,图13中的处理模块1301可以由图3中的处理器101和/或处理器107来实现,若通信装置1300包括存储模块,存储模块可以由图3中的存储器103实现,本申请实施例对此不作任何限制。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令;当计算机可读存储介质在图3所示的终端上运行时,使得该终端执行如图4、图8或图10所示的通信方法。或者,使得该网络设备执行如图4、图8或图10所示的通信方法。
计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供一种芯片,该芯片包括处理模块和通信接口,通信接口用于接收输入的信号并提供给处理模块,和/或用于处理将处理模块生成的信号输出。处理用于支持终端执行如图4、图8或图10所示的通信方法。或者,处理用于支持网络设备执行如图4、图8或图10所示的通信方法。
在一实施方式中,处理模块可以运行代码指令以执行如图4、图10或图8所示的通信方法。该代码指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器。其中,处理模块为该芯片上集成的处理器或者微处理器或者集成电路。通信接口可以为输入输出电路或者收发管脚。
本申请实施例还提供一种包含计算机指令的计算机程序产品,当其在图3所示的终端上运行时,使得终端可以执行图4、图10或图8所示的通信方法。
上述本申请实施例提供的终端、计算机存储介质、芯片以及计算机程序产品均用于执行上文所提供的免授权传输的方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (47)

  1. 一种通信方法,其特征在于,包括:
    接收第一指示信息;所述第一指示信息用于为至少一个第一波束中每一第一波束配置一个第一概率,和/或,用于为所述至少一个第一波束中每一第一波束配置一个预设参考信号接收功率RSRP门限;
    基于所述第一指示信息选择目标波束,并基于所述目标波束确定上行通信资源;
    其中,第一波束对应的第一概率为配置的使用所述第一波束的概率;第一波束对应的预设RSRP门限用于确定所述第一波束是否为终端设备的可选波束,所述预设RSRP门限不是小区级RSRP门限。
  2. 根据权利要求1所述的通信方法,其特征在于,所述至少一个第一波束包括J个第一波束,所述J个第一波束中第j个第一波束的第一概率为p j
    在可选波束包括J个第一波束和K个第二波束的情况下,基于所述第一指示信息选择目标波束,包括:根据概率p j,选择所述J个第一波束中第j个第一波束为所述目标波束,根据概率
    Figure PCTCN2020116940-appb-100001
    选择可选波束中的第二波束为所述目标波束;或者,根据概率p j*X/Y,选择所述J个第一波束中第j个第一波束为所述目标波束,根据概率
    Figure PCTCN2020116940-appb-100002
    选择可选波束中的第二波束为所述目标波束,其中,X表示可选波束的数量,Y表示网络设备发送波束的数量;
    或者,在可选波束仅包括所述J个第一波束的情况下,基于所述第一指示信息选择目标波束,包括:根据概率
    Figure PCTCN2020116940-appb-100003
    选择可选波束中第j个第一波束为所述目标波束;或者,根据概率p j,选择可选波束中第j个第一波束为所述目标波束;或者,根据概率p j*X/Y,选择可选波束中第j个第一波束为所述目标波束;
    其中,J、K均为正整数;j为非负整数;j小于或等于J。
  3. 根据权利要求1或2所述的通信方法,其特征在于,
    可选波束包括RSRP测量值大于或等于所述小区级RSRP门限的第一波束。
  4. 根据权利要求1或2所述的通信方法,其特征在于,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限的第一波束;
    或者,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限,且大于或等于所述小区级RSRP门限的第一波束。
  5. 一种通信方法,其特征在于,包括:
    接收波束重选指示信息,所述波束重选指示信息用于指示终端设备执行波束重选;
    基于所述波束重选指示信息,自接收所述波束重选指示信息之后,基于所述波束重选指示信息选择波束,以及基于选择的所述波束,确定上行通信资源。
  6. 根据权利要求5所述的通信方法,其特征在于,所述波束重选指示信息包括用于指示允许被选择的波束的第二指示信息。
  7. 根据权利要求5或6所述的通信方法,其特征在于,所述波束重选指示信 息包括用于指示不允许被选择的波束的第三指示信息。
  8. 根据权利要求5-7中任一项所述的通信方法,其特征在于,基于所述波束重选指示信息选择波束,包括:
    在配置的时段内,基于所述波束重选指示信息选择波束;
    或者,在配置的上行传输次数内,基于所述波束重选指示信息选择波束。
  9. 根据权利要求5至8中任一项所述的通信方法,其特征在于,所述波束重选指示信息包括在上行传输反馈中。
  10. 一种通信方法,其特征在于,包括:
    接收第四指示信息,所述第四指示信息用于配置多个波束关联的上行通信资源;所述多个波束包括第一波束和/或第二波束;
    基于所述第四指示信息,确定用于上行传输的上行通信资源;
    其中,第一波束关联的上行通信资源数目与第二波束关联的上行通信资源数目不同。
  11. 根据权利要求10所述的通信方法,其特征在于,所述第四指示信息用于配置第一波束关联的上行通信资源数目,以及用于配置第二波束关联的上行通信资源数目。
  12. 根据权利要求10所述的通信方法,其特征在于,
    所述第四指示信息用于配置第二波束关联的上行通信资源数目和偏移值,所述偏移值用于指示所述第一波束关联的上行通信资源数目与所述第二波束关联的上行通信资源数目之间的偏移。
  13. 一种通信方法,其特征在于,包括:
    确定第一指示信息;所述第一指示信息用于为至少一个第一波束中每一第一波束配置一个第一概率,和/或,用于为所述至少一个第一波束中每一第一波束配置一个预设参考信号接收功率RSRP门限;
    发送所述第一指示信息;
    其中,第一波束对应的第一概率为配置的使用所述第一波束的概率;第一波束对应的预设RSRP门限用于确定所述第一波束是否为终端设备的可选波束,所述预设RSRP门限不是小区级RSRP门限。
  14. 根据权利要求13所述的通信方法,其特征在于,所述至少一个第一波束包括J个第一波束,所述J个第一波束中第j个第一波束的第一概率为p j
    在可选波束包括J个第一波束和K个第二波束的情况下,基于所述第一指示信息选择目标波束,包括:根据概率p j,选择所述J个第一波束中第j个第一波束为所述目标波束,根据概率
    Figure PCTCN2020116940-appb-100004
    选择可选波束中的第二波束为所述目标波束;或者,根据概率p j*X/Y,选择所述J个第一波束中第j个第一波束为所述目标波束,根据概率
    Figure PCTCN2020116940-appb-100005
    选择可选波束中的第二波束为所述目标波束,其中,X表示可选波束的数量,Y表示网络设备发送波束的数量;
    或者,在可选波束仅包括所述J个第一波束的情况下,基于所述第一指示信息选择目标波束,包括:根据概率
    Figure PCTCN2020116940-appb-100006
    选择可选波束中第j个第一波束为 所述目标波束;或者,根据概率p j,选择可选波束中第j个第一波束为所述目标波束;或者,根据概率p j*X/Y,选择可选波束中第j个第一波束为所述目标波束;
    其中,J、K均为正整数;j为非负整数;j小于或等于J。
  15. 根据权利要求13或14所述的通信方法,其特征在于,
    可选波束包括RSRP测量值大于或等于所述小区级RSRP门限的第一波束。
  16. 根据权利要求13或14所述的通信方法,其特征在于,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限的第一波束;
    或者,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限,且大于或等于所述小区级RSRP门限的第一波束。
  17. 一种通信方法,其特征在于,包括:
    确定波束重选指示信息;所述波束重选指示信息用于指示终端设备执行波束重选
    发送波束重选指示信息。
  18. 根据权利要求17所述的通信方法,其特征在于,所述波束重选指示信息包括用于指示允许被选择的波束的第二指示信息。
  19. 根据权利要求17或18所述的通信方法,其特征在于,所述波束重选指示信息包括用于指示不允许被选择的波束的第三指示信息。
  20. 根据权利要求17至19中任一项所述的通信方法,其特征在于,所述波束重选指示信息包括在上行传输反馈中。
  21. 一种通信方法,其特征在于,包括:
    确定第四指示信息,所述第四指示信息用于配置多个波束关联的上行通信资源;所述多个波束包括第一波束和/或第二波束;
    发送所述第四指示信息;
    其中,第一波束关联的上行通信资源数目与第二波束关联的上行通信资源数目不同。
  22. 根据权利要求21所述的通信方法,其特征在于,所述第四指示信息用于配置第一波束关联的上行通信资源数目,以及用于配置第二波束关联的上行通信资源数目。
  23. 根据权利要求21所述的通信方法,其特征在于,
    所述第四指示信息用于配置第二波束关联的上行通信资源数目和偏移值,所述偏移值用于指示所述第一波束关联的上行通信资源数目与所述第二波束关联的上行通信资源数目之间的偏移。
  24. 一种通信装置,其特征在于,包括:
    接收模块,用于接收第一指示信息;所述第一指示信息用于为至少一个第一波束中每一第一波束配置一个第一概率,和/或,用于为所述至少一个第一波束中每一第一波束配置一个预设参考信号接收功率RSRP门限;
    处理模块,用于基于所述第一指示信息选择目标波束,并基于所述目标波束确定上行通信资源;
    其中,第一波束对应的第一概率为配置的使用所述第一波束的概率;第一波 束对应的预设RSRP门限用于确定所述第一波束是否为终端设备的可选波束,所述预设RSRP门限不是小区级RSRP门限。
  25. 根据权利要求24所述的通信装置,其特征在于,所述至少一个第一波束包括J个第一波束,所述J个第一波束中第j个第一波束的第一概率为p j
    在可选波束包括J个第一波束和K个第二波束的情况下,基于所述第一指示信息选择目标波束,包括:根据概率p j,选择所述J个第一波束中第j个第一波束为所述目标波束,根据概率
    Figure PCTCN2020116940-appb-100007
    选择可选波束中的第二波束为所述目标波束;或者,根据概率p j*X/Y,选择所述J个第一波束中第j个第一波束为所述目标波束,根据概率
    Figure PCTCN2020116940-appb-100008
    选择可选波束中的第二波束为所述目标波束,其中,X表示可选波束的数量,Y表示网络设备发送波束的数量;
    或者,在可选波束仅包括所述J个第一波束的情况下,基于所述第一指示信息选择目标波束,包括:根据概率
    Figure PCTCN2020116940-appb-100009
    选择可选波束中第j个第一波束为所述目标波束;或者,根据概率p j,选择可选波束中第j个第一波束为所述目标波束;或者,根据概率p j*X/Y,选择可选波束中第j个第一波束为所述目标波束;
    其中,J、K均为正整数;j为非负整数;j小于或等于J。
  26. 根据权利要求24或25所述的通信装置,其特征在于,
    可选波束包括RSRP测量值大于或等于所述小区级RSRP门限的第一波束。
  27. 根据权利要求24或25所述的通信装置,其特征在于,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限的第一波束;
    或者,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限,且大于或等于所述小区级RSRP门限的第一波束。
  28. 一种通信装置,其特征在于,包括:
    接收模块,用于接收波束重选指示信息,所述波束重选指示信息用于指示终端设备执行波束重选;
    处理模块,用于基于所述波束重选指示信息,自接收所述波束重选指示信息之后,基于所述波束重选指示信息选择波束,以及基于选择的所述波束,确定上行通信资源。
  29. 根据权利要求28所述的通信装置,其特征在于,所述波束重选指示信息包括用于指示允许被选择的波束的第二指示信息。
  30. 根据权利要求28或29所述的通信装置,其特征在于,所述波束重选指示信息包括用于指示不允许被选择的波束的第三指示信息。
  31. 根据权利要求28-30中任一项所述的通信装置,其特征在于,所述处理模块,用于基于所述波束重选指示信息选择波束,包括:
    在配置的时段内,基于所述波束重选指示信息选择波束;
    或者,在配置的上行传输次数内,基于所述波束重选指示信息选择波束。
  32. 根据权利要求28至31中任一项所述的通信装置,其特征在于,所述波束重选指示信息包括在上行传输反馈中。
  33. 一种通信装置,其特征在于,包括:
    接收模块,用于接收第四指示信息,所述第四指示信息用于配置多个波束关联的上行通信资源;所述多个波束包括第一波束和/或第二波束;
    处理模块,用于基于所述第四指示信息,确定用于上行传输的上行通信资源;
    其中,第一波束关联的上行通信资源数目与第二波束关联的上行通信资源数目不同。
  34. 根据权利要求33所述的通信装置,其特征在于,所述第四指示信息用于配置第一波束关联的上行通信资源数目,以及用于配置第二波束关联的上行通信资源数目。
  35. 根据权利要求33所述的通信装置,其特征在于,
    所述第四指示信息用于配置第二波束关联的上行通信资源数目和偏移值,所述偏移值用于指示所述第一波束关联的上行通信资源数目与所述第二波束关联的上行通信资源数目之间的偏移。
  36. 一种通信装置,其特征在于,包括:
    处理模块,用于确定第一指示信息;所述第一指示信息用于为至少一个第一波束中每一第一波束配置一个第一概率,和/或,用于为所述至少一个第一波束中每一第一波束配置一个预设参考信号接收功率RSRP门限;
    发送模块,用于发送所述第一指示信息;
    其中,第一波束对应的第一概率为配置的使用所述第一波束的概率;第一波束对应的预设RSRP门限用于确定所述第一波束是否为终端设备的可选波束,所述预设RSRP门限不是小区级RSRP门限。
  37. 根据权利要求36所述的通信装置,其特征在于,所述至少一个第一波束包括J个第一波束,所述J个第一波束中第j个第一波束的第一概率为p j
    在可选波束包括J个第一波束和K个第二波束的情况下,基于所述第一指示信息选择目标波束,包括:根据概率p j,选择所述J个第一波束中第j个第一波束为所述目标波束,根据概率
    Figure PCTCN2020116940-appb-100010
    选择可选波束中的第二波束为所述目标波束;或者,根据概率p j*X/Y,选择所述J个第一波束中第j个第一波束为所述目标波束,根据概率
    Figure PCTCN2020116940-appb-100011
    选择可选波束中的第二波束为所述目标波束,其中,X表示可选波束的数量,Y表示网络设备发送波束的数量;
    或者,在可选波束仅包括所述J个第一波束的情况下,基于所述第一指示信息选择目标波束,包括:根据概率
    Figure PCTCN2020116940-appb-100012
    选择可选波束中第j个第一波束为所述目标波束;或者,根据概率p j,选择可选波束中第j个第一波束为所述目标波束;或者,根据概率p j*X/Y,选择可选波束中第j个第一波束为所述目标波束;
    其中,J、K均为正整数;j为非负整数;j小于或等于J。
  38. 根据权利要求36或37所述的通信装置,其特征在于,
    可选波束包括RSRP测量值大于或等于所述小区级RSRP门限的第一波束。
  39. 根据权利要求36或37所述的通信装置,其特征在于,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限的第一波束;
    或者,可选波束包括:RSRP测量值大于或等于对应预设RSRP门限,且大于或 等于所述小区级RSRP门限的第一波束。
  40. 一种通信装置,其特征在于,包括:
    发送模块,用于发送波束重选指示信息,所述波束重选指示信息用于指示终端设备执行波束重选。
  41. 根据权利要求40所述的通信装置,其特征在于,所述波束重选指示信息包括用于指示允许被选择的波束的第二指示信息。
  42. 根据权利要求40或41所述的通信装置,其特征在于,所述波束重选指示信息包括用于指示不允许被选择的波束的第三指示信息。
  43. 根据权利要求40至42中任一项所述的通信装置,其特征在于,所述波束重选指示信息包括在上行传输反馈中。
  44. 一种通信装置,其特征在于,包括:
    处理模块,用于确定第四指示信息,所述第四指示信息用于配置多个波束关联的上行通信资源;所述多个波束包括第一波束和/或第二波束;
    发送模块,用于发送所述第四指示信息;
    其中,第一波束关联的上行通信资源数目与第二波束关联的上行通信资源数目不同。
  45. 根据权利要求44所述的通信装置,其特征在于,所述第四指示信息用于配置第一波束关联的上行通信资源数目,以及用于配置第二波束关联的上行通信资源数目。
  46. 根据权利要求44所述的通信装置,其特征在于,
    所述第四指示信息用于配置第二波束关联的上行通信资源数目和偏移值,所述偏移值用于指示所述第一波束关联的上行通信资源数目与所述第二波束关联的上行通信资源数目之间的偏移。
  47. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被处理器执行时使得处理器执行如权利要求1至23任一项所述的通信方法。
PCT/CN2020/116940 2020-09-22 2020-09-22 通信方法及装置 WO2022061555A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116940 WO2022061555A1 (zh) 2020-09-22 2020-09-22 通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116940 WO2022061555A1 (zh) 2020-09-22 2020-09-22 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2022061555A1 true WO2022061555A1 (zh) 2022-03-31

Family

ID=80844589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116940 WO2022061555A1 (zh) 2020-09-22 2020-09-22 通信方法及装置

Country Status (1)

Country Link
WO (1) WO2022061555A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115053473A (zh) * 2022-04-07 2022-09-13 北京小米移动软件有限公司 Rsrp门限确定方法、装置、通信设备及存储介质
WO2023198059A1 (zh) * 2022-04-16 2023-10-19 华为技术有限公司 一种通信方法、装置、系统及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180007573A1 (en) * 2016-06-30 2018-01-04 Wistron Neweb Corp. Antenna control method and non-transitory computer-readable medium thereof
CN111108806A (zh) * 2017-08-10 2020-05-05 康维达无线有限责任公司 新无线电中的连接模式移动性
CN111386659A (zh) * 2017-11-13 2020-07-07 株式会社Ntt都科摩 用户装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180007573A1 (en) * 2016-06-30 2018-01-04 Wistron Neweb Corp. Antenna control method and non-transitory computer-readable medium thereof
CN111108806A (zh) * 2017-08-10 2020-05-05 康维达无线有限责任公司 新无线电中的连接模式移动性
CN111386659A (zh) * 2017-11-13 2020-07-07 株式会社Ntt都科摩 用户装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "UL/DL BM for latency/overhead reduction", 3GPP DRAFT; R1-1813558, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 3 November 2018 (2018-11-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051479896 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115053473A (zh) * 2022-04-07 2022-09-13 北京小米移动软件有限公司 Rsrp门限确定方法、装置、通信设备及存储介质
WO2023198059A1 (zh) * 2022-04-16 2023-10-19 华为技术有限公司 一种通信方法、装置、系统及存储介质

Similar Documents

Publication Publication Date Title
US11303343B2 (en) Method, terminal device, and network device for beam failure management and beam recovery
CA3044493C (en) Resource configuration method and apparatus
US20220053546A1 (en) Data receiving method and apparatus and data sending method and apparatus
US11109289B2 (en) Scheduling method and base station
BR112020009319A2 (pt) método de transmissão de mensagem e dispositivo
US20210274513A1 (en) Uplink determining method and apparatus
EP3573277B1 (en) Sounding reference signal, srs, transmission method, apparatus
CN112188479B (zh) 用户设备能力信息的上报方法及设备
CN110324842B (zh) 一种通信方法及通信装置
WO2022061555A1 (zh) 通信方法及装置
US20210099270A1 (en) Resource Indicating Method, Device, And System
CN111586793B (zh) 一种通信方法、设备及计算机可读存储介质
CN113271683A (zh) 一种基于ue能力进行通信的方法和ue及网络侧设备
US20220385428A1 (en) Signal quality information obtaining method, device, and system
EP3739981A1 (en) Method and apparatus for transmitting paging message
EP4117379A1 (en) Method and device for communication
CN112312499B (zh) 一种小区重选方法及其装置
US20230345331A1 (en) Communication method, apparatus, and system
WO2022027386A1 (zh) 一种天线选择方法及装置
WO2021063165A1 (zh) 波束失败恢复请求的发送、接收方法、终端及基站
WO2022027681A1 (zh) 无线通信方法和设备
CN111066355A (zh) 一种通信方法及设备
CN114175727A (zh) 接入网络切片的方法和装置
CN113747574A (zh) 数据传输方法及装置
WO2023051258A1 (zh) 物理随机接入信道处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954409

Country of ref document: EP

Kind code of ref document: A1