WO2022205398A1 - 放松测量的方法、装置、通信设备及存储介质 - Google Patents

放松测量的方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2022205398A1
WO2022205398A1 PCT/CN2021/085165 CN2021085165W WO2022205398A1 WO 2022205398 A1 WO2022205398 A1 WO 2022205398A1 CN 2021085165 W CN2021085165 W CN 2021085165W WO 2022205398 A1 WO2022205398 A1 WO 2022205398A1
Authority
WO
WIPO (PCT)
Prior art keywords
bfd
relaxation
measurement
response
relaxation measurement
Prior art date
Application number
PCT/CN2021/085165
Other languages
English (en)
French (fr)
Inventor
胡子泉
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/085165 priority Critical patent/WO2022205398A1/zh
Priority to US18/285,232 priority patent/US20240196333A1/en
Priority to CN202180001081.5A priority patent/CN115443674A/zh
Publication of WO2022205398A1 publication Critical patent/WO2022205398A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0238Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is an unwanted signal, e.g. interference or idle signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the present disclosure relates to the field of wireless communication technologies, but is not limited to the field of wireless communication technologies, and in particular, relates to a relaxation measurement method, apparatus, communication device, and storage medium.
  • the fifth generation (5G, 5th Generation) mobile communication technology New Radio (NR, New Radio) system can support larger bandwidth and richer service types.
  • UE user equipment
  • NR New Radio
  • Embodiments of the present disclosure disclose a relaxation measurement method, apparatus, communication device, and storage medium.
  • a method for relaxing measurement is provided, wherein the method is executed by a terminal, and the method includes:
  • the predetermined condition at least indicates: the wireless link transmission quality that triggers relaxation measurement.
  • the operation of triggering the relaxation measurement of the beam failure detection BFD according to the determination result of whether the predetermined condition is satisfied includes:
  • the determining to trigger the relaxation measurement of the BFD in response to the predetermined condition being met includes:
  • the counter of the medium access control MAC layer of the terminal In response to the count value of the counter of the medium access control MAC layer of the terminal being equal to the count threshold, it is determined to trigger the relaxation measurement of the BFD; wherein, in response to the MAC layer receiving that the physical layer of the terminal detects the BLER the power saving indication reported when it is less than or equal to the BLER threshold, the counter counts; and in response to triggering the relaxation measurement of the BFD, the counter is reset to an initial value;
  • determining to trigger the relaxation measurement of the BFD includes:
  • the block error rate BLER indicated by the power saving instruction is less than or equal to the BLER threshold, and the BFD timer is not started, determine to trigger the physical layer to perform relaxation measures of the BFD;
  • the BFD timer information indicating that the BFD timer is not started and the block error rate BLER is less than or equal to the BLER threshold, determining to trigger the physical layer Relaxation measurements of the BFD were performed.
  • the method further includes:
  • the physical layer obtains the BLER threshold from the MAC layer through an interlayer interface.
  • the relaxation measurement parameters of the relaxation measurement include one or more of the following:
  • the first relaxation measurement parameter indicating an evaluation period; wherein, the evaluation period is N1 times the reference evaluation period; wherein, N1 is a positive number greater than 1;
  • the second relaxation measurement parameter indicating the indication interval; wherein, the indication interval is N2 times the reference indication interval; wherein, the N2 bit is a positive number greater than 1;
  • a third relaxation measurement parameter indicating the number of reference signals RS; wherein, the number of reference signals is less than a reference number threshold;
  • the fourth relaxation measurement parameter indicates the frequency domain range of the BFD measurement, wherein the frequency domain range is smaller than the reference frequency domain range.
  • the relaxation degree of the relaxation measurement using the first relaxation measurement parameter is greater than the relaxation degree threshold
  • the laxity of the relaxation measurement using the second relaxation measurement parameter is greater than the laxity threshold
  • the relaxation degree of using the third relaxation measurement parameter to perform relaxation measurement is greater than the relaxation degree threshold
  • the relaxation degree of the relaxation measurement using the fourth relaxation measurement parameter is greater than the relaxation degree threshold.
  • the method further includes:
  • the method further includes:
  • the standard mode is a mode in which the relaxed measurement mode is not used for BFD measurement; the relaxed measurement mode is a mode in which the relaxed measurement mode is used for BFD measurement.
  • an apparatus for relaxation measurement wherein, applied to a terminal, the apparatus includes a determination module, wherein,
  • the determining module is configured as:
  • the predetermined condition at least indicates: the wireless link transmission quality that triggers relaxation measurement.
  • the determining module is further configured to:
  • the determining module is further configured to:
  • the counter of the medium access control MAC layer of the terminal In response to the count value of the counter of the medium access control MAC layer of the terminal being equal to the count threshold, it is determined to trigger the relaxation measurement of the BFD; wherein, in response to the MAC layer receiving that the physical layer of the terminal detects the BLER the power saving indication reported when it is less than or equal to the BLER threshold, the counter counts; and in response to triggering the relaxation measurement of the BFD, the counter is reset to an initial value;
  • the determining module is further configured to:
  • the block error rate BLER indicated by the power saving instruction is less than or equal to the BLER threshold, and the BFD timer is not started, determine to trigger the physical layer to perform relaxation measures of the BFD;
  • the BFD timer information indicating that the BFD timer is not started and the block error rate BLER is less than or equal to the BLER threshold, determining to trigger the physical layer Relaxation measurements of the BFD were performed.
  • a communication device comprising:
  • a memory for storing the processor-executable instructions
  • the processor is configured to: when executing the executable instructions, implement the method described in any embodiment of the present disclosure.
  • a computer storage medium stores a computer-executable program, and when the executable program is executed by a processor, implements the method described in any embodiment of the present disclosure.
  • the operation of triggering the relaxation measurement of the beam failure detection BFD is determined according to the determination result of whether the predetermined condition is satisfied; wherein the predetermined condition at least indicates: the transmission quality of the wireless link that triggers the relaxation measurement.
  • the terminal can determine whether to trigger BFD relaxation measurement or not trigger BFD relaxation measurement according to the determination result of whether the predetermined condition is satisfied , trigger the relaxation measurement of the BFD, so as to adjust the power consumption of the BFD, save power, and improve the battery life of the terminal.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 is a schematic flowchart of a relaxation measurement method according to an exemplary embodiment.
  • Fig. 3 is a schematic flowchart of a relaxation measurement method according to an exemplary embodiment.
  • Fig. 4 is a schematic flowchart of a relaxation measurement method according to an exemplary embodiment.
  • Fig. 5 is a schematic flowchart of a relaxation measurement method according to an exemplary embodiment.
  • Fig. 6 is a schematic flowchart of a relaxation measurement method according to an exemplary embodiment.
  • Fig. 7 is a schematic flowchart of a relaxation measurement method according to an exemplary embodiment.
  • Fig. 8 is a schematic flowchart of a relaxation measurement method according to an exemplary embodiment.
  • Fig. 9 is a schematic flowchart of a relaxation measurement method according to an exemplary embodiment.
  • Fig. 10 is a schematic diagram of a relaxation measurement device according to an exemplary embodiment.
  • FIG. 11 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • Fig. 12 is a block diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the terms “greater than” or “less than” are used herein when characterizing the relationship of size. However, those skilled in the art can understand that the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of "less than or equal to”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on a mobile communication technology, and the wireless communication system may include: several user equipments 110 and several base stations 120 .
  • the user equipment 110 may be a device that provides voice and/or data connectivity to the user.
  • User equipment 110 may communicate with one or more core networks via a Radio Access Network (RAN), and user equipment 110 may be IoT user equipment such as sensor devices, mobile phones, and computers with IoT user equipment For example, it may be a stationary, portable, pocket-sized, hand-held, computer-built, or vehicle-mounted device.
  • RAN Radio Access Network
  • IoT user equipment such as sensor devices, mobile phones, and computers with IoT user equipment
  • it may be a stationary, portable, pocket-sized, hand-held, computer-built, or vehicle-mounted device.
  • station Ses, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile station
  • remote station remote station
  • access terminal remote user equipment
  • user terminal user terminal
  • user agent user device
  • user equipment or user equipment.
  • the user equipment 110 may also be a device of an unmanned aerial vehicle.
  • the user equipment 110 may also be an in-vehicle device, for example, a trip computer with a wireless communication function, or a wireless user equipment connected to an external trip computer.
  • the user equipment 110 may also be a roadside device, for example, may be a street light, a signal light, or other roadside devices with a wireless communication function.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication (the 4th generation mobile communication, 4G) system, also known as a long term evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as New Radio System or 5G NR System.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the base station 120 may be an evolved base station (eNB) used in the 4G system.
  • the base station 120 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 120 and the user equipment 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the user equipments 110 .
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle-to-everything (V2X) communication etc. scene.
  • the above-mentioned user equipment may be regarded as the terminal equipment of the following embodiments.
  • the above wireless communication system may further include a network management device 130 .
  • the network management device 130 may be a core network device in a wireless communication system, for example, the network management device 130 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME). Alternatively, the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 130 is not limited in this embodiment of the present disclosure.
  • the embodiments of the present disclosure enumerate multiple implementation manners to clearly illustrate the technical solutions of the embodiments of the present disclosure.
  • the multiple embodiments provided by the embodiments of the present disclosure may be executed independently, or may be executed together with the methods of other embodiments in the embodiments of the present disclosure, or may be executed alone or in combination and then executed together with some methods in other related technologies; this is not limited by the embodiments of the present disclosure.
  • a BFD mechanism is designed for a primary cell (Pcell, Primary Cell), a secondary primary cell (PSCell, Primary Secondary Cell), and a secondary cell (Scell, Secondary Cell).
  • the terminal measures the Physical Downlink Control Channel (PDCCH, Physical Downlink Control Channel) to determine the link quality corresponding to the downlink transmission beam; if the corresponding link quality is less than the quality threshold, it is considered that the downlink transmission beam fails to generate beams.
  • PDCCH Physical Downlink Control Channel
  • the terminal periodically measures a periodic Channel State Information Reference Signal (CSI-RS, Channel State Information Reference Signal) used for beam failure detection.
  • the measurement result is the Signal to Interference plus Noise Ratio (SINR, Signal to Interference plus Noise Ratio) value of the CSI-RS, and the Block Error Ratio (BLER, Block Error Ratio) value corresponding to the SINR is compared with the threshold Q out_LR to determine the service beam quality.
  • the physical layer reports the result to a media access control (MAC, Media Access Control) layer.
  • MAC Media Access Control
  • the physical layer is triggered to report a beam failure instance indication (BFI, Beam Failure) to the MAC layer once Indication).
  • BFI Beam Failure
  • an indication interval T indication-BFD is defined, and within each T indication-BFD time, the terminal will trigger the physical layer to report the BFI to the MAC layer once.
  • the MAC layer maintains a related beam failure detection timer (BFD timer, beamFailureDetectionTimer) and a beam failure counter BFI_counter.
  • BFD timer beamFailureDetectionTimer
  • BFI_counter counts up by 1. If the BFD timer times out, the BFI_counter will be reset to 0. If the BFI_counter reaches the specified maximum value (beamFailureInstanceMaxCount) during the operation of the BFD timer, the terminal determines that a beam failure has occurred.
  • the above solution does not consider the power consumption of the terminal.
  • the terminal can relax the BFD measurement behavior, thereby saving the power consumption of the terminal.
  • a method for relaxing measurement is provided in this embodiment, wherein the method is executed by a terminal, and the method includes:
  • Step 21 According to the determination result of whether the predetermined condition is satisfied, determine the operation of triggering the relaxation measurement of the beam failure detection BFD;
  • the predetermined condition at least indicates: the wireless link transmission quality that triggers relaxation measurement.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a Road Side Unit (RSU, Road Side Unit), a smart home terminal, an industrial sensing device, and/or a medical device, etc.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a Road Side Unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensing device, and/or a medical device, etc.
  • the wireless link may be a wireless link between a terminal and a base station.
  • the radio link may be a PDCCH link.
  • the base station may be an access device for the terminal to access the network.
  • the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a base station of a fifth generation mobile communication (5G) network, or other Evolved base station.
  • 3G third generation mobile communication
  • 4G fourth generation mobile communication
  • 5G fifth generation mobile communication
  • the base station can send reference signals such as CSI-RS to the terminal through the wireless link, and the terminal can measure the reference signal in real time to determine the transmission quality of the wireless link.
  • the radio link transmission quality can be indicated by different parameters.
  • the parameter can be BLER or the like.
  • in response to the determination result indicating that the predetermined condition is satisfied it is determined to trigger the relaxation measurement of BFD; or, in response to the determination result indicating that the predetermined condition is not satisfied, it is determined not to trigger the relaxation measurement of BFD.
  • the predetermined conditions include one or more of the following:
  • BLER is less than or equal to the BLER threshold
  • the BFD timer is not started
  • the count value of the counter of the MAC layer of the terminal is equal to the count threshold, wherein, in response to the MAC layer receiving the power saving indication reported by the physical layer of the terminal when detecting that the BLER is less than or equal to the BLER threshold, the counter counts; and the response For the relaxation measurement that triggers the BFD, the counter is reset to the initial value;
  • the timing time of the preset timer of the physical layer is less than the timing period.
  • the BLER threshold is less than Q out_LR , where Q out_LR is a threshold for triggering the physical layer to report BFI to the MAC layer once when the BFD for relaxed measurement is not used.
  • the terminal determines whether the predetermined condition is satisfied at the MAC layer of the terminal. For example, the terminal determines at the MAC layer whether the BLER is less than or equal to the BLER threshold.
  • the physical layer in response to the physical layer of the terminal determining that the BLER is less than or equal to the BLER threshold, the physical layer will report a power saving indication to the MAC layer.
  • the power saving indication is used to indicate that the BLER is less than or equal to the BLER threshold.
  • the MAC layer after the terminal determines at the MAC layer that the predetermined condition is satisfied, notifies the physical layer to trigger the relaxation measurement of the beam failure detection BFD.
  • the block error rate BLER indicated by the power saving indication is less than or equal to the BLER threshold and the BFD timer is not started, it is determined to trigger the physical layer to perform BFD.
  • BLER is the BLER corresponding to the currently measured SINR.
  • the counter in response to the count value of the counter of the MAC layer of the medium access control of the terminal being equal to the count threshold, it is determined to trigger the relaxation measurement of BFD at the physical layer; wherein, in response to the MAC layer receiving that the physical layer of the terminal detects that the For the power saving indication reported when the BLER is less than or equal to the BLER threshold, the counter counts; and in response to the relaxation measurement that triggers the BFD, the counter is reset to the initial value.
  • the terminal determines whether the predetermined condition is satisfied at the physical layer of the terminal.
  • the BLER threshold may be maintained by the physical layer, or the physical layer may obtain the BLER threshold from the MAC layer through an interlayer interface.
  • the physical layer obtains the information of the BFD timer from the MAC layer through the inter-layer interface.
  • the information of the BFD timer may indicate whether the BFD timer is started.
  • the BFD timer information indicating that the BFD timer is not started and the block error rate BLER is less than or equal to the BLER threshold, it is determined to trigger the physical layer to perform all Relaxation measures for the BFD described above.
  • BLER is the BLER corresponding to the currently measured SINR.
  • the preset timer may be a newly introduced timer (T RLM_delta ), and the value range of the timing time T may be 0-1 second, for example, T may be 500 milliseconds or the like.
  • the relaxation measurement of the BFD may be a relaxation measurement using a BFD relaxed in the time domain.
  • the relaxation measurement of the BFD may be performed by using the evaluation period extended by the expansion coefficient to perform the relaxation measurement of the BFD.
  • the evaluation period before expansion is t1
  • the evaluation period after expansion by the expansion coefficient is a times t1, where a is a positive number greater than 1.
  • the relaxation measurement of the BFD may be performed by using the indicated interval extended by the expansion coefficient to perform the relaxation measurement of the BFD.
  • the indication interval before expansion is t2
  • the indication interval after expansion by the expansion coefficient is t2 which is b times of t2, where b is a positive number greater than 1.
  • the extension evaluation period and the extension factor indicating the interval may be the same.
  • the relaxation measurement of the BFD may be a relaxation measurement of the BFD using a reduced number of measured reference signals.
  • the number of measured reference signals for BFD is reduced from a to b.
  • the relaxation measurement of BFD may reduce the BFD measurement frequency domain range in the frequency domain.
  • the measurement part bandwidth BWP1 of the BFD is reduced to the bandwidth BWP2.
  • the relaxation measurement may be performed using relaxation measurement methods of different relaxation levels.
  • the first method is: if BLER current ⁇ Qp1, the physical layer reports a power saving indication 1 to the MAC, and the MAC determines that the current BFD timer is not started, and triggers the BFD Relax the evaluation period with the expansion coefficient a and perform the relaxation measurement;
  • the second method is: if BLER current ⁇ Qp2 (Qp1 ⁇ Qp2 ⁇ Q out_LR ), the physical layer reports the power saving indication 2 to the MAC and the MAC determines that the current BFD timer is not started, triggering BFD relaxes the evaluation cycle with the expansion coefficient b and performs relaxation measurement; where a>b, here, the relaxation level of the first mode is higher than that of the second mode.
  • the first method is: reducing the number of reference signals to c; the second method is: reducing the number of reference signals to d.
  • the relaxation level of the first mode is lower than the relaxation level of the second mode.
  • the first method is: the BWP of the BFD measurement is reduced to BWP1; the second method is: the BWP of the BFD measurement is reduced to BWP2 .
  • BWP1 is smaller than BWP2
  • the relaxation level of the first mode is higher than the relaxation level of the second mode.
  • the relaxation measurement of the BFD is stopped.
  • the relaxation measurement of the BFD is stopped.
  • the relaxation measurement of the BFD is stopped.
  • the operation of triggering the relaxation measurement of the beam failure detection BFD is determined according to the determination result of whether the predetermined condition is satisfied; wherein the predetermined condition at least indicates: the transmission quality of the wireless link that triggers the relaxation measurement.
  • the terminal can determine whether to trigger BFD relaxation measurement or not trigger BFD relaxation measurement according to the determination result of whether the predetermined condition is satisfied , trigger the relaxation measurement of the BFD, so as to adjust the power consumption of the BFD, save power, and improve the battery life of the terminal.
  • a method for relaxing measurement is provided in this embodiment, wherein the method is executed by a terminal, and the method includes:
  • Step 31 In response to the determination result indicating that the predetermined condition is satisfied, determine to trigger the relaxation measurement of the BFD; or, in response to the determination result indicating that the predetermined condition is not satisfied, determine not to trigger the relaxation measurement of the BFD.
  • the BLER threshold is less than Q out_LR , where Q out_LR is a threshold for triggering the physical layer to report BFI to the MAC layer once when the BFD for relaxed measurement is not used.
  • the terminal determines whether the predetermined condition is satisfied at the MAC layer of the terminal. For example, the terminal determines at the MAC layer whether the BLER is less than or equal to the BLER threshold.
  • the physical layer in response to the physical layer of the terminal determining that the BLER is less than or equal to the BLER threshold, the physical layer will report a power saving indication to the MAC layer.
  • the power saving indication is used to indicate that the BLER is less than or equal to the BLER threshold.
  • the MAC layer after the terminal determines at the MAC layer that the predetermined condition is satisfied, notifies the physical layer to trigger the relaxation measurement of the beam failure detection BFD.
  • the block error rate BLER indicated by the power saving indication is less than or equal to the BLER threshold and the BFD timer is not started, it is determined to trigger the physical layer to perform BFD.
  • BLER is the BLER corresponding to the currently measured SINR.
  • the counter in response to the count value of the counter of the MAC layer of the medium access control of the terminal being equal to the count threshold, it is determined to trigger the relaxation measurement of BFD at the physical layer; wherein, in response to the MAC layer receiving that the physical layer of the terminal detects that the For the power saving indication reported when the BLER is less than or equal to the BLER threshold, the counter counts; and in response to the relaxation measurement that triggers the BFD, the counter is reset to the initial value.
  • a method for relaxing measurement is provided in this embodiment, wherein the method is executed by a terminal, and the method includes:
  • Step 41 In response to the block error rate BLER being less than or equal to the BLER threshold, and the BFD timer is not started, determine to trigger the relaxation measurement of the BFD.
  • the terminal determines whether the predetermined condition is satisfied at the MAC layer of the terminal. For example, the terminal determines at the MAC layer whether the BLER is less than or equal to the BLER threshold.
  • the physical layer in response to the physical layer of the terminal determining that the BLER is less than or equal to the BLER threshold, the physical layer will report a power saving indication to the MAC layer.
  • the power saving indication is used to indicate that the BLER is less than or equal to the BLER threshold.
  • the MAC layer after the terminal determines at the MAC layer that the predetermined condition is satisfied, notifies the physical layer to trigger the relaxation measurement of the beam failure detection BFD.
  • the block error rate BLER indicated by the power saving indication is less than or equal to the BLER threshold and the BFD timer is not started, it is determined to trigger the physical layer to perform BFD.
  • BLER is the BLER corresponding to the currently measured SINR.
  • the terminal determines whether the predetermined condition is satisfied at the physical layer of the terminal.
  • the BLER threshold may be maintained by the physical layer, or the physical layer may obtain the BLER threshold from the MAC layer through an interlayer interface.
  • the physical layer obtains the information of the BFD timer from the MAC layer through the inter-layer interface.
  • the information of the BFD timer may indicate whether the BFD timer is started.
  • the BFD timer information indicating that the BFD timer is not started and the block error rate BLER is less than or equal to the BLER threshold, it is determined to trigger the physical layer to perform all Relaxation measures for the BFD described above.
  • BLER is the BLER corresponding to the currently measured SINR.
  • a method for relaxing measurement is provided in this embodiment, wherein the method is executed by a terminal, and the method includes:
  • Step 51 In response to the count value of the counter of the MAC layer of the medium access control of the terminal being equal to the count threshold, determine to trigger the relaxation measurement of BFD; wherein, in response to the MAC layer receiving that the physical layer of the terminal detects that the BLER is less than or equal to the BLER threshold When the power saving indication is reported, the counter counts; and in response to the relaxation measurement that triggers the BFD, the counter is reset to the initial value.
  • the terminal determines whether the predetermined condition is satisfied at the MAC layer of the terminal. For example, the terminal determines at the MAC layer whether the BLER is less than or equal to the BLER threshold.
  • the physical layer in response to the physical layer of the terminal determining that the BLER is less than or equal to the BLER threshold, the physical layer will report a power saving indication to the MAC layer.
  • the power saving indication is used to indicate that the BLER is less than or equal to the BLER threshold.
  • the counter in response to the count value of the counter of the MAC layer of the medium access control of the terminal being equal to the count threshold, it is determined to trigger the relaxation measurement of BFD at the physical layer; wherein, in response to the MAC layer receiving that the physical layer of the terminal detects that the For the power saving indication reported when the BLER is less than or equal to the BLER threshold, the counter counts; and in response to the relaxation measurement that triggers the BFD, the counter is reset to the initial value.
  • a method for relaxing measurement is provided in this embodiment, wherein the method is executed by a terminal, and the method includes:
  • Step 61 in response to the block error rate BLER being less than or equal to the BLER threshold within the timing period of the preset timer of the physical layer of the terminal, determine to trigger the relaxation measurement of BFD.
  • the terminal determines whether the predetermined condition is satisfied at the physical layer of the terminal.
  • the BLER threshold may be maintained by the physical layer, or the physical layer may obtain the BLER threshold from the MAC layer through an interlayer interface.
  • the preset timer may be a newly introduced timer (T RLM_delta ), and the value range of the timing time T may be 0-1 second, for example, T may be 500 milliseconds or the like.
  • a method for relaxing measurement is provided in this embodiment, wherein the method is executed by a terminal, and the method includes:
  • Step 71 in response to the MAC layer of the terminal receiving the power saving instruction of the physical layer, the block error rate BLER indicated by the power saving instruction is less than or equal to the BLER threshold and the BFD timer is not started, determine to trigger the physical layer to perform BFD relaxation measurement;
  • the BFD timer information indicating that the BFD timer is not started and the block error rate BLER is less than or equal to the BLER threshold, it is determined to trigger the physical layer to perform BFD relaxation measurement.
  • the terminal determines whether the predetermined condition is satisfied at the MAC layer of the terminal. For example, the terminal determines at the MAC layer whether the BLER is less than or equal to the BLER threshold.
  • the physical layer in response to the physical layer of the terminal determining that the BLER is less than or equal to the BLER threshold, the physical layer will report a power saving indication to the MAC layer.
  • the power saving indication is used to indicate that the BLER is less than or equal to the BLER threshold.
  • the MAC layer after the terminal determines at the MAC layer that the predetermined condition is satisfied, notifies the physical layer to trigger the relaxation measurement of the beam failure detection BFD.
  • the block error rate BLER indicated by the power saving indication is less than or equal to the BLER threshold and the BFD timer is not started, it is determined to trigger the physical layer to perform BFD.
  • BLER is the BLER corresponding to the currently measured SINR.
  • the terminal determines whether the predetermined condition is satisfied at the physical layer of the terminal.
  • the BLER threshold may be maintained by the physical layer, or the physical layer may obtain the BLER threshold from the MAC layer through an interlayer interface.
  • the physical layer obtains the information of the BFD timer from the MAC layer through the inter-layer interface.
  • the information of the BFD timer may indicate whether the BFD timer is started.
  • the BFD timer information indicating that the BFD timer is not started and the block error rate BLER is less than or equal to the BLER threshold, it is determined to trigger the physical layer to perform all Relaxation measures for the BFD described above.
  • BLER is the BLER corresponding to the currently measured SINR.
  • the relaxation measurement parameters of the relaxation measurement include one or more of the following:
  • the first relaxation measurement parameter indicating the evaluation period; wherein, the evaluation period is N1 times the reference evaluation period; wherein, N1 is a positive number greater than 1;
  • the second relaxation measurement parameter indicating the indication interval; wherein, the indication interval is N2 times the reference indication interval; wherein, the N2 bit is a positive number greater than 1;
  • the third relaxation measurement parameter indicating the number of reference signals RS; wherein, the number of reference signals is less than the reference number threshold;
  • the fourth relaxation measurement parameter indicates the frequency domain range of the BFD measurement, wherein the frequency domain range is smaller than the reference frequency domain range.
  • the reference evaluation period, the reference indication interval, the reference quantity threshold and/or the reference frequency domain range may be specified by the standard.
  • the relaxation measurement of the BFD may be performed by using the evaluation period extended by the expansion coefficient to perform the relaxation measurement of the BFD.
  • the evaluation period before expansion is t1
  • the evaluation period after expansion by the expansion coefficient is t1 times N1, where N1 is a positive number greater than 1.
  • the relaxation measurement of the BFD may be performed by using the indicated interval extended by the expansion coefficient to perform the relaxation measurement of the BFD.
  • the indication interval before expansion is t2
  • the indication interval after expansion by the expansion coefficient is t2 which is N2 times, where N2 is a positive number greater than 1.
  • the relaxation measurement of the BFD may be a relaxation measurement of the BFD using a reduced number of measured reference signals.
  • the number of measured reference signals for BFD is reduced from a to b.
  • b is less than the reference number threshold.
  • the relaxation measurement of BFD may reduce the BFD measurement frequency domain range in the frequency domain.
  • the measurement part bandwidth BWP1 of the BFD is reduced to the bandwidth BWP2.
  • BWP2 is smaller than the reference threshold range.
  • the relaxation measurement performed using the first relaxation measurement parameter is more relaxed than the relaxation threshold
  • the laxity of the relaxation measurement using the second relaxation measurement parameter is larger than the laxity threshold
  • the relaxation degree of using the third relaxation measurement parameter to perform the relaxation measurement is greater than the relaxation degree threshold
  • the relaxation degree of the relaxation measurement using the fourth relaxation measurement parameter is greater than the relaxation degree threshold.
  • evaluation period threshold the indication interval threshold, the reference quantity threshold and/or the reference frequency domain range may be standard-specified.
  • the relaxation degree may be used to characterize the degree of relaxation of time in the time domain.
  • the value of the relaxation measurement parameter corresponding to the first relaxation mode is 1 hour, which is used to instruct the terminal to stop measuring for 1 hour; the value of the relaxation measurement parameter corresponding to the second relaxation mode is 2 hours, which is used to instruct the terminal to stop measuring for 2 hours, Then, the relaxation degree of the relaxation measurement based on the second relaxation mode is twice the relaxation degree of the relaxation measurement based on the first relaxation mode.
  • the measured relaxation parameter corresponding to the first relaxation mode is the indicated interval, and the value of the indicated interval is 10ms; the measured relaxation parameter corresponding to the second relaxation mode is the indicated interval, and the value of the indicated interval is 20ms.
  • the relaxation degree of the relaxation measurement based on the second relaxation mode is twice that of the relaxation measurement based on the first relaxation mode. That is, when the relaxation measurement is performed, the second relaxation mode is more relaxed than the first relaxation mode. Therefore, the greater the degree of relaxation, the more relaxed the corresponding relaxation method.
  • the slack may be used to characterize the quantitative slack of the reference signal.
  • the number of measured reference signals corresponding to the first relaxation method is 10; the number of measured reference signals corresponding to the second relaxation method is 20, then the relaxation measurement based on the second relaxation method is based on the first relaxation method. Relaxation is 1/2 times the slack of the relaxation measurement.
  • the relaxation degree may be the degree of relaxation used to characterize the frequency domain range.
  • the frequency domain range corresponding to the first relaxation mode is BWP1; the frequency domain range corresponding to the second relaxation mode is BWP2, and BWP1 is 1/2 of BWP2. Then, the relaxation degree of the relaxation measurement based on the second relaxation mode is 1/2 times the relaxation degree of the relaxation measurement based on the first relaxation mode.
  • a method for relaxing measurement is provided in this embodiment, wherein the method is executed by a terminal, and the method includes:
  • Step 81 in response to the BLER being greater than or equal to the BLER threshold, stop the relaxation measurement of the BFD;
  • the relaxation measurement of the BFD in response to being triggered to perform the relaxation measurement of the BFD and the BFD timer is running, the relaxation measurement of the BFD is stopped.
  • a method for relaxing measurement is provided in this embodiment, wherein the method is executed by a terminal, and the method includes:
  • Step 91 In response to the need to switch from the standard mode to the relaxed measurement mode, switch from the standard mode to the relaxed measurement mode after waiting for a predetermined time; or, in response to the need to switch from the relaxed measurement mode to the standard mode, switch from the relaxed measurement mode to the standard model;
  • the standard mode is the mode in which the BFD measurement is performed without using the relaxation measurement method
  • the relaxation measurement mode is the mode in which the BFD measurement is performed using the relaxation measurement method.
  • an embodiment of the present disclosure provides an apparatus for relaxation measurement, wherein, when applied to a terminal, the apparatus includes a determination module, wherein:
  • the determination module 101 is configured to:
  • the predetermined condition at least indicates: the wireless link transmission quality that triggers relaxation measurement.
  • the determining module 101 is further configured to:
  • the determining module 101 is further configured to:
  • the counter In response to the count value of the counter of the MAC layer of the medium access control of the terminal being equal to the count threshold, it is determined to trigger the relaxation measurement of BFD; wherein, in response to the MAC layer receiving the information reported by the physical layer of the terminal when it detects that the BLER is less than or equal to the BLER threshold a power saving indication, the counter counts; and in response to the relaxation measurement triggering the BFD, the counter is reset to the initial value;
  • the determining module 101 is further configured to:
  • the block error rate BLER indicated by the power saving instruction is less than or equal to the BLER threshold and the BFD timer is not started, determine to trigger the physical layer to perform BFD relaxation measurement;
  • the BFD timer information indicating that the BFD timer is not started and the block error rate BLER is less than or equal to the BLER threshold, it is determined to trigger the physical layer to perform BFD relaxation measurement.
  • Embodiments of the present disclosure provide a communication device, the communication device includes:
  • memory for storing processor-executable instructions
  • the processor is configured to, when executing the executable instructions, implement the method applied to any embodiment of the present disclosure.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to memorize and store information on the communication device after the power is turned off.
  • the processor can be connected to the memory through a bus or the like, and is used to read the executable program stored on the memory.
  • An embodiment of the present disclosure further provides a computer storage medium, wherein the computer storage medium stores a computer-executable program, and when the executable program is executed by a processor, the method of any embodiment of the present disclosure is implemented.
  • an embodiment of the present disclosure provides a structure of a terminal.
  • this embodiment provides a terminal 800, which may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc. .
  • the terminal 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and communication component 816.
  • the processing component 802 generally controls the overall operations of the terminal 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 can include one or more processors 820 to execute instructions to perform all or some of the steps of the methods described above.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at device 800 . Examples of such data include instructions for any application or method operating on the terminal 800, contact data, phonebook data, messages, pictures, videos, and the like. Memory 804 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 806 provides power to various components of terminal 800 .
  • Power supply components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to terminal 800 .
  • Multimedia component 808 includes screens that provide an output interface between terminal 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. A touch sensor can sense not only the boundaries of a touch or swipe action, but also the duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front-facing camera and/or a rear-facing camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC) that is configured to receive external audio signals when the terminal 800 is in an operating mode, such as a calling mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 814 includes one or more sensors for providing various aspects of the status assessment of terminal 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the terminal 800, the sensor component 814 can also detect the position change of the terminal 800 or a component of the terminal 800, the user The presence or absence of contact with the terminal 800, the orientation or acceleration/deceleration of the terminal 800 and the temperature change of the terminal 800.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between terminal 800 and other devices.
  • the terminal 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • terminal 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 804 including instructions, which are executable by the processor 820 of the terminal 800 to perform the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • an embodiment of the present disclosure shows a structure of a base station.
  • the base station 900 may be provided as a network-side device. 12
  • base station 900 includes processing component 922, which further includes one or more processors, and a memory resource represented by memory 932 for storing instructions executable by processing component 922, such as application programs.
  • An application program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the aforementioned methods applied to the base station.
  • the base station 900 may also include a power supply assembly 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to a network, and an input output (I/O) interface 958.
  • Base station 900 may operate based on an operating system stored in memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种放松测量的方法,其中,该方法被终端执行,该方法包括:根据预定条件是否满足的确定结果,确定触发波束失败检测BFD的放松测量的操作;其中,该预定条件至少指示:触发放松测量的无线链路传输质量。

Description

放松测量的方法、装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种放松测量的方法、装置、通信设备及存储介质。
背景技术
第五代(5G,5th Generation)移动通信技术新空口(NR,New Radio)系统相比长期演进(LTE,Long Term Evolution)系统,能支持更大的带宽和更丰富的业务类型。从而导致终端等用户设备(UE,User Equipment)的功耗大幅度增加,且续航时间缩短。这对于用户体验以及相关业务部署有较大影响。因此,降低NR用户设备的功耗,是亟待解决的问题。
发明内容
本公开实施例公开了一种放松测量的方法、装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供一种放松测量的方法,其中,所述方法被终端执行,所述方法,包括:
根据预定条件是否满足的确定结果,确定触发波束失败检测BFD的放松测量的操作;
其中,所述预定条件,至少指示:触发放松测量的无线链路传输质量。
在一个实施例中,所述根据预定条件是否满足的确定结果,确定触发波束失败检测BFD的放松测量的操作,包括:
响应于所述确定结果指示所述预定条件满足,确定触发所述BFD的放松测量;
或者,
响应于所述确定结果指示所述预定条件不满足,确定不触发所述BFD的放松测量。
在一个实施例中,所述响应于所述预定条件满足,确定触发所述BFD的放松测量,包括:
响应于块误码率BLER小于或者等于BLER阈值,且BFD定时器未启动,确定触发所述BFD的放松测量;
或者,
响应于所述终端的媒体接入控制MAC层的计数器的计数值等于计数阈值,确定触发所述BFD的放松测量;其中,响应于所述MAC层接收到所述终端的物理层在检测到BLER小于或者等于BLER阈值时上报的省电指示,所述计数器计数;且响应于触发所述BFD的放松测量,所述计数器被重置为初始值;
或者,
响应于所述终端的物理层的预设定时器的定时时间内块误码率BLER小于或者等于BLER阈值, 确定触发所述BFD的放松测量。
在一个实施例中,响应于块误码率BLER小于或者等于BLER阈值,且BFD定时器未启动,确定触发所述BFD的放松测量,包括:
响应于所述终端的MAC层接收到物理层的省电指示、所述省电指示指示的块误码率BLER小于或者等于BLER阈值且所述BFD定时器未启动,确定触发所述物理层进行所述BFD的放松测量;
或者,
响应于所述终端的物理层接收到MAC层的BFD定时器信息、所述BFD定时器信息指示所述BFD定时器未启动且块误码率BLER小于或者等于BLER阈值,确定触发所述物理层进行所述BFD的放松测量。
在一个实施例中,所述方法,还包括:
所述物理层通过层间接口从MAC层获取所述BLER阈值。
在一个实施例中,所述放松测量的放松测量参数,包括以下一种或者多种:
第一放松测量参数,指示评估周期;其中,所述评估周期为N1倍参考评估周期;其中,N1为大于1的正数;
第二放松测量参数,指示指示间隔;其中,所述指示间隔为N2倍参考指示间隔;其中,N2位大于1的正数;
第三放松测量参数,指示参考信号RS的数量;其中,所述参考信号的数量小于参考数量阈值;
第四放松测量参数,指示BFD测量的频域范围;其中,所述频域范围小于参考频域范围。
在一个实施例中,
响应于所述第一放松测量参数指示的评估周期大于评估周期阈值,利用所述第一放松测量参数进行放松测量的宽松度大于宽松度阈值;
或者,
响应于所述第二放松测量参数指示的指示间隔大于指示间隔阈值,利用所述第二放松测量参数进行放松测量的宽松度大于宽松度阈值;
或者,
响应于所述第三放松测量参数指示的参考信号的数量小于参考数量阈值,利用所述第三放松测量参数进行放松测量的宽松度大于宽松度阈值;
或者,
响应于所述第四放松测量参数指示的BFD测量的频域范围小于参考频域范围,利用所述第四放松测量参数进行放松测量的宽松度大于宽松度阈值。
在一个实施例中,所述方法,还包括:
响应于所述BLER大于或者等于BLER阈值,停止进行所述BFD的放松测量;
和/或,
响应于所述终端上报波束失败实例指示BFI,停止进行所述BFD的放松测量;
和/或,
响应于所述BFD定时器运行,停止进行所述BFD的放松测量。
在一个实施例中,所述方法,还包括:
响应于需要从标准模式切换到放松测量模式,在等待预定时间后从所述标准模式切换至所述放松测量模式;
或者,
响应于需要从放松测量模式切换至标准模式,从所述放松测量模式切换至所述标准模式;
其中,所述标准模式为不采用放松测量方式进行BFD测量的模式;所述放松测量模式为采用放松测量方式进行BFD测量的模式。
根据本公开实施例的第二方面,提供一种放松测量的装置,其中,应用于终端,所述装置,包括确定模块,其中,
所述确定模块,被配置为:
根据预定条件是否满足的确定结果,确定触发波束失败检测BFD的放松测量的操作;
其中,所述预定条件,至少指示:触发放松测量的无线链路传输质量。
在一个实施例中,所述确定模块,还被配置为:
响应于所述确定结果指示所述预定条件满足,确定触发所述BFD的放松测量;
或者,
响应于所述确定结果指示所述预定条件不满足,确定不触发所述BFD的放松测量。
在一个实施例中,所述确定模块,还被配置为:
响应于块误码率BLER小于或者等于BLER阈值,且BFD定时器未启动,确定触发所述BFD的放松测量;
或者,
响应于所述终端的媒体接入控制MAC层的计数器的计数值等于计数阈值,确定触发所述BFD的放松测量;其中,响应于所述MAC层接收到所述终端的物理层在检测到BLER小于或者等于BLER阈值时上报的省电指示,所述计数器计数;且响应于触发所述BFD的放松测量,所述计数器被重置为初始值;
或者,
响应于所述终端的物理层的预设定时器的定时时间内块误码率BLER小于或者等于BLER阈值,确定触发所述BFD的放松测量。
在一个实施例中,所述确定模块,还被配置为:
响应于所述终端的MAC层接收到物理层的省电指示、所述省电指示指示的块误码率BLER小于或者等于BLER阈值且所述BFD定时器未启动,确定触发所述物理层进行所述BFD的放松测量;
或者,
响应于所述终端的物理层接收到MAC层的BFD定时器信息、所述BFD定时器信息指示所述BFD定时器未启动且块误码率BLER小于或者等于BLER阈值,确定触发所述物理层进行所述BFD的放松测量。
根据本公开实施例的第三方面,提供一种通信设备,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公开任意实施例所述的方法。
根据本公开实施例的第四方面,提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的方法。
在本公开实施例中,根据预定条件是否满足的确定结果,确定触发波束失败检测BFD的放松测量的操作;其中,所述预定条件,至少指示:触发放松测量的无线链路传输质量。这里,终端可以根据预定条件是否满足的确定结果,确定触发BFD的放松测量或者不触发BFD的放松测量,相较于总是采用不进行放松测量的BFD的方式,能够适应于无线链路传输质量,触发BFD的放松测量,从而调整BFD的功耗,节省电能,提升终端的续航时间。
附图说明
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种放松测量的方法的流程示意图。
图3是根据一示例性实施例示出的一种放松测量的方法的流程示意图。
图4是根据一示例性实施例示出的一种放松测量的方法的流程示意图。
图5是根据一示例性实施例示出的一种放松测量的方法的流程示意图。
图6是根据一示例性实施例示出的一种放松测量的方法的流程示意图。
图7是根据一示例性实施例示出的一种放松测量的方法的流程示意图。
图8是根据一示例性实施例示出的一种放松测量的方法的流程示意图。
图9是根据一示例性实施例示出的一种放松测量的方法的流程示意图。
图10是根据一示例性实施例示出的一种放松测量的装置的示意图。
图11是根据一示例性实施例示出的一种终端的结构示意图。
图12是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目 的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下 一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了便于本领域内技术人员理解,本公开实施例列举了多个实施方式以对本公开实施例的技术方案进行清晰地说明。当然,本领域内技术人员可以理解,本公开实施例提供的多个实施例,可以被单独执行,也可以与本公开实施例中其他实施例的方法结合后一起被执行,还可以单独或结合后与其他相关技术中的一些方法一起被执行;本公开实施例并不对此作出限定。
为了更好地理解本公开任一个实施例所描述的技术方案,首先,对波束失败检测(BFD,Beam Failure Detection)的应用场景进行说明:
在一个实施例中,针对主小区(Pcell,Primary Cell)、辅主小区(PSCell,Primary Secondary Cell)和辅小区(Scell,Secondary Cell)设计了BFD机制。终端对物理下行控制信道(PDCCH,Physical Downlink Control Channel)进行测量,确定下行发送波束对应的链路质量;如果对应的链路质量小于质量阈值,则认为下行发送波束发生波束失败。
在一个实施例中,终端周期性地测量用于波束失败检测的周期性信道状态信息参考信号(CSI-RS,Channel State Information Reference Signal)。测量结果是CSI-RS的信号与干扰加噪声比(SINR,Signal to Interference plus Noise Ratio)值,将SINR对应的块误码率(BLER,Block Error Ratio)值与门限Q out_LR进行比较,确定服务波束质量。物理层将结果上报媒体接入控制(MAC,Media Access Control)层。
在一个实施例中,在评估周期T Evaluate_BFD内评估测量结果是否低于阈值Q out_LR,如果所有测量结果都低于Q out_LR,则触发一次物理层向MAC层上报波束失败实例指示(BFI,Beam Failure Indication)。
在一个实施例中,定义指示间隔T indication-BFD,在每T indication-BFD时间内,终端都会触发一次物理层向MAC层上报BFI。
在一个实施例中,MAC层维护相关的波束失败检测定时器(BFD timer,beamFailureDetectionTimer)和波束失败计数器BFI_counter。当MAC层收到一次BFI,则启动BFD timer;同时BFI_counter进行加1计数,如果BFD timer超时,则BFI_counter会被重置为0。若在BFD timer运行期间BFI_counter达到规定的 最大值(beamFailureInstanceMaxCount),则终端确定发生波束失败。
这里,上述方案并未考虑终端的功耗问题,当终端满足某些条件时,终端可以放松BFD的测量行为,从而节省终端用电。
如图2所示,本实施例中提供一种放松测量的方法,其中,该方法被终端执行,该方法,包括:
步骤21、根据预定条件是否满足的确定结果,确定触发波束失败检测BFD的放松测量的操作;
其中,预定条件,至少指示:触发放松测量的无线链路传输质量。
这里,该终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
在一个实施例中,无线链路可以是终端和基站之间的无线链路。这里,无线链路可以是PDCCH链路。
这里,基站可以是终端接入网络的接入设备。这里,基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
在一个实施例中,基站可以通过无线链路向终端发送CSI-RS等参考信号,并由终端实时地进行参考信号的测量,确定无线链路传输质量。这里,无线链路传输质量可以通过不同的参数指示。例如,该参数可以是BLER等。
在一个实施例中,响应于确定结果指示预定条件满足,确定触发BFD的放松测量;或者,响应于确定结果指示预定条件不满足,确定不触发BFD的放松测量。
在一些实施例中,预定条件包括以下一种或者多种:
1、BLER小于或者等于BLER阈值;
2、BFD定时器未启动;
3、终端的MAC层的计数器的计数值等于计数阈值,其中,响应于MAC层接收到所述终端的物理层在检测到BLER小于或者等于BLER阈值时上报的省电指示,计数器计数;且响应于触发BFD的放松测量,计数器被重置为初始值;
4、物理层的预设定时器的定时时间小于定时周期。
在一个实施例中,响应于BLER小于或者等于BLER阈值,且BFD定时器未启动,确定触发BFD的放松测量。这里,响应于MAC层接收到物理层发送的BFI,启动BFD定时器。这里,BLER阈值小于Q out_LR,其中,Q out_LR为未采用放松测量的BFD时触发一次物理层向MAC层上报BFI的门限。
在一个实施例中,响应于BLER小于或者等于BLER阈值,且BFD定时器启动,确定不触发BFD的放松测量。
在一个实施例中,响应于终端的MAC层的计数器的计数值等于计数阈值,确定触发BFD的放松测量;或者,响应于终端的MAC层的计数器的计数值小于计数阈值,确定不触发BFD的放松测量。
在一个实施例中,响应于终端的物理层的预设定时器的定时时间内块误码率BLER小于或者等于BLER阈值,确定触发所述BFD的放松测量;或者,响应于终端的物理层的预设定时器的定时时间内 块误码率BLER大于BLER阈值,确定不触发所述BFD的放松测量。
在一个实施例中,终端在终端的MAC层确定预定条件是否满足。例如,终端在MAC层确定BLER是否小于或等于BLER阈值。这里,响应于终端的物理层确定BLER小于或等于BLER阈值,物理层会向MAC层上报省电指示。该省电指示用于指示BLER小于或等于BLER阈值。
在一个实施例中,在终端在MAC层确定预定条件满足后,MAC层会通知物理层触发波束失败检测BFD的放松测量。
在一个实施例中,响应于终端的MAC层接收到物理层的省电指示、省电指示指示的块误码率BLER小于或者等于BLER阈值且BFD定时器未启动,确定触发物理层进行BFD的放松测量。这里,BLER为当前测量的SINR对应的BLER。
在一个实施例中,响应于终端的媒体接入控制MAC层的计数器的计数值等于计数阈值,确定在物理层触发BFD的放松测量;其中,响应于MAC层接收到终端的物理层在检测到BLER小于或者等于BLER阈值时上报的省电指示,计数器计数;且响应于触发BFD的放松测量,计数器被重置为初始值。
在一个实施例中,终端在终端的物理层确定预定条件是否满足。
在一个实施例中,BLER阈值可以是通过物理层维护,或者,物理层通过层间接口从MAC层获取BLER阈值。
在一个实施例中,物理层通过层间接口从MAC层获取BFD定时器的信息。这里,BFD定时器的信息,可以指示BFD定时器是否启动的信息。
在一个实施例中,响应于终端的物理层接收到MAC层的BFD定时器信息、BFD定时器信息指示BFD定时器未启动且块误码率BLER小于或者等于BLER阈值,确定触发物理层进行所述BFD的放松测量。这里,BLER为当前测量的SINR对应的BLER。
在一个实施例中,响应于终端的物理层的预设定时器的定时时间内块误码率BLER小于或者等于BLER阈值,确定在物理层触发BFD的放松测量。这里,预设定时器可以是新引入定时器(T RLM_delta),定时时间T的取值范围可以是0~1秒,例如,T可以取500毫秒等。
在一个实施例中,BFD的放松测量可以是采用时域上放松的BFD的放松测量。
在一个实施例中,BFD的放松测量可以是采用利用扩展系数扩展后的评估周期进行BFD的放松测量。例如,扩展前的评估周期为t1,利用扩展系数扩展后的评估周期为a倍的t1,这里,a为大于1的正数。
在一个实施例中,BFD的放松测量可以是采用利用扩展系数扩展后的指示间隔进行BFD的放松测量。例如,扩展前的指示间隔为t2,利用扩展系数扩展后的指示间隔为b倍的t2,这里,b为大于1的正数。
在一个实施例中,扩展评估周期和指示间隔的扩展系数可以相同。
在一个实施例中,BFD的放松测量可以是采用减少测量的参考信号数量的BFD的放松测量。
例如,将BFD的测量的参考信号的数量由a减为b。
在一个实施例中,BFD的放松测量可以是在频域上减小BFD测量频域范围。
例如,将BFD的测量部分带宽BWP1减为带宽BWP2。
在一个实施例中,可以采用不同放松等级的放松测量方式进行放松测量。
在一个实施例中,放松测量在扩展评估周期的BFD的放松测量中,第一方式为:若BLER current≤Qp1,物理层向MAC上报省电指示1且MAC判断当前BFD timer没有启动,触发BFD以扩展系数a放松评估周期并进行放松测量;第二方式为:若BLER current≤Qp2(Qp1<Qp2<Q out_LR),物理层向MAC上报省电指示2且MAC判断当前BFD timer没有启动,触发BFD以扩展系数b放松评估周期并进行放松测量;其中,a>b,这里,第一方式的放松等级高于第二方式的放松等级。
在一个实施例中,在减少测量的参考信号数量的BFD的放松测量方式中,第一方式为:减少参考信号数量至c;第二方式为:减少参考信号数量至d。这里,若c>d,则第一方式的放松等级低于第二方式的放松等级。
在一个实施例中,在频域上减小BFD测量频域范围的BFD的放松测量方式中,第一方式为:减少BFD测量的BWP为BWP1;第二方式为:减少BFD测量的BWP为BWP2.这里,若BWP1小于BWP2,则第一方式的放松等级高于第二方式的放松等级。
在一个实施例中,在BFD的放松测量被触发后,响应于BLER大于BLER阈值,停止进行BFD的放松测量。
在一个实施例中,响应于终端上报波束失败实例指示BFI,停止进行BFD的放松测量。
在一个实施例中,响应于BFD定时器运行,停止进行BFD的放松测量。
在本公开实施例中,根据预定条件是否满足的确定结果,确定触发波束失败检测BFD的放松测量的操作;其中,预定条件,至少指示:触发放松测量的无线链路传输质量。这里,终端可以根据预定条件是否满足的确定结果,确定触发BFD的放松测量或者不触发BFD的放松测量,相较于总是采用不进行放松测量的BFD的方式,能够适应于无线链路传输质量,触发BFD的放松测量,从而调整BFD的功耗,节省电能,提升终端的续航时间。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图3所示,本实施例中提供一种放松测量的方法,其中,该方法被终端执行,该方法,包括:
步骤31、响应于确定结果指示预定条件满足,确定触发BFD的放松测量;或者,响应于确定结果指示预定条件不满足,确定不触发BFD的放松测量。
在一个实施例中,响应于BLER小于或者等于BLER阈值,且BFD定时器未启动,确定触发BFD的放松测量。这里,响应于MAC层接收到物理层发送的BFI,启动BFD定时器。这里,BLER阈值小于Q out_LR,其中,Q out_LR为未采用放松测量的BFD时触发一次物理层向MAC层上报BFI的门限。
在一个实施例中,响应于BLER小于或者等于BLER阈值,且BFD定时器启动,确定不触发BFD的放松测量。
在一个实施例中,响应于终端的MAC层的计数器的计数值等于计数阈值,确定触发BFD的放松测量;或者,响应于终端的MAC层的计数器的计数值小于计数阈值,确定不触发BFD的放松测量。
在一个实施例中,响应于终端的物理层的预设定时器的定时时间内块误码率BLER小于或者等于 BLER阈值,确定触发所述BFD的放松测量;或者,响应于终端的物理层的预设定时器的定时时间内块误码率BLER大于BLER阈值,确定不触发所述BFD的放松测量。
在一个实施例中,终端在终端的MAC层确定预定条件是否满足。例如,终端在MAC层确定BLER是否小于或等于BLER阈值。这里,响应于终端的物理层确定BLER小于或等于BLER阈值,物理层会向MAC层上报省电指示。该省电指示用于指示BLER小于或等于BLER阈值。
在一个实施例中,在终端在MAC层确定预定条件满足后,MAC层会通知物理层触发波束失败检测BFD的放松测量。
在一个实施例中,响应于终端的MAC层接收到物理层的省电指示、省电指示指示的块误码率BLER小于或者等于BLER阈值且BFD定时器未启动,确定触发物理层进行BFD的放松测量。这里,BLER为当前测量的SINR对应的BLER。
在一个实施例中,响应于终端的媒体接入控制MAC层的计数器的计数值等于计数阈值,确定在物理层触发BFD的放松测量;其中,响应于MAC层接收到终端的物理层在检测到BLER小于或者等于BLER阈值时上报的省电指示,计数器计数;且响应于触发BFD的放松测量,计数器被重置为初始值。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图4所示,本实施例中提供一种放松测量的方法,其中,该方法被终端执行,该方法,包括:
步骤41、响应于块误码率BLER小于或者等于BLER阈值,且BFD定时器未启动,确定触发BFD的放松测量。
在一个实施例中,终端在终端的MAC层确定预定条件是否满足。例如,终端在MAC层确定BLER是否小于或等于BLER阈值。这里,响应于终端的物理层确定BLER小于或等于BLER阈值,物理层会向MAC层上报省电指示。该省电指示用于指示BLER小于或等于BLER阈值。
在一个实施例中,在终端在MAC层确定预定条件满足后,MAC层会通知物理层触发波束失败检测BFD的放松测量。
在一个实施例中,响应于终端的MAC层接收到物理层的省电指示、省电指示指示的块误码率BLER小于或者等于BLER阈值且BFD定时器未启动,确定触发物理层进行BFD的放松测量。这里,BLER为当前测量的SINR对应的BLER。
在一个实施例中,终端在终端的物理层确定预定条件是否满足。
在一个实施例中,BLER阈值可以是通过物理层维护,或者,物理层通过层间接口从MAC层获取BLER阈值。
在一个实施例中,物理层通过层间接口从MAC层获取BFD定时器的信息。这里,BFD定时器的信息,可以指示BFD定时器是否启动的信息。
在一个实施例中,响应于终端的物理层接收到MAC层的BFD定时器信息、BFD定时器信息指示BFD定时器未启动且块误码率BLER小于或者等于BLER阈值,确定触发物理层进行所述BFD的放松测量。这里,BLER为当前测量的SINR对应的BLER。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图5所示,本实施例中提供一种放松测量的方法,其中,该方法被终端执行,该方法,包括:
步骤51、响应于终端的媒体接入控制MAC层的计数器的计数值等于计数阈值,确定触发BFD的放松测量;其中,响应于MAC层接收到终端的物理层在检测到BLER小于或者等于BLER阈值时上报的省电指示,计数器计数;且响应于触发BFD的放松测量,计数器被重置为初始值。
在一个实施例中,终端在终端的MAC层确定预定条件是否满足。例如,终端在MAC层确定BLER是否小于或等于BLER阈值。这里,响应于终端的物理层确定BLER小于或等于BLER阈值,物理层会向MAC层上报省电指示。该省电指示用于指示BLER小于或等于BLER阈值。
在一个实施例中,响应于终端的媒体接入控制MAC层的计数器的计数值等于计数阈值,确定在物理层触发BFD的放松测量;其中,响应于MAC层接收到终端的物理层在检测到BLER小于或者等于BLER阈值时上报的省电指示,计数器计数;且响应于触发BFD的放松测量,计数器被重置为初始值。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图6所示,本实施例中提供一种放松测量的方法,其中,该方法被终端执行,该方法,包括:
步骤61、响应于终端的物理层的预设定时器的定时时间内块误码率BLER小于或者等于BLER阈值,确定触发BFD的放松测量。
在一个实施例中,终端在终端的物理层确定预定条件是否满足。
在一个实施例中,BLER阈值可以是通过物理层维护,或者,物理层通过层间接口从MAC层获取BLER阈值。
在一个实施例中,响应于终端的物理层的预设定时器的定时时间内块误码率BLER小于或者等于BLER阈值,确定在物理层触发BFD的放松测量。这里,预设定时器可以是新引入定时器(T RLM_delta),定时时间T的取值范围可以是0~1秒,例如,T可以取500毫秒等。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图7所示,本实施例中提供一种放松测量的方法,其中,该方法被终端执行,该方法,包括:
步骤71、响应于终端的MAC层接收到物理层的省电指示、省电指示指示的块误码率BLER小于或者等于BLER阈值且BFD定时器未启动,确定触发物理层进行BFD的放松测量;
或者,
响应于终端的物理层接收到MAC层的BFD定时器信息、BFD定时器信息指示BFD定时器未启动且块误码率BLER小于或者等于BLER阈值,确定触发物理层进行BFD的放松测量。
在一个实施例中,终端在终端的MAC层确定预定条件是否满足。例如,终端在MAC层确定BLER 是否小于或等于BLER阈值。这里,响应于终端的物理层确定BLER小于或等于BLER阈值,物理层会向MAC层上报省电指示。该省电指示用于指示BLER小于或等于BLER阈值。
在一个实施例中,在终端在MAC层确定预定条件满足后,MAC层会通知物理层触发波束失败检测BFD的放松测量。
在一个实施例中,响应于终端的MAC层接收到物理层的省电指示、省电指示指示的块误码率BLER小于或者等于BLER阈值且BFD定时器未启动,确定触发物理层进行BFD的放松测量。这里,BLER为当前测量的SINR对应的BLER。
在一个实施例中,终端在终端的物理层确定预定条件是否满足。
在一个实施例中,BLER阈值可以是通过物理层维护,或者,物理层通过层间接口从MAC层获取BLER阈值。
在一个实施例中,物理层通过层间接口从MAC层获取BFD定时器的信息。这里,BFD定时器的信息,可以指示BFD定时器是否启动的信息。
在一个实施例中,响应于终端的物理层接收到MAC层的BFD定时器信息、BFD定时器信息指示BFD定时器未启动且块误码率BLER小于或者等于BLER阈值,确定触发物理层进行所述BFD的放松测量。这里,BLER为当前测量的SINR对应的BLER。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
在一个实施例中,放松测量的放松测量参数,包括以下一种或者多种:
第一放松测量参数,指示评估周期;其中,评估周期为N1倍参考评估周期;其中,N1为大于1的正数;
第二放松测量参数,指示指示间隔;其中,指示间隔为N2倍参考指示间隔;其中,N2位大于1的正数;
第三放松测量参数,指示参考信号RS的数量;其中,参考信号的数量小于参考数量阈值;
第四放松测量参数,指示BFD测量的频域范围;其中,频域范围小于参考频域范围。
这里,参考评估周期、参考指示间隔、参考数量阈值和/或参考频域范围可以是标准规定的。
在一个实施例中,BFD的放松测量可以是采用利用扩展系数扩展后的评估周期进行BFD的放松测量。例如,扩展前的评估周期为t1,利用扩展系数扩展后的评估周期为N1倍的t1,这里,N1为大于1的正数。
在一个实施例中,BFD的放松测量可以是采用利用扩展系数扩展后的指示间隔进行BFD的放松测量。例如,扩展前的指示间隔为t2,利用扩展系数扩展后的指示间隔为N2倍的t2,这里,N2为大于1的正数。
在一个实施例中,在一个实施例中,BFD的放松测量可以是采用减少测量的参考信号数量的BFD的放松测量。例如,将BFD的测量的参考信号的数量由a减为b。这里,b小于参考数量阈值。
在一个实施例中,BFD的放松测量可以是在频域上减小BFD测量频域范围。例如,将BFD的测 量部分带宽BWP1减为带宽BWP2。这里,BWP2小于参考阈值范围。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
在一个实施例中,响应于第一放松测量参数指示的评估周期大于评估周期阈值,利用第一放松测量参数进行放松测量的宽松度大于宽松度阈值;
或者,
响应于第二放松测量参数指示的指示间隔大于指示间隔阈值,利用第二放松测量参数进行放松测量的宽松度大于宽松度阈值;
或者,
响应于第三放松测量参数指示的参考信号的数量小于参考数量阈值,利用第三放松测量参数进行放松测量的宽松度大于宽松度阈值;
或者,
响应于第四放松测量参数指示的BFD测量的频域范围小于参考频域范围,利用第四放松测量参数进行放松测量的宽松度大于宽松度阈值。
这里,评估周期阈值、指示间隔阈值、参考数量阈值和/或参考频域范围可以是标准规定的。
在一个实施例中,宽松度,可以是用于表征时间在时域上的放松程度。例如,第一放松方式对应的放松测量参数的值为1小时,用于指示终端停止测量1小时;第二放松方式对应的放松测量参数的值为2小时,用于指示终端停止测量2小时,则基于第二放松方式进行放松测量的宽松度为基于第一放松方式进行放松测量的宽松度的2倍。又例如,第一放松方式对应的测量放松参数为指示间隔,指示间隔的值为10ms;第二放松方式对应的测量放松参数为指示间隔,指示间隔的值为20ms。则基于第二放松方式进行放松测量的宽松度为基于第一放松方式进行放松测量的宽松的2倍。即在进行放松测量时,第二放松方式为比第一放松方式更加放松的方式。因此,宽松度越大,对应的放松方式越放松。
在一个实施例中,宽松度,可以是用于表征参考信号在数量上的放松程度。例如,第一放松方式对应的测量的参考信号的数量为10个;第二放松方式对应的测量的参考信号的数量为20个,则基于第二放松方式进行放松测量的宽松度为基于第一放松方式进行放松测量的宽松度的1/2倍。
在一个实施例中,宽松度,可以是用于表征频域范围的放松程度。例如,第一放松方式对应的频域范围为BWP1;第二放松方式对应的频域范围为BWP2,BWP1为BWP2的1/2。则基于第二放松方式进行放松测量的宽松度为基于第一放松方式进行放松测量的宽松度的1/2倍。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图8所示,本实施例中提供一种放松测量的方法,其中,该方法被终端执行,该方法,包括:
步骤81、响应于BLER大于或者等于BLER阈值,停止进行BFD的放松测量;
和/或,
响应于终端上报波束失败实例指示BFI,停止进行BFD的放松测量;
和/或,
响应于BFD定时器运行,停止进行BFD的放松测量。
在一个实施例中,响应于被触发进行BFD的放松测量且BLER大于或者等于BLER阈值,停止进行BFD的放松测量;
在一个实施例中,响应于被触发进行BFD的放松测量且终端上报波束失败实例指示BFI,停止进行BFD的放松测量;
在一个实施例中,响应于被触发进行BFD的放松测量且BFD定时器运行,停止进行BFD的放松测量。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图9所示,本实施例中提供一种放松测量的方法,其中,该方法被终端执行,该方法,包括:
步骤91、响应于需要从标准模式切换到放松测量模式,在等待预定时间后从标准模式切换至放松测量模式;或者,响应于需要从放松测量模式切换至标准模式,从放松测量模式切换至标准模式;
其中,标准模式(normal mode)为不采用放松测量方式进行BFD测量的模式;放松测量模式(relaxation mode)为采用放松测量方式进行BFD测量的模式。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图10所示,本公开实施例中提供一种放松测量的装置,其中,应用于终端,该装置,包括确定模块,其中,
确定模块101,被配置为:
根据预定条件是否满足的确定结果,确定触发波束失败检测BFD的放松测量的操作;
其中,预定条件,至少指示:触发放松测量的无线链路传输质量。
在一个实施例中,确定模块101,还被配置为:
响应于确定结果指示预定条件满足,确定触发BFD的放松测量;
或者,
响应于确定结果指示预定条件不满足,确定不触发BFD的放松测量。
在一个实施例中,确定模块101,还被配置为:
响应于块误码率BLER小于或者等于BLER阈值,且BFD定时器未启动,确定触发BFD的放松测量;
或者,
响应于终端的媒体接入控制MAC层的计数器的计数值等于计数阈值,确定触发BFD的放松测量;其中,响应于MAC层接收到终端的物理层在检测到BLER小于或者等于BLER阈值时上报的省电指示, 计数器计数;且响应于触发BFD的放松测量,计数器被重置为初始值;
或者,
响应于终端的物理层的预设定时器的定时时间内块误码率BLER小于或者等于BLER阈值,确定触发BFD的放松测量。
在一个实施例中,确定模块101,还被配置为:
响应于终端的MAC层接收到物理层的省电指示、省电指示指示的块误码率BLER小于或者等于BLER阈值且BFD定时器未启动,确定触发物理层进行BFD的放松测量;
或者,
响应于终端的物理层接收到MAC层的BFD定时器信息、BFD定时器信息指示BFD定时器未启动且块误码率BLER小于或者等于BLER阈值,确定触发物理层进行BFD的放松测量。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
本公开实施例提供一种通信设备,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现应用于本公开任意实施例的方法。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序。
本公开实施例还提供一种计算机存储介质,其中,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的方法。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
如图11所示,本公开一个实施例提供一种终端的结构。
参照图11所示终端800本实施例提供一种终端800,该终端具体可是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图11,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在终端800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如组件为终端800的显示器和小键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图12所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图12,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (15)

  1. 一种放松测量的方法,其中,所述方法被终端执行,所述方法,包括:
    根据预定条件是否满足的确定结果,确定触发波束失败检测BFD的放松测量的操作;
    其中,所述预定条件,至少指示:触发放松测量的无线链路传输质量。
  2. 根据权利要求1所述的方法,其中,所述根据预定条件是否满足的确定结果,确定触发波束失败检测BFD的放松测量的操作,包括:
    响应于所述确定结果指示所述预定条件满足,确定触发所述BFD的放松测量;
    或者,
    响应于所述确定结果指示所述预定条件不满足,确定不触发所述BFD的放松测量。
  3. 根据权利要求2所述的方法,其中,所述响应于所述预定条件满足,确定触发所述BFD的放松测量,包括:
    响应于块误码率BLER小于或者等于BLER阈值,且BFD定时器未启动,确定触发所述BFD的放松测量;
    或者,
    响应于所述终端的媒体接入控制MAC层的计数器的计数值等于计数阈值,确定触发所述BFD的放松测量;其中,响应于所述MAC层接收到所述终端的物理层在检测到BLER小于或者等于BLER阈值时上报的省电指示,所述计数器计数;且响应于触发所述BFD的放松测量,所述计数器被重置为初始值;
    或者,
    响应于所述终端的物理层的预设定时器的定时时间内块误码率BLER小于或者等于BLER阈值,确定触发所述BFD的放松测量。
  4. 根据权利要求3所述的方法,其中,响应于块误码率BLER小于或者等于BLER阈值,且BFD定时器未启动,确定触发所述BFD的放松测量,包括:
    响应于所述终端的MAC层接收到物理层的省电指示、所述省电指示指示的块误码率BLER小于或者等于BLER阈值且所述BFD定时器未启动,确定触发所述物理层进行所述BFD的放松测量;
    或者,
    响应于所述终端的物理层接收到MAC层的BFD定时器信息、所述BFD定时器信息指示所述BFD定时器未启动且块误码率BLER小于或者等于BLER阈值,确定触发所述物理层进行所述BFD的放松测量。
  5. 根据权利要求4所述的方法,其中,所述方法,还包括:
    所述物理层通过层间接口从MAC层获取所述BLER阈值。
  6. 根据权利要求1所述的方法,其中,所述放松测量的放松测量参数,包括以下一种或者多种:
    第一放松测量参数,指示评估周期;其中,所述评估周期为N1倍参考评估周期;其中,N1为大于1的正数;
    第二放松测量参数,指示指示间隔;其中,所述指示间隔为N2倍参考指示间隔;其中,N2位大 于1的正数;
    第三放松测量参数,指示参考信号RS的数量;其中,所述参考信号的数量小于参考数量阈值;
    第四放松测量参数,指示BFD测量的频域范围;其中,所述频域范围小于参考频域范围。
  7. 根据权利要求6所述的方法,其中,
    响应于所述第一放松测量参数指示的评估周期大于评估周期阈值,利用所述第一放松测量参数进行放松测量的宽松度大于宽松度阈值;
    或者,
    响应于所述第二放松测量参数指示的指示间隔大于指示间隔阈值,利用所述第二放松测量参数进行放松测量的宽松度大于宽松度阈值;
    或者,
    响应于所述第三放松测量参数指示的参考信号的数量小于参考数量阈值,利用所述第三放松测量参数进行放松测量的宽松度大于宽松度阈值;
    或者,
    响应于所述第四放松测量参数指示的BFD测量的频域范围小于参考频域范围,利用所述第四放松测量参数进行放松测量的宽松度大于宽松度阈值。
  8. 根据权利要求2所述的方法,其中,所述方法,还包括:
    响应于所述BLER大于或者等于BLER阈值,停止进行所述BFD的放松测量;
    和/或,
    响应于所述终端上报波束失败实例指示BFI,停止进行所述BFD的放松测量;
    和/或,
    响应于所述BFD定时器运行,停止进行所述BFD的放松测量。
  9. 根据权利要求1所述的方法,其中,所述方法,还包括:
    响应于需要从标准模式切换到放松测量模式,在等待预定时间后从所述标准模式切换至所述放松测量模式;
    或者,
    响应于需要从放松测量模式切换至标准模式,从所述放松测量模式切换至所述标准模式;
    其中,所述标准模式为不采用放松测量方式进行BFD测量的模式;所述放松测量模式为采用放松测量方式进行BFD测量的模式。
  10. 一种放松测量的装置,其中,应用于终端,所述装置,包括确定模块,其中,
    所述确定模块,被配置为:
    根据预定条件是否满足的确定结果,确定触发波束失败检测BFD的放松测量的操作;
    其中,所述预定条件,至少指示:触发放松测量的无线链路传输质量。
  11. 根据权利要求10所述的装置,其中,所述确定模块,还被配置为:
    响应于所述确定结果指示所述预定条件满足,确定触发所述BFD的放松测量;
    或者,
    响应于所述确定结果指示所述预定条件不满足,确定不触发所述BFD的放松测量。
  12. 根据权利要求11所述的装置,其中,所述确定模块,还被配置为:
    响应于块误码率BLER小于或者等于BLER阈值,且BFD定时器未启动,确定触发所述BFD的放松测量;
    或者,
    响应于所述终端的媒体接入控制MAC层的计数器的计数值等于计数阈值,确定触发所述BFD的放松测量;其中,响应于所述MAC层接收到所述终端的物理层在检测到BLER小于或者等于BLER阈值时上报的省电指示,所述计数器计数;且响应于触发所述BFD的放松测量,所述计数器被重置为初始值;
    或者,
    响应于所述终端的物理层的预设定时器的定时时间小于定时周期且块误码率BLER小于或者等于BLER阈值,确定触发所述BFD的放松测量。
  13. 根据权利要求12所述的装置,其中,所述确定模块,还被配置为:
    响应于所述终端的MAC层接收到物理层的省电指示、所述省电指示指示的块误码率BLER小于或者等于BLER阈值且所述BFD定时器未启动,确定触发所述物理层进行所述BFD的放松测量;
    或者,
    响应于所述终端的物理层接收到MAC层的BFD定时器信息、所述BFD定时器信息指示所述BFD定时器未启动且块误码率BLER小于或者等于BLER阈值,确定触发所述物理层进行所述BFD的放松测量。
  14. 一种通信设备,其中,包括:
    天线;
    存储器;
    处理器,分别与所述天线及存储器连接,被配置为通过执行存储在所述存储器上的计算机可执行指令,控制所述天线的收发,并能够实现权利要求1至9任一项提供的方法。
  15. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后能够实现权利要求1至9任一项提供的方法。
PCT/CN2021/085165 2021-04-02 2021-04-02 放松测量的方法、装置、通信设备及存储介质 WO2022205398A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/085165 WO2022205398A1 (zh) 2021-04-02 2021-04-02 放松测量的方法、装置、通信设备及存储介质
US18/285,232 US20240196333A1 (en) 2021-04-02 2021-04-02 Method for relaxation measurement, terminal and storage medium
CN202180001081.5A CN115443674A (zh) 2021-04-02 2021-04-02 放松测量的方法、装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/085165 WO2022205398A1 (zh) 2021-04-02 2021-04-02 放松测量的方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022205398A1 true WO2022205398A1 (zh) 2022-10-06

Family

ID=83457643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085165 WO2022205398A1 (zh) 2021-04-02 2021-04-02 放松测量的方法、装置、通信设备及存储介质

Country Status (3)

Country Link
US (1) US20240196333A1 (zh)
CN (1) CN115443674A (zh)
WO (1) WO2022205398A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312276A (zh) * 2018-03-27 2019-10-08 维沃移动通信有限公司 确定波束失败检测参考信号bfd rs资源的方法和设备
US20190394660A1 (en) * 2018-06-21 2019-12-26 Qualcomm Incorporated Beam failure detection procedure in discontinuous reception mode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312276A (zh) * 2018-03-27 2019-10-08 维沃移动通信有限公司 确定波束失败检测参考信号bfd rs资源的方法和设备
US20190394660A1 (en) * 2018-06-21 2019-12-26 Qualcomm Incorporated Beam failure detection procedure in discontinuous reception mode

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion and initial results for R17 RLMBFD relaxation", 3GPP DRAFT; R4-2014535, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051943743 *
VIVO: "Discussion on R17 RLM/BFD relaxation", 3GPP DRAFT; R4-2101462, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051972563 *
VIVO: "RAN2 impacts on RLM/BFD relaxation for power saving", 3GPP DRAFT; R2-2009084, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942118 *

Also Published As

Publication number Publication date
CN115443674A (zh) 2022-12-06
US20240196333A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
WO2022000188A1 (zh) 用户设备辅助信息的上报方法及装置、用户设备、存储介质
WO2021203309A1 (zh) 配置测量信息传输方法及装置、通信设备及存储介质
WO2022016431A1 (zh) 切换小区的方法、装置、通信设备及存储介质
WO2022151199A1 (zh) 条件切换的方法、装置、通信设备及存储介质
WO2021007824A1 (zh) 唤醒信号处理、信息下发方法及装置、通信设备及介质
WO2022151193A1 (zh) 小区切换的方法、装置、通信设备及存储介质
WO2022147772A1 (zh) 通信方法及装置、用户设备、网络设备、及存储介质
WO2022120751A1 (zh) 通信方法及装置、接入设备、终端及存储介质
WO2022000490A1 (zh) 无线通信方法及装置、通信设备及存储介质
WO2022178723A1 (zh) 测量间隔的配置方法、装置、通信设备及存储介质
WO2022147695A1 (zh) 中继ue选择、信息处理方法及装置、设备及介质
WO2022141095A1 (zh) 辅助ue的选择方法、装置及存储介质
WO2022021033A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2022016471A1 (zh) 定时器的控制方法、装置、通信设备及存储介质
WO2022205398A1 (zh) 放松测量的方法、装置、通信设备及存储介质
WO2022204889A1 (zh) 波束测量的方法、装置、通信设备及存储介质
WO2022205341A1 (zh) 测量间隔预配置处理方法、装置、通信设备及存储介质
WO2022032527A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2022032581A1 (zh) 上行传输的发送、接收方法及装置、通信设备及介质
WO2021223235A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
WO2022032482A1 (zh) 资源处理方法及装置、通信设备及存储介质
WO2022205396A1 (zh) 信号测量方法、装置、通信设备和存储介质
WO2024055217A1 (zh) 确定bfd放松状态的方法、装置、通信设备及存储介质
WO2022193205A1 (zh) Ue省电处理方法、装置、通信设备及存储介质
WO2024020757A1 (zh) 一种信息传输方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934055

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18285232

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934055

Country of ref document: EP

Kind code of ref document: A1