WO2023010357A1 - Rrm测量的放松、信息处理方法及装置、设备及存储介质 - Google Patents

Rrm测量的放松、信息处理方法及装置、设备及存储介质 Download PDF

Info

Publication number
WO2023010357A1
WO2023010357A1 PCT/CN2021/110659 CN2021110659W WO2023010357A1 WO 2023010357 A1 WO2023010357 A1 WO 2023010357A1 CN 2021110659 W CN2021110659 W CN 2021110659W WO 2023010357 A1 WO2023010357 A1 WO 2023010357A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrm measurement
relaxation
factor
measurement
connected state
Prior art date
Application number
PCT/CN2021/110659
Other languages
English (en)
French (fr)
Inventor
胡子泉
李艳华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002456.XA priority Critical patent/CN115943663A/zh
Priority to PCT/CN2021/110659 priority patent/WO2023010357A1/zh
Publication of WO2023010357A1 publication Critical patent/WO2023010357A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to but not limited to the technical field of wireless communication, and in particular relates to a method and device for relaxing Radio Resource Management (RRM) measurement, an information processing method and device, communication equipment, and a storage medium.
  • RRM Radio Resource Management
  • RRM measurement can be used for mobility management of user equipment (User Equipment, UE), for example, through RRM measurement, it can determine the cell that the UE can access at the current location, or the cell that is suitable for access.
  • UE User Equipment
  • the UE When the UE performs RRM measurement, it usually needs to monitor and measure the reference signal (Reference Signal, RS) on a specific radio resource, and determine whether the UE needs to switch the serving cell or continue to camp on the current cell according to the measurement result of the reference signal.
  • RS Reference Signal
  • the UE consumes power when performing RRM measurement, which will affect the standby time of the UE to a certain extent. In view of this, when certain conditions are met, the RRM measurement can be relaxed, and the power consumption of the UE can be reduced by relaxing the RRM measurement.
  • Embodiments of the present disclosure provide a relaxation method and device for RRM measurement, an information processing method and device, a communication device, and a storage medium.
  • the first aspect of the embodiments of the present disclosure provides a method for relaxing RRM measurement, which is performed by a UE in a connected state, and the method includes: determining to relax RRM measurement.
  • the second aspect of the embodiments of the present disclosure provides an information processing method, which is applied in a base station, and the method includes: receiving an RRM measurement result of a UE in a connected state after RRM measurement is relaxed.
  • a third aspect of an embodiment of the present disclosure provides an apparatus for relaxing RRM measurement, included in a UE in a connected state, the apparatus includes: a first determining module configured to determine relaxing RRM measurement.
  • the fourth aspect of the embodiments of the present disclosure provides an apparatus for relaxing RRM measurement in radio resource management, included in a UE in a connected state, the apparatus includes: a first determining module configured to determine relaxing RRM measurement.
  • the sixth aspect of the embodiment of the present disclosure provides a computer storage medium, the computer storage medium stores an executable program; after the executable program is executed by the processor, it can realize the aforementioned first aspect or the second aspect to provide RRM measurement method of relaxation.
  • the technical solutions provided by the embodiments of the present disclosure are mainly used for non-connected state UEs with respect to the relaxation of RRM measurement.
  • the relaxation of RRM measurement will also be used for connected state UEs, so the relaxation of RRM measurement can also The RRM measurement of the UE is reduced, thereby reducing the power consumption of the connected UE and prolonging the standby time of the UE.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • Fig. 2 is a schematic diagram showing a timing sequence of e-DRX function execution according to an exemplary embodiment
  • Fig. 3 is an interactive schematic diagram showing the e-DRX function of the core network configuration idle state according to an exemplary embodiment
  • Fig. 4 is a schematic flow diagram of a relaxation device for RRM measurement according to an exemplary embodiment
  • Fig. 5 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Fig. 7 is a schematic structural diagram of an information processing device according to an exemplary embodiment
  • Fig. 8 is a schematic structural diagram of a communication device according to an exemplary embodiment
  • Fig. 9 is a schematic structural diagram of a communication device according to an exemplary embodiment.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several UEs 11 and several access devices 12 .
  • UE11 may be a device that provides voice and/or data connectivity to a user.
  • UE11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN), and UE11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • RAN Radio Access Network
  • UE11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • the UE's computer for example, may be a fixed, portable, pocket, hand-held, built-in or vehicle-mounted device.
  • UE11 may also be a device of an unmanned aerial vehicle.
  • UE11 may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected externally to the trip computer.
  • the UE11 may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the access device 12 may be an evolved access device (eNB) adopted in a 4G system.
  • the access device 12 may also be an access device (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved access device
  • gNB access device
  • the access device 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, radio link layer control protocol (Radio Link Control, RLC) layer, media access control (Media Access Control, MAC) layer protocol stack;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • a physical (Physical, PHY) layer protocol stack is set in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the access device 12 .
  • a wireless connection may be established between the access device 12 and the UE 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a technical standard of a next-generation mobile communication network based on 5G.
  • an E2E (End to End, end-to-end) connection can also be established between UE11.
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle to everything (V2X) communication Wait for the scene.
  • the network management device 13 may be a core network device in the wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity, MME).
  • MME Mobility Management Entity
  • the network management device can also be other core network devices, such as Serving Gate Way (SGW), Public Data Network Gateway (Public Data Network Gate Way, PGW), policy and charging rule functional unit (Policy and Charging Rules Function, PCRF) or Home Subscriber Server (Home Subscriber Server, HSS), etc.
  • SGW Serving Gate Way
  • PGW Public Data Network Gateway
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • the implementation form of the network management device 13 is not limited in this embodiment of the present disclosure.
  • a method for relaxing RRM measurement which is performed by a UE in a connected state, the method includes:
  • the UE includes but not limited to NR UE.
  • the NR UE may be a UE using an NR carrier.
  • the UE is in a connected state, which is also called a radio resource control (Radio Resource Control, RRC) connection.
  • RRC Radio Resource Control
  • the UE is in a connected state, which may also be called an RRC connected state.
  • the UE may be various types of UEs.
  • the UE may be a mobile phone, a tablet computer, a wearable device, a smart home device, a smart office device, or a vehicle-mounted device.
  • the S110 is: relax the RRM measurement when it is determined that the UE is in the connected state.
  • RRM measurement has at least the following characteristics before and after relaxation: the frequency of RRM measurement after relaxation is lower than the frequency of RRM measurement before relaxation, so the power consumption of UE due to RRM measurement can be reduced, thereby prolonging the standby time of UE.
  • an embodiment of the present disclosure provides a relaxation method for RRM measurement, which may include:
  • S120 Determine a relaxation factor for the RRM measurement of the UE in the connected state
  • the connected state UE when determining to relax the RRM measurement of the UE in the connected state, the connected state UE will determine a relaxation factor for the RRM measurement of the UE, and then determine a relaxation configuration of the RRM measurement based on the relaxation factor.
  • the relaxation factor for the RRM measurement of the UE in the connected state can be determined in advance, and then the relaxation configuration of the RRM measurement can be determined according to the relaxation factor .
  • the relaxation of the RRM measurement may be performed immediately according to the relaxation configuration determined in advance for relaxing the RRM measurement of the UE in the connected state.
  • the RRM measurement method shown in FIG. 2 can be implemented alone, or combined with the RRM measurement relaxation method shown in FIG. 2 .
  • the relaxed configuration indicates at least one of the following:
  • the relaxed measurement configuration indicates the relaxed measurement configuration of the RRM measurement.
  • the relaxation mode configuration there are at least two relaxation modes indicated by the relaxation mode configuration, one is to stop the RRM measurement to achieve the maximum relaxation of the RRM measurement, and the other is to reduce the measurement frequency of the RRM measurement, that is, to increase the RRM measurement Various cycles, thereby achieving an increase in the frequency domain dimension.
  • the RRM measurement includes: the RRM measurement of the serving cell and/or the RRM measurement of the neighbor cell. Part of the RRM measurement can be performed by stopping the measurement, and part of the RRM measurement can be realized by increasing the period.
  • the relaxation manner includes: increasing the period associated with the RRM measurement; and/or stopping the RRM measurement. Specifically for different RRM measurements, which way to use can be determined according to the communication requirements of the UE and the configuration of the network side.
  • the S130 may include:
  • the relaxation method being to increase the period associated with the RRM measurement, the period associated with the RRM measurement after relaxation is obtained according to the relaxation factor;
  • the cycle of RRM measurement association will be increased and/or the time length for stopping RRM measurement will be determined according to the relaxation factor.
  • the period associated with the RRM measurement includes at least one of the following:
  • the identification period includes: a period in which a cell is identified through a cell identifier carried in a reference signal sent by the cell, and the measurement of the cell is performed.
  • the measurement period is mainly used for the period during which the identified cells are measured.
  • any one or more of the periods associated with the above RRM measurement may be increased.
  • the response to the relaxation method is to increase the period associated with the RRM measurement, and obtain the period associated with the RRM measurement after relaxation according to the relaxation factor, including:
  • the period of the RRM measurement association before relaxation is increased to obtain the period of the RRM measurement association after relaxation.
  • the UE has a connected state and a non-connected state, and the non-connected state may include: an idle state and/or an inactive state.
  • the relaxation factor for the UE in the non-connected state may be independent of the relaxation factor for the UE in the connected state.
  • the relaxation factor for the UE in the connected state may be equal to or different from the relaxation factor for the UE in the non-connected state.
  • the relaxation factor when determining the relaxed RRM measurement configuration in the relaxed measurement configuration, the relaxation factor will be determined first, and then the period of the RRM measurement association will be increased based on the relaxation factor.
  • the relaxation factor includes at least one of the following:
  • any two of the first factor, the second factor, the third factor, the fourth factor and the fifth factor are independent of each other.
  • any two of the first factor, the second factor, the third factor, the fourth factor and the fifth factor may be equal or unequal.
  • the first factor is the smallest and the fifth factor is the largest. Setting the first factor to the minimum is equivalent to the minimum RRM measurement relaxation of the serving cell (especially the primary cell), so that it is convenient for the UE in the connected state to find out in time whether the current serving cell of the UE is suitable according to the measurement result of the RRM measurement. Continue to reside, and if it is not suitable to continue to reside, perform cell switching and/or cell reselection in time.
  • any two of the second to fourth factors may be equal or unequal.
  • the first factor can be made smaller than the second factor, the second factor is smaller than the third factor, the third factor is greater than or equal to the fourth factor, the fourth factor is smaller than or equal to the second factor, etc., so that the UE's Inter-frequency handover and/or inter-system handover.
  • the S130 may include: in response to the relaxation method being to increase the period associated with the RRM measurement, obtain the RRM measurement based on the product of the relaxation factor and the period associated with the RRM measurement before relaxation Period associated with relaxation.
  • a relaxation factor not less than 1 can be used to quickly determine the period associated with the RRM measurement after relaxation.
  • the stopping of the RRM measurement includes at least one of the following:
  • stopping the RRM measurement of the serving cell may include: stopping the RRM measurement of the primary cell (Pcell).
  • the serving cell may include: a primary cell and a secondary cell.
  • the secondary cell can also be divided into: a primary secondary cell (PScell) and a secondary cell (Scell).
  • the serving cell at this time is the cell where the UE is currently camped on.
  • stopping the RRM measurement of the secondary cell may include: stopping the RRM measurement of deactivating the secondary cell.
  • the UE may work in multiple frequency bands, and the current working frequency band of the UE may also be one or more.
  • different relaxation factors may be set for different frequency bands, so as to control the UE's relaxation of the RRM measurement of the corresponding frequency band.
  • the relaxation factor of the frequency band with high frequency can be set smaller than the relaxation factor of the frequency band with low frequency, so that the UE will still have more opportunities to access based on the relaxed RRM measurement Or use its own frequency band with high frequency or customary frequency band.
  • the UE can work on both RF1 and RF2, and different relaxation factors can be set for RF1 and RF2, so as to control the relaxation of RRM measurement for RF1 and RRM measurement for RF2 of the connected UE respectively.
  • different frequency bands have independent relaxation factors.
  • the determining the relaxation factor for the RRM measurement of the UE in the connected state includes:
  • the value of the relaxation factor can be determined according to the configuration of the DRX cycle of the UE.
  • the relaxed measurement configuration is related to whether the UE has DRX cycle or the configuration of the DRX cycle, so as to reduce the power consumption caused by the RRM measurement in the sleep period of the DRX cycle, which causes the UE to exit sleep and enter wake-up, so as to further save the power consumption of the UE.
  • the determining the relaxation factor according to the configuration of the discontinuous reception DRX cycle of the UE in the connected state includes one of the following:
  • the connected state UE In response to the connected state UE being configured with a DRX cycle and the DRX cycle is not greater than the first duration, determine that the value of the relaxation factor is a third value.
  • the DRX cycle is not configured for the UE, it means that the UE will not execute the DRX mechanism and perform periodic switching between sleep and wake states. At this time, it can be determined that the value of the relaxation factor is the first value.
  • the S120 may include: determining the relaxation factor according to the DRX cycle of the UE in the connected state.
  • the determining the relaxation factor according to the DRX cycle of the UE in the connected state may include:
  • the connected state UE In response to the connected state UE being configured with a DRX cycle and the DRX cycle is not greater than the first duration, determine that the value of the relaxation factor is a third value.
  • the first duration may be any predetermined value, or any value specified by the network side or by a protocol.
  • the value of the relaxation factor determines whether the DRX cycle of the UE in the connected state is greater than the first duration, determine the value of the relaxation factor to be the second value, and if the DRX cycle of the UE in the connected state is less than or equal to the first duration, determine the value of the relaxation factor to be the third value.
  • the UE in the connected state will switch between sleeping and waking up at a lower frequency.
  • the first value, the second value, and the third value may be independent of each other, that is, any two of the first value to the third value may be equal or unequal.
  • the relaxation factor may be determined according to whether the UE in the connected state is configured with a DRX cycle, and if the DRX cycle is configured, according to the duration of the DRX cycle. Relaxing the RRM measurement according to the relaxation factor can realize reasonable RRM measurement relaxation in different states of the UE in the connected state.
  • the S110 may include: determining that the relaxation condition for the RRM measurement of the UE in the connected state is met, and determining to relax the RRM measurement.
  • the UE in the connected state may or may not perform RRM measurement relaxation.
  • the relaxation condition for the RRM measurement of the UE in the connected state may be the same as or different from the relaxation condition for the RRM measurement of the UE in the non-connection state.
  • the relaxation condition for the RRM measurement of the UE in the connected state is the same as the relaxation condition for the RRM measurement of the UE in the unconnected state, then the UE in the connected state and the UE in the unconnected state share the same relaxation condition for the RRM measurement.
  • the relaxation condition for the RRM measurement of the UE in the connected state may be stricter than that for the RRM measurement of the UE in the non-connection state.
  • the determining whether the relaxation condition for the RRM measurement of the UE in the connected state is satisfied includes at least one of the following:
  • the UE has mobility, and the UE itself contains some sensors, and these sensors can detect the moving speed of the UE.
  • the moving rate of the UE is less than the static threshold, the motion state of the UE can be considered as satisfying the static condition, otherwise it can be considered as not satisfying the static condition.
  • the UE will measure the reference signal sent by the serving cell, which includes but is not limited to synchronization signals and/or channel state detection reference signals, etc., by measuring The UE will obtain the measurement value of the reference signal.
  • the measurements include, but are not limited to: Reference Signal Received Power (RSRP) and/or Reference Signal Received Quality (RSRQ). If the measurement value of the reference signal of the serving cell by the UE keeps fluctuating very little, it can be considered that the UE has not moved or the moving distance is very small, thus satisfying the stationary condition.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the serving cell may be divided into a non-edge area and an edge area according to the distance between the serving cell and the base station or the distance between the UE and the central point of the serving cell.
  • the edge area is called the edge of the cell, and the non-edge area is also called the center area.
  • the edge area is located on the periphery of the non-edge area.
  • the UE According to the positioning information of the UE, it can be determined whether the UE is located in a non-edge area, or according to the measured value of the reference signal of the serving cell by the UE. If the measured value is greater than a certain threshold, it means that the distance between the UE and the base station at the center of the serving cell is close enough , it may also be determined that the UE is located in a non-edge area of the serving cell.
  • the determining the relaxation factor for the RRM measurement of the UE in the connected state includes:
  • the determining the relaxation factor for the RRM measurement of the UE in the connected state according to the satisfied relaxation condition includes at least one of the following:
  • the UE meets the stationary condition, it means that the UE is currently in a completely stationary state or the moving speed is very low, and the probability of continuing to camp on the current serving cell is very high, so the RRM measurement can be appropriately relaxed.
  • the UE may leave the serving cell after a measurement period even if it moves, so the RRM measurement can be appropriately relaxed.
  • different relaxation conditions correspond to relaxation factors with different values.
  • the relaxation factor determined in this way is compatible with the relaxation condition of the RRM measurement that the UE currently satisfies, and thus can well balance the UE's RRM measurements required for power savings and mobility management.
  • the relaxation factor when the UE in the connected state currently satisfies the static condition alone may be slightly larger than the relaxation factor when the UE alone currently satisfies being in the non-edge area of the serving cell. If the UE is currently in the serving cell but the UE is moving at a relatively high speed, the UE also needs to switch to other cells based on the RRM measurement after several RRM measurement cycles. Therefore, in this case, the relaxation degree of the RRM measurement of the UE may be Smaller is more appropriate.
  • the relaxation factor for the extended period of the UE in the connected state may be different from the relaxation factor a of the UE in the idle state.
  • a new relaxation factor may be introduced or the measurement duration may be stopped.
  • the relaxation factor of the RRM measurement of neighboring cells of different systems is c.
  • a new relaxation factor can be used for deactivating the Scell.
  • the relaxation factor measured by deactivating the Scell is c.
  • Different relaxation coefficients can be used when no DRX cycle is configured or a different DRX cycle is configured
  • the relaxation factor for the UE in the connected state is x. If the UE in the connected state is configured with a DRX cycle, the relaxation factor will be further determined according to the DRX cycle.
  • the DRX cycle ⁇ 320ms: the relaxation factor of the UE in the connected state is y;
  • the relaxation factor can be obtained by directly multiplying the coefficient on the basis of the original formula
  • the degree of relaxation of the extended period method for connected UEs can be performed under different relaxation conditions:
  • Relaxation condition a The UE in the connected state uses RRM measurement to relax when the static condition is satisfied;
  • the relaxation factors that can be used under conditions a) and b) can be the same or different.
  • an embodiment of the present disclosure provides an information processing method, which may be executed by a base station, and the method may include:
  • the UE in the connected state also relaxes the RRM measurement according to the relaxation mechanism of the RRM measurement, so the RRM measurement result received by the base station may be the measurement result after the UE in the connected state relaxes the RRM measurement. Then the measurement cycle and the evaluation cycle corresponding to the measurement result at this time are lengthened.
  • the RRM measurement is performed according to a relaxed configuration; wherein the relaxed configuration indicates at least one of the following: relaxed mode configuration, indicating a relaxed mode of the RRM measurement; relaxed measurement configuration, indicating the RRM Measurement configuration after measurement relaxation.
  • Relaxed Measurement Configuration the measurement configuration for the indicated relaxed RRM measurement.
  • the duration of stopping the RRM measurement the time period of stopping the RRM measurement, whether part of the measurement or all the measurements in the RRM measurement are stopped, and the like.
  • the period after relaxation, etc. can be determined by the relaxation measurement configuration.
  • Relaxed Measurement Configuration the measurement configuration for the indicated relaxed RRM measurement.
  • the duration of stopping the RRM measurement the time period of stopping the RRM measurement, whether part of the measurement or all the measurements in the RRM measurement are stopped, and the like.
  • the period after relaxation, etc. can be determined by the relaxation measurement configuration.
  • the RRM measurement includes: the RRM measurement of the serving cell and/or the RRM measurement of the neighbor cell. Part of the RRM measurement can be performed by stopping the measurement, and part of the RRM measurement can be realized by increasing the period.
  • the relaxation methods include:
  • the period associated with the RRM measurement includes at least one of the following:
  • the measurement period of the RRM measurement of the serving cell is the measurement period of the RRM measurement of the serving cell
  • the serving cell may include: a primary cell and/or a secondary cell.
  • the identification period includes: a period in which a cell is identified through a cell identifier carried in a reference signal sent by the cell, and the measurement of the cell is performed.
  • the adjacent cells include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system adjacent cells.
  • the period of the RRM measurement association may further include: a measurement period of the RRM measurement of the secondary cell, for example, a measurement period of the deactivation of the RRM measurement of the secondary cell.
  • any one or more of the periods associated with the above RRM measurement may be increased.
  • the relaxed configuration of the RRM measurement is determined based on a relaxation factor.
  • the relaxation factor may be a multiplication factor that increases the period associated with the RRM measurement, or may be a stop duration for determining the stop of the RRM measurement, or the like.
  • the period associated with the RRM measurement includes at least one of the following:
  • the measurement period of the RRM measurement of the serving cell is the measurement period of the RRM measurement of the serving cell
  • the measurement period of the RRM measurement of the neighboring cell is the measurement period of the RRM measurement of the neighboring cell.
  • the relaxation factor of the relaxed RRM measurement of the UE in the connected state is smaller than the relaxation factor of the relaxed RRM measurement of the UE in the non-connected state.
  • the relaxation factor of the UE in the connected state is smaller than that of the UE in the non-connected state, which can meet the business burst and service transmission requirements in the current state of the UE in the connected state, and better adapt to the current state of the UE.
  • the relaxation factor includes at least one of the following:
  • any two of the first factor, the second factor, the third factor, the fourth factor and the fifth factor are independent of each other.
  • the stopping of the RRM measurement includes at least one of the following:
  • different frequency bands have independent relaxation factors.
  • some UEs support RF1 and RF2 at the same time, and the relaxation of RRM measurement on RF1 and RF2 when the UE is in the connected state can be determined based on independent relaxation factors.
  • the value of the relaxation factor is based on the configuration of the DRX cycle of the UE in the connected state.
  • the UE in the connected state is not configured with a DRX cycle, and the value of the relaxation factor is the first value; or, the UE in the connected state is configured with a DRX cycle and the DRX cycle is greater than the first duration , the value of the relaxation factor is the second value; or, the UE in the connected state is configured with a DRX cycle and the DRX cycle is not greater than the first duration, and the value of the relaxation factor is the third value .
  • the relaxation factor is determined by the UE in the connected state according to a satisfied relaxation condition.
  • different relaxation conditions correspond to relaxation factors with different values.
  • the relaxation conditions measured by the RRM include at least one of the following:
  • the non-edge area determines whether the UE in the connected state is located in the non-edge area of the serving cell.
  • the UE in the connected state satisfies the static condition and is located in the non-edge area of the serving cell, it can have a larger relaxation factor than if it satisfies the static condition or is located in the non-edge area alone, so as to achieve a greater degree of RRM measurement accuracy. Relax, reduce the power consumption of UE's RRM measurement as much as possible.
  • an embodiment of the present disclosure provides an apparatus for relaxing RRM measurement, which is included in a UE in a connected state, and the apparatus includes:
  • a first determining module 510 configured to determine relaxed RRM measurements.
  • the first determination module 510 may be a program module. After said program means are executed by the processor, a relaxation of the RRM measurement can be determined.
  • the first determination module 510 may be a combination of hardware and software; the combination of hardware and software includes but is not limited to: various programmable arrays; the programmable array includes but is not limited to: Programmable Arrays and Complex Programmable Arrays.
  • the first determination module 510 may be a pure hardware module; the pure hardware module includes but is not limited to: an application specific integrated circuit.
  • the device also includes:
  • a second determination module configured to determine a relaxation factor for the RRM measurement of the connected UE
  • the third determination module is configured to determine a relaxation configuration of the RRM measurement according to the relaxation factor.
  • the relaxed configuration indicates at least one of the following:
  • the relaxed measurement configuration indicates the relaxed measurement configuration of the RRM measurement.
  • the relaxation methods include:
  • the third determination module is configured to, in response to the relaxation method being to increase the period associated with the RRM measurement, obtain the period associated with the RRM measurement after relaxation according to the relaxation factor; or , in response to the relaxation mode being to stop the RRM measurement, determine a duration for stopping the RRM measurement according to the relaxation factor.
  • the period associated with the RRM measurement includes at least one of the following:
  • the measurement period of the RRM measurement of the serving cell is the measurement period of the RRM measurement of the serving cell
  • the third determination module is configured to determine a relaxation factor for the RRM measurement of the UE in the connected state; according to the relaxation factor, the period of the RRM measurement association before the relaxation is increased to be relaxed Period of post-RRM measurement association.
  • the relaxation factor for the UE in the connected state is smaller than the relaxation factor for the UE in the non-connected state to relax the RRM measurement.
  • the relaxation factor includes at least one of the following:
  • any two of the first factor, the second factor, the third factor, the fourth factor and the fifth factor are independent of each other.
  • different frequency bands have independent relaxation factors.
  • the third determination module is configured to respond to the relaxation method as increasing the period associated with the RRM measurement, based on the product of the relaxation factor and the period associated with the RRM measurement before relaxation , to obtain the period associated with the RRM measurement after relaxation.
  • the relaxation factor of the RRM measurement for the UE in the connected state is smaller than the relaxation factor for the RRM measurement of the UE in the non-connection state.
  • the second determination module is configured to determine the value of the relaxation factor according to the configuration of the DRX cycle of the UE in the connected state.
  • the second determination module is configured to perform at least one of the following:
  • the device also includes:
  • a fourth determining module configured to determine whether the relaxation condition for the RRM measurement of the UE in the connected state is met
  • the first determining module 510 is configured to determine that the relaxation condition for the RRM measurement of the UE in the connected state is satisfied, and determine to relax the RRM measurement.
  • the fourth determining module is configured to perform at least one of the following:
  • the non-edge area determines whether the UE in the connected state is located in the non-edge area of the serving cell.
  • the second determination module is configured to determine a relaxation factor for the RRM measurement of the UE in the connected state according to a satisfied relaxation condition.
  • an embodiment of the present disclosure provides an information processing device, wherein the device includes:
  • the receiving module 610 is configured to receive the RRM measurement result of the UE in the connected state after the RRM measurement is relaxed.
  • the information processing apparatus provided in the embodiments of the present disclosure may be included in a base station.
  • the receiving module 610 may be a program module. After the program module is executed by the processor, it can receive the RRM measurement result of the RRM measurement of the UE in the connected state after the relaxation.
  • the receiving module 610 may be a combination of hardware and software; the combination of hardware and software includes, but is not limited to: various programmable arrays; the programmable array includes, but is not limited to: field programmable array and complex programmable arrays.
  • the receiving module 610 may be a pure hardware module; the pure hardware module includes but is not limited to: an application specific integrated circuit.
  • said RRM measurement is performed in a relaxed configuration
  • the relaxed configuration indicates at least one of the following:
  • the relaxed measurement configuration indicates the relaxed measurement configuration of the RRM measurement.
  • the relaxation methods include:
  • the relaxed configuration of the RRM measurement is determined based on a relaxation factor.
  • the period associated with the RRM measurement includes at least one of the following:
  • the measurement period of the RRM measurement of the serving cell is the measurement period of the RRM measurement of the serving cell
  • the measurement period of the RRM measurement of the neighboring cell is the measurement period of the RRM measurement of the neighboring cell.
  • the relaxation factor of the relaxed RRM measurement of the UE in the connected state is smaller than the relaxation factor of the relaxed RRM measurement of the UE in the non-connected state.
  • any two of the first factor, the second factor, the third factor, the fourth factor and the fifth factor are independent of each other.
  • the stopping of the RRM measurement includes at least one of the following:
  • different frequency bands have independent relaxation factors.
  • the value of the relaxation factor is based on the configuration of the DRX cycle of the UE in the connected state.
  • the UE in the connected state is not configured with a DRX cycle, and the value of the relaxation factor is the first value
  • the UE in the connected state is configured with a DRX cycle and the DRX cycle is not greater than the first duration, and the value of the relaxation factor is a third value.
  • different relaxation conditions correspond to relaxation factors with different values.
  • the relaxation conditions measured by the RRM include at least one of the following:
  • the non-edge area determines whether the UE in the connected state is located in the non-edge area of the serving cell.
  • different relaxation conditions correspond to relaxation factors with different values.
  • An embodiment of the present disclosure provides a communication device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the relaxation method for RRM measurement provided by any of the foregoing technical solutions.
  • the processor may include various types of storage media, which are non-transitory computer storage media, and can continue to memorize and store information thereon after the communication device is powered off.
  • the communication device includes: the aforementioned UE or base station.
  • the processor can be connected to the memory through a bus, etc., and is used to read the executable program stored on the memory, for example, at least one of the relaxation method and/or the information processing method of RRM measurement as shown in FIG. 2 .
  • Fig. 8 is a block diagram of a UE 800 according to an exemplary embodiment.
  • UE 800 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, etc.
  • UE 800 may include one or more of the following components: processing component 802, memory 804, power supply component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814, and communication component 816 .
  • Processing component 802 generally controls the overall operations of UE 800, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802 .
  • the memory 804 is configured to store various types of data to support operations at the UE 800 . Examples of such data include instructions for any application or method operating on UE800, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 806 provides power to various components of the UE 800 .
  • Power components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for UE 800 .
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 804 or sent via communication component 816 .
  • the audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor component 814 includes one or more sensors for providing various aspects of status assessment for UE 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and the keypad of the UE800, the sensor component 814 can also detect the position change of the UE800 or a component of the UE800, and the user and Presence or absence of UE800 contact, UE800 orientation or acceleration/deceleration and temperature change of UE800.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communications between UE 800 and other devices.
  • the UE800 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • UE 800 may be powered by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gates Arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic implementations for performing the methods described above.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gates Arrays
  • controllers microcontrollers, microprocessors or other electronic implementations for performing the methods described above.
  • an embodiment of the present disclosure shows a structure of an access device.
  • the communication device 900 may be provided as a network side device.
  • the communication device may be the aforementioned access device.
  • the access network equipment includes but is not limited to a base station.
  • the communication device 900 may also include a power supply component 926 configured to perform power management of the communication device 900, a wired or wireless network interface 950 configured to connect the communication device 900 to a network, and an input output (I/O) interface 958 .
  • the communication device 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种RRM测量的放松、信息处理方法及装置、通信设备及存储介质。RRM测量的放松方法由连接态UE执行,该RRM测量的放松方法包括:确定放松RRM测量。

Description

RRM测量的放松、信息处理方法及装置、设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种无线资源管理(Radio Resource Management,RRM)测量的放松方法及装置、信息处理方法及装置、通信设备及存储介质。
背景技术
RRM测量可用于用户设备(User Equipment,UE)的移动性管理,例如,通过RRM测量,确定UE当前所在位置可以接入的小区,或者适合接入的小区。
UE进行RRM测量时,通常需要在特定的无线资源上监听并测量参考信号(Reference Signal,RS),根据参考信号的测量结果,确定出UE是否需要切换服务小区或者继续驻留在当前小区。但是UE在进行RRM测量时是有功耗的,这一定程度上会影响UE的待机时长。有鉴于此,在满足特定条件时,可以放松RRM测量,通过放松RRM测量可以降低UE的功耗。
发明内容
本公开实施例提供一种RRM测量的放松方法及装置、信息处理方法及装置、通信设备及存储介质。
本公开实施例第一方面提供一种RRM测量的放松方法,其中,由连接态UE执行,所述方法包括:确定放松RRM测量。
本公开实施例第二方面提供一种信息处理方法,其中,应用于基站中,所述方法包括:接收连接态UE在放松RRM测量之后的RRM测量结果。
本公开实施例第三方面提供一种RRM测量的放松装置,其中,包含在连接态UE中,所述装置包括:第一确定模块,被配置为确定放松RRM测量。
本公开实施例第四方面提供一种无线资源管理RRM测量的放松装置,其中,包含在连接态UE中,所述装置包括:第一确定模块,被配置为确定放松RRM测量。
本公开实施例第五方面提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如前述第一方面或第二方面提供的RRM测量的放松方法。
本公开实施例第六方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现前述的第一方面或第二方面提供RRM测量的放松方法。
本公开实施例提供的技术方案,相对于RRM测量的放松主要用于非连接态UE,在本公开实施 例中,RRM测量的放松还将用于连接态UE,因此通过RRM测量的放松也可以减少UE的RRM测量,从而减少连接态UE的功耗,延长了UE的待机时长。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种e-DRX功能执行的时序示意图;
图3是根据一示例性实施例示出的核心网配置空闲态的e-DRX功能的交互示意图;
图4是根据一示例性实施例示出的一种RRM测量的放松装置的流程示意图;
图5是根据一示例性实施例示出的一种信息处理方法的流程示意图
图6是根据一示例性实施例示出的一种RRM测量的放松装置的结构示意图;
图7是根据一示例性实施例示出的一种信息处理装置的结构示意图;
图8是根据一示例性实施例示出的一种通信设备的结构示意图;
图9是根据一示例性实施例示出的一种通信设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无 线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个UE11以及若干个接入设备12。
其中,UE11可以是指向用户提供语音和/或数据连通性的设备。UE11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,UE11可以是物联网UE,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网UE的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程UE(remote terminal)、接入UE(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户UE(user equipment,UE)。或者,UE11也可以是无人飞行器的设备。或者,UE11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,UE11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
接入设备12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,接入设备12可以是4G系统中采用的演进型接入设备(eNB)。或者,接入设备12也可以是5G系统中采用集中分布式架构的接入设备(gNB)。当接入设备12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对接入设备12的具体实现方式不加以限定。
接入设备12和UE11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,UE11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个接入设备12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是 其它的核心网设备,比如服务网关(Serving Gate Way,SGW)、公用数据网网关(Public Data Network Gate Way,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
如图2所示,一种RRM测量的放松方法,其中,由连接态UE执行,所述方法包括:
S110:确定放松RRM测量。
所述UE包括但不限于使用NR UE。其中,NR UE可为使用NR载波的UE。该UE处于连接态,该连接态也称之为无线资源控制(Radio Resource Control,RRC)连接。
在本公开实施例中,所述UE处于连接态,该连接态也可以称之为RRC连接态。
所述UE可为各种类型的UE,示例性地,该UE可为手机、平板电脑、可穿戴式设备、智能家居设备、智能办公设备或者车载设备等。
在本公开实施例中,所述S110为:确定UE处于连接态时放松RRM测量。
如此,相当于连接态UE也会放松RRM测量。RRM测量放松前后至少有如下特点:放松后的RRM测量的频率,低于放松前的RRM测量的频率,因此可以降低UE因为RRM测量所产生的功耗,从而延长UE的待机时长。
如图3所示,本公开实施例提供一种RRM测量的放松方法,可包括:
S120:确定针对所述连接态UE所述RRM测量的放松因子;
S130:根据所述放松因子,确定所述RRM测量的放松配置。
示例性地,在确定放松处于连接态UE的RRM测量时,所述连接态UE将确定针对UE的RRM测量的放松因子,然后基于放松因子确定RRM测量的放松配置。
又示例性地,在一些实施例中,处于连接态UE尚未确定是否需要放松RRM测量时,可以提前先确定针对连接态UE的RRM测量的放松因子,然后根据放松因子确定出RRM测量的放松配置。如此,在确定出放松处于连接态UE的RRM测量时,可以即刻根据提前确定的针对连接态UE放松RRM测量的放松配置,执行RRM测量的放松。
此处的放松因子可为衡量放松程度的参数。示例性地,该放松因子可为放松系数。该放松系数为不小于1的正数,可以作为放松前RRM测量关联的各种周期的系数,求解出放松后的RRM测量关联的各种周期,又示例性地,该放松因子还可以是指示停止RRM测量的时长值等。
故在一些实施例中,图2所示的RRM测量方式方法可以单独执行,也可以与图2所示的RRM测量的放松方法结合执行。
在一些实施例中,所述放松配置指示以下至少之一:
放松方式配置,指示所述RRM测量的放松方式;
放松测量配置,指示所述RRM测量放松后的测量配置。
放松方式配置,指示了采用哪种方式放松RRM测量。
在本公开实施例中,放松方式配置指示的放松方式至少两种,一种是停止RRM测量,实现RRM 测量的最大放松,另一种是降低RRM测量的测量频率,即增大RRM测量过程中各种周期,从而实现在频域维度上的增大。
放松测量配置,指示的放松后RRM测量的测量配置。示例性地,针对停止RRM测量的最大放松,则停止RRM测量的时长、停止RRM测量的时间段、停止RRM测量中的部分测量还是全部测量等。针对增大RRM测量关联的各种周期,可以放松后的周期等都可以由放松测量配置来确定。
RRM测量包括:对服务小区的RRM测量和/或对邻小区的RRM测量。针对部分RRM测量是可以以停止测量的方式进行,针对部分RRM测量是以增大周期的方式来实现的。
在一个实施例中,,所述放松方式包括:增大所述RRM测量关联的周期;和/或停止所述RRM测量。具体的针对不同RRM测量,具体采用哪种方式,可以根据UE的通信需求和网络侧的配置等来确定。
在一个实施例中,所述S130可包括:
响应于所述放松方式为增大所述RRM测量关联的周期,根据所述放松因子得到所述RRM测量放松后关联的周期;
和/或,
响应于所述放松方式为停止所述RRM测量,根据所述放松因子确定停止所述RRM测量的时长。
在本公开实施例中,将根据放松因子增大RRM测量关联的周期和/或确定停止RRM测量的时长。
所述RRM测量关联的周期,包括以下至少之一:
服务小区的RRM测量的识别周期;
服务小区的RRM测量的测量周期;
邻小区的RRM测量的识别周期;
邻小区的RRM测量的测量周期;。
在一些实施例中,所述服务小区可包括:主小区和/或辅小区。
所述识别周期包括:通过小区发送的参考信号携带的小区标识等识别出小区,并进行该小区的测量的周期。
测量周期主要用于进行已识别小区进行测量的周期。
所述邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统邻小区。
在一些实施例中,所述RRM测量关联的周期还可包括:辅小区的RRM测量的测量周期,示例性地,去激活辅小区的RRM测量的测量周期。
在进行连接态UE的RRM测量放松时,可以进行上述任意一种或多种RRM测量关联的周期的增大等。
在一些实施例中,所述响应于所述放松方式为增大所述RRM测量关联的周期,根据所述放松因子得到所述RRM测量放松后关联的周期,包括:
确定针对所述连接态UE所述RRM测量的放松因子;
根据所述放松因子,增大放松前所述RRM测量关联的周期得到放松后RRM测量关联的周期。
UE具有连接态和非连接态,而非连接态可包括:空闲态和/或非激活态。在本公开实施例,针对非连接态UE的放松因子,可以与针对连接态UE的放松因子相互独立。针对连接态UE的放松因子与针对非连接态UE的放松因子可相等或不等。
故在确定放松测量配置中放松后的RRM测量配置时,将先确定放松因子,然后基于放松因子增大RRM测量关联的周期。
在一个实施例中,所述连接态UE放松RRM测量的放松因子,小于非连接态UE放松RRM测量的放松因子。考虑到UE处于连接态比UE处于非连接态可能有更多的业务需求,和/或小区切换和/或重选的需求,有鉴于此,即便放松处于连接态UE的RRM测量,但是放松程度可以比处于非连接态UE放松RRM测量的程度低,因此可以将所述连接态UE的放松因子设置为:小于非连接态UE放松RRM测量的放松因子,以与UE当前所处的网络连接状态相适配。
在一些实施例中,所述放松因子包括以下至少之一:
放松服务小区的所述RRM测量的第一因子;
放松同频邻小区的所述RRM测量的第二因子;
放松异频邻小区的所述RRM测量的第三因子;
放松异系统邻小区的所述RRM测量的第四因子
放松去激活的辅小区的所述RRM测量的第五因子;
其中,所述第一因子、所述第二因子、所述第三因子、所述第四因子及所述第五因子中的任意两个相互独立。
这些放松因子相互独立,因此可以分别确定这些因子的取值。故,在一些实施例中,所述第一因子、所述第二因子、所述第三因子、所述第四因子及所述第五因子中的任意两个可以相等或不等。
在一些实施例中,考虑到UE小区重选和/或小区切换,第一因子至第五因子中,第一因子最小而第五因子最大。针对将第一因子设置的最小,相当于对服务小区(尤其是主小区)的RRM测量放松是最小的,如此,方便连接态UE根据RRM测量的测量结果,及时发现UE当前的服务小区是否适合继续驻留,若不适合继续驻留,则及时进行小区切换和/或小区重选。
针对第二因子到第四因子中的任意两个可相等或者不等。示例性地,可以使得第一因子小于第二因子,第二因子小于第三因子,第三因子大于或等于第四因子、第四因子小于或等于第二因子等取值,如此,减少UE的跨频切换和/或跨系统切换。
示例性地,所述S130可包括:响应于所述放松方式为增大所述RRM测量关联的周期,基于所述放松因子和所述RRM测量放松前关联的周期的乘积,得到所述RRM测量放松后关联的周期。
通过乘积运算,可以使用不小于1的放松因子,快速确定出放松后RRM测量关联的周期。
在一些实施例中,所述停止所述RRM测量,包括以下至少之一:
停止服务小区的所述RRM测量;
停止辅小区的所述RRM测量;
停止同频邻小区的所述RRM测量;
停止异频邻小区的所述RRM测量;
停止异系统邻小区的所述RRM测量。
此处,停止服务小区的所述RRM测量可包括:停止主小区(Pcell)的所述RRM测量。
在一些情况下,所述服务小区可包括:主小区和辅小区。此处的辅小区还可分为:主辅小区(PScell)和辅小区(Scell)。
若一个UE没有双连接,即仅具有一个服务小区无辅小区构成的服务小区时,此时的服务小区即为UE当前驻留的小区。
此处停止辅小区的RRM测量可包括:停止去激活辅小区的RRM测量。
在一些实施例中,UE可以工作在多个频段,UE当前工作频段也可以为一个或多个。在这种情况下,针对不同的频段可以设置不同的放松因子,以控制UE对对应频段的RRM测量的放松。
示例性地,根据UE使用各个频段的频率,可以将使用频率高的频段的放松因子设置的小于使用频率低的放松因子,从而使得UE基于放松后的RRM测量依然会有机会更多的接入或使用其自身使用频率高的频段或者惯用频段上。
例如,UE既可以工作在RF1,也可以工作在RF2,针对RF1和RF2可以上设置不用的放松因子,从而分别控制处于连接态UE针对RF1的RRM测量放松和针对RF2的RRM测量放松。
故在一些实施例中,不同频段具有独立的所述放松因子。
在一些实施例中,所述确定针对所述连接态UE所述RRM测量的放松因子,包括:
根据所述连接态UE的非连续接收DRX周期的配置情况,确定所述放松因子的取值。
有的UE有配置DRX周期,有的UE未配置DRX周期,在这种情况下可以根据UE的DRX周期的配置情况,来确定放松因子的取值,如此,使得放松测量配置与UE是否有DRX周期或者具有的DRX周期的配置相适配,以减少在DRX周期的休眠时段内的RRM测量导致UE退出休眠进入唤醒所产生的功耗,以进一步节省UE的功耗。
所述根据所述连接态UE的非连续接收DRX周期的配置情况,确定所述放松因子,包括以下之一:
响应于所述连接态UE未配置有DRX周期,确定所述放松因子的取值为第一取值;
响应于所述连接态UE配置有DRX周期且所述DRX周期大于第一时长,确定所述放松因子的取值为第二取值;
响应于所述连接态UE配置有DRX周期且所述DRX周期不大于所述第一时长,确定所述放松因子的取值为第三取值。
针对UE没有配置DRX周期,则说明UE不会执行DRX机制,进行周期性的休眠和唤醒状态之间的切换,此时可以确定放松因子的取值为第一取值。
若UE配置有DRX周期,则说明连接态UE会按照DRX周期执行DRX机制,示例性地,按照DRX周期,周期性的在休眠和激活状态之间切换。
此时,所述S120可包括:根据所述连接态UE的DRX周期,确定所述放松因子。
可以理解地,所述根据所述连接态UE的DRX周期,确定所述放松因子,可包括:
响应于所述连接态UE配置有DRX周期且所述DRX周期大于第一时长,确定所述放松因子的取值为第二取值;
响应于所述连接态UE配置有DRX周期且所述DRX周期不大于所述第一时长,确定所述放松因子的取值为第三取值。
在一些实施例中,所述第一时长可为预先确定任意值,也可以网络侧指定或者协议指定的任意值。
示例性地,所述第一时长可为:320ms或者160ms或者240ms或者400ms等取值。
若连接态UE的DRX周期大于第一时长,确定放松因子的取值为第二取值,若连接态UE的DRX周期小于或等于第一时长,确定放松因子的取值为第三取值。
若连接态UE的DRX周期大于第一时长,比连接态UE的DRX周期不大于第一时长时,连接态UE会以更低频率的在休眠和唤醒之间切换。
在本公开实施例,第一取值、第二取值和第三取值可以相互独立,即第一取值至第三取值中的任意两个可以相等或者不等。如此,可以根据连接态UE是否配置有DRX周期,且在配置有DRX周期的情况下,根据DRX周期的时长,确定放松因子。根据这种放松因子进行RRM测量的放松,可以实现连接态UE的不同状态下的合理的RRM测量放松。
在一些实施例中,如图4所示,所述方法还包括:
S100:确定是否满足针对所述连接态UE的所述RRM测量的放松条件;
所述S110可包括:确定满足针对所述连接态UE的所述RRM测量的所述放松条件,确定放松所述RRM测量。
在一些实施例中,连接态UE可以进行RRM测量放松,也可以不进行RRM测量放松。
在确定出UE当前状态满足针对连接态UE的RRM测量的放松条件时,确定放松连接态UE的RRM测量。
在一个实施例中,在确定出UE当前状态不满足针对连接态UE的RRM测量的放松条件时,确定不放松连接态UE的RRM测量。
此处针对连接态UE的RRM测量的放松条件,可以与针对非连接态UE的RRM测量的放松条件相同或者不同。
若针对连接态UE的RRM测量的放松条件,和针对非连接态UE的RRM测量的放松条件相同,则连接态UE和非连接态UE共用相同的RRM测量的放松条件。
在一个实施例中,考虑到连接态UE可能有更多的业务传输需求,可以将针对连接态UE的RRM测量的放松条件,比针对非连接态UE的RRM测量的放松条件更严格一些。
示例性,放松条件涉及UE的移动速率,则可以使得针对连接态UE的速率阈值,比非连接态UE的速率阈值更小。
有示例性地,放松条件是通过UE对服务小区的信号测量的测量值确定的,可以将针对连接态UE对服务小区的参考信号的测量值大于预设阈值对应的时长更长一些。
以上仅仅是举例,具体实现不局限于上述举例。
在一些实施例中,所述确定是否满足针对所述连接态UE的所述RRM测量的放松条件,包括以下至少之一:
确定所述连接态UE的运动状态是否满足静止条件;
确定所述连接态UE是否位于服务小区的非边缘区域。
UE具有移动性,UE自身包含一些传感器,这些传感器可以检测UE的移动速率。当UE的移动速率小于静止阈值时,可认为UE的运动状态满足静止条件,否则可认为不满足静止条件。
通常情况下,UE的服务小区发射参考信号的功率是维持稳定的,UE会测量服务小区下发的参考信号,该参考信号包括但不限于同步信号和/或信道状态检测参考信号等,通过测量UE会得到参考信号的测量值。该测量值包括但不限于:参考信号接收功率(RSRP)和/或参考信号接收质量(RSRQ)。若UE对服务小区的参考信号的测量值一直维持波动幅度很小,则可以认为UE的未移动或者移动距离很小,从而满足静止条件。
服务小区可以按照与基站之间的距离或者,UE与服务小区的中心点之间的距离,可以将服务小区分为非边缘区域和边缘区域。边缘区域有称之为小区边缘,非边缘区域又称之为中心区域。边缘区域位于非边缘区域的外围。
根据UE的定位信息可以确定UE是否位于非边缘区域,也可以根据UE对服务小区的参考信号的测量值,若测量值大于一定阈值,则说明UE与服务小区中心位置的基站之间距离足够近,也可以确定UE位于服务小区的非边缘区域。
在一些实施例中,所述确定针对所述连接态UE所述RRM测量的放松因子,包括:
根据满足的放松条件,确定针对所述连接态UE所述RRM测量的放松因子。
示例性地,所述根据满足的放松条件,确定针对所述连接态UE所述RRM测量的放松因子,包括以下至少之一:
确定所述连接态UE单独满足所述静止条件时的放松因子;
确定所述连接态UE单独满足位于服务小区的非边缘区域时的放松因子;
确定所述连接态UE同时满足静止条件且满足位于服务小区非边缘区域时的放松因子。
若UE满足静止条件,说明UE当前处于完全静止状态或者移动速度非常小,继续驻留在当前服务小区的概率非常高,故可以适当的放松RRM测量。
若UE位于服务小区的非边缘区域,UE即便移动也可能经历测量周期之后才会离开服务小区,故可以适当放松RRM测量。
在一个实施例中,不同所述放松条件对应于不同取值的所述放松因子。
若连接态UE满足的放松条件不同,则确定有不同的放松因子,这种方式确定的放松因子,与UE当前满足的RRM测量的放松情况是相适配的,进而能够很好的平衡UE的功耗节省和移动性管 理所需要的RRM测量。
示例性地,连接态UE单独当前满足静止条件时的放松因子,可以略大于UE单独当前满足处于服务小区的非边缘区域时的放松因子。若UE当前处于服务小区但是UE在比较高速的移动,则UE也需要在几个RRM测量周期之后,需要基于RRM测量切换到其他小区的需求,故这种情况下UE的RRM测量的放松程度可能要小一些更为合适。
又示例性地,若连接态UE同时满足静止条件且满足位于服务小区非边缘区域的放松因子,大于连接态UE单独满足所述静止条件时的放松因子和单独满足位于服务小区的非边缘区域时的放松因子。由于连接态UE同时满足静止条件且位于服务小区的非边缘区域,则说明UE继续驻留在服务小区的概率非常高,故可以尽可能的放松服务小区和/或邻小区的测量,从而尽可能少的减少UE因为RRM测量所产生的功耗。
本公开实施例提供一种RRM测量的方式方法,可包括:为连接态UE引入RRM测量放松。
为连接态UE使用扩展周期方式或者停止测量方式进行RRM测量的放松。
针对连接态UE的扩展周期的放松因子可以不同于空闲态UE的放松因子a。
作为一种实施例:连接态用户的放松因子为b,b和a可相互独立,示例性地,b和a可相同或不同,可选地,b小于a。
作为一种实施例:连接态UE在满足停止测量条件时放松0.5小时,而空闲态UE在满足测量停止测量条件时放松1小时。此时的停止条件为前述放松条件的一种。
对于同频邻小区的RRM测量和异频邻小区的RRM测量,可以引入不同的放松因子或者停止测量时长。
作为一种实施例:同频邻小区的RRM测量的放松因子为b1;异频邻小区测量的放松因子为b2。
对于异系统小区可以引入新的放松因子或者停止测量时长。
作为一种实施例:异系统邻小区的RRM测量的放松因子为c。
对于去激活Scell可以采用新的放松因子。
作为一种实施例:去激活Scell测量的放松因子为c。
对于未配置DRX周期或者配置不同DRX周期的情况可以采用不用的放松系数
作为一种实施例:
若连接态UE没有配置DRX周期,连接态UE的放松因子为x。若连接态UE配置有DRX周期,会进一步根据DRX周期确定放松因子。
示例性地,DRX周期≤320ms:连接态UE的放松因子为y;
DRX周期>320ms:连接态用户的放松因子为z。
对于FR1和FR2可以引入不同的放松因子。
作为一种实施例:
FR1:连接态用户的放松因子为m
FR2:连接态用户的放松因子为n
在一些实施例中,放松因子可以通过在原来公式基础上直接乘以系数得到;
在一些实施例中,为连接态UE使用扩展周期方式的放松程度,可在不同的放松条件下进行:
放松条件a):连接态UE在满足静止条件下使用RRM测量放松;
放松条件b):连接态UE在满足静止和非小区边缘条件下使用RRM测量放松;
在一些实施例中:a)和b)条件下可以使用的放松因子可以相同也可以不同。
作为一种优选实施例:b)条件下将使用更大的放松因子或者停止测量时长。
如图5所示,本公开实施例提供一种信息处理方法,可由基站执行,该方法可包括:
S210:接收连接态UE在放松RRM测量之后的RRM测量结果。
在本公开实施例中,连接态UE也会按照RRM测量的放松机制,进行RRM测量的放松,因而基站侧接收的RRM测量结果可能是连接态UE放松RRM测量之后的测量结果。则此时的测量结果对应的测量周期以及评估周期等拉长了。
在一些实施例中,基站可以向UE发送放松RRM测量的配置信息,该配置信息可以用于连接态UE确定放松后的RRM测量的测量配置。示例性地,该配置信息可以至少放松方式和/或放松因子等参数。当然以上仅是举例,具体实现不局限于上述举例。譬如,在一些情况下,该配置信息可写入到通信协议,如此UE可以根据通信协议知晓上述配置信息。
在一些实施例中,所述RRM测量是按照放松配置进行的;其中,所述放松配置指示以下至少之一:放松方式配置,指示所述RRM测量的放松方式;放松测量配置,指示所述RRM测量放松后的测量配置。
放松测量配置,指示的放松后RRM测量的测量配置。示例性地,针对停止RRM测量的最大放松,则停止RRM测量的时长、停止RRM测量的时间段、停止RRM测量中的部分测量还是全部测量等。针对增大RRM测量关联的各种周期,可以放松后的周期等都可以由放松测量配置来确定。
放松测量配置,指示的放松后RRM测量的测量配置。示例性地,针对停止RRM测量的最大放松,则停止RRM测量的时长、停止RRM测量的时间段、停止RRM测量中的部分测量还是全部测量等。针对增大RRM测量关联的各种周期,可以放松后的周期等都可以由放松测量配置来确定。
RRM测量包括:对服务小区的RRM测量和/或对邻小区的RRM测量。针对部分RRM测量是可以以停止测量的方式进行,针对部分RRM测量是以增大周期的方式来实现的。
在一些实施例中,所述放松方式包括:
增大所述RRM测量关联的周期;
和/或
停止所述RRM测量。
所述RRM测量关联的周期,包括以下至少之一:
服务小区的RRM测量的识别周期;
服务小区的RRM测量的测量周期;
邻小区的RRM测量的识别周期;
邻小区的RRM测量的测量周期;。
在一些实施例中,所述服务小区可包括:主小区和/或辅小区。
所述识别周期包括:通过小区发送的参考信号携带的小区标识等识别出小区,并进行该小区的测量的周期。
测量周期主要用于进行已识别小区进行测量的周期。
所述邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统邻小区。
在一些实施例中,所述RRM测量关联的周期还可包括:辅小区的RRM测量的测量周期,示例性地,去激活辅小区的RRM测量的测量周期。
在进行连接态UE的RRM测量放松时,可以进行上述任意一种或多种RRM测量关联的周期的增大等。
在一些实施例中,所述RRM测量的放松配置是根据放松因子确定的。
放松因子可为增大RRM测量关联的周期的乘法因子,也可以是确定停止RRM测量的停止时长等。
在一些实施例中,所述RRM测量关联的周期,包括以下至少之一:
服务小区的RRM测量的识别周期;
服务小区的RRM测量的测量周期;
邻小区的RRM测量的识别周期;
邻小区的RRM测量的测量周期。
在一些实施例中,所述连接态UE的放松RRM测量的放松因子,小于非连接态UE放松RRM测量的放松因子。
连接态UE的放松因子小于非连接态UE的放松因子,可以满足连接态UE当前状态下的业务突发性和业务传输需求,更好地与UE当前所处的状态相适配。
在一些实施例中,所述放松因子包括以下至少之一:
放松服务小区的所述RRM测量的第一因子;
放松同频邻小区的所述RRM测量的第二因子;
放松异频邻小区的所述RRM测量的第三因子;
放松异系统邻小区的所述RRM测量的第四因子
放松去激活的辅小区的所述RRM测量的第五因子;
其中,所述第一因子、所述第二因子、所述第三因子、所述第四因子及所述第五因子中的任意两个相互独立。
在一些实施例中,所述停止所述RRM测量,包括以下至少之一:
停止服务小区的所述RRM测量;
停止辅小区的所述RRM测量;
停止同频邻小区的所述RRM测量;
停止异频邻小区的所述RRM测量;
停止异系统邻小区的所述RRM测量。
在一些实施例中,不同频段具有独立的所述放松因子。例如,有的UE同时支持RF1和RF2,则这种UE处于连接态时针对RF1和RF2上的RRM测量的放松,可以基于相互独立的放松因子来分别确定。
在一些实施例中,所述放松因子的取值,是根据所述连接态UE的非连续接收DRX周期的配置情况的。
在一些实施例中,所述连接态UE未配置有DRX周期,所述放松因子的取值为第一取值;或者,所述连接态UE配置有DRX周期且所述DRX周期大于第一时长,所述放松因子的取值为第二取值;或者,所述连接态UE配置有DRX周期且所述DRX周期不大于所述第一时长,所述放松因子的取值为第三取值。
在一些实施例中,所述放松因子,是所述连接态UE根据满足的放松条件确定的。
在一些实施例中,不同所述放松条件对应于不同取值的所述放松因子。
在一些实施例中,所述RRM测量的放松条件,包括以下至少之一:
确定所述连接态UE的运动状态是否满足静止条件;
非边缘区域确定所述连接态UE是否位于服务小区的非边缘区域。
若连接态的UE同事满足静止条件和位于服务小区的非边缘区域,可相对于单独满足静止条件或者单独满足位于非边缘区域,可以具有更大的放松因子,从而实现更大程度的RRM测量的放松,尽可能减少UE的RRM测量的功耗。
如图6所示,本公开实施例提供一种RRM测量的放松装置,包含在连接态UE中,所述装置包括:
第一确定模块510,被配置为确定放松RRM测量。
在一些实施例中,所述第一确定模块510可为程序模块。所述程序模块被处理器执行之后,能够确定RRM测量的放松。
在另一些实施例中,所述第一确定模块510可为软硬结合模块;所述软硬结合模块包括但不限于:各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列和复杂可编程阵列。
在还有一些实施例中,所述第一确定模块510可为纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一些实施例中,所述装置还包括:
第二确定模块,被配置为确定针对所述连接态UE的所述RRM测量的放松因子;
第三确定模块,被配置为根据所述放松因子,确定所述RRM测量的放松配置。
在一些实施例中,所述放松配置指示以下至少之一:
放松方式配置,指示所述RRM测量的放松方式;
放松测量配置,指示所述RRM测量放松后的测量配置。
在一些实施例中,所述放松方式包括:
增大所述RRM测量关联的周期;
和/或
停止所述RRM测量。
在一些实施例中,所述第三确定模块,被配置为响应于所述放松方式为增大所述RRM测量关联的周期,根据所述放松因子得到所述RRM测量放松后关联的周期;或者,响应于所述放松方式为停止所述RRM测量,根据所述放松因子确定停止所述RRM测量的时长。
在一些实施例中,所述RRM测量关联的周期,包括以下至少之一:
服务小区的RRM测量的识别周期;
服务小区的RRM测量的测量周期;
邻小区的RRM测量的识别周期;
邻小区的RRM测量的测量周期;。
在一些实施例中,所述第三确定模块,被配置为确定针对所述连接态UE所述RRM测量的放松因子;根据所述放松因子,增大放松前所述RRM测量关联的周期得到放松后RRM测量关联的周期。
在一些实施例中,所述连接态UE的放松因子,小于非连接态UE放松RRM测量的放松因子。
在一些实施例中,所述放松因子包括以下至少之一:
放松服务小区的所述RRM测量的第一因子;
放松同频邻小区的所述RRM测量的第二因子;
放松异频邻小区的所述RRM测量的第三因子;
放松异系统邻小区的所述RRM测量的第四因子
放松去激活的辅小区的所述RRM测量的第五因子;
其中,所述第一因子、所述第二因子、所述第三因子、所述第四因子及所述第五因子中的任意两个相互独立。
在一些实施例中,所述停止所述RRM测量,包括以下至少之一:
停止服务小区的所述RRM测量;
停止辅小区的所述RRM测量;
停止同频邻小区的所述RRM测量;
停止异频邻小区的所述RRM测量;
停止异系统邻小区的所述RRM测量。
在一些实施例中,不同频段具有独立的所述放松因子。
在一些实施例中,所述第三确定模块,被配置为响应于所述放松方式为增大所述RRM测量关联的周期,基于所述放松因子和所述RRM测量放松前关联的周期的乘积,得到所述RRM测量放松后关联的周期。
在一些实施例中,针对所述连接态UE所述RRM测量的放松因子,小于针对非连接态UE所述 RRM测量的放松因子。
在一些实施例中,所述第二确定模块,被配置为根据所述连接态UE的非连续接收DRX周期的配置情况,确定所述放松因子的取值。
在一些实施例中,所述第二确定模块,被配置为执行以下至少之一:
响应于所述连接态UE未配置有DRX周期,确定所述放松因子的取值为第一取值;
响应于所述连接态UE配置有DRX周期且所述DRX周期大于第一时长,确定所述放松因子的取值为第二取值;
响应于所述连接态UE配置有DRX周期且所述DRX周期不大于所述第一时长,确定所述放松因子的取值为第三取值。
在一些实施例中,所述装置还包括:
第四确定模块,被配置为确定是否满足针对所述连接态UE的所述RRM测量的放松条件;
所述第一确定模块510,被配置为确定满足针对所述连接态UE的所述RRM测量的所述放松条件,确定放松所述RRM测量。
在一些实施例中,所述第四确定模块,被配置为执行以下至少之一:
确定所述连接态UE的运动状态是否满足静止条件;
非边缘区域确定所述连接态UE是否位于服务小区的非边缘区域。
在一些实施例中,所述第二确定模块,被配置为根据满足的放松条件,确定针对所述连接态UE所述RRM测量的放松因子。
如图7所示,本公开实施例提供一种信息处理装置,其中,所述装置包括:
接收模块610,被配置为接收连接态UE在放松RRM测量之后的RRM测量结果。
本公开实施例提供的信息处理装置可以包含在基站中。
在一些实施例中,所述接收模块610可为程序模块。所述程序模块被处理器执行之后,能够接收连接态UE在放松后的RRM测量的RRM测量结果。
在另一些实施例中,所述接收模块610可为软硬结合模块;所述软硬结合模块包括但不限于:各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列和复杂可编程阵列。
在还有一些实施例中,所述接收模块610可为纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一些实施例中,所述RRM测量是按照放松配置进行的;
其中,所述放松配置指示以下至少之一:
放松方式配置,指示所述RRM测量的放松方式;
放松测量配置,指示所述RRM测量放松后的测量配置。
在一些实施例中,所述放松方式包括:
增大所述RRM测量关联的周期;
和/或
停止所述RRM测量。
在一些实施例中,所述RRM测量的放松配置是根据放松因子确定的。
在一些实施例中,在一些实施例中,所述RRM测量关联的周期,包括以下至少之一:
服务小区的RRM测量的识别周期;
服务小区的RRM测量的测量周期;
邻小区的RRM测量的识别周期;
邻小区的RRM测量的测量周期。
在一些实施例中,所述连接态UE的放松RRM测量的放松因子,小于非连接态UE放松RRM测量的放松因子。
在一些实施例中,所述放松因子包括以下至少之一:
放松服务小区的所述RRM测量的第一因子;
放松同频邻小区的所述RRM测量的第二因子;
放松异频邻小区的所述RRM测量的第三因子;
放松异系统邻小区的所述RRM测量的第四因子
放松去激活的辅小区的所述RRM测量的第五因子;
其中,所述第一因子、所述第二因子、所述第三因子、所述第四因子及所述第五因子中的任意两个相互独立。
在一些实施例中,所述停止所述RRM测量,包括以下至少之一:
停止服务小区的所述RRM测量;
停止辅小区的所述RRM测量;
停止同频邻小区的所述RRM测量;
停止异频邻小区的所述RRM测量;
停止异系统邻小区的所述RRM测量。
在一些实施例中,不同频段具有独立的所述放松因子。
在一些实施例中,所述放松因子的取值,是根据所述连接态UE的非连续接收DRX周期的配置情况的。
在一些实施例中,所述连接态UE未配置有DRX周期,所述放松因子的取值为第一取值;
或者,
所述连接态UE配置有DRX周期且所述DRX周期大于第一时长,所述放松因子的取值为第二取值;
或者,
所述连接态UE配置有DRX周期且所述DRX周期不大于所述第一时长,所述放松因子的取值为第三取值。
在一些实施例中,所述放松因子,是所述连接态UE根据满足的放松条件确定的。
在一些实施例中,不同所述放松条件对应于不同取值的所述放松因子。
在一些实施例中,所述RRM测量的放松条件,包括以下至少之一:
确定所述连接态UE的运动状态是否满足静止条件;
非边缘区域确定所述连接态UE是否位于服务小区的非边缘区域。
在一些实施例中,不同所述放松条件对应于不同取值的所述放松因子。
本公开实施例提供一种通信设备,包括:
用于存储处理器可执行指令的存储器;
处理器,分别存储器连接;
其中,处理器被配置为执行前述任意技术方案提供的RRM测量的放松方法。
处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
这里,所述通信设备包括:前述的UE或基站。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2至所示RRM测量的放松方法和/或信息处理方法的至少其中之一。
图8是根据一示例性实施例示出的一种UE800的框图。例如,UE 800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,UE800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制UE800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在UE800的操作。这些数据的示例包括用于在UE800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为UE800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为UE800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述UE800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸 面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当UE800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当UE800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为UE800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为UE800的显示器和小键盘,传感器组件814还可以检测UE800或UE800一个组件的位置改变,用户与UE800接触的存在或不存在,UE800方位或加速/减速和UE800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于UE800和其他设备之间有线或无线方式的通信。UE800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由UE800的处理器820执行以完成RRM测量的发送方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图9所示,本公开一实施例示出一种接入设备的结构。例如,通信设备900可以被提供为一网络侧设备。该通信设备可为前述的接入设备。该接入网设备包括但不限于基站。
参照图9,通信设备900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器 932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述接入设备的任意方法,例如,如图2至图5、所示的RRM测量的放松方法和/或信息处理方法。
通信设备900还可以包括一个电源组件926被配置为执行通信设备900的电源管理,一个有线或无线网络接口950被配置为将通信设备900连接到网络,和一个输入输出(I/O)接口958。通信设备900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (36)

  1. 一种无线资源管理RRM测量的放松方法,其中,由连接态用户设备UE执行,所述方法包括:
    确定放松RRM测量。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    确定针对所述连接态UE的所述RRM测量的放松因子;
    根据所述放松因子,确定所述RRM测量的放松配置。
  3. 根据权利要求2所述的方法,其中,所述放松配置指示以下至少之一:
    放松方式配置,指示所述RRM测量的放松方式;
    放松测量配置,指示所述RRM测量放松后的测量配置。
  4. 根据权利要求3所述的方法,其中,所述放松方式包括:
    增大所述RRM测量关联的周期;
    和/或
    停止所述RRM测量。
  5. 根据权利要求4所述的方法,其中,所述根据所述放松因子,确定所述RRM测量的放松配置,包括:
    响应于所述放松方式为增大所述RRM测量关联的周期,根据所述放松因子得到所述RRM测量放松后关联的周期;
    或者,
    响应于所述放松方式为停止所述RRM测量,根据所述放松因子确定停止所述RRM测量的时长。
  6. 根据权利要求5所述的方法,其中,所述RRM测量关联的周期,包括以下至少之一:
    服务小区的RRM测量的识别周期;
    服务小区的RRM测量的测量周期;
    邻小区的RRM测量的识别周期;
    邻小区的RRM测量的测量周期。
  7. 根据权利要求5所述的方法,其中,所述响应于所述放松方式为增大所述RRM测量关联的周期,根据所述放松因子得到所述RRM测量放松后关联的周期,包括:
    确定针对所述连接态UE所述RRM测量的放松因子;
    根据所述放松因子,增大放松前所述RRM测量关联的周期得到放松后RRM测量关联的周期。
  8. 根据权利要求2至7任一项所述的方法,其中,所述连接态UE放松RRM测量的放松因子,小于非连接态UE放松RRM测量的放松因子。
  9. 根据权利要求2至8任一项所述的方法,其中,所述放松因子包括以下至少之一:
    放松服务小区的所述RRM测量的第一因子;
    放松同频邻小区的所述RRM测量的第二因子;
    放松异频邻小区的所述RRM测量的第三因子;
    放松异系统邻小区的所述RRM测量的第四因子
    放松去激活的辅小区的所述RRM测量的第五因子;
    其中,所述第一因子、所述第二因子、所述第三因子、所述第四因子及所述第五因子中的任意两个相互独立。
  10. 根据权利要求4至7任一项所述的方法,其中,所述停止所述RRM测量,包括以下至少之一:
    停止服务小区的所述RRM测量;
    停止辅小区的所述RRM测量;
    停止同频邻小区的所述RRM测量;
    停止异频邻小区的所述RRM测量;
    停止异系统邻小区的所述RRM测量。
  11. 根据权利要求2所述的方法,其中,不同频段具有独立的所述放松因子。
  12. 根据权利要求5所述的方法,其中,所述响应于所述放松方式为增大所述RRM测量关联的周期,根据所述放松因子得到所述RRM测量放松后关联的周期,包括:
    响应于所述放松方式为增大所述RRM测量关联的周期,基于所述放松因子和所述RRM测量放松前关联的周期的乘积,得到所述RRM测量放松后关联的周期。
    所述RRM测量所述RRM测量
  13. 根据权利要求2至12任一项所述的方法,其中,所述确定针对所述连接态UE所述RRM测量的放松因子,包括:
    根据所述连接态UE的非连续接收DRX周期的配置情况,确定所述放松因子的取值。
  14. 根据权利要求13所述的方法,其中,所述根据所述连接态UE的非连续接收DRX周期的配置情况,确定所述放松因子的取值,包括以下之一:
    响应于所述连接态UE未配置有DRX周期,确定所述放松因子的取值为第一取值;
    响应于所述连接态UE配置有DRX周期且所述DRX周期大于第一时长,确定所述放松因子的取值为第二取值;
    响应于所述连接态UE配置有DRX周期且所述DRX周期不大于所述第一时长,确定所述放松因子的取值为第三取值。
  15. 根据权利要求2至14任一项所述的方法,其中,所述方法还包括:
    确定是否满足针对所述连接态UE的所述RRM测量的放松条件;
    所述确定放松RRM测量,包括:
    确定满足针对所述连接态UE的所述RRM测量的所述放松条件,确定放松所述RRM测量。
  16. 根据权利要求15所述方法,其中,所述确定是否满足针对所述连接态UE的所述RRM测 量的放松条件,包括以下至少之一:
    确定所述连接态UE的运动状态是否满足静止条件;
    非边缘区域确定所述连接态UE是否位于服务小区的非边缘区域。
  17. 根据权利要求15或16所述的方法,其中,所述确定针对所述连接态UE所述RRM测量的放松因子,包括:
    根据满足的放松条件,确定针对所述连接态UE所述RRM测量的放松因子。
  18. 根据权利要求17所述的方法,其中,不同所述放松条件对应于不同取值的所述放松因子。
  19. 一种信息处理方法,其中,应用于基站中,所述方法包括:
    接收连接态UE在放松RRM测量之后的RRM测量结果。
  20. 根据权利要求19所述的方法,其中,所述RRM测量是按照放松配置进行的;
    其中,所述放松配置指示以下至少之一:
    放松方式配置,指示所述RRM测量的放松方式;
    放松测量配置,指示所述RRM测量放松后的测量配置。
  21. 根据权利要求20所述的方法,其中,所述放松方式包括:
    增大所述RRM测量关联的周期;
    和/或
    停止所述RRM测量。
  22. 根据权利要求21所述的方法,其中,所述RRM测量的放松配置是根据放松因子确定的。
  23. 根据权利要求22所述的方法,其中,所述RRM测量关联的周期,包括以下至少之一:
    服务小区的RRM测量的识别周期;
    服务小区的RRM测量的测量周期;
    邻小区的RRM测量的识别周期;
    邻小区的RRM测量的测量周期。
  24. 根据权利要求22所述的方法,其中,所述连接态UE的放松RRM测量的放松因子,小于非连接态UE放松RRM测量的放松因子。
  25. 根据权利要求22所述的方法,其中,所述放松因子包括以下至少之一:
    放松服务小区的所述RRM测量的第一因子;
    放松同频邻小区的所述RRM测量的第二因子;
    放松异频邻小区的所述RRM测量的第三因子;
    放松异系统邻小区的所述RRM测量的第四因子
    放松去激活的辅小区的所述RRM测量的第五因子;
    其中,所述第一因子、所述第二因子、所述第三因子、所述第四因子及所述第五因子中的任意两个相互独立。
  26. 根据权利要求21至25任一项所述的方法,其中,所述停止所述RRM测量,包括以下至 少之一:
    停止服务小区的所述RRM测量;
    停止辅小区的所述RRM测量;
    停止同频邻小区的所述RRM测量;
    停止异频邻小区的所述RRM测量;
    停止异系统邻小区的所述RRM测量。
  27. 根据权利要求22所述的方法,其中,不同频段具有独立的所述放松因子。
  28. 根据权利要求22所述的方法,其中,所述放松因子的取值,是根据所述连接态UE的非连续接收DRX周期的配置情况的。
  29. 根据权利要求28所述的方法,其中,
    所述连接态UE未配置有DRX周期,所述放松因子的取值为第一取值;
    或者,
    所述连接态UE配置有DRX周期且所述DRX周期大于第一时长,所述放松因子的取值为第二取值;
    或者,
    所述连接态UE配置有DRX周期且所述DRX周期不大于所述第一时长,所述放松因子的取值为第三取值。
  30. 根据权利要求22至29任一项所述的方法,其中,所述放松因子,是所述连接态UE根据满足的放松条件确定的。
  31. 根据权利要求30所述的方法,其中,不同所述放松条件对应于不同取值的所述放松因子。
  32. 根据权利要求30所述的方法,其中,所述RRM测量的放松条件,包括以下至少之一:
    确定所述连接态UE的运动状态是否满足静止条件;
    非边缘区域确定所述连接态UE是否位于服务小区的非边缘区域。
  33. 一种无线资源管理RRM测量的放松装置,其中,包含在连接态UE中,所述装置包括:
    第一确定模块,被配置为确定放松RRM测量。
  34. 一种信息处理装置,其中,所述装置包括:
    接收模块,被配置为接收连接态UE在放松RRM测量之后的RRM测量结果。
  35. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至18或者19至32任一项提供的方法。
  36. 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至18或者19至32任一项提供的方法。
PCT/CN2021/110659 2021-08-04 2021-08-04 Rrm测量的放松、信息处理方法及装置、设备及存储介质 WO2023010357A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180002456.XA CN115943663A (zh) 2021-08-04 2021-08-04 Rrm测量的放松、信息处理方法及装置、设备及存储介质
PCT/CN2021/110659 WO2023010357A1 (zh) 2021-08-04 2021-08-04 Rrm测量的放松、信息处理方法及装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/110659 WO2023010357A1 (zh) 2021-08-04 2021-08-04 Rrm测量的放松、信息处理方法及装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023010357A1 true WO2023010357A1 (zh) 2023-02-09

Family

ID=85154918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110659 WO2023010357A1 (zh) 2021-08-04 2021-08-04 Rrm测量的放松、信息处理方法及装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN115943663A (zh)
WO (1) WO2023010357A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105898777A (zh) * 2016-04-19 2016-08-24 华为技术有限公司 邻区测量方法及装置
US20180332532A1 (en) * 2017-05-12 2018-11-15 Mediatek Inc. Power Consumption Enhancements for Less Mobile UEs
CN111278028A (zh) * 2020-01-17 2020-06-12 展讯半导体(南京)有限公司 小区测量方法、装置及存储介质
WO2020164720A1 (en) * 2019-02-14 2020-08-20 Nokia Technologies Oy Stationarity-based ue power saving
CN111641963A (zh) * 2020-05-27 2020-09-08 广东小天才科技有限公司 一种小区测量方法及终端设备
CN113038524A (zh) * 2019-12-24 2021-06-25 维沃移动通信有限公司 测量放松、测量配置方法、终端及网络设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105898777A (zh) * 2016-04-19 2016-08-24 华为技术有限公司 邻区测量方法及装置
US20180332532A1 (en) * 2017-05-12 2018-11-15 Mediatek Inc. Power Consumption Enhancements for Less Mobile UEs
WO2020164720A1 (en) * 2019-02-14 2020-08-20 Nokia Technologies Oy Stationarity-based ue power saving
CN113038524A (zh) * 2019-12-24 2021-06-25 维沃移动通信有限公司 测量放松、测量配置方法、终端及网络设备
CN111278028A (zh) * 2020-01-17 2020-06-12 展讯半导体(南京)有限公司 小区测量方法、装置及存储介质
CN111641963A (zh) * 2020-05-27 2020-09-08 广东小天才科技有限公司 一种小区测量方法及终端设备

Also Published As

Publication number Publication date
CN115943663A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2021203309A1 (zh) 配置测量信息传输方法及装置、通信设备及存储介质
CN110520840B (zh) 唤醒信号处理、信息下发方法及装置、通信设备及介质
WO2022016530A1 (zh) 省电信号处理方法及装置、通信设备及存储介质
US20240073729A1 (en) Communication method and apparatus, user equipment, network device, and storage medium
WO2022000490A1 (zh) 无线通信方法及装置、通信设备及存储介质
WO2021208102A1 (zh) 信息传输方法及装置、通信设备及存储介质
WO2022151089A1 (zh) 信息处理方法及装置、通信设备及存储介质
CN111344993A (zh) 监听方法、指示下发方法及装置、通信设备及存储
WO2022021033A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2021120204A1 (zh) 信号测量方法、装置、通信设备及存储介质
WO2022082459A1 (zh) 通信方法及装置、网络设备、用户设备及存储介质
US20230254771A1 (en) Information processing method and apparatus, and communication device and storage medium
WO2023010357A1 (zh) Rrm测量的放松、信息处理方法及装置、设备及存储介质
WO2023283788A1 (zh) Rrm测量配置确定方法及装置、通信设备及存储介质
WO2023272697A1 (zh) Rrm测量配置确定方法及装置、通信设备及存储介质
WO2023272698A1 (zh) 测量配置确定方法及装置、通信设备及存储介质
US20240171962A1 (en) Information indication method and apparatus, and network device, user equipment and storage medium
WO2022188157A1 (zh) Ue省电处理方法、装置、通信设备及存储介质
WO2022183386A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2023230970A1 (zh) 信号测量的方法、装置、通信设备及存储介质
WO2023010353A1 (zh) 寻呼监听参数确定方法及装置、通信设备及存储介质
WO2023173314A1 (zh) 一种监听方法、装置、通信设备及存储介质
WO2023225822A1 (zh) 监听方法、装置、通信设备及存储介质
WO2023173382A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2023173372A1 (zh) 信息处理方法及装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE