WO2023272697A1 - Rrm测量配置确定方法及装置、通信设备及存储介质 - Google Patents

Rrm测量配置确定方法及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2023272697A1
WO2023272697A1 PCT/CN2021/104065 CN2021104065W WO2023272697A1 WO 2023272697 A1 WO2023272697 A1 WO 2023272697A1 CN 2021104065 W CN2021104065 W CN 2021104065W WO 2023272697 A1 WO2023272697 A1 WO 2023272697A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
edrx
idle state
inactive
state
Prior art date
Application number
PCT/CN2021/104065
Other languages
English (en)
French (fr)
Inventor
李艳华
胡子泉
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002044.6A priority Critical patent/CN115735386A/zh
Priority to PCT/CN2021/104065 priority patent/WO2023272697A1/zh
Publication of WO2023272697A1 publication Critical patent/WO2023272697A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of wireless communication but is not limited to the technical field of wireless communication, and particularly relates to a method and device for determining a radio resource management (Radio Resource Management, RRM) measurement configuration, a communication device, and a storage medium.
  • RRM Radio Resource Management
  • Extended Discontinuous Reception (eDRX) mode is a working mode that reduces the power consumption of user equipment (User Equipment, UE) by enhancing the normal DRX mode.
  • UE User Equipment
  • the inactive state is introduced in New Radio (NR).
  • NR New Radio
  • the inactive state is a state between the idle state and the connected state.
  • the inactive state is connected to the access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • UE status that is visible but may not be visible to the Core Network (CN).
  • CN Core Network
  • Both the inactive state and the idle state belong to the non-connected state of the UE.
  • Embodiments of the present disclosure provide a method and device for determining an RRM measurement configuration, an information processing method and device, a communication device, and a storage medium.
  • the first aspect of the embodiments of the present disclosure provides a method for determining an RRM measurement configuration, which is performed by a user equipment UE, and the method includes:
  • related information is determined, wherein the related information at least indicates: the first DRX cycle and whether the UE has the first eDRX cycle;
  • a second aspect of an embodiment of the present disclosure provides an apparatus for determining an RRM measurement configuration, the apparatus including:
  • the first determining module is configured to determine related information according to the unconnected state of the UE and the extended discontinuous reception eDRX configuration of the UE, wherein the related information at least indicates: the first DRX cycle and whether the UE has a first eDRX cycle;
  • the second determining module is configured to determine a measurement configuration for the UE to perform RRM measurement according to the relevant information.
  • the third aspect of the embodiments of the present disclosure provides a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable
  • the program executes the method for determining the RRM measurement configuration as described above in the first aspect.
  • the fourth aspect of the embodiments of the present disclosure provides a computer storage medium, the computer storage medium stores an executable program; after the executable program is executed by the processor, the method for determining the RRM measurement configuration provided in the aforementioned first aspect can be implemented .
  • the technical solutions provided by the embodiments of the present disclosure are used to determine the eDRX cycle and DRX cycle of the RRM measurement measurement configuration (referred to as RRM measurement configuration), which are determined according to the unconnected state of the UE and the eDRX configuration.
  • RRM measurement configuration the RRM measurement measurement measurement configuration
  • adopt Determining the RRM measurement configuration in this way can determine the measurement configuration that meets the RRM measurement requirements, and on the other hand, using this measurement configuration to control the RRM measurement of the UE can also reduce the probability that the UE is in the sleep period of the eDRX cycle due to RRM measurement. Interruption of the sleep period of the UE caused by the RRM measurement is reduced, further saving the power consumption of the UE.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • Fig. 2 is a schematic diagram showing a timing sequence of eDRX function execution according to an exemplary embodiment
  • Fig. 3 is an interactive schematic diagram showing the eDRX function of the core network configuration idle state according to an exemplary embodiment
  • Fig. 4 is a schematic flow chart showing an RRM measurement configuration determination according to an exemplary embodiment
  • Fig. 5 is a schematic flowchart of a method for determining an RRM measurement configuration according to an exemplary embodiment
  • FIG. 6 is a schematic structural diagram of an RRM and a measurement configuration determining device according to an exemplary embodiment
  • Fig. 7 is a schematic structural diagram of a UE according to an exemplary embodiment
  • Fig. 8 is a schematic structural diagram of a communication device according to an exemplary embodiment.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information
  • second information may also be called first information.
  • the word “if” as used herein may be interpreted as “at” or "when” or "in response to a determination”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several UEs 11 and several access devices 12 .
  • UE11 may be a device that provides voice and/or data connectivity to a user.
  • UE11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN), and UE11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • RAN Radio Access Network
  • UE11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • the UE's computer for example, may be a fixed, portable, pocket, hand-held, built-in or vehicle-mounted device.
  • UE11 may also be a device of an unmanned aerial vehicle.
  • UE11 may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected externally to the trip computer.
  • the UE11 may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the access device 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as a Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, New Generation Radio Access Network).
  • the MTC system the MTC system.
  • the access device 12 may be an evolved access device (eNB) adopted in a 4G system.
  • the access device 12 may also be an access device (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved access device
  • gNB access device
  • the access device 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, radio link layer control protocol (Radio Link Control, RLC) layer, media access control (Media Access Control, MAC) layer protocol stack;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • a physical (Physical, PHY) layer protocol stack is set in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the access device 12 .
  • a wireless connection may be established between the access device 12 and the UE 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a technical standard of a next-generation mobile communication network based on 5G.
  • an E2E (End to End, end-to-end) connection can also be established between UE11.
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle to everything (V2X) communication Wait for the scene.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in the wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity, MME).
  • MME Mobility Management Entity
  • the network management device can also be other core network devices, such as Serving GateWay (SGW), Public Data Network Gateway (Public Data Network GateWay, PGW), policy and charging rule functional unit (Policy and Charging Rules Function, PCRF) or Home Subscriber Server (Home Subscriber Server, HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network Gateway
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • a UE in eDRX mode has the following characteristics:
  • the UE is reachable at any time, but the reachability delay is relatively large, and the delay depends on the eDRX cycle configuration.
  • the UE with the eDRX function enabled achieves a maximum balance between the power consumption of the UE and the timeliness of data transmission.
  • the eDRX function has one or more of the following eDRX parameters
  • the eDRX cycle can be represented by T eDRX, H.
  • FIG. 2 is a sequence diagram after the UE starts the eDRX function.
  • the duration of the DRX cycle may be much shorter than the duration of the eDRX cycle.
  • FIG. 3 shows one type of eDRX parameters for exchanging eDRX functions between UE (ie, UE) and the core network.
  • the method for exchanging eDRX parameters between the UE and the core network shown in Figure 3 may include:
  • the eNB sends an indication of the allowed eDRX function, a specific cell indication (Cell-specific DRX) and a hyperframe number (Hyper system Frame Number, SFN) to the UE through the System Information Block (SIB).
  • SIB System Information Block
  • the UE sends UE-specific DRX parameters (UE-specific DRX) and/or preferred DRX parameters (preferable eDRX) in an attach request or a Tracking Area Update (TAU) TAU request;
  • UE-specific DRX UE-specific DRX
  • preferred DRX parameters preferable eDRX
  • the MME After the MME receives the above attach request or TAU request, it sends the eDRX configuration to the UE; the eDRX configuration carries the aforementioned one or more eDRX parameters;
  • MME performs paging according to eDRX configuration
  • the eNB After receiving the CN paging message delivered by the MME, the eNB forwards the CN paging message to the UE.
  • the eDRX parameters issued by the core network are transparently transmitted to the UE through the base station (for example, an evolved base station (eNB) or a next-generation base station (gNB)).
  • the base station for example, an evolved base station (eNB) or a next-generation base station (gNB)
  • the mobile management function (Mobile Management Entity, MME) of the core network sends the eDRX parameters of the eDRX function to the UE through the eNB.
  • MME Mobile Management Entity
  • the RRC idle state is a low power consumption state of the UE that is clearly known to the core.
  • the RRC inactive state is referred to as the inactive state for short.
  • the inactive state is a low power consumption state of the UE transparent to the core network. But the inactive state is visible to the access network.
  • the UE needs to receive the paging message sent by the CN (that is, the CN paging message), and also needs to receive the paging message sent by the access network (Radio Access Network, RAN), that is, the RAN paging message .
  • the access network Radio Access Network, RAN
  • an embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which is performed by a user equipment UE, and the method includes:
  • S110 Determine relevant information according to the unconnected state of the UE and the extended discontinuous reception eDRX configuration of the UE, wherein the relevant information at least indicates: the first DRX cycle and whether the UE has The first eDRX cycle;
  • S120 Determine a measurement configuration for the UE to perform RRM measurement according to the relevant information.
  • the unconnected state here includes: idle state and/or inactive state.
  • the UE includes but not limited to NR UE.
  • the NR UE may be a UE using an NR carrier.
  • the first DRX cycle and the related information of the first eDRX cycle for RRM measurement determination are determined.
  • the "first" in the first DRX cycle and the first eDRX cycle itself has no specific meaning, but the first DRX cycle and the first eDRX cycle are specifically used to determine the RRM measurement DRX cycle and eDRX cycle.
  • the relevant information has at least one of the following contents:
  • the first DRX cycle information indicates at least the first DRX cycle used to determine the measurement configuration of the RRM measurement
  • the first eDRX cycle information includes but not limited to: indicating whether there is a first eDRX cycle, or indicating the duration of the first eDRX cycle if there is a first eDRX cycle.
  • the first DRX cycle information may include: one or more bits indicating the duration of the first DRX cycle, for example, the one or more bits indicating the duration identifier of the duration of the first DRX cycle;
  • the first eDRX cycle information includes a duration value. If the duration value is 0, it means that the UE does not have the first eDRX cycle; if the duration value is not 0, it means that the UE has the first eDRX cycle and the duration of the first eDRX cycle is the Duration value.
  • the first eDRX cycle information may include two bits, wherein one bit corresponds to an eDRX cycle in an idle state of the UE, and the other bit corresponds to an eDRX cycle in an inactive state of the UE.
  • the first eDRX cycle can be one of the idle eDRX cycle and the inactive eDRX cycle of the UE, and the corresponding bit value of the two bits is used as a preset value, indicating that the first eDRX cycle of the current UE is equal to the preset value
  • the idle state eDRX cycle or the inactive state eDRX cycle corresponding to the set bit If only one of the two bit values is a preset value; and neither of the two bit values is a preset value, it can be considered that the current UE does not have the first eDRX cycle.
  • the measurement configuration of the RRM measurement includes but is not limited to at least one of the following:
  • Measurement configuration of different system cells of the UE Measurement configuration of different system cells of the UE.
  • the measurement configuration for the serving cell at least includes: a measurement period.
  • the measurement configuration for same-frequency adjacent cells, the measurement configuration for inter-frequency adjacent cells, and the measurement configuration for inter-system cells may include: one or more of a detection cycle, a measurement cycle, and an evaluation cycle.
  • the detection period may be used for the UE to identify and evaluate the identified neighboring cells.
  • the measurement period is used to perform non-first measurement of neighboring cells after the corresponding neighboring cells are identified.
  • the evaluation period may be to perform evaluation of neighboring cells based on measurement results after the neighboring cells are identified.
  • the detection period is longer than the measurement period and longer than the evaluation period, and the evaluation period is longer than the measurement period.
  • the UE will check the synchronization signal block (Synchronization Signal and PBCH block, SSB SSB) of the neighboring cell.
  • PBCH is the abbreviation of Physical Broadcast Channel.
  • the UE may have the same or different measurement configurations for same-frequency neighboring cells and inter-frequency neighboring cells.
  • the measurement configuration of the RRM measurement may be determined according to the corresponding relationship between the measurement configuration and the configuration of the first eDRX cycle and the first DRX cycle.
  • the UE may receive a configuration table, in which the above-mentioned corresponding relationship is defined, so that in S120, a table lookup may be performed according to relevant information to obtain the measurement configuration of the RRM measurement.
  • relevant information is determined according to the unconnected state of the UE and eDRX configuration, so as to obtain whether the UE has the first eDRX cycle and the first DRX cycle.
  • Based on the configured eDRX configuration of the UE determine the measurement configuration suitable for the current UE state and the RRM measurement of the eDRX configuration, thereby reducing the measurement configuration that is not suitable for RRM measurement.
  • the UE still exits the sleep state frequently due to RRM measurement in eDRX mode.
  • the power consumption caused by the RRM measurement is performed, thereby further saving the power consumption of the UE.
  • the current unconnected state of the UE can be an idle state or an inactive state; and the eDRX cycle configured by the network side for the UE can be an idle eDRX cycle or an inactive eDRX cycle.
  • the UE may be configured with any one or both of the eDRX cycle in the idle state and the eDRX cycle in the inactive state, or may not be configured with the eDRX cycle in the idle state or the eDRX cycle in the inactive state.
  • the unconnected state of the UE and the eDRX configuration can be subdivided into multiple situations, which will be described separately in the following cases.
  • the second cycle can be a cycle with a duration of 10.24s
  • the third cycle can be a cycle with a duration of 5.12s
  • the first cycle can be is a period with a duration of 2.56s.
  • in S110 it is determined whether the UE has the first eDRX cycle and the first DRX cycle of the UE according to the unconnected state of the UE and the eDRX configuration.
  • the idle state eDRX cycle of the UE is configured with a first cycle, and at least one of the UE and/or the anchor base station of the UE does not support being idle for the first cycle State eDRX cycle.
  • the UE may determine that the UE does not have the first eDRX cycle, and the first DRX cycle is equal to the idle state eDRX cycle.
  • the UE does not have the first eDRX cycle, but the first DRX cycle of the UE may be equal to the idle state eDRX cycle.
  • the network side configures the idle state eDRX cycle of the UE as the first cycle, but the UE and/or the anchor base station to which the UE is connected is either called one of the serving base stations or Multiple eDRX cycles that do not support the idle state are the first cycle.
  • the UE in the idle state can be identified as not having the first eDRX cycle, and the first eDRX cycle can be equal to the eDRX cycle in the idle state configured on the network side.
  • the first cycle may be the minimum eDRX cycle supported by the eDRX mode.
  • the first cycle may be an eDRX cycle with a duration of 2.56s in the eDRX mode.
  • the UE's inactive eDRX cycle is configured with a first cycle and at least one of the UE and/or the UE's anchor base station does not support the first cycle In this case, it can be considered that the UE does not have the first eDRX cycle, and the first DRX cycle is equal to the inactive eDRX cycle.
  • the UE in the inactive state does not have the first eDRX cycle, and the first DRX cycle of the UE may be equal to the eDRX cycle in the inactive state.
  • the network side configures the UE's inactive eDRX cycle as the first cycle, but the UE and/or the anchor base station or serving base station to which the UE is connected One or more cycles that do not support the inactive state eDRX are the first cycle, then the UE in the inactive state at this time can be identified as not having the first eDRX cycle, and the first eDRX cycle can be equal to the inactive eDRX cycle configured on the network side .
  • the eDRX cycle in the idle state of the UE is not greater than a second cycle, and the eDRX cycle in the inactive state of the UE is not configured.
  • the UE does not have the first eDRX cycle and the first DRX cycle is determined according to the idle state eDRX configuration of the UE.
  • the first DRX cycle of the UE may be: the idle state DRX cycle defined by the idle state eDRX configuration; or, the first DRX cycle is equal to the idle state eDRX cycle and the radio access network RAN paging cycle the smaller of .
  • the RRM configuration of the UE in this inactive state may not have the first eDRX cycle, but only determines the measurement configuration of the RRM measurement according to the first DRX cycle .
  • the first DRX cycle may be: the cycle when the UE enters the DRX mode in the inactive state, may be the DRX cycle in the idle state, or may be the RAN paging cycle in the inactive state.
  • configuring the first DRX cycle as the idle state DRX cycle or the RAN paging cycle may be related to the current cycle of the inactive UE.
  • the UE has the first eDRX cycle equal to the idle state eDRX cycle and the first DRX cycle is determined according to the idle state eDRX configuration of the UE.
  • the UE will enter the eDRX mode according to the idle state eDRX cycle, so the idle state eDRX cycle can be determined as the first eDRX cycle, and the first DRX cycle can be further determined according to the idle state eDRX cycle.
  • the eDRX cycle in the idle state is not greater than the second cycle, that is, the eDRX cycle can be the first cycle to the third cycle.
  • the first period is less than the third period, and the third period is less than the second period.
  • the duration of the first cycle is 2.56s
  • the duration of the third cycle is 5.12s
  • the duration of the second cycle is 10.24s.
  • the first DRX cycles may all be equal to the eDRX cycles in the idle state.
  • the first DRX cycle is equal to the first cycle or the third cycle.
  • the UE is in an inactive state, and the UE is configured with an eDRX cycle in an idle state and an eDRX cycle in an inactive state, and neither the eDRX cycle in the idle state nor the eDRX cycle in the inactive state is greater than the second cycle.
  • the first eDRX cycle of the UE may be at least one of the following:
  • the first eDRX cycle is: the smaller of the inactive eDRX cycle and the idle eDRX cycle;
  • the first eDRX cycle is: the inactive eDRX cycle.
  • the first DRX cycle of the UE may be:
  • the first DRX cycle is determined according to the first eDRX cycle.
  • the first DRX cycle may be equal to the first eDRX cycle, or the first DRX cycle may be an eDRX cycle corresponding to any eDRX mode that is less than or equal to the first eDRX cycle.
  • Case F In response to the UE being in the idle state, the eDRX cycle in the idle state of the UE is greater than the second cycle and is not configured with an eDRX cycle in the inactive state.
  • the first eDRX cycle of the UE may be as follows:
  • the first DRX cycle of the UE may be at least one of the following;
  • the first DRX cycle is equal to the idle state eDRX cycle
  • the first DRX cycle is equal to the RAN paging cycle
  • the first DRX cycle is equal to the smaller of the idle eDRX cycle and the RAN paging cycle
  • the idle eDRX cycle of the UE if the idle eDRX cycle of the UE is greater than the second cycle, the idle eDRX cycle of the UE has a PTW, and if the idle eDRX cycle is configured as the first eDRX cycle, the measurement time of the RRM measurement can be limited within the PTW of the eDRX cycle in the idle state.
  • Case G the UE is in an inactive state, the eDRX cycle in the idle state of the UE is greater than the second cycle, and is not configured with an eDRX cycle in the inactive state.
  • the first eDRX cycle of the UE may be equal to the idle state eDRX cycle.
  • the first DRX cycle of the UE may be determined according to the eDRX configuration in idle state.
  • the first DRX cycle may be at least one of the following:
  • the first DRX cycle is the smaller of the idle state DRX cycle defined by the idle state eDRX configuration and the default paging cycle;
  • the first DRX cycle is an idle state DRX cycle defined by an idle state eDRX configuration.
  • the first DRX cycle may also be: the minimum of the idle state DRX cycle defined by the idle state eDRX configuration, the RAN paging cycle defined by the inactive state eDRX configuration, and the default paging cycle.
  • the idle eDRX cycle of the UE if the idle eDRX cycle of the UE is greater than the second cycle, the idle eDRX cycle of the UE has a PTW, and if the idle eDRX cycle is configured as the first eDRX cycle, the measurement time of the RRM measurement can be limited within the PTW of the eDRX cycle in the idle state.
  • the UE is in an idle state, and the idle state eDRX cycle of the UE is greater than the second cycle and is configured with an inactive eDRX cycle not greater than the second cycle.
  • the measurement time of the RRM measurement may be within the PTW of the eDRX cycle in the idle state.
  • the first DRX cycle may be determined according to the eDRX configuration in the idle state, specifically at least one of the following;
  • the first DRX cycle is the smaller of the eDRX cycle defined by the idle state eDRX configuration and the default paging cycle.
  • Case J the UE is in an inactive state, the eDRX cycle in the idle state of the UE is greater than the second cycle, and is configured with an eDRX cycle in the inactive state not greater than the second cycle.
  • the first eDRX cycle of the UE may be one of the following:
  • the first eDRX cycle is equal to the idle state eDRX cycle
  • the first eDRX cycle is equal to the smaller one of the idle eDRX cycle and the inactive eDRX cycle.
  • the first DRX cycle of the UE can be one of the following:
  • the first DRX cycle is the idle state DRX cycle defined by the idle state eDRX configuration
  • the first DRX cycle is the smaller of the idle state DRX cycle defined by the idle state eDRX configuration and the default paging cycle.
  • the first DRX cycle may be one of the following:
  • the first DRX cycle is the smaller of the idle state DRX cycle defined by the idle state eDRX configuration and the default paging cycle;
  • the first DRX cycle is the minimum of the idle state DRX cycle defined by the idle state eDRX configuration, the RAN paging cycle defined by the inactive state eDRX configuration, and the default paging cycle;
  • the first DRX cycle is the smaller one defined in the idle state DRX cycle defined by the idle state eDRX configuration and the RAN paging cycle defined by the inactive state eDRX configuration.
  • the measurement time of the RRM measurement is within the PTW of the idle eDRX cycle; otherwise, the measurement time of the RRM measurement may be within the entire time domain.
  • Case 1 the UE is in an idle state, and the eDRX cycle in the idle state of the UE is greater than the second cycle and is configured with an eDRX cycle in the inactive state that is larger than the second cycle.
  • the UE has a first eDRX cycle equal to the idle state eDRX cycle.
  • the measurement time of the RRM measurement is located within the PTW of the idle state eDRX cycle longer than the second cycle.
  • the first DRX cycle of the UE may be determined according to the eDRX configuration in the idle state, specifically at least one of the following:
  • the first DRX cycle is the smaller of the idle state eDRX configuration and the default paging cycle
  • the first DRX cycle may be an idle state DRX cycle defined by an idle state eDRX configuration.
  • Case L the UE is in an inactive state, the eDRX cycle in the idle state of the UE is greater than the second cycle, and is configured with an eDRX cycle in the inactive state that is larger than the second cycle.
  • the first eDRX cycle of the UE may be at least one of the following:
  • the first eDRX cycle may be the idle state eDRX cycle
  • the first eDRX cycle may be the inactive eDRX cycle
  • the first eDRX cycle may be the smaller one of the idle state eDRX cycle and the inactive state eDRX cycle.
  • the measurement time of the RRM measurement of the UE is within the PTW of the eDRX cycle in the idle state. If the first eDRX cycle is equal to the eDRX cycle in the inactive state, the measurement time of the RRM measurement of the UE is within the PTW of the eDRX cycle in the inactive state.
  • the UE has the first eDRX cycle equal to the idle state eDRX cycle, then the first DRX cycle of the UE may be as follows;
  • the idle state DRX cycle limited by the idle state eDRX configuration
  • the first DRX cycle of the UE may be as follows;
  • the idle state eDRX configuration defines the minimum of the idle state DRX cycle, the default paging cycle, and the RAN paging cycle defined by the inactive eDRX configuration;
  • the first DRX cycle of the UE may be as follows;
  • the first DRX cycle is the minimum of the idle state DRX cycle defined by the idle state eDRX configuration, the default paging cycle, and the RAN paging cycle defined by the inactive eDRX configuration;
  • the first DRX cycle is the smaller of the default paging cycle and the RAN paging cycle defined by the inactive eDRX configuration;
  • the first DRX cycle is the smaller of the default paging cycle and the idle state DRX cycle defined by the idle state eDRX configuration.
  • the time measured by the RRM is located in the PTW of the idle eDRX cycle and the PTW of the inactive eDRX cycle within the smaller of .
  • the RRM measurement of the UE is located in a certain PWT, it can be considered as located in the entire time domain.
  • the S120 may include:
  • S121 In response to the fact that the UE does not have the first eDRX cycle, determine a measurement configuration of the RRM measurement according to the first DRX cycle.
  • the measurement configuration is determined solely according to the first DRX cycle.
  • the measurement configuration includes but is not limited to: the measurement configuration of the RRM measurement of the serving cell, and/or Or the measurement configuration of the RRM measurement of the neighboring cell.
  • Adjacent cells include, but are not limited to: adjacent cells of the same frequency and/or adjacent cells of different frequencies and/or adjacent cells of different systems.
  • the measurement configuration may be determined according to one or more elements in Table 1:
  • the S120 may further include:
  • S122 In response to the UE having the first eDRX cycle and the first DRX cycle, determine a measurement configuration of the RRM measurement according to the first eDRX cycle and the first DRX cycle.
  • S120 may include S121 alone, S122 alone, or both S121 and S122.
  • the measurement configuration is determined in combination with the first eDRX cycle and the first DRX cycle.
  • the determined measurement configuration includes but is not limited to: RRM measurement of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • Adjacent cells include, but are not limited to: adjacent cells of the same frequency and/or adjacent cells of different frequencies and/or adjacent cells of different systems.
  • the measurement configuration of the RRM measurement may be determined according to any one of Tables 2 to 7.
  • Table 2 and Table 3 can be used alone or in combination.
  • Table 4 and Table 5 can be used alone or in combination.
  • Table 6 and Table 7 can be used alone or in combination.
  • the S120 may also include:
  • the UE In response to the fact that the UE has a first eDRX cycle and the first DRX cycle and that the UE has a first PTW, according to the first eDRX cycle, the first DRX cycle, and the first PTW, it is determined that a measurement configuration of said RRM measurement for RRM measurement within said first PTW;
  • the UE In response to the fact that the UE has the first eDRX cycle and the first DRX cycle and the UE does not have the first PTW, according to the first eDRX cycle and the first DRX cycle, determine whether to perform RRM measurement in the time domain The measurement configuration for the RRM measurement.
  • the first PTW may be a PTW of an eDRX cycle in an idle state or a PTW of an eDRX cycle in an inactive state of the UE.
  • the first PTW is an idle eDRX cycle or an inactive eDRX cycle PTW equal to the first eDRX cycle.
  • the measurement configuration of the RRM measurement includes at least one of the following:
  • An embodiment of the present disclosure provides a measurement configuration determination method for RRM measurement, so as to limit the measurement requirements of the terminal under the eDRX configuration;
  • the idle state eDRX period is configured as 2.56s.
  • Case 1 If the base station does not support the idle state eDRX cycle of 2.56s and/or the terminal does not support the idle state eDRX cycle of 2.56s, or at this time the terminal determines that the UE is not configured with an eDRX cycle, then the DRX cycle is 2.56s at this time , when the UE performs RRM measurement, the measurement parameters can be performed as follows:
  • Nserv Parameters such as Nserv will be determined according to the eDRX cycle or DRX cycle.
  • the UE may be in an idle state or an inactive state, and the measurement configuration of the RRM measurement of the UE may be shown in Table 1.
  • Case 2 If the base station has the ability to support the idle eDRX cycle of 2.56s, and the terminal also supports the idle state eDRX cycle of 2.56s, and at this time the terminal determines: UE is configured with eDRX cycle, determine the RRM measurement according to the following requirements There are several options for measuring parameters:
  • Method 1 Add the requirement of no PTW to the original eDRX table, and measure according to the method of no PTW.
  • the parameters of the RRM measurement of the serving cell can be shown in Table 2:
  • the value of Nserv is one or more eDRX or DRX cycles.
  • the eDRX or DRX cycle is 2.56s;
  • the measurement configuration for RRC measurement of neighboring cells may be as follows, for example, as shown in Table 3:
  • the adjacent cells involved here include but are not limited to: same-frequency adjacent cells and/or different-frequency adjacent cells.
  • the detection cycle, the measurement cycle and the evaluation cycle are determined.
  • the detection cycle will span multiple DRX cycles, such as 23 DRX cycles;
  • the measurement cycle is one or more eDRX cycles or DRX cycles
  • the evaluation cycle is one or more eDRX cycles or DRX cycles
  • Method 2 Measure according to the PTW method, that is, directly extend the duration of the eDRX cycle supported by the original table to 2.56s.
  • the measurement configuration for the RRM measurement of the serving cell may be shown in Table 4.
  • the RRC measurement for neighboring cells is as follows:
  • the adjacent cells here include: same-frequency adjacent cells and/or different-frequency adjacent cells.
  • the detection cycle is determined according to the eDRX cycle, and the measurement cycle and the evaluation cycle are determined according to the DRX cycle.
  • the detection cycle spans multiple eDRX cycles
  • the measurement cycle is one or more eDRX cycles or DRX cycles
  • the evaluation cycle is one or more eDRX cycles or DRX cycles and other measurement configurations, as shown in Table 5.
  • the measurement configuration for the RRM measurement of the serving cell may refer to Table 6.
  • the measurement parameters for the RRM measurement of neighboring cells can be determined according to Table 7, where the neighboring cells include but not limited to: same-frequency neighboring cells and/or inter-frequency cells.
  • the UE in the inactive state is configured with an idle eDRX cycle and the configured eDRX cycle is not greater than 10.24s, and the eDRX cycle in the inactive state is not configured, it is as follows:
  • the eDRX cycle in the idle state is one of 10.24s, 5.12s, or 2.56s, and the eDRX cycle in the inactive state is not configured.
  • the following options are available for determining the measurement parameters for RRM measurement:
  • DRX cycle min ⁇ idle state eDRX cycle, RAN paging (paging) cycle ⁇ ,
  • the measurement parameters of the UE when performing the RRM measurement can be determined using the content shown in Table 1.
  • the UE in the inactive state is configured with idle eDRX and inactive eDRX cycles, and the configured eDRX cycles are not greater than 10.24s, then the following:
  • the eDRX cycle in the idle state is one of 10.24s, 5.12s, or 2.56s
  • the eDRX cycle in the inactive state is one of 10.24s, 5.12s, or 2.56, then:
  • the terminal determines: UE is configured with an eDRX cycle, and the eDRX cycle is min ⁇ idle eDRX cycle, inactive eDRX cycle ⁇ or inactive eDRX cycle,
  • the parameters measured by RRM can be determined as follows:
  • the RRM measurement can determine the measurement configuration of the RRM measurement according to any of the tables in Table 2 to Table 5
  • the inactive state UE is configured with an idle state eDRX cycle greater than 10.24s, then the idle state eDRX is configured with PTW at this time, the PTW is PTW1 and the inactive state is not configured with an inactive eDRX cycle, as follows:
  • the time of RRM measurement is only limited to the PTW (ie PTW1) window of CN paging (paging), where:
  • DRX-cycle length min ⁇ idle state DRX cycle, default (default paging) cycle ⁇
  • DRX-cycle length min ⁇ idle state DRX cycle, default paging cycle ⁇
  • the length of PTW is the length of idle state PTW
  • RRM measurement can determine the measurement configuration of RRM measurement according to any table in Table 2 to Table 5
  • Mode 2 The time of RRM measurement is not limited to the PTW port of CN paging, and it is determined: UE is not configured with eDRX cycle
  • DRX cycle min ⁇ idle state eDRX cycle, RAN paging cycle ⁇
  • the measurement parameters during RRM measurement can be determined using the contents shown in Table 1.
  • the inactive state UE is configured with an idle state eDRX cycle greater than 10.24s (at this time, the idle state eDRX is configured with PTWPTW1) and the inactive state eDRX cycle is not greater than 10.24s (at this time, there is an inactive state eDRX cycle and no inactive state PTW), at this time the terminal Confirm: UE is configured with eDRX cycle, as follows:
  • the time measured by RRM is only limited to the PTW (ie PTW1) window of CN paging, where:
  • DRX-cycle length min ⁇ idle state DRX cycle, default paging cycle ⁇
  • DRX-cycle length min ⁇ idle state DRX cycle, default paging cycle ⁇
  • the length of the PTW is the length of the PTW in the idle state.
  • RRM measurement can determine the measurement configuration of RRM measurement according to any table in Table 2 to Table 5
  • Mode 2 The time of RRM measurement is not limited to the PTW port of CN paging
  • eDRX cycle min ⁇ idle eDRX cycle, inactive eDRX cycle ⁇
  • DRX-cycle length min ⁇ idle state DRX cycle, default paging cycle ⁇
  • the RRM measurement can determine the measurement configuration of the RRM measurement according to any of the tables in Table 2 to Table 5
  • the terminal determines: UE is configured with eDRX cycle, as follows:
  • Mode 1 The time of RRM measurement is only limited to the PTW port PTW1 of CN paging, where:
  • the eDRX cycle is an idle state eDRX cycle
  • DRX-cycle length min ⁇ idle state DRX cycle, default paging cycle ⁇
  • DRX cycle length min ⁇ idle DRX cycle, default paging cycle ⁇ or min ⁇ idle DRX cycle, default paging cycle, RAN paging cycle ⁇ .
  • the length of the PTW is the length of the idle state PTW.
  • RRM measurement can determine the measurement configuration of RRM measurement according to any table in Table 2 to Table 5
  • Mode 2 The time of RRM measurement is only limited to the PTW port of RAN paging (only for inactive UE), where:
  • the eDRX cycle is an inactive eDRX cycle
  • the length of the PTW is the length of the PTW in the inactive state.
  • RRM measurement can determine the measurement configuration of RRM measurement according to any table in Table 2 to Table 5
  • Method 3 The time for RRM measurement limited to the UE in the inactive state is not limited to the PTW port of CN paging g where:
  • eDRX cycle min ⁇ idle eDRX cycle, inactive eDRX cycle ⁇ or inactive eDRX cycle;
  • DRX cycle length min ⁇ idle DRX cycle, default paging cycle, RAN paging cycle ⁇ ;
  • the length of PTW is min ⁇ idle state PTW, inactive state PTW ⁇ .
  • the RRM measurement can determine the measurement configuration of the RRM measurement according to any one of tables in Table 2 to Table 5.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the idle state eDRX cycle of the UE is configured with the first cycle and at least one of the UE and/or the anchor base station of the UE does not support the idle state of the first cycle
  • the eDRX cycle determines that the UE does not have the first eDRX cycle, and the first DRX cycle is equal to the eDRX cycle in the idle state.
  • the duration of the first period may be 2.56s.
  • the measurement configuration of the RRM measurement of the UE is determined solely according to the first DRX cycle.
  • the measurement configuration of the RRM measurement can be determined according to Table 1.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the UE in the inactive state is configured with the first cycle, and at least one of the UE and/or the anchor base station of the UE does not support the first cycle
  • the duration of the first period may be 2.56s.
  • the measurement configuration of the RRM measurement of the UE is determined solely according to the first DRX cycle.
  • the measurement configuration of the RRM measurement can be determined according to Table 1.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • both the UE and the anchor base station of the UE support the eDRX cycle of the first cycle, if the UE is in the inactive state, the eDRX cycle in the idle state of the UE is not greater than the second cycle and the eDRX cycle in the inactive state of the UE.
  • the eDRX cycle is not configured, determining that the UE does not have the first eDRX cycle and determining the first DRX cycle according to the eDRX configuration in idle state of the UE.
  • the first DRX cycle may be the idle state DRX cycle defined by the idle state eDRX configuration, or the first DRX cycle is equal to the ratio of the idle state eDRX cycle and the RAN paging cycle small ones.
  • the measurement configuration of the RRM measurement of the UE is determined solely according to the first DRX cycle.
  • the measurement configuration of the RRM measurement can be determined according to Table 1.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is not greater than the second cycle and the inactive state of the UE.
  • the eDRX cycle is not configured, determining that the UE has a first eDRX cycle equal to the idle state, and determining the first DRX cycle according to the idle state eDRX configuration of the UE.
  • the measurement configuration of the RRM measurement of the UE is determined according to the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 2 and Table 3.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • the first DRX cycle may be equal to the idle state eDRX cycle, or equal to any one of the first cycle to the third cycle.
  • the first cycle may be an eDRX cycle with a duration of 2.56s
  • the second cycle may be an eDRX cycle with a duration of 10.24s
  • the third cycle may be an eDRX cycle with a duration of 5.12s.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is not greater than the second cycle and the inactive state of the UE.
  • the eDRX cycle is not configured, determining that the UE has a first eDRX cycle equal to the idle state, and determining the first DRX cycle according to the idle state eDRX configuration of the UE.
  • the measurement configuration of the RRM measurement of the UE is determined according to the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 4 and Table 5.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • the first DRX cycle may be equal to the idle state eDRX cycle, or equal to any one of the first cycle to the third cycle.
  • the first cycle may be an eDRX cycle with a duration of 2.56s
  • the second cycle may be an eDRX cycle with a duration of 10.24s
  • the third cycle may be an eDRX cycle with a duration of 5.12s.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is not greater than the second cycle and the inactive state of the UE.
  • the eDRX cycle is not configured, determining that the UE has a first eDRX cycle equal to the idle state, and determining the first DRX cycle according to the idle state eDRX configuration of the UE.
  • the measurement configuration of the RRM measurement of the UE is determined according to the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 6 and Table 7.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • the first DRX cycle may be equal to the idle state eDRX cycle, or equal to any one of the first cycle to the third cycle.
  • the first cycle may be an eDRX cycle with a duration of 2.56s
  • the second cycle may be an eDRX cycle with a duration of 10.24s
  • the third cycle may be an eDRX cycle with a duration of 5.12s.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • both the UE and the anchor base station of the UE support the eDRX cycle of the first cycle, if the UE is configured with the eDRX cycle in the idle state and the eDRX cycle in the inactive state and the eDRX cycle in the idle state and the eDRX cycle in the inactive state are both Not greater than the second cycle, determine that the UE has a first eDRX cycle equal to the inactive eDRX cycle, and the UE has a DRX cycle equal to any one of the first cycle to the third cycle.
  • the measurement configuration of the RRM measurement of the UE is determined according to the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 2 and Table 3.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • both the UE and the anchor base station of the UE support the eDRX cycle of the first cycle, if the UE is configured with the eDRX cycle in the idle state and the eDRX cycle in the inactive state and the eDRX cycle in the idle state and the eDRX cycle in the inactive state are both Not greater than the second cycle, determine that the UE has a first eDRX cycle equal to the inactive eDRX cycle, and the UE has a DRX cycle equal to any one of the first cycle to the third cycle.
  • the measurement configuration of the RRM measurement of the UE is determined according to the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 4 and Table 5.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • both the UE and the anchor base station of the UE support the eDRX cycle of the first cycle, if the UE is configured with the eDRX cycle in the idle state and the eDRX cycle in the inactive state and the eDRX cycle in the idle state and the eDRX cycle in the inactive state are both Not greater than the second cycle, determine that the UE has a first eDRX cycle equal to the inactive eDRX cycle, and the UE has a DRX cycle equal to any one of the first cycle to the third cycle.
  • the measurement configuration of the RRM measurement of the UE is determined according to the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 6 and Table 7.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • both the UE and the anchor base station of the UE support the eDRX cycle of the first cycle, if the UE is configured with the eDRX cycle in the idle state and the eDRX cycle in the inactive state and the eDRX cycle in the idle state and the eDRX cycle in the inactive state are both Not greater than the second cycle, it is determined that the UE has a first eDRX cycle equal to the smaller of the inactive eDRX cycle and the idle state eDRX cycle, and the UE has a first eDRX cycle equal to the first cycle to the third cycle Any DRX cycle.
  • the measurement configuration of the RRM measurement of the UE is determined according to the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 2 and Table 3.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • both the UE and the anchor base station of the UE support the eDRX cycle of the first cycle, if the UE is configured with the eDRX cycle in the idle state and the eDRX cycle in the inactive state and the eDRX cycle in the idle state and the eDRX cycle in the inactive state are both Not greater than the second cycle, it is determined that the UE has a first eDRX cycle equal to the smaller of the inactive eDRX cycle and the idle state eDRX cycle, and the UE has a first eDRX cycle equal to the first cycle to the third cycle Any DRX cycle.
  • the measurement configuration of the RRM measurement of the UE is determined according to the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 4 and Table 5.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • both the UE and the anchor base station of the UE support the eDRX cycle of the first cycle, if the UE is configured with the eDRX cycle in the idle state and the eDRX cycle in the inactive state and the eDRX cycle in the idle state and the eDRX cycle in the inactive state are both Not greater than the second cycle, it is determined that the UE has a first eDRX cycle equal to the smaller of the inactive eDRX cycle and the idle state eDRX cycle, and the UE has a first eDRX cycle equal to the first cycle to the third cycle Any DRX cycle.
  • the measurement configuration of the RRM measurement of the UE is determined according to the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 6 and Table 7.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • both the UE and the anchor base station of the UE support the eDRX cycle of the first cycle, if the UE is in the idle state, the idle state eDRX cycle of the UE is greater than the second cycle and is not configured with an inactive eDRX cycle cycle, it may be determined that the UE does not have the first eDRX cycle, and the UE has the first DRX cycle.
  • the first DRX cycle of the UE may be equal to the idle eDRX cycle or the RAN paging cycle; or, the first DRX cycle of the UE is equal to the smaller of the idle eDRX cycle and the RAN paging cycle.
  • the measurement configuration of the RRM measurement of the UE may be determined solely according to the first DRX cycle of the UE.
  • the measurement configuration of the RRM measurement of the UE may be determined with reference to Table 1.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • both the UE and the anchor base station of the UE support the eDRX cycle of the first cycle, if the UE is in the idle state, the idle state eDRX cycle of the UE is greater than the second cycle and is not configured with an inactive eDRX cycle cycle, it may be determined that the UE has a first eDRX cycle equal to the eDRX cycle in the idle state, and the UE has the first DRX cycle.
  • the first DRX cycle of the UE may be at least one of the following;
  • the first DRX cycle is equal to the idle state eDRX cycle
  • the first DRX cycle is equal to the RAN paging cycle
  • the first DRX cycle is equal to the smaller of the idle eDRX cycle and the RAN paging cycle
  • the measurement configuration of the RRM measurement of the UE is determined according to the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 2 and Table 3.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • the idle state eDRX cycle of the UE has a PTW. If the idle state eDRX cycle is configured as the first eDRX cycle, the measurement time of the RRM measurement can be limited to the idle state eDRX within the PTW of the cycle.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • both the UE and the anchor base station of the UE support the eDRX cycle of the first cycle, if the UE is in the idle state, the idle state eDRX cycle of the UE is greater than the second cycle and is not configured with an inactive eDRX cycle cycle, it may be determined that the UE has a first eDRX cycle equal to the eDRX cycle in the idle state, and the UE has the first DRX cycle.
  • the first DRX cycle of the UE may be at least one of the following;
  • the first DRX cycle is equal to the idle state eDRX cycle
  • the first DRX cycle is equal to the RAN paging cycle
  • the first DRX cycle is equal to the smaller of the idle eDRX cycle and the RAN paging cycle
  • the measurement configuration of the RRM measurement of the UE is determined according to the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 4 and Table 5.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • the idle state eDRX cycle of the UE has a PTW. If the idle state eDRX cycle is configured as the first eDRX cycle, the measurement time of the RRM measurement can be limited to the idle state eDRX within the PTW of the cycle.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • both the UE and the anchor base station of the UE support the eDRX cycle of the first cycle, if the UE is in the idle state, the idle state eDRX cycle of the UE is greater than the second cycle and is not configured with an inactive eDRX cycle cycle, it may be determined that the UE has a first eDRX cycle equal to the eDRX cycle in the idle state, and the UE has the first DRX cycle.
  • the first DRX cycle of the UE may be at least one of the following;
  • the first DRX cycle is equal to the idle state eDRX cycle
  • the first DRX cycle is equal to the RAN paging cycle
  • the first DRX cycle is equal to the smaller of the idle eDRX cycle and the RAN paging cycle
  • the measurement configuration of the RRM measurement of the UE is determined according to the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 6 and Table 7.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • the idle state eDRX cycle of the UE has a PTW. If the idle state eDRX cycle is configured as the first eDRX cycle, the measurement time of the RRM measurement can be limited to the idle state eDRX within the PTW of the cycle.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle determines that the UE has a first eDRX cycle equal to the eDRX cycle in the idle state, and the first DRX cycle may be determined according to the configuration of the eDRX cycle in the idle state.
  • the first DRX cycle may be at least one of the following:
  • the first DRX cycle is the smaller of the idle state DRX cycle defined by the idle state eDRX configuration and the default paging cycle;
  • the first DRX cycle is an idle state DRX cycle defined by an idle state eDRX configuration.
  • the first DRX cycle may also be: the minimum of the idle state DRX cycle defined by the idle state eDRX configuration, the RAN paging cycle defined by the inactive state eDRX configuration, and the default paging cycle.
  • the idle state eDRX cycle of the UE has a PTW. If the idle state eDRX cycle is configured as the first eDRX cycle, the measurement time of the RRM measurement can be limited to the idle state eDRX within the PTW of the cycle.
  • the measurement configuration of the RRM measurement of the UE is determined according to the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 6 and Table 7.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • the measurement configuration of the RRM measurement of the UE is determined in combination with the first eDRX cycle and the first DRX cycle of the UE.
  • the measurement configuration of the RRM measurement may be determined according to Table 2 and Table 3.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle determines that the UE has a first eDRX cycle equal to the eDRX cycle in the idle state, and the first DRX cycle may be determined according to the configuration of the eDRX cycle in the idle state.
  • the first DRX cycle may be at least one of the following:
  • the first DRX cycle is the smaller of the idle state DRX cycle defined by the idle state eDRX configuration and the default paging cycle;
  • the first DRX cycle is an idle state DRX cycle defined by an idle state eDRX configuration.
  • the first DRX cycle may also be: the minimum of the idle state DRX cycle defined by the idle state eDRX configuration, the RAN paging cycle defined by the inactive state eDRX configuration, and the default paging cycle.
  • the idle state eDRX cycle of the UE has a PTW. If the idle state eDRX cycle is configured as the first eDRX cycle, the measurement time of the RRM measurement can be limited to the idle state eDRX within the PTW of the cycle.
  • the measurement configuration of the RRM measurement of the UE is determined according to the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 6 and Table 7.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • the measurement configuration of the RRM measurement of the UE is determined in combination with the first eDRX cycle and the first DRX cycle of the UE.
  • the measurement configuration of the RRM measurement may be determined according to Table 4 and Table 5.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle determines that the UE has a first eDRX cycle equal to the eDRX cycle in the idle state, and the first DRX cycle may be determined according to the configuration of the eDRX cycle in the idle state.
  • the first DRX cycle may be at least one of the following:
  • the first DRX cycle is the smaller of the idle state DRX cycle defined by the idle state eDRX configuration and the default paging cycle;
  • the first DRX cycle is an idle state DRX cycle defined by an idle state eDRX configuration.
  • the first DRX cycle may also be: the minimum of the idle state DRX cycle defined by the idle state eDRX configuration, the RAN paging cycle defined by the inactive state eDRX configuration, and the default paging cycle.
  • the idle state eDRX cycle of the UE has a PTW. If the idle state eDRX cycle is configured as the first eDRX cycle, the measurement time of the RRM measurement can be limited to the idle state eDRX within the PTW of the cycle.
  • the measurement configuration of the RRM measurement of the UE is determined according to the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 6 and Table 7.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • the measurement configuration of the RRM measurement of the UE is determined in combination with the first eDRX cycle and the first DRX cycle of the UE.
  • the measurement configuration of the RRM measurement may be determined according to Table 6 and Table 7.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the UE in the idle state is greater than the second cycle and is configured with an eDRX cycle not greater than the first cycle.
  • the UE has a first eDRX cycle equal to the eDRX cycle in the idle state.
  • the measurement time of the RRM measurement may be within the PTW of the eDRX cycle.
  • the first DRX cycle of the UE may be at least one of the following:
  • the first DRX cycle is the smaller of the eDRX cycle defined by the idle state eDRX configuration and the default paging cycle.
  • the measurement configuration of the RRM measurement of the UE is determined in combination with the first eDRX cycle and the first DRX cycle of the UE.
  • the measurement configuration of the RRM measurement may be determined according to Table 2 and Table 3.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the UE in the idle state is greater than the second cycle and is configured with an eDRX cycle not greater than the first cycle.
  • the UE has a first eDRX cycle equal to the eDRX cycle in the idle state.
  • the measurement time of the RRM measurement may be within the PTW of the eDRX cycle.
  • the first DRX cycle of the UE may be at least one of the following:
  • the first DRX cycle is the smaller of the eDRX cycle defined by the idle state eDRX configuration and the default paging cycle.
  • the measurement configuration of the RRM measurement of the UE is determined in combination with the first eDRX cycle and the first DRX cycle of the UE.
  • the measurement configuration of the RRM measurement may be determined according to Table 4 and Table 5.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the UE in the idle state is greater than the second cycle and is configured with an eDRX cycle not greater than the first cycle.
  • the UE has a first eDRX cycle equal to the eDRX cycle in the idle state.
  • the measurement time of the RRM measurement may be within the PTW of the eDRX cycle.
  • the first DRX cycle of the UE may be at least one of the following:
  • the first DRX cycle is the smaller of the eDRX cycle defined by the idle state eDRX configuration and the default paging cycle.
  • the measurement configuration of the RRM measurement of the UE is determined in combination with the first eDRX cycle and the first DRX cycle of the UE.
  • the measurement configuration of the RRM measurement may be determined according to Table 6 and Table 7.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is greater than the second cycle and configured with an eDRX cycle not greater than the In the inactive eDRX cycle of the second cycle, it is determined that the UE has the first eDRX cycle and the first DRX cycle.
  • the first eDRX cycle that the UE has is equal to the idle state eDRX cycle
  • the first DRX cycle of the UE can be one of the following:
  • the first DRX cycle is the idle state DRX cycle defined by the idle state eDRX configuration
  • the first DRX cycle is the smaller of the idle state DRX cycle defined by the idle state eDRX configuration and the default paging cycle.
  • the measurement configuration of the UE's RRM measurement will be determined in conjunction with the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 2 and Table 3.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is greater than the second cycle and configured with an eDRX cycle not greater than the In the inactive eDRX cycle of the second cycle, it is determined that the UE has the first eDRX cycle and the first DRX cycle.
  • the first eDRX cycle that the UE has is equal to the idle state eDRX cycle
  • the first DRX cycle of the UE can be one of the following:
  • the first DRX cycle is the idle state DRX cycle defined by the idle state eDRX configuration
  • the first DRX cycle is the smaller of the idle state DRX cycle defined by the idle state eDRX configuration and the default paging cycle.
  • the measurement configuration of the UE's RRM measurement will be determined in conjunction with the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement can be determined according to Table 4 and Table 5.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is greater than the second cycle and configured with an eDRX cycle not greater than the In the inactive eDRX cycle of the second cycle, it is determined that the UE has the first eDRX cycle and the first DRX cycle.
  • the first eDRX cycle that the UE has is equal to the idle state eDRX cycle
  • the first DRX cycle of the UE can be one of the following:
  • the first DRX cycle is the idle state DRX cycle defined by the idle state eDRX configuration
  • the first DRX cycle is the smaller of the idle state DRX cycle defined by the idle state eDRX configuration and the default paging cycle.
  • the measurement configuration of the UE's RRM measurement will be determined in conjunction with the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 6 and Table 7.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is greater than the second cycle and configured with an eDRX cycle not greater than the In the inactive eDRX cycle of the second cycle, it is determined that the UE has the first eDRX cycle and the first DRX cycle.
  • the UE has the first eDRX cycle equal to the smaller one of the idle state eDRX cycle and the inactive state eDRX cycle.
  • the first DRX cycle that the UE has may be one of the following:
  • a DRX cycle is the smaller of the idle state DRX cycle defined by the idle state eDRX configuration and the default paging cycle;
  • the first DRX cycle is the minimum of the idle state DRX cycle defined by the idle state eDRX configuration, the RAN paging cycle defined by the inactive state eDRX configuration, and the default paging cycle;
  • the first DRX cycle is the smaller one defined in the idle state DRX cycle defined by the idle state eDRX configuration and the RAN paging cycle defined by the inactive state eDRX configuration.
  • the measurement configuration of the UE's RRM measurement will be determined in conjunction with the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 2 and Table 3.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is greater than the second cycle and configured with an eDRX cycle not greater than the In the inactive eDRX cycle of the second cycle, it is determined that the UE has the first eDRX cycle and the first DRX cycle.
  • the UE has the first eDRX cycle equal to the smaller one of the idle state eDRX cycle and the inactive state eDRX cycle.
  • the first DRX cycle that the UE has may be one of the following:
  • a DRX cycle is the smaller of the idle state DRX cycle defined by the idle state eDRX configuration and the default paging cycle;
  • the first DRX cycle is the minimum of the idle state DRX cycle defined by the idle state eDRX configuration, the RAN paging cycle defined by the inactive state eDRX configuration, and the default paging cycle;
  • the first DRX cycle is the smaller one defined in the idle state DRX cycle defined by the idle state eDRX configuration and the RAN paging cycle defined by the inactive state eDRX configuration.
  • the measurement configuration of the UE's RRM measurement will be determined in conjunction with the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement can be determined according to Table 4 and Table 5.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is greater than the second cycle and configured with an eDRX cycle not greater than the In the inactive eDRX cycle of the second cycle, it is determined that the UE has the first eDRX cycle and the first DRX cycle.
  • the UE has the first eDRX cycle equal to the smaller one of the idle state eDRX cycle and the inactive state eDRX cycle.
  • the first DRX cycle that the UE has may be one of the following:
  • a DRX cycle is the smaller of the idle state DRX cycle defined by the idle state eDRX configuration and the default paging cycle;
  • the first DRX cycle is the minimum of the idle state DRX cycle defined by the idle state eDRX configuration, the RAN paging cycle defined by the inactive state eDRX configuration, and the default paging cycle;
  • the first DRX cycle is the smaller one defined in the idle state DRX cycle defined by the idle state eDRX configuration and the RAN paging cycle defined by the inactive state eDRX configuration.
  • the measurement configuration of the UE's RRM measurement will be determined in conjunction with the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 6 and Table 7.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is greater than the second cycle and is configured with an eDRX cycle greater than the second cycle.
  • the UE has a first eDRX cycle and a first DRX cycle.
  • the first eDRX cycle of the UE may be: the idle state eDRX cycle;
  • the first DRX cycle of the UE may be: the idle state DRX cycle defined by the idle state eDRX configuration;
  • the measurement time of the RRM measurement of the UE is within the PTW of the eDRX cycle in the idle state. If the first eDRX cycle is equal to the eDRX cycle in the inactive state, the measurement time of the RRM measurement of the UE is within the PTW of the eDRX cycle in the inactive state.
  • the measurement configuration of the UE's RRM measurement will be determined in conjunction with the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 2 and Table 3.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is greater than the second cycle and is configured with an eDRX cycle greater than the second cycle.
  • the UE has a first eDRX cycle and a first DRX cycle.
  • the first eDRX cycle of the UE may be: the idle state eDRX cycle;
  • the first DRX cycle of the UE may be: the idle state DRX cycle defined by the idle state eDRX configuration;
  • the measurement time of the RRM measurement of the UE is within the PTW of the eDRX cycle in the idle state. If the first eDRX cycle is equal to the eDRX cycle in the inactive state, the measurement time of the RRM measurement of the UE is within the PTW of the eDRX cycle in the inactive state.
  • the measurement configuration of the UE's RRM measurement will be determined in conjunction with the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement can be determined according to Table 4 and Table 5.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is greater than the second cycle and is configured with an eDRX cycle greater than the second cycle.
  • the UE has a first eDRX cycle and a first DRX cycle.
  • the first eDRX cycle of the UE may be: the idle state eDRX cycle;
  • the first DRX cycle of the UE may be: the idle state DRX cycle defined by the idle state eDRX configuration;
  • the measurement time of the RRM measurement of the UE is within the PTW of the eDRX cycle in the idle state. If the first eDRX cycle is equal to the eDRX cycle in the inactive state, the measurement time of the RRM measurement of the UE is within the PTW of the eDRX cycle in the inactive state.
  • the measurement configuration of the UE's RRM measurement will be determined in conjunction with the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 6 and Table 7.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is greater than the second cycle and is configured with an eDRX cycle greater than the second cycle.
  • the UE has a first eDRX cycle and a first DRX cycle.
  • the first eDRX cycle of the UE is the inactive eDRX cycle
  • the first DRX cycle of the UE may be as follows;
  • the idle state eDRX configuration defines the minimum of the idle state DRX cycle, the default paging cycle, and the RAN paging cycle defined by the inactive eDRX configuration;
  • the measurement configuration of the UE's RRM measurement will be determined in conjunction with the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 2 and Table 3.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is greater than the second cycle and is configured with an eDRX cycle greater than the second cycle.
  • the UE has a first eDRX cycle and a first DRX cycle.
  • the first eDRX cycle of the UE is the inactive eDRX cycle
  • the first DRX cycle of the UE may be as follows;
  • the idle state eDRX configuration defines the minimum of the idle state DRX cycle, the default paging cycle, and the RAN paging cycle defined by the inactive eDRX configuration;
  • the measurement configuration of the UE's RRM measurement will be determined in conjunction with the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement can be determined according to Table 4 and Table 5.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is greater than the second cycle and is configured with an eDRX cycle greater than the second cycle.
  • the UE has a first eDRX cycle and a first DRX cycle.
  • the first eDRX cycle of the UE is the inactive eDRX cycle
  • the first DRX cycle of the UE may be as follows;
  • the idle state eDRX configuration defines the minimum of the idle state DRX cycle, the default paging cycle, and the RAN paging cycle defined by the inactive eDRX configuration;
  • the measurement configuration of the UE's RRM measurement will be determined in conjunction with the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 6 and Table 7.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is greater than the second cycle and is configured with an eDRX cycle greater than the second cycle.
  • the UE has a first eDRX cycle and a first DRX cycle.
  • the first eDRX cycle of the UE is equal to the smaller one of the idle state eDRX cycle and the inactive state eDRX cycle;
  • the first DRX cycle of the UE is one of the following:
  • the first DRX cycle is the minimum of the idle state DRX cycle defined by the idle state eDRX configuration, the default paging cycle, and the RAN paging cycle defined by the inactive eDRX configuration;
  • the first DRX cycle is the smaller of the default paging cycle and the RAN paging cycle defined by the inactive eDRX configuration;
  • the first DRX cycle is the smaller of the default paging cycle and the idle state DRX cycle defined by the idle state eDRX configuration.
  • the measurement configuration of the UE's RRM measurement will be determined in conjunction with the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 2 and Table 3.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is greater than the second cycle and is configured with an eDRX cycle greater than the second cycle.
  • the UE has a first eDRX cycle and a first DRX cycle.
  • the first eDRX cycle of the UE is equal to the smaller one of the idle state eDRX cycle and the inactive state eDRX cycle;
  • the first DRX cycle of the UE is one of the following:
  • the first DRX cycle is the minimum of the idle state DRX cycle defined by the idle state eDRX configuration, the default paging cycle, and the RAN paging cycle defined by the inactive eDRX configuration;
  • the first DRX cycle is the smaller of the default paging cycle and the RAN paging cycle defined by the inactive eDRX configuration;
  • the first DRX cycle is the smaller of the default paging cycle and the idle state DRX cycle defined by the idle state eDRX configuration.
  • the measurement configuration of the UE's RRM measurement will be determined in conjunction with the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement can be determined according to Table 4 and Table 5.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • An embodiment of the present disclosure provides a method for determining an RRM measurement configuration, which can be executed by a UE, including:
  • the eDRX cycle of the idle state of the UE is greater than the second cycle and is configured with an eDRX cycle greater than the second cycle.
  • the UE has a first eDRX cycle and a first DRX cycle.
  • the first eDRX cycle of the UE is equal to the smaller one of the idle state eDRX cycle and the inactive state eDRX cycle;
  • the first DRX cycle of the UE is one of the following:
  • the first DRX cycle is the minimum of the idle state DRX cycle defined by the idle state eDRX configuration, the default paging cycle, and the RAN paging cycle defined by the inactive eDRX configuration;
  • the first DRX cycle is the smaller of the default paging cycle and the RAN paging cycle defined by the inactive eDRX configuration;
  • the first DRX cycle is the smaller of the default paging cycle and the idle state DRX cycle defined by the idle state eDRX configuration.
  • the measurement configuration of the UE's RRM measurement will be determined in conjunction with the first eDRX cycle and the first DRX cycle.
  • the measurement configuration of the RRM measurement may be determined according to Table 6 and Table 7.
  • the measurement configuration may include: the RRM measurement configuration of the serving cell and/or the measurement configuration of the RRM measurement of the neighbor cell.
  • the adjacent cells here include, but are not limited to: same-frequency adjacent cells, different-frequency adjacent cells, and/or different-system cells.
  • an embodiment of the present disclosure provides an apparatus for determining an RRM measurement configuration, and the apparatus includes:
  • the first determining module 610 is configured to determine related information according to the unconnected state of the UE and the extended discontinuous reception eDRX configuration of the UE, wherein the related information at least indicates: the first DRX a cycle and whether the UE has a first eDRX cycle;
  • the second determining module 620 is configured to determine a measurement configuration for the UE to perform RRM measurement according to the relevant information.
  • the first determination module 610 and the second determination module 620 may both be program modules; the program modules include determination of relevant information and determination of measurement configurations after being executed by a processor.
  • the first determination module 610 and the second determination module 620 may both be soft and hard combination modules; the soft and hard combination modules include but are not limited to programmable arrays, and the programmable arrays include But includes: Field Programmable Arrays and Complex Programmable Arrays.
  • both the first determination module 610 and the second determination module 620 may be pure hardware modules; the pure hardware modules include: application specific integrated circuits.
  • the first determination module 610 is configured to perform at least one of the following:
  • the idle state eDRX cycle of the UE is configured with a first cycle, and at least one of the UE and/or the anchor base station of the UE does not support being idle for the first cycle state eDRX cycle, determine that the UE does not have the first eDRX cycle, and the first DRX cycle is equal to the idle state eDRX cycle;
  • the UE's inactive eDRX cycle is configured with a first cycle and at least one of the UE and/or the UE's anchor base station does not support the first cycle Determine that the UE does not have the first eDRX cycle, and the first DRX cycle is equal to the inactive eDRX cycle.
  • the first determination module 610 is configured to perform at least one of the following:
  • the idle eDRX cycle of the UE is not greater than the second cycle, and the inactive eDRX cycle of the UE is not configured, it is determined that the UE does not have the first eDRX cycle and according to the The idle eDRX configuration of the UE determines the first DRX cycle;
  • the idle state eDRX cycle of the UE is not greater than the second cycle and the inactive eDRX cycle of the UE is not configured, determine that the UE has an eDRX cycle equal to the idle state eDRX cycle
  • the first eDRX cycle is determined according to the idle state eDRX configuration of the UE.
  • the first determining module 610 is configured to respond to that the UE is in an inactive state, the idle state period of the UE is not greater than the second period, and the eDRX in the inactive state of the UE The cycle is not configured, and the UE does not have the first eDRX cycle, and it is determined that the first DRX cycle is equal to the smaller of the idle state eDRX cycle and the radio access network RAN paging cycle.
  • the first determining module 610 is configured to perform at least one of the following:
  • the UE In response to the fact that the UE is in an inactive state, the UE is configured with an idle eDRX cycle and an inactive eDRX cycle, and neither the idle eDRX cycle nor the inactive eDRX cycle is greater than the second cycle, determine the The UE has the first eDRX cycle equal to the smaller of the inactive eDRX cycle and the idle eDRX cycle, and determines that the first DRX cycle is the third cycle or the first cycle;
  • the UE In response to the fact that the UE is in an inactive state, the UE is configured with an idle eDRX cycle and an inactive eDRX cycle, and neither the idle eDRX cycle nor the inactive eDRX cycle is greater than the second cycle, determine the The UE has the first eDRX cycle equal to the inactive eDRX cycle, and determines that the first DRX cycle is the third cycle or the first cycle;
  • the third cycle is an eDRX cycle shorter than the second cycle; the first cycle is an eDRX cycle smaller than the third cycle.
  • the first determining module 610 is configured to perform at least one of the following:
  • the idle state eDRX cycle of the UE is greater than the second cycle and is not configured with an inactive state eDRX cycle, determine that the UE has a first eDRX cycle equal to the idle state eDRX cycle cycle, and determine the first DRX cycle according to the UE idle state eDRX configuration;
  • the idle state eDRX cycle of the UE being greater than the second cycle and not configured with an inactive state eDRX cycle, determining that the UE has a first eDRX cycle equal to the idle state eDRX cycle , and determine the first DRX cycle according to the UE idle state eDRX configuration;
  • the idle eDRX cycle of the UE In response to the UE being in an inactive state, the idle eDRX cycle of the UE being greater than the second cycle and not configured with an inactive eDRX cycle, determining that the UE does not have the first eDRX cycle and according to the The idle eDRX configuration of the UE determines the first DRX cycle.
  • the first determining module 610 is configured to perform at least one of the following:
  • the idle state eDRX cycle of the UE is greater than the second cycle and is not configured with an inactive state eDRX cycle, determine that the UE has a first eDRX cycle equal to the idle state eDRX cycle Period, determining that the first DRX cycle is the smaller of the idle state DRX cycle defined by the idle state eDRX configuration and the default paging cycle;
  • the idle state eDRX cycle of the UE is greater than the second cycle and is not configured with an inactive state eDRX cycle, determine that the UE has a first eDRX cycle equal to the idle state eDRX cycle Period, determining that the first DRX period is the minimum of the idle-state DRX period defined by the idle-state eDRX configuration, the RAN paging period defined by the inactive-state eDRX configuration, and the default paging period.
  • the first determination module 610 is configured to respond to that the UE is in the idle state, the idle state eDRX cycle of the UE is greater than the second cycle and is not configured with an inactive state eDRX Period, determining that the UE has a first eDRX period equal to the idle-state eDRX period, determining that the first DRX period is the smaller of the idle-state DRX period defined by the idle-state eDRX configuration and the default paging period .
  • the first determination module 610 is configured to execute in response to the UE being in an inactive state, the idle state eDRX cycle of the UE being greater than the second cycle and not configured with an inactive state eDRX Period, determining that the UE does not have the first eDRX cycle, determining that the first DRX cycle is the smaller of the idle eDRX cycle defined by the idle eDRX configuration and the RAN paging cycle.
  • the idle state eDRX cycle of the UE in response to the UE being in an inactive state, is greater than the second cycle and is not configured with an inactive state eDRX cycle, and the UE has an eDRX cycle equal to the idle state eDRX In the first eDRX cycle of the cycle, the RRM measurement of the UE is within the paging time window PTW of the idle state eDRX cycle.
  • the idle eDRX cycle of the UE in response to the UE being in an idle state, is greater than the second cycle and is not configured with an inactive eDRX cycle, and the UE has an eDRX cycle equal to the idle state
  • the first eDRX cycle of , the RRM measurement of the UE is located within the paging time window PTW of the idle state eDRX cycle.
  • the first determining module 610 is configured to perform at least one of the following:
  • the idle state eDRX cycle of the UE is greater than the second cycle and configured with an inactive eDRX cycle not greater than the second cycle, determining that the UE has an eDRX cycle equal to the idle state
  • the first eDRX cycle of the eDRX cycle and determine that the first DRX cycle is the smaller of the eDRX cycle defined by the idle state eDRX configuration and the default paging cycle;
  • the idle state eDRX cycle of the UE In response to the UE being in an inactive state, the idle state eDRX cycle of the UE being greater than the second cycle and configured with an inactive eDRX cycle not greater than the second cycle, determining that the UE has an eDRX cycle equal to the idle state The first eDRX cycle of the idle state eDRX cycle and determine the first DRX cycle according to the idle state eDRX configuration of the UE;
  • the idle state eDRX cycle of the UE In response to the UE being in an inactive state, the idle state eDRX cycle of the UE being greater than the second cycle and configured with an inactive eDRX cycle not greater than the second cycle, determining that the UE has an eDRX cycle equal to the idle state
  • the first eDRX cycle is the smaller one of the eDRX cycle in the inactive state and the eDRX cycle in the inactive state, and the first DRX cycle is determined according to the eDRX configuration in the idle state of the UE.
  • the first determining module 610 is configured to respond to that the UE is in an inactive state, and the eDRX cycle of the UE in an idle state is greater than the second cycle and is configured with an eDRX cycle not greater than the second cycle.
  • Periodic inactive eDRX cycle determining that the UE has the first eDRX cycle equal to the idle eDRX cycle, determining that the first DRX cycle is the idle state DRX cycle defined by the idle state eDRX configuration and the default search The smaller of the call cycles.
  • the first determining module 610 is configured to respond to that the UE is in an inactive state, and the eDRX cycle of the UE in an idle state is greater than the second cycle and is configured with an eDRX cycle not greater than the second cycle.
  • Periodic inactive eDRX cycle determining that the UE has the first eDRX cycle equal to the idle eDRX cycle, determining that the first DRX cycle is the idle state DRX cycle defined by the idle state eDRX configuration and the default search
  • the first determining module 610 is configured to respond to that the UE is in an inactive state, and the eDRX cycle of the UE in an idle state is greater than the second cycle and is configured with an eDRX cycle not greater than the second cycle.
  • Periodic inactive eDRX cycle determining that the UE has the first eDRX cycle equal to the smaller of the idle eDRX cycle and the inactive eDRX cycle, and determining that the first DRX cycle is idle eDRX
  • the inactive eDRX cycle of the second cycle determine that the UE has the first eDRX cycle equal to the smaller one of the idle eDRX cycle and the inactive eDRX cycle, and determine that the first DRX cycle is The smaller of the idle state DRX cycle defined by the idle state eDRX configuration and the RAN paging cycle defined by the inactive state eDRX configuration; or, in response to the UE being in the inactive state, the idle state eDRX cycle of the UE is greater than
  • the idle eDRX cycle of the UE in response to the UE being in the idle state, the idle eDRX cycle of the UE being greater than the second cycle and configured with an inactive eDRX cycle not greater than the second cycle, it is determined that the UE With the first eDRX cycle equal to the idle state eDRX cycle, the measurement time of the RRM measurement of the UE is within the PTW of the idle state eDRX cycle.
  • the idle state eDRX cycle of the UE in response to the UE being in an inactive state, is greater than the second cycle and configured with an inactive eDRX cycle not greater than the second cycle, the UE With the first eDRX cycle equal to the idle state eDRX cycle, the measurement time of the RRM measurement of the UE is within the PTW of the idle state eDRX cycle.
  • the first determination module 610 is configured to perform at least one of the following:
  • the idle state eDRX cycle of the UE is greater than the second cycle and configured with an inactive eDRX cycle greater than the second cycle, determining that the UE has an eDRX cycle equal to the idle state The first eDRX cycle of the cycle, and determine that the first DRX cycle is the smaller of the idle state DRX cycle defined by the idle state eDRX configuration and the default paging cycle;
  • the idle eDRX cycle of the UE In response to the UE being in an inactive state, the idle eDRX cycle of the UE being greater than the second cycle and configured with an inactive eDRX cycle greater than the second cycle, determining that the UE has an eDRX cycle equal to the idle state The first eDRX cycle of the eDRX cycle, and determine the first DRX cycle according to the idle state eDRX configuration of the UE;
  • the idle state eDRX cycle of the UE being greater than the second cycle and being configured with an inactive eDRX cycle greater than the second cycle, determining that the UE has an eDRX cycle equal to the inactive state
  • the first eDRX cycle of the active eDRX cycle and determine the first DRX cycle according to the UE's inactive eDRX configuration
  • the idle eDRX cycle of the UE In response to the UE being in an inactive state, the idle eDRX cycle of the UE being greater than the second cycle and configured with an inactive eDRX cycle greater than the second cycle, determining that the UE has an eDRX cycle equal to the idle state
  • the first eDRX cycle of the eDRX cycle and the eDRX cycle in the idle state is the smaller one, and the first DRX cycle is determined according to the eDRX configuration in the idle state and the eDRX configuration in the inactive state of the UE.
  • the first determination module 610 is configured to
  • the idle eDRX cycle of the UE In response to the UE being in an inactive state, the idle eDRX cycle of the UE being greater than the second cycle and configured with an inactive eDRX cycle greater than the second cycle, determining that the UE has an eDRX cycle equal to the idle state For the first eDRX cycle of the eDRX cycle, determine that the first DRX cycle is the smaller of the RAN paging cycle defined by the inactive state eDRX configuration and the default paging cycle;
  • the idle eDRX cycle of the UE In response to the UE being in an inactive state, the idle eDRX cycle of the UE being greater than the second cycle and configured with an inactive eDRX cycle greater than the second cycle, determining that the UE has an eDRX cycle equal to the idle state For the first eDRX cycle of the eDRX cycle, determining the first DRX cycle is determining that the first DRX cycle is the idle state DRX cycle defined by the idle state eDRX configuration, the RAN paging cycle defined by the inactive state eDRX configuration, and the default The smallest one that saves the paging cycle.
  • the first determination module 610 is configured to
  • the idle state eDRX cycle of the UE In response to the UE being in an inactive state, the idle state eDRX cycle of the UE being greater than the second cycle and being configured with an inactive eDRX cycle greater than the second cycle, determining that the UE has an eDRX cycle equal to the inactive state
  • the first eDRX cycle of the state eDRX cycle is determined to be the first DRX cycle defined by the idle state eDRX configuration, the idle state DRX cycle, the default paging cycle, and the RAN paging cycle defined by the inactive state eDRX configuration the smallest;
  • the idle state eDRX cycle of the UE being greater than the second cycle and being configured with an inactive eDRX cycle greater than the second cycle, determining that the UE has an eDRX cycle equal to the inactive state
  • the first eDRX cycle of the eDRX cycle in the active state and determine that the first DRX cycle is the smaller of the default paging cycle and the RAN paging cycle defined by the inactive eDRX configuration
  • the idle state eDRX cycle of the UE being greater than the second cycle and being configured with an inactive eDRX cycle greater than the second cycle, determining that the UE has an eDRX cycle equal to the inactive state
  • the first eDRX cycle of the eDRX cycle in the active state and determine that the first DRX cycle is the RAN paging cycle defined by the eDRX configuration in the inactive state.
  • the idle state eDRX cycle of the UE in response to the UE being in an idle state, is greater than the second cycle and is configured with an inactive eDRX cycle greater than the second cycle, and the UE has an eDRX cycle equal to In the first eDRX cycle of the idle state eDRX cycle, the measurement time of the RRM measurement of the UE is within the PTW of the idle state eDRX cycle.
  • the idle state eDRX cycle of the UE in response to the UE being in an inactive state, is greater than the second cycle and configured with an inactive eDRX cycle greater than the second cycle, the UE has The first eDRX cycle is equal to the idle state eDRX cycle, and the measurement time of the RRM measurement of the UE is within the PTW of the idle state eDRX cycle.
  • the idle state eDRX cycle of the UE in response to the UE being in an inactive state, is greater than the second cycle and configured with an inactive eDRX cycle greater than the second cycle, the The UE has the first eDRX cycle equal to the eDRX cycle in the inactive state, and the RRM measurement time of the UE is located at the PTW of the eDRX cycle in the inactive state.
  • the idle state eDRX cycle of the UE in response to the UE being in an inactive state, is greater than the second cycle and configured with an inactive eDRX cycle greater than the second cycle, the The UE has a first eDRX cycle equal to the smaller of the eDRX cycle in the idle state and the eDRX cycle in the idle state, and the time measured by the RRM is located at the lower of the PTW of the eDRX cycle in the idle state and the PTW of the eDRX cycle in the inactive state Smaller inside.
  • the second determination module 620 is configured to determine the measurement configuration of the RRM measurement according to the first DRX cycle in response to the fact that the UE does not have the first eDRX cycle; or, in response When the UE has the first eDRX cycle and the first DRX cycle, determine the measurement configuration of the RRM measurement according to the first eDRX cycle and the first DRX cycle.
  • the second determining module 620 is configured to respond to the UE having the first eDRX cycle and the first DRX cycle and the UE having the first PTW, according to the first eDRX cycle and the first DRX cycle and the first PTW, determine the measurement configuration of the RRM measurement for RRM measurement in the first PTW;
  • the UE In response to the fact that the UE has the first eDRX cycle and the first DRX cycle and the UE does not have the first PTW, according to the first eDRX cycle and the first DRX cycle, determine whether to perform RRM measurement in the time domain The measurement configuration for the RRM measurement.
  • the first PTW is an idle eDRX cycle or an inactive eDRX cycle PTW equal to the first eDRX cycle.
  • the measurement configuration of the RRM measurement includes at least one of the following:
  • the duration of the first period is 2.56s.
  • An embodiment of the present disclosure provides a communication device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the method for determining the RRM measurement configuration provided by any of the foregoing technical solutions.
  • the processor may include various types of storage media, which are non-transitory computer storage media, and can continue to memorize and store information thereon after the communication device is powered off.
  • the communication device includes: an access device or a UE.
  • the processor may be connected to the memory through a bus or the like, and is used to read an executable program stored on the memory, for example, at least one of the RRM measurement configuration determination methods shown in FIGS. 3 to 5 .
  • Fig. 7 is a block diagram of a UE 800 according to an exemplary embodiment.
  • UE 800 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, etc.
  • UE 800 may include one or more of the following components: processing component 802, memory 804, power supply component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814, and communication component 816 .
  • Processing component 802 generally controls the overall operations of UE 800, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802 .
  • the memory 804 is configured to store various types of data to support operations at the UE 800 . Examples of such data include instructions for any application or method operating on UE800, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 806 provides power to various components of the UE 800 .
  • Power components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for UE 800 .
  • the multimedia component 808 includes a screen providing an output interface between the UE 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the UE800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 804 or sent via communication component 816 .
  • the audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor component 814 includes one or more sensors for providing various aspects of status assessment for UE 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and the keypad of the UE800, the sensor component 814 can also detect the position change of the UE800 or a component of the UE800, and the user and Presence or absence of UE800 contact, UE800 orientation or acceleration/deceleration and temperature change of UE800.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communications between UE 800 and other devices.
  • the UE800 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • UE 800 may be powered by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gates Arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic implementations for performing the methods described above.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gates Arrays
  • controllers microcontrollers, microprocessors or other electronic implementations for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 804 including instructions, which can be executed by the processor 820 of the UE 800 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • an embodiment of the present disclosure shows a structure of an access device.
  • the communication device 900 may be provided as a network side device.
  • the communication device may be the aforementioned access device and/or core network device.
  • the communication device 900 includes a processing component 922 , which further includes one or more processors, and a memory resource represented by a memory 932 for storing instructions executable by the processing component 922 , such as application programs.
  • the application program stored in memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the aforementioned methods applied to the access device, for example, the RRM configuration determination methods shown in FIG. 2 and FIG. 3 to FIG.
  • the communication device 900 may also include a power supply component 926 configured to perform power management of the communication device 900, a wired or wireless network interface 950 configured to connect the communication device 900 to a network, and an input output (I/O) interface 958 .
  • the communication device 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种RRM测量配置确定方法及装置、通信设备及存储介质。该无线资源管理RRM测量配置确定方法,由用户设备UE执行,所述方法包括:根据所述UE所处的非连接态和所述UE的扩展型非连续接收eDRX配置情况,确定相关信息,其中,所述相关信息,至少指示:第一DRX周期及所述UE是否具有第一eDRX周期;根据所述相关信息,确定所述UE进行RRM测量的测量配置。

Description

RRM测量配置确定方法及装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种无线资源管理(Radio Resource Management,RRM)测量配置确定方法及装置、通信设备及存储介质。
背景技术
扩展型非连续接收(extended Discontinuous Reception,eDRX)模式是在普通的DRX模式上进行增强的一种降低用户设备(User Equipment,UE)功耗的工作模式。
在新无线(New Radio,NR)引入了非激活态,非激活态是一种介于空闲态和连接态之间的状态,通常情况下非激活态对接入网(Radio Access Network,RAN)可见但是可能对于核心网(Core Network,CN)不可见的UE状态。
非激活态和空闲态都属于UE的非连接态。
发明内容
本公开实施例提供一种RRM测量配置确定方法及装置、信息处理方法及装置、通信设备及存储介质。
本公开实施例第一方面提供一种RRM测量配置确定方法,由用户设备UE执行,所述方法包括:
根据所述UE所处的非连接态和所述UE的扩展型非连续接收eDRX配置情况,确定相关信息,其中,所述相关信息,至少指示:第一DRX周期及所述UE是否具有第一eDRX周期;
根据所述相关信息,确定所述UE进行RRM测量的测量配置。
本公开实施例第二方面提供一种RRM测量配置确定装置,所述装置包括:
第一确定模块,被配置为根据所述UE所处的非连接态和所述UE的扩展型非连续接收eDRX配置情况,确定相关信息,其中,所述相关信息,至少指示:第一DRX周期及所述UE是否具有第一eDRX周期;
第二确定模块,被配置为根据所述相关信息,确定所述UE进行RRM测量的测量配置。
本公开实施例第三方面提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如前述第一方面RRM测量配置确定方法。
本公开实施例第四方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现前述的第一方面提供的RRM测量配置确定方法。
本公开实施例提供的技术方案,用于确定RRM测量的测量配置(简称RRM测量配置)的eDRX周期和DRX周期,是根据UE所处的非连接态和eDRX配置情况确定的,一方面,采用这种方式确定RRM测量配置能够确定出满足RRM测量需求的测量配置,且另一方面采用这种测量配置控制UE的RRM测量,也可以减少因为RRM测量发生UE处于eDRX周期的睡眠时段的概率,减少了因为RRM测量引起的UE的睡眠时段被中断,进一步节省UE的功耗。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种eDRX功能执行的时序示意图;
图3是根据一示例性实施例示出的核心网配置空闲态的eDRX功能的交互示意图;
图4是根据一示例性实施例示出的一种RRM测量配置确定的流程示意图;
图5是根据一示例性实施例示出的一种RRM测量配置确定方法的流程示意图;
图6是根据一示例性实施例示出的一种RRM,测量配置确定装置的结构示意图;
图7是根据一示例性实施例示出的一种UE的结构示意图;
图8是根据一示例性实施例示出的一种通信设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于 确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个UE11以及若干个接入设备12。
其中,UE11可以是指向用户提供语音和/或数据连通性的设备。UE11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,UE11可以是物联网UE,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网UE的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程UE(remote terminal)、接入UE(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户UE(user equipment,UE)。或者,UE11也可以是无人飞行器的设备。或者,UE11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,UE11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
接入设备12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,接入设备12可以是4G系统中采用的演进型接入设备(eNB)。或者,接入设备12也可以是5G系统中采用集中分布式架构的接入设备(gNB)。当接入设备12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对接入设备12的具体实现方式不加以限定。
接入设备12和UE11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,UE11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个接入设备12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统 中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
UE启动了eDRX功能,则将进入到eDRX模式。处于eDRX模式的UE,具有以下特点包括:
UE随时可达,但是可达延较大,且时延取决于eDRX周期配置。
如此,启动了eDRX功能的UE最大限定的取得了UE的功耗和数据传输及时性之间的平衡。
eDRX功能具有如下eDRX参数中的一个或多个;
PTW的起始时域位置;
PTW的长度;
eDRX周期,可用T eDRX,H表示。
图2所示为UE启动eDRX功能以后的一个时序图。
参考图2可知:在一个eDRX周期内具有PTW;在PTW具有一个或多个DRX周期。
DRX周期的时长可远远小于eDRX周期的时长。
图3所示为:UE(即UE)与核心网之间交互eDRX功能的eDRX参数的一种。
图3所示的UE和核心网之间交互eDRX参数的方法可包括:
eNB通过系统消息块(System Information Block,SIB)向UE发送允许的eDRX功能的指示、特定小区指示(Cell-specific DRX)及超帧编号(Hyper system Frame Number,SFN)。
UE在附着(attach)请求或者跟踪区更新(Tracking Area Update,TAU)TAU请求,发送UE特定的DRX参数(UE-specific DRX)和/或优选的DRX参数(preferable eDRX);
MME接收到上述附着请求或者TAU请求之后,向UE下发eDRX配置;该eDRX配置中携带有前述一个或多个eDRX参数;
MME根据eDRX配置进行寻呼;
eNB在接收到MME下发的CN寻呼消息后,向UE转发CN寻呼消息。
通过基站(例如,演进型基站(eNB)或者下一代基站(gNB))等将核心网下发的eDRX参数透传给UE。例如,核心网的移动管理功能(Mobile Management Entity,MME)通过eNB向UE发送eDRX功能的eDRX参数。
RRC空闲态,简称空闲态;是对核心明知晓的一种UE的低功耗状态。
RRC非激活态,简称非激活态。非激活态是对于核心网透明的一种UE的低功耗状态。但是非激活态对于接入网是可见的。
若UE进入到非激活态,则UE需要接收CN发送的寻呼消息(即CN寻呼消息),还需要接收接入网(Radio Access Network,RAN)发送的寻呼消息,即RAN寻呼消息。
如图4所示,本公开实施例提供一种RRM测量配置确定方法,由用户设备UE执行,所述方法包括:
S110:根据所述UE所处的非连接态和所述UE的扩展型非连续接收eDRX配置情况,确定相关信息,其中,所述相关信息,至少指示:第一DRX周期及所述UE是否具有第一eDRX周期;
S120:根据所述相关信息,确定所述UE进行RRM测量的测量配置。
此处的非连接态包括:空闲态和/或非激活态。
所述UE包括但不限于使用NR UE。其中,NR UE可为使用NR载波的UE。
在本公开实施例中,会根据UE所处的非连接态和UE的eDRX配置情况,确定出用于进行RRM测量确定的第一DRX周期和第一eDRX周期的相关信息。
值得注意的是,在本申请中:第一DRX周期和第一eDRX周期中的“第一”自身并没有特定含义,但是第一DRX周期和第一eDRX周期,是专指用于确定RRM测量的DRX周期和eDRX周期。
该相关信息具有以下内容至少之一:
第一DRX周期信息,至少指示用于确定RRM测量的测量配置的第一DRX周期;
第一eDRX周期信息,包括但不限于:指示是否具有第一eDRX周期,或者在具有第一eDRX周期时指示第一eDRX周期的时长。
第一DRX周期信息,可包括:一个或多个比特,指示第一DRX周期的时长,例如,该一个或多个比特指示第一DRX周期所等于时长的时长标识;
一个或多个比特,指示第一DRX周期等于空闲态DRX周期、RAN寻呼周期或者缺省寻呼周期(default paging cycle)中任意一个。
示例性地,第一eDRX周期信息包括时长值,若时长值为0表示UE不具有第一eDRX周期,若时长值不为0表示UE具有第一eDRX周期且该第一eDRX周期的时长为该时长值。
又示例性地,所述第一eDRX周期信息可以包含两个比特,其中,一个比特对应于UE的空闲态eDRX周期,另一个比特对应于UE非激活态eDRX周期。第一eDRX周期可为该UE的空闲态eDRX周期和非激活态eDRX周期中一个,则使用两个比特中的对应比特值为预设值,指示当前UE的第一eDRX周期等于比特值为预设值的比特所对应的空闲态eDRX周期或者非激活态eDRX周期。若两个比特的比特值,仅有一个为预设值;且两个比特的比特值都不是预设值可认为当前UE不具有第一eDRX周期。
当然以上仅仅是对相关信息的信息内容和信息描述方式的举例说明,具体实现时不局限于此。
在本公开实施例中所述RRM测量的测量配置包括但不限于以下至少之一:
UE的服务小区的测量配置;
UE的同频邻小区的测量配置;
UE的异频邻小区的测量配置;
UE的异系统小区的测量配置。
针对服务小区的测量配置至少包括:测量周期。
针对同频邻小区的测量配置、针对异频邻小区的测量配置和针对异系统小区的测量配置均可包括:检测周期、测量周期和评估周期中的一个或多个。检测周期可以用于UE识别并评估识别的邻小区。测量周期用于在识别出对应的邻小区之后进行邻小区的非首次测量。评估周期可为在识别出邻小区之后基于测量结果进行邻小区的评估。
一般情况下,检测周期大于测量周期且大于评估周期,且评估周期大于测量周期。
在测量周期内,UE将对邻小区的同步信号块(Synchronization Signal and PBCH block,SSB SSB)。PBCH是Physical Broadcast Channel的缩写。
UE针对同频邻小区和异频邻小区的测量配置可以相同或者不同。
在根据相关信息确定RRM测量的测量配置时,可以根据测量配置与第一eDRX周期的配置情况和第一DRX周期之间的对应关系,确定出RRM测量的测量配置。
示例性地,UE可以接收到配置表,在配置表中限定有上述对应关系,如此在S120中可以根据相关信息进行查表,得到RRM测量的测量配置。
在本公开实施例中,根据UE所处的非连接态和eDRX配置情况来确定相关信息,从而得到UE是否具有第一eDRX周期和第一DRX周期,如此可以根据UE所处的非连接态和UE已配置的eDRX配置情况,确定出适合当前UE的状态和eDRX配置的RRM测量的测量配置,从而减少不合适RRM测量的测量配置导致的UE在eDRX模式下依然因为RRM测量频繁退出睡眠状态来进行RRM测量导致的功耗,从而进一步地节省UE的功耗。
UE当前所处的非连接态可以是空闲态,也可以是非激活态;而网络侧为UE配置的eDRX周期可以是空闲态eDRX周期,也可以是非激活态eDRX周期。当然UE可以配置有空闲态eDRX周期和非激活态eDRX周期中任意一个或两个,也可以没有配置空闲态eDRX周期和非激活态eDRX周期。
因此在这种情况下UE所处的非连接态和eDRX配置情况可以细分为多种情况,以下分情况进行分别说明。
以下描述时会涉及到第二周期、第三周期和第一周期,示例性地,第二周期可以是时长为10.24s的周期,第三周期可以是时长为5.12s的周期;第一周期可以是时长为2.56s的周期。
总之在本公开实施例中,在S110中会根据UE所处的非连接态和eDRX配置情况,确定出UE是否具有第一eDRX周期和UE的第一DRX周期。
情况A:
响应于所述UE处于空闲态,所述UE的空闲态eDRX周期被配置第一周期且所述UE和/或所述UE的锚基站的至少其中之一不支持为所述第一周期的空闲态eDRX周期。
此时,可以确定所述UE不具有所述第一eDRX周期,且所述第一DRX周期等于所述空闲态eDRX周期。
UE不具有第一eDRX周期,而UE的第一DRX周期可以等于空闲态eDRX周期。
示例性地,若网络侧(核心网和/或接入网)将UE的空闲态eDRX周期配置为第一周期,但是 UE和/或UE所连接的锚基站或者称为服务基站中的一个或多个不支持空闲态eDRX周期为第一周期,则此时针对空闲态的UE可以认定为不具有第一eDRX周期,且第一eDRX周期可以等于网络侧配置的空闲态eDRX周期。
值得注意的是:在一些实施例中,所述第一周期可为eDRX模式支持的最小eDRX周期。示例性地,所述第一周期可为eDRX模式下时长为2.56s的eDRX周期。
情况B:
响应于所述UE处于非激活态,所述UE的非激活态eDRX周期被配置第一周期且所述UE和/或所述UE的锚基站的至少其中之一不支持为所述第一周期的非激活态eDRX周期,此时可以认为UE不具有第一eDRX周期,且所述第一DRX周期等于所述非激活态eDRX周期。
在情况B下,处于非激活态的UE不具有第一eDRX周期,而UE的第一DRX周期可以等于非激活态eDRX周期。
又示例性地,若网络侧(核心网和/或接入网)将UE的非激活态eDRX周期配置为第一周期,但是UE和/或UE所连接的锚基站或者称为服务基站中的一个或多个不支持非激活态eDRX周期为第一周期,则此时非激活态的UE可以认定为不具有第一eDRX周期,且第一eDRX周期可以等于网络侧配置的非激活态eDRX周期。
情况C:
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期不大于第二周期且所述UE的非激活态eDRX周期未配置。
在情况C下,UE不具有第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期。
示例性地,所述UE的第一DRX周期可为:空闲态eDRX配置限定的空闲态DRX周期;或者,所述第一DRX周期等于所述空闲态eDRX周期和无线接入网络RAN寻呼周期的较小者。
由于UE处于非激活态,且由于UE未配置非激活态eDRX周期,在这种非激活态UE的RRM配置可以不具有第一eDRX周期,而是仅仅根据第一DRX周期确定RRM测量的测量配置。
此时第一DRX周期可为:UE在非激活态下进入到DRX模式时的周期,可能是空闲态DRX周期,也有可能是非激活态下的RAN寻呼周期。
因此,将第一DRX周期配置为空闲态DRX周期或者RAN寻呼周期都可能与非激活态UE当前的周期相关。
情况D:所述UE处于空闲态,所述UE的空闲态eDRX周期不大于所述第二周期且所述UE的非激活态eDRX周期未配置。
在情况D下,可认为所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期。
UE处于空闲态,则UE会根据空闲态eDRX周期进入到eDRX模式,因此可以按照将空闲态 eDRX周期确定为第一eDRX周期,且进一步根据空闲态eDRX周期确定第一DRX周期。
空闲态eDRX周期不大于第二周期,即所述eDRX周期可为第一周期至第三周期。
第一周期小于第三周期,第三周期小于第二周期。
示例性地,假设第一周期的时长为2.56s,第三周期的时长为5.12s;第二周期的时长为10.24s。
示例性地,所述第一DRX周期可都等于空闲态eDRX周期。
又示例性地,所述第一DRX周期等于第一周期或者第三周期。
情况E:
所述UE处于非激活态,所述UE配置有空闲态eDRX周期和非激活态eDRX周期且所述空闲态eDRX周期和非激活态eDRX周期都不大于所述第二周期。
在情况E下,所述UE的第一eDRX周期可为以下至少之一:
所述第一eDRX周期为:所述非激活态eDRX周期和所述空闲态eDRX周期中较小者;
所述第一eDRX周期为:所述非激活态eDRX周期。
所述UE的第一DRX周期可为:
第一周期至第三周期中任意一个。
示例性地,所述第一DRX周期是根据所述第一eDRX周期确定的。例如,所述第一DRX周期可以等于所述第一eDRX周期,或者,所述第一DRX周期可为任意小于或等于所述第一eDRX周期的任意eDRX模式对应的eDRX周期。
情况F:响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期。
在情况F下,所述UE的第一eDRX周期的情况可如下:
可确定所述UE不具有所述第一eDRX周期;
或者,
可确定所述UE具有等于所述空闲态eDRX周期的第一eDRX周期。
UE的第一DRX周期可为如下至少之一;
所述第一DRX周期等于所述空闲态eDRX周期;
所述第一DRX周期等于RAN寻呼周期;
所述第一DRX周期等于所述空闲态eDRX周期和所述RAN寻呼周期中的较小者;
空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
在一些实施例中,若UE的空闲态eDRX周期大于第二周期,则UE的空闲态eDRX周期具有PTW,若将空闲态eDRX周期配置为第一eDRX周期,则可以将RRM测量的测量时间限制在所述空闲态eDRX周期的PTW内。
情况G:所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期。
在情况G下所述UE的第一eDRX周期可等于所述空闲态eDRX周期。
而所述UE的第一DRX周期可以根据空闲态eDRX配置确定即可。
示例性地,所述第一DRX周期可为以下至少之一:
所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期的较小者;
所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期。
所述第一DRX周期还可为:空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
在一些实施例中,若UE的空闲态eDRX周期大于第二周期,则UE的空闲态eDRX周期具有PTW,若将空闲态eDRX周期配置为第一eDRX周期,则可以将RRM测量的测量时间限制在所述空闲态eDRX周期的PTW内。
情况H:
所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期。
在情况H下,可认为UE具有等于空闲态eDRX周期的第一eDRX周期。
此时RRM测量的测量时间可位于空闲态eDRX周期的PTW内。
而所述第一DRX周期可根据空闲态eDRX配置确定,具体可为如下至少之一;
空闲态eDRX配置限定的DRX周期;
所述第一DRX周期为空闲态eDRX配置限定的eDRX周期和缺省寻呼周期中的较小者。
情况J:所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期。
在情况J下,所述UE的第一eDRX周期可为如下之一:
所述第一eDRX周期等于空闲态eDRX周期;
所述第一eDRX周期等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者。
此时,若所述第一eDRX周期等于空闲态eDRX周期,则所述UE的第一DRX周期可为如下之一:
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期;
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期中的较小者。
若所述第一eDRX周期等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者,则所述第一DRX周期可为如下之一:
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期中的较小者;
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者;
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和非激活态eDRX配置限定的RAN寻呼周期中限定的较小者。
在一些实施例中,若大于第二周期的空闲态eDRX周期作为第一eDRX周期,则RRM测量的测量时间位于空闲态eDRX周期的PTW内,否则RRM测量的测量时间是可以位于整个时域内。
情况I:所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期。
在情况I下,可认为UE具有等于空闲态eDRX周期的第一eDRX周期。
此时RRM测量的测量时间位于大于第二周期的空闲态eDRX周期的PTW内。
UE的第一DRX周期可为根据空闲态eDRX配置确定的,具体可为如下至少之一:
所述第一DRX周期为空闲态eDRX配置和缺省寻呼周期中的较小者;
所述第一DRX周期可为空闲态eDRX配置限定的空闲态DRX周期。
情况L:所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期。
所述UE的第一eDRX周期可为如下至少之一:
所述第一eDRX周期可为所述空闲态eDRX周期;
所述第一eDRX周期可为所述非激活态eDRX周期
所述第一eDRX周期可为所述空闲态eDRX周期和所述非激活态eDRX周期较小者。
若所述第一eDRX周期等于空闲态eDRX周期,则UE的RRM测量的测量时间位于空闲态eDRX周期的PTW内。若所述第一eDRX周期等于非激活态eDRX周期,则UE的RRM测量的测量时间位于非激活态eDRX周期的PTW内。
所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,则所述UE的第一DRX周期可为如下;
空闲态eDRX配置限定的空闲态DRX周期;
非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期中的较小者;
空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
若所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,则所述UE的第一DRX周期可为如下;
非激活态eDRX配置限定的RAN寻呼周期;
所述空闲态eDRX配置限定空闲态DRX周期、缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的最小者;
缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的较小者。
若UE具有等于所述空闲态eDRX周期和所述空闲态eDRX周期中较小者的第一eDRX周期,则所述UE的第一DRX周期可为如下;
所述第一DRX周期为所述空闲态eDRX配置限定空闲态DRX周期、缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的最小者;
所述第一DRX周期为缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的较小者;
所述第一DRX周期为缺省寻呼周期和空闲态eDRX配置限定的空闲态DRX周期中的较小者。
若UE具有等于所述空闲态eDRX周期和所述空闲态eDRX周期中较小者的第一eDRX周期,则所述RRM测量的时间位于空闲态eDRX周期的PTW和非激活态eDRX周期的PTW中的较小者内。
在上述任意一种情况下,若没有特别限定UE的RRM测量位于某一个PWT内,则可以认为位于整个时域。
在一些实施例中,如图5所示,所述S120可包括:
S121:响应于所述UE不具有所述第一eDRX周期,根据所述第一DRX周期确定所述RRM测量的测量配置。
所述S121的具体实现方式有多种,在UE不具有第一eDRX周期时,单独根据第一DRX周期确定测量配置,该测量配置包括但不限于:服务小区的RRM测量的测量配置,和/或邻小区的RRM测量的测量配置。邻小区包括但不限于:同频邻小区和/或异频邻小区和/或异系统邻小区。
示例性地,可以根据如表格1中的一个或多个元素确定所述测量配置:
Figure PCTCN2021104065-appb-000001
Figure PCTCN2021104065-appb-000002
表1
值得注意的是表1中任意一个元素均可以单独使用或者与表格中的其他元素组合使用。
在另一个实施例中,如图5所示,所述S120还可包括:
S122:响应于所述UE具有所述第一eDRX周期和所述第一DRX周期,根据所述第一eDRX周期和所述第一DRX周期确定所述RRM测量的测量配置。
值得注意的是:S120可以单独包括S121,也可以单独包括S122,还可以同时包含S121和S122。
所述S122的具体实现方式有多种,在UE具有第一eDRX周期时,结合所述第一eDRX周期和第一DRX周期确定测量配置,确定的测量配置包括但不限于:服务小区的RRM测量的测量配置,和/或邻小区的RRM测量的测量配置。邻小区包括但不限于:同频邻小区和/或异频邻小区和/或异系统邻小区。示例性地,可以按照如表2至表7中任意一个表格确定RRM测量的测量配置。
Figure PCTCN2021104065-appb-000003
Figure PCTCN2021104065-appb-000004
表2
值得注意的是表2中任意一个元素均可以单独使用或者与表格中的其他元素组合使用。
Figure PCTCN2021104065-appb-000005
表3
值得注意的是表3中任意一个元素均可以单独使用或者与表格中的其他元素组合使用。
在一个实施例中,表2和表3可以单独使用也可以组合使用。
Figure PCTCN2021104065-appb-000006
表4
值得注意的是表4中任意一个元素均可以单独使用或者与表格中的其他元素组合使用。
Figure PCTCN2021104065-appb-000007
Figure PCTCN2021104065-appb-000008
表5
值得注意的是表5中任意一个元素均可以单独使用或者与表格中的其他元素组合使用。、
在一个实施例中,表4和表5可以单独使用也可以组合使用。
Figure PCTCN2021104065-appb-000009
表6
值得注意的是表6中任意一个元素均可以单独使用或者与表格中的其他元素组合使用。
Figure PCTCN2021104065-appb-000010
表7
值得注意的是表7中任意一个元素均可以单独使用或者与表格中的其他元素组合使用。
在一个实施例中,表6和表7可以单独使用也可以组合使用。
上述仅是利用表2至表7来确定RRM测量的测量配置的实施例,具体实现时不局限于此。
在一些实施例中,所述S120还可包括:
响应于所述UE具有第一eDRX周期和所述第一DRX周期且所述UE具有第一PTW,根据所述 第一eDRX周期和所述第一DRX周期及所述第一PTW,确定在所述第一PTW内进行RRM测量的所述RRM测量的测量配置;
或者,
响应于所述UE具有第一eDRX周期和所述第一DRX周期且所述UE不具有第一PTW,根据所述第一eDRX周期和所述第一DRX周期,确定在时域内进行RRM测量的所述RRM测量的测量配置。
示例性地,所述第一PTW可为UE的空闲态eDRX周期的PTW或者非激活态eDRX周期的PTW。
又示例性地,所述第一PTW为所述第一eDRX周期等于的空闲态eDRX周期或非激活态eDRX周期PTW。
在一些实施例中,所述RRM测量的测量配置包括以下至少之一:
针对所述UE服务小区的所述RRM测量的测量周期Nserv;
针对所述UE邻小区的所述RRM测量的检测周期、测量周期和/或评估周期。
本公开实施例提供一种RRM测量的测量配置确定方法,以限定终端在eDRX配置下测量需求;
对于空闲态UE被配置了空闲态eDRX周期为2.56s。
情况1:若基站不具有支持空闲态eDRX周期为2.56s和/或终端不支持空闲态eDRX周期为2.56s,或者此时终端确定:UE没有配置有eDRX周期,则此时DRX周期为2.56s,UE进行RRM测量时测量参数可以按照如下方式进行:
Nserv等参数将根据eDRX周期或者DRX周期等确定。
该UE可以处于空闲态或者非激活态,该UE的RRM测量的测量配置可如表1所示。
情况2:若基站具有支持空闲态eDRX周期为2.56s的能力,且终端也支持空闲态eDRX周期为2.56s的能力,且此时终端确定:UE is configured with eDRX cycle,按照如下要求确定RRM测量的测量参数,以下提供几种可选方式:
方式1:在原eDRX表格中增加没有PTW的要求,按照没有PTW方式测量。
服务小区的RRM测量的参数可表2所示:
Nserv取值为一个或者多个eDRX或者DRX周期,作为一种实施例eDRX或者DRX周期为2.56s;
作为一个实施例,针对邻小区的RRC测量的测量配置可如下,例如参考表3所示:
此处涉及的邻小区包括但不限于:同频邻小区和/或异频邻小区。
根据eDRX或者DRX周期,确定检测周期、测量周期和评估周期。
检测周期将跨越多个DRX周期,比如23个DRX周期;
测量周期为一个或者多个eDRX周期或者DRX周期;
评估周期为一个或者多个eDRX周期或者DRX周期
方式2:按照有PTW方式测量,即直接将原表格支持的eDRX周期的时长扩展到2.56s。
针对服务小区的RRM测量的测量配置可如表4所示。
作为一个实施例,针对邻小区的RRC测量如下:
此处的邻小区包括:同频邻小区和/或异频邻小区。
根据eDRX周期确定检测周期,根据DRX周期确定测量周期和评估周期。
检测周期跨越多个eDRX周期;
测量周期为一个或者多个eDRX周期或者DRX周期;
评估周期为一个或者多个eDRX周期或者DRX周期等测量配置可以参考表5所示。
方式三:
定义eDRX周期为2.56s的要求直接复用DRX周期为2.56s情况,作为特例添加至正常DRX的要求表格中:
作为一个实施例,针对服务小区的RRM测量的测量配置可参考表6所示。
针对邻小区的RRM测量的测量参数可如按照表7确定,此处的邻小区包括但不限于:同频邻小区和/或异频小区。
在一个实施例中,若非激活态UE被配置空闲态eDRX周期且被配置的eDRX周期不大于10.24s,非激活态eDRX周期没有配置,则如下:
空闲态eDRX周期为10.24s或者5.12s或者2.56s之一,且非激活态eDRX周期未配置,此时对于非激活态UE,在确定RRM测量的测量参数,有如下几种可选方式:
可选方式1:
认定UE未配置eDRX周期;
DRX周期=min{空闲态eDRX周期,RAN寻呼(paging)周期},
该UE在进行RRM测量时的测量参数可以采用如表1所示内容确定。
方式2:
认定UE配置有eDRX周期,且eDRX周期=空闲态eDRX周期,且RRM测量的测量参数可按照如下方式确定:若此时eDRX周期为2.56s,则可以按照前述情况2中2.56s规定进行;若此时eDRX周期为5.12s或者10.24s,则RRM测量可以按照如表2至表5中任意一个表格确定RRM测量的测量配置
若非激活态UE被配置空闲态eDRX和非激活态eDRX周期,且被配置的eDRX周期都不大于10.24s,则如下:
若空闲态eDRX周期为10.24s或者5.12s或者2.56s之一,且非激活态eDRX周期=10.24s或者5.12s或者2.56之一,此时:
终端确定:UE配置有eDRX周期,且eDRX周期为min{空闲态eDRX周期,非激活态eDRX周期}或者非激活态eDRX周期,
RRM测量的参数可以按照如下方式确定:
若此时eDRX周期=2.56,则可以按照前述情况2要求中2.56s规定进行;
若此时eDRX周期=5.12或者10.24,则RRM测量可以按照如表2至表5中任意一个表格确定RRM测量的测量配置
若非激活态UE被配置空闲态eDRX周期大于10.24s,则此时空闲态eDRX配置PTW,该PTW为PTW1且非激活态没有配置非激活态eDRX周期,则如下:
方式1:RRM测量的时间仅仅限制在CN寻呼(paging)的PTW(即PTW1)窗口内,其中:
确定UE配置有eDRX周期;且eDRX周期为空闲态eDRX周期;
对于空闲态UE:
DRX-周期长度=min{空闲态DRX周期,缺省(default paging)周期}
对于非激活态UE:
DRX-周期长度=min{空闲态DRX周期,缺省寻呼周期}
或者min{空闲态DRX周期,缺省寻呼周期,RAN寻呼周期}
其中PTW的长度为空闲态PTW的长度;
RRM测量可以按照如表2至表5中任意一个表格确定RRM测量的测量配置
方式2:RRM测量的时间不限制在CN寻呼的PTW口内,且确定:UE is not configured with eDRX周期
DRX周期=min{空闲态eDRX周期,RAN寻呼周期}
RRM测量时的测量参数可以采用如表1所示内容确定。
若非激活态UE被配置空闲态eDRX周期大于10.24s(此时空闲态eDRX配置PTWPTW1)且非激活态eDRX周期不大于10.24s(此时有非激活态eDRX周期无非激活态PTW),此时终端确定:UE is configured with eDRX周期,则如下:
方式1:RRM测量的时间仅仅限制在CN paging的PTW(即PTW1)窗口内,其中:
eDRX周期=空闲态eDRX周期
对于空闲态UE:
DRX-周期长度=min{空闲态DRX周期,缺省寻呼周期}
对于非激活态UE:
DRX-周期长度=min{空闲态DRX周期,缺省寻呼周期}
或者min{空闲态DRX周期,缺省寻呼周期,RAN寻呼周期}
其中PTW的长度为空闲态PTW长。
RRM测量可以按照如表2至表5中任意一个表格确定RRM测量的测量配置
方式2:RRM测量的时间不限制在CN paging的PTW口内;
eDRX周期=min{空闲态eDRX周期,非激活态eDRX周期}
DRX-周期长度=min{空闲态DRX周期,缺省寻呼周期}
或者min{空闲态DRX周期,缺省寻呼周期,RAN寻呼周期}
实际测量无PTW
RRM测量要求:
若此时eDRX周期=2.56,则可以按照情况2要求中2.56s规定进行;
若此时eDRX周期=5.12或者10.24,则RRM测量可以按照如表2至表5中任意一个表格确定RRM测量的测量配置
若非激活态UE被配置空闲态eDRX周期大于10.24s,此时PTW为PTW1(CN paging的PTW口PTW1),且非激活态eDRX周期大于10.24s,此时PTW为PTW2(RAN paging的PTW口PTW2),此时终端确定:UE is configured with eDRX周期,则如下:
方式1:RRM测量的时间仅仅限制在CN paging的PTW口PTW1内,其中:
eDRX周期为空闲态eDRX周期
对于空闲态UE:
DRX-周期长度=min{空闲态DRX周期,缺省寻呼周期}
对于非激活态UE:
DRX的周期长度=min{空闲态DRX周期,缺省寻呼周期}或者min{空闲态DRX周期,缺省寻呼周期,RAN寻呼周期}。
PTW的长度为空闲态PTW长。
RRM测量可以按照如表2至表5中任意一个表格确定RRM测量的测量配置
方式2:RRM测量的时间仅仅限制在RAN paging的PTW口内(仅限于非激活态UE),其中:
eDRX周期为非激活态eDRX周期
DRX-周期长度=
min{空闲态DRX周期,缺省寻呼周期,RAN寻呼周期}
或者min{缺省寻呼周期,RAN寻呼周期}
或者RAN寻呼周期
其中PTW的长度为非激活态PTW长。
RRM测量可以按照如表2至表5中任意一个表格确定RRM测量的测量配置
方式3:针对仅限于非激活态UE的RRM测量的时间不限制在CN寻呼g的PTW口内其中:
eDRX周期=min{空闲态eDRX周期,非激活态eDRX周期}或者非激活态eDRX周期;
DRX的周期长度=min{空闲态DRX周期,缺省寻呼周期,RAN寻呼周期};
PTW的长度为min{空闲态PTW,非激活态PTW}。
RRM测量可以按照如表2至表5中任意一个表格确定RRM测量的测量配置。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在所述UE处于空闲态,所述UE的空闲态eDRX周期被配置第一周期且所述UE和/或所述UE的锚基站的至少其中之一不支持为所述第一周期的空闲态eDRX周期,确定UE不具有第一eDRX周期,且第一DRX周期等于空闲态的eDRX周期。该第一周期的时长可为2.56s。
此时,单独根据所述第一DRX周期确定所述UE的RRM测量的测量配置。示例性地,可以按照表1确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在所述UE处于非激活态,所述UE的非激活态eDRX周期被配置第一周期且所述UE和/或所述UE的锚基站的至少其中之一不支持为所述第一周期的非激活态eDRX周期,确定所述UE不具有所述第一eDRX周期,且所述第一DRX周期等于所述非激活态eDRX周期。该第一周期的时长可为2.56s。
此时,单独根据所述第一DRX周期确定所述UE的RRM测量的测量配置。示例性地,可以按照表1确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期不大于第二周期且所述UE的非激活态eDRX周期未配置,确定确定所述UE不具有第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期。
在本公开实施例中,所述第一DRX周期可为所述空闲态eDRX配置限定的空闲态DRX周期,或者,所述第一DRX周期等于所述空闲态eDRX周期和RAN寻呼周期的较小者。
此时,单独根据所述第一DRX周期确定所述UE的RRM测量的测量配置。示例性地,可以按照表1确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,则在所述UE处于空闲态,所述UE的空闲态eDRX周期不大于第二周期且所述UE的非激活态eDRX周期未配置,确定确定所述UE具有等于空闲态的第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期。
此时,根据所述第一eDRX周期和所述第一DRX周期确定所述UE的RRM测量的测量配置,示例性地如,可以按照表2和表3确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
在一些情况下,所述第一DRX周期可等于所述空闲态eDRX周期,或者,等于第一周期至第三周期中的任意一个。第一周期可为可为时长为2.56s的eDRX周期,第二周期可是时长为10.24s的eDRX周期,而第三周期可是时长为5.12s的eDRX周期。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,则在所述UE处于空闲态,所述UE的空闲态eDRX周期不大于第二周期且所述UE的非激活态eDRX周期未配置,确定确定所述UE具有等于空闲态的第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期。
此时,根据所述第一eDRX周期和所述第一DRX周期确定所述UE的RRM测量的测量配置,示例性地如,可以按照表4和表5确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
在一些情况下,所述第一DRX周期可等于所述空闲态eDRX周期,或者,等于第一周期至第三周期中的任意一个。第一周期可为可为时长为2.56s的eDRX周期,第二周期可是时长为10.24s的eDRX周期,而第三周期可是时长为5.12s的eDRX周期。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,则在所述UE处于空闲态,所述UE的空闲态eDRX周期不大于第二周期且所述UE的非激活态eDRX周期未配置,确定确定所述UE具有等于空闲态的第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期。
此时,根据所述第一eDRX周期和所述第一DRX周期确定所述UE的RRM测量的测量配置,示例性地如,可以按照表6和表7确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM 测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
在一些情况下,所述第一DRX周期可等于所述空闲态eDRX周期,或者,等于第一周期至第三周期中的任意一个。第一周期可为可为时长为2.56s的eDRX周期,第二周期可是时长为10.24s的eDRX周期,而第三周期可是时长为5.12s的eDRX周期。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE配置有空闲态eDRX周期和非激活态eDRX周期且所述空闲态eDRX周期和非激活态eDRX周期都不大于所述第二周期,确定所述UE具有等于所述非激活态eDRX周期的第一eDRX周期,且所述UE具有等于第一周期至第三周期中任意一个的DRX周期。
此时,根据所述第一eDRX周期和所述第一DRX周期确定所述UE的RRM测量的测量配置,示例性地如,可以按照表2和表3确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE配置有空闲态eDRX周期和非激活态eDRX周期且所述空闲态eDRX周期和非激活态eDRX周期都不大于所述第二周期,确定所述UE具有等于所述非激活态eDRX周期的第一eDRX周期,且所述UE具有等于第一周期至第三周期中任意一个的DRX周期。
此时,根据所述第一eDRX周期和所述第一DRX周期确定所述UE的RRM测量的测量配置,示例性地如,可以按照表4和表5确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE配置有空闲态eDRX周期和非激活态eDRX周期且所述空闲态eDRX周期和非激活态eDRX周期都不大于所述第二周期,确定所述UE具有等于所述非激活态eDRX周期的第一eDRX周期,且所述UE具有等于第一周期至第三周期中任意一个的DRX周期。
此时,根据所述第一eDRX周期和所述第一DRX周期确定所述UE的RRM测量的测量配置,示例性地如,可以按照表6和表7确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE配置有空闲态eDRX周期和非激活态eDRX周期且所述空闲态eDRX周期和非激活态eDRX周期都不大于所述第二周期,确定所述UE具有等于所述非激活态eDRX周期和空闲态eDRX周期中较小者的第一eDRX周期,且所述UE具有等于第一周期至第三周期中任意一个的DRX周期。
此时,根据所述第一eDRX周期和所述第一DRX周期确定所述UE的RRM测量的测量配置,示例性地如,可以按照表2和表3确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE配置有空闲态eDRX周期和非激活态eDRX周期且所述空闲态eDRX周期和非激活态eDRX周期都不大于所述第二周期,确定所述UE具有等于所述非激活态eDRX周期和空闲态eDRX周期中较小者的第一eDRX周期,且所述UE具有等于第一周期至第三周期中任意一个的DRX周期。
此时,根据所述第一eDRX周期和所述第一DRX周期确定所述UE的RRM测量的测量配置,示例性地如,可以按照表4和表5确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE配置有空闲态eDRX周期和非激活态eDRX周期且所述空闲态eDRX周期和非激活态eDRX周期都不大于所述第二周期,确定所述UE具有等于所述非激活态eDRX周期和空闲态eDRX周期中较小者的第一eDRX周期,且所述UE具有等于第一周期至第三周期中任意一个的DRX周期。
此时,根据所述第一eDRX周期和所述第一DRX周期确定所述UE的RRM测量的测量配置,示例性地如,可以按照表6和表7确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,可确定UE不具有第一eDRX周期,且所述UE具有第一DRX周期。
所述UE具有的第一DRX周期可等于空闲态eDRX周期或者RAN寻呼周期;或者,所述UE具有的第一DRX周期等于空闲态eDRX周期和RAN寻呼周期中的较小者。
在这种情况下,可以单独根据UE的第一DRX周期确定UE的RRM测量的测量配置。示例性地,可以参照表1确定所述UE的RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,可确定UE具有等于所述空闲态eDRX周期的第一eDRX周期,且所述UE具有第一DRX周期。
UE的第一DRX周期可为如下至少之一;
所述第一DRX周期等于所述空闲态eDRX周期;
所述第一DRX周期等于RAN寻呼周期;
所述第一DRX周期等于所述空闲态eDRX周期和所述RAN寻呼周期中的较小者;
空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
此时,根据所述第一eDRX周期和所述第一DRX周期确定所述UE的RRM测量的测量配置,示例性地如,可以按照表2和表3确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
若UE的空闲态eDRX周期大于第二周期,则UE的空闲态eDRX周期具有PTW,若将空闲态eDRX周期配置为第一eDRX周期,则可以将RRM测量的测量时间限制在所述空闲态eDRX周期的PTW内。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,可确定UE具有等于所述空闲态eDRX周期的第一eDRX周期,且所述UE具有第一DRX周期。
UE的第一DRX周期可为如下至少之一;
所述第一DRX周期等于所述空闲态eDRX周期;
所述第一DRX周期等于RAN寻呼周期;
所述第一DRX周期等于所述空闲态eDRX周期和所述RAN寻呼周期中的较小者;
空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省 寻呼周期的最小者。
此时,根据所述第一eDRX周期和所述第一DRX周期确定所述UE的RRM测量的测量配置,示例性地如,可以按照表4和表5确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
若UE的空闲态eDRX周期大于第二周期,则UE的空闲态eDRX周期具有PTW,若将空闲态eDRX周期配置为第一eDRX周期,则可以将RRM测量的测量时间限制在所述空闲态eDRX周期的PTW内。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,可确定UE具有等于所述空闲态eDRX周期的第一eDRX周期,且所述UE具有第一DRX周期。
UE的第一DRX周期可为如下至少之一;
所述第一DRX周期等于所述空闲态eDRX周期;
所述第一DRX周期等于RAN寻呼周期;
所述第一DRX周期等于所述空闲态eDRX周期和所述RAN寻呼周期中的较小者;
空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
此时,根据所述第一eDRX周期和所述第一DRX周期确定所述UE的RRM测量的测量配置,示例性地如,可以按照表6和表7确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
若UE的空闲态eDRX周期大于第二周期,则UE的空闲态eDRX周期具有PTW,若将空闲态eDRX周期配置为第一eDRX周期,则可以将RRM测量的测量时间限制在所述空闲态eDRX周期的PTW内。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE具有等于空闲态eDRX周期的第一eDRX周期,且所述第一DRX周期可为根据空闲态eDRX周期配置确定。
示例性地,示例性地,所述第一DRX周期可为以下至少之一:
所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期的较小者;
所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期。
所述第一DRX周期还可为:空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
若UE的空闲态eDRX周期大于第二周期,则UE的空闲态eDRX周期具有PTW,若将空闲态eDRX周期配置为第一eDRX周期,则可以将RRM测量的测量时间限制在所述空闲态eDRX周期的PTW内。
此时,根据所述第一eDRX周期和所述第一DRX周期确定所述UE的RRM测量的测量配置,示例性地如,可以按照表6和表7确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
此时结合UE的第一eDRX周期和第一DRX周期,确定所述UE的RRM测量的测量配置。
示例性地如,可以按照表2和表3确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE具有等于空闲态eDRX周期的第一eDRX周期,且所述第一DRX周期可为根据空闲态eDRX周期配置确定。
示例性地,示例性地,所述第一DRX周期可为以下至少之一:
所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期的较小者;
所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期。
所述第一DRX周期还可为:空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
若UE的空闲态eDRX周期大于第二周期,则UE的空闲态eDRX周期具有PTW,若将空闲态eDRX周期配置为第一eDRX周期,则可以将RRM测量的测量时间限制在所述空闲态eDRX周期的PTW内。
此时,根据所述第一eDRX周期和所述第一DRX周期确定所述UE的RRM测量的测量配置, 示例性地如,可以按照表6和表7确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
此时结合UE的第一eDRX周期和第一DRX周期,确定所述UE的RRM测量的测量配置。
示例性地如,可以按照表4和表5确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE具有等于空闲态eDRX周期的第一eDRX周期,且所述第一DRX周期可为根据空闲态eDRX周期配置确定。
示例性地,示例性地,所述第一DRX周期可为以下至少之一:
所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期的较小者;
所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期。
所述第一DRX周期还可为:空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
若UE的空闲态eDRX周期大于第二周期,则UE的空闲态eDRX周期具有PTW,若将空闲态eDRX周期配置为第一eDRX周期,则可以将RRM测量的测量时间限制在所述空闲态eDRX周期的PTW内。
此时,根据所述第一eDRX周期和所述第一DRX周期确定所述UE的RRM测量的测量配置,示例性地如,可以按照表6和表7确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
此时结合UE的第一eDRX周期和第一DRX周期,确定所述UE的RRM测量的测量配置。
示例性地如,可以按照表6和表7确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于空闲态,所述 UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,可确定UE具有等于空闲态eDRX周期的第一eDRX周期。
由于当前空闲态eDRX周期大于第二周期,则RRM测量的测量时间可位于eDRX周期的PTW内。
此时所述UE的第一DRX周期可为如下至少之一:
空闲态eDRX配置限定的DRX周期;
所述第一DRX周期为空闲态eDRX配置限定的eDRX周期和缺省寻呼周期中的较小者。
此时结合UE的第一eDRX周期和第一DRX周期,确定所述UE的RRM测量的测量配置。
示例性地如,可以按照表2和表3确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,可确定UE具有等于空闲态eDRX周期的第一eDRX周期。
由于当前空闲态eDRX周期大于第二周期,则RRM测量的测量时间可位于eDRX周期的PTW内。
此时所述UE的第一DRX周期可为如下至少之一:
空闲态eDRX配置限定的DRX周期;
所述第一DRX周期为空闲态eDRX配置限定的eDRX周期和缺省寻呼周期中的较小者。
此时结合UE的第一eDRX周期和第一DRX周期,确定所述UE的RRM测量的测量配置。
示例性地如,可以按照表4和表5确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,可确定UE具有等于空闲态eDRX周期的第一eDRX周期。
由于当前空闲态eDRX周期大于第二周期,则RRM测量的测量时间可位于eDRX周期的PTW内。
此时所述UE的第一DRX周期可为如下至少之一:
空闲态eDRX配置限定的DRX周期;
所述第一DRX周期为空闲态eDRX配置限定的eDRX周期和缺省寻呼周期中的较小者。
此时结合UE的第一eDRX周期和第一DRX周期,确定所述UE的RRM测量的测量配置。
示例性地如,可以按照表6和表7确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有第一eDRX周期和第一DRX周期。
所述UE具有的第一eDRX周期等于空闲态eDRX周期;
若所述第一eDRX周期等于空闲态eDRX周期,则所述UE的第一DRX周期可为如下之一:
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期;
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期中的较小者。
由于UE同时具有第一eDRX周期和第一DRX周期,将结合第一eDRX周期和第一DRX周期确定所述UE的RRM测量的测量配置。
示例性地,可以按照表2和表3确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有第一eDRX周期和第一DRX周期。
所述UE具有的第一eDRX周期等于空闲态eDRX周期;
若所述第一eDRX周期等于空闲态eDRX周期,则所述UE的第一DRX周期可为如下之一:
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期;
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期中的较小者。
由于UE同时具有第一eDRX周期和第一DRX周期,将结合第一eDRX周期和第一DRX周期确定所述UE的RRM测量的测量配置。
示例性地,可以按照表4和表5确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有第一eDRX周期和第一DRX周期。
所述UE具有的第一eDRX周期等于空闲态eDRX周期;
若所述第一eDRX周期等于空闲态eDRX周期,则所述UE的第一DRX周期可为如下之一:
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期;
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期中的较小者。
由于UE同时具有第一eDRX周期和第一DRX周期,将结合第一eDRX周期和第一DRX周期确定所述UE的RRM测量的测量配置。
示例性地,可以按照表6和表7确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有第一eDRX周期和第一DRX周期。
所述UE具有所述第一eDRX周期等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者。
所述UE具有的第一DRX周期可为如下之一:
一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期中的较小者;
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者;
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和非激活态eDRX配置限定的RAN寻呼周期中限定的较小者。
由于UE同时具有第一eDRX周期和第一DRX周期,将结合第一eDRX周期和第一DRX周期确定所述UE的RRM测量的测量配置。
示例性地,可以按照表2和表3确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有第一eDRX周期和第一DRX周期。
所述UE具有所述第一eDRX周期等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者。
所述UE具有的第一DRX周期可为如下之一:
一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期中的较小者;
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者;
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和非激活态eDRX配置限定的RAN寻呼周期中限定的较小者。
由于UE同时具有第一eDRX周期和第一DRX周期,将结合第一eDRX周期和第一DRX周期确定所述UE的RRM测量的测量配置。
示例性地,可以按照表4和表5确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有第一eDRX周期和第一DRX周期。
所述UE具有所述第一eDRX周期等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者。
所述UE具有的第一DRX周期可为如下之一:
一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期中的较小者;
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者;
第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和非激活态eDRX配置限定的RAN寻呼周期中限定的较小者。
由于UE同时具有第一eDRX周期和第一DRX周期,将结合第一eDRX周期和第一DRX周期确定所述UE的RRM测量的测量配置。
示例性地,可以按照表6和表7确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有第一eDRX周期和第一DRX周期。
所述UE的第一eDRX周期可为:所述空闲态eDRX周期;
所述UE的第一DRX周期可为:空闲态eDRX配置限定的空闲态DRX周期;
非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期中的较小者;
空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
若所述第一eDRX周期等于空闲态eDRX周期,则UE的RRM测量的测量时间位于空闲态eDRX周期的PTW内。若所述第一eDRX周期等于非激活态eDRX周期,则UE的RRM测量的测量时间位于非激活态eDRX周期的PTW内。
由于UE同时具有第一eDRX周期和第一DRX周期,将结合第一eDRX周期和第一DRX周期确定所述UE的RRM测量的测量配置。
示例性地,可以按照表2和表3确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有第一eDRX周期和第一DRX周期。
所述UE的第一eDRX周期可为:所述空闲态eDRX周期;
所述UE的第一DRX周期可为:空闲态eDRX配置限定的空闲态DRX周期;
非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期中的较小者;
空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
若所述第一eDRX周期等于空闲态eDRX周期,则UE的RRM测量的测量时间位于空闲态eDRX周期的PTW内。若所述第一eDRX周期等于非激活态eDRX周期,则UE的RRM测量的测量时间位于非激活态eDRX周期的PTW内。
由于UE同时具有第一eDRX周期和第一DRX周期,将结合第一eDRX周期和第一DRX周期确定所述UE的RRM测量的测量配置。
示例性地,可以按照表4和表5确定RRM测量的测量配置。该测量配置可包括:服务小区的 RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有第一eDRX周期和第一DRX周期。
所述UE的第一eDRX周期可为:所述空闲态eDRX周期;
所述UE的第一DRX周期可为:空闲态eDRX配置限定的空闲态DRX周期;
非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期中的较小者;
空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
若所述第一eDRX周期等于空闲态eDRX周期,则UE的RRM测量的测量时间位于空闲态eDRX周期的PTW内。若所述第一eDRX周期等于非激活态eDRX周期,则UE的RRM测量的测量时间位于非激活态eDRX周期的PTW内。
由于UE同时具有第一eDRX周期和第一DRX周期,将结合第一eDRX周期和第一DRX周期确定所述UE的RRM测量的测量配置。
示例性地,可以按照表6和表7确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有第一eDRX周期和第一DRX周期。
所述UE的第一eDRX周期为所述非激活态eDRX周期;
若所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,则所述UE的第一DRX周期可为如下;
非激活态eDRX配置限定的RAN寻呼周期;
所述空闲态eDRX配置限定空闲态DRX周期、缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的最小者;
缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的较小者。
由于UE同时具有第一eDRX周期和第一DRX周期,将结合第一eDRX周期和第一DRX周期确定所述UE的RRM测量的测量配置。
示例性地,可以按照表2和表3确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有第一eDRX周期和第一DRX周期。
所述UE的第一eDRX周期为所述非激活态eDRX周期;
若所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,则所述UE的第一DRX周期可为如下;
非激活态eDRX配置限定的RAN寻呼周期;
所述空闲态eDRX配置限定空闲态DRX周期、缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的最小者;
缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的较小者。
由于UE同时具有第一eDRX周期和第一DRX周期,将结合第一eDRX周期和第一DRX周期确定所述UE的RRM测量的测量配置。
示例性地,可以按照表4和表5确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有第一eDRX周期和第一DRX周期。
所述UE的第一eDRX周期为所述非激活态eDRX周期;
若所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,则所述UE的第一DRX周期可为如下;
非激活态eDRX配置限定的RAN寻呼周期;
所述空闲态eDRX配置限定空闲态DRX周期、缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的最小者;
缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的较小者。
由于UE同时具有第一eDRX周期和第一DRX周期,将结合第一eDRX周期和第一DRX周期确定所述UE的RRM测量的测量配置。
示例性地,可以按照表6和表7确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有第一eDRX周期和第一DRX周期。
所述UE的第一eDRX周期等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者;
所述UE的第一DRX周期为如下之一:
所述第一DRX周期为所述空闲态eDRX配置限定空闲态DRX周期、缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的最小者;
所述第一DRX周期为缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的较小者;
所述第一DRX周期为缺省寻呼周期和空闲态eDRX配置限定的空闲态DRX周期中的较小者。
由于UE同时具有第一eDRX周期和第一DRX周期,将结合第一eDRX周期和第一DRX周期确定所述UE的RRM测量的测量配置。
示例性地,可以按照表2和表3确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有第一eDRX周期和第一DRX周期。
所述UE的第一eDRX周期等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者;
所述UE的第一DRX周期为如下之一:
所述第一DRX周期为所述空闲态eDRX配置限定空闲态DRX周期、缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的最小者;
所述第一DRX周期为缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的较小者;
所述第一DRX周期为缺省寻呼周期和空闲态eDRX配置限定的空闲态DRX周期中的较小者。
由于UE同时具有第一eDRX周期和第一DRX周期,将结合第一eDRX周期和第一DRX周期确定所述UE的RRM测量的测量配置。
示例性地,可以按照表4和表5确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异 频邻小区和/或异系统小区。
本公开实施例提供一种RRM测量配置确定方法,可由UE执行,包括:
在该方法中若UE和UE的锚基站都支持第一周期的eDRX周期,若所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有第一eDRX周期和第一DRX周期。
所述UE的第一eDRX周期等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者;
所述UE的第一DRX周期为如下之一:
所述第一DRX周期为所述空闲态eDRX配置限定空闲态DRX周期、缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的最小者;
所述第一DRX周期为缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的较小者;
所述第一DRX周期为缺省寻呼周期和空闲态eDRX配置限定的空闲态DRX周期中的较小者。
由于UE同时具有第一eDRX周期和第一DRX周期,将结合第一eDRX周期和第一DRX周期确定所述UE的RRM测量的测量配置。
示例性地,可以按照表6和表7确定RRM测量的测量配置。该测量配置可包括:服务小区的RRM测量配置和/或邻小区的RRM测量的测量配置。此处的邻小区包括但不限于:同频邻小区、异频邻小区和/或异系统小区。
如图6所示,本公开实施例提供一种RRM测量配置确定装置,所述装置包括:
第一确定模块610,被配置为根据所述UE所处的非连接态和所述UE的扩展型非连续接收eDRX配置情况,确定相关信息,其中,所述相关信息,至少指示:第一DRX周期及所述UE是否具有第一eDRX周期;
第二确定模块620,被配置为根据所述相关信息,确定所述UE进行RRM测量的测量配置。
在一些实施例中,所述第一确定模块610和所述第二确定模块620可均为程序模块;所述程序模块包括处理器执行之后,能够实现相关信息的确定和测量配置的确定。
在另一些实施例中,所述第一确定模块610和所述第二确定模块620可均为软硬结合模块;所述软硬结合模块包括但不限于可编程阵列,所述可编程阵列包括但包括:现场可编程阵列和复杂可编程阵列。
在还有一些实施例中,所述第一确定模块610和所述第二确定模块620可均为纯硬件模块;所述纯硬件模块包括:专用集成电路。
在一些实施例中,所述第一确定模块610,被配置为执行以下至少之一:
响应于所述UE处于空闲态,所述UE的空闲态eDRX周期被配置第一周期且所述UE和/或所述UE的锚基站的至少其中之一不支持为所述第一周期的空闲态eDRX周期,确定所述UE不具有所述第一eDRX周期,且所述第一DRX周期等于所述空闲态eDRX周期;
响应于所述UE处于非激活态,所述UE的非激活态eDRX周期被配置第一周期且所述UE和/或所述UE的锚基站的至少其中之一不支持为所述第一周期的非激活态eDRX周期,确定所述UE不具有所述第一eDRX周期,且所述第一DRX周期等于所述非激活态eDRX周期。
在一些实施例中,所述第一确定模块610,被配置为执行以下至少之一:
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期不大于第二周期且所述UE的非激活态eDRX周期未配置,确定所述UE不具有第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期;
响应于所述UE处于空闲态,所述UE的空闲态eDRX周期不大于所述第二周期且所述UE的非激活态eDRX周期未配置,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期。
在一些实施例中,所述第一确定模块610,被配置为响应于所述UE处于非激活态,所述UE的空闲态周期不大于所述第二周期,所述UE的非激活态eDRX周期未配置,且所述UE不具有所述第一eDRX周期,确定所述第一DRX周期等于所述空闲态eDRX周期和无线接入网络RAN寻呼周期的较小者。
在一些实施例中,所述第一确定模块610,被配置为执行以下至少之一:
响应于所述UE处于非激活态,所述UE配置有空闲态eDRX周期和非激活态eDRX周期且所述空闲态eDRX周期和非激活态eDRX周期都不大于所述第二周期,确定所述UE具有等于所述非激活态eDRX周期和所述空闲态eDRX周期中较小者的所述第一eDRX周期,且确定所述第一DRX周期为第三周期或第一周期;
响应于所述UE处于非激活态,所述UE配置有空闲态eDRX周期和非激活态eDRX周期且所述空闲态eDRX周期和非激活态eDRX周期都不大于所述第二周期,确定所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,且确定所述第一DRX周期为第三周期或第一周期;
其中,所述第三周期为比所述第二周期小的eDRX周期;所述第一周期为比所述第三周期小的eDRX周期。
在一些实施例中,所述第一确定模块610,被配置为执行以下至少之一:
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,且根据所述UE空闲态eDRX配置确定所述第一DRX周期;
响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,且根据所述UE空闲态eDRX配置确定所述第一DRX周期;
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE不具有所述第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期。
在一些实施例中,所述第一确定模块610,被配置执行以下至少之一:
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期的较小者;
或者,
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
在一些实施例中,所述第一确定模块610,被配置为所述响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,确定所述所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期的较小者。
在一些实施例中,所述第一确定模块610,被配置为执行响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE不具有所述第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态eDRX周期和RAN寻呼周期的较小者。
在一些实施例中,响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,所述UE的RRM测量位于所述空闲态eDRX周期的寻呼时间窗PTW内。
在一些实施例中,响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,所述UE的RRM测量位于所述空闲态eDRX周期的寻呼时间窗PTW内。
在一些实施例中,所述第一确定模块610,被配置执行以下至少之一:
响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,且确定所述第一DRX周期为空闲态eDRX配置限定的eDRX周期和缺省寻呼周期中的较小者;
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期;
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者的所述第一eDRX周期,且根据所述UE的空闲态eDRX配置确定所述第一 DRX周期。
在一些实施例中,所述第一确定模块610,被配置为响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期中的较小者。
在一些实施例中,所述第一确定模块610,被配置为响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期的较小者;或者,响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
在一些实施例中,所述第一确定模块610,被配置为响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者的所述第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期的较小者;或者,响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者的所述第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和非激活态eDRX配置限定的RAN寻呼周期的较小者;或者,响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者的所述第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
在一些实施例中,响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,所述UE的RRM测量的测量时间位于所述空闲态eDRX周期的PTW内。
在一些实施例中,响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,所述UE的RRM测量的测量时间位于所述空闲态eDRX周期的PTW内。
在一些实施例中,所述第一确定模块610,被配置为执行以下至少之一:
响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所 述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,且确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期中的较小者;
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,且根据所述UE的空闲态eDRX配置确定所述第一DRX周期;
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,且根据所述UE的非激活态eDRX配置确定所述第一DRX周期;
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期和所述空闲态eDRX周期中较小者的第一eDRX周期,根据所述UE的空闲态eDRX配置和非激活态eDRX配置确定所述第一DRX周期。
在一些实施例中,所述第一确定模块610,被配置为
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期中的较小者;
或者,
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
在一些实施例中,所述第一确定模块610,被配置为
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为所述空闲态eDRX配置限定空闲态DRX周期、缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的最小者;
或者,
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的较小者;
或者,
响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为非激活态eDRX配置限定的RAN寻呼周期。
在一些实施例中,响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,所述UE的RRM测量的测量时间位于所述空闲态eDRX周期的PTW内。
在一个实施例中,响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,所述UE的RRM测量的测量时间位于所述空闲态eDRX周期的PTW内。
在一些实施例中,所述响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,所述UE的RRM测量时间位于所述非激活态eDRX周期的PTW。
在一些实施例中,所述响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,所述UE具有等于所述空闲态eDRX周期和所述空闲态eDRX周期中较小者的第一eDRX周期,所述RRM测量的时间位于空闲态eDRX周期的PTW和非激活态eDRX周期的PTW中的较小者内。
在一些实施例中,所述第二确定模块620,被配置为响应于所述UE不具有所述第一eDRX周期,根据所述第一DRX周期确定所述RRM测量的测量配置;或者,响应于所述UE具有所述第一eDRX周期和所述第一DRX周期,根据所述第一eDRX周期和所述第一DRX周期确定所述RRM测量的测量配置。
在一些实施例中,所述第二确定模块620,被配置为响应于所述UE具有第一eDRX周期和所述第一DRX周期且所述UE具有第一PTW,根据所述第一eDRX周期和所述第一DRX周期及所述第一PTW,确定在所述第一PTW内进行RRM测量的所述RRM测量的测量配置;
或者,
响应于所述UE具有第一eDRX周期和所述第一DRX周期且所述UE不具有第一PTW,根据所述第一eDRX周期和所述第一DRX周期,确定在时域内进行RRM测量的所述RRM测量的测量配置。
所述第一PTW为所述第一eDRX周期等于的空闲态eDRX周期或非激活态eDRX周期PTW。
在一些实施例中,所述RRM测量的测量配置包括以下至少之一:
针对所述UE服务小区的所述RRM测量的测量周期Nserv;
针对所述UE邻小区的所述RRM测量的检测周期、测量周期和/或评估周期。
在一些实施例中,所述第一周期的时长为2.56s。
本公开实施例提供一种通信设备,包括:
用于存储处理器可执行指令的存储器;
处理器,分别存储器连接;
其中,处理器被配置为执行前述任意技术方案提供的RRM测量配置确定方法。
处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
这里,所述通信设备包括:接入设备或UE。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图图3至图5所示RRM测量配置确定方法的至少其中之一。
图7是根据一示例性实施例示出的一种UE800的框图。例如,UE 800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,UE800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制UE800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在UE800的操作。这些数据的示例包括用于在UE800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为UE800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为UE800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述UE800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当UE800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当UE800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频 信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为UE800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为UE800的显示器和小键盘,传感器组件814还可以检测UE800或UE800一个组件的位置改变,用户与UE800接触的存在或不存在,UE800方位或加速/减速和UE800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于UE800和其他设备之间有线或无线方式的通信。UE800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由UE800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图8所示,本公开一实施例示出一种接入设备的结构。例如,通信设备900可以被提供为一网络侧设备。该通信设备可为前述的接入设备和/或核心网设备。
参照图8,通信设备900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述接入设备的任意方法,例如,,如图2、图3至图所示RRM配置确定方法。
通信设备900还可以包括一个电源组件926被配置为执行通信设备900的电源管理,一个有线或无线网络接口950被配置为将通信设备900连接到网络,和一个输入输出(I/O)接口958。通信设备900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (31)

  1. 一种无线资源管理RRM测量配置确定方法,由用户设备UE执行,所述方法包括:
    根据所述UE所处的非连接态和所述UE的扩展型非连续接收eDRX配置情况,确定相关信息,其中,所述相关信息,至少指示:第一DRX周期及所述UE是否具有第一eDRX周期;
    根据所述相关信息,确定所述UE进行RRM测量的测量配置。
  2. 根据权利要求1所述的方法,其中,所述根据所述UE所处的非连接态和所述UE的扩展型非连续接收eDRX配置情况,确定相关信息,包括以下至少之一:
    响应于所述UE处于空闲态,所述UE的空闲态eDRX周期被配置第一周期且所述UE和/或所述UE的锚基站的至少其中之一不支持为所述第一周期的空闲态eDRX周期,确定所述UE不具有所述第一eDRX周期,且所述第一DRX周期等于所述空闲态eDRX周期;
    响应于所述UE处于非激活态,所述UE的非激活态eDRX周期被配置第一周期且所述UE和/或所述UE的锚基站的至少其中之一不支持为所述第一周期的非激活态eDRX周期,确定所述UE不具有所述第一eDRX周期,且所述第一DRX周期等于所述非激活态eDRX周期。
  3. 根据权利要求1或2所述的方法,其中,所述根据所述UE所处的非连接态和所述UE的扩展型非连续接收eDRX配置情况,确定相关信息,还包括以下至少之一:
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期不大于第二周期且所述UE的非激活态eDRX周期未配置,确定所述UE不具有第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期;
    响应于所述UE处于空闲态,所述UE的空闲态eDRX周期不大于所述第二周期且所述UE的非激活态eDRX周期未配置,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期。
  4. 根据权利要求3所述的方法,其中,所述响应于所述UE处于非激活态,所述UE的空闲态eDRX周期不大于第二周期且所述UE的非激活态eDRX周期未配置,确定所述UE不具有第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期,包括:
    响应于所述UE处于非激活态,所述UE的空闲态周期不大于所述第二周期,所述UE的非激活态eDRX周期未配置,且所述UE不具有所述第一eDRX周期,确定所述第一DRX周期等于所述空闲态eDRX周期和无线接入网络RAN寻呼周期的较小者。
  5. 根据权利要求1至4任一项所述的方法,其中,所述根据所述UE所处的非连接态和所述UE的扩展型非连续接收eDRX配置情况,确定相关信息,还包括:
    响应于所述UE处于非激活态,所述UE配置有空闲态eDRX周期和非激活态eDRX周期且所述空闲态eDRX周期和非激活态eDRX周期都不大于所述第二周期,确定所述UE具有等于所述非激活态eDRX周期和所述空闲态eDRX周期中较小者的所述第一eDRX周期,且确定所述第一DRX周期为第三周期或第一周期;
    响应于所述UE处于非激活态,所述UE配置有空闲态eDRX周期和非激活态eDRX周期且所述空闲态eDRX周期和非激活态eDRX周期都不大于所述第二周期,确定所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,且确定所述第一DRX周期为第三周期或第一周期;
    其中,所述第三周期为比所述第二周期小的eDRX周期;所述第一周期为比所述第三周期小的eDRX周期。
  6. 根据权利要求1至5任一项所述的方法,其中,所述根据所述UE所处的非连接态和所述UE的扩展型非连续接收eDRX配置情况,确定相关信息,还包括以下至少之一:
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,且根据所述UE空闲态eDRX配置确定所述第一DRX周期;
    响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,且根据所述UE空闲态eDRX配置确定所述第一DRX周期;
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE不具有所述第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期。
  7. 根据权利要求6所述的方法,其中,所述响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,且根据所述UE空闲态eDRX配置确定所述第一DRX周期,包括:
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期的较小者;
    或者,
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
  8. 根据权利要求6所述的方法,其中,所述响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,且根据所述UE空闲态eDRX配置确定所述第一DRX周期,包括:
    所述响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,确定所述所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期的较小者。
  9. 根据权利要求6所述的方法,其中,所述响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE不具有所述第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期,包括:
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,确定所述UE不具有所述第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态eDRX周期和RAN寻呼周期的较小者。
  10. 根据权利要求6所述的方法,其中,响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,所述UE的RRM测量位于所述空闲态eDRX周期的寻呼时间窗PTW内。
  11. 根据权利要求6所述的方法,其中,响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且未配置有非激活态eDRX周期,所述UE具有等于所述空闲态eDRX周期的第一eDRX周期,所述UE的RRM测量位于所述空闲态eDRX周期的寻呼时间窗PTW内。
  12. 根据权利要求1至11任一项所述的方法,其中,所述根据所述UE所处的非连接态和所述UE的扩展型非连续接收eDRX配置情况,确定相关信息,还包括以下至少之一:
    响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,且确定所述第一DRX周期为空闲态eDRX配置限定的eDRX周期和缺省寻呼周期中的较小者;
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期;
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者的所述第一eDRX周期,且根据所述UE的空闲态eDRX配置确定所述第一DRX周期。
  13. 根据权利要求12所述的方法,其中,所述响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期,包括:
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期中的较小者。
  14. 根据权利要求12所述的方法,其中,所述响应于所述UE处于非激活态,所述UE的空闲 态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期且根据所述UE的空闲态eDRX配置确定所述第一DRX周期,包括:
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期的较小者;
    或者,
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
  15. 根据权利要求12所述的方法,其中,所述响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者的所述第一eDRX周期,且根据所述UE的空闲态eDRX配置确定所述第一DRX周期,包括:
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者的所述第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期的较小者;
    或者,
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者的所述第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和非激活态eDRX配置限定的RAN寻呼周期的较小者;
    或者,
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期和所述非激活态eDRX周期较小者的所述第一eDRX周期,确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
  16. 根据权利要求12所述的方法,其中,
    响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,所述UE的RRM测量的测量时间位于所述空闲态eDRX周期的PTW内。
  17. 根据权利要求12所述的方法,其中,响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有不大于所述第二周期的非激活态eDRX周期,所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,所述UE的RRM测量的测量时间位于所述空闲态eDRX周期的PTW内。
  18. 根据权利要求1至17任一项所述的方法,其中,所述根据所述UE所处的非连接态和所述UE的扩展型非连续接收eDRX配置情况,确定相关信息,还包括以下至少之一:
    响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,且确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期和缺省寻呼周期中的较小者;
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,且根据所述UE的空闲态eDRX配置确定所述第一DRX周期;
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,且根据所述UE的非激活态eDRX配置确定所述第一DRX周期;
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期和所述空闲态eDRX周期中较小者的第一eDRX周期,根据所述UE的空闲态eDRX配置和非激活态eDRX配置确定所述第一DRX周期。
  19. 根据权利要求18所述的方法,其中,所述响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,且根据所述UE的空闲态eDRX配置确定所述第一DRX周期,包括:
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期中的较小者;
    或者,
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为确定所述第一DRX周期为空闲态eDRX配置限定的空闲态DRX周期、非激活态eDRX配置限定的RAN寻呼周期和缺省寻呼周期的最小者。
  20. 根据权利要求18所述的方法,其中,所述响应于所述UE处于非激活态,所述UE的空闲 态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述空闲态eDRX周期和所述空闲态eDRX周期中较小者的第一eDRX周期,根据所述UE的空闲态eDRX配置和非激活态eDRX配置确定所述第一DRX周期,包括:
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为所述空闲态eDRX配置限定空闲态DRX周期、缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的最小者;
    或者,
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为缺省寻呼周期和非激活态eDRX配置限定的RAN寻呼周期中的较小者;
    或者,
    响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,确定所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,确定所述第一DRX周期为非激活态eDRX配置限定的RAN寻呼周期。
  21. 根据权利要求18所述的方法,其中,响应于所述UE处于空闲态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,所述UE的RRM测量的测量时间位于所述空闲态eDRX周期的PTW内。
  22. 根据权利要求18所述的方法,其中,响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,所述UE具有等于所述空闲态eDRX周期的所述第一eDRX周期,所述UE的RRM测量的测量时间位于所述空闲态eDRX周期的PTW内。
  23. 根据权利要求18所述的方法,其中,
    所述响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,所述UE具有等于所述非激活态eDRX周期的所述第一eDRX周期,所述UE的RRM测量时间位于所述非激活态eDRX周期的PTW。
  24. 根据权利要求18所述的方法,其中,所述响应于所述UE处于非激活态,所述UE的空闲态eDRX周期大于所述第二周期且配置有大于所述第二周期的非激活态eDRX周期,所述UE具有等于所述空闲态eDRX周期和所述空闲态eDRX周期中较小者的第一eDRX周期,所述RRM测量的时间位于空闲态eDRX周期的PTW和非激活态eDRX周期的PTW中的较小者内。
  25. 根据权利要求1至24任一项所述的方法,其中,所述根据所述相关信息,确定所述UE进行RRM测量的测量配置,包括:
    响应于所述UE不具有所述第一eDRX周期,根据所述第一DRX周期确定所述RRM测量的测量配置;
    或者,
    响应于所述UE具有所述第一eDRX周期和所述第一DRX周期,根据所述第一eDRX周期和所述第一DRX周期确定所述RRM测量的测量配置。
  26. 根据权利要求25所述的方法,其中,所述响应于所述UE具有所述第一eDRX周期和所述第一DRX周期,根据所述第一eDRX周期和所述第一DRX周期确定所述RRM测量的测量配置,包括:
    响应于所述UE具有第一eDRX周期和所述第一DRX周期且所述UE具有第一PTW,根据所述第一eDRX周期和所述第一DRX周期及所述第一PTW,确定在所述第一PTW内进行RRM测量的所述RRM测量的测量配置;
    或者,
    响应于所述UE具有第一eDRX周期和所述第一DRX周期且所述UE不具有第一PTW,根据所述第一eDRX周期和所述第一DRX周期,确定在时域内进行RRM测量的所述RRM测量的测量配置;
    其中,所述第一PTW为所述第一eDRX周期等于的空闲态eDRX周期或非激活态eDRX周期PTW。
  27. 根据权利要求25或26所述的方法,其中,所述RRM测量的测量配置包括以下至少之一:
    针对所述UE服务小区的所述RRM测量的测量周期Nserv;
    针对所述UE邻小区的所述RRM测量的检测周期、测量周期和/或评估周期。
  28. 根据权利要求2所述的方法,其中,所述第一周期的时长为2.56s。
  29. 一种无线资源管理RRM测量配置确定装置,所述装置包括:
    第一确定模块,被配置为根据所述UE所处的非连接态和所述UE的扩展型非连续接收eDRX配置情况,确定相关信息,其中,所述相关信息,至少指示:第一DRX周期及所述UE是否具有第一eDRX周期;
    第二确定模块,被配置为根据所述相关信息,确定所述UE进行RRM测量的测量配置。
  30. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至28任一项提供的方法。
  31. 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至28任一项提供的方法。
PCT/CN2021/104065 2021-07-01 2021-07-01 Rrm测量配置确定方法及装置、通信设备及存储介质 WO2023272697A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180002044.6A CN115735386A (zh) 2021-07-01 2021-07-01 Rrm测量配置确定方法及装置、通信设备及存储介质
PCT/CN2021/104065 WO2023272697A1 (zh) 2021-07-01 2021-07-01 Rrm测量配置确定方法及装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/104065 WO2023272697A1 (zh) 2021-07-01 2021-07-01 Rrm测量配置确定方法及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023272697A1 true WO2023272697A1 (zh) 2023-01-05

Family

ID=84692208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104065 WO2023272697A1 (zh) 2021-07-01 2021-07-01 Rrm测量配置确定方法及装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN115735386A (zh)
WO (1) WO2023272697A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111512670A (zh) * 2018-01-10 2020-08-07 Oppo广东移动通信有限公司 用于确定终端设备状态的方法、终端设备和接入网设备
CN112262600A (zh) * 2020-08-20 2021-01-22 北京小米移动软件有限公司 扩展非连续接收参数确定方法、通信设备和存储介质
CN112399527A (zh) * 2019-08-13 2021-02-23 苹果公司 扩展的非连续接收模式中的通知支持

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111512670A (zh) * 2018-01-10 2020-08-07 Oppo广东移动通信有限公司 用于确定终端设备状态的方法、终端设备和接入网设备
CN112399527A (zh) * 2019-08-13 2021-02-23 苹果公司 扩展的非连续接收模式中的通知支持
CN112262600A (zh) * 2020-08-20 2021-01-22 北京小米移动软件有限公司 扩展非连续接收参数确定方法、通信设备和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Clarification of SI acquisition for UEs configured with eDRX in RRC_INACTIVE", 3GPP DRAFT; R2-2101467, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051974348 *
HUAWEI, HISILICON: "Clarification to the DRX cycle in RRC_IDLE and RRC_INACTIVE", 3GPP DRAFT; R2-2101036, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20210125 - 20210205, 14 January 2021 (2021-01-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051972798 *

Also Published As

Publication number Publication date
CN115735386A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US20230269819A1 (en) Method for determining extended discontinuous reception parameter, communication device, and storage medium
WO2021196133A1 (zh) Rrc状态改变的方法、装置、通信设备及存储介质
WO2023029051A1 (zh) 寻呼监听的方法、装置、通信设备及存储介质
WO2021007789A1 (zh) 信息处理方法、装置及计算机存储介质
CN111344993B (zh) 监听方法、指示下发方法及装置、通信设备及存储
WO2023102790A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2022151089A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2023065124A1 (zh) 寻呼参数确定方法、装置、通信设备和存储介质
WO2022147662A1 (zh) 测量间隙调度方法及装置、通信设备及存储介质
WO2023272697A1 (zh) Rrm测量配置确定方法及装置、通信设备及存储介质
WO2023283788A1 (zh) Rrm测量配置确定方法及装置、通信设备及存储介质
WO2023272698A1 (zh) 测量配置确定方法及装置、通信设备及存储介质
WO2023010357A1 (zh) Rrm测量的放松、信息处理方法及装置、设备及存储介质
WO2023010353A1 (zh) 寻呼监听参数确定方法及装置、通信设备及存储介质
WO2023225822A1 (zh) 监听方法、装置、通信设备及存储介质
WO2023082104A1 (zh) 一种触发ue测量的方法、装置、通信设备及存储介质
WO2022261983A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2023197327A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2022261957A1 (zh) 信息处理方法及装置、通信设备及存储介质
US20240171962A1 (en) Information indication method and apparatus, and network device, user equipment and storage medium
WO2023236018A1 (zh) 监听方法、装置、通信设备及存储介质
WO2022151217A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2023279244A1 (zh) 小区重选配置方法、装置、通信设备和存储介质
WO2023065256A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2023102789A1 (zh) 信息处理方法及装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE