CN117941422A - 非连续接收模式确定方法、装置、通信设备和存储介质 - Google Patents

非连续接收模式确定方法、装置、通信设备和存储介质 Download PDF

Info

Publication number
CN117941422A
CN117941422A CN202180102089.0A CN202180102089A CN117941422A CN 117941422 A CN117941422 A CN 117941422A CN 202180102089 A CN202180102089 A CN 202180102089A CN 117941422 A CN117941422 A CN 117941422A
Authority
CN
China
Prior art keywords
mode
error
terminal
drx
duration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180102089.0A
Other languages
English (en)
Inventor
牟勤
乔雪梅
熊可欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Xiaomi Mobile Software Co Ltd
Original Assignee
Beijing Xiaomi Mobile Software Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Xiaomi Mobile Software Co Ltd filed Critical Beijing Xiaomi Mobile Software Co Ltd
Publication of CN117941422A publication Critical patent/CN117941422A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例是关于非连续接收模式确定方法、装置、通信设备和存储介质,网络侧设备和/或终端确定数据包达到终端的预测时刻的误差;根据所述误差确定终端采用的DRX模式,其中,所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。

Description

非连续接收模式确定方法、装置、通信设备和存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及非连续接收(DRX,Discontinuous Reception)模式确定方法、装置、通信设备和存储介质。
背景技术
在相关技术中,例如第五代(5G,5 th Generation)蜂窝移动通信网络利用DRX机制来降低终端的能耗,通过给终端配置DRX睡眠周期中睡眠时长的方式,来达到省电的目的。DRX睡眠周期包括:激活时间和非激活时间,终端在激活时间内进行数据传输,在非激活时间即睡眠时间内停止数据传输,起到省电的效果。
发明内容
有鉴于此,本公开实施例提供了一种非连续接收模式确定方法、装置、通信设备和存储介质。
根据本公开实施例的第一方面,提供一种非连续接收DRX模式确定方法,其中,所述方法包括:
确定数据包达到终端的预测时刻的误差;
根据所述误差确定终端采用的DRX模式,其中,所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。
在一个实施例中,所述根据所述误差确定终端采用的DRX模式,包括:
响应于所述误差处于预设范围内,确定所述终端采用所述第一模式;
或者,
响应于所述误差处于所述预设范围外,确定所述终端采用所述第二模式。
在一个实施例中,所述误差处于预设范围内,包括以下至少之一:
M个所述数据包分别对应的M个所述误差大于或等于第一误差阈值,M为小于或等于超限数量阈值的自然数;
在误差监控周期内传输的所述数据包分别对应的所述误差的累加之和,小于第二误差阈值。
在一个实施例中,M个所述数据包,包括:
连续的M个所述数据包。
在一个实施例中,所述方法还包括:
响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用M减1之差更新M。
在一个实施例中,所述误差处于所述预设范围外,包括以下至少之一:
N个所述数据包分别对应的N个所述误差大于或等于第一误差阈值,N为大于超限数量阈值,其中,N为正整数;
在误差监测周期内传输的所述数据包分别对应的所述误差的累加之和大于或等于第二误差阈值。
在一个实施例中,N个所述数据包,包括:
连续的N个所述数据包。
在一个实施例中,所述方法还包括:
响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用N减1之差更新N。
在一个实施例中,所述根据所述误差确定终端采用的DRX模式,包括:
在所述终端采用所述第二模式的持续时长达到第一时长之后,根据所 述误差确定所述终端采用的DRX模式。
在一个实施例中,所述确定数据包达到终端的预测时刻的误差,包括:
在所述终端采用第二模式的第二时长内,确定所述数据包达到所述终端的所述预测时刻的所述误差。
在一个实施例中,所述方法还包括:
在所述终端采用所述第二模式的持续时长达到第三时长之后,采用所述第一模式。
在一个实施例中,所述终端在第一模式下采用的第一误差阈值,不同于所述终端在第二模式下采用的第一误差阈值;
和/或,
所述终端在第一模式下采用的第二误差阈值,不同于所述终端在第二模式下采用的第二误差阈值。
在一个实施例中,所述DRX配置包括:DRX睡眠周期的配置。
在一个实施例中,通过所述第二模式配置的DRX睡眠周期时长,包括:预定配置时段内各数据包到达所述终端的时间间隔中的最小时长;
或者,
通过所述第二模式配置的DRX睡眠周期的时长为预设固定时长。
在一个实施例中,所述方法还包括:
基于DRX睡眠周期中激活时间的结束时刻,与所述结束时刻之后的数据包对应的所述预测时刻之间的间隔时长,确定所述第一模式配置的所述DRX睡眠周期中非激活时间的时长。
根据本公开实施例的第二方面,提供一种非连续接收DRX模式确定装置,其中,所述装置包括:
监控模块,配置为确定数据包达到终端的预测时刻的误差;
第一确定模块,配置为根据所述误差确定终端采用的DRX模式,其中, 所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。
在一个实施例中,所述第一确定模块,具体配置为:
响应于所述误差处于预设范围内,确定所述终端采用所述第一模式;
或者,
响应于所述误差处于所述预设范围外,确定所述终端采用所述第二模式。
在一个实施例中,所述误差处于预设范围内,包括以下至少之一:
M个所述数据包分别对应的M个所述误差大于或等于第一误差阈值,M为小于或等于超限数量阈值的自然数;
在误差监控周期内传输的所述数据包分别对应的所述误差的累加之和,小于第二误差阈值。
在一个实施例中,M个所述数据包,包括:
连续的M个所述数据包。
在一个实施例中,所述装置还包括:
第一计算模块,配置为响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用M减1之差更新M。
在一个实施例中,所述误差处于所述预设范围外,包括以下至少之一:
N个所述数据包分别对应的N个所述误差大于或等于第一误差阈值,N为大于超限数量阈值,其中,N为正整数;
在误差监测周期内传输的所述数据包分别对应的所述误差的累加之和大于或等于第二误差阈值。
在一个实施例中,N个所述数据包,包括:
连续的N个所述数据包。
在一个实施例中,所述装置还包括:
第二计算模块,配置为响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用N减1之差更新N。
在一个实施例中,所述第一确定模块,具体配置为:
在所述终端采用所述第二模式的持续时长达到第一时长之后,根据所述误差确定所述终端采用的DRX模式。
在一个实施例中,所述监控模块,具体配置为:
在所述终端采用第二模式的第二时长内,确定所述数据包达到所述终端的所述预测时刻的所述误差。
在一个实施例中,所述装置还包括:
控制模块,配置为在所述终端采用所述第二模式的持续时长达到第三时长之后,采用所述第一模式。
在一个实施例中,所述终端在第一模式下采用的第一误差阈值,不同于所述终端在第二模式下采用的第一误差阈值;
和/或,
所述终端在第一模式下采用的第二误差阈值,不同于所述终端在第二模式下采用的第二误差阈值。
在一个实施例中,所述DRX配置包括:DRX睡眠周期的配置。
在一个实施例中,通过所述第二模式配置的DRX睡眠周期时长,包括:预定配置时段内各数据包到达所述终端的时间间隔中的最小时长;
或者,
通过所述第二模式配置的DRX睡眠周期的时长为预设固定时长。
在一个实施例中,所述装置还包括:
第二确定模块,配置为基于DRX睡眠周期中激活时间的结束时刻,与所述结束时刻之后的数据包对应的所述预测时刻之间的间隔时长,确定所述第一模式配置的所述DRX睡眠周期中非激活时间的时长。
根据本公开实施例的第三方面,提供一种通信设备装置,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第一方面所述非连续接收模式确定方法的步骤。
根据本公开实施例的第四方面,提供一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如第一方面所述非连续接收模式确定方法的步骤。
根据本公开实施例提供的非连续接收模式确定方法、装置、通信设备和存储介质。网络侧设备和/或终端确定数据包达到终端的预测时刻的准确度(即预测时刻与实际值时刻之间的误差);根据所述误差确定终端采用的DRX模式,其中,所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。如此,基于预测时刻的误差,选择采用第一模式或第二模式确定DRX配置,选择适应误差变化的DRX配置,减少在误差过大,由于DRX配置无法准确适配数据包的实际到达情况产生的数据传输时延和功耗增加问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种非连续接收模式确定方法的流程示意图;
图3是根据一示例性实施例示出的另一种非连续接收模式确定方法的流程示意图;
图4是根据一示例性实施例示出的又一种非连续接收模式确定方法的流程示意图;
图5是根据一示例性实施例示出的再一种非连续接收模式确定方法的流程示意图;
图6是根据一示例性实施例示出的再一种非连续接收模式确定方法的流程示意图;
图7是根据一示例性实施例示出的一种非连续接收模式确定装置的框图;
图8是根据一示例性实施例示出的一种用于非连续接收模式确定的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。 取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
本公开实施例涉及的执行主体包括但不限于:支持蜂窝移动通信的手机终端等UE,以及基站等。
本公开实施例的一个应用场景为:通常,DRX睡眠周期中采用固定的睡眠时间时长,但是,这种方式无法适应数据包到达时间的变化,可能会导致较大的时延。
相关技术采用人工智能(AI)方法对终端数据包到达的时间进行预测,并依据预测结果来动态调整DRX睡眠周期的配置,使得终端准确地在数据包到来之前醒来,在没有数据包到达的时候进入睡眠状态,从而在保证数据传输时延的情况下,尽量降低终端能耗。
可以采用递归神经网络(RNN)对数据包到达的时间进行预测。长短期记忆网络(LSTM)是一种流行的RNN。可以将历史数据包到达的抖动时延序列作为训练数据来训练LSTM模型,然后在每个数据包到达时采用训练好的模型预测下一个数据包到达的抖动时延值。
采用人工智能模型预测结果来动态调整DRX的睡眠周期时长,在大多数情况下能够获得比较好的性能,预测的平均误差较小。但在数据包到达情况出现突变时,预测误差较大,若此时仍然依据预测结果调整DRX睡眠的配置,无法准确地适配数据包实际到达情况,可能会带来较大的时延、并产生多余的能耗。
因此,在数据包到达情况发生突变,AI预测结果不准确时,如何调整DRX的睡眠周期时长,适应数据包到达时间的变化,是亟待解决的问题。
如图2所示,本示例性实施例提供一种非连续接收模式确定方法,非连续接收模式确定方法可以应用于蜂窝移动通信系统的网络侧设备和/或终端中,包括:
步骤201:确定数据包达到终端的预测时刻的误差;
步骤202:根据所述误差确定终端采用的DRX模式,其中,所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。
本实施例公开的方法可以由蜂窝移动通信中网络侧设备执行,如可以由核心网设备执行,也可以由终端执行。终端可以包括:采用蜂窝移动通信技术进行无线通信的手机等。
在一个实施例中,所述预测时刻是由预测模型确定的。
在另一个实施例中,预设DRX配置是根据基站侧配置或是通信协议确定的,或是终端内预设的DRX配置,或是之前终端使用的DRX配置;因此预设DRX配置也可以称为默认DRX配置。
预测模型可以是具有人工智能学习模型。预测模型可以基于历史数据包到达的时延抖动作为训练数据进行训练,并对数据包到达终端的时间进行预测。这里,预测模型可以采用递归神经网络,如长短期记忆网络等。
由于数据包到达的随机性,存在突变的情况,因此,预测时刻存在有误差。尤其在数据包发生突变时,误差会变大。
网络测设备和/或终端等可以监控数据包达到的预测时刻的误差。
在一个实施例中,网络测设备和/或终端等可以基于数据包到达终端的实际时刻和预测时刻之间的差值,确定预测时刻的误差。其中,预测时刻可以为如前所述的是由预测模型确定的。
在一个实施例中,所述DRX配置包括:DRX睡眠周期的配置。
DRX睡眠周期的配置可以包括但不限于:DRX睡眠周期中激活时间(on time)的配置、和/或DRX睡眠周期中非激活时间(off time)的配置、和/或DRX睡眠周期时长的配置等。其中,非激活时间也可称为睡眠时间。DRX睡眠周期类型可以包括:DRX长睡眠周期和/或DRX短睡眠周期。示 例性地,在同一套配置中,DRX长睡眠周期时长通常大于DRX短睡眠周期时长。
终端当前可以采用第一模式,也可以采用第二模式。终端当前采用的DRX模式,可以是初始状态默认的DRX模式,也可以是之前通过本实施例公开的方法确定的DRX模式,还可以是通过其他方法确定的DRX模式。
在第一模式中,网络测设备和/或终端等通过数据包到达终端的预测时刻,可以确定终端非激活时间的结束时刻和/或激活时间的开始时刻等,进而可以根据预测时刻实时调整DRX睡眠周期的配置。采用第一模式,可以针对数据包到达的预测时间的变化,灵活调整DRX睡眠周期的配置。
在第二模式中,网络侧设备和/或终端可以按预设DRX配置进行数据包传输。由于DRX配置通常采用固定的DRX配置,无法实时调整,适应数据包达到时间的变化,会产生较大的时延。
但是,采用第一模式时,由于数据包突发等情况的存在,使得预测时刻产生较大的误差,进而使得DRX配置无法准确适配数据包的实际到达情况,在数据包突发等情况下相较第二模式产生更大的时延,产生更多的能耗。
因此,这里,可以基于误差,确定选择第一模式或第二模式。在数据包未发生突变时采用第一模式,根据数据包的到达情况灵活调整DRX;在数据包发生突变,例如预测时刻具有较大误差时,采用第一模式,减少出现较大时延的情况,节省电量。
这里,确定的误差可以是一个数据包对应的误差,也可以是预定数量的数据包或预定时间长度内的数据包对应的误差(以下都称为多个数据包的误差)。多个数据包的误差可以是多个数据包分别对应的误差;也可以是多个数据包分别对应的误差的统计结果,包括但不限于,误差累加值、算术平均值、加权平均值等。
在本公开实施例中,可以基于网络侧下发的设置或是基于通信协议确定误差的阈值,如果误差不超过阈值,则采用第一模式,如果误差超过阈值,则采用第二模式。
如此,基于预测时刻的误差,选择采用第一模式或第二模式确定DRX配置,选择适应误差变化的DRX配置,减少在误差过大,由于DRX配置无法准确适配数据包的实际到达情况产生的数据传输时延和功耗增加问题。
本实施例中,采用第一模式或第二模式可以由网络侧设备和/或终端确定。当由网络侧设备确定采用第一模式或第二模式时,可以由网络侧设备对终端进行配置采用第一模式或第二模式。当由终端确定采用第一模式或第二模式时,可以由终端通过上行信息等方式向网络侧设备通知终端采用的模式。
在一个实施例中,所述根据所述误差确定终端采用的DRX模式,包括:
响应于所述误差处于预设范围内,确定所述终端采用所述第一模式;
或者,
响应于所述误差处于所述预设范围外,确定所述终端采用所述第二模式。
误差处于预设范围内,说明确定的预测时间的准确性较高,误差可接受。第一模式基于该预测时间确定的DRX配置能够适配数据包的传输,和/或,第一模式基于该预测时间确定的DRX配置产生的时延和功耗处于可接受范围,和/或,第一模式基于该预测时间确定的DRX配置产生的时延和功耗优于第二模式确定DRX配置产生的时延和功耗。因此,可以确定采用第一模式。
误差处于预设范围外,说明确定的预测时间的准确性较低,误差不可接受。第一模式基于该预测时间确定的DRX配置不能够适配数据包的传输, 和/或,第一模式基于该预测时间确定的DRX配置产生的时延和功耗处于不可接受范围,和/或,第一模式基于该预测时间确定的DRX配置产生的时延和功耗差于第二模式确定DRX配置产生的时延和功耗。因此,可以确定采用第二模式。
根据所述误差确定终端采用的DRX模式中的误差可以是一个数据包对应的误差,也可以是多个数据包对应的误差。多个数据包的误差可以是多个数据包分别对应的误差;也可以是多个数据包分别对应的误差的统计结果,包括但不限于,误差累加值、算术平均值、加权平均值等。
在一种可能的实施方式中,该预设范围可以基于网络侧下发的设置或是基于通信协议确定。在另一种可能的实现方式中,预设范围可以基于误差对第一模式产生的影响确定。预设范围需要满足当误差处于预设范围内时,第一模式确定的DRX配置可以适配数据包的实际到达情况、和/或相对第二模式具有较佳的时延和功耗等。
如此,基于预测时刻的误差是否处于预设范围内,确定选择采用第一模式或第二模式确定DRX配置,一方面,误差处于预设范围内时,可以采用第一模式灵活确定DRX配置,适应数据包的变化,减少数据传输时延。另一方面,误差处于预设范围之外时,采用第二模式确定DRX配置,可以减少由于误差过大,第一模式确定的DRX配置无法准确适配数据包的实际到达情况产生的较大数据传输时延和功耗增加问题。
在一个实施例中,所述误差处于预设范围内,包括以下至少之一:
M个所述数据包分别对应的M个所述误差大于或等于第一误差阈值,M为小于或等于超限数量阈值的自然数;在误差监控周期内传输的所述数据包分别对应的所述误差的累加之和,小于第二误差阈值。
在一种可能的实施方式中,该M可以基于网络侧下发的设置或是基于通信协议确定。例如,可以直接确定M的数值。又例如或是确定一个时间 间隔内传输的M个数据包,即只确定一个时间间隔,而M是根据该时间间隔内的实际传输确定;而该时间间隔可以基于网络侧下发的设置或是基于通信协议确定。
这里,网络测设备和/或终端可以在采用第一模式时,确定误差是否处于预设范围内,如果误差处于预设范围内,则保持采用第一模式。网络测设备和/或终端也可以在采用第二模式时,确定误差是否处于预设范围内,如果误差处于预设范围内,则采用第一模式。
示例性地,可以预先设置第一误差阈值,以及超限次数阈值。对大于第一误差阈值的误差进行计数。当误差大于或等于第一误差阈值,计数值M加1。如果M小于或等于超限次数阈值,则可以采用第一模式确定DRX配置。
也可以预先设置第二误差阈值,以及误差监控周期。在误差监控周期内,将各误差进行累加。如果误差监控周期内误差的累加值小于或等于第二误差阈值,则可以采用第一模式确定DRX配置。可以在误差监控周期起始时刻和/或结束时刻对累加值清零,减少对后续误差监控周期的影响。
可以单独基于第一误差阈值确定DRX模式,也可以单独基于第二误差阈值确定DRX模式,还可以结合第一误差阈值和第二误差阈值共同确定DRX模式。例如,当在第二模式下,基于第一误差阈值和第二误差阈值均确定采用第一模式时,则采用第一模式,否则保持采用第二模式;或者,当在第一模式下,基于第一误差阈值和第二误差阈值均确定采用第二模式时,则采用第二模式,否则保持采用第一模式。
基于与之前描述相同的原理,在本公开的所有实施例中,该预设范围、第一误差阈值、第二误差阈值中的任意一个或多个,都是可以各自基于网络侧下发的设置或是基于通信协议确定;或是各自基于误差对第一模式产生的影响确定。
在一个实施例中,所述终端在第一模式下采用的第一误差阈值,不同于所述终端在第二模式下采用的第一误差阈值;
和/或,
所述终端在第一模式下采用的第二误差阈值,不同于所述终端在第二模式下采用的第二误差阈值。
从第一模式切换到第二模式的要求,可以与从第二模式切换到第一模式的要求不同。从第二模式切换到第一模式的要求可以严于从第一模式切换到第二模式的要求。
示例性的,在第一模式下采用的第一误差阈值,可以大于第二模式下采用的第一误差阈值。在第一模式下采用的第二误差阈值,也可以大于第二模式下采用的第二误差阈值。
在一个实施例中,M个所述数据包,包括:
连续的M个所述数据包。
可以对连续出现的误差大于或等于第一误差阈值的数据进行计数。在采用第一模式时,连续出现误差大于或等于第一误差阈值,说明预测时刻出现较大偏差,第一模式采用预测时刻确定的DRX配置无法匹配数据包。需要切换到第二模式。
而偶发的误差大于或等于第一误差阈值对DRX配置影响较小。
如此,通过连续出现的误差作为切换DRX模式的依据,可以提高判断DRX模式切换的准确性,减少偶发误差对判断DRX模式切换的干扰。
在一个实施例中,所述方法还包括:
响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用M减1之差更新M(即,M=M-1)。
响应于误差大于或等于第一误差阈值,将计数值M加1(即M=M+1);或响应于误差小于第一误差阈值,将计数值M减1(即M=M-1)。如果M 小于或等于超限次数阈值,则可以采用第一模式确定DRX配置。如此,实现只有在连续出现较大误差时才进行DRX模式的切换。如果M为0,可以不再减1。
在一个实施例中,所述误差处于所述预设范围外,包括以下至少之一:
N个所述数据包分别对应的N个所述误差大于或等于第一误差阈值,N为大于超限数量阈值,其中,N为正整数;
在误差监测周期内传输的所述数据包分别对应的所述误差的累加之和大于或等于第二误差阈值。
在一种可能的实施方式中,该N可以基于网络侧下发的设置或是基于通信协议确定。例如,可以直接确定N的数值。又例如或是确定一个时间间隔内传输的N个数据包,即只确定一个时间间隔,而N是根据该时间间隔内的实际传输确定;而该时间间隔可以基于网络侧下发的设置或是基于通信协议确定。
这里,网络测设备和/或终端可以在采用第一模式时,确定误差是否处于预设范围之外,如果误差处于预设范围之外,则采用第二模式。网络测设备和/或终端也可以在采用第二模式时,确定误差是否处于预设范围之外,如果误差处于预设范围之外,则保持采用第二模式。
示例性地,可以预先设置第一误差阈值,以及超限次数阈值。对大于第一误差阈值的误差进行计数。当误差大于或等于第一误差阈值,计数值N加1。如果N大于超限次数阈值,则可以采用第二模式确定DRX配置。
在一个实施例中,N个所述数据包,包括:
连续的N个所述数据包。
可以对连续出现的误差大于或等于第一误差阈值的数据进行计数。在采用第一模式时,连续出现误差大于或等于第一误差阈值,说明预测时刻出现较大偏差,第一模式采用预测时刻确定的DRX配置无法匹配数据包。 需要切换到第二模式。
而偶发的误差大于或等于第一误差阈值对DRX配置影响较小。
如此,通过连续出现的误差作为切换DRX模式的依据,可以提高判断DRX模式切换的准确性,减少偶发误差对判断DRX模式切换的干扰。
在一个实施例中,所述方法还包括:
响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用N减1之差更新N(即N=N+1)。
响应于误差大于或等于第一误差阈值,将计数值N加1(即N=N+1);或,响应于误差小于第一误差阈值,将计数值N减1(即N=N-1)。如果N大于超限次数阈值,则可以采用第二模式确定DRX配置。如此,实现只有在连续出现较大误差时才进行DRX模式的切换。如果N为0,可以不再减1。
示例性地,可以预先设置第二误差阈值,以及误差监控周期。在误差监控周期内,将各误差进行累加。如果误差监控周期内误差的累加值小于或等于第二误差阈值,则可以采用第一模式确定DRX配置。可以在误差监控周期起始时刻和/或结束时刻对累加值清零,减少对后续误差监控周期的影响。
本示例性实施例提供一种非连续接收模式确定方法,非连续接收模式确定方法可以应用于蜂窝移动通信系统的电子设备;其中所述网络侧设备和/或终端至少具有一个预设DRX配置和一个基于预测时刻的DRX配置。该电子设备在使用基于预测时刻的DRX配置时,根据误差确定采用是继续采用当前的基于预测时刻的DRX配置,还是切换到预设DRX配置。
其中,该蜂窝移动通信系统的电子设备,可以是蜂窝移动通信系统的网络侧设备和/或终端。
在另一个示例性实施例中,与前一个实施例想类似的,该电子设备在 使用预设DRX配置(第二模式)时,可以基于预设切换条件确定是否切换到基于预测时刻的DRX配置(第一模式),还是继续采用当前的预设DRX配置(第二模式)。需要说明的是,该实施例可以独立被执行,也可以结合之前的实施例一起被执行。
在一个实施例中,所述根据所述误差确定终端采用的DRX模式,包括:
在所述终端采用所述第二模式的持续时长达到第一时长之后,根据所述误差确定所述终端采用的DRX模式。
针对终端初始采用第二模式,或者,根据误差确定终端切换到第二模式,可以设置一定的切换条件,当满足条件时,可以由基站控制终端,或者由终端切换DRX模式。
可以在第二模式的持续时长处于第一时长之内,不再采用预测模型等确定数据包到达的预测时刻。通常数据包的突变会持续一段时间,因此,设置第一时长可以减少在第一模式和第二模式之间频繁切换,减少网络测设备和/或终端的资源消耗。第一时长,可以根据数据包突发的持续时长或网络侧配置或通信协议等确定。
在第二模式的第一时长之内,确定数据包到达的预测时刻,并对误差进行监测。当误差处于预设范围内,确定终端切换到第一模式;当误差处于预设范围外,确定终端继续采用第二模式。并且在下一个第二模式持续时间到达第一时长的同时或之前或之后,重新进行DRX模式切换的判断。
在一个实施例中,所述确定数据包达到终端的预测时刻的误差,包括:
在所述终端采用第二模式的第二时长内,确定所述数据包达到所述终端的所述预测时刻的所述误差。
针对终端初始采用第二模式,或者,根据误差确定终端切换到第二模式后,可以设置一定的切换条件,当满足条件时,可以由基站控制终端,或者由终端主动切换DRX模式。
这里,采用第二模式的第二时长,可以是采用第二模式的整个时长范围内,或第二时长的部分时长范围内;其可以根据网络侧配置或是通信协议确定。
示例性的,可以在使用第二模式的过程中,确定数据包到达的预测时刻,并对误差进行监测。当误差处于预设范围内,确定终端切换到第一模式;当误差处于预设范围外,确定终端继续采用第二模式。并且在下一个采用第二模式过程中重新进行DRX模式切换的判断。
在一个实施例中,所述方法还包括:
在所述终端采用所述第二模式的持续时长达到第三时长之后,采用所述第一模式。
这里,在采用第二模式达到第三时长之后,可以不再进行DRX模式切换的判断,而是直接切换到第一模式。即在采用第二模式达到第三时长之后,不再确定数据包到达的预测时刻,而是直接采用第一模式确定DRX配置。
在一个实施例中,通过所述第二模式配置的DRX睡眠周期时长,包括:预定配置时段内各数据包到达所述终端的时间间隔中的最小时长;
或者,
通过所述第二模式配置的DRX睡眠周期的时长为预设固定时长。
在第二模式中,DRX睡眠周期时长可以在每次进入第二模式前根据近期数据包到达的规律设定,也可以采用预设固定时长。
示例性的,第二模式配置DRX睡眠周期时长方法可以包括:网络测设备和/或终端可以监测预定配置时段内终端数据包到达的时间间隔,可以将预定配置时段内各数据包到达时间间隔的最小时长确定为DRX睡眠周期时长。这里,DRX睡眠周期时长可以包括:DRX短睡眠周期时长。
第二模式中DRX睡眠周期时长设置方法还可以包括:设置固定的DRX 长睡眠周期时长、DRX短睡眠周期时长、DRX短睡眠周期持续次数a。每次进入第二模式后,终端首先进入DRX短睡眠周期,若持续a个DRX短睡眠周期内都没有数据包到达,则进入DRX长睡眠周期;
在一个实施例中,所述方法还包括:
基于DRX睡眠周期中激活时间的结束时刻,与所述结束时刻之后的数据包对应的所述预测时刻之间的间隔时长,确定所述第一模式配置的所述DRX睡眠周期中非激活时间的时长。
在第一模式中,网络测设备和/或终端在每次有终端数据包到达时,依据历史数据包到达时间,对下一个数据包到达的时间进行预测,并依据预测时刻为终端配置DRX睡眠周期中非激活时间的时长。
非激活时间的时长T=预测的下一个数据包到达的预测时刻-当前DRX睡眠周期中激活时间的结束时刻。
基站将T设置为下一个DRX睡眠周期内非激活时间(off time)的时长。
示例性的,基站依据预测的下一个数据包到达的预测时刻,DRX睡眠周期中非激活时间T=预测的下一个数据包到达的预测时刻-当前数据包实际到达时间-活跃时长(Active Time),其中,当前数据包到达后终端用于解码数据包的活跃状态时长。
基站还设置两个睡眠周期阈值T min和T max,将T分别与两个睡眠周期阈值进行比较,若T<T min,则终端保持活跃状态;若T min<T<T max,终端进入DRX短睡眠周期,睡眠时间为T;若T>T max,则终端进入DRX长睡眠周期,睡眠时间为T。
以下结合上述任意实施例提供一个具体示例:
本示例提供一种DRX配置模式确定方法,
基站可以为终端配置两种DRX模式,分别为人工智能DRX(AI-DRX) 模式即第一模式,和固定DRX(Fixed-DRX)模式,即第二模式。
a)在AI-DRX模式中,网络测设备和/或终端在每次有终端数据包到达时,依据历史数据包到达时间,对下一个数据包到达的时间进行预测,并依据预测时刻为终端配置DRX睡眠周期中非激活时间的时长。
非激活时间的时长T=预测的下一个数据包到达的预测时刻-当前DRX睡眠周期中激活时间的结束时刻。
基站将T设置为下一个DRX睡眠周期内非激活时间(off time)的时长。
示例性的,基站依据预测的下一个数据包到达的预测时刻,DRX睡眠周期中非激活时间T=预测的下一个数据包到达的预测时刻-当前数据包实际到达时间-活跃时长(Active Time),其中,当前数据包到达后终端用于解码数据包的活跃状态时长。
基站还设置两个睡眠周期阈值T min和T max,将T分别与两个睡眠周期阈值进行比较,若T<T min,则终端保持活跃状态;若T min<T<T max,终端进入DRX短睡眠周期,睡眠时间为T;若T>T max,则终端进入DRX长睡眠周期,睡眠时间,睡眠时间为T。这里睡眠时间即DRX睡眠周期中非激活时间。
b)Fixed-DRX模式中,采用固定的睡眠周期。DRX睡眠周期可以在每次进入Fixed-DRX模式前根据近期数据包到达的规律设定,也可以采用预设值。
在AI-DRX中,每次采用AI方法对数据包到达时间进行预测时,都将预测时刻与真实数据包到达的实际时刻进行对比,记录预测误差。从而对误差进行实时监测,当误差满足预设条件,则基站对终端进行配置,使其切换到Fixed-DRX模式。终端从AI-DRX模式切换到Fixed-DRX模式的误差判断条件可以为:
误差判断条件一:设置第一误差阈值,以及超限次数阈值。当误差超过误差阈值,则超限次数加1。当超限次数超过超限次数阈值,终端切换到Fixed-DRX模式,且将记录的超限次数清零。还可以设置可选项,当预测误差小于误差阈值,且超限次数大于零,则超限次数减1。这种可选项可以保证当连续出现较大误差时才进行DRX模式的切换。当超限次数超过超限次数阈值,基站控制终端切换到Fixed-DRX模式;
误差判断条件二:设置第二误差阈值,以及误差监测周期。在一个误差监测周期内,将每次的误差累加,并在误差检测周期结束时/终端进入Fixed-DRX模式时间累计预测误差清零。若累计预测误差超过误差阈值,基站控制终端切换到Fixed-DRX模式。
基站控制终端切换至Fixed-DRX模式时,同时应该对Fixed-DRX模式中的固定睡眠周期进行设置。固定睡眠周期设置方法可以为:
Fixed-DRX模式睡眠周期设置方法一:设置固定的DRX长睡眠周期、DRX短睡眠周期、DRX短睡眠周期持续次数a。每次进入Fixed-DRX模式后,终端首先进入DRX短睡眠周期,若持续a个DRX短睡眠周期内都没有数据包到达,则进入DRX长睡眠周期;
Fixed-DRX模式睡眠周期设置方法二:每次准备切换到Fixed-DRX模式时,监测近期一段时间内终端数据包到达间隔,若数据包到达时间间隔小于固定的DRX睡眠周期,则将此次Fixed-DRX持续时间内的DRX睡眠周期设置为监测到的最小数据包到达时间间隔。这里,DRX睡眠周期可以是DRX短睡眠周期
在Fixed-DRX模式中,设置一定的切换条件,当满足条件时,基站控制终端切换回AI-DRX模式。切换条件可以为:
切换判断条件一:在Fixed-DRX模式中,继续采用AI方法对数据包到达时间进行预测,并监测误差。当误差足够小(判断方法同误差判断条件 一或二),切换回AI-DRX模式。
切换判断条件二:设置Fixed-DRX持续时长,在Fixed-DRX模式中不再对数据包到达时间进行预测,当Fixed-DRX模式持续时间到达后,切换回AI-DRX模式。
切换判断条件三:设置Fixed-DRX持续时长,在Fixed-DRX持续时长内不对数据包到达时间进行预测。当Fixed-DRX模式持续时间到达后,开始对数据包到达时间进行预测,并对误差进行监测,当误差足够小(判断方法同误差判断条件一或二),则切换回AI-DRX模式;当不满足切换条件,则仍采用Fixed-DRX模式,在下一个Fixed-DRX模式持续时间到达时重新进行切换条件判断。
如图3所示,为本实施例提供的一种基于DRX配置模式确定方法的流程图。具体步骤如下:
步骤301,基站将终端配置为AI-DRX模式,并设置睡眠周期阈值T min和T max
步骤302,基站采用AI预测模型确定终端下一个数据包到达的预测时刻。
步骤303,基站依据数据包预测时刻对终端DRX睡眠周期内非激活时间(off time)的时长进行配置。
进一步的,步骤303可包括为如下步骤:
步骤303a,基站依据下一个数据包到达时间计算终端非激活时间(off time)的时长,如下:
DRX睡眠周期中非激活时间T=预测的下一个数据包到达的预测时刻-当前数据包实际到达时间-活跃时长(Active Time),其中,Active Time为当前数据包到达后终端将持续的活跃时间。
步骤303b,基站将T分别与两个睡眠周期阈值进行比较,若T<T min, 则终端保持活跃状态;若T min<T<T max,终端进入DRX短睡眠周期,睡眠时间为T;若T>T max,则终端进入DRX长睡眠周期,睡眠时间,睡眠时间为T。这里睡眠时间即DRX睡眠周期中非激活时间。。
步骤303c,基站依据睡眠周期阈值比较得到的结果对终端的睡眠状态和睡眠时间进行配置。
步骤304,基站对误差进行监测。基站每次确定预测时刻后,将预测时刻与数据包到达实际时刻进行对比,得到误差,并依据误差判断条件对误差进行监测。
步骤305,若基站监测到误差满足误差判断条件,则执行步骤306,否则终端仍然保持在AI-DRX模式状态。
步骤306,基站将终端配置为Fixed-DRX模式,并采用固定值对DRX睡眠周期进行配置。
步骤307,基站判断是否满足预设的DRX模式切换判断条件。若满足,则基站控制终端切换回AI-DRX模式;否则,终端仍然保持在Fixed-DRX模式。
如图4所示,步骤305中基站通过误差判断条件确定DRX模式的一种方式的具体步骤如下:
步骤3051,基站设置第一误差阈值,以及超限次数阈值。表示当监测到误差超过第一误差阈值的次数达到超限次数阈值,即满足误差判断条件。
步骤3052,每次数据包到达后,将针对数据包的误差与第一误差阈值进行比较。
步骤3053,若误差大于第一误差阈值,则超限次数加1。可选的,若误差小于第一误差阈值,且超限次数大于零,则超限次数减1。若包含改该选项,则表明当连续出现较大误差时才判断为满足误差判断条件。
步骤3054,若超限次数大于超限次数阈值,则执行步骤3055;否则, 保持在AI-DRX模式继续监测误差。
步骤3055,判断为满足误差判断条件,将超限次数清零,并控制终端切换到Fixed-DRX模式。
如图5所示,步骤305中基站通过误差判断条件确定DRX模式的另一种方式的具体步骤如下:
步骤305A,基站设置第二误差阈值,以及误差监测周期。当监测到在误差监测周期内的累计误差超过第二误差阈值,则判断为满足误差判断条件。误差监测周期可以为时间段,也可以为数据包到达次数,即监测一段时间内的误差还是对若干个数据包到达时间进行预测产生的误差。
步骤305B,每次产生误差后,首先判断误差监测周期是否结束。若当前误差监测周期已结束,则执行步骤305C;否则,直接执行步骤305D。
步骤305C,将累计误差清零。
步骤305D,将当前误差累计到累计误差中。
步骤305E,若累计误差超过第二误差阈值,则执行步骤305F;否则,保持AI-DRX模式继续监测误差。
步骤305F,判断为满足误差判断条件,将累计预测误差清零,并控制终端切换到Fixed-DRX模式。
如图6所示,步骤307中基站通过切换判断条件确定DRX模式的一种方式的具体步骤如下:
步骤3071,基站设置Fixed-DRX模式持续时长以及误差判断条件。误差判断条件与从AI-DRX模式切换到Fixed-DRX模式的误差判断条件原理相似,在此不再赘述。误差判断条件内的相关参数可以依据需要灵活设置。
步骤3072,基站控制终端进入Fixed-DRX模式后,即从零开始计时。
步骤3073,监测Fixed-DRX模式持续时长是否到达第一时长,若到达,则执行步骤3074;否则,继续计时并监测时间。
步骤3074,基站开始对数据包到达时间进行预测,并对误差进行监测。
步骤3075,判断是否满足误差判断条件,若满足,则执行步骤3076;否则,则继续保持Fixed-DRX模式,并从零开始计时。
步骤3076,基站控制终端切换到AI-DRX模式。
本发明实施例还提供了一种非连续接收模式确定装置,应用于无线通信的网络侧设备和/或终端中,如图7所示,所述非连续接收模式确定装置100包括:
监控模块110,配置为确定数据包达到终端的预测时刻的误差;
第一确定模块120,配置为根据所述误差确定终端采用的DRX模式,其中,所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。
在一个实施例中,所述第一确定模块120,具体配置为:
响应于所述误差处于预设范围内,确定所述终端采用所述第一模式;
或者,
响应于所述误差处于所述预设范围外,确定所述终端采用所述第二模式。
在一个实施例中,所述误差处于预设范围内,包括以下至少之一:
M个所述数据包分别对应的M个所述误差大于或等于第一误差阈值,M为小于或等于超限数量阈值的自然数;
在误差监控周期内传输的所述数据包分别对应的所述误差的累加之和,小于第二误差阈值。
在一个实施例中,M个所述数据包,包括:
连续的M个所述数据包。
在一个实施例中,所述装置还包括:
第一计算模块130,配置为响应于一个所述数据包对应的所述误差小于 所述第一误差阈值,采用M减1之差更新M。
在一个实施例中,所述误差处于所述预设范围外,包括以下至少之一:
N个所述数据包分别对应的N个所述误差大于或等于第一误差阈值,N为大于超限数量阈值,其中,N为正整数;
在误差监测周期内传输的所述数据包分别对应的所述误差的累加之和大于或等于第二误差阈值。
在一个实施例中,N个所述数据包,包括:
连续的N个所述数据包。
在一个实施例中,所述装置还包括:
第二计算模块140,配置为响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用N减1之差更新N。
在一个实施例中,所述第一确定模块120,具体配置为:
在所述终端采用所述第二模式的持续时长达到第一时长之后,根据所述误差确定所述终端采用的DRX模式。
在一个实施例中,所述监控模块110,具体配置为:
在所述终端采用第二模式的第二时长内,监控所述数据包达到所述终端的所述预测时刻的所述误差。
在一个实施例中,所述装置还包括:
控制模块150,配置为在所述终端采用所述第二模式的持续时长达到第三时长之后,采用所述第一模式。
在一个实施例中,所述终端在第一模式下采用的第一误差阈值,不同于所述终端在第二模式下采用的第一误差阈值;
和/或,
所述终端在第一模式下采用的第二误差阈值,不同于所述终端在第二模式下采用的第二误差阈值。
在一个实施例中,所述DRX配置包括:DRX睡眠周期的配置。
在一个实施例中,通过所述第二模式配置的DRX睡眠周期时长,包括:预定配置时段内各数据包到达所述终端的时间间隔中的最小时长;
或者,
通过所述第二模式配置的DRX睡眠周期的时长为预设固定时长。
在一个实施例中,所述装置还包括:
第二确定模块160,配置为基于DRX睡眠周期中激活时间的结束时刻,与所述结束时刻之后的数据包对应的所述预测时刻之间的间隔时长,确定所述第一模式配置的所述DRX睡眠周期中非激活时间的时长。
在示例性实施例中,监控模块110、第一确定模块120、第一计算模块130、第二计算模块140、控制模块150和第二确定模块160等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,baseband processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图8是根据一示例性实施例示出的一种用于非连续接收模式确定的装置3000的框图。例如,装置3000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,装置3000可以包括以下一个或多个组件:处理组件3002,存储器3004,电源组件3006,多媒体组件3008,音频组件3010,输入/输 出(I/O)的接口3012,传感器组件3014,以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在装置3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统,一个或多个电源,及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当装置3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多 媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到装置3000的打开/关闭状态,组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变,用户与装置3000接触的存在或不存在,装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。 例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (32)

  1. 一种非连续接收DRX模式确定方法,其中,所述方法包括:
    确定数据包达到终端的预测时刻的误差;
    根据所述误差确定终端采用的DRX模式,其中,所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。
  2. 根据权利要求1所述的方法,其中,所述根据所述误差确定终端采用的DRX模式,包括:
    响应于所述误差处于预设范围内,确定所述终端采用所述第一模式;
    或者,
    响应于所述误差处于所述预设范围外,确定所述终端采用所述第二模式。
  3. 根据权利要求2所述的方法,其中,所述误差处于预设范围内,包括以下至少之一:
    M个所述数据包分别对应的M个所述误差大于或等于第一误差阈值,M为小于或等于超限数量阈值的自然数;
    在误差监控周期内传输的所述数据包分别对应的所述误差的累加之和,小于第二误差阈值。
  4. 根据权利要求3所述的方法,其中,M个所述数据包,包括:
    连续的M个所述数据包。
  5. 根据权利要求3所述的方法,其中,所述方法还包括:
    响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用M减1之差更新M。
  6. 根据权利要求2所述的方法,其中,所述误差处于所述预设范围外,包括以下至少之一:
    N个所述数据包分别对应的N个所述误差大于或等于第一误差阈值,N为大于超限数量阈值,其中,N为正整数;
    在误差监测周期内传输的所述数据包分别对应的所述误差的累加之和大于或等于第二误差阈值。
  7. 根据权利要求6所述的方法,其中,N个所述数据包,包括:
    连续的N个所述数据包。
  8. 根据权利要求6所述的方法,其中,所述方法还包括:
    响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用N减1之差更新N。
  9. 根据权利要求1所述的方法,其中,所述根据所述误差确定终端采用的DRX模式,包括:
    在所述终端采用所述第二模式的持续时长达到第一时长之后,根据所述误差确定所述终端采用的DRX模式。
  10. 根据权利要求1所述的方法,其中,所述监控数据包达到终端的预测时刻的误差,包括:
    在所述终端采用第二模式的第二时长内,确定所述数据包达到所述终端的所述预测时刻的所述误差。
  11. 根据权利要求1所述的方法,其中,所述方法还包括:
    在所述终端采用所述第二模式的持续时长达到第三时长之后,采用所述第一模式。
  12. 根据权利要求3至8任一项所述的方法,其中,
    所述终端在第一模式下采用的第一误差阈值,不同于所述终端在第二模式下采用的第一误差阈值;
    和/或,
    所述终端在第一模式下采用的第二误差阈值,不同于所述终端在第二 模式下采用的第二误差阈值。
  13. 根据权利要求1至11任一项所述的方法,其中,所述DRX配置包括一:DRX睡眠周期的配置。
  14. 根据权利要求13所述的方法,其中,
    通过所述第二模式配置的DRX睡眠周期时长,包括:预定配置时段内各数据包到达所述终端的时间间隔中的最小时长;
    或者,
    通过所述第二模式配置的DRX睡眠周期的时长为预设固定时长。
  15. 根据权利要求13所述的方法,其中,所述方法还包括:
    基于DRX睡眠周期中激活时间的结束时刻,与所述结束时刻之后的数据包对应的所述预测时刻之间的间隔时长,确定所述第一模式配置的所述DRX睡眠周期中非激活时间的时长。
  16. 一种非连续接收DRX模式确定装置,其中,所述装置包括:
    监控模块,配置为监控数据包达到终端的预测时刻的误差;
    第一确定模块,配置为根据所述误差确定终端采用的DRX模式,其中,所述DRX模式,包括:根据所述数据包达到的预测时刻确定DRX配置的第一模式和预设DRX配置对应的第二模式。
  17. 根据权利要求16所述的装置,其中,所述第一确定模块,具体配置为:
    响应于所述误差处于预设范围内,确定所述终端采用所述第一模式;
    或者,
    响应于所述误差处于所述预设范围外,确定所述终端采用所述第二模式。
  18. 根据权利要求17所述的装置,其中,所述误差处于预设范围内,包括以下至少之一:
    M个所述数据包分别对应的M个所述误差大于或等于第一误差阈值,M为小于或等于超限数量阈值的自然数;
    在误差监控周期内传输的所述数据包分别对应的所述误差的累加之和,小于第二误差阈值。
  19. 根据权利要求18所述的装置,其中,M个所述数据包,包括:
    连续的M个所述数据包。
  20. 根据权利要求18所述的装置,其中,所述装置还包括:
    第一计算模块,配置为响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用M减1之差更新M。
  21. 根据权利要求17所述的装置,其中,所述误差处于所述预设范围外,包括以下至少之一:
    N个所述数据包分别对应的N个所述误差大于或等于第一误差阈值,N为大于超限数量阈值,其中,N为正整数;
    在误差监测周期内传输的所述数据包分别对应的所述误差的累加之和大于或等于第二误差阈值。
  22. 根据权利要求21所述的装置,其中,N个所述数据包,包括:
    连续的N个所述数据包。
  23. 根据权利要求21所述的装置,其中,所述装置还包括:
    第二计算模块,配置为响应于一个所述数据包对应的所述误差小于所述第一误差阈值,采用N减1之差更新N。
  24. 根据权利要求16所述的装置,其中,所述第一确定模块,具体配置为:
    在所述终端采用所述第二模式的持续时长达到第一时长之后,根据所述误差确定所述终端采用的DRX模式。
  25. 根据权利要求16所述的装置,其中,所述监控模块,具体配置为:
    在所述终端采用第二模式的第二时长内,监控所述数据包达到所述终端的所述预测时刻的所述误差。
  26. 根据权利要求16所述的装置,其中,所述装置还包括:
    控制模块,配置为在所述终端采用所述第二模式的持续时长达到第三时长之后,采用所述第一模式。
  27. 根据权利要求18至23任一项所述的装置,其中,
    所述终端在第一模式下采用的第一误差阈值,不同于所述终端在第二模式下采用的第一误差阈值;
    和/或,
    所述终端在第一模式下采用的第二误差阈值,不同于所述终端在第二模式下采用的第二误差阈值。
  28. 根据权利要求16至26任一项所述的装置,其中,所述DRX配置包括:DRX睡眠周期的配置。
  29. 根据权利要求28所述的装置,其中,
    通过所述第二模式配置的DRX睡眠周期时长,包括:预定配置时段内各数据包到达所述终端的时间间隔中的最小时长;
    或者,
    通过所述第二模式配置的DRX睡眠周期的时长为预设固定时长。
  30. 根据权利要求28所述的装置,其中,所述装置还包括:
    第二确定模块,配置为基于DRX睡眠周期中激活时间的结束时刻,与所述结束时刻之后的数据包对应的所述预测时刻之间的间隔时长,确定所述第一模式配置的所述DRX睡眠周期中非激活时间的时长。
  31. 一种通信设备装置,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至15任一项所述非连续接收模式确定方法的步骤。
  32. 一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求1至15任一项所述非连续接收模式确定方法的步骤。
CN202180102089.0A 2021-09-29 2021-09-29 非连续接收模式确定方法、装置、通信设备和存储介质 Pending CN117941422A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121868 WO2023050203A1 (zh) 2021-09-29 2021-09-29 非连续接收模式确定方法、装置、通信设备和存储介质

Publications (1)

Publication Number Publication Date
CN117941422A true CN117941422A (zh) 2024-04-26

Family

ID=85781055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180102089.0A Pending CN117941422A (zh) 2021-09-29 2021-09-29 非连续接收模式确定方法、装置、通信设备和存储介质

Country Status (2)

Country Link
CN (1) CN117941422A (zh)
WO (1) WO2023050203A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378329B (zh) * 2010-08-16 2014-08-20 华为技术有限公司 实现非连续接收的方法和装置
US9241311B2 (en) * 2012-01-16 2016-01-19 Apple Inc. Methods and apparatus for adaptive receiver mode selection during discontinuous reception
EP3442148A1 (en) * 2017-08-11 2019-02-13 Panasonic Intellectual Property Corporation of America Bandwidth part adaptation in downlink communications
CN109462839B (zh) * 2018-11-26 2020-07-28 电子科技大学 一种基于自适应调整策略的drx机制通信方法

Also Published As

Publication number Publication date
WO2023050203A1 (zh) 2023-04-06

Similar Documents

Publication Publication Date Title
WO2022000188A1 (zh) 用户设备辅助信息的上报方法及装置、用户设备、存储介质
CN112823544B (zh) 条件切换的方法、装置、通信设备及存储介质
CN110520840B (zh) 唤醒信号处理、信息下发方法及装置、通信设备及介质
CN112823545B (zh) 小区切换的方法、装置、通信设备及存储介质
US11991631B2 (en) Monitoring method, signaling issuing method, and communication device
CN112385267B (zh) Ue的目标小区确定方法、装置、通信设备及存储介质
WO2021012130A1 (zh) 监听处理、策略下发方法及装置、通信设备及存储
US20220322170A1 (en) Monitoring method, instruction sending method and device, communication apparatus and storage
CN114287147B (zh) 信息处理方法、装置、通信设备及存储介质
WO2023050203A1 (zh) 非连续接收模式确定方法、装置、通信设备和存储介质
CN114365550B (zh) 信息处理方法、装置、通信设备及存储介质
CN114600530A (zh) 一种信道检测方法、信道检测装置及存储介质
WO2023123462A1 (zh) Bwp切换方法、装置、通信设备及存储介质
US20230422343A1 (en) Method and apparatus for configuring discontinuous reception parameter, and communication device and storage medium
CN112189375B (zh) 传输调度方法、装置、通信设备和存储介质
WO2024055217A1 (zh) 确定bfd放松状态的方法、装置、通信设备及存储介质
WO2021142795A1 (zh) 一种数据传输的方法、装置、通信设备及存储介质
WO2024065371A1 (zh) 一种波束扫描方法、装置、通信设备及存储介质
WO2024036576A1 (zh) 一种持续时间起始位置确定方法、装置、通信设备及存储介质
WO2022261983A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2024031460A1 (zh) 一种接入行为确定方法、装置、通信设备及存储介质
RU2783839C1 (ru) Способ контроля и устройство связи
US20240196333A1 (en) Method for relaxation measurement, terminal and storage medium
CN115380573A (zh) Ue省电处理方法、装置、通信设备及存储介质
CN115943663A (zh) Rrm测量的放松、信息处理方法及装置、设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination