WO2021142795A1 - 一种数据传输的方法、装置、通信设备及存储介质 - Google Patents

一种数据传输的方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2021142795A1
WO2021142795A1 PCT/CN2020/072842 CN2020072842W WO2021142795A1 WO 2021142795 A1 WO2021142795 A1 WO 2021142795A1 CN 2020072842 W CN2020072842 W CN 2020072842W WO 2021142795 A1 WO2021142795 A1 WO 2021142795A1
Authority
WO
WIPO (PCT)
Prior art keywords
fbe
parameters
cca
parameter
milliseconds
Prior art date
Application number
PCT/CN2020/072842
Other languages
English (en)
French (fr)
Inventor
李媛媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/072842 priority Critical patent/WO2021142795A1/zh
Priority to CN202080000136.6A priority patent/CN113412638B/zh
Publication of WO2021142795A1 publication Critical patent/WO2021142795A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method, device, communication device, and storage medium for data transmission.
  • the transmitting end such as the base station (SB) or user equipment (UE), needs to monitor the channel before sending data based on the unlicensed frequency band; if the channel is found to have interference below a certain threshold, It is possible to successfully occupy the channel to send data.
  • the transmitter needs to use a monitoring mechanism when sending data based on an unlicensed frequency band, for example, using a listen before talk (LBT) mechanism.
  • LBT listen before talk
  • LBT listen before talk
  • FBE frame-based equipment
  • clear channel assessment (CCA) only needs to monitor the duration of one slot.
  • the transmitter detects that the channel interference is lower than a certain threshold, it is considered that the channel is idle, and the transmitter can occupy the channel after the channel detection ends.
  • the transmitting end occupies the channel for transmission in the FBE mode, which often has a relatively large time delay.
  • the embodiments of the present disclosure disclose a data transmission method, device, communication equipment, and storage medium.
  • a data transmission method applied to a communication device wherein the method includes:
  • N is a positive integer equal to or greater than 2; and the idle channel assessment CCA detection time parameters corresponding to the N FBE parameters are not completely the same;
  • the CCA according to FBE parameters includes:
  • the performing CCA according to the FBE parameters includes:
  • transmission is performed based on the nth FBE parameter.
  • the nth FBE parameter is the same as the CCA period corresponding to the kth FBE parameter.
  • the CCA period corresponding to the nth FBE parameter and the kth FBE parameter are different.
  • the method further includes:
  • the N FBE parameters are reused to perform the CCA.
  • the communication device is user equipment UE
  • the determining N frame-based device FBE parameters includes:
  • the N FBE parameters are received through a radio resource control RRC message.
  • the communication device is a base station
  • the determining N frame-based device FBE parameters includes:
  • the N FBE parameters are generated.
  • the generating the N frame-based device FBE parameters includes:
  • the CCA period corresponding to the N FBE parameters is generated.
  • a data transmission device which is applied to a communication device, wherein the device includes:
  • the determining module is configured to determine N frame-based device FBE parameters; wherein, the N is a positive integer equal to or greater than 2; and the idle channel assessment CCA detection time parameters corresponding to the N FBE parameters are not completely the same ;
  • the detection module performs CCA according to the FBE parameters.
  • the detection module is configured to perform CCA according to the kth FBE parameter in response to the failure of CCA according to the nth FBE parameter; wherein, the n is a positive integer less than or equal to N, and the k Is a positive integer less than or equal to N; the n is different from the k.
  • the device further includes:
  • the transmission module is configured to transmit based on the nth FBE parameter in response to the success of the CCA performed according to the nth FBE parameter.
  • the nth FBE parameter is the same as the CCA period corresponding to the kth FBE parameter.
  • the CCA period corresponding to the nth FBE parameter and the kth FBE parameter are different.
  • the detection module is configured to re-use the N FBE parameters to start the CCA in response to the failure of the CCA corresponding to the N FBE parameters.
  • the communication device is user equipment UE
  • the determining module is configured to receive the N FBE parameters through a broadcast channel; or, is configured to receive the N FBE parameters through a radio resource control RRC message.
  • the communication device is a base station
  • the determining module is configured to generate the N FBE parameters.
  • the determining module is configured to generate the CCA period corresponding to the N FBE parameters according to the transmission period of the data to be transmitted.
  • the communication device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to implement the data transmission method described in any embodiment of the present disclosure when the executable instruction is executed.
  • a computer storage medium wherein the computer storage medium stores a computer executable program, and when the executable program is executed by a processor, the implementation of any of the embodiments of the present disclosure is implemented. The method of data transmission described.
  • N frame-based device FBE parameters are determined by the communication device; wherein, the N is a positive integer equal to or greater than 2; and the idle channel assessment CCA detection time parameters corresponding to the N FBE parameters Not exactly the same; CCA is performed according to the FBE parameters.
  • the communication device of the embodiment of the present disclosure is configured with multiple FBE parameters; compared to a communication device configured with only one FBE parameter, when the communication device fails to perform CCA based on the current detection time of the one FBE parameter, it can be used For another FBE parameter to perform CCA, there is no need to wait for the next detection time corresponding to the one FBE parameter to perform CCA; furthermore, the waiting time for the next CCA can be greatly shortened, which is beneficial to greatly shorten the waiting time for data or signaling transmission. Time delay.
  • Figure 1 is a schematic structural diagram of a wireless communication system.
  • Fig. 2 is a flow chart showing a method for data transmission according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing a method for data transmission according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing a method for data transmission according to an exemplary embodiment.
  • Fig. 5 is a flow chart showing a method for data transmission according to an exemplary embodiment.
  • Fig. 6 is a flow chart showing a device for data transmission according to an exemplary embodiment.
  • Fig. 7 is a block diagram showing a user equipment according to an exemplary embodiment.
  • Fig. 8 is a block diagram showing a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information
  • second information may also be referred to as first information.
  • Fig. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several user equipment 110 and several base stations 120.
  • the user equipment 110 may be a device that provides voice and/or data connectivity to the user.
  • the user equipment 110 may communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the user equipment 110 may be an Internet of Things user equipment, such as a sensor device, a mobile phone (or called a "cellular" phone).
  • a computer with Internet of Things user equipment for example, may be a fixed, portable, pocket-sized, handheld, computer-built or vehicle-mounted device.
  • station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote user equipment (remote terminal), access user equipment (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user equipment (user equipment).
  • the user equipment 110 may also be a device of an unmanned aerial vehicle.
  • the user equipment 110 may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless user equipment connected to the trip computer.
  • the user equipment 110 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 120 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system. Also known as the new air interface system or 5G NR system. Alternatively, the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • the base station 120 may be an evolved base station (eNB) used in a 4G system.
  • the base station 120 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized and distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 120.
  • a wireless connection can be established between the base station 120 and the user equipment 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on a 5G-based next-generation mobile communication network technology standard.
  • an E2E (End to End) connection may also be established between the user equipment 110.
  • V2V vehicle to vehicle
  • V2I vehicle to Infrastructure
  • V2P vehicle to pedestrian
  • the above-mentioned wireless communication system may further include a network management device 130.
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), Policy and Charging Rules function unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules function unit Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • an embodiment of the present disclosure provides a data transmission method, and the method includes:
  • Step S11 determining N frame-based device FBE parameters; wherein, the N is a positive integer equal to or greater than 2; and the idle channel assessment CCA detection time parameters corresponding to the N FBE parameters are not completely the same;
  • Step S12 CCA is performed according to the FBE parameters.
  • the communication device may be a base station or user equipment.
  • the base station is an access device for user equipment to access a cellular mobile network.
  • the base station may be various types of base stations, for example, a 3G base station, a 4G base station, or a 5G base station.
  • the user equipment may be a mobile phone, a computer, a server, a transceiver device, a tablet device, or a medical device, etc.
  • the step S11 includes: the base station determines N frame-based device FBE parameters;
  • the step S12 includes: the base station performs CCA according to the FBE parameter.
  • the base station can configure multiple sets of FBE parameters for downlink transmission.
  • the step S11 includes: the user equipment determines N frame-based device FBE parameters;
  • the step S12 includes: the user equipment performs CCA according to the FBE parameter.
  • the user equipment can configure multiple sets of FBE parameters for uplink transmission.
  • the CCA is a way to detect whether the channel is idle; if the CCA is successful, it means that the base station or user equipment can occupy the channel for transmission; if the CCA fails, it means that all The base station or user equipment cannot occupy the channel for transmission.
  • the duration of one CCA can be one time slot. For example, in an embodiment, if the one time slot can be 9 microseconds (us); the base station or user equipment monitors whether the interference in the 9 microseconds is less than a certain threshold, and if so, the channel is considered It is idle; if not, it is considered that the channel is not idle. If it is determined that the channel is idle, the base station or user equipment may occupy the channel for transmission.
  • the FBE parameters include: CCA detection time parameters and CCA period.
  • the CCA period is the time interval between two adjacent CCA times. For example, if the CCA period corresponding to an FBE parameter is 10 milliseconds (ms), then CCA is performed every 10 milliseconds.
  • the detection time parameter can be used to indicate at least one of the following: the start time, the end time of the CCA, and/or the duration of the CCA. For example, if the CCA period corresponding to an FBE parameter is 10 milliseconds, CCA can be started at 0 milliseconds, 10 milliseconds, 20 milliseconds, or 30 milliseconds. For another example, if the CCA period corresponding to another FBE parameter is 5 milliseconds, then CCA can be started at 0 milliseconds, 5 milliseconds, 10 milliseconds, or 15 milliseconds.
  • the detection time parameters corresponding to at least some of the N FBE parameters are at least partially different.
  • the base station determines 3 FBE parameters; the CCA period corresponding to the first FBE parameter is 6 milliseconds, and the corresponding CCA detection time parameters are 0 milliseconds, 6 milliseconds, 12 milliseconds, and 18 milliseconds; the second FBE The CCA period corresponding to the parameter is 6 milliseconds, and the corresponding CCA detection time parameters are 0 milliseconds, 6 milliseconds, 12 milliseconds, and 18 milliseconds; the CCA period corresponding to the third FBE parameter is 7 milliseconds, and the corresponding CCA's The detection time parameters are 0 milliseconds, 7 milliseconds, 14 milliseconds and 21 milliseconds. Then, among the three FBE parameters, the detection time parameters corresponding to the first FBE parameter and the third FBE parameter are all different; or, the second FBE parameter corresponds to the third FBE parameter It should be detected that the time parameters are all different.
  • the user equipment determines 3 FBE parameters; the CCA period corresponding to the first FBE parameter is 6 milliseconds, and the corresponding CCA detection time parameters are 0 milliseconds, 6 milliseconds, 12 milliseconds, and 18 milliseconds; second The CCA period corresponding to each FBE parameter is 3 milliseconds, and the corresponding CCA time parameters are 0 milliseconds, 3 milliseconds, 6 milliseconds, 12 milliseconds, 15 milliseconds, and 18 milliseconds; the CCA period corresponding to the third FBE parameter is 6 milliseconds , The corresponding CCA detection time parameters are 0 milliseconds, 6 milliseconds, 12 milliseconds and 18 milliseconds. Then, among the three FBE parameters, the CCA time parameters corresponding to the first FBE parameter and the second FBE parameter are at least partially different.
  • the FBE parameter further includes: an offset value (offset) for performing CCA.
  • the offset value is a value offset from the reference point; for example, a value offset from 0.
  • the offset values of different FBE parameters relative to the same reference point are different.
  • the offset value includes one or more time slots. In other embodiments, the offset value may include one or more symbols.
  • the offset value is 1 time slot; in this application scenario, if 1 time slot is 1 millisecond, then FBE The detection time parameters corresponding to the parameters are 1 millisecond, 11 milliseconds, 21 milliseconds, 31 milliseconds, ..., (M ⁇ 10+1) milliseconds; wherein, the M is a positive integer greater than or equal to 1.
  • the offset values for executing CCA corresponding to different FBE parameters are different and completely the same.
  • the offset value of the first FBE parameter is 0, the offset value of the second FBE parameter is 2 time slots, and the offset value of the third FBE parameter is The offset value is 5 symbols, the offset value of the fourth FBE parameter is 0, and the offset value of the fifth FBE parameter is 2 time slots. It is determined at least that the offset values of the first FBE parameter, the second FBE parameter, and the third FBE parameter are different.
  • multiple FBE parameters may be configured in the base station or user equipment.
  • the base station or user equipment fails to perform CCA based on the current detection time of one of the FBE parameters
  • the other FBE parameter can be used to perform CCA, and CCA does not need to wait until the next detection time corresponding to the one FBE parameter arrives;
  • the waiting time for the next CCA can be greatly shortened, which in turn is beneficial to greatly shortening the waiting time for transmission of data or signaling.
  • the step S12 includes:
  • both the n FBE parameters and the k FBE parameters may be any one of the N FBE parameters, as long as it is satisfied that the n is different from the k.
  • the base station configures two FBE parameters for downlink transmission; wherein, the CCA period corresponding to the two FBE parameters is the same, and both are 10 milliseconds.
  • the offset value corresponding to the first FBE parameter is 0, and the CCA detection time parameter corresponding to the first FBE parameter can be 0 milliseconds, 10 milliseconds, 20 milliseconds, ..., (M ⁇ 10) Milliseconds; wherein, the M is a positive integer greater than or equal to 1.
  • the offset value corresponding to the second FBE parameter is 1 time slot.
  • one time slot is 1 millisecond; then the CCA detection time parameter corresponding to the second FBE parameter can be 1 millisecond, 11 milliseconds, 21 milliseconds, ..., (M ⁇ 10) milliseconds. If the base station fails to perform CCA within 30 milliseconds corresponding to the first FBE parameter; CCA can be performed within 31 milliseconds corresponding to the second FBE parameter.
  • the base station also configures the third FBE parameter and the fourth FBE parameter for downlink transmission; when the base station fails in the 30 millisecond detection corresponding to the first FBE parameter, it can also be based on the third FBE parameter Or one of the fourth FBE parameters for CCA.
  • the user equipment determines three FBE parameters for uplink transmission; wherein, the CCA periods corresponding to the three FBE parameters are the same, and both are 5 milliseconds.
  • the offset value corresponding to the first FBE parameter is 0, then the CCA detection time parameter corresponding to the first FBE parameter can be 0 milliseconds, 5 milliseconds, 10 milliseconds, ..., (M ⁇ 5) milliseconds ; Wherein, the M is a positive integer greater than or equal to 1.
  • the offset value corresponding to the second FBE parameter is 1 time slot.
  • one time slot is 1 millisecond
  • the CCA detection time parameter corresponding to the second FBE parameter can be 1 millisecond, 6 Milliseconds, 11 milliseconds, ..., (M ⁇ 5+1) milliseconds.
  • the offset value corresponding to the third FBE parameter is 7 symbols.
  • a time slot has 14 symbols, and 7 symbols are 0.5 milliseconds; the CCA corresponding to the third FBE parameter is detected
  • the time parameter can be 0.5 milliseconds, 5.5 milliseconds, 10.5 milliseconds,..., (M ⁇ 5+0.5) milliseconds. If the base station fails to perform CCA within 30 milliseconds corresponding to the first FBE parameter; it can perform CCA within 31 milliseconds corresponding to the second FBE parameter or perform CCA within 30.5 milliseconds corresponding to the third FBE parameter.
  • CCA fails in response to the nth FBE parameter; for example, in the above two examples, if the base station fails to perform CCA within 30 milliseconds corresponding to the first FBE parameter, there is no need Wait until the first FBE parameter corresponds to 40 milliseconds to perform CCA, you can directly perform CCA in 31 milliseconds corresponding to the second FBE parameter; or, if the user equipment fails to perform CCA in 30 milliseconds corresponding to the first FBE parameter No need to wait for the 40 milliseconds corresponding to the first FBE parameter to perform CCA, you can directly perform CCA in 31 milliseconds corresponding to the second FBE parameter or 30.5 milliseconds corresponding to the third FBE parameter. In this way, the waiting time delay can be greatly shortened, and the speed of the next CCA can be accelerated, thereby greatly reducing the waiting time delay for transmission.
  • the FBE parameter with the shortest time away from the detection time can be selected, and the corresponding detection Time for CCA.
  • the detection time parameters of the k FBE parameters and the detection time parameters of the n FBE parameters are the shortest. For example, in the above example, if the base station fails to perform CCA within 30 milliseconds corresponding to the first FBE parameter; then, it can perform CCA within 30.5 milliseconds corresponding to the third FBE parameter. In this way, the time delay for waiting for the CCA can be further shortened, and the transmission speed of the successful access signal can be improved.
  • the step S12 includes:
  • transmission is performed based on the nth FBE parameter.
  • the transmission can be performed based on the CCA result; similarly, if the user equipment performs the CCA successfully according to the nth FB parameter, it can be based on the CCA.
  • the results are transmitted.
  • the transmission performed by the base station or the user equipment may be: transmission of data, transmission of control signaling, or transmission of data and control signaling; in the embodiment of the present disclosure, the content and type of transmission are not limited.
  • the nth FBE parameter is the same as the CCA period corresponding to the kth FBE parameter.
  • the CCA period corresponding to the nth FBE parameter and the kth FBE parameter are different.
  • the CCA period corresponding to the middle part of the determined N FBE parameters may be the same; or, the CCA period corresponding to each FBE parameter in the N FBE parameters are all the same; or, Each of the N FBE parameters is different. In this way, diversified configurations of CCA cycles corresponding to the N FBE parameters can be realized.
  • the method further includes:
  • Step S13 in response to the failure of the CCA corresponding to the N FBE parameters, re-use the N FBE parameters to perform CCA.
  • the base station determines three FBE parameters for downlink transmission; wherein, the CCA periods corresponding to the three FBE parameters are the same, which are all 5 milliseconds.
  • the offset value corresponding to the first FBE parameter is 0, then the CCA detection time parameter corresponding to the first FBE parameter can be 0 milliseconds, 5 milliseconds, 10 milliseconds, ..., (M ⁇ 5) milliseconds ; Wherein, the M is a positive integer greater than or equal to 1.
  • the offset value corresponding to the second FBE parameter is 1 time slot.
  • one time slot is 1 millisecond
  • the CCA detection time parameter corresponding to the second FBE parameter can be 1 millisecond, 6 Milliseconds, 11 milliseconds, ..., (M ⁇ 5+1) milliseconds.
  • the offset value corresponding to the third FBE parameter is 7 symbols.
  • a time slot has 14 symbols, and 7 symbols are 0.5 milliseconds; the CCA corresponding to the third FBE parameter is detected
  • the time parameter can be 0.5 milliseconds, 5.5 milliseconds, 10.5 milliseconds,..., (M ⁇ 5+0.5) milliseconds.
  • CCA can be performed based on the 40 milliseconds corresponding to the first FBE parameter. Or, in other examples, CCA can also be performed based on 40.5 milliseconds of the second FBE parameter or 41 milliseconds of the third FBE parameter.
  • the base station or the user equipment traverses each of the N FBE parameters to perform CCA, and all fail; the N FBE parameters can be reused to perform CCA. In this way, the success rate of CCA can be improved, so that the base station or user equipment can occupy the channel as soon as possible to transmit data.
  • the communication device is user equipment UE
  • the determining N frame-based device FBE parameters includes:
  • Step S111 receiving the N FBE parameters through a broadcast channel; or, receiving the N FBE parameters through a radio resource control RRC message.
  • the step S111 includes: the user equipment receives the N FBE parameters sent by the base station through a broadcast channel, or receives the N FBE parameters sent by the base station through a radio resource control message.
  • the user equipment itself cannot be configured with FBE parameters, and it needs to be configured with FBE parameters through the base station.
  • the user equipment may receive the N FBE parameters broadcast by the base station through a broadcast channel; or, receive the N FBE parameters through an RRC message sent by the base station.
  • the base station may also send only a part of the N FBE parameters to the user equipment.
  • the communication device is a base station
  • the determining N frame-based device FBE parameters includes:
  • Step S112 generating the N FBE parameters.
  • the cell where the base station is located has multiple user equipments, or the base station is connected to multiple user equipment base stations.
  • the base station may send the N FBE parameters to the multiple user equipments through a broadcast channel.
  • the base station may send the N FBE parameters to the multiple user equipments through an RRC message.
  • the base station may send the N FBE parameters to the designated user equipment through an RRC message.
  • the base station may randomly generate the N FBE parameters, which include configuring at least one of the CCA period corresponding to the FBE parameter, the detection time parameter, and the offset value.
  • the base station may also generate the N FBE parameters according to a preset rule.
  • the step S112 includes:
  • the CCA period corresponding to the N FBE parameters is generated.
  • the transmission period of the data to be transmitted is the first duration
  • the CCA period corresponding to at least part of the N FBE parameters is generated as the first duration; or at least some of the N FBE parameters are generated
  • the CCA period corresponding to the FBE parameter is the second duration, wherein the difference between the second duration and the first duration is within a predetermined range.
  • the CCA period corresponding to the FBE parameter can be generated according to the transmission period of the transmitted data; in this way, it is beneficial to improve the efficiency of data or signaling transmission.
  • step S112 includes:
  • the data to be transmitted is aperiodic data, randomly configure the CCA period included in the FBE parameter.
  • the non-periodic data is that the transmission of data is not periodic.
  • the CCA period included in the FBE parameter can also be randomly configured.
  • the step S112 includes:
  • the current N FBE parameters are determined.
  • the current N FBE parameters can be determined according to the historically used FBE parameters, which can improve the success rate of CCA based on these FBE parameters.
  • the embodiment of the present disclosure also provides a data transmission method, which is applied to a base station, and the method includes the following steps:
  • Step 1 The base station configures 2 FBE parameters
  • the base station configures two FBE parameters for downlink transmission; the CCA periods corresponding to the two FBE parameters are the same, and both are 10 milliseconds.
  • the offset value corresponding to the first FBE parameter is 0, then the CCA detection time parameter corresponding to the first FBE parameter is 0 milliseconds, 10 milliseconds, 20 milliseconds, ..., (M ⁇ 10) milliseconds ; Wherein, the M is a positive integer greater than or equal to 1.
  • the offset value corresponding to the second FBE parameter is 1 time slot, in this example, one time slot is 1 millisecond; the CCA detection time parameter corresponding to the second FBE parameter is 1 millisecond and 11 milliseconds , 21 milliseconds, ..., (M ⁇ 10) milliseconds.
  • Step 2 The base station performs CCA according to the two FBE parameters
  • the base station performs CCA according to the 20 milliseconds corresponding to the first FBE parameter; if the detection is successful, it sends data based on the first FBE parameter;
  • CCA is performed according to the 21 milliseconds corresponding to the second FBE parameter, and if the detection is successful, data is issued based on the second FBE parameter.
  • the base station when the base station fails to perform CCA in 20 milliseconds corresponding to the first FBE parameter, it does not need to wait for 30 milliseconds to perform CCA, and can directly perform the CCA based on the 21 milliseconds corresponding to the second FBE parameter. CCA; thereby shortening the time for the next CCA, which in turn can shorten the waiting time for the base station to send data.
  • the embodiment of the present disclosure also provides a data transmission method, which is applied to user equipment, and the method includes the following steps:
  • Step 1 The user equipment receives 3 FBE parameters
  • the user equipment receives three FBE parameters sent by the base station through a broadcast channel; the user equipment configures the three FBE parameters for uplink transmission.
  • the CCA cycles corresponding to the three FBE parameters are the same, all being 10 milliseconds.
  • the offset value corresponding to the first FBE parameter is 0, and the CCA detection time parameter corresponding to the first FBE parameter is 0 milliseconds, 10 milliseconds, 20 milliseconds, ..., (M ⁇ 10) milliseconds; Wherein, the M is a positive integer greater than or equal to 1.
  • the offset value corresponding to the second FBE parameter is 1 time slot.
  • one time slot is 1 millisecond
  • the CCA detection time parameter corresponding to the second FBE parameter is 1 millisecond and 11 milliseconds. , 21 milliseconds, ..., (M ⁇ 10) milliseconds.
  • the offset value corresponding to the third FBE parameter is 7 symbols.
  • a time slot has 14 symbols, and 7 symbols are 0.5 milliseconds; the CCA corresponding to the third FBE parameter is detected
  • the time parameters are 0.5 milliseconds, 5.5 milliseconds, 10.5 milliseconds,..., (M ⁇ 10+0.5) milliseconds.
  • Step 2 The user equipment performs CCA according to the three FBE parameters
  • the user equipment performs CCA according to the 20 milliseconds corresponding to the first FBE parameter; if the detection is successful, uploads data based on the first FBE parameter;
  • CCA is performed according to the 20.5 milliseconds corresponding to the third FBE parameter, and if the detection is successful, data is uploaded based on the third FBE parameter;
  • the CCA is performed based on the 21 milliseconds corresponding to the second FBE parameter, and if the detection is successful, the data is uploaded based on the second FBE parameter.
  • this example when the user equipment fails to perform CCA in 20 milliseconds corresponding to the first FBE parameter, there is no need to wait for 30 milliseconds to perform CCA, and it can be performed directly based on the 20.5 milliseconds corresponding to the third FBE parameter. CCA. Moreover, if the CCA performed based on the 20.5 milliseconds corresponding to the third FBE parameter fails, there is no need to wait until 30.5 milliseconds to perform the CCA, and the CCA can be performed directly based on the 21 milliseconds corresponding to the second FBE parameter. In this way, this example can shorten the time for the next CCA, and thus can shorten the waiting time for the base station to deliver data.
  • an embodiment of the present disclosure provides a data transmission processing device, which is applied to communication equipment, where the device includes: a determination module 41, a detection module 42, and a transmission module 43; wherein,
  • the determining module 41 is configured to determine N frame-based device FBE parameters; wherein, the N is a positive integer equal to or greater than 2; and the idle channel assessment CCA detection time parameters corresponding to the N FBE parameters Not exactly the same;
  • the detection module 42 performs CCA according to the FBE parameters.
  • the detection module 42 is configured to perform CCA according to the kth FBE parameter in response to the failure of CCA according to the nth FBE parameter; wherein, the n is a positive integer less than or equal to N, The k is a positive integer less than or equal to N; the n is different from the k.
  • the device further includes:
  • the transmission module 43 is configured to transmit based on the nth FBE parameter in response to the success of the CCA performed according to the nth FBE parameter.
  • the nth FBE parameter is the same as the CCA period corresponding to the kth FBE parameter.
  • the CCA period corresponding to the nth FBE parameter and the kth FBE parameter are different.
  • the detection module 43 is configured to re-use the N FBE parameters to start CCA in response to the failure of the CCA corresponding to the N FBE parameters.
  • the communication device is user equipment UE
  • the determining module 41 is configured to receive the N FBE parameters through a broadcast channel; or, is configured to receive the N FBE parameters through a radio resource control RRC message.
  • the communication device is a base station
  • the determining module 41 is configured to generate the N FBE parameters.
  • the determining module 41 is configured to generate the CCA period corresponding to the N FBE parameters according to the transmission period of the data to be transmitted.
  • the offset values for executing CCA corresponding to different FBE parameters are not completely the same.
  • the embodiment of the present disclosure also provides a communication device, wherein the communication device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to implement the data transmission method described in any embodiment of the present disclosure when the executable instruction is executed.
  • the processor may include various types of storage media.
  • the storage media is a non-transitory computer storage medium that can continue to memorize and store information thereon after the communication device is powered off.
  • the processor may be connected to the memory through a bus or the like, and is used to read an executable program stored on the memory, for example, at least one of the methods shown in FIGS. 2 to 5.
  • An embodiment of the present disclosure further provides a computer storage medium, wherein the computer storage medium stores a computer executable program, and the executable program is executed by a processor to implement the data transmission method described in any embodiment of the present disclosure .
  • Fig. 7 is a block diagram showing a user equipment (UE) 800 according to an exemplary embodiment.
  • the user equipment 800 may be a mobile phone, a computer, a digital broadcast user equipment, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the user equipment 800 may include one or more of the following components: a processing component 802, a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, and a sensor component 814 , And communication component 816.
  • the processing component 802 generally controls the overall operations of the user equipment 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations on the user equipment 800. Examples of such data include instructions for any application or method operated on the user equipment 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 806 provides power for various components of the user equipment 800.
  • the power supply component 806 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the user equipment 800.
  • the multimedia component 808 includes a screen that provides an output interface between the user equipment 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the user equipment 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), and when the user equipment 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes one or more sensors for providing the user equipment 800 with various aspects of status evaluation.
  • the sensor component 814 can detect the on/off status of the device 800 and the relative positioning of components.
  • the component is the display and the keypad of the user device 800.
  • the sensor component 814 can also detect the user device 800 or a component of the user device 800.
  • the location of the user equipment 800 changes, the presence or absence of contact between the user and the user equipment 800, the orientation or acceleration/deceleration of the user equipment 800 and the temperature change of the user equipment 800.
  • the sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the user equipment 800 and other devices.
  • the user equipment 800 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the user equipment 800 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field-available A programmable gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field-available A programmable gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 804 including instructions, and the foregoing instructions may be executed by the processor 820 of the user equipment 800 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • an embodiment of the present disclosure shows a structure of a base station.
  • the base station 900 may be provided as a network side device.
  • the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as application programs.
  • the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute any of the aforementioned methods applied to the base station, for example, the method shown in FIG. 2-3.
  • the base station 900 may also include a power supply component 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to the network, and an input output (I/O) interface 958.
  • the base station 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种数据传输的方法,应用于通信设备,其中,所述方法包括:确定N个基于帧的设备FBE参数;其中,所述N为等于或大于2的正整数;且所述N个FBE参数对应的空闲信道评估CCA的检测时间参数不完全相同;根据所述FBE参数进行CCA。本公开实施例还提供了一种数据传输装置、通信设备及存储介质。本公开实施例可以为通信设备配置多个FBE参数,从而当通信设备基于该一个FBE参数的当前的检测时间进行CCA失败时,可以使用另一个FBE参数的检测时间进行CCA,无需等到该一个FBE参数对应的下一个检测时间到来时才进行CCA;能够大大缩短下一次CCA的等待时间,进而有利于大大降低数据传输的等待时延。

Description

一种数据传输的方法、装置、通信设备及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种数据传输的方法、装置、通信设备及存储介质。
背景技术
发射端,例如基站(Base Station,SB)或用户设备(user equipment,UE),基于非授权频段发送数据之前,需要对信道进行监听;若监听发现信道中的干扰低于一定门限值时,才可能成功占用信道发送数据。也就是说,发射端基于非授权频段发送数据时需要使用监听机制,例如,使用先听后发(Listen before talk,LBT)机制。其中,在LBT中,有一种基于帧的设备(frame based equipment,FBE)的方式。在所述FBE方式下,进行空闲信道评估(Clear channel assessment,CCA)只需要监听一个时隙(slot)的时长即可。如果在这个时隙内,发射端监听到信道的干扰低于一定门限值,则认为信道空闲,发射端就可以在信道检测结束后占用该信道。而目前,发射端按照FBE的方式占用信道进行传输,往往有比较大的时延。
发明内容
本公开实施例公开了一种数据传输的方法、装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供了一种数据传输的方法,应用于通信设备,其中,所述方法包括:
确定N个基于帧的设备FBE参数;其中,所述N为等于或大于2的正整数;且所述N个FBE参数对应的空闲信道评估CCA的检测时间参数不 完全相同;
根据所述FBE参数进行CCA。
上述方案中,所述根据FBE参数进行CCA,包括:
响应于根据第n个FBE参数进行CCA失败,根据第k个FBE参数进行CCA;其中,所述n为小于或等于N的正整数,所述k为小于或等于N的正整数;所述n与所述k不同。
上述方案中,所述根据所述FBE参数进行CCA,包括:
响应于根据所述第n个FBE参数进行的CCA成功,基于所述第n个FBE参数进行传输。
上述方案中,所述第n个FBE参数与所述第k个FBE参数所对应的CCA周期相同。
上述方案中,所述第n个FBE参数与所述第k个FBE参数所对应的CCA周期不同。
上述方案中,所述方法还包括:
响应于根据所述N个FBE参数对应的CCA均失败,重新利用所述N个FBE参数进行CCA。
上述方案中,所述通信设备为用户设备UE;
所述确定N个基于帧的设备FBE参数,包括:
通过广播信道接收所述N个FBE参数;
或者,
通过无线资源控制RRC消息接收所述N个FBE参数。
上述方案中,所述通信设备为基站;
所述确定N个基于帧的设备FBE参数,包括:
生成所述N个FBE参数。
上述方案中,所述生成所述N个基于帧的设备FBE参数,包括:
根据待传输数据的传输周期,生成所述N个FBE参数对应的CCA周期。
上述方案中,所述N个FBE参数中,不同FBE参数所对应的执行CCA的偏移值offset不完全相同。
根据本公开实施例的第二方面,还提供了一种数据传输的装置,应用于通信设备,其中,所述装置包括:
确定模块,被配置为确定N个基于帧的设备FBE参数;其中,所述N为等于或大于2的正整数;且所述N个FBE参数对应的空闲信道评估CCA的检测时间参数不完全相同;
检测模块,根据所述FBE参数进行CCA。
上述方案中,所述检测模块,被配置为响应于根据第n个FBE参数进行CCA失败,根据第k个FBE参数进行CCA;其中,所述n为小于或等于N的正整数,所述k为小于或等于N的正整数;所述n与所述k不同。
上述方案中,所述装置还包括:
传输模块,被配置为响应于根据所述第n个FBE参数进行的CCA成功,基于所述第n个FBE参数进行传输。
上述方案中,所述第n个FBE参数与所述第k个FBE参数所对应的CCA周期相同。
上述方案中,所述第n个FBE参数与所述第k个FBE参数所对应的CCA周期不同。
上述方案中,所述检测模块,被配置为响应于根据所述N个FBE参数对应的CCA均失败,重新利用所述N个FBE参数开始进行CCA。
上述方案中,所述通信设备为用户设备UE;
所述确定模块,被配置为通过广播信道接收所述N个FBE参数;或者,被配置为通过无线资源控制RRC消息接收所述N个FBE参数。
上述方案中,所述通信设备为基站;
所述确定模块,被配置为生成所述N个FBE参数。
上述方案中,所述确定模块,被配置为根据所述待传输数据的传输周期,生成所述N个FBE参数对应的CCA周期。
上述方案中,所述N个FBE参数中,不同FBE参数所对应的执行CCA的偏移值offset不完全相同。
根据本公开实施例的第三方面,还提供了一种通信设备,其中,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公开任意实施例所述的数据传输的方法。
根据本公开实施例的第四方面,还提供了一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的数据传输的方法。
本公开实施例中,通过通信设备确定N个基于帧的设备FBE参数;其中,所述N为等于或大于2的正整数;且所述N个FBE参数对应的空闲信道评估CCA的检测时间参数不完全相同;根据所述FBE参数进行CCA。如此,本公开实施例的通信设备配置了多个FBE参数;相对于仅配置了一个FBE参数的通信设备来说,当通信设备基于该一个FBE参数的当前的检测时间进行CCA失败时,可使用另一个FBE参数进行CCA,无需等到该一个FBE参数对应的下一个检测时间到来时才进行CCA;进而,能够大大缩短下一次CCA的等待时间,进而有利于大大缩短数据或信令等传输的等待时延。
附图说明
图1是一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种数据传输的方法的流程图。
图3是根据一示例性实施例示出的一种数据传输的方法的流程图。
图4是根据一示例性实施例示出的一种数据传输的方法的流程图。
图5是根据一示例性实施例示出的一种数据传输的方法的流程图。
图6是根据一示例性实施例示出的一种数据传输的装置的流程图。
图7是根据一示例性实施例示出的一种用户设备的框图。
图8是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示 意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站 120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
如图2所示,本公开实施例中提供了一种数据传输的方法,所述方法包括:
步骤S11,确定N个基于帧的设备FBE参数;其中,所述N为等于或大于2的正整数;且所述N个FBE参数对应的空闲信道评估CCA的检测时间参数不完全相同;
步骤S12,根据所述FBE参数进行CCA。
本公开实施例所述的数据传输的方法,应用于通信设备中。这里,所述通信设备可以为基站或用户设备。这里,所述基站为用户设备接入蜂窝移动网的接入设备。所述基站可以为各种类型的基站,例如,3G基站、4G基站或5G基站等。这里,所述用户设备可以为移动电话、计算机、服务器、收发设备、平板设备或医疗设备,等等。
在一实施例中,所述步骤S11,包括:基站确定N个基于帧的设备FBE参数;
所述步骤S12,包括:所述基站根据所述FBE参数进行CCA。
如此,在本实施例中,基站可以为下行传输配置多套FBE参数。
在另一实施例中,所述步骤S11,包括:用户设备确定N个基于帧的设备FBE参数;
所述步骤S12,包括:所述用户设备根据所述FBE参数进行CCA。
如此,在本实施例中,用户设备可以为上行传输配置多套FBE参数。
在本公开实施例中,可以理解的是,所述CCA为检测信道是否空闲的一种方式;若CCA成功,则表示所述基站或用户设备可以占用信道进行传输;若CCA失败,则表示所述基站或用户设备不能占用信道进行传输。通常,进行一次CCA的时长可为一个时隙。例如,在一实施例中,若所述一个时隙可以为9微秒(us);则所述基站或用户设备监听该9微秒内干扰是否小于一定的门限值,若是,则认为信道是空闲的;若否,则认为信道不 是空闲的。若确定信道是空闲的,则所述基站或用户设备可以占用该信道进行传输。
在本公开实施例中,所述FBE参数包括:CCA的检测时间参数及CCA周期。
其中,所述CCA周期为相邻两次CCA时间之间的时间间隔。例如,一个FBE参数所对应的CCA周期为10毫秒(ms),则每隔10毫秒进行一次CCA。
其中,所述检测时间参数可用于指示以下至少之一:CCA的起始时间、终止时间和/或CCA的持续时长等。例如,若一个FBE参数所对应的CCA周期为10毫秒,则可以在0毫秒、10毫秒、20毫秒或者30毫秒的时间开始进行CCA。又如,另一个FBE参数所对应的CCA周期为5毫秒,则可以在0毫秒、5毫秒、10毫秒或15毫秒的时间开始进行CCA。
在一些实施例中,所述N个FBE参数中至少部分FBE参数所对应的检测时间参数至少部分不同。
示例性的,基站确定出3个FBE参数;第一个FBE参数所对应的CCA周期为6毫秒,所对应的CCA的检测时间参数为0毫秒、6毫秒、12毫秒及18毫秒;第二FBE参数所对应的CCA周期为6毫秒,所对应的CCA的检测时间参数为0毫秒、6毫秒、12毫秒及18毫秒;第三个FBE参数所对应的CCA周期为7毫秒,所对应的CCA的检测时间参数为0毫秒、7毫秒、14毫秒及21毫秒。则所述3个FBE参数中,所述第一个FBE参数与所述第三FBE参数所对应的检测时间参数全部不同;或者,所述第二个FBE参数与所述第三FBE参数所对应当检测时间参数全部不同。
示例性的,用户设备确定出3个FBE参数;第一个FBE参数所对应的CCA周期为6毫秒,所对应的CCA的检测时间参数为0毫秒、6毫秒、12毫秒及18毫秒;第二个FBE参数所对应的CCA周期为3毫秒,所对应的 CCA时间参数为0毫秒、3毫秒、6毫秒、12毫秒、15毫秒及18毫秒;第三个FBE参数所对应的CCA周期为6毫秒,所对应的CCA的检测时间参数为0毫秒、6毫秒、12毫秒及18毫秒。则所述3个FBE参数中,所述第一个FBE参数与所述第二FBE参数所对应的CCA时间参数至少是部分不同的。
在一些实施例中,所述FBE参数还包括:执行CCA的偏移值(offset)。
这里,所述偏移值为相对于参考点偏移的值;例如,相对于0偏移的值。在一实施例中,不同FBE参数相对于同一个参考点的偏移值是不同的。
在一些实施例中,所述偏移值包括一个或多个时隙。在另一些实施例中,所述偏移值可包括一个或多个符号(symbol)。
示例性的,在一应用场景中,若FBE参数所对应的CCA周期为10毫秒,所述偏移值为1个时隙;在该应用场景下,若1个时隙为1毫秒,则FBE参数所对应的检测时间参数为1毫秒、11毫秒、21毫秒、31毫秒、……、(M×10+1)毫秒;其中,所述M为大于或等于1的正整数。
在一些实施例中,所述N个FBE参数中,不同FBE参数所对应的执行CCA的偏移值不同完全相同。
示例性的,在一应用场景中,确定出5个FBE参数,第一个FBE参数的偏移值为0,第二个FBE参数的偏移值为2个时隙,第三个FBE参数的偏移值为5个符号,第四个FBE参数的偏移值为0,第五个FBE参数的偏移值为2个时隙。则至少确定出第一个FBE参数、第二个FBE参数、第三个FBE参数的偏移值不相同。
在本公开实施例中,可以在基站或用户设备配置多个FBE参数。如此,当基站或用户设备基于其中一个FBE参数的当前的检测时间进行CCA失败时,可使用另一个FBE参数的进行CCA,无需等到该一个FBE参数对应的下一个检测时间到来时才进行CCA;进而,能够大大缩短下一次CCA的 等待时间,进而有利于大大缩短数据或信令等传输的等待时延。
在一些实施例中,所述步骤S12,包括:
响应于根据第n个FBE参数进行CCA失败,根据第k个FBE参数进行CCA;其中,所述n为小于或等于N的正整数,所述k为小于或等于N的正整数;所述n与所述k不同。
这里,所述n个FBE参数和所述k个FBE参数均可以是所述N个FBE参数中的任意一个,只要满足所述n与所述k不同即可。
示例性的,基站为下行传输配置2个FBE参数;其中,所述2个FBE参数所对应的CCA周期相同,均为10毫秒。第一个FBE参数所对应的偏移值为0,则所述第一个FBE参数的所对应的CCA的检测时间参数可以为0毫秒、10毫秒、20毫秒、……、(M×10)毫秒;其中,所述M为大于或等于1的正整数。第二个FBE参数所对应的偏移值为1个时隙,在本示例中,一个时隙为1毫秒;则所述第二个FBE参数所对应的CCA的检测时间参数可以为1毫秒、11毫秒、21毫秒、……、(M×10)毫秒。若在第一个FBE参数所对应的30毫秒时,基站进行CCA失败;则可以在第二个FBE参数所对应的31毫秒进行CCA。
若在上述示例中,若基站为下行传输还配置了第三个FBE参数、第四个FBE参数;基站在第一个FBE参数所对应的30毫秒检测失败时,还可以基于第三个FBE参数或第四个FBE参数的其中一个进行CCA。
示例性的,用户设备为上行传输确定3个FBE参数;其中,所述3个FBE参数所对应的CCA周期相同,均为5毫秒。第一个FBE参数所对应的偏移值为0,则所述第一个FBE参数所对应的CCA的检测时间参数可以为0毫秒、5毫秒、10毫秒、……、(M×5)毫秒;其中,所述M为大于或等于1的正整数。第二个FBE参数所对应的偏移值为1个时隙,在本示例中,一个时隙为1毫秒,所述第二个FBE参数所对应的CCA的检测时间 参数可以为1毫秒、6毫秒、11毫秒、……、(M×5+1)毫秒。第三个FBE参数所对应的偏移值为7个符号,在本示例中,一个时隙为14个符号,则7个符号为0.5毫秒;所述第三个FBE参数所对应的CCA的检测时间参数可以为0.5毫秒、5.5毫秒、10.5毫秒、……、(M×5+0.5)毫秒。若在第一个FBE参数所对应的30毫秒时,基站进行CCA失败;则可以在第二个FBE参数所对应的31毫秒进行CCA或者第三个FBE参数所对应的30.5毫秒进行CCA。
如此,在本公开实施例中,若响应于第n个FBE参数进行CCA失败时;例如,在上述两个示例中,若基站在第一个FBE参数所对应的30毫秒进行CCA失败时,无需等到第一个FBE参数所对应的40毫秒进行CCA,可以直接在第二个FBE参数所对应的31毫秒进行CCA;或者,若用户设备在第一个FBE参数所对应的30毫秒进行CCA失败时,无需等到第一个FBE参数所对应的40毫秒进行CCA,可以直接在第二个FBE参数所对应的31毫秒或者第三个FBE参数所对应的30.5毫秒进行CCA。如此,可以大大缩短等待时延,加快下一次进行CCA的速度,从而能够大大降低进行传输的等待时延。
当然,为了进一步缩短下一次进行CCA的等待时延,当基站或用户设备基于一个FBE参数所对应的检测时间检测失败时,可以选取与该检测时间相距最短时间的一个FBE参数,所对应的检测时间进行CCA。
例如,在一些实施中,所述k个FBE参数的检测时间参数与所述n个FBE参数的检测时间参数相距最短。如,在上述示例中,若在第一个FBE参数所对应的30毫秒时,基站进行CCA失败;则可以在第三个FBE参数所对应的30.5毫秒进行CCA。如此,可以进一步缩短等待CCA的时延,提高成功接入信号进行传输的速度。
在一些实施例中,所述步骤S12,包括:
响应于根据所述第n个FBE参数进行的CCA成功,基于所述第n个FBE参数进行传输。
在本公开实施例中,若基站根据第n个FBE参数进行的CCA成功时,则可以基于CCA结果进行传输;同理,若用户设备根据第n个FB参数进行CCA成功时,则可以基于CCA结果进行传输。
在本公开实施例中,基站或用户设备进行的传输可以是:传输数据、传输控制信令、或传输数据及控制信令;本公开实施例中,对传输的内容及类型不作限定。
在一些实施例中,所述第n个FBE参数与所述第k个FBE参数所对应的CCA周期相同。
在另一些实施例中,所述第n个FBE参数与所述第k个FBE参数所对应的CCA周期不同。
在本公开实施例中,确定的N个FBE参数的中部分FBE参数所对应的CCA周期可以是相同的;或者,所述N个FBE参数中各FBE参数所对应的CCA周期均相同;或者,所述N个FBE参数中各个FBE参数均不同。如此,可以实现所述N个FBE参数所对应CCA周期多样化的配置。
如图3所示,所述方法还包括:
步骤S13,响应于所述N个FBE参数对应的CCA均失败,重新利用所述N个FBE参数进行CCA。
示例性的,基站为下行传输确定3个FBE参数;其中,所述3个FBE参数所对应的CCA周期相同,均为5毫秒。第一个FBE参数所对应的偏移值为0,则所述第一个FBE参数所对应的CCA的检测时间参数可以为0毫秒、5毫秒、10毫秒、……、(M×5)毫秒;其中,所述M为大于或等于1的正整数。第二个FBE参数所对应的偏移值为1个时隙,在本示例中,一个时隙为1毫秒,所述第二个FBE参数所对应的CCA的检测时间参数可 以为1毫秒、6毫秒、11毫秒、……、(M×5+1)毫秒。第三个FBE参数所对应的偏移值为7个符号,在本示例中,一个时隙为14个符号,则7个符号为0.5毫秒;所述第三个FBE参数所对应的CCA的检测时间参数可以为0.5毫秒、5.5毫秒、10.5毫秒、……、(M×5+0.5)毫秒。
若在第一个FBE参数所对应的30毫秒时,基站进行CCA失败;且在第二个FBE参数所对应的31毫秒进行CCA或者第三个FBE参数所对应的30.5毫秒进行CCA均失败时,可以基于第一个FBE参数所对应的40毫秒再进行CCA。或者,在其它示例中,也可以基于第二个FBE参数的40.5毫秒或者第三个FBE参数的41毫秒进行CCA。
在本公开实施例中,若基站或用户设备遍历完所述N个FBE参数中各FBE参数进行CCA,均失败时;可以重新利用所述N个FBE参数进行CCA。如此,可以提高CCA的成功率,以使得的基站或用户设备尽快占用信道以传输数据。
如图4所示,在一些实施例中,所述通信设备为用户设备UE;
所述确定N个基于帧的设备FBE参数,包括:
步骤S111,通过广播信道接收所述N个FBE参数;或者,通过无线资源控制RRC消息接收所述N个FBE参数。
在一实施例中,所述步骤S111包括:所述用户设备接收基站通过广播信道发送的所述N个FBE参数,或者,接收所述基站通过无线资源控制消息发送的所述N个FBE参数。
可以理解的是,用户设备本身不能配置FBE参数,需要通过基站为其配置FBE参数。如此,在本公开实施例中,所述用户设备可以通过广播信道接收基站广播的N个FBE参数;或者,通过基站发送的RRC消息而接收到所述N个FBE参数。
当然,在其它实施例中,所述基站也可以仅发送所述N个FBE参数中 部分个数FBE参数给用户设备。
如图5所示,在另一些实施例中,所述通信设备为基站;
所述确定N个基于帧的设备FBE参数,包括:
步骤S112,生成所述N个FBE参数。
这里,所述基站所在的小区有多个用户设备,或者所述基站连接多个用户设备基站。
这里,所述基站可以通过广播信道给所述多个用户设备发送所述N个FBE参数。
或者,基站可以通过RRC消息给所述多个用户设备发送所述N个FBE参数。
或者,基站可以通过RRC消息给指定用户设备发送所述N个FBE参数。
在本公开实施例中,所述基站可以随机生成所述N个FBE参数,其中,包括配置所述FBE参数所对应的CCA周期、检测时间参数及偏移值的其中至少之一。或者,所述基站也可以根据预设规则生成所述N个FBE参数。
例如,在一些实施例中,所述步骤S112,包括:
根据待传输数据的传输周期,生成所述N个FBE参数对应的CCA周期。
这里,若待输数据的传输周期为第一时长,则生成所述N个FBE参数中至少部分个数FBE参数对应的CCA周期为第一时长;或者生成所述N个FBE参数中至少部分个数FBE参数对应的CCA周期为第二时长,其中,所述第二时长与所述第一时长之差在预定范围内。
在本公开实施例中,可以根据传输数据的传输周期生成所述FBE参数所对应的CCA周期;如此,有利提高数据或信令等传输的效率。
当然,在其它实施例中,所述步骤S112,包括:
若所述待传输数据为非周期性数据,随机配置所述FBE参数所包含的CCA周期。
这里,所述非周期性数据为数据的传输不是周期性的。
如此,在本实施例中,若待传输数据为非周期性数据时,也可以随机配置所述FBE参数所包含的CCA周期。
又如,在一些实施例中,所述步骤S112,包括:
根据历史FBE参数,确定当前的所述N个FBE参数。
在本公开实施例中,可以根据历史使用过的FBE参数,确定当前的N个FBE参数,可以提高基于该些FBE参数进行CCA的成功率。
示例一
本公开实施例还提供了一种数据传输的方法,应用于基站,所述方法包括以下步骤:
步骤一:基站配置2个FBE参数;
具体地,基站为下行传输配置2个FBE参数;所述2个FBE参数所对应的CCA周期相同,均为10毫秒。第一个FBE参数所对应的偏移值为0,则所述第一个FBE参数的所对应的CCA的检测时间参数为0毫秒、10毫秒、20毫秒、……、(M×10)毫秒;其中,所述M为大于或等于1的正整数。第二个FBE参数所对应的偏移值为1个时隙,在本示例中,一个时隙为1毫秒;所述第二个FBE参数所对应的CCA的检测时间参数为1毫秒、11毫秒、21毫秒、……、(M×10)毫秒。
步骤二:基站根据所述2个FBE参数进行CCA;
具体地,基站根据第一个FBE参数所对应的20毫秒进行CCA;若检测成功,则基于第一个FBE参数下发数据;
若检测失败,则根据第二个FBE参数所对应的21毫秒进行CCA,若检测成功,则基于第二个FBE参数下发数据。
如此,在本示例中,基站在第一个FBE参数所对应的20毫秒所进行的CCA失败时,无需等待到30毫秒来进行CCA,可以直接基于第二个FBE参数所对应的21毫秒来进行CCA;从而缩短了下一次进行CCA的时间,进而能够缩短基站下发数据所需等待的时间。
示例二
本公开实施例还提供了一种数据传输的方法,应用于用户设备,所述方法包括以下步骤:
步骤一:用户设备接收3个FBE参数;
具体地,用户设备通过广播信道接收基站发送的3个FBE参数;所述用户设备为上行传输配置所述3个FBE参数。其中,所述3个FBE参数所对应的CCA周期相同,均为10毫秒。第一个FBE参数所对应的偏移值为0,则所述第一个FBE参数所对应的CCA的检测时间参数为0毫秒、10毫秒、20毫秒、……、(M×10)毫秒;其中,所述M为大于或等于1的正整数。第二个FBE参数所对应的偏移值为1个时隙,在本示例中,一个时隙为1毫秒,所述第二个FBE参数所对应的CCA的检测时间参数为1毫秒、11毫秒、21毫秒、……、(M×10)毫秒。第三个FBE参数所对应的偏移值为7个符号,在本示例中,一个时隙为14个符号,则7个符号为0.5毫秒;所述第三个FBE参数所对应的CCA的检测时间参数为0.5毫秒、5.5毫秒、10.5毫秒、……、(M×10+0.5)毫秒。
步骤二:用户设备根据所述3个FBE参数进行CCA;
具体地,用户设备根据第一个FBE参数所对应的20毫秒进行CCA;若检测成功,则基于第一个FBE参数上传数据;
若检测失败,则根据第三个FBE参数所对应的20.5毫秒进行CCA,若检测成功,则基于第三个FBE参数上传数据;
若检测失败,则基于第二个FBE参数所对应的21毫秒进行CCA,若 检测成功,则基于第二个FBE参数上传数据。
如此,在本示例中,用户设备第一个FBE参数所对应的20毫秒所进行的CCA失败时,无需等待到30毫秒来进行CCA,可以直接基于第三个FBE参数所对应的20.5毫秒来进行CCA。且,若基于第三个FBE参数的所对应的20.5毫秒所进行的CCA失败时,无需等待到30.5毫秒来进行CCA,可以直接基于第二FBE参数所对应的21毫秒来进行CCA。如此,本示例可以缩短了下一次进行CCA的时间,进而能够缩短基站下发数据所需等待的时间。
如图6所示,本公开实施例提供一种数据传输的处理装置,应用于通信设备,其中,所述装置包括:确定模块41、检测模块42及传输模块43;其中,
所述确定模块41,被配置为确定N个基于帧的设备FBE参数;其中,所述N为等于或大于2的正整数;且所述N个FBE参数对应的空闲信道评估CCA的检测时间参数不完全相同;
所述检测模块42,根据所述FBE参数进行CCA。
在一些实施例中,所述检测模块42,被配置为响应于根据第n个FBE参数进行CCA失败,根据第k个FBE参数进行CCA;其中,所述n为小于或等于N的正整数,所述k为小于或等于N的正整数;所述n与所述k不同。
在一些实施例中,所述装置还包括:
传输模块43,被配置为响应于根据所述第n个FBE参数进行的CCA成功,基于所述第n个FBE参数进行传输。
在一些实施例中,所述第n个FBE参数与所述第k个FBE参数所对应的CCA周期相同。
在一些实施例中,所述第n个FBE参数与所述第k个FBE参数所对应 的CCA周期不同。
在一些实施例中,所述检测模块43,被配置为响应于根据所述N个FBE参数对应的CCA均失败,重新利用所述N个FBE参数开始进行CCA。
在一些实施例中,所述通信设备为用户设备UE;
所述确定模块41,被配置为通过广播信道接收所述N个FBE参数;或者,被配置为通过无线资源控制RRC消息接收所述N个FBE参数。
在一些实施例中,所述通信设备为基站;
所述确定模块41,被配置为生成所述N个FBE参数。
在一些实施例中,所述确定模块41,被配置为根据所述待传输数据的传输周期,生成所述N个FBE参数对应的CCA周期。
在一些实施例中,所述N个FBE参数中,,不同FBE参数所对应的执行CCA的偏移值offset不完全相同。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例还提供了一种通信设备,其中,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公开任意实施例所述的数据传输的方法。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2至5所示的方法的至少其中之一。
本公开实施例还提供了一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公 开任意实施例所述的数据传输的方法。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图7是根据一示例性实施例示出的一种用户设备(UE)800的框图。例如,用户设备800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,用户设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制用户设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在用户设备800的操作。这些数据的示例包括用于在用户设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为用户设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为用户设备800生成、 管理和分配电力相关联的组件。
多媒体组件808包括在所述用户设备800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当用户设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当用户设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为用户设备800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为用户设备800的显示器和小键盘,传感器组件814还可以检测用户设备800或用户设备800一个组件的位置改变,用户与用户设备800接触的存在或不存在,用户设备800方位或加速/减速和用户设备800的温度变化。传感器组件814可以包括接近传 感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于用户设备800和其他设备之间有线或无线方式的通信。用户设备800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,用户设备800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由用户设备800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图8所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图9,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存 储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法,例如,如图2-3所示方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (22)

  1. 一种数据传输的方法,应用于通信设备,其中,所述方法包括:
    确定N个基于帧的设备FBE参数;其中,所述N为等于或大于2的正整数;且所述N个FBE参数对应的空闲信道评估CCA的检测时间参数不完全相同;
    根据所述FBE参数进行CCA。
  2. 根据权利要求1所述的方法,其中,所述根据FBE参数进行CCA,包括:
    响应于根据第n个FBE参数进行CCA失败,根据第k个FBE参数进行CCA;其中,所述n为小于或等于N的正整数,所述k为小于或等于N的正整数;所述n与所述k不同。
  3. 根据权利要求2所述的方法,其中,所述根据所述FBE参数进行CCA,包括:
    响应于根据所述第n个FBE参数进行的CCA成功,基于所述第n个FBE参数进行传输。
  4. 根据权利要求1至3任一项所述的方法,其中,所述第n个FBE参数与所述第k个FBE参数所对应的CCA周期相同。
  5. 根据权利要求1至3任一项所述的方法,其中,所述第n个FBE参数与所述第k个FBE参数所对应的CCA周期不同。
  6. 根据权利要求2所述的方法,其中,所述方法还包括:
    响应于根据所述N个FBE参数对应的CCA均失败,重新利用所述N个FBE参数进行CCA。
  7. 根据权利要求1所述的方法,其中,所述通信设备为用户设备UE;
    所述确定N个基于帧的设备FBE参数,包括:
    通过广播信道接收所述N个FBE参数;
    或者,
    通过无线资源控制RRC消息接收所述N个FBE参数。
  8. 根据权利要求1所述的方法,其中,所述通信设备为基站;
    所述确定N个基于帧的设备FBE参数,包括:
    生成所述N个FBE参数。
  9. 根据权利要求8所述的方法,其中,所述生成所述N个基于帧的设备FBE参数,包括:
    根据待传输数据的传输周期,生成所述N个FBE参数对应的CCA周期。
  10. 根据权利要求1所述的方法,其中,所述N个FBE参数中,不同FBE参数所对应的执行CCA的偏移值offset不完全相同。
  11. 一种数据传输的装置,应用于通信设备,其中,所述装置包括:
    确定模块,被配置为确定N个基于帧的设备FBE参数;其中,所述N为等于或大于2的正整数;且所述N个FBE参数对应的空闲信道评估CCA的检测时间参数不完全相同;
    检测模块,根据所述FBE参数进行CCA。
  12. 根据权利要求11所述的装置,其中,所述检测模块,被配置为响应于根据第n个FBE参数进行CCA失败,根据第k个FBE参数进行CCA;其中,所述n为小于或等于N的正整数,所述k为小于或等于N的正整数;所述n与所述k不同。
  13. 根据权利要求12所述的装置,其中,所述装置还包括:
    传输模块,被配置为响应于根据所述第n个FBE参数进行的CCA成功,基于所述第n个FBE参数进行传输。
  14. 根据权利要求11至13任一项所述的装置,其中,所述第n个FBE参数与所述第k个FBE参数所对应的CCA周期相同。
  15. 根据权利要求11至13任一项所述的装置,其中,所述第n个FBE参数与所述第k个FBE参数所对应的CCA周期不同。
  16. 根据权利要求12所述的装置,其中,所述检测模块,被配置为响应于根据所述N个FBE参数对应的CCA均失败,重新利用所述N个FBE参数开始进行CCA。
  17. 根据权利要求1所述的装置,其中,所述通信设备为用户设备UE;
    所述确定模块,被配置为通过广播信道接收所述N个FBE参数;或者,被配置为通过无线资源控制RRC消息接收所述N个FBE参数。
  18. 根据权利要求11所述的装置,其中,所述通信设备为基站;
    所述确定模块,被配置为生成所述N个FBE参数。
  19. 根据权利要求18所述的装置,其中,所述确定模块,被配置为根据所述待传输数据的传输周期,生成所述N个FBE参数对应的CCA周期。
  20. 根据权利要求11所述的装置,其中,所述N个FBE参数中,,不同FBE参数所对应的执行CCA的偏移值offset不完全相同。
  21. 一种通信设备,其中,所述通信设备,包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器被配置为:用于运行所述可执行指令时,实现权利要求1至10任一项所述的数据传输的方法。
  22. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现权利要求1至10任一项所述的数据传输的方法。
PCT/CN2020/072842 2020-01-17 2020-01-17 一种数据传输的方法、装置、通信设备及存储介质 WO2021142795A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/072842 WO2021142795A1 (zh) 2020-01-17 2020-01-17 一种数据传输的方法、装置、通信设备及存储介质
CN202080000136.6A CN113412638B (zh) 2020-01-17 2020-01-17 一种数据传输的方法、装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072842 WO2021142795A1 (zh) 2020-01-17 2020-01-17 一种数据传输的方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021142795A1 true WO2021142795A1 (zh) 2021-07-22

Family

ID=76863292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072842 WO2021142795A1 (zh) 2020-01-17 2020-01-17 一种数据传输的方法、装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN113412638B (zh)
WO (1) WO2021142795A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104717686A (zh) * 2015-03-31 2015-06-17 深圳酷派技术有限公司 一种未授权频段的信道检测方法及网元设备
US20160309511A1 (en) * 2015-04-15 2016-10-20 Mediatek Inc. Methods of Listen-Before-Talk Mechanism for Opportunistic Spectrum Access

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3240323B1 (en) * 2015-01-15 2020-10-21 Huawei Technologies Co. Ltd. Data transmission method and apparatus
CN106162658B (zh) * 2015-04-24 2021-07-23 中兴通讯股份有限公司 一种数据传输的方法
CN105979546A (zh) * 2016-04-28 2016-09-28 东莞市华睿电子科技有限公司 一种信道检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104717686A (zh) * 2015-03-31 2015-06-17 深圳酷派技术有限公司 一种未授权频段的信道检测方法及网元设备
US20160309511A1 (en) * 2015-04-15 2016-10-20 Mediatek Inc. Methods of Listen-Before-Talk Mechanism for Opportunistic Spectrum Access

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITL INC.: "Frame structure design for LAA with LBT", 3GPP TSG RAN WG1 MEETING #80BIS, R1-151949, 24 April 2015 (2015-04-24), XP050950246 *

Also Published As

Publication number Publication date
CN113412638B (zh) 2023-10-03
CN113412638A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2021026696A1 (zh) 终端监听的方法及装置、通信设备及存储介质
WO2021168664A1 (zh) 通信方法、装置及计算机存储介质
WO2021030974A1 (zh) 寻呼配置方法、装置、通信设备及存储介质
WO2021243600A1 (zh) 数据传输处理方法、装置、用户设备及存储介质
CN110337835B (zh) 随机接入方法及装置、通信设备及存储介质
WO2020237681A1 (zh) 随机接入方法及装置、通信设备及存储介质
WO2021108966A1 (zh) 无线链路失败的处理方法、装置及计算机存储介质
WO2020237446A1 (zh) 监听方法、信令下发方法及装置、通信设备及存储
WO2021012130A1 (zh) 监听处理、策略下发方法及装置、通信设备及存储
WO2021237624A1 (zh) 非授权信道的检测方法、装置、通信设备及存储介质
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021092767A1 (zh) Harq-ack传输方法及装置、通信设备及存储介质
US20230007689A1 (en) Frame transmission method and apparatus, communication end, and storage medium
WO2023184186A1 (zh) 确定传输方向的方法、装置、通信设备及存储介质
WO2023130472A1 (zh) 提早识别的方法、装置、通信设备及存储介质
WO2023050350A1 (zh) Cfr的确定方法、装置、通信设备及存储介质
EP4319258A1 (en) Measurement gap pre-configuration processing method and apparatus, communication device, and storage medium
WO2021226766A1 (zh) 发送数据的方法、装置、通信设备及存储介质
WO2022205472A1 (zh) 上行传输时域资源的确定方法及装置、ue、网络设备及存储介质
WO2021142795A1 (zh) 一种数据传输的方法、装置、通信设备及存储介质
WO2022032482A1 (zh) 资源处理方法及装置、通信设备及存储介质
WO2022032581A1 (zh) 上行传输的发送、接收方法及装置、通信设备及介质
WO2022110057A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2021223235A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
US20220408469A1 (en) Downlink control information configuration method and apparatus, and communication device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913523

Country of ref document: EP

Kind code of ref document: A1