WO2023045388A1 - 焊接装置及焊接设备 - Google Patents
焊接装置及焊接设备 Download PDFInfo
- Publication number
- WO2023045388A1 WO2023045388A1 PCT/CN2022/096150 CN2022096150W WO2023045388A1 WO 2023045388 A1 WO2023045388 A1 WO 2023045388A1 CN 2022096150 W CN2022096150 W CN 2022096150W WO 2023045388 A1 WO2023045388 A1 WO 2023045388A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- welding
- distance
- component
- hole
- welding device
- Prior art date
Links
- 238000003466 welding Methods 0.000 title claims abstract description 257
- 238000007689 inspection Methods 0.000 claims description 54
- 238000012795 verification Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 abstract description 30
- 238000007664 blowing Methods 0.000 description 21
- 239000003570 air Substances 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000013543 active substance Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000003496 welding fume Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/095—Monitoring or automatic control of welding parameters
- B23K9/0956—Monitoring or automatic control of welding parameters using sensing means, e.g. optical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
- B23K26/032—Observing, e.g. monitoring, the workpiece using optical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/04—Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
- B23K26/042—Automatically aligning the laser beam
- B23K26/043—Automatically aligning the laser beam along the beam path, i.e. alignment of laser beam axis relative to laser beam apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/082—Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/16—Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/514—Methods for interconnecting adjacent batteries or cells
- H01M50/516—Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to the field of welding technology, in particular to a welding device and welding equipment.
- the inventors of the present application have found in their research that in the current pole welding operation of batteries, the distance measuring step and the welding step are performed separately, which leads to low welding efficiency and further affects battery production capacity.
- the present application provides a welding device and welding equipment, which can improve welding efficiency and battery production capacity.
- a welding device including: a main body; a welding component, disposed on the main body, for welding a welding point on an object to be welded; a distance measuring component, disposed on the main body and Located on one side of the welding part, it is used to measure the defocus from each welding point on the object to be welded to the welding part; the welding part and the distance measuring part are aimed at different welding points at the same time, so that the welding part and the distance measuring part are different Welding and distance measurement at the same time.
- the welding part and the distance measuring part are aligned with different welding points at the same time, so that the welding part and the distance measuring part
- the distance component performs welding and distance measurement on different welding points at the same time. Specifically, the welding point on the object to be welded after being measured by the distance measurement component is welded by the welding component, and when the welding component is welded, the distance measurement component treats The next welding point on the weld is measured, so that the time of ranging and welding coincides, which effectively improves the efficiency of the welding step in the battery production process, increases battery production capacity, and meets market demand.
- the distance measuring component includes a plurality of range finders, and the multiple range finders are used for simultaneously measuring distances on multiple welding points on the object to be welded; Multiple welding points after distance measurement by the instrument are used for welding.
- the distance measuring part includes a plurality of distance measuring instruments, and the plurality of distance measuring instruments are used to measure the distance of multiple welding points on the object to be welded at the same time, increasing the number of welding points that can perform distance measurement at the same time, and the welding parts are used for Multiple welding points after distance measurement by multiple rangefinders are welded to realize welding of multiple distance measurement welding points, thereby further improving welding efficiency and increasing production capacity.
- the distance-measuring component further includes a position adjustment component, and a plurality of range finders are arranged on the position adjustment component.
- the distance measuring component also includes a position adjustment component.
- the position adjustment assembly includes a first slide rail and a second slide rail arranged perpendicularly to each other, the first slide rail is fixed to the main body, and the second slide rail is slidably arranged on the first slide rail.
- the tachymeter is slidably arranged on the second slide rail.
- the position adjustment assembly includes a first slide rail and a second slide rail arranged perpendicularly to each other.
- the second slide rail is slidably set On the first slide rail, the range finder is slidably set on the second slide rail to realize the adjustment of the relative position between each range finder, so that the range finder can adjust the corresponding position according to the welding points on different objects to be welded , to improve the compatibility of welding equipment.
- a positioning component is provided on the main body.
- the positioning component By arranging the positioning component on the main body, the positioning of the welding point on the object to be welded is realized, thereby improving the accuracy and precision of the welding of the welding device.
- a blower component is provided on the main body.
- the welding device further includes a verification component, which is used for testing and calibrating the distance measuring component.
- the welding device also includes an inspection part, through which the distance measuring part is inspected and calibrated to ensure the accuracy of the distance measuring part, and to avoid welding failure due to errors in distance measurement, which in turn causes welding perforation, etc., which affects the product qualification rate .
- the inspection component is provided with a stepped structure.
- the inspection and calibration of the distance measurement accuracy, repeatability, linearity and directionality of the distance measurement part in the positive and negative directions are realized.
- positioning through holes are provided at the end corners of the inspection component.
- blind holes are also provided on the inspection component.
- the inspection part is rectangular, and the positioning through holes include the first through hole, the second through hole, the third through hole and the fourth through hole;
- the first blind hole of l a the second blind hole with the closest distance to the second through hole of l b
- the distance la between the first through hole and the first blind hole is set to be greater than l b
- the distance between the fourth through hole and the fourth The spacing l d of the blind holes is set to be smaller than l b , so that the inspection parts can have error fluctuations that may exist in the actual product during the inspection process, making the inspection results more accurate and effective.
- a welding device including the welding device described in any of the above modes.
- Fig. 1 is a side view structural schematic diagram of the welding device provided by the embodiment of the present application.
- FIG. 2 is a schematic diagram of the internal structure of the welding device provided by the embodiment of the present application.
- Fig. 3 is a schematic structural diagram of the distance measuring component in the welding device provided by the embodiment of the present application.
- Fig. 4 is a schematic structural view of the blowing part in the welding device provided by the embodiment of the present application.
- Fig. 5 is a schematic structural view of the inspection components in the welding device provided by the embodiment of the present application.
- Fig. 6 is a schematic structural view of the inspection step of the inspection part in the welding device provided by the embodiment of the present application;
- FIG. 7 is a schematic top view of the inspection component in the welding device provided by the embodiment of the present application.
- Welding device 100 main body 110, welding part 120, laser beam 121, distance measuring part 130, distance measuring path 131, range finder 132, first range finder 1321, second range finder 1322, position adjustment assembly 133,
- the first feature may be in direct contact with the first feature or the second feature "on” or “under” the second feature. Indirect contact through intermediaries.
- “above” and “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
- “Below” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply mean that the first feature is less horizontally than the second feature.
- Power batteries are not only used in energy storage power systems such as hydraulic, thermal, wind and solar power plants, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric vehicles, as well as military equipment and aerospace and other fields . With the continuous expansion of power battery application fields, its market demand is also constantly expanding.
- pole welding is time-consuming and laborious, and in order to ensure the welding effect and pass rate of the product, it is necessary to measure the distance of the pole before welding to determine the defocus amount during pole welding. It takes a lot of time to measure the distance of the pole, and welding after the distance measurement also consumes time and cost, which seriously affects the efficiency of battery production.
- the present application proposes a welding device.
- the welding device includes a welding component and a distance measuring component both arranged on the main body, so that the distance measurement can be performed while the welding component is welding the welding point on the object to be welded.
- the component directly measures the distance of the welding point at the back, and the welding component and the distance measuring component work at the same time and coordinate with each other to fully improve the welding efficiency, thereby increasing the battery capacity and meeting the market demand.
- a welding device including the above-mentioned welding device.
- the welding equipment further includes a grasping device, such as a robot arm, which is connected to the welding device and is used to drive the welding device to move, so as to achieve alignment between the welding device and a plurality of objects to be welded for welding.
- a grasping device such as a robot arm
- a welding device is provided.
- the welding device 100 includes: a main body 110 , a welding part 120 and a distance measuring part 130 .
- the welding component 120 is disposed on the main body 110 and is used for welding at a welding point on the object to be welded.
- the distance measuring component 130 is disposed on the main body 110 and located on one side of the welding component 120 , and is used for measuring the defocus from each welding point on the object to be welded to the welding component 120 .
- the welding part 120 and the distance measuring part 130 are aimed at different welding points at the same time, so that the welding part 120 and the distance measuring part 130 respectively perform welding and distance measuring on different welding points.
- the main body part 110 is the main frame of the welding device 100, and is used for installing and fixing the welding part 120, the distance measuring part 130 and other parts.
- the welding part 120 may be a laser welding machine, and laser welding is an efficient and precise welding method using a high energy density laser beam as a heat source.
- Laser welding is one of the important aspects of the application of laser material processing technology.
- the laser welding process is a heat conduction type, that is, the laser radiation heats the surface of the workpiece, and the surface heat diffuses to the interior through heat conduction. By controlling the parameters such as the width, energy, peak power and repetition frequency of the laser pulse, the workpiece is melted to form a specific molten pool. Due to its unique advantages, it has been successfully applied in the precision welding of micro and small parts.
- the welding part 120 can include a welding host and a vibrating mirror.
- the welding host generates a laser beam for welding.
- the vibrating mirror is arranged in the optical path of the laser beam and consists of an optical scanning head, an electronic drive amplifier and an optical mirror.
- the computer controller provides The signal drives the optical scanning head through the driving amplifier circuit, thereby controlling the deflection of the laser beam.
- the distance measuring component 130 is a tool for measuring length or distance, and specifically may be a laser range finder, an ultrasonic range finder or an infrared range finder.
- Defocus is the distance between the laser focus and the active substance. During the welding process, the amount of defocus has a great influence on the welding quality. Laser welding usually requires a certain amount of defocus, because the power density in the center of the spot at the laser focus is too high, and it is easy to evaporate into holes. On each plane away from the laser focus, the power density distribution is relatively uniform.
- FIG. 1 also shows the laser beam 121 of the welding part 120 and the ranging path 131 of the ranging component 130.
- the laser beam 121 and the ranging path 131 are only for Note that in a specific actual product, the laser beam 121 and the distance measuring path 131 may not be visible.
- the distance measuring part 130 is arranged on one side of the welding part 120 along the x-axis direction.
- the welding of the object to be welded is taken as an example of welding the pole on the battery case 200, and the pole is the welding on the object to be welded.
- the distance measurement part 130 simultaneously measures the distance of the second pole 220 on one side of the first pole 210 along the x-axis direction. After the welding of the first pole 210 and the distance measurement of the second pole 220 are completed, the welding device 100 as a whole moves to the x-axis direction or the battery case 200 as a whole moves to the opposite direction of the x-axis direction, and the welding part 120 is connected to the second pole. The pole 220 is welded, and the ranging component 130 measures the distance of the third pole 230 .
- an adjustment mechanism for adjusting the height of the welding part 120 can be provided on the main body 110, such as a guide rail, a cylinder, etc., or the welding device 100 as a whole can be adjusted by an external mechanism.
- the height of the welding part 120 can be adjusted, and the external mechanism can be, for example, a manipulator, etc., so as to achieve the purpose of adjusting the height of the welding part 120 .
- the distance measuring part 130 By setting the welding part 120 and the distance measuring part 130 on the main body part 110 of the welding device 100 at the same time, and the distance measuring part 130 is arranged on one side of the welding part 120, through the welding part 120 and the distance measuring part 130 simultaneously align different welding point, so that the welding part 120 and the distance measuring part 130 perform welding and distance measurement on different welding points at the same time, specifically, the welding point on the object to be welded after the distance measurement by the distance measuring part 130 is welded by the welding part 120, And when the welding part 120 is welding, the ranging part 130 measures the distance of the next welding point on the object to be welded, so that the time of ranging and welding coincides, effectively improving the efficiency of the welding step in the battery production process, and increasing the battery capacity ,to satisfy the market's needs.
- FIG. 2 shows the internal structure of a welding device 100 provided by an embodiment of the present application.
- the distance measuring component 130 includes a plurality of distance measuring instruments 132, and the plurality of distance measuring instruments 132 are used for simultaneously measuring distances on multiple welding points on the object to be welded, and the welding component 120 is used for measuring distances of multiple welding points. A plurality of welding points after distance measurement by a rangefinder 132 are welded.
- the object to be welded also takes a battery casing 200 as an example, and one battery casing 200 includes two poles, a positive pole 240 and a negative pole 250 arranged along the y-axis direction.
- the number of range finders 132 is set to four, including two first range finders 1321 and two second range finders 1321.
- Range finder 1322 the first range finder 1321 and the second range finder 1322 are arranged along the y-axis direction, the first range finder 1321 is used to measure the distance of the positive pole 240, and the second range finder 1322 is used for To measure the distance of the negative pole 250 .
- the two first rangefinders 1321 are arranged along the x-axis direction, and the two second rangefinders 1322 are also arranged along the x-axis direction, and the two first rangefinders 1321 are used to measure two adjacent
- the two second range finders 1322 are used to measure the distance of the negative poles 250 on two adjacent battery cases 200. Therefore, the range finder 132 can measure the distance of the poles on two adjacent battery casings 200 at the same time, further improving the distance measurement efficiency.
- a laser vibrating mirror or a beam splitter can be set on the welding part 120 to achieve control of the laser beam deflection angle and adjustment of the number of beams, so that the welding part 120 can measure multiple A plurality of poles after distance measuring by the range meter 132 are welded.
- the above-mentioned embodiment is only a preferred embodiment designed according to the welding characteristics of the battery pole.
- the number of range finders, positional relationship, etc. can also be adaptively adjusted according to the characteristics of the corresponding object to be welded.
- the distance measuring part 130 includes a plurality of distance measuring instruments 132, and the plurality of distance measuring instruments 132 are used for simultaneously measuring distances on a plurality of welding points on the object to be welded, increasing the number of welding points that can simultaneously perform distance measurement, and the welding part 120 It is used to weld a plurality of welding points measured by a plurality of range finders 132 to realize welding of a plurality of distance measured welding points, thereby further improving welding efficiency and increasing production capacity.
- the distance measuring component 130 further includes a position adjustment component 133 on which a plurality of range finders 132 are disposed.
- the position adjustment component 133 is a mechanism for adjusting the overall position of the range finder 132 or the relative positions among multiple range finders 132 , for example, it may be a driving adjustment mechanism such as a guide rail or a cylinder.
- the distance measuring component 130 also includes a position adjustment assembly 133.
- a position adjustment assembly 133 By arranging a plurality of distance meters 132 on the position adjustment assembly 133, the adjustment of the overall position of the distance meter 132 on the main body 110 and the adjustment of the overall position of the distance meter 132 can be realized.
- the position adjustment assembly 133 includes a first sliding rail 1331 and a second sliding rail 1332 arranged perpendicular to each other, the first sliding rail 1331 is fixed on the main body 110, and the second sliding rail 1332 is slidingly disposed on the first On the slide rail 1331 , the rangefinder 132 is slidably disposed on the second slide rail 1332 .
- the first slide rail 1331 can be fixed to the main body 110 through two ends, the extension direction of the first slide rail 1331 can be set along the y-axis direction, and the number of the second slide rail 1332 can be two. 1, and are all slidably arranged on the first slide rail 1331, the extension direction of the second slide rail 1332 is set along the x-axis direction, two first rangefinders 1321 are slidably arranged on one of the second slide rails 1332, two The second rangefinder 1322 is slidably disposed on another second slide rail 1332 .
- the distance adjustment in the x-axis direction between the two first range finders 1321, the distance adjustment in the x-axis direction between the two second range finders 1322, and the first range finder 1322 can be realized.
- 1321 and the second range finder 1322 are adjusted in the y-axis direction, so that when different objects to be welded are welded, the distance and position between each range finder 132 can be adjusted according to the different objects to be welded.
- the welding points are adjusted accordingly to fully improve the compatibility of the welding device 100 to adapt to different products.
- the number of slide rails, the connection relationship between the distance meter and the slide rail, etc. can be set according to actual needs and the characteristics of the object to be welded.
- the position adjustment assembly 133 includes a first slide rail 1331 and a second slide rail 1332 arranged perpendicularly to each other.
- the position adjustment assembly 133 and the rangefinder 132 on the main body 110 are realized.
- the second slide rail 1332 is slidably arranged on the first slide rail 1331
- the rangefinder 132 is slidably arranged on the second slide rail 1332, so as to realize the adjustment of the relative position between each rangefinder 132, and then make the rangefinder 132
- the corresponding position adjustment can be performed according to the welding points on different objects to be welded, so as to improve the compatibility of the welding device 100 .
- a positioning component 140 is disposed on the main body 110 .
- the positioning component 140 may be an image acquisition device, such as a CCD camera as shown in FIG. 2 .
- CCD is the abbreviation of charge coupled device (charge coupled device). It can convert light into electric charge and store and transfer the electric charge. It can also take out the stored charge and change the voltage. Therefore, it is an ideal CCD camera component. Advanced CCD cameras are widely used because of their small size, light weight, unaffected by magnetic fields, and anti-vibration and impact characteristics.
- the positioning component 140 determines the position of the welding point through image acquisition and imaging of the object to be welded, and then realizes the positioning of the welding point on the object to be welded.
- the positioning component 140 By disposing the positioning component 140 on the main body 110 , the positioning of the welding point on the object to be welded is realized, thereby improving the accuracy and precision of welding by the welding device 100 .
- FIG. 4 shows the structure of the blowing component 150 in the welding device 100 provided by an embodiment of the present application.
- a blowing component 150 is disposed on the main body 110 .
- the blowing part 150 is used for externally connecting the blowing pipe, and the air in the blowing pipe is blown to the welding place through the blowing part 150, thereby blowing away the smoke and dust produced by welding in time, so as to observe the welding condition.
- the blowing part 150 can be an air knife, and the air knife is driven by a vortex fan or a high-pressure centrifugal fan (instead of high-energy compressed air). Dry the dust and moisture on the surface of the object. After the compressed air enters the air knife, it is blown out at a high speed by an airflow sheet with a thickness of only 0.05 mm. Through the Coanda effect principle and the special geometric shape of the air knife, this sheet air curtain can hold 30 to 40 times the ambient air at most, forming a thin, high-strength, high-flow impingement air curtain.
- the air knife is divided into standard air knife and super air knife in terms of working mode. The air curtain of the standard air knife is deflected by 90 degrees and blows out, while the air curtain of the super air knife blows out horizontally.
- Blowing part 150 has air inlet 151 and blowing port 152, and air inlet 151 is used for being connected with blowing pipe, and the air in blowing pipe is introduced in blowing part 150, enters the space in blowing part 150 and blows out from blowing port 152 after being compressed, Realize the blowing of welding fumes.
- the blowing part 150 By arranging the blowing part 150 on the main body 110, the dust generated by welding can be blown away in time, so that it is convenient to observe the welding situation, and it is beneficial to ensure the accuracy of welding.
- FIG. 5 shows the structure of the inspection component 160 in the welding device 100 provided by an embodiment of the present application.
- the welding device 100 further includes a verification component 160 , and the verification component 160 is used to verify and calibrate the distance measuring component 130 .
- the inspection part 160 is a structure for checking and calibrating the distance measuring part 130. Specifically, a structure with a fixed height difference can be provided on the inspection part 160. By comparing the height difference measured by the distance measuring part 130 with the set actual The height difference is compared to obtain the accuracy of the distance measuring component 130 .
- the welding device 100 also includes an inspection part 160, through which the distance measurement part 130 is inspected and calibrated to ensure the accuracy of the distance measurement by the distance measurement part 130, and to avoid welding failure due to errors in distance measurement, thereby causing welding perforations, etc. , affecting the product pass rate.
- the inspection component 160 is provided with a stepped structure 161 .
- the step structure 161 is used to check and calibrate the accuracy of the distance measuring component 130. Please refer to FIG. The distance l 1 to the step; then move the distance measuring part 130 and align it with another adjacent step, for detecting the distance l 2 from the distance measuring part 130 to the other adjacent step, by measuring The difference between l 2 and l 1 is compared with the actual height difference between adjacent steps, so as to obtain the distance measurement accuracy and error value of the distance measurement component 130 .
- the distance measuring component 130 can be moved to both sides respectively, so as to compare the distances of the steps on the adjacent two sides respectively, and ensure the accuracy of the inspection through multiple comparisons.
- the height difference d a of adjacent steps in the step structure 161 can be set to 0.5-4mm to adapt
- the range of height difference generated by the battery pole, d a is preferably 2mm, since the equipment exceeding 2mm needs to alarm and prevent fooling, it is more appropriate to set d a to 2mm.
- the number of steps in the step structure 161 can be set to five, and the step structure 161 provided with five steps can ensure the ranging accuracy of the distance measuring component 130 in both positive and negative directions while having a small volume. Repeatability, linearity and directivity are checked and calibrated.
- the width of the step structure 161 should be larger than the size of the light spot formed by the distance measuring component 130, so that the light spot of the distance measuring component 130 falls completely on the surface of the step structure 161, avoiding the length of the light spot caused by the distance measuring component 130 If it is larger than the width of the step structure 161, the height of the light spot formed on the surface of the inspection component 160 will be different, which will affect the accuracy of distance measurement.
- the inspection and calibration of the ranging accuracy, repeatability, linearity and directivity of the distance measuring part 130 in both positive and negative directions are realized.
- a positioning through hole 162 is provided at an end corner of the inspection component 160 .
- an end plate is provided on the top of the battery case, and the end plate is positioned and fixed through the positioning holes at the corners of the end plate.
- the positioning through hole 162 at the upper corner of the inspection part 160 is used to align with the positioning hole on the end plate to realize the positioning of the inspection part 160 when it is installed for inspection.
- the positioning of the inspection part 160 during inspection is realized by providing positioning through holes 162 at the corners of the inspection part 160 .
- the inspection component 160 is further provided with a blind hole 163 .
- the blind hole 163 is a hole disposed on the surface of the inspection component 160 and does not pass through the inspection component 160 .
- the blind hole 163 is used as the position of the welding point, and the positioning part 140 images the inspection part 160, and compares the coordinate value of the blind hole 163 in the imaging with the actual coordinate value of the blind hole 163 on the inspection part 160 to realize
- the positioning part 140 is calibrated according to the inspection result.
- the inspection and calibration of the accuracy of the welding device 100 when positioning the welding point on the object to be welded is realized.
- FIG. 7 shows a top view structure of the inspection component 160 in the welding device 100 provided by an embodiment of the present application.
- the verification component 160 is rectangular, and the positioning through holes 162 include a first through hole 1621 , a second through hole 1622 , a third through hole 1623 and a fourth through hole 1624 .
- the blind holes 163 include a first blind hole 1631 that is the closest to the first through hole 1621 and is la, a second blind hole 1632 that is the closest to the second through hole 1622 and is lb, and a distance from the third through hole 1623 that is the closest and
- the distance lb between the second through hole 1622 and the second blind hole 1632 and the distance lc between the third through hole 1623 and the third blind hole 1633 are set as the distance lc between the battery end plate in the actual product.
- the theoretical distance between the positioning hole and the pole taking into account the product volatility and the possible error between the positioning hole and the pole in the battery end plate, the distance la between the first through hole 1621 and the first blind hole 1631 is set To be greater than lb , the distance ld between the fourth through hole 1624 and the fourth blind hole 1634 is set to be smaller than lb , so that the inspection component 160 is equipped with possible error fluctuations in the actual product during the inspection process, making the inspection result more accurate efficient.
- the inspection component 160 fits the error range of the product.
- the distance between the blind holes 163 can also be set according to the theoretical distance and error range between the welding points on the object to be welded.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
一种焊接装置,包括:主体部(110);焊接部件(120),设置于主体部,用于对待焊接物上的焊接点进行焊接;测距部件(130),设置于主体部上且位于焊接部件的一侧,用于测量待焊接物上各焊接点至焊接部件的离焦量;焊接部件和测距部件同时对准不同的焊接点,以使焊接部件和测距部件分别对不同的焊接点同时进行焊接和测距。该焊接装置能够提高焊接效率,提升电池产能。还涉及一种焊接设备。
Description
相关申请的交叉引用
本申请要求享有于2021年09月24日提交的名称为“一种焊接装置及焊接设备”的中国专利申请202122326749.3的优先权,该申请的全部内容通过引用并入本文中。
本申请涉及焊接技术领域,具体涉及一种焊接装置及焊接设备。
目前,随着对节能减排的大力提倡,动力电池的应用越加广泛,需求量日益提高。在电池的生产过程中,需要在电池外壳上焊接极柱,通过极柱与外部装置连接形成电流回路。极柱在焊接过程中,为了保证焊接的离焦量,在焊接之前需要先对极柱进行测距。
本申请发明人在研究中发现,现有电池的极柱焊接操作中,测距步骤和焊接步骤单独进行,这就导致焊接效率低下,进而影响电池产能。
发明内容
鉴于上述问题,本申请提供一种焊接装置和焊接设备,能够提高焊接效率,提升电池产能。
根据本申请实施例的一个方面,提供一种焊接装置,包括:主体部;焊接部件,设置于主体部,用于对待焊接物上的焊接点进行焊接;测距部件,设置于主体部上且位于焊接部件的一侧,用于测量待焊接物上各 焊接点至焊接部件的离焦量;焊接部件和测距部件同时对准不同的焊接点,以使焊接部件和测距部件分别对不同的焊接点同时进行焊接和测距。
通过在焊接装置的主体部上同时设置焊接部件和测距部件,且测距部件设置于焊接部件的一侧,通过焊接部件和测距部件同时对准不同的焊接点,以使焊接部件和测距部件分别对不同的焊接点同时进行焊接和测距,具体地,待焊接物上经测距部件测距后的焊接点由焊接部件进行焊接,并且在焊接部件进行焊接时,测距部件对待焊接物上的下一焊接点进行测距,从而使测距与焊接的时间重合,有效提升电池生产过程中焊接步骤的效率,提高电池产能,满足市场需求。
在一种可选的方式中,测距部件包括多个测距仪,多个测距仪用于同时对待焊接物上的多个焊接点进行测距;焊接部件用于对经多个测距仪测距后的多个焊接点进行焊接。测距部件包括多个测距仪,多个测距仪用于同时对待焊接物上的多个焊接点进行测距,增加可同时进行测距的焊接点的数量,并且焊接部件用于对经多个测距仪测距后的多个焊接点进行焊接,实现多个测距后的焊接点的焊接,从而进一步提高焊接效率,提升产能。
在一种可选的方式中,测距部件还包括位置调节组件,多个测距仪均设置于位置调节组件上。测距部件还包括位置调节组件,通过将多个测距仪均设置于位置调节组件上,可以实现测距仪在主体部上整体位置的调节以及多个测距仪之间相对位置的调节,从而根据不同的待焊接物以及焊接点之间不同的距离,可以相应对测距仪的位置以及各测距仪之间的距离进行调整,以适配不同的待焊接物,提升焊接装置的兼容性,满足不同的应用场景。
在一种可选的方式中,位置调节组件包括相互垂直设置的第一滑轨和第二滑轨,第一滑轨固定于主体部,第二滑轨滑动设置于第一滑轨 上,测距仪滑动设置于第二滑轨上。位置调节组件包括相互垂直设置的第一滑轨和第二滑轨,通过将第一滑轨固定于主体部,实现位置调节组件及测距仪在主体部上的固定,第二滑轨滑动设置于第一滑轨上,测距仪滑动设置于第二滑轨上,实现各测距仪之间相对位置的调整,进而使测距仪可以根据不同待焊接物上焊接点进行相应的位置调节,提升焊接装置的兼容性。
在一种可选的方式中,主体部上设置有定位部件。通过在主体部上设置定位部件,实现对待焊接物上焊接点的定位,从而提升焊接装置焊接的准确性及精度。
在一种可选的方式中,主体部上设置有吹风部件。通过在主体部上设置吹风部件,实现对焊接产生的烟尘的及时吹散,从而便于观察焊接情况,有利于保证焊接的准确性。
在一种可选的方式中,焊接装置还包括检验部件,检验部件用于对测距部件进行检验校准。焊接装置还包括检验部件,通过检验部件对测距部件进行检验校准,以保证测距部件测距的精度,避免由于测距出现误差而导致焊接失败,进而造成焊接穿孔等情况,影响产品合格率。
在一种可选的方式中,检验部件上设置有台阶结构。通过在检验部件上设置台阶结构,实现对测距部件在正负两个方向的测距精度、重复精度、线性度及方向性的检验校准。
在一种可选的方式中,检验部件的端角处设置有定位通孔。通过在检验部件的端角处设置定位通孔,实现检验部件进行检验时的定位。
在一种可选的方式中,检验部件上还设置有盲孔。通过在检验部件上设置盲孔,实现焊接装置对待焊接物上焊接点定位时准确性的检验及校准。
在一种可选的方式中,检验部件呈矩形,定位通孔包括第一通 孔、第二通孔、第三通孔和第四通孔;盲孔包括与第一通孔距离最近且为l
a的第一盲孔、与第二通孔距离最近且为l
b的第二盲孔、第三通孔距离最近且为l
c的第三盲孔和与第四通孔距离最近且为l
d的第四盲孔;其中,l
a>l
b=l
c>l
d。考虑到产品波动性以及待焊接物上定位孔与焊接点之间可能存在误差,因此将第一通孔与第一盲孔的间距l
a设置为大于l
b,将第四通孔与第四盲孔的间距l
d设置为小于l
b,从而在检验过程中使检验部件具备实际产品可能存在的误差波动,使得检验结果更加准确有效。
根据本申请实施例的另一个方面,提供一种焊接设备,包括如上任一方式中所述的焊接装置。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本申请实施例提供的焊接装置的侧视结构示意图;
图2为本申请实施例提供的焊接装置的内部结构示意图;
图3为本申请实施例提供的焊接装置中测距部件的结构示意图;
图4为本申请实施例提供的焊接装置中吹风部件的结构示意图;
图5为本申请实施例提供的焊接装置中检验部件的结构示意图;
图6为本申请实施例提供的焊接装置中检验部件检验步骤的结构 示意图;
图7为本申请实施例提供的焊接装置中检验部件的俯视结构示意图。
具体实施方式中的附图标号如下:
焊接装置100,主体部110,焊接部件120,激光束121,测距部件130,测距路径131,测距仪132,第一测距仪1321,第二测距仪1322,位置调节组件133,第一滑轨1331,第二滑轨1332,定位部件140,吹风部件150,进风口151,吹风口152,检验部件160,台阶结构161,定位通孔162,第一通孔1621,第二通孔1622,第三通孔1623,第四通孔1624,盲孔163,第一盲孔1631,第二盲孔1632,第三盲孔1633,第四盲孔1634;
电池外壳200,第一极柱210,第二极柱220,第三极柱230,正极极柱240,负极极柱250。
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
需要注意的是,除非另有说明,本申请实施例使用的技术术语或者科学术语应当为本申请实施例所属领域技术人员所理解的通常意义。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的 方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
此外,技术术语“第一”“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例的描述中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
在电池生产过程中,为了保证电池上电路连接结构的稳定性,需要在电池外壳上焊接极柱,通过极柱与外部装置连接,以形成稳定的电流回路。
本申请发明人注意到,极柱焊接费时费力,并且为了保证产品的焊接效果及合格率,在焊接之间,需要先对极柱进行测距,以确定极柱焊 接时的离焦量。对极柱的测距会耗费大量的时间,测距后再进行焊接同样造成时间成本的消耗,严重影响电池生产的效率。
基于上述问题,本申请提出一种焊接装置,焊接装置包括均设置在主体部上的焊接部件和测距部件,实现焊接部件对待焊接物上已经完成测距的焊接点进行焊接的同时,测距部件直接对后面的焊接点进行测距,焊接部件和测距部件同时工作,相互协调,充分提升焊接的效率,进而提高电池产能,满足市场需求。
根据本申请实施例的一个方面,提供一种焊接设备,包括如上所述的焊接装置。
具体地,焊接设备还包括抓取装置,例如机械手,抓取装置与焊接装置连接,用于带动焊接装置移动,从而实现焊接装置与多个待焊接物分别对准进行焊接。
根据本申请实施例的另一个方面,提供一种焊接装置,具体请参阅图1,图中示出了本申请一实施例提供的焊接装置100的结构。焊接装置100包括:主体部110、焊接部件120和测距部件130。焊接部件120设置于主体部110,用于在待焊接物上的焊接点进行焊接。测距部件130设置于主体部110上且位于所述焊接部件120的一侧,用于测量待焊接物上各焊接点至焊接部件120的离焦量。焊接部件120和测距部件130同时对准不同的焊接点,以使焊接部件120和测距部件130分别对不同的焊接点同时进行焊接和测距。
主体部110为焊接装置100的主体架构,用于安装和固定焊接部件120、测距部件130以及其他部件。
焊接部件120可以为激光焊接机,激光焊接是利用高能量密度的激光束作为热源的一种高效精密焊接方法。激光焊接是激光材料加工技术应用的重要方面之一。激光焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。
焊接部件120可以包括焊接主机和振镜,焊接主机产生用于焊接的激光束,振镜设置在激光束的光路中,由光学扫描头,电子驱动放大器和光学反射镜片组成,电脑控制器提供的信号通过驱动放大电路驱动光学扫描头,从而控制激光束的偏转。
测距部件130为测量长度或距离的工具,具体可以是激光测距仪、超声波测距仪或者红外测距仪。
离焦量是激光焦点离作用物质间的距离。在焊接过程中,离焦量对焊接质量的影响很大。激光焊接通常需要一定的离焦量,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。
具体地,请继续参阅图1,图中还示出了焊接部件120的激光束121和测距部件130的测距路径131,需要说明的是,图中激光束121和测距路径131仅为了说明,在具体的实际产品中,激光束121和测距路径131可能无法看到。如图中所示,测距部件130设置于焊接部件120沿x轴方向的一侧,对待焊接物的焊接以在电池外壳200上焊接极柱为例,极柱即为待焊接物上的焊接点,焊接部件120在对已经完成测距的第一极柱210进行焊接时,测距部件130同时对第一极柱210沿x轴方向一侧的第二极柱220进行测距。第一极柱210的焊接及第二极柱220的测距均完成后,焊接装置100整体向x轴方向移动或电池外壳200整体向x轴方向的反方向移动,焊接部件120对第二极柱220进行焊接,测距部件130对第三极柱230进行测距。
请继续参阅图1,测距与焊接之间的工作原理为:首先设定测距部件130至焊接部件120之间沿z轴方向的距离为d1,通过测距部件130测得待焊接物上的焊接点至测距部件130之间沿z轴方向的距离d2,获得焊接部件120至焊接点之间的离焦量d3=d1+d2,进而根据获得的实际离焦量d3与所需离焦量进行比较,对焊接部件120的高度进行调整,具体可以是在主体部110上设置用于调整焊接部件120高度的调节机构,例如导轨、气缸等,也可以通过外部机构对焊接装置100整体的高度进行调整, 外部机构例如可以是机械手等,以达到调整焊接部件120高度的目的。
通过在焊接装置100的主体部110上同时设置焊接部件120和测距部件130,且测距部件130设置于焊接部件120的一侧,通过焊接部件120和测距部件130同时对准不同的焊接点,以使焊接部件120和测距部件130分别对不同的焊接点同时进行焊接和测距,具体地,待焊接物上经测距部件130测距后的焊接点由焊接部件120进行焊接,并且在焊接部件120进行焊接时,测距部件130对待焊接物上的下一焊接点进行测距,从而使测距与焊接的时间重合,有效提升电池生产过程中焊接步骤的效率,提高电池产能,满足市场需求。
请继续参阅图1,并进一步结合图2,图2中示出了本申请一实施例提供的焊接装置100的内部结构。根据本申请的一些实施例,测距部件130包括多个测距仪132,多个测距仪132用于同时对待焊接物上的多个焊接点进行测距,焊接部件120用于对经多个测距仪132测距后的多个焊接点进行焊接。
具体地,如图2中所示,待焊接物同样以电池外壳200为例,一个电池外壳200上包括沿y轴方向设置的正极极柱240和负极极柱250两个极柱。为了适配电池极柱焊接的特性,实现对电池极柱的快速测距和焊接,相应地,测距仪132的数量设置为四个,包括两个第一测距仪1321和两个第二测距仪1322,第一测距仪1321与第二测距仪1322之间沿y轴方向设置,第一测距仪1321用于对正极极柱240进行测距,第二测距仪1322用于对负极极柱250进行测距。其中,两个第一测距仪1321之间沿x轴方向设置,两个第二测距仪1322之间也沿x轴方向设置,两个第一测距仪1321用于对相邻的两个电池外壳200上的正极极柱240进行测距,两个第二测距仪1322用于对相邻的两个电池外壳200上的负极极柱250进行测距。因此,测距仪132可以同时对相邻的两个电池外壳200上的极柱进行测距,进一步提升测距效率。
为了与多个测距仪132协调配合,焊接部件120上可以设置激光振镜或分束器,以达到激光束偏角的控制和光束数量的调整,从而实现焊 接部件120可以对多个经测距仪132测距后的多个极柱进行焊接。
可以理解,上述实施例仅为根据电池极柱焊接特性设计的优选实施例,在其他实施例中,测距仪数量、位置关系等也可以根据相应待焊接物的特性进行适应性调整,在此不做限定。
测距部件130包括多个测距仪132,多个测距仪132用于同时对待焊接物上的多个焊接点进行测距,增加可同时进行测距的焊接点的数量,并且焊接部件120用于对经多个测距仪132测距后的多个焊接点进行焊接,实现多个测距后的焊接点的焊接,从而进一步提高焊接效率,提升产能。
请继续参阅图2,根据本申请的一些实施例,测距部件130还包括位置调节组件133,多个测距仪132均设置于位置调节组件133上。
位置调节组件133为用于调整测距仪132整体的位置或者多个测距仪132之间相对位置的机构,例如可以是导轨、气缸等驱动调节机构。
测距部件130还包括位置调节组件133,通过将多个测距仪132均设置于位置调节组件133上,可以实现测距仪132在主体部110上整体位置的调节以及多个测距仪132之间相对位置的调节,从而根据不同的待焊接物以及焊接点之间不同的距离,可以相应对测距仪132的位置以及各测距仪132之间的距离进行调整,以适配不同的待焊接物,提升焊接装置100的兼容性,满足不同的应用场景。
请参阅图3,图3中示出了本申请一实施例提供的焊接装置100中测距部件130的结构。根据本申请的一些实施例,位置调节组件133包括相互垂直设置的第一滑轨1331和第二滑轨1332,第一滑轨1331固定于主体部110,第二滑轨1332滑动设置于第一滑轨1331上,测距仪132滑动设置于第二滑轨1332上。
具体地,如图3中所示,第一滑轨1331可以通过两端固定于主体部110,第一滑轨1331的延伸方向可以沿y轴方向设置,第二滑轨1332的数量可以为两个,且均滑动设置于第一滑轨1331上,第二滑轨1332的延伸方向沿x轴方向设置,两个第一测距仪1321滑动设置于其中一个第 二滑轨1332上,两个第二测距仪1322滑动设置于另一个第二滑轨1332上。通过上述设置,可以实现两个第一测距仪1321之间在x轴方向上的距离调整,两个第二测距仪1322之间在x轴方向上的距离调整,以及第一测距仪1321与第二测距仪1322之间在y轴方向上的距离调整,从而当对不同的待焊接物进行焊接时,各测距仪132之间的距离及位置可随不同的待焊接物上的焊接点进行相应调整,充分提升焊接装置100的兼容性,以适配不同的产品。
可以理解,图中所示仅为示例,在其他实施例中,滑轨的数量、测距仪与滑轨的连接关系等可以根据实际需求以及待焊接物的自身特性进行相应的设置,在此不做限定。
位置调节组件133包括相互垂直设置的第一滑轨1331和第二滑轨1332,通过将第一滑轨1331固定于主体部110,实现位置调节组件133及测距仪132在主体部110上的固定,第二滑轨1332滑动设置于第一滑轨1331上,测距仪132滑动设置于第二滑轨1332上,实现各测距仪132之间相对位置的调整,进而使测距仪132可以根据不同待焊接物上焊接点进行相应的位置调节,提升焊接装置100的兼容性。
请再次参阅图2,根据本申请的一些实施例,主体部110上设置有定位部件140。
具体地,定位部件140可以是图像采集装置,例如可以是如图2中所示的CCD相机。CCD是电荷耦合器件(charge coupled device)的简称,它能够将光线变为电荷并将电荷存储及转移,也可将存储之电荷取出使电压发生变化,因此是理想的CCD相机元件,以其构成的CCD相机具有体积小、重量轻、不受磁场影响、具有抗震动和撞击之特性而被广泛应用。
定位部件140通过对待焊接物进行图像采集成像确定焊接点的位置,进而实现对待焊接物上焊接点的定位。
通过在主体部110上设置定位部件140,实现对待焊接物上焊接点的定位,从而提升焊接装置100焊接的准确性及精度。
请继续参阅图2,并进一步结合图4,图4中示出了本申请一实施例提供的焊接装置100中吹风部件150的结构。根据本申请的一些实施例,主体部110上设置有吹风部件150。
吹风部件150用于外接吹风管道,吹风管道内的空气通过吹风部件150吹向焊接处,从而将焊接产生的烟尘及时吹散,以便于观察焊接情况。
具体地,如图4中所示,吹风部件150可以是风刀,风刀采用涡流风机或高压离心风机驱动(代替高能耗的压缩空气),它使用不同的风机与风刀配合,可及时把物体表面的尘屑及水分吹干。压缩空气进入风刀后,以一面厚度仅为0.05毫米的气流薄片高速吹出。通过科恩达效应原理及风刀特殊的几何形状,此薄片风幕最大可30~40倍的环境空气,而形成一面薄薄的高强度、大气流的冲击风幕。风刀从工作模式上分为标准风刀和超级风刀两类,标准风刀的风幕偏转90度后吹出,超级风刀的风幕水平吹出。
吹风部件150具有进风口151和吹风口152,进风口151用于与吹风管道连接,将吹风管道内的空气引入吹风部件150中,进入吹风部件150内的空间经过压缩后从吹风口152吹出,实现对焊接烟尘的吹散。
通过在主体部110上设置吹风部件150,实现对焊接产生的烟尘的及时吹散,从而便于观察焊接情况,有利于保证焊接的准确性。
请参阅图5,图中示出了本申请一实施例提供的焊接装置100中检验部件160的结构。根据本申请的一些实施例,焊接装置100还包括检验部件160,检验部件160用于对测距部件130进行检验校准。
检验部件160为用于对测距部件130进行检验校准的结构,具体地,可以在检验部件160上设置具有固定高度差的结构,通过将测距部件130测出的高度差与设定的实际高度差进行比较,得出测距部件130的精确度。
焊接装置100还包括检验部件160,通过检验部件160对测距部件130进行检验校准,以保证测距部件130测距的精度,避免由于测距出 现误差而导致焊接失败,进而造成焊接穿孔等情况,影响产品合格率。
请继续参阅图5,根据本申请的一些实施例,检验部件160上设置有台阶结构161。
台阶结构161用于对测距部件130的准确性进行检验校准,具体请参阅图6,检验步骤为:首先将测距部件130与台阶结构161上的其中一个台阶对齐,以检测测距部件130至该台阶的距离l
1;然后移动测距部件130并使其与相邻的另一个台阶对准,用于检测测距部件130至相邻的另一个台阶的距离l
2,通过将测得的l
2与l
1的差值与相邻台阶之间实际的高度差进行比较,从而得出测距部件130的测距是准确性及误差值。为了避免单次检测存在其他因素的影响,可以将测距部件130向两侧分别进行移动,以对相邻两侧的台阶分别进行测距比较,通过多组对比进而保证检验的准确性。
为了使台阶结构161的高度兼容待焊接物中焊接点所产生的最大高度差,对于电池极柱的焊接,台阶结构161中相邻台阶的高度差d
a可以设置为0.5-4mm,以适配电池极柱所产生的的高度差范围,d
a优选为2mm,由于超过2mm设备需要报警防呆,因此d
a设置为2mm较为合适。
此外,台阶结构161中台阶的数量可以设置为五个,设置有五个台阶的台阶结构161在体积较小的同时,可以在保证对测距部件130在正负两个方向的测距精度、重复精度、线性度及方向性进行检验校准。
值得注意的是,台阶结构161的宽度要保证大于测距部件130形成的光斑的大小,从而使测距部件130的光斑完全落在台阶结构161的表面,避免由于测距部件130产生的光斑长度大于台阶结构161的宽度,造成检验部件160表面形成的光斑高度不一,影响测距的准确性。
通过在检验部件160上设置台阶结构161,实现对测距部件130在正负两个方向的测距精度、重复精度、线性度及方向性的检验校准。
请再次参阅图5,根据本申请的一些实施例,检验部件160的端角处设置有定位通孔162。
需要说明的是,在对于电池外壳的焊接中,电池外壳的顶部设置有端板,端板通过其端角处的定位孔进行定位及固定。检验部件160上端角处的定位通孔162用于与端板上的定位孔对齐,实现检验部件160安装进行检验时的定位。
通过在检验部件160的端角处设置定位通孔162,实现检验部件160进行检验时的定位。
请继续参阅图5,根据本申请的一些实施例,检验部件160上还设置有盲孔163。
盲孔163为设置于检验部件160表面且不贯通检验部件160的孔洞。
在检验过程中,盲孔163作为焊接点的位置,定位部件140对检验部件160进行成像,通过将成像中盲孔163的坐标值与检验部件160上盲孔163的实际坐标值进行比较,实现对定位部件140准确性及误差值的检验,根据检验结果对定位部件140进行校准。
通过在检验部件160上设置盲孔163,实现焊接装置100对待焊接物上焊接点定位时准确性的检验及校准。
请参阅图7,图中示出了本申请一实施例提供的焊接装置100中检验部件160的俯视结构。根据本申请的一些实施例,检验部件160呈矩形,定位通孔162包括第一通孔1621、第二通孔1622、第三通孔1623和第四通孔1624。盲孔163包括与第一通孔1621距离最近且为l
a的第一盲孔1631、与第二通孔1622距离最近且为lb的第二盲孔1632,与第三通孔1623距离最近且为l
c的第三盲孔1633和与第四通孔1624距离最近且为l
d的第四盲孔1634,其中,l
a>l
b=l
c>l
d。
对于待焊接物为电池外壳时,将第二通孔1622与第二盲孔1632的间距l
b及第三通孔1623与第三盲孔1633的间距l
c设置为实际产品中电池端板中定位孔与极柱之间的理论距离,同时考虑到产品波动性以及电池端板中定位孔与极柱间可能存在误差,因此将第一通孔1621与第一盲孔1631的间距l
a设置为大于l
b,将第四通孔1624与第四盲孔1634的间距l
d 设置为小于l
b,从而在检验过程中使检验部件160具备实际产品可能存在的误差波动,使得检验结果更加准确有效。
根据实际生产过程中的误差范围,优选地,0<l
a-l
b<2mm,0<l
b-l
d<2mm,使得检验部件160适配产品的误差范围。
同理,当检验部件160上设置有多个盲孔163时,各盲孔163之间的距离也可以根据待焊接物上焊接点间的理论距离及误差范围进行相应设置。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参阅前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
Claims (12)
- 一种焊接装置,其特征在于,包括:主体部;焊接部件,设置于所述主体部,用于对待焊接物上的焊接点进行焊接;测距部件,设置于所述主体部上且位于所述焊接部件的一侧,用于测量待焊接物上各焊接点至所述焊接部件的离焦量;所述焊接部件和所述测距部件同时对准不同的焊接点,以使所述焊接部件和所述测距部件分别对不同的焊接点同时进行焊接和测距。
- 根据权利要求1所述的焊接装置,其特征在于,所述测距部件包括多个测距仪,多个所述测距仪用于同时对待焊接物上的多个焊接点进行测距;所述焊接部件用于对经多个所述测距仪测距后的多个焊接点进行焊接。
- 根据权利要求2所述的焊接装置,其特征在于,所述测距部件还包括位置调节组件,多个所述测距仪均设置于所述位置调节组件上。
- 根据权利要求3所述的焊接装置,其特征在于,所述位置调节组件包括相互垂直设置的第一滑轨和第二滑轨,所述第一滑轨固定于所述主体部,所述第二滑轨滑动设置于所述第一滑轨上,所述测距仪滑动设置于所述第二滑轨上。
- 根据权利要求1所述的焊接装置,其特征在于,所述主体部上设置有定位部件。
- 根据权利要求1所述的焊接装置,其特征在于,所述主体部上设置有吹风部件。
- 根据权利要求1所述的焊接装置,其特征在于,所述焊接装置还包括检验部件,所述检验部件用于对所述测距部件进行检验校准。
- 根据权利要求7所述的焊接装置,其特征在于,所述检验部件上设置有台阶结构。
- 根据权利要求8所述的焊接装置,其特征在于,所述检验部件的端角处设置有定位通孔。
- 根据权利要求9所述的焊接装置,其特征在于,所述检验部件上还设置有盲孔。
- 根据权利要求10所述的焊接装置,其特征在于,所述检验部件呈矩形,所述定位通孔包括第一通孔、第二通孔、第三通孔和第四通孔;所述盲孔包括与所述第一通孔距离最近且为l a的第一盲孔、与所述第二通孔距离最近且为l b的第二盲孔、与所述第三通孔距离最近且为l c的第三盲孔和与所述第四通孔距离最近且为l d的第四盲孔;其中,l a>l b=l c>l d。
- 一种焊接设备,其特征在于,包括如权利要求1-11中任一项所述的焊接装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22871449.9A EP4238688A4 (en) | 2021-09-24 | 2022-05-31 | WELDING DEVICE AND WELDING DEVICE |
US18/315,495 US20230278130A1 (en) | 2021-09-24 | 2023-05-10 | Welding apparatus and welding device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202122326749.3 | 2021-09-24 | ||
CN202122326749.3U CN215658430U (zh) | 2021-09-24 | 2021-09-24 | 一种焊接装置及焊接设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/315,495 Continuation US20230278130A1 (en) | 2021-09-24 | 2023-05-10 | Welding apparatus and welding device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023045388A1 true WO2023045388A1 (zh) | 2023-03-30 |
Family
ID=79966056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/096150 WO2023045388A1 (zh) | 2021-09-24 | 2022-05-31 | 焊接装置及焊接设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230278130A1 (zh) |
EP (1) | EP4238688A4 (zh) |
CN (1) | CN215658430U (zh) |
WO (1) | WO2023045388A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN215658430U (zh) * | 2021-09-24 | 2022-01-28 | 宁德时代新能源科技股份有限公司 | 一种焊接装置及焊接设备 |
CN117020411B (zh) * | 2023-10-08 | 2024-02-20 | 宁德时代新能源科技股份有限公司 | 焊接系统及焊接系统的点检方法 |
CN117020502B (zh) * | 2023-10-08 | 2024-02-27 | 宁德时代新能源科技股份有限公司 | 焊接设备点检方法、系统以及设备 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103093767A (zh) * | 2011-11-01 | 2013-05-08 | 欧姆龙株式会社 | 聚焦装置和激光加工设备 |
CN206216124U (zh) * | 2016-12-02 | 2017-06-06 | 惠州市德赛自动化技术有限公司 | 电池激光点焊机 |
CN107150172A (zh) * | 2017-06-21 | 2017-09-12 | 深圳市联赢激光股份有限公司 | 一种动力电池激光焊接设备 |
US20180147659A1 (en) * | 2016-11-25 | 2018-05-31 | Glowforge Inc. | Preset optical components in a computer numerically controlled machine |
CN108115271A (zh) * | 2017-12-25 | 2018-06-05 | 大族激光科技产业集团股份有限公司 | 调焦控制方法及调焦控制系统 |
CN207710085U (zh) * | 2017-12-28 | 2018-08-10 | 东莞市盛雄激光设备有限公司 | 一种激光焊接系统 |
CN108539243A (zh) * | 2018-02-25 | 2018-09-14 | 深圳市联赢激光股份有限公司 | 一种电池模组自动焊接工作站 |
CN109570748A (zh) * | 2018-12-27 | 2019-04-05 | 中国科学院合肥物质科学研究院 | 一种激光清障系统的激光靶点校准装置 |
CN110548990A (zh) * | 2019-09-06 | 2019-12-10 | 深圳市大德激光技术有限公司 | 一种动力电池精密结构件激光焊接的光束控制方法及系统 |
CN113042881A (zh) * | 2019-12-26 | 2021-06-29 | 株式会社基恩士 | 激光加工设备 |
CN215658430U (zh) * | 2021-09-24 | 2022-01-28 | 宁德时代新能源科技股份有限公司 | 一种焊接装置及焊接设备 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1172765C (zh) * | 2002-05-31 | 2004-10-27 | 清华大学 | 焊接自动跟踪系统中焊炬高度的自适应控制方法及装置 |
FI117426B (fi) * | 2003-06-12 | 2006-10-13 | Aker Yards Oy | Menetelmä kolmidimensionaalisen rakenteen hitsauksen ohjaamiseksi |
CN103920990B (zh) * | 2014-04-02 | 2015-11-25 | 温州大学 | 一种自动控制加工焦距的激光加工头及加工方法 |
GB2605408A (en) * | 2021-03-31 | 2022-10-05 | Jaguar Land Rover Ltd | Laser welding position determination |
DE102022100231A1 (de) * | 2022-01-05 | 2023-07-06 | Trumpf Laser- Und Systemtechnik Gmbh | Verfahren zum Laserstrahlschweißen von mehreren Komponenten an unterschiedlichen Bearbeitungsstellen eines Bauteils sowie Laserschweißvorrichtung |
-
2021
- 2021-09-24 CN CN202122326749.3U patent/CN215658430U/zh active Active
-
2022
- 2022-05-31 WO PCT/CN2022/096150 patent/WO2023045388A1/zh unknown
- 2022-05-31 EP EP22871449.9A patent/EP4238688A4/en active Pending
-
2023
- 2023-05-10 US US18/315,495 patent/US20230278130A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103093767A (zh) * | 2011-11-01 | 2013-05-08 | 欧姆龙株式会社 | 聚焦装置和激光加工设备 |
US20180147659A1 (en) * | 2016-11-25 | 2018-05-31 | Glowforge Inc. | Preset optical components in a computer numerically controlled machine |
CN206216124U (zh) * | 2016-12-02 | 2017-06-06 | 惠州市德赛自动化技术有限公司 | 电池激光点焊机 |
CN107150172A (zh) * | 2017-06-21 | 2017-09-12 | 深圳市联赢激光股份有限公司 | 一种动力电池激光焊接设备 |
CN108115271A (zh) * | 2017-12-25 | 2018-06-05 | 大族激光科技产业集团股份有限公司 | 调焦控制方法及调焦控制系统 |
CN207710085U (zh) * | 2017-12-28 | 2018-08-10 | 东莞市盛雄激光设备有限公司 | 一种激光焊接系统 |
CN108539243A (zh) * | 2018-02-25 | 2018-09-14 | 深圳市联赢激光股份有限公司 | 一种电池模组自动焊接工作站 |
CN109570748A (zh) * | 2018-12-27 | 2019-04-05 | 中国科学院合肥物质科学研究院 | 一种激光清障系统的激光靶点校准装置 |
CN110548990A (zh) * | 2019-09-06 | 2019-12-10 | 深圳市大德激光技术有限公司 | 一种动力电池精密结构件激光焊接的光束控制方法及系统 |
CN113042881A (zh) * | 2019-12-26 | 2021-06-29 | 株式会社基恩士 | 激光加工设备 |
CN215658430U (zh) * | 2021-09-24 | 2022-01-28 | 宁德时代新能源科技股份有限公司 | 一种焊接装置及焊接设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4238688A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP4238688A1 (en) | 2023-09-06 |
CN215658430U (zh) | 2022-01-28 |
EP4238688A4 (en) | 2024-07-31 |
US20230278130A1 (en) | 2023-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023045388A1 (zh) | 焊接装置及焊接设备 | |
US9689971B2 (en) | Laser ranging calibration method and apparatus using the same | |
EP1134548A2 (en) | Laser alignment system with plural lasers for impingement on a single target | |
US20070229929A1 (en) | Method and system for correcting angular drift of laser radar systems | |
CN110548990B (zh) | 一种动力电池精密结构件激光焊接的光束控制方法及系统 | |
CN213179906U (zh) | 一种激光光束发散角的检测装置 | |
CN108709629B (zh) | 基于激光位移传感器的方形薄膜振动检测控制装置及方法 | |
CN114453595B (zh) | 选区激光熔化装备全幅面光束质量测量方法和测量装置 | |
US11988498B2 (en) | Detection device and pole piece manufacturing equipment | |
CN111473746A (zh) | 一种钉孔垂直度的光学检测方法 | |
CN102679875B (zh) | 采用主动靶对束靶耦合传感器在线标定方法 | |
CN115291196B (zh) | 一种激光净空雷达安装姿态的标定方法 | |
CN116412761A (zh) | 一种电池模组的全尺寸外观检测设备 | |
CN113074912A (zh) | 一种激光器发散角检测装置及方法 | |
KR100562961B1 (ko) | 중성자 유도관용 고정밀 정렬장치 | |
CN106323446B (zh) | 激光测振设备及其调节方法 | |
CN113433631B (zh) | 一种基于视觉引导与有源模式的渐进式模式搜索耦合方法 | |
CN102004390A (zh) | 镜头模组检测系统及其检测方法 | |
CN220206629U (zh) | 激光光路定量检测工具 | |
CN2777490Y (zh) | 短距精密动态测角仪 | |
CN221350025U (zh) | 一种薄壁金属的在线壁厚测量装置 | |
CN220692519U (zh) | 辅助装调结构及光学反射腔体 | |
US20230092686A1 (en) | Systems and methods for fabricated part measurement | |
TW201223692A (en) | Dynamic device for automatically correcting deformation | |
CN217112855U (zh) | 光学组件及激光加工装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22871449 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022871449 Country of ref document: EP Effective date: 20230602 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |