WO2023045002A1 - 有机发光二极管基板及其制造方法 - Google Patents

有机发光二极管基板及其制造方法 Download PDF

Info

Publication number
WO2023045002A1
WO2023045002A1 PCT/CN2021/124994 CN2021124994W WO2023045002A1 WO 2023045002 A1 WO2023045002 A1 WO 2023045002A1 CN 2021124994 W CN2021124994 W CN 2021124994W WO 2023045002 A1 WO2023045002 A1 WO 2023045002A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pixel
light emitting
grooves
emitting diode
Prior art date
Application number
PCT/CN2021/124994
Other languages
English (en)
French (fr)
Inventor
汪国杰
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/615,177 priority Critical patent/US20230106276A1/en
Publication of WO2023045002A1 publication Critical patent/WO2023045002A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/88Dummy elements, i.e. elements having non-functional features
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the invention relates to the field of display technology, in particular to an organic light emitting diode substrate and a manufacturing method thereof.
  • OLED organic light-emitting diode
  • OELD organic electroluminescence display
  • OLED technology was first researched by the French and Americans in the 1950s and 1960s.
  • OLED uses the phenomenon of carrier injection and recombination to cause light emission, that is, under the action of an electric field, the holes generated by the anode and the electrons generated by the cathode will move and inject into the hole transport layer and the electron transport layer respectively. Migrate to the luminescent layer. When the two meet in the light-emitting layer, energy excitons are generated, which excite light-emitting molecules and finally produce visible light.
  • OLED devices have the advantages of self-illumination, wide viewing angle, high contrast, low power consumption, high response rate, full color and light and thin.
  • Today's OLED devices mainly use a fine metal mask evaporation film forming process and inkjet printing technology. Compared with the production of OLED devices by evaporation and film-forming process of fine metal masks, OLED devices are produced by inkjet printing technology, because of its precise alignment, no need to use metal masks, and its material utilization rate can reach 100% It has attracted much attention and has become the mainstream trend in the production of large-size OLED devices in the future.
  • the pixel arrangement structure of traditional organic light-emitting diodes is composed of a plurality of pixel lattices, and each pixel unit includes red sub-pixels (R), green sub-pixels (G), and blue sub-pixels (B), R, G,
  • the B sub-pixels are arranged circularly in turn to form a matrix. Due to the large difference in film thickness between each pixel point in this traditional pixel point arrangement structure, it is easy to cause the mura phenomenon to occur.
  • the design scheme of the line pixel definition layer can distribute ink droplets of different sizes sprayed by different nozzles (nozzles) in the linear grooves defined by the pixel definition layer, and then achieve the overall pixel film layer The thickness difference between them is small, effectively avoiding the occurrence of mura phenomenon.
  • LPDL line pixel definition layer
  • the design of LPDL distributes ink droplets of different sizes sprayed by different nozzles into the linear grooves defined by the pixel definition layer, it is difficult to judge and monitor each pixel in real time during the inkjet printing process.
  • the ink ejection volume of the nozzles of the print head is normal, so that if some of the nozzles print a larger or smaller volume, the film thickness of the overall pixel after drying will be thicker or thinner, which will reduce the product yield or affect the device performance.
  • the LPDL design scheme in the existing inkjet printing technology cannot immediately monitor whether the ink ejection volume of each nozzle is normal, and thus the problem that the film thickness of the overall pixel is too thick or too thin needs to be further solved.
  • the present invention provides an organic light emitting diode substrate and a manufacturing method thereof.
  • a dummy pixel unit is arranged outside at least one side of a plurality of pixel unit columns; or a pixel dot sub-section is formed by an outermost pixel unit at one end of each pixel unit column, and the pixel dot sub-section The portion occupies between 1/3 and 1/2 of the area of the pixel electrode.
  • the invention provides an organic light emitting diode substrate.
  • the organic light emitting diode substrate includes: a substrate; a thin film transistor device layer, the thin film transistor device layer is arranged on the substrate; an anode layer, the anode layer is arranged on the thin film On the transistor device layer, the anode layer includes a plurality of pixel electrodes arranged in an array and a plurality of dummy pixel electrodes, and the plurality of pixel electrodes are respectively electrically connected to corresponding thin film transistors in the thin film transistor device layer; pixel definition layer, the pixel definition layer defines a plurality of linear pixel grooves and a plurality of dot-like dummy pixel grooves on the anode layer; a light-emitting functional layer, the light-emitting functional layer is arranged in the plurality of pixel grooves Grooves and the anode layer in the plurality of dummy pixel grooves; and a cathode layer, the cathode layer is arranged
  • organic light emitting diode substrate according to an embodiment of the present invention, wherein the organic light emitting diode substrate further includes a buffer layer, and the buffer layer is disposed between the thin film transistor device layer and the anode layer.
  • the organic light emitting diode substrate wherein the light-emitting functional layer includes a hole injection layer, a hole transport layer, a light-emitting material layer, an electron transport layer, and an electron injection layer.
  • the organic light emitting diode substrate according to an embodiment of the present invention wherein the plurality of dummy pixel units are disposed outside at least one of the upper and lower sides of the plurality of pixel unit columns.
  • organic light emitting diode substrate according to an embodiment of the present invention, wherein the organic light emitting diode substrate further includes a plurality of dummy pixels arranged on at least one side of the left and right sides of the plurality of linear pixel unit columns. pixel unit.
  • the organic light emitting diode substrate according to an embodiment of the present invention, wherein, in the plurality of dummy pixel units, one dummy pixel unit corresponds to one pixel outside at least one of the left and right sides of the plurality of pixel unit columns
  • the mode of the cell column is set.
  • the organic light emitting diode substrate according to an embodiment of the present invention wherein the plurality of dummy pixel units correspond to one of the plurality of dummy pixel units on at least one side of the left and right sides of the plurality of pixel unit columns The mode setting of the pixel cell column.
  • the two dummy pixel units are arranged side by side.
  • the types of the luminescent material layers of the two dummy pixel units are the same.
  • the present invention also provides another organic light emitting diode substrate, which includes: a substrate; a thin film transistor device layer, the thin film transistor device layer is arranged on the substrate; an anode layer, the anode layer is arranged on the substrate On the thin film transistor device layer, the anode layer includes a plurality of pixel electrodes arranged in an array, and the plurality of pixel electrodes are respectively electrically connected to corresponding thin film transistors in the thin film transistor device layer; the pixel definition layer, the The pixel definition layer defines a plurality of linear first pixel grooves and a plurality of dot-shaped second pixel grooves on the anode layer; a luminescent functional layer, the luminescent functional layer is arranged on the plurality of first pixels On the anode layer in the groove and the plurality of second pixel grooves; and the cathode layer, the cathode layer is arranged on the light-emitting function layer; wherein, the plurality of pixel electrodes, the light-emitting function
  • the pixel dot sub-section occupies between 1/3 and 1/2 of the area of any one of the plurality of pixel electrodes.
  • organic light emitting diode substrate according to an embodiment of the present invention, wherein the organic light emitting diode substrate further includes a buffer layer, and the buffer layer is disposed between the thin film transistor device layer and the anode layer.
  • the organic light emitting diode substrate wherein the light-emitting functional layer includes a hole injection layer, a hole transport layer, a light-emitting material layer, an electron transport layer, and an electron injection layer.
  • the present invention further provides a method for manufacturing an organic light emitting diode substrate.
  • the method for manufacturing an organic light emitting diode substrate includes the following steps:
  • a substrate is provided, and a thin film transistor device layer is provided on the substrate; a planarization layer is provided on the thin film transistor device layer; an anode layer is provided on the planarization layer; an anode layer is provided on the planarization layer and the anode layer
  • a pixel definition layer is set on it, and the pixel definition layer includes a plurality of linear pixel grooves and a plurality of dot-shaped dummy pixel grooves; all of the plurality of pixel grooves and the plurality of dummy pixel grooves
  • a hole injection layer is set on the anode layer by inkjet printing; check whether the printing volume of the hole injection layer in the plurality of dummy pixel grooves is normal, if so, proceed to the next step, if not, stop production and check spray head; drying the hole injection layer; setting a hole transport layer on the hole injection layer by inkjet printing; checking the printing of the hole transport layer in the plurality of dummy pixel grooves Whether the volume is normal,
  • dummy pixel units are arranged outside at least one side of a plurality of pixel unit columns; or the outermost side of one end of each pixel unit column is A pixel unit is defined by the second pixel groove to form a pixel dot sub-section, and the pixel dot sub-section occupies between 1/3 and 1/2 of the area of any one of the plurality of pixel electrodes.
  • the pixel film layer of the linear structure is formed by mixing the inks of multiple nozzles, it is impossible to immediately monitor whether the ink ejection volume of each nozzle is normal, which leads to a decrease in the product yield of the entire batch of products due to insufficient or uneven film thickness of the pixels. question.
  • FIG. 1 is a schematic top view of an organic light emitting diode substrate according to a first embodiment of the present invention
  • FIG. 2 is a schematic top view of an organic light emitting diode substrate according to a second embodiment of the present invention.
  • Fig. 3 is a partial schematic diagram of the top view structure of Fig. 2;
  • Fig. 4 is a schematic cross-sectional structure diagram of an organic light emitting diode substrate cut along the A-A' line segment in Fig. 3;
  • FIG. 5 is a partial schematic diagram of a top view structure of an organic light emitting diode substrate according to a third embodiment of the present invention.
  • Fig. 6 is a schematic cross-sectional structure diagram of the organic light emitting diode substrate cut along the line B-B' in Fig. 5;
  • FIG. 7 is a partial schematic diagram of a top view structure of an organic light emitting diode substrate according to a fourth embodiment of the present invention.
  • Fig. 8 is a schematic cross-sectional structure diagram of the organic light emitting diode substrate cut along the C-C' line segment in Fig. 7;
  • FIG. 9 is a schematic flowchart of a method for manufacturing an OLED substrate according to an embodiment of the present invention.
  • FIG. 1 is a schematic top view of an organic light emitting diode substrate according to a first embodiment of the present invention.
  • the OLED substrate 10 includes a plurality of linear pixel unit columns 101 and a plurality of dummy pixel units 102 .
  • the plurality of linear pixel unit columns 101 span at least 85% of the length of the effective display area of the entire OLED substrate.
  • Each pixel unit column 101 includes a plurality of pixel units 101u.
  • the plurality of dummy pixel units 102 are disposed outside at least one of the upper and lower sides of the plurality of pixel unit columns 101 .
  • the plurality of dummy pixel units 102 are arranged outside at least one side of the upper and lower sides of the plurality of pixel unit columns 101. Since the ink ejection volume of the dummy pixel units 102 is small, it is It can be easily monitored whether the corresponding nozzle has abnormal spraying volume. In addition, since the arrangement direction of the plurality of virtual pixel units 102 is the same as the arrangement direction of the printing nozzles, the plurality of virtual pixel units 102 can be set such that each virtual pixel unit corresponds to a printing nozzle, so as to facilitate confirmation of printing Unusual nozzle.
  • FIG. 2 is a schematic top view of an organic light emitting diode substrate according to a second embodiment of the present invention. Please refer to Figure 3 and Figure 4 together.
  • Fig. 3 is a partial schematic diagram of the OLED substrate shown in Fig. 2
  • Fig. 4 is a schematic cross-sectional structure diagram of the OLED substrate cut along the line A-A' in Fig. 3 . As shown in FIG.
  • the organic light emitting diode substrate 20 further includes a plurality of dummy pixel units 202 disposed on at least one side of the left and right sides of the plurality of pixel unit columns 201, and the plurality of dummy pixel units 202 is arranged outside at least one of the left and right sides of the plurality of pixel unit columns 201 in such a manner that one dummy pixel unit 202 corresponds to one pixel unit column 201 .
  • the OLED substrate 20 includes a substrate 200; a thin film transistor device layer 210, the thin film transistor device layer 210 is arranged on the substrate 200; an anode layer 230, the anode layer 230 is arranged on the thin film On the transistor device layer 210, the anode layer 230 includes a plurality of pixel electrodes 230e and a plurality of dummy pixel electrodes 230d arranged in an array.
  • the transistor is electrically connected (not shown in the figure); the pixel definition layer 240, the pixel definition layer 240 defines a plurality of linear pixel grooves 270 and a plurality of dot-shaped dummy pixel grooves 270' on the anode layer 230 ;
  • the luminescent functional layer 250, the luminescent functional layer 250 is arranged on the anode layer 230 in the plurality of pixel grooves 270 and the plurality of dummy pixel grooves 270'; and the cathode layer 260, the cathode
  • the layer 260 is disposed on the light-emitting functional layer 250; wherein, the plurality of pixel electrodes 230e, the light-emitting functional layer 250, and the cathode layer 260 are formed under the definition of the plurality of pixel grooves 270.
  • a plurality of pixel unit columns 201, the plurality of dummy pixel electrodes 230d, the light emitting function layer 250, and the cathode layer 260 form a plurality of dummy pixel units 202 under the definition of the plurality of dummy pixel grooves 270'.
  • each pixel unit column 201 includes a plurality of pixel units 201u.
  • none of the plurality of dummy pixel units 230d is electrically connected to the thin film transistors in the thin film transistor device layer 210 .
  • the OLED substrate 20 further includes a buffer layer 220 disposed between the TFT device layer 210 and the anode layer 230 .
  • the luminescent functional layer 205 includes a hole injection layer 2501 , a hole transport layer 2502 , a luminescent material layer 2503 , an electron transport layer 2504 , and an electron injection layer 2505 arranged from bottom to top.
  • the plurality of dummy pixel units 202 are arranged on at least one side of the left and right sides of the plurality of pixel unit columns 201 in such a manner that one dummy pixel unit 202 corresponds to one pixel unit column 201 .
  • the total number of the plurality of virtual pixel units 202 is, for example, 10 to 100, or more.
  • the actual number can be determined according to the excess space of the effective display area, and is not limited here.
  • the width of the plurality of dummy pixel units 202 may be the same as or different from the width of the pixel unit column 201 .
  • the length of each of the plurality of dummy pixel units 202 may be set to be between 20 and 200 um, such as 25 um.
  • the plurality of dummy pixel units 202 are arranged outside at least one side of the plurality of pixel unit columns 201 in a manner that one dummy pixel unit 202 corresponds to one pixel unit column 201 .
  • the dummy pixel units 202 arranged outside at least one side of the plurality of pixel unit columns 201 due to the small inkjet volume of the dummy pixel units 202, they appear in dot-like form, It is easy to monitor whether the corresponding nozzle has abnormal spray volume.
  • FIG. 5 is a partial schematic diagram of the top view structure of the organic light emitting diode substrate according to the third embodiment of the present invention
  • FIG. 6 is a schematic cross-sectional structure diagram of the organic light emitting diode substrate cut along the line B-B' in FIG. 5 . As shown in FIG.
  • the organic light emitting diode substrate 30 further includes a plurality of dummy pixel units 302 arranged outside at least one of the left and right sides of the plurality of pixel unit columns 301 , the plurality of dummy pixel units 302
  • the pixel unit 302 is arranged in such a way that two dummy pixel units 302 correspond to one pixel unit column 301 outside at least one side of the left and right sides of the plurality of pixel unit columns 301, and the two dummy pixel units 302 are arranged side by side set up.
  • the OLED substrate 30 includes a substrate 300; a thin film transistor device layer 310, the thin film transistor device layer 310 is disposed on the substrate 300; an anode layer 330, the anode layer 330 is disposed on the substrate 300
  • the anode layer 330 includes a plurality of pixel electrodes 330e and a plurality of dummy pixel electrodes 330d arranged in an array.
  • the thin film transistors are electrically connected (not shown); the pixel definition layer 340, the pixel definition layer 340 defines a plurality of linear pixel grooves 370 and a plurality of dotted dummy pixel grooves on the anode layer 330 370'; the light emitting functional layer 350, the light emitting functional layer 350 is disposed on the anode layer 330 in the plurality of pixel grooves 370 and the plurality of dummy pixel grooves 370'; and the cathode layer 360, the The cathode layer 360 is disposed on the light-emitting functional layer 350; wherein, the plurality of pixel electrodes 330e, the light-emitting functional layer 350, and the cathode layer 360 are under the definition of the plurality of pixel grooves 370 Form a pixel unit column 301 including a plurality of pixel units 301u, and the plurality of dummy pixel electrodes 330d, the light emitting function layer 350, and the cathode layer 360
  • the luminescent functional layer 350 includes a hole injection layer 3501 , a hole transport layer 3502 , a luminescent material layer 3503 , an electron transport layer 3504 , and an electron injection layer 3505 arranged from bottom to top.
  • the plurality of dummy pixel units 302 are arranged on at least one side of the left and right sides of the plurality of pixel unit columns 301 in such a way that two dummy pixel units 302 correspond to one pixel unit column 301 , The two dummy pixel units 302 are arranged side by side.
  • the types of the luminescent material layers of the two dummy pixel units 302 are the same. Since the types and colors of the luminescent material layers of the two dummy pixel units 302 are the same, it is beneficial to compare whether the volumes of the two dummy pixel units 302 are different.
  • the two virtual pixel units 302 can be set to spray through different nozzles, which is beneficial to compare whether the inkjet printing volumes of different nozzles are significantly different, so as to monitor whether the spraying volumes of the nozzles are normal.
  • the plurality of dummy pixel units 302 are located on at least one side of the left and right sides of the plurality of pixel unit columns 301 in such a way that two dummy pixel units 302 correspond to one pixel unit column 301 Setting, the two dummy pixel units 302 are arranged side by side.
  • the two virtual pixel units 302 arranged side by side since the two virtual pixel units 302 can be set to be sprayed by different nozzles, by comparing the two virtual pixel units 302 arranged side by side, it is easier to find the two Whether the two nozzles corresponding to each virtual pixel unit 302 have abnormal spraying volume.
  • FIG. 7 is a partial schematic diagram of the top view structure of the OLED substrate 40 according to the fourth embodiment of the present invention
  • FIG. 8 is a schematic cross-sectional structure diagram of the OLED substrate 40 cut along the line C-C' in FIG. 7 .
  • the organic light emitting diode substrate 40 includes a substrate 400; a thin film transistor device layer 410, the thin film transistor device layer 410 is arranged on the substrate 400; an anode layer 430, the anode layer 430 is arranged on the thin film On the transistor device layer 410, the anode layer 430 includes a plurality of pixel electrodes 430e arranged in an array, and the plurality of pixel electrodes 430e are respectively electrically connected to corresponding thin film transistors in the thin film transistor device layer 410 (not shown in the figure).
  • the pixel definition layer 440, the pixel definition layer 440 defines a plurality of linear first pixel grooves 470 and a plurality of dot-shaped second pixel grooves 470' on the anode layer 430;
  • the light-emitting functional layer 450, the light-emitting functional layer 450 is disposed on the anode layer 430 corresponding to the plurality of first pixel grooves 470 and the plurality of second pixel grooves 470';
  • the cathode layer 460, the cathode layer Layer 460 is disposed on the luminescent functional layer 450; wherein, the plurality of pixel electrodes 430e, the luminescent functional layer 450, and the cathode layer 460 are defined under the plurality of first pixel grooves 470
  • a plurality of linear pixel unit columns 401 please refer to FIG.
  • the luminescent functional layer 450 includes a hole injection layer 4501 , a hole transport layer 4502 , a luminescent material layer 4503 , an electron transport layer 4504 , and an electron injection layer 4505 arranged from bottom to top.
  • the OLED substrate 40 further includes a buffer layer 420 disposed between the TFT device layer 410 and the anode layer 430 .
  • the outermost pixel unit at one end of each pixel unit column forms a pixel dot sub-section defined by the second pixel groove, and the pixel dot sub-section occupies 1/3 of the area of the pixel electrode to 1/2.
  • this embodiment does not need to set up dummy pixel units, but a pixel sub-section is formed by an outermost pixel unit at one end of each pixel unit column. Since the distance between the sub-sections of the pixel dots and the end of the pixel unit column is very small, the influence on the display effect will hardly be noticed by naked eyes. In this embodiment, there is no need to set dummy pixels. Since the dummy pixels are not energized and emit light, part of the effective display area must be sacrificed to set the dummy pixels. Therefore, this embodiment can more efficiently utilize the effective display area of the organic light emitting diode substrate, which is more conducive to the realization of a narrow frame or a full screen.
  • FIG. 9 is a schematic flowchart of a method for manufacturing an OLED substrate according to an embodiment of the present invention.
  • the manufacturing method of the organic light emitting diode substrate includes:
  • the substrate is a glass substrate, and the thin-film transistor device layer may be made of low-temperature polysilicon (low-temperature polycrystalline silicon, LTPS) or through indium gallium zinc oxide (indium gallium The thin film transistor device layer prepared by zinc oxide) technology;
  • planarization layer may be formed by, for example, sputtering
  • the anode layer may be formed by, for example, deposition, and the anode layer may be patterned by photolithography and etching;
  • the pixel definition layer includes a plurality of linear pixel grooves and a plurality of dot-shaped dummy pixel grooves
  • the pixel definition layer can be made of, for example, acrylic resin (Acrylic resin) and other organic materials, and form multiple linear pixel grooves and multiple dot-like virtual pixel grooves through processes such as patterning and curing;
  • S105 disposing a hole injection layer on the anode layer in the plurality of pixel grooves and the plurality of dummy pixel grooves by inkjet printing;
  • S107 Perform drying treatment on the hole injection layer, specifically, the drying treatment may be performed by heating and baking;
  • S110 Perform drying treatment on the hole transport layer, specifically, the drying treatment can be performed by heating and baking;
  • S112 Check whether the printing volume of the luminescent material layer in the plurality of dummy pixel grooves is normal, if so, go to the next step, if not, stop production and check the nozzle;
  • S113 Perform drying treatment on the luminescent material layer, specifically, the drying treatment may be performed by heating and baking;
  • the cathode layer may be formed by evaporation or the like.
  • the above-mentioned embodiment of the present invention forms a dummy pixel unit by setting dummy pixel units outside at least one side of a plurality of pixel unit columns;
  • the pixel dot sub-section, the pixel dot sub-section occupies between 1/3 and 1/2 of the area of the pixel electrode.

Abstract

本发明公开一种有机发光二极管基板及其制造方法,有机发光二极管基板包括:基板、薄膜晶体管器件层、阳极层、像素定义层、发光功能层、以及阴极层;其中,多个像素电极、发光功能层、以及阴极层在多条像素凹槽的限定之下形成多个像素单元列;以及多个虚拟像素单元设置在多个像素单元列的上、下两侧和左、右两侧的至少一侧之外。

Description

有机发光二极管基板及其制造方法 技术领域
本发明涉及显示技术领域,尤其是涉及一种有机发光二极管基板及其制造方法。
背景技术
有机发光二极管(organic light-emitting diode,OLED)又称有机电激发光显示(organic electroluminescence display,OELD),OLED技术最早于1950年代和1960年代由法国人和美国人开始研究。OLED利用载流子的注入和复合而致发光的现象,即 OLED在电场的作用下,阳极产生的空穴和阴极产生的电子就会发生移动,分别向空穴传输层和电子传输层注入,迁移到发光层。当二者在发光层相遇时,产生能量激子,从而激发发光分子最终产生可见光。OLED 器件具有自发光、广视角、高对比、低耗电、高反应速率、全彩化及轻薄等优点。
现今的OLED器件主要采用精细金属掩膜板 (fine metal mask) 蒸镀成膜工艺与喷墨打印技术。相对于采用精细金属掩膜板蒸镀成膜工艺制作OLED器件,通过喷墨打印技术制作OLED器件,因其精准的对位、不需使用金属掩膜板,且其材料利用率可以达到100%而备受关注,成为未来大尺寸OLED器件制作的主流趋势。
技术问题
传统的有机发光二极管的像素排列结构由多个像素点阵构成,每个像素点单元包含红色子像素 (R)、绿色子像素(G)、和蓝色子像素(B),R、G、B 子像素依次循环排列,组成矩阵。这种传统的像素点排列结构由于每个像素点之间的膜厚差异较大,容易导致发生mura现象。线性像素定义层(line pixel definition layer,LPDL)的设计方案可以将不同喷嘴(nozzle)喷涂的体积大小不一的墨滴分配于像素定义层所定义的线性凹槽中,进而达到整体像素膜层之间的厚度差异较小的目的,有效地避免了mura现象的发生。然而,LPDL的设计方案因其将不同喷嘴(nozzle)喷涂的体积大小不一的墨滴分配于像素定义层所定义的线性凹槽中,导致在喷墨打印的过程中,难以即时判监控各个打印头喷嘴的喷墨量是否正常,从而若其中有些喷嘴打印的体积偏大或偏小,将导致干燥后的整体像素的膜层厚度偏厚或偏薄,进而降低产品良率或是影响器件的性能。
因此,现有喷墨打印技术中的LPDL设计方案,因无法即时监测各个喷嘴的喷墨量是否正常,从而导致的整体像素的膜层厚度偏厚或偏薄的问题需要进一步解决。
技术解决方案
为解决上述问题,本发明提供一种有机发光二极管基板及其制造方法。本发明通过在多个像素单元列的至少一侧之外设置虚拟像素单元;或是通过在每一所述像素单元列的一端部的最外侧的一个像素单元形成像素点子部,所述像素点子部占像素电极的面积的1/3至1/2之间。通过上述方法,设置较小的虚拟像素单元或像素点子部,在喷墨打印的生产过程中,可以容易监控各喷嘴的喷墨量是否正常,从而解决现有的OLED器件喷墨打印技术中,因线性结构的像素膜层由多个喷嘴的墨水混合形成,无法即时监测各个喷嘴的喷墨量是否正常的问题。
本发明提供一种有机发光二极管基板,所述有机发光二极管基板包括:基板;薄膜晶体管器件层,所述薄膜晶体管器件层设置在所述基板上;阳极层,所述阳极层设置在所述薄膜晶体管器件层上,所述阳极层包括多个阵列排布的像素电极和多个虚拟像素电极,所述多个像素电极分别与所述薄膜晶体管器件层中的对应的薄膜晶体管电连接;像素定义层,所述像素定义层在所述阳极层上限定出多条线性的像素凹槽和多个点状的虚拟像素凹槽;发光功能层,所述发光功能层设置在所述多条像素凹槽和所述多个虚拟像素凹槽中的所述阳极层上;以及阴极层,所述阴极层设置在所述发光功能层上;其中,所述多个像素电极、所述发光功能层、以及所述阴极层在所述多条像素凹槽的限定之下形成多个像素单元列,以及所述多个虚拟像素电极、所述发光功能层、以及所述阴极层在所述多个虚拟像素凹槽的限定之下形成多个虚拟像素单元。
本发明一实施例所述的有机发光二极管基板,其中,所述有机发光二极管基板还包括一缓冲层,所述缓冲层设置在所述薄膜晶体管器件层和所述阳极层之间。
本发明一实施例所述的有机发光二极管基板,其中,所述发光功能层包括空穴注入层、空穴传输层、发光材料层、电子传输层、以及电子注入层。
本发明一实施例所述的有机发光二极管基板,其中,所述多个虚拟像素单元设置在所述多个像素单元列的上、下两侧的至少一侧之外。
本发明一实施例所述的有机发光二极管基板,其中,所述有机发光二极管基板还包括设置在所述多个线性的像素单元列的左、右两侧的至少一侧之外的多个虚拟像素单元。
本发明一实施例所述的有机发光二极管基板,其中,所述多个虚拟像素单元在所述多个像素单元列的左、右两侧的至少一侧之外以一个虚拟像素单元对应一个像素单元列的方式设置。
本发明一实施例所述的有机发光二极管基板,其中,所述多个虚拟像素单元在所述多个像素单元列的左、右两侧的至少一侧之外以二个虚拟像素单元对应一个像素单元列的方式设置。
本发明一实施例所述的有机发光二极管基板,其中,所述二个虚拟像素单元并排设置。
本发明一实施例所述的有机发光二极管基板,其中,所述二个虚拟像素单元的发光材料层的种类相同。
本发明还提供另一种有机发光二极管基板,所述有机发光二极管基板包括:基板;薄膜晶体管器件层,所述薄膜晶体管器件层设置在所述基板上;阳极层,所述阳极层设置在所述薄膜晶体管器件层上,所述阳极层包括多个阵列排布的像素电极,所述多个像素电极分别与所述薄膜晶体管器件层中的对应的薄膜晶体管电连接;像素定义层,所述像素定义层在所述阳极层上限定出多个线性的第一像素凹槽和多个点状的第二像素凹槽;发光功能层,所述发光功能层设置在所述多个第一像素凹槽和所述多个第二像素凹槽中的所述阳极层上;以及阴极层,所述阴极层设置在所述发光功能层上;其中,所述多个像素电极、所述发光功能层、以及所述阴极层在所述多个第一像素凹槽的限定之下形成多个线性的像素单元列,每一所述像素单元列的一端部的最外侧的一个像素单元在所述第二像素凹槽的限定下形成一像素点子部。
本发明一实施例所述的有机发光二极管基板,其中,所述像素点子部占所述多个像素电极之任一的面积的1/3至1/2之间。
本发明一实施例所述的有机发光二极管基板,其中,所述有机发光二极管基板还包括一缓冲层,所述缓冲层设置在所述薄膜晶体管器件层和所述阳极层之间。
本发明一实施例所述的有机发光二极管基板,其中,所述发光功能层包括空穴注入层、空穴传输层、发光材料层、电子传输层、以及电子注入层。
本发明进一步提供一种有机发光二极管基板的制造方法,所述有机发光二极管基板的制造方法包括以下步骤:
提供一基板,在所述基板上设置薄膜晶体管器件层;在所述薄膜晶体管器件层上设置平坦化层;在所述平坦化层上设置阳极层;在所述平坦化层和所述阳极层上设置像素定义层,所述像素定义层包括多条线性的像素凹槽和多个点状的虚拟像素凹槽;在所述多条像素凹槽和所述多个虚拟像素凹槽中的所述阳极层上通过喷墨打印设置空穴注入层;检查所述多个虚拟像素凹槽中的所述空穴注入层的打印体积是否正常,若是则进行下一步骤,若否则停止生产并检查喷头;对所述空穴注入层进行干燥处理;在所述空穴注入层上通过喷墨打印设置空穴传输层;检查所述多个虚拟像素凹槽中的所述空穴传输层的打印体积是否正常,若是则进行下一步骤,若否则停止生产并检查喷头;对所述空穴传输层进行干燥处理;在所述空穴传输层上通过喷墨打印设置发光材料层;检查所述多个虚拟像素凹槽中的所述发光材料层的打印体积是否正常,若是则进行下一步骤,若否则停止生产并检查喷头;对所述发光材料层进行干燥处理;在所述发光材料层上设置电子传输层;在所述电子传输层上设置电子注入层;以及在所述电子注入层上设置阴极层。
有益效果
本发明提出的所述有机发光二极管基板及其制造方法,通过在多个像素单元列的至少一侧之外设置虚拟像素单元;或是通过将每一所述像素单元列的一端部的最外侧的一个像素单元在第二像素凹槽的限定下形成一像素点子部,所述像素点子部占所述多个像素电极之任一的面积的1/3至1/2之间。通过上述方法,设置较小的虚拟像素单元或像素点子部,在喷墨打印的生产过程中,可以容易监控各喷嘴的喷墨量是否正常,因而解决现有的OLED器件喷墨打印技术中,因线性结构的像素膜层由多个喷嘴的墨水混合形成,无法即时监测各个喷嘴的喷墨量是否正常,进而导致整批产品因像素的膜厚不足或膜厚不均而降低产品良率的问题。
附图说明
图1为本发明第一实施例的有机发光二极管基板的俯视结构示意图;
图2为本发明第二实施例的有机发光二极管基板的俯视结构示意图;
图3为图2的俯视结构的局部示意图;
图4为图3沿A-A’线段切割的有机发光二极管基板的截面结构示意图;
图5为本发明第三实施例的有机发光二极管基板的俯视结构的局部示意图;
图6为图5沿B-B’线段切割的有机发光二极管基板的截面结构示意图;
图7为本发明第四实施例的有机发光二极管基板的俯视结构的局部示意图;
图8为图7沿C-C’线段切割的有机发光二极管基板的截面结构示意图;以及
图9为本发明实施例的有机发光二极管基板的制造方法的流程示意图。
本发明的最佳实施方式
以下结合附图对本发明实施例提供的有机发光二极管基板和有机发光二极管基板的制造方法详细说明。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在附图中,为了清晰理解和便于描述,夸大了一些层的厚度和一些组件的数量和尺寸。即附图中示出的每个组件的数量、尺寸、和厚度是任意示出的,但是本发明不限于此。
请参照图1,图1为本发明第一实施例的有机发光二极管基板的俯视结构示意图。有机发光二极管基板10包括多个线性的像素单元列101和多个虚拟像素单元102。所述多个线性的像素单元列101横跨整个有机发光二极管基板的有效显示区的长度的至少85%。每一像素单元列101包括多个像素单元101u。所述多个虚拟像素单元102设置在所述多个像素单元列101的上、下两侧的至少一侧之外。
在本实施例中,所述多个虚拟像素单元102设置在所述多个像素单元列101的上、下两侧的至少一侧之外,由于虚拟像素单元102的喷墨体积小,以点状形态呈现,可以很容易地监控对应的喷嘴是否有喷涂体积异常的情形。此外,由于所述多个虚拟像素单元102的排列方向与打印喷嘴的排列方向相同,可以将所述多个虚拟像素单元102设置为:每一个虚拟像素单元分别对应一个打印喷嘴,以利于确认打印异常的喷嘴。
请参照图2,图2为本发明第二实施例的有机发光二极管基板的俯视结构示意图。请一并参照图3及图4。图3为图2所示的有机发光二极管基板的局部示意图,图4为图3沿A-A’线段切割的有机发光二极管基板的截面结构示意图。如图3所示,有机发光二极管基板20还包括设置在所述多个像素单元列201的左、右两侧的至少一侧之外的多个虚拟像素单元202,所述多个虚拟像素单元202在所述多个像素单元列201的左、右两侧的至少一侧之外以一个虚拟像素单元202对应一个像素单元列201的方式设置。如图4所示,有机发光二极管基板20包括基板200;薄膜晶体管器件层210,所述薄膜晶体管器件层210设置在所述基板200上;阳极层230,所述阳极层230设置在所述薄膜晶体管器件层210上,所述阳极层230包括多个阵列排布的像素电极230e和多个虚拟像素电极230d,所述多个像素电极230e分别与所述薄膜晶体管器件层210中的对应的薄膜晶体管电连接(图未示出);像素定义层240,所述像素定义层240在所述阳极层230上限定出多条线性的像素凹槽270和多个点状的虚拟像素凹槽270’;发光功能层250,所述发光功能层250设置在所述多条像素凹槽270和所述多个虚拟像素凹槽270’中的所述阳极层230上;以及阴极层260,所述阴极层260设置在所述发光功能层250上;其中,所述多个像素电极230e、所述发光功能层250、以及所述阴极层260在所述多条像素凹槽270的限定之下形成多个像素单元列201,所述多个虚拟像素电极230d、所述发光功能层250、以及所述阴极层260在所述多个虚拟像素凹槽270’限定之下形成多个虚拟像素单元202。其中,每一像素单元列201包括多个像素单元201u。
具体地,所述多个虚拟像素单元230d皆不与所述薄膜晶体管器件层210中的薄膜晶体管电连接。
较佳地,所述有机发光二极管基板20还包括一缓冲层220,所述缓冲层220设置在所述薄膜晶体管器件层210和所述阳极层230之间。
较佳地,所述发光功能层205包括由下而上设置的空穴注入层2501、空穴传输层2502、发光材料层2503、电子传输层2504、以及电子注入层2505。
较佳地,所述多个虚拟像素单元202在所述多个像素单元列201的左、右两侧的至少一侧之外以一个虚拟像素单元202对应一个像素单元列201的方式设置。
具体地,所述多个虚拟像素单元202的总数量为例如10至100个,或更多。实际数量可以依照有效显示区的多余空间决定,在此不做限定。所述多个虚拟像素单元202的宽度可以和所述像素单元列201的宽度相同或是不同。每一所述多个虚拟像素单元202的长度可以设置为20至200 um之间,例如25 um。
在本实施例中,所述多个虚拟像素单元202在所述多个像素单元列201的至少一侧之外以一个虚拟像素单元202对应一个像素单元列201的方式设置。在喷墨打印的生产过程中,通过检查设置在所述多个像素单元列201的至少一侧之外的虚拟像素单元202,由于虚拟像素单元202的喷墨体积小,以点状形态呈现,可以很容易地监控对应的喷嘴是否有喷涂体积异常的情形。
请一并参照图5及图6。图5为本发明第三实施例的有机发光二极管基板的俯视结构的局部示意图,以及图6为图5沿B-B’线段切割的有机发光二极管基板的截面结构示意图。如图5所示,所述有机发光二极管基板30还包括设置在所述多个像素单元列301的左、右两侧的至少一侧之外的多个虚拟像素单元302,所述多个虚拟像素单元302在所述多个像素单元列301的左、右两侧的至少一侧之外以二个虚拟像素单元302对应一个像素单元列301的方式设置,所述二个虚拟像素单元302并排设置。
如图6所示,所述有机发光二极管基板30包括基板300;薄膜晶体管器件层310,所述薄膜晶体管器件层310设置在所述基板300上;阳极层330,所述阳极层330设置在所述薄膜晶体管器件层310上,所述阳极层330包括多个阵列排布的像素电极330e和多个虚拟像素电极330d,所述多个像素电极330e分别与所述薄膜晶体管器件层310中的对应的薄膜晶体管电连接(图未示出);像素定义层340,所述像素定义层340在所述阳极层330上限定出多条线性的像素凹槽370和多个点状的虚拟像素凹槽370’;发光功能层350,所述发光功能层350设置在所述多条像素凹槽370和所述多个虚拟像素凹槽370’中的所述阳极层330上;以及阴极层360,所述阴极层360设置在所述发光功能层350上;其中,所述多个像素电极330e、所述发光功能层350、以及所述阴极层360在所述多条像素凹槽370的限定之下形成包括多个像素单元301u的像素单元列301,以及所述多个虚拟像素电极330d、所述发光功能层350、以及所述阴极层360在所述多个虚拟像素凹槽370’限定之下形成多个虚拟像素单元302u。具体地,所述多个虚拟像素单元330d皆不需与所述薄膜晶体管器件层310中的薄膜晶体管电连接。
具体地,所述发光功能层350包括由下而上设置的空穴注入层3501、空穴传输层3502、发光材料层3503、电子传输层3504、以及电子注入层3505。
较佳地,所述多个虚拟像素单元302在所述多个像素单元列301的左、右两侧的至少一侧之外以二个虚拟像素单元302对应一个像素单元列301的方式设置,所述二个虚拟像素单元302并排设置。
较佳地,所述二个虚拟像素单元302的发光材料层的种类相同。由于所述二个虚拟像素单元302的发光材料层的种类相同,颜色也相同,因而有利于比较所述二个虚拟像素单元302的体积大小有无不同。所述二个虚拟像素单元302可以设定为通过不同的喷嘴喷涂,这有利于比较不同喷嘴的喷墨打印体积是否有明显差异,从而可以监控喷嘴的喷涂体积是否正常。
在本实施例中,所述多个虚拟像素单元302在所述多个像素单元列301的左、右两侧的至少一侧之外以二个虚拟像素单元302对应一个像素单元列301的方式设置,所述二个虚拟像素单元302并排设置。如此设计,可以通过检查并排设置的二个虚拟像素单元302,由于二个虚拟像素单元302可以设定由不同的喷嘴喷涂,通过比对并排设置的二个虚拟像素单元302,可以较容易发现二个虚拟像素单元302对应的两个喷嘴是否有喷涂体积异常的情形。
请一并参照图7及图8。图7为本发明第四实施例的有机发光二极管基板40的俯视结构的局部示意图,图8为图7沿C-C’线段切割的有机发光二极管基板40的截面结构示意图。如图8所示,有机发光二极管基板40包括基板400;薄膜晶体管器件层410,所述薄膜晶体管器件层410设置在所述基板400上;阳极层430,所述阳极层430设置在所述薄膜晶体管器件层410上,所述阳极层430包括多个阵列排布的像素电极430e,所述多个像素电极430e分别与所述薄膜晶体管器件层410中的对应的薄膜晶体管电连接(图未示出);像素定义层440,所述像素定义层440在所述阳极层430上限定出多个线性的第一像素凹槽470和多个点状的第二像素凹槽470’;发光功能层450,所述发光功能层450设置在对应所述多个第一像素凹槽470和所述多个第二像素凹槽470’中的所述阳极层430上;以及阴极层460,所述阴极层460设置在所述发光功能层450上;其中,所述多个像素电极430e、所述发光功能层450、以及所述阴极层460在所述多个第一像素凹槽470的限定之下形成包括多个像素单元401u的多个线性的像素单元列401 (请一并参照图7),每一所述像素单元列401的一端部的最外侧的一个像素电极430e的一部分位于所述第一像素凹槽470内,另一部分位于所述第二像素凹槽470’内形成一像素点子部401up,所述像素点子部401up占所述像素电极430e的面积的1/3至1/2之间。
具体地,所述发光功能层450包括由下而上设置的空穴注入层4501、空穴传输层4502、发光材料层4503、电子传输层4504、以及电子注入层4505。
较佳地,所述有机发光二极管基板40还包括一缓冲层420,所述缓冲层420设置在所述薄膜晶体管器件层410和所述阳极层430之间。
在本实施例中,不同于第一实施例至第三实施例中以设置虚拟像素单元的方式监控喷嘴是否有喷涂体积异常的情形。本实施例不设置虚拟像素单元。在本实施例中,每一像素单元列的一端部的最外侧的一个像素单元在第二像素凹槽的限定下形成一像素点子部,所述像素点子部占像素电极的面积的1/3至1/2之间。通过设置较小的像素点子部,在喷墨打印的生产过程中,可以容易监控各个喷嘴的喷墨量是否正常,因而解决现有的OLED器件喷墨打印技术中,因线性结构的像素膜层由多个喷嘴的墨水混合形成,无法即时监测各个喷嘴的喷墨量是否正常的问题。此外,相较于第一实施例至第三实施例,本实施例不需要设置虚拟像素单元,而是通过在每一像素单元列的一端部的最外侧的一个像素单元形成像素点子部。由于像素点子部与所述像素单元列的所述端部的距离很小,因此对于显示效果的影响几乎不会被肉眼察觉。在本实施例中可以不需要设置虚拟像素。由于虚拟像素不通电发光,设置虚拟像素必须牺牲一部份的有效显示区域,因而本实施例可以更有效率地利用有机发光二极管基板的有效显示区域,更有利于窄边框或全面屏的实现。
请参照图9。图9为本发明实施例的有机发光二极管基板的制造方法的流程示意图。所述有机发光二极管基板的制造方法,包括:
S101:提供一基板,在所述基板上设置薄膜晶体管器件层,具体地,所述基板为玻璃基板,所述薄膜晶体管器件层可以是通过低温多晶硅(low-temperature polycrystalline silicon,LTPS)或通过氧化铟镓锌 (indium gallium zinc oxide)技术制备的薄膜晶体管器件层;
S102:在所述薄膜晶体管器件层上设置平坦化层,具体地,可通过例如溅镀方式形成所述平坦化层;
S103:在所述平坦化层上设置阳极层,具体地,可通过例如沉积方式形成所述阳极层,且所述阳极层可通过光刻和蚀刻等方式被图案化;
S104:在所述平坦化层和所述阳极层上设置像素定义层,所述像素定义层包括多条线性的像素凹槽和多个点状的虚拟像素凹槽,具体地,所述像素定义层可由例如丙稀酸树脂(Acrylic resin)等有机材料组成,并通过图案化及固化等流程形成多条线性的像素凹槽和多个点状的虚拟像素凹槽;
S105:在所述多条像素凹槽和所述多个虚拟像素凹槽中的所述阳极层上通过喷墨打印设置空穴注入层;
S106:检查所述多个虚拟像素凹槽中的所述空穴注入层的打印体积是否正常,若是则进行下一步骤,若否则停止生产并检查喷头;
S107:对所述空穴注入层进行干燥处理,具体地,所述干燥处理可通过加热烘烤等方式进行;
S108:在所述空穴注入层上通过喷墨打印设置空穴传输层;
S109:检查所述多个虚拟像素凹槽中的所述空穴传输层的打印体积是否正常,若是则进行下一步骤,若否则停止生产并检查喷头;
S110:对所述空穴传输层进行干燥处理,具体地,所述干燥处理可通过加热烘烤等方式进行;
S111:在所述空穴传输层上通过喷墨打印设置发光材料层;
S112:检查所述多个虚拟像素凹槽中的所述发光材料层的打印体积是否正常,若是则进行下一步骤,若否则停止生产并检查喷头;
S113:对所述发光材料层进行干燥处理,具体地,所述干燥处理可通过加热烘烤等方式进行;
S114:在所述发光材料层上设置电子传输层,具体地,可通过蒸镀等方式形成所述电子传输层;
S115:在所述电子传输层上设置电子注入层,具体地,可通过蒸镀等方式形成所述电子注入层;以及
S116:在所述电子注入层上设置阴极层,具体地,可通过蒸镀等方式形成所述阴极层。
如上所述,本发明上述实施例通过在多个像素单元列的至少一侧之外设置虚拟像素单元;或是通过在每一所述像素单元列的一端部的最外侧的一个像素单元形成一个像素点子部,所述像素点子部占像素电极的面积的1/3至1/2之间。通过上述方法,设置体积较小的虚拟像素单元或像素点子部,在喷墨打印的生产过程中,可以易于监控各喷嘴的喷墨量是否正常,从而解决现有的OLED器件喷墨打印技术中,因线性结构的像素膜层由多个喷嘴的墨水混合形成,无法即时监测各个喷嘴的喷墨量是否正常,进而导致降低产品良率的问题。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (14)

  1. 一种有机发光二极管基板,包括:
    基板;
    薄膜晶体管器件层,所述薄膜晶体管器件层设置在所述基板上;
    阳极层,所述阳极层设置在所述薄膜晶体管器件层上,所述阳极层包括多个阵列排布的像素电极和多个虚拟像素电极,所述多个像素电极分别与所述薄膜晶体管器件层中的对应的薄膜晶体管电连接;
    像素定义层,所述像素定义层在所述阳极层上限定出多条线性的像素凹槽和多个点状的虚拟像素凹槽;
    发光功能层,所述发光功能层设置在所述多条像素凹槽和所述多个虚拟像素凹槽中的所述阳极层上;以及
    阴极层,所述阴极层设置在所述发光功能层上;
    其中,所述多个像素电极、所述发光功能层、以及所述阴极层在所述多条像素凹槽的限定之下形成多个像素单元列,以及所述多个虚拟像素电极、所述发光功能层、以及所述阴极层在所述多个虚拟像素凹槽的限定之下形成多个虚拟像素单元。
  2. 根据权利要求1所述的有机发光二极管基板,还包括一缓冲层,所述缓冲层设置在所述薄膜晶体管器件层和所述阳极层之间。
  3. 根据权利要求1所述的有机发光二极管基板,其中,所述发光功能层包括空穴注入层、空穴传输层、发光材料层、电子传输层、以及电子注入层。
  4. 根据权利要求1所述的有机发光二极管基板,其中,所述多个虚拟像素单元设置在所述多个像素单元列的上、下两侧的至少一侧之外。
  5. 根据权利要求4所述的有机发光二极管基板,还包括设置在所述多个像素单元列的左、右两侧的至少一侧之外的多个虚拟像素单元。
  6. 根据权利要求5所述的有机发光二极管基板,其中,所述多个虚拟像素单元在所述多个像素单元列的左、右两侧的至少一侧之外以一个虚拟像素单元对应一个像素单元列的方式设置。
  7. 根据权利要求5所述的有机发光二极管基板,其中,所述多个虚拟像素单元在所述多个像素单元列的左、右两侧的至少一侧之外以二个虚拟像素单元对应一个像素单元列的方式设置。
  8. 根据权利要求7所述的有机发光二极管基板,其中,所述二个虚拟像素单元并排设置。
  9. 根据权利要求7所述的有机发光二极管基板,其中,所述二个虚拟像素单元的发光材料层的种类相同。
  10. 一种有机发光二极管基板,其中,包括:
    基板;
    薄膜晶体管器件层,所述薄膜晶体管器件层设置在所述基板上;
    阳极层,所述阳极层设置在所述薄膜晶体管器件层上,所述阳极层包括多个阵列排布的像素电极,所述多个像素电极分别与所述薄膜晶体管器件层中的对应的薄膜晶体管电连接;
    像素定义层,所述像素定义层在所述阳极层上限定出多个线性的第一像素凹槽和多个点状的第二像素凹槽;
    发光功能层,所述发光功能层设置在所述多个第一像素凹槽和所述多个第二像素凹槽中的所述阳极层上;以及
    阴极层,所述阴极层设置在所述发光功能层上;
    其中,所述多个像素电极、所述发光功能层、以及所述阴极层在所述多个第一像素凹槽的限定之下形成多个线性的像素单元列,每一所述像素单元列的一端部的最外侧的一个像素电极的一部分位于所述第一像素凹槽内,另一部分位于所述第二像素凹槽内形成一像素点子部。
  11. 根据权利要求10所述的有机发光二极管基板,其中,所述像素点子部占所述多个像素电极之任一的面积的1/3至1/2之间。
  12. 根据权利要求10所述的有机发光二极管基板,还包括一缓冲层,所述缓冲层设置在所述薄膜晶体管器件层和所述阳极层之间。
  13. 根据权利要求10所述的有机发光二极管基板,其中,所述发光功能层包括空穴注入层、空穴传输层、发光材料层、电子传输层、以及电子注入层。
  14. 一种有机发光二极管基板的制造方法,包括:
    提供一基板,在所述基板上设置薄膜晶体管器件层;
    在所述薄膜晶体管器件层上设置平坦化层;
    在所述平坦化层上设置阳极层;
    在所述平坦化层和所述阳极层上设置像素定义层,所述像素定义层包括多条线性的像素凹槽和多个点状的虚拟像素凹槽;
    在所述多条像素凹槽和所述多个虚拟像素凹槽中的所述阳极层上通过喷墨打印设置空穴注入层;
    检查所述多个虚拟像素凹槽中的所述空穴注入层的打印体积是否正常,若是则进行下一步骤,若否则停止生产并检查喷头;
    对所述空穴注入层进行干燥处理;
    在所述空穴注入层上通过喷墨打印设置空穴传输层;
    检查所述多个虚拟像素凹槽中的所述空穴传输层的打印体积是否正常,若是则进行下一步骤,若否则停止生产并检查喷头;
    对所述空穴传输层进行干燥处理;
    在所述空穴传输层上通过喷墨打印设置发光材料层;
    检查所述多个虚拟像素凹槽中的所述发光材料层的打印体积是否正常,若是则进行下一步骤,若否则停止生产并检查喷头;
    对所述发光材料层进行干燥处理;
    在所述发光材料层上设置电子传输层;
    在所述电子传输层上设置电子注入层;以及
    在所述电子注入层上设置阴极层。
PCT/CN2021/124994 2021-09-26 2021-10-20 有机发光二极管基板及其制造方法 WO2023045002A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/615,177 US20230106276A1 (en) 2021-09-26 2021-10-20 Organic light-emitting diode substrate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111126769.4A CN113871440B (zh) 2021-09-26 2021-09-26 有机发光二极管基板及其制造方法
CN202111126769.4 2021-09-26

Publications (1)

Publication Number Publication Date
WO2023045002A1 true WO2023045002A1 (zh) 2023-03-30

Family

ID=78994342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124994 WO2023045002A1 (zh) 2021-09-26 2021-10-20 有机发光二极管基板及其制造方法

Country Status (3)

Country Link
US (1) US20230106276A1 (zh)
CN (1) CN113871440B (zh)
WO (1) WO2023045002A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425551A (zh) * 2013-09-11 2015-03-18 三星显示有限公司 有机发光二极管显示器及其制造方法
WO2018229488A1 (en) * 2017-06-16 2018-12-20 Cambridge Display Technology Limited Organic light-emitting diode device with pixel definition layer
CN109449314A (zh) * 2018-10-30 2019-03-08 京东方科技集团股份有限公司 显示基板及其制造方法、显示面板
CN111242885A (zh) * 2018-11-13 2020-06-05 广东聚华印刷显示技术有限公司 异常喷嘴的检测方法及装置
CN111477663A (zh) * 2020-04-22 2020-07-31 Tcl华星光电技术有限公司 显示面板及显示面板的制备方法
CN112786471A (zh) * 2020-12-30 2021-05-11 广东聚华印刷显示技术有限公司 显示面板以及显示面板的厚度检测方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253332A (ja) * 2003-02-21 2004-09-09 Toshiba Corp 塗布用基板、インク塗布システム及びその塗布方法並びにそれを用いたデバイス製造装置
JP2011048915A (ja) * 2009-08-25 2011-03-10 Casio Computer Co Ltd 発光パネルの製造装置及び発光パネルの製造方法、並びに電子機器
CN107561761B (zh) * 2017-09-20 2020-09-01 厦门天马微电子有限公司 一种显示面板及其驱动方法、显示装置
CN108169973B (zh) * 2018-01-12 2021-01-05 厦门天马微电子有限公司 一种显示面板及显示装置
CN110081849B (zh) * 2018-04-24 2021-01-29 广东聚华印刷显示技术有限公司 墨水材料的膜厚测量方法
CN111192979B (zh) * 2018-11-15 2023-02-07 株式会社日本有机雷特显示器 显示面板的制造方法及功能层形成装置
CN110416411B (zh) * 2019-08-30 2022-11-01 昆山国显光电有限公司 一种喷墨打印对位基板和喷墨打印装置
KR20210085331A (ko) * 2019-12-30 2021-07-08 엘지디스플레이 주식회사 전계발광 표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425551A (zh) * 2013-09-11 2015-03-18 三星显示有限公司 有机发光二极管显示器及其制造方法
WO2018229488A1 (en) * 2017-06-16 2018-12-20 Cambridge Display Technology Limited Organic light-emitting diode device with pixel definition layer
CN109449314A (zh) * 2018-10-30 2019-03-08 京东方科技集团股份有限公司 显示基板及其制造方法、显示面板
CN111242885A (zh) * 2018-11-13 2020-06-05 广东聚华印刷显示技术有限公司 异常喷嘴的检测方法及装置
CN111477663A (zh) * 2020-04-22 2020-07-31 Tcl华星光电技术有限公司 显示面板及显示面板的制备方法
CN112786471A (zh) * 2020-12-30 2021-05-11 广东聚华印刷显示技术有限公司 显示面板以及显示面板的厚度检测方法

Also Published As

Publication number Publication date
US20230106276A1 (en) 2023-04-06
CN113871440A (zh) 2021-12-31
CN113871440B (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
US9704927B2 (en) Organic electroluminescent display panel
US10504973B2 (en) OLED display panel and manufacturing method and display device thereof
US9768382B2 (en) Display substrate, its manufacturing method and display device
US9640589B2 (en) Organic electroluminescent display panel and display device
WO2019095452A1 (zh) Oled显示器及其制作方法
US20030025446A1 (en) Manufacturing method and structure of OLED display panel
WO2018176546A1 (zh) 量子点发光二极管显示面板及其制备方法、显示装置
CN107331681B (zh) 一种显示基板及其制作方法、显示器件
WO2019214125A1 (zh) 彩色滤光基板及其制作方法与woled显示器
KR101058117B1 (ko) 박막 증착용 마스크 어셈블리와, 이를 이용한 유기 발광 장치와, 이의 제조 방법
KR20050062072A (ko) 발광소자의 제조 방법
WO2019041578A1 (zh) Oled基板及其制作方法
WO2020258395A1 (zh) 一种有机电致发光器件及显示面板
WO2021227153A1 (zh) 显示面板
WO2018188153A1 (zh) Woled显示装置
CN109148533B (zh) 一种有机发光二极管显示器
WO2024022056A1 (zh) 显示面板及制作方法、显示装置
WO2023045002A1 (zh) 有机发光二极管基板及其制造方法
WO2023173511A1 (zh) 显示面板
CN204257657U (zh) 一种显示基板及显示装置
JP2004031077A (ja) 有機el表示パネル製造のためのインクジェット塗布装置および塗布方法
CN110137230B (zh) 一种oled显示面板及其制作方法
WO2014008720A1 (zh) 有机显示器件及制作的方法
WO2021212586A1 (zh) 显示面板及显示面板的制备方法
CN117202692B (zh) 有机电致发光器件及其制作方法、显示面板