WO2023043058A1 - 레이저 솔더링 시스템 - Google Patents

레이저 솔더링 시스템 Download PDF

Info

Publication number
WO2023043058A1
WO2023043058A1 PCT/KR2022/011702 KR2022011702W WO2023043058A1 WO 2023043058 A1 WO2023043058 A1 WO 2023043058A1 KR 2022011702 W KR2022011702 W KR 2022011702W WO 2023043058 A1 WO2023043058 A1 WO 2023043058A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot air
unit
supply unit
laser
inert gas
Prior art date
Application number
PCT/KR2022/011702
Other languages
English (en)
French (fr)
Inventor
정연일
박상휘
이성환
Original Assignee
엘에스이브이코리아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스이브이코리아 주식회사 filed Critical 엘에스이브이코리아 주식회사
Publication of WO2023043058A1 publication Critical patent/WO2023043058A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • B23K1/0056Soldering by means of radiant energy soldering by means of beams, e.g. lasers, E.B.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/16Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3613Polymers, e.g. resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits

Definitions

  • the present invention relates to a laser soldering system. More specifically, the present invention relates to a laser soldering system capable of preventing surface contamination or corrosion of a board by effectively removing flux components generated from solder paste during laser soldering.
  • SMT Surface Mounted Technology
  • laser soldering uses laser light as a heat source in a non-contact manner to instantaneously raise the temperature up to the solder melting point, so it is advantageous for a lead-free soldering process that requires high temperatures in a local area on a substrate.
  • Laser soldering technology applies a solder paste composed of an alloy and a flux to a soldering area of a semiconductor device to be mounted on a board, then irradiates a laser to the soldering area of the board to melt the solder paste, thereby forming semiconductor terminals on the board. can be soldered
  • the flux that has not yet been vaporized remains on the board.
  • rosin, resin or activator is Residual causes cloudiness, surface contamination, damage or corrosion.
  • An object of the present invention is to provide a laser soldering system that can prevent surface contamination or corrosion of a substrate by effectively removing flux components generated from solder paste during laser soldering.
  • the present invention is a laser soldering system for soldering at least one semiconductor device to a substrate, a solder paste applied to solder the semiconductor device to the substrate.
  • a laser irradiation unit that irradiates a laser for heating toward the semiconductor device and the substrate;
  • a hot air supply unit supplying hot air to a soldering area by the laser irradiation unit to vaporize flux components remaining around the semiconductor device and the substrate among the solder paste heated by the laser irradiation unit; and an intake unit for intake and discharge of the flux components vaporized by the hot air supplied from the hot air supply unit.
  • the hot air supply unit and the intake unit may be disposed with the laser irradiation unit interposed therebetween.
  • the hot air nozzle of the hot air supply unit may be inclined toward the soldering area.
  • the air intake duct of the intake unit may be inclined downwardly toward the soldering area so that the vaporized flux component is sucked after the hot air supplied from the hot air supplier collides with the soldering area.
  • a cross-sectional area of an outlet of a hot air nozzle of the hot air supply unit may be smaller than a cross-sectional area of an inlet of an intake duct of the intake unit.
  • the flux component removed by the intake part may include rosin (resin, rosin) and an activator.
  • the intake unit may perform intake at a negative pressure of 7 to 9 bar.
  • the hot air supply unit may include an inert gas supply unit for supplying an inert gas into the hot air supply unit; a heating unit for heating the inert gas supplied from the inert gas supply unit; It may include; a compression unit for compressing the inert gas heated by the heating unit and discharging it to the outside of the hot air supply unit.
  • the heating unit may be heated such that the temperature of the inert gas supplied from the non-hwareung gas supply unit is maintained at 200 to 240 degrees (°C).
  • the hot air supply unit may generate hot air through a method of discharging the compressed inert gas from the compression unit with a pneumatic pressure of 0.5 to 2.5 bar.
  • the laser soldered substrate may be a flexible printed circuit board (FPCB).
  • FPCB flexible printed circuit board
  • the laser soldering system according to the present invention supplies hot air to the soldering area of the board and at the same time sucks and removes the flux component vaporized by the hot air in order to effectively remove the remaining flux component that is not vaporized during the soldering process and remains on the board. By being configured to do so, there is an effect of preventing surface contamination, damage or corrosion of the substrate by the flux component.
  • FIG. 1 shows the overall configuration of a laser soldering system according to the present invention.
  • FIG. 2 shows a front view of a laser soldering system according to the present invention.
  • FIG 3 shows a perspective view of a laser soldering system according to the present invention.
  • Figure 1 shows the overall configuration of the laser soldering system according to the present invention
  • Figure 2 shows a front view of the laser soldering system according to the present invention
  • Figure 3 shows a perspective view of the laser soldering system according to the present invention .
  • the present invention provides a laser soldering system 1000 for soldering at least one semiconductor element 61 to a substrate 60, wherein the semiconductor element 61 is connected to a substrate 60.
  • the hot air supply unit 200 supplies hot air to the soldering area by the laser irradiation unit and the hot air supplied from the hot air supply unit It is configured to include an intake unit 300 for intake and discharge of the vaporized flux component 63.
  • the laser irradiator 100 constituting the laser soldering system 1000 according to the present invention irradiates the laser to the soldering area 60s of the substrate 60 to solder the semiconductor device 61 to the substrate 60,
  • the semiconductor device 61 is soldered on the substrate 60 by melting the solder paste applied in the soldering region 60s.
  • the laser irradiation unit 100 may be configured to irradiate a laser downward from an upper portion of the soldering region 60s of the substrate.
  • the laser irradiator 100 includes a laser head 110 through which a laser beam is irradiated, and the laser head 110 directs the laser beam downward to the area around the semiconductor device 61 in the soldering area 60s of the substrate.
  • Laser soldering can be performed by irradiating the solder paste-applied position for several seconds.
  • the laser irradiator 100 is an inspection unit 130 for irradiating inspection light to check whether the laser beam from the laser head 110 is properly irradiated toward the solder paste applied to the soldering area 60s on the substrate may be additionally provided.
  • a soldering unit 600 may be provided in a lower area of the laser irradiation unit 100 to support the substrate 60 having the semiconductor device 61 to be soldered so that laser soldering is performed on the substrate 60. .
  • the soldering performer 600 moves the soldering area 60s of the substrate to the area where the laser beam is irradiated downward by the laser irradiator 100 or, after the soldering process is completed, the substrate 60 is moved to the outside.
  • a movable conveyor 610 for carrying out may be included.
  • the substrate 60 soldered by the laser irradiation unit 100 may be a flexible printed circuit board (FPCB), which may be applied to a vehicle battery cell or the like to implement a voltage sensing function.
  • the substrate 60 may be made of a polymer material such as polyethylene naphthalate (PEN) or polyimide (PI) in order to realize flexible performance.
  • PEN polyethylene naphthalate
  • PI polyimide
  • the substrate 60 may be irradiated with laser by the laser irradiator 100, and solder paste may be applied in advance to a portion where the semiconductor device 61 is joined in the soldering area 60s of the substrate.
  • the solder paste applied to the substrate 60 may be configured in a cream form having higher viscosity than liquid.
  • This solder paste is a flux for facilitating soldering by removing alloy components composed of metals such as lead (Pb), tin (Sn), silver (Ag) and copper (Cu) and an oxide film formed on the surface of the alloy (flux).
  • the flux may be contained in an amount of 10% by mass or less, preferably 3 to 5% by mass, based on the total content of the solder paste.
  • the flux of the solder paste is rosin (resin, rosin) made from pine resin powder as a raw material, and chlorine (Cl), fluorine (F), bromine (for the purpose of removing the oxide film generated on the surface of the board during soldering)
  • Solvents made of organic chemicals such as methyl alcohol (MA), isopropyl alcohol (IPA), and ethanol to dissolve activators composed of halogen elements such as Br) and flux solid components, etc. It can be configured to include.
  • rosin which constitutes the flux of the solder paste
  • conformal coating may reduce the flowability of the polymer coating material and deteriorate the adhesion between the polymer coating material and the substrate 60, resulting in contamination, corrosion, or damage of the substrate 60. This should be removed.
  • the activator constituting the flux of the solder paste remains on the surface of the substrate 650 after soldering, the activator gradually turns white in the area of the substrate that comes into contact with moisture in the air, causing surface contamination, and the contact It causes oxidative corrosion of the substrate in the area, so it must be removed.
  • the flux of the solder paste is naturally removed while evaporating in the air when the temperature is gradually raised to about 150 degrees (°C) or higher.
  • laser soldering is a method of intensively heating the solder paste by instantly irradiating a high-temperature laser beam of about 200 to 300 degrees (°C) from the laser irradiator 100 to the soldering area of the board, the solder paste in the laser soldering process A separate process for removing the flux component 63 generated by remaining on the substrate 60 due to abrupt cooling without vaporization for a sufficient period of time must be added.
  • the laser soldering system 1000 applies hot air to the soldering area 60s of the substrate 60 to vaporize the flux component 63 remaining on the substrate 60.
  • rosin resin, rosin
  • an activator are included, thereby remaining in the soldering area 60s of the substrate after soldering. Surface contamination, damage, or corrosion of the substrate due to the flux component 63 may be prevented.
  • the hot air nozzle 210 of the hot air supply unit 200 constituting the laser soldering system 1000 may be inclined toward the soldering area 60s of the substrate, and the air intake duct 310 of the air intake unit 300
  • the hot air supplied from the hot air nozzle 210 of the hot air supplier 200 collides with the soldering area 60s of the substrate, and then the vaporized flux component may be disposed inclined downward in the soldering area 60s to be sucked. there is.
  • the intake unit 300 includes an intake duct 310 for intake of ambient air containing flux components and an intake pipe for transporting and discharging the flux components 63 in a gaseous state connected to the intake duct to the outside. It may be configured to include (330).
  • the intake unit 300 may perform intake with a negative pressure of 7 to 9 bar, and the intake unit 300 is connected to the intake pipe 330 and supplies air around the soldering area 60s of the substrate.
  • a vacuum unit (not shown) for creating a negative pressure environment by vacuuming may be further provided.
  • An outlet cross-sectional area of the hot air nozzle 210 constituting the hot air supply unit 200 may be smaller than an inlet cross-sectional area of the intake duct 310 of the intake unit 300 .
  • the outlet cross section of the hot air nozzle 210 of the hot air supply unit 200 is relatively small, the pressure of the hot air injected from the hot air nozzle 210 is increased to direct the flux component 63 toward the intake part 300.
  • the inlet sectional area of the intake duct 310 of the intake unit 300 is relatively large, so that the surrounding air of the vaporized flux component 63 can be smoothly absorbed and removed in a large capacity.
  • the hot air supply unit 200 constituting the laser soldering system 1000 introduces an inert gas such as nitrogen (N 2 ), helium (He), and argon (Ar) into the hot air supply unit 200.
  • the hot air supply unit 200 includes a supply pipe 230 for transporting the inert gas supplied and heated by the inert gas supply unit 220 and the heating unit 240 into the hot air supply unit 220 and the supply pipe ( 230) may be configured to include a hot air nozzle 210 generating hot air as the inert gas transported is discharged to the outside.
  • the hot air is made of an inert gas such as nitrogen (N 2 ), helium (He), or argon (Ar) from the inert gas supply unit 220, even if the hot air hits the soldering region 60s of the substrate, the substrate ( 60) can prevent deterioration of lead wetting due to oxidation.
  • the concentration of the inert gas supplied from the inert gas supply unit 220 of the hot air supply unit 200 may be 5 to 7 ppm. As such, when the concentration of the inert gas supplied from the inert gas supply unit 220 is 5 to 7 ppm, the generated hot air sufficiently creates an inert gas atmosphere in the soldering area 60s of the substrate, such that oxidation or corrosion occurs. can be prevented, and at the same time, price competitiveness can be secured by minimizing the use of inert gas.
  • the heating unit 240 of the hot air supply unit 200 may heat the inert gas supplied from the inert gas supply unit 220 to maintain a temperature of 200 to 240 degrees (°C).
  • the temperature of the inert gas is less than 200 ° C, the temperature of the inert gas discharged to the outside of the hot air nozzle 210 of the hot air supply unit 200 is lowered to less than about 150 ° C, and the flux component remaining on the substrate 60
  • the temperature of the inert gas exceeds 240 ° C, the substrate 60 is heated above the heat resistance temperature of the polymer material constituting the substrate 60, and the substrate 60 is in contact with the hot air. ) may be melted or damaged.
  • the hot air supply unit 200 may generate hot air by discharging the compressed inert gas from the compression unit 260 through the hot air nozzle 210 with a pneumatic pressure of 0.5 to 2.5 bar.
  • the hot air supplier 200 vaporizes the flux component 63 remaining around the semiconductor element 61 in the soldering region 60s of the substrate by generating hot air from the supplied and heated inert gas, and the vaporized flux component ( 63) can be removed by being sucked in by the intake unit 300 as a result together with ambient air.
  • the comparative example and embodiment are laser soldering by applying the laser soldering system without the hot air supply unit 200 and the intake unit 300 and the laser soldering system 1000 of the present invention, respectively.
  • the state of the substrate 60 is captured and shown after a certain period of time has elapsed.
  • the rosin detection reagent 65a and the activator detection reagent 65b are applied to the laser soldered substrate.
  • the flux components 63 remaining in the soldering area 60s it was confirmed that the color change occurred in the detection reagent by reacting with the rosin and the activator, respectively.
  • the flux remaining in the soldering area 60s of the substrate after laser soldering The component is vaporized by the high-temperature hot air generated in the hot air supply unit 200 and completely sucked in and removed by the air intake unit 300, thereby targeting the flux of the solder paste in the soldering area 60s. ) and the reagent for detecting the activator (65b) were confirmed to be unreacted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

본 발명은 레이저 솔더링 과정에서 솔더 페이스트(Solder paste)에서 발생하는 플럭스 성분을 효과적으로 제거하여 기판의 표면 오염 또는 부식 현상을 방지할 수 있는 레이저 솔더링 시스템에 관한 것이다.

Description

레이저 솔더링 시스템
본 발명은 레이저 솔더링 시스템에 관한 것이다. 보다 상세하게, 본 발명은 레이저 솔더링 과정에서 솔더 페이스트(Solder paste)에서 발생하는 플럭스 성분을 효과적으로 제거하여 기판의 표면 오염 또는 부식 현상을 방지할 수 있는 레이저 솔더링 시스템에 관한 것이다.
표면 실장 기술(Surface Mounted Technology; SMT)는 표면 실장형 전자부품을 기판 표면에 장착하고 이를 솔더링(Soldering)하는 기술이다. 이러한 솔더링 기술 중에서 레이저 솔더링(Laser soldering)은 비접촉식 방식으로 레이저광을 열원으로 사용하여 순간적으로 솔더 융점까지 온도를 승온할 수 있으므로 기판 상의 국소 영역으로 고온이 요구되는 무연 솔더링 공정에 유리하다.
레이저 솔더링 기술은 기판에 실장하고자 하는 반도체 소자의 솔더링 영역에 합금 및 플럭스로 구성되는 솔더 페이스트를 도포한 이후, 상기 기판의 솔더링 영역에 레이저를 조사하여 솔더 페이스트를 용융시킴으로서 기판 상에 반도체 단자 등을 솔더링할 수 있다.
한편, 레이더 솔더링 과정에서 솔더 페이스트가 용융되어 다시 급속하게 냉각됨에 따라 상기 솔더 페이스트 중 미처 기화되지 못한 플럭스가 기판 상에 남아 잔류하게 되는데, 플럭스의 성분 중 송진(Rosin, Resin) 또는 활성제는 기판에 잔류하여 백탁 현상, 표면 오염, 손상 또는 부식 등을 일으킨다.
이러한 문제를 해결하기 위하여, 기존에는 레이저 솔더링된 기판을 고온의 오븐 내에서 수십분동안 가열하여 플럭스 활성제 성분을 제거하는 과정을 수행하였으나, 이와 같은 방법은 기판의 반복적인 열처리에 의하여 도금(TIN)층에 IMC층이 성장하는 등 솔더링 문제를 발생시키는 원인이 되었다.
따라서, 레이저 솔더링 과정에서 기판 상에 잔류하는 플럭스 성분을 효과적으로 제거해줌으로서 기판의 표면 오염, 손상 또는 부식 현상을 방지할 수 있는 레이저 솔더링 시스템이 요구된다.
본 발명은 레이저 솔더링 과정에서 솔더 페이스트(Solder paste)에서 발생하는 플럭스 성분을 효과적으로 제거하여 기판의 표면 오염 또는 부식 현상을 방지할 수 있는 레이저 솔더링 시스템을 제공하는 것을 해결하고자 하는 과제로 한다.
상기 과제를 해결하기 위하여, 본 발명은 적어도 하나의 반도체 소자를 기판에 솔더링하기 위한 레이저 솔더링 시스템(Laser soldering system)에 있어서, 상기 반도체 소자를 기판에 솔더링하기 위하여 도포되는 솔더 페이스트(Solder paste)를 가열하기 위한 레이저를 반도체 소자와 기판 방향으로 조사하는 레이저 조사부; 상기 레이저 조사부에 의해 가열되는 상기 솔더 페이스트 중 반도체 소자와 기판 주변에 잔류하는 플럭스 성분을 기화시키기 위하여 열풍을 상기 레이저 조사부에 의한 솔더링 영역으로 공급하는 열풍 공급부; 및 상기 열풍 공급부에서 공급된 열풍에 의하여 기화된 플럭스 성분을 흡기하여 배출하기 위한 흡기부;를 포함하는 레이저 솔더링 시스템을 제공할 수 있다.
그리고, 상기 열풍 공급부 및 상기 흡기부는 상기 레이저 조사부를 사이에 두고 배치될 수 있다.
여기서, 상기 열풍 공급부의 열풍 노즐은 상기 솔더링 영역을 향하여 경사지게 배치될 수 있다.
그리고, 상기 흡기부의 흡기 덕트는 상기 열풍 공급부에서 공급된 열풍이 상기 솔더링 영역에 충돌한 후 기화된 플럭스 성분이 흡기되도록 상기 솔더링 영역을 하향하여 경사지게 배치될 수 있다.
또한, 상기 열풍 공급부의 열풍 노즐의 출구 단면적은 상기 흡기부의 흡기덕트의 입구 단면적보다 작을 수 있다.
여기서, 상기 흡기부에 의해 제거되는 플럭스 성분은 송진(resin,rosin) 및 활성제(activator)를 포함할 수 있다.
그리고, 상기 흡기부는 7 내지 9 bar의 음압으로 흡기를 수행할 수 있다.
또한, 상기 열풍 공급부는 상기 열풍 공급부 내부로 비활성 기체를 공급하기 위한 비활성 기체 공급유닛; 상기 비활성 기체 공급유닛에서 공급된 비활성 기체를 가열하기 위한 가열유닛; 상기 가열유닛에서 가열된 비활성 기체를 압축하여 상기 열풍 공급부 외부로 방출하기 위한 압축유닛;을 포함할 수 있다.
여기서, 상기 가열유닛은 상기 비화렁 기체 공급유닛에서 공급되는 비활성 기체의 온도가 200 내지 240도(°C)로 유지되도록 가열할 수 있다.
또한, 상기 열풍 공급부는 상기 압축유닛으로부터 압축된 비활성 기체를 0.5 내지 2.5 bar의 공압으로 방출하는 방식을 통해 열풍을 생성할 수 있다.
그리고, 상기 레이저 솔딩되는 기판은 플렉서블 인쇄회로기판(FPCB; Flexible Printed Circuits Board)일 수 있다.
본 발명에 따른 레이저 솔더링 시스템은 솔더링 과정에서 기화되지 못하고 기판 상에 남아 잔류하는 플럭스 성분을 효과적으로 제거하기 위하여, 기판의 솔더링 영역으로 열풍을 공급함과 동시에 상기 열풍에 의하여 기화된 플럭스 성분을 흡기하여 제거하도록 구성됨으로서 상기 플럭스 성분에 의한 기판의 표면 오염, 손상 또는 부식 현상을 방지할 수 있는 효과가 있다.
도 1은 본 발명에 따른 레이저 솔더링 시스템의 전체 구성을 도시한다.
도 2는 본 발명에 따른 레이저 솔더링 시스템의 정면도를 도시한다.
도 3은 본 발명에 따른 레이저 솔더링 시스템의 사시도를 도시한다.
도 4는 비교예 및 실시예에 따른 솔더 페이스트의 플럭스 검출 여부에 대한 시험 결과를 나타낸 것이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조 번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 발명에 따른 레이저 솔더링 시스템의 전체 구성을 도시한 것이고, 도 2는 본 발명에 따른 레이저 솔더링 시스템의 정면도를 도시한 것이고, 도 3은 본 발명에 따른 레이저 솔더링 시스템의 사시도를 도시한다.
도 1 내지 도 3에 도시된 바와 같이, 본 발명은 적어도 하나의 반도체 소자(61)를 기판(60)에 솔더링하기 위한 레이저 솔더링 시스템(1000)에 있어서, 상기 반도체 소자(61)를 기판(60)에 솔더링하기 위하여 도포되는 솔더 페이스트(Solder paste)를 가열하기 위한 레이저를 반도체 소자(61)와 기판(60) 방향으로 조사하는 레이저 조사부(100), 상기 레이저 조사부에 의해 가열되는 상기 솔더 페이스트 중 반도체 소자(61)와 기판(60) 주변에 잔류하는 플럭스 성분(63)을 기화시키기 위하여 열풍을 상기 레이저 조사부에 의한 솔더링 영역으로 공급하는 열풍 공급부(200) 및 상기 열풍 공급부에서 공급된 열풍에 의하여 기화된 플럭스 성분(63)을 흡기하여 배출하기 위한 흡기부(300)를 포함하여 구성된다.
본 발명에 따른 레이저 솔더링 시스템(1000)을 구성하는 레이저 조사부(100)는 반도체 소자(61)를 기판(60)에 솔더링 하기 위하여 상기 기판(60)의 솔더링 영역(60s)에 레이저를 조사하고, 상기 솔더링 영역(60s) 내에 도포된 솔더 페이스트(Solder paste)을 용융시킴으로서 상기 기판(60) 상에 반도체 소자(61)를 솔더링하도록 구성된다.
여기서, 상기 레이저 조사부(100)는 상기 기판의 솔더링 영역(60s) 상부에서 하방으로 레이저를 조사하도록 구성될 수 있다. 상기 레이저 조사부(100)는 레이저 빔이 조사되는 레이저 헤드(110)를 구비하고, 상기 레이저 헤드(110)는 레이저 빔을 하방으로 상기 기판의 솔더링 영역(60s) 내부에서 반도체 소자(61) 주변 영역으로 솔더 페이스트가 도포된 위치에 수 초간 조사하여 레이저 솔더링을 수행할 수 있다.
또한, 상기 레이저 조사부(100)는 상기 레이저 헤드(110)로부터 레이저 빔이 상기 기판 상의 솔더링 영역(60s)에 도포된 솔더 페이스트를 향하여 제대로 조사되었는지 확인하기 위하여 검사광을 조사하는 검사유닛(130)을 추가로 구비할 수 있다.
상기 레이저 조사부(100)의 하부 영역에는 솔더링될 반도체 소자(61)를 구비하는 기판(60)을 지지하여 상기 기판(60)으로 레이저 솔더링이 수행되도록 하는 솔더링 수행부(600)가 구비될 수 있다. 상기 솔더링 수행부(600)는 기판의 솔더링 영역(60s)이 상기 레이저 조사부(100)에 의해 레이저 빔이 하방으로 조사되는 영역으로 배치되도록 이동하거나 또는 솔더링 공정 완료후 상기 기판(60)을 외부로 반출하기 위한 이동식 컨베이어(610)를 포함할 수 있다.
여기서, 상기 레이저 조사부(100)에 의하여 솔더링되는 기판(60)은 플렉서블 인쇄회로기판(FPCB; Flexible Printed Circuits Board)일 수 있고, 이는 차량용 배터리 셀 등에 적용되어 전압 센싱 기능을 구현할 수 있다. 그리고, 상기 기판(60)은 플렉서블 성능을 구현하기 위하여 폴리에틸렌 나프타레이트 (PEN; Polyethylene Naphthalate) 또는 폴리이미드( PI; Polyimide) 등의 고분자 소재로 구성될 수 있다.
상기 기판(60)은 상기 레이저 조사부(100)에 의해 레이저가 조사되어 기판의 솔더링 영역(60s) 내부의 반도체 소자(61)의 접합되는 부위에 솔더 페이스트(Solder paste)가 미리 도포될 수 있다. 상기 기판(60)에 도포되는 솔더 페이스트는 액체에 비해 점성이 높은 크림(cream) 형태로 구성될 수 있다.
이러한 솔더 페이스트는 납(Pb), 주석(Sn), 은(Ag) 및 구리(Cu) 등의 금속으로 이루어지는 합금 성분 및 상기 합금 표면에 형성된 산화 피막을 제거해줌으로서 솔더링 작업을 용이하게 하기 위한 플럭스(flux)로 구성된다. 상기 플럭스(flux)는 솔더 페이스트 전체 함량 대비 10 질량% 이하, 바람직하게는 3 내지 5 질량% 함유될 수 있다.
그리고, 솔더 페이스트의 플럭스는 소나무의 송진가루를 원료로 제조되는 송진(resin, rosin), 솔더링 시 기판의 표면에 생성된 산화막을 제거하기 위한 목적으로 염소(Cl), 불소(F), 브롬(Br) 등의 할로겐 원소로 구성되는 활성제(activator) 및 플럭스 고형 성분을 용해하기 위하여 메틸알코올(Mathyl alchohol; MA), 아이소프로필알코올(Isopropyl Alcohol; IPA), 에탄올 등의 유기성 화학 물질로 이루어지는 용매 등을 포함하여 구성될 수 있다.
한편, 솔더 페이스트의 플럭스를 구성하는 송진은 특유의 끈적한 성질로 인하여 송진이 기판에 잔류하게 될 시, 솔더링 이후 습기, 가스 및 기타 오염 등으로부터 기판을 보호하기 위하여 상기 기판에 고분자 코팅 재료를 도포하는 컨포멀 코팅(conformal) 처리시 상기 고분자 코팅 재료의 흐름성을 저하시키고, 상기 고분자 코팅 재료와 기판(60) 사이의 접착력을 악화시켜 상기 기판(60)의 오염이나 부식, 손상 등을 초래할 수 있으므로 이를 제거해야 한다.
또한, 솔더 페이스트의 플럭스를 구성하는 활성제(activator)가 솔더링 이후의 기판(650) 표면에 남아 잔류하게 되면 활성제가 공기 중 수분과 접촉되는 기판 영역에서 서서히 백색을 띄게되어 표면 오염을 일으키고, 상기 접촉 영역에서 기판의 산화 부식을 발생시키므로 이를 제거해야 한다.
솔더 페이스트의 플럭스는 약 150도(°C) 이상으로 점진적 승온되면 공기 중 기화하면서 자연적으로 제거되는 특성을 지닌다. 그러나, 레이저 솔더링은 레이저 조사부(100)에서 약 200 내지 300도(°C)의 고온 레이저 빔을 순간적으로 기판의 솔더링 영역으로 조사하여 솔더 페이스트를 집중적으로 가열하는 방식이므로, 레이저 솔딩 과정에서 솔더 페이스트가 충분한 시간동안 기화하지 못하고 급작스럽게 냉각되어 상기 기판(60) 상에 남아 잔류함으로서 생성된 플럭스 성분(63)을 제거하기 위한 별도의 공정이 추가되어야 한다.
따라서, 종래에는 솔더링 처리된 기판(60)을 150°C 이상의 고온의 오븐 내에서 수십분 동안 가열하는 베이킹(Baking) 방식을 사용함으로서, 상기 솔더링 처리된 기판(60) 상에 잔류하는 플럭스 성분(63)을 기화시켜 이를 공기 중으로 날려보내 제거하는 과정을 수행하였으나, 이와 같은 방법은 기판의 반복적인 고온 처리에 의하여 기판 상에 비틀림, 부피 축소 등의 열변형이나 균열, 용융 등이 발생하는 문제가 있었다.
이에, 본 발명에 따른 레이저 솔더링 시스템(1000)은 기판(60)의 솔더링 영역(60s)으로 열풍을 가함으로서 상기 기판(60)에 잔류하는 플럭스 성분(63)을 기화시키기 위한 열풍 공급부(200) 및 열풍에 의하여 기화되는 플럭스 성분(63)을 흡기하여 배출하기 위한 흡기부(300)를 각각 레이저 조사부(100) 사이에 두고 배치되도록 구비함으로서, 상기 레이저 조사부(100)에 의한 솔더링 작업 도중 또는 솔더링 완료 이후에 상기 반도체 소자(61) 주변에 잔류하는 플럭스 성분(63)을 효과적으로 제거할 수 있도록 구성된다.
그리고, 상기 흡기부(300)에 의해 흡기되어 제거되는 플럭스 성분(63) 중 송진(resin, rosin) 및 활성제(activator)을 포함하며, 이로 인해 솔더링 이후 상기 기판의 솔더링 영역(60s) 내에 잔류하는 플럭스 성분(63)으로 인한 기판의 표면 오염, 손상 또는 부식 현상 등을 방지할 수 있다.
상기 레이저 솔더링 시스템(1000)을 구성하는 열풍 공급부(200)의 열풍 노즐(210)은 상기 기판의 솔더링 영역(60s)을 향하여 경사지게 배치될 수 있으며, 상기 흡기부(300)의 흡기 덕트(310)는 상기 열풍 공급부(200)의 열풍 노즐(210)로부터 공급된 열풍이 상기 기판의 솔더링 영역(60s)에 충돌한 후 기화된 플럭스 성분이 흡기되도록 상기 솔더링 영역(60s)을 하향하여 경사지게 배치될 수 있다.
상기 흡기부(300)는 플럭스 성분을 포함하는 주변 공기를 흡기하기 위한 흡기덕트(310) 및 상기 흡기덕트와 연결되어 흡기되는 기체 상태의 플럭스 성분(63)을 외부로 이송하여 배출하기 위한 흡기배관(330)을 포함하여 구성될 수 있다.
여기서, 상기 흡기부(300)는 7 내지 9 bar의 음압으로 흡기를 수행할 수 있으며, 상기 흡기부(300)는 상기 흡기배관(330)과 연결되며 기판의 솔더링 영역(60s) 주변의 공기를 진공화하여 음압 환경을 조성하기 위한 진공유닛(미도시)이 더 구비될 수 있다.
상기 열풍 공급부(200)을 구성하는 열풍 노즐(210)의 출구 단면적은 상기 흡기부(300)의 흡기덕트(310)의 입구 단면적보다 작게 형성될 수 있다. 상기 열풍 공급부(200)의 열풍 노즐(210)의 출구 단면적은 비교적 작게 형성됨에 따라 상기 열풍 노즐(210)로부터 분사되는 열풍의 압력이 증가되어 플럭스 성분(63)을 상기 흡기부(300) 방향으로 신속하게 이송시킬 수 있는 한편, 상기 흡기부(300)의 흡기덕트(310)의 입구 단면적은 비교적 크게 형성되어 기화된 플럭스 성분(63)의 주변 공기를 원활하게 대용량 흡수하여 제거할 수 있다.
도 1을 참조하여, 상기 레이저 솔더링 시스템(1000)을 구성하는 상기 열풍 공급부(200)는 상기 열풍 공급부(200) 내부로 질소(N2), 헬륨(He), 아르곤(Ar) 등의 비활성 기체를 공급하기 위한 비활성 기체 공급유닛(220), 상기 비활성 기체 공급유닛에서 공급된 비활성 기체를 가열하기 위한 가열유닛(240) 및 상기 가열유닛에서 가열된 비활성 기체를 압축하여 상기 열풍 공급부 외부로 방출하기 위한 압축유닛(260)을 포함하여 구성될 수 있다.
상기 열풍 공급부(200)는 비활성 기체 공급유닛(220) 및 가열유닛(240)에 의하여 공급 및 가열된 비활성 기체를 상기 열풍 공급부(220) 내부로 이송하기 위한 공급배관(230) 및 상기 공급배관(230)을 따라 이송된 비활성 기체가 외부로 배출됨에 따라 열풍을 생성하는 열풍 노즐(210)를 포함하여 구성될 수 있다. 여기서, 열풍은 비활성 기체 공급유닛(220)으로부터 질소(N2), 헬륨(He), 아르곤(Ar) 등의 비활성 기체로 이루어지므로 열풍이 상기 기판의 솔더링 영역(60s)에 충돌하더라도 상기 기판(60)의 산화로 인한 납 젖음성(wetting) 저하 현상을 방지할 수 있다.
상기 열풍 공급부(200)의 비활성 기체 공급유닛(220)에서 공급되는 비활성 기체의 농도는 5 내지 7 ppm일 수 있다. 이와 같이, 비활성 기체 공급유닛(220)에서 공급되는 비활성 기체의 농도가 5 내지 7 ppm인 경우 이로 생성된 열풍에 의하여 기판의 솔더링 영역(60s)에서 비활성 기체 분위기를 충분하게 조성함으로서 산화나 부식 등을 방지할 수 있음과 동시에 비활성 기체의 사용을 최소화하여 가격 경쟁력 등을 확보할 수 있다.
그리고, 상기 열풍 공급부(200)의 가열유닛(240)은 상기 비활성 기체 공급유닛(220)에서 공급되는 비활성 기체의 온도가 200 내지 240도(°C)로 유지되도록 가열할 수 있다. 상기 비활성 기체의 온도가 200°C 미만인 경우 상기 열풍 공급부(200)의 열풍 노즐(210) 외부로 방출되는 비활성 기체의 온도가 약 150°C 미만으로 저하되어 상기 기판(60)에 잔류하는 플럭스 성분이 충분하게 기화되지 않을 수 있는 반면, 상기 비활성 기체의 온도가 240°C 초과인 경우 상기 기판(60)을 구성하는 고분자 재료의 내열온도 이상으로 가열되어 열풍과 기판이 닿는 영역에서 상기 기판(60)이 녹거나 손상되는 문제가 발생할 수 있다.
또한, 상기 열풍 공급부(200)는 상기 압축유닛(260)으로부터 압축된 비활성 기체를 열풍 노즐(210)에서 0.5 내지 2.5 bar의 공압으로 방출하는 방식을 통해 열풍을 생성할 수 있다. 상기 열풍 공급부(200)는 공급 및 가열된 비활성 기체로부터 열풍을 생성함으로서 기판의 솔더링 영역(60s)에서 반도체 소자(61) 주변에 잔류하는 플럭스 성분(63)을 기화시키며, 상기 기화된 플럭스 성분(63)은 주변 공기와 함께 결과적으로 상기 흡기부(300)에 의해 흡기되어 제거될 수 있다.
도 4는 비교예 및 실시예에 따른 솔더 페이스트의 플럭스 검출 여부에 대한 시험 결과를 나타낸 것이다.
도 4에 도시된 바와 같이, 비교예 및 실시예는 각각 상기 열풍 공급부(200) 및 상기 흡기부(300)가 구비되지 않은 레이저 솔더링 시스템 및 본 발명의 레이저 솔더링 시스템(1000)을 적용하여 레이저 솔더링을 수행한 이후 기판의 솔더링 영역(60s) 주변으로 송진 검출용 시약(65a) 및 활성제 검출용 시약(65b)을 도포하여 일정 시간 경과후 기판(60)의 상태을 촬상하여 나타낸 것이다.
여기서, 상기 열풍 공급부(200) 및 상기 흡기부(300)를 구비하지 않은 레이저 솔더링 장치를 적용한 비교예의 경우, 송진 검출용 시약(65a) 및 활성제 검출용 시약(65b)이 레이저 솔더링 처리된 기판의 솔더링 영역(60s)에 남아 잔류하는 플럭스 성분(63) 중 송진 및 활성제와 각각 반응하여 검출 시약에 색상 변화가 발생한 것을 확인할 수 있었다.
반면, 상기 열풍 공급부(200) 및 상기 흡기부(300)를 모두 구비한 본 발명에 따른 레이저 솔더링 시스템(1000)을 적용한 실시예의 경우, 레이저 솔더링 이후 기판의 솔더링 영역(60s)에 남아 잔류하는 플럭스 성분이 열풍 공급부(200)에서 생성된 고온 열풍에 의해 기화되어 상기 흡기부(300)에 의해 완전하게 흡기 및 제거됨으로서 상기 솔더링 영역(60s)에서 솔더 페이스트의 플럭스를 대상으로 송진 검출용 시약(65a) 및 활성제 검출용 시약(65b)이 미반응한 것을 확인할 수 있었다.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.

Claims (12)

  1. 적어도 하나의 반도체 소자를 기판에 솔더링하기 위한 레이저 솔더링 시스템에 있어서,
    상기 반도체 소자를 기판에 솔더링하기 위하여 도포되는 솔더 페이스트(Solder paste)를 가열하기 위한 레이저를 반도체 소자와 기판 방향으로 조사하는 레이저 조사부;
    상기 레이저 조사부에 의해 가열되는 상기 솔더 페이스트 중 반도체 소자와 기판 주변에 잔류하는 플럭스 성분을 기화시키기 위하여 열풍을 상기 레이저 조사부에 의한 솔더링 영역으로 공급하는 열풍 공급부; 및
    상기 열풍 공급부에서 공급된 열풍에 의하여 기화된 플럭스 성분을 흡기하여 배출하기 위한 흡기부;를 포함하는 것을 특징으로 하는 레이저 솔더링 시스템.
  2. 제1항에 있어서,
    상기 열풍 공급부 및 상기 흡기부는 상기 레이저 조사부를 사이에 두고 배치되는 것을 특징으로 하는 레이저 솔더링 시스템.
  3. 제1항에 있어서,
    상기 열풍 공급부의 열풍 노즐은 상기 솔더링 영역을 향하여 경사지게 배치되는 것을 특징으로 하는 레이저 솔더링 시스템.
  4. 제3항에 있어서,
    상기 흡기부의 흡기 덕트는 상기 열풍 공급부에서 공급된 열풍이 상기 솔더링 영역에 충돌한 후 기화된 플럭스 성분이 흡기되도록 상기 솔더링 영역을 하향하여 경사지게 배치되는 것을 특징으로 하는 레이저 솔더링 시스템.
  5. 제1항에 있어서,
    상기 열풍 공급부의 열풍 노즐의 출구 단면적은 상기 흡기부의 흡기덕트의 입구 단면적보다 작은 것을 특징으로 하는 레이저 솔더링 시스템.
  6. 제1항에 있어서,
    상기 흡기부에 의해 제거되는 플럭스 성분은 송진(resin,rosin) 및 활성제(activator)를 포함하는 것을 특징으로 하는 레이저 솔더링 시스템.
  7. 제1항에 있어서,
    상기 흡기부는 7 내지 9 bar의 음압으로 흡기를 수행하는 것을 특징으로 하는 레이저 솔더링 시스템.
  8. 제1항에 있어서,
    상기 열풍 공급부는 상기 열풍 공급부 내부로 비활성 기체를 공급하기 위한 비활성 기체 공급유닛; 상기 비활성 기체 공급유닛에서 공급된 비활성 기체를 가열하기 위한 가열유닛; 및 상기 가열유닛에서 가열된 비활성 기체를 압축하여 상기 열풍 공급부 외부로 방출하기 위한 압축유닛;을 포함하는 것을 특징으로 하는 레이저 솔더링 장치.
  9. 제8항에 있어서,
    상기 비활성 기체 공급유닛에서 공급되는 비활성 기체의 농도는 5 내지 7 ppm인 것을 특징으로 하는 레이저 솔더링 시스템.
  10. 제8항에 있어서,
    상기 가열유닛은 상기 비활성 기체 공급유닛에서 공급되는 비활성 기체의 온도가 200 내지 240도(°C)로 유지되도록 가열하는 것을 특징으로 하는 레이저 솔더링 장치.
  11. 제8항에 있어서,
    상기 열풍 공급부는 상기 압축유닛으로부터 압축된 비활성 기체를 0.5 내지 2.5 bar의 공압으로 방출하는 방식을 통해 열풍을 생성하는 것을 특징으로 하는 레이저 솔더링 시스템.
  12. 제1항에 있어서,
    상기 기판은 플렉서블 인쇄회로기판(FPCB; Flexible Printed Circuits Board)인 것을 특징으로 하는 레이저 솔더링 시스템.
PCT/KR2022/011702 2021-09-15 2022-08-05 레이저 솔더링 시스템 WO2023043058A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210123027A KR102591564B1 (ko) 2021-09-15 2021-09-15 레이저 솔더링 시스템
KR10-2021-0123027 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023043058A1 true WO2023043058A1 (ko) 2023-03-23

Family

ID=85603107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011702 WO2023043058A1 (ko) 2021-09-15 2022-08-05 레이저 솔더링 시스템

Country Status (2)

Country Link
KR (2) KR102591564B1 (ko)
WO (1) WO2023043058A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298224A (ja) * 2002-04-03 2003-10-17 Taisei Kaken:Kk 電子部品のはんだ付け方法及びその装置
KR20060016056A (ko) * 2004-08-16 2006-02-21 하리마 카세이 가부시키가이샤 납땜용 플럭스, 납땜방법 및 프린트 기판
JP2014188556A (ja) * 2013-03-27 2014-10-06 Japan Unix Co Ltd エアカーテン機構付きはんだ付け用レーザーヘッド
KR20170029904A (ko) * 2015-09-08 2017-03-16 (주)조은테크 솔더링시스템
WO2021059456A1 (ja) * 2019-09-26 2021-04-01 オー・エム・シー株式会社 レーザー式ハンダ付け方法とその装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852828B2 (ja) * 1974-06-29 1983-11-25 帝人株式会社 ナンネンセイセンイボ−ドノ セイゾウホウホウ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298224A (ja) * 2002-04-03 2003-10-17 Taisei Kaken:Kk 電子部品のはんだ付け方法及びその装置
KR20060016056A (ko) * 2004-08-16 2006-02-21 하리마 카세이 가부시키가이샤 납땜용 플럭스, 납땜방법 및 프린트 기판
JP2014188556A (ja) * 2013-03-27 2014-10-06 Japan Unix Co Ltd エアカーテン機構付きはんだ付け用レーザーヘッド
KR20170029904A (ko) * 2015-09-08 2017-03-16 (주)조은테크 솔더링시스템
WO2021059456A1 (ja) * 2019-09-26 2021-04-01 オー・エム・シー株式会社 レーザー式ハンダ付け方法とその装置

Also Published As

Publication number Publication date
KR20230145280A (ko) 2023-10-17
KR102591564B1 (ko) 2023-10-19
KR20230039993A (ko) 2023-03-22

Similar Documents

Publication Publication Date Title
US20070170227A1 (en) Soldering method
US6642485B2 (en) System and method for mounting electronic components onto flexible substrates
CA2079828A1 (en) Plasma based soldering by indirect heating
US20090065557A1 (en) Selective rework apparatus for surface mount components
US7156279B2 (en) System and method for mounting electronic components onto flexible substrates
JPWO2005065877A1 (ja) リフロー炉
WO2023043058A1 (ko) 레이저 솔더링 시스템
EP1293283B1 (en) Method for local application of solder to preselected areas on a printed circuit board
JP3043435B2 (ja) リフロー半田付け装置およびリフロー半田付け方法
JP2005203406A (ja) はんだ付け方法およびはんだ付け装置
US6857559B2 (en) System and method of soldering electronic components to a heat sensitive flexible substrate with cooling for a vector transient reflow process
JP3529164B2 (ja) はんだ付け方法およびその装置
KR20110019719A (ko) 인쇄 회로 기판으로부터 유기 납땜 방부제 코팅을 제거하는 방법
JPH06291457A (ja) ハンダ付け方法及びハンダ付け装置
JP3933879B2 (ja) 水蒸気雰囲気による溶融はんだの酸化防止方法
JPH0797701B2 (ja) リフロー半田付け方法
JPH09246712A (ja) リフロー半田付け方法とその装置
JP2001320163A (ja) リフロー装置およびその基板加熱方法
KR102182568B1 (ko) 리플로우 오븐 및 리플로우 오븐의 표면 처리 방법
KR100879179B1 (ko) 저내열성 표면 실장 부품 및 이를 범프 접속한 실장 기판
JP4079985B2 (ja) Pbフリーはんだを用いたフローはんだ付け装置
JPH06112644A (ja) プリント配線基板のはんだ付け方法
JPH04352489A (ja) プリント配線板の半田処理方法
JPH1051130A (ja) リフロー方法及び装置
JP2002204060A (ja) はんだ付け方法およびフローはんだ付け装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22870145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE