WO2023042741A1 - Substrate coating apparatus and substrate coating method - Google Patents

Substrate coating apparatus and substrate coating method Download PDF

Info

Publication number
WO2023042741A1
WO2023042741A1 PCT/JP2022/033685 JP2022033685W WO2023042741A1 WO 2023042741 A1 WO2023042741 A1 WO 2023042741A1 JP 2022033685 W JP2022033685 W JP 2022033685W WO 2023042741 A1 WO2023042741 A1 WO 2023042741A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
coating
slit nozzle
distance
ejection port
Prior art date
Application number
PCT/JP2022/033685
Other languages
French (fr)
Japanese (ja)
Inventor
裕滋 安陪
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2023042741A1 publication Critical patent/WO2023042741A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention is applied to precision substrates such as glass substrates for FPDs such as liquid crystal display devices and organic EL display devices, semiconductor wafers, glass substrates for photomasks, substrates for color filters, substrates for recording disks, substrates for solar cells, and substrates for electronic paper.
  • the present invention relates to a substrate coating technique for supplying and coating a processing liquid from a slit nozzle onto a substrate for an electronic device or a substrate for a semiconductor package (hereinafter simply referred to as "substrate").
  • a substrate coating apparatus which applies a processing liquid to a substrate by discharging the processing liquid from a slit nozzle during this relative movement.
  • a substrate coating apparatus capable of coating a processing liquid not only on a rectangular substrate but also on a circular semiconductor wafer, for example.
  • a capillary-type substrate coating apparatus see Patent Document 1 is known.
  • the distance between the surface of the substrate and the ejection port (hereinafter referred to as "coating gap") is kept constant during the coating process.
  • the wetted range of the processing liquid supplied from the ejection port according to the position of the slit nozzle moving along the surface of the substrate (corresponding to the "overlapping range” in the embodiments described later) is continuous. change to More specifically, as shown in FIGS. 5 and 7, which will be described later, the wetted area gradually widens immediately after the start of coating and reaches a maximum at the center of the substrate. After passing through it, the wetted area gradually narrows.
  • the coating process is completed and the slit nozzle separates from the substrate.
  • the slit nozzle moves from the coating start position (symbol P1 in FIG. 4 described later) to a position above the central portion of the substrate (symbol P2 in FIG. 4 described later). Meanwhile, the overlapping distance between the ejection port and the substrate in the longitudinal direction in a plan view from above increases.
  • the coating gap is kept constant, as will be described in detail later with reference to FIG. In some cases, the supply of the processing liquid in the longitudinal direction of the ejection port is insufficient. As a result, problems such as liquid depletion and increased film thickness may occur in the front half round portion (symbol PT2 in FIG. 4) of the surface peripheral portion of the substrate.
  • the present invention has been devised in view of the above problems, and is intended to optimize the supply of the processing liquid in the longitudinal direction of the ejection port within the range where the overlapping distance between the ejection port and the substrate in the longitudinal direction increases in plan view from above. It is an object of the present invention to provide a substrate coating apparatus and a substrate coating method capable of uniformly coating a surface of a substrate with a processing liquid.
  • One aspect of the present invention is a substrate coating apparatus for coating a surface of a substrate with a processing liquid, comprising: a slit nozzle for supplying the processing liquid to the surface of the substrate from a slit-shaped discharge port from above the surface of the substrate; A moving unit that moves the slit nozzle, the ejection port of which is separated from the surface of the substrate by the separation distance, relative to the substrate in the coating direction perpendicular to the longitudinal direction of the ejection port, and an elevating unit that moves the slit nozzle up and down.
  • the separation distance is adjusted according to the change in the overlapping distance.
  • a control unit for controlling the lifting unit for controlling the lifting unit.
  • the slit-shaped ejection port provided in the slit nozzle is separated upward from the surface of the substrate by a separation distance, and the slit nozzle is applied to the substrate in a direction orthogonal to the longitudinal direction of the ejection port.
  • overlap increase period the period in which the overlap distance increases with the relative movement of the slit nozzle with respect to the substrate.
  • the separation distance is kept constant, as will be described later with reference to FIGS.
  • liquid shortage and excessive film thickness hereinafter referred to as “excessive film thickness” may occur. Therefore, in the present invention, the separation distance is adjusted in accordance with the change in the overlapping distance, so that an appropriate amount of processing liquid is supplied between the ejection port of the slit nozzle and the surface of the substrate, and the length of the ejection port increases. spread.
  • the supply of the processing liquid in the longitudinal direction of the ejection port is optimized in the range where the overlapping distance between the ejection port and the substrate in the longitudinal direction increases in plan view from above. As a result, the processing liquid can be uniformly applied to the surface of the substrate.
  • FIG. 1B is a block diagram showing an electrical configuration of the substrate coating apparatus shown in FIG. 1A;
  • FIG. 1B is an external perspective view showing an example of a slit nozzle used in the substrate coating apparatus shown in FIG. 1A;
  • FIG. 4 is a diagram showing the configuration of a processing liquid supply unit;
  • FIG. It is a figure which shows typically the relative movement operation
  • FIG. 4 is a diagram schematically showing the relationship between a meniscus formed between a substrate and an ejection port and a coating gap
  • FIG. 10 is a graph showing the overlap distance and the rate of change of the overlap distance with respect to the scan distance;
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows 1st Embodiment of the board
  • FIG. 1A is a diagram showing the configuration of a substrate coating apparatus to which the first embodiment of the substrate coating method according to the present invention can be applied.
  • FIG. 1B is a block diagram showing an electrical configuration of the substrate coating apparatus shown in FIG. 1A.
  • This substrate coating apparatus 100 coats a surface Wf of a substantially disk-shaped substrate W such as a semiconductor wafer with a processing liquid by a so-called capillary method.
  • an XYZ orthogonal coordinate system having the Z direction as the vertical direction and the XY plane as the horizontal plane is appropriately attached in order to clarify the directional relationship of each part of the coating unit.
  • the dimensions and numbers of each part are exaggerated or simplified as necessary.
  • the substrate coating apparatus 100 is an apparatus called a slit coater that applies a processing liquid to the surface Wf of the substrate W using the slit nozzle 2 .
  • the treatment liquid includes, for example, a resist liquid, a color filter liquid, polyimide, silicon, nanometal ink, slurry containing a conductive material, and the like.
  • This substrate coating apparatus 100 includes a stage 1 capable of sucking and holding a substrate W in a horizontal posture, a slit nozzle 2 discharging a processing liquid onto the substrate W held on the stage 1, and a process for supplying the processing liquid to the slit nozzle 2.
  • a liquid supply unit 3, a nozzle moving mechanism 4 for moving the slit nozzle 2 with respect to the substrate W, and a control unit 5 for controlling the entire apparatus are provided.
  • the stage 1 is made of stone material such as granite having a substantially rectangular parallelepiped shape, and the (+X) side of its surface (+Z side) is processed into a substantially horizontal flat surface to hold the substrate W. 11.
  • a large number of vacuum suction ports (not shown) are dispersedly formed on the holding surface 11 . By sucking the substrate W by these vacuum suction ports, the substrate W is held substantially horizontally at a predetermined position during the coating process.
  • the manner in which the substrate W is held is not limited to this. For example, the substrate W may be held mechanically.
  • FIG. 2 is an external perspective view showing an example of a slit nozzle used in the substrate coating apparatus shown in FIG. 1A.
  • the slit nozzle 2 has a structure in which a first main body portion 21, a second main body portion 22 and a shim plate 23 are connected to each other by a plurality of fixing screws (not shown). More specifically, the slit nozzle 2 is configured by connecting the first body portion 21 and the second body portion 22 so as to face each other in the X direction with the shim plate 23 interposed therebetween.
  • the first body portion 21 and the second body portion 22 are machined from a metal block such as stainless steel or aluminum.
  • the shim plate 23 is a thin plate member made of a similar metal material.
  • the main surface of the first main body portion 21 facing the second main body portion 22, that is, the main surface on the (+X) side is finished to be a first flat surface parallel to the YZ plane.
  • a lower portion of the first body portion 21 protrudes downward to form a first lip portion 21c.
  • a substantially semi-cylindrical groove (not shown) having a longitudinal direction in the Y direction and a depth direction in the X direction is provided in the central portion of the first flat surface in the Z direction. This groove functions as a manifold in the flow path of the coating liquid, and is connected to the processing liquid supply section 3 via the coating liquid supply port (reference numeral 25 in FIG. 3).
  • the main surface of the second main body portion 22 facing the first main body portion 21, that is, the main surface on the (-X) side is a second flat surface parallel to the YZ plane.
  • a lower portion of the second main body portion 22 protrudes downward to form a second lip portion 22c.
  • the first main body portion 21 and the second main body portion 22 are coupled via a shim plate 23 such that the first flat surface and the second flat surface face each other with a space therebetween.
  • the gap portion between the opposing surfaces (the first flat surface and the second flat surface) facing each other in this manner serves as a flow path for the coating liquid from the manifold, and the lower end of the gap portion opens downward toward the surface Wf of the substrate W. It functions as the ejection port 24 .
  • the ejection port 24 has a longitudinal direction in the Y direction and a minute dimension in the X direction.
  • the shim plate 23 is formed in an inverted U shape that opens downward.
  • the upper end portion above the groove and both side end portions in the Y direction of the gap space are shim plates. 23 is blocked.
  • the space that is not blocked by the shim plate 23 in the gap space defines the flow path of the coating liquid that connects the groove as the manifold and the discharge port 24 .
  • the shim plate 23 has a notched portion that serves as a flow path for the application liquid, and has a shape that surrounds the flow path for the application liquid other than the ejection port.
  • FIG. 3 is a diagram showing the configuration of the processing liquid supply unit.
  • the treatment liquid supply unit 3 uses a pump 31 as a supply source for supplying the treatment liquid to the slit nozzle 2.
  • the pump 31 supplies the treatment liquid by volume change.
  • a bellows type pump described in JP-A-10-61558 can be used as the pump 31, for example.
  • This pump 31 has a flexible tube 311 that can be elastically expanded and contracted in the radial direction. One end of this flexible tube 311 is connected to the treatment liquid replenishing unit 33 via a pipe 32 , and the other end is connected to the coating liquid supply port 25 of the slit nozzle 2 via a pipe 34 .
  • a bellows 312 that is elastically deformable in the axial direction is arranged outside the flexible tube 311 .
  • the bellows 312 has a small bellows portion 313 and a large bellows portion 314, and a pump chamber 315 between the flexible tube 311 and the bellows 312 contains an incompressible medium.
  • a working disk portion 316 is provided between the small bellows portion 313 and the large bellows portion 314 .
  • a driving portion 317 is connected to the operating disk portion 316 . When the driving portion 317 operates in response to a command from the control portion 5 , the operating disk portion 316 is displaced, for example, to one side in the axial direction to change the inner volume of the bellows 312 .
  • the flexible tube 13 expands and contracts in the radial direction to perform a pumping operation, and the processing liquid replenished appropriately from the processing liquid replenishing unit 33 is fed toward the slit nozzle 2 .
  • the working disk portion 316 is displaced, for example, to the other side in the axial direction to change the inner volume of the bellows 312 , the processing liquid in the slit nozzle 2 is sucked toward the processing liquid replenishing unit 33 .
  • the processing liquid replenishing unit 33 has a storage tank 331 that stores the processing liquid.
  • This storage tank 331 is connected to the pump 31 through a pipe 32 .
  • An on-off valve 333 is inserted in the pipe 32 .
  • the on-off valve 333 is opened in response to a replenishment command from the control unit 5 to allow the flexible tube 311 of the pump 31 to be replenished with the treatment liquid in the storage tank 331 . Conversely, it is closed in response to a replenishment stop command from the control unit 5 to restrict replenishment of processing liquid from the storage tank 331 to the flexible tube 311 of the pump 31 .
  • An on-off valve 35 is inserted in a pipe 34 connected to the output side of the pump 31 (left hand side in the figure), and is opened and closed according to an open/close command from the control unit 5 .
  • a pressure gauge 36 is attached to the pipe 34 to detect the pressure of the processing liquid sent to the slit nozzle 2 and output the detection result (pressure value) to the control section 5 .
  • the slit nozzle 2 discharges at a position above the edge of the substrate W in the ( ⁇ X) direction (“coating start position P1” in FIG. 4 to be described later).
  • the operation is as follows. That is, the on-off valve 333 is closed and the on-off valve 35 is opened according to the open/close command from the control unit 5 , and the pump 31 is operated according to the liquid feed command from the control unit 5 .
  • the processing liquid is sent toward the slit nozzle 2 by the pump 31, and a bead (liquid pool) of the processing liquid is formed between the discharge port 24 and the surface Wf of the substrate W.
  • a bead (liquid pool) of the processing liquid is formed between the discharge port 24 and the surface Wf of the substrate W.
  • the processing liquid is applied by the capillary method, as in the apparatus described in Patent Document 1.
  • the on-off valve 333 is opened in response to the open/close command from the controller 5 and the operation of the pump 31 is stopped in response to the liquid feed stop command from the controller 5 .
  • the slit nozzle 2 is moved relative to the substrate W from the (-X) direction side to the (+X) direction side by the nozzle moving mechanism 4 while bringing the discharge port 24 close to the front surface Wf of the substrate W.
  • the treatment liquid is ejected from the ejection port 24 by the surface tension of the treatment liquid (bead of the treatment liquid) generated between the ejection port 24 and the substrate W during this movement. For this reason, the processing liquid is discharged from the portions of the discharge ports 24 extending in the Y direction that face the substrate W, while the processing liquid is not discharged from the portions where the substrate W does not exist.
  • Such a change in ejection state occurs as the slit nozzle 2 moves in the X direction relative to the substrate W by the nozzle moving mechanism 4 .
  • the slit nozzle 2 moves upward from the substrate W and then returns from the (+X) direction to the ( ⁇ X) direction.
  • the nozzle moving mechanism 4 has a bridge structure nozzle support 41 that supports the slit nozzle 2 while traversing above the stage 1 in the Y direction, and a nozzle moving unit 42 that horizontally moves the nozzle support 41 in the X direction. . Therefore, the slit nozzle 2 supported by the nozzle support 41 can be horizontally moved in the X direction by the nozzle moving part 42 .
  • the nozzle moving section 42 corresponds to an example of the "moving section" of the present invention.
  • the nozzle support 41 has a fixed member 41a to which the slit nozzle 2 is fixed, and two elevating mechanisms 41b that support and lift the fixed member 41a.
  • the fixing member 41a is a rod-shaped member having a rectangular cross section whose longitudinal direction is the Y direction, and is made of carbon fiber reinforced resin or the like.
  • the two elevating mechanisms 41b are connected to both ends of the fixed member 41a in the longitudinal direction, and each have an AC servomotor, a ball screw, and the like.
  • the fixing member 41a and the slit nozzle 2 are integrally lifted up and down in the vertical direction (Z direction), and the distance between the discharge port 24 of the slit nozzle 2 and the surface Wf of the substrate W, that is, the substrate W
  • the separation distance (hereinafter referred to as "coating gap") of the ejection port 24 from the surface Wf of is adjusted.
  • the position of the slit nozzle 2 in the Z direction can be detected by a linear encoder (not shown).
  • the elevating mechanism 41b corresponds to an example of the "elevating section" of the present invention.
  • the nozzle moving unit 42 includes two guide rails 43 that guide the movement of the slit nozzle 2 in the X direction, two linear motors 44 that are driving sources, and a nozzle for detecting the position of the ejection port of the slit nozzle 2.
  • Two linear encoders 45 are provided.
  • the two guide rails 43 are arranged at both ends of the stage 1 in the Y direction so as to sandwich the mounting range of the substrate W from the Y direction, and extend in the X direction so as to include the mounting range of the substrate W. ing.
  • the slit nozzle 2 moves in the X direction above the substrate W held on the stage 1 by guiding the lower ends of the two lifting mechanisms 41b along the two guide rails 43, respectively.
  • Each of the two linear motors 44 is an AC coreless linear motor having a stator 44a and a mover 44b.
  • the stators 44a are provided on both sides of the stage 1 in the Y direction along the X direction.
  • the mover 44b is fixed to the outside of the lifting mechanism 41b.
  • the linear motor 44 functions as a drive source for the nozzle moving mechanism 4 by magnetic force generated between the stator 44a and the mover 44b.
  • Each of the two linear encoders 45 has a scale portion 45a and a detection portion 45b.
  • the scale portion 45a is provided along the X direction under the stator 44a of the linear motor 44 fixed to the stage 1.
  • the detector 45b is fixed further outside the mover 44b of the linear motor 44 fixed to the lifting mechanism 41b, and arranged to face the scale 45a.
  • the linear encoder 45 detects the position of the ejection port of the slit nozzle 2 in the X direction (corresponding to the nozzle movement direction or relative movement direction) based on the relative positional relationship between the scale portion 45a and the detection portion 45b.
  • the control unit 5 for controlling the substrate coating apparatus 100 configured as described above stores a calculation unit 51 (for example, a CPU) that performs various calculation processes, a basic program, and various information. It has a configuration of a general computer system in which a storage unit 52 (for example, ROM, RAM, etc.) is connected to a bus line. The bus line is also connected to a fixed disk 53 (for example, a hard disk drive) for storing application programs and the like. Moreover, the processing liquid supply unit 3, the nozzle moving mechanism 4, and the input display unit 6 are appropriately connected via an interface (I/F).
  • the input display unit 6 displays various types of information and accepts input from the operator, and is composed of, for example, a touch panel display. Of course, instead of the input display unit 6, a display for displaying various information and a keyboard or mouse for receiving input from the operator may be used.
  • the application program stored in the fixed disk 53 in advance is copied to the storage unit 52 (for example, RAM), and the calculation unit 51 executes calculation processing according to the application program in the storage unit 52.
  • the processing liquid is discharged from the discharge port 24 of the slit nozzle 2 at an appropriate timing by the control of the processing liquid supply unit 3, and the coating gap is adjusted by the control of the nozzle moving mechanism 4, and the slit nozzle 2 is discharged at a constant speed. is performed in the X direction.
  • the surface Wf of the substrate W is coated with the processing liquid in a desired film thickness.
  • the calculation section 51 of the control section 5 functions as the gap adjustment section 511 and the nozzle scanning section 512 .
  • the gap adjuster 511 controls the coating gap based on the analysis results detailed below. More specifically, the overlapping distance (marked L in FIGS. 5 and 8) at which the discharge port 24 and the substrate W overlap in the longitudinal direction Y when viewed from above is the relative movement of the slit nozzle 2 with respect to the substrate W (X).
  • the elevating mechanism 41b is controlled so as to adjust the coating gap (separation distance) according to the change in the overlap distance L during the period of increase with the directional scanning (that is, the overlap increase period). This coating gap adjustment enhances the film thickness uniformity of the treatment liquid.
  • the substrate coating apparatus 100 configured as described above maintains the coating gap constant and scans at a constant scanning speed in the same manner as in the prior art.
  • a case where the coating process is executed will be described with reference to FIGS. 4 to 6.
  • FIGS. 1A and 1B are diagrams schematically showing relative movement of the slit nozzle with respect to the substrate in the substrate coating apparatus shown in FIGS. 1A and 1B.
  • FIG. It is illustrated divided into five types.
  • a semiconductor wafer with a diameter of 300 mm is used as the substrate W, and the case where the slit nozzle 2 scans the substrate W in the X direction is illustrated. That is, in the substrate coating apparatus 100, the ejection port 24 starts coating from a state in which the ejection port 24 is positioned at the coating start position P1 above one end ( ⁇ X direction side end) of the substrate W in the coating direction X.
  • the ejection port 24 finishes coating above the other end (+X direction side end) of the substrate W.
  • the slit nozzle 2 is scanned with respect to the substrate W until it is positioned at the position P3.
  • the peripheral edge supply region that receives the treatment liquid supply when the slit nozzle 2 is positioned at the coating start position P1 is the coating start portion PT1.
  • the part to which the treatment liquid is supplied while the slit nozzle 2 moves from the coating start position P1 to the wide position P2 is the first round part PT2.
  • a wide portion PT3 is a portion to which the processing liquid is supplied when the slit nozzle 2 is positioned at the wide position P2.
  • the part to which the treatment liquid is supplied while the slit nozzle 2 moves from the wide position P2 to the coating end position P3 is the latter round part PT4. Furthermore, the peripheral edge supply region to which the treatment liquid is supplied when the slit nozzle 2 is positioned at the coating end position P3 is the coating end portion PT5.
  • FIG. 5 is a diagram showing the state of coating when the substrate coating apparatus shown in FIGS. 1A and 1B performs coating processing at a constant scanning speed in the same manner as in the prior art.
  • Columns (A) to (C) in the figure show the slit nozzle 2, the substrate W, and the processing liquid upward in the ( ⁇ Y) direction when the slit nozzle 2 is positioned at six different positions SLa to SLf. and (+X) directions are schematically shown.
  • the slit nozzle 2 is positioned in the (-X) direction from the coating start position P1 and away from the substrate W in the (-X) direction.
  • the slit nozzle 2 is positioned at the coating start position P1.
  • a position SLf indicates a position that is separated from above the other end of the substrate W by 300 mm or more from the position SLb (coating start position P1) in the coating direction (+X). , and particularly at the position SLd, the slit nozzle 2 is positioned at the wide position P2. Further, in these drawings, the regions coated with the treatment liquid are schematically indicated by hatching. Note that these points also apply to FIG. 8, which will be described later.
  • the following problems may occur when the conventional coating operation, that is, the coating process is performed while the slit nozzle 2 is moved at a constant scanning speed while maintaining the coating gap constant.
  • a transport robot not shown
  • a lift pin rises from the central portion of the stage 1 to support the back surface of the substrate W.
  • the transfer robot retreats from the substrate coating apparatus 100 .
  • the substrate W is delivered to the lift pins.
  • the lift pins descend into the stage 1 and the substrate W is placed on the holding surface 11 of the stage 1 and held on the holding surface 11 of the stage 1 by a suction mechanism (not shown).
  • the slit nozzle 2 is moved from the position SLa away from the substrate W held on the holding surface 11 in the (-X) direction to a position suitable for the coating process, and is shown in the column "SLb" in FIG. , the slit nozzle 2 is positioned at the coating start position P1.
  • a bead of the treatment liquid is formed between the ejection port 24 and the surface Wf of the substrate W in a state where the coating gap G is adjusted to a predetermined value at the coating start position P1.
  • the processing liquid LD supplied from the processing liquid supply unit 3 is discharged from the discharge port 24 while the slit nozzle 2 moves in the (+X) direction while maintaining the coating gap G constant.
  • the treatment liquid LD is ejected from the ejection port 24 by the surface tension of the treatment liquid LD (bead of the treatment liquid) generated between the ejection port 24 and the substrate W.
  • FIG. Thereby, the surface Wf of the substrate W is coated with the processing liquid LD.
  • the slit nozzle 2 moves in the (+X) direction while being maintained at a constant scanning speed.
  • the discharge width gradually widens. Then, the slit nozzle 2 is maximized at the position SLd (that is, the wide position P2).
  • the overlapping distance L discharge width of the processing liquid gradually narrows and becomes above the edge of the substrate W in the (+X) direction.
  • the final application of the treatment liquid LD is performed when the position, that is, the application end position P3 is reached.
  • the slit nozzle 2 moves further in the (+X) direction from the coating end position P3 and is positioned at the position SLf, the movement of the slit nozzle 2 is stopped.
  • the coating process is performed.
  • the overlap distance L is the same as that of the slit nozzle 2.
  • this period is an overlapping increase period.
  • the treatment liquid LD tends to spread in the longitudinal direction Y of the ejection port 24 as the overlap distance L, that is, the ejection width (liquid contact range) of the treatment liquid LD gradually widens.
  • the coating gap G is larger than an appropriate value, the meniscus formed by the processing liquid LD existing between the ejection port 24 and the substrate W, as shown in column (a) of FIG.
  • the meniscus M1 solid line in the figure
  • the meniscus M0 chain line in the figure
  • the spread of the treatment liquid LD cannot keep up with the scanning movement of the slit nozzle 2, and the liquid may run out at a portion corresponding to the first round portion PT2.
  • the coating gap G is smaller than an appropriate value, as shown in FIG. Excess processing liquid LD exists as if dots were attached inside. As a result, the film thickness at the portion corresponding to the first round portion PT2 may become thicker than the set value, that is, an excessive film thickness may occur.
  • the inventor of the present application has come to the conclusion that the above problem can be solved by adjusting the coating gap G in accordance with the change in the overlap distance L during the overlap increase period.
  • the contents of the analysis of the change in the overlap distance L during the overlap increasing period will be described with reference to FIG. 7, and then the coating operation of the substrate coating apparatus 100 based on the analysis results will be described with reference to FIG.
  • FIG. 7 is a graph showing the overlap distance and the rate of change of the overlap distance with respect to the scan distance.
  • the “scanning distance” means the distance from the (-X) end of the substrate W in the coating direction X, that is, the moving distance of the slit nozzle 2 from the position SLb (coating start position P1).
  • the change speed of the overlap distance L can be obtained as shown in the lower part of the figure.
  • the overlapping distance L sharply increases from the start of movement from the position SLb (coating start position P1), and the scanning distance is half the substrate size (300 mm in this embodiment) at the position SLd ( It becomes maximum at the wide position P2). Then, while the scanning distance is further increased, that is, while the slit nozzle 2 is moving above the (+X) direction edge of the substrate W (coating end position P3), the overlapping distance L is shortened at a rapid change speed.
  • the increase rate of the overlap distance L increases exponentially. For this reason, especially in the initial stage when the overlapping distance L rapidly increases, the application gap G is made relatively small in order to expand the treatment liquid LD in the longitudinal direction Y of the ejection port 24, particularly in the initial stage when the overlap distance L rapidly increases. is preferred. Conversely, when the rate of increase of the overlapping distance L slows down, that is, when the slit nozzle 2 approaches the wide position P2, it is preferable to make the coating gap G relatively large in order to prevent excessive supply of the treatment liquid LD. is.
  • Formula (1) however, a and b are constants, It is desirable that the control unit 5 controls the lifting mechanism 41b so as to satisfy the following. As a result, the spread of the treatment liquid LD in the longitudinal direction Y due to the so-called capillary action between the substrate W and the ejection port 24 is optimized. As a result, it is possible to effectively prevent NG such as liquid shortage or excessive film thickness from occurring in the first round portion PT2.
  • the coating process is performed while controlling the coating gap G(x) so that the above formula (1) is satisfied during the overlap increasing period.
  • FIG. 8 is a diagram showing the first embodiment of the substrate coating method according to the present invention.
  • the difference between the first embodiment and the prior art is that, as indicated by the solid line in the upper graph of FIG.
  • the other configuration is the same as the prior art.
  • the coating gap G(0) of the slit nozzle 2 positioned at the coating start position P1 scans the slit nozzle 2 from the wide position P2 to the coating end position P3.
  • the gap value b of the coating gaps G(150) to G(300) is adjusted to a value smaller than the gap value b.
  • the controller 5 increases the coating gap G according to the formula (1).
  • the coating gap G is kept small correspondingly. 24 in the longitudinal direction Y. Then, as the coating process progresses, the rate of increase in the overlapping distance L slows down, and the coating gap G increases. This prevents excessive supply of the processing liquid LD.
  • the processing liquid LD exists between the ejection port 24 of the slit nozzle 2 and the surface Wf of the substrate W, and the processing liquid LD is depleted or excessive in the first round portion PT2. It is possible to effectively prevent the occurrence of defects such as film thickness.
  • the second half of the coating process (the period in which the slit nozzle 2 moves from the wide position P2 to the coating end position P3) is a period in which the overlap distance L decreases, and the problem that occurred during the overlap increase period naturally occurs. Therefore, the coating gap G is set to a constant value b. As a result, the entire substrate W can be uniformly coated with the processing liquid.
  • the coating gap G is changed in a curved line as shown in the solid line pattern in FIG. 8, but it may be changed in a broken line shape as shown in FIG.
  • the present invention is applied to a substrate coating technique for coating the processing liquid LD on a substrate W such as a semiconductor wafer having a substantially circular surface Wf, but the type of substrate W is limited to this. not to be
  • the present invention can also be applied to a substrate application technique for applying the processing liquid LD to a substrate W whose surface Wf is finished in a rhombus, regular pentagon, regular hexagon, or the like.
  • a substrate coating technique in which the slit nozzle 2 is moved relative to the substrate W in the coating direction X so that the processing liquid LD is discharged from the discharge port 24 of the slit nozzle 2 onto the surface Wf of the substrate W for coating.
  • the present invention is applied to the case where the overlapping distance L where the discharge port 24 and the substrate W overlap in the longitudinal direction Y in plan view from above increases as the slit nozzle 2 moves relative to the substrate W. can be done.
  • the slit nozzle 2 is moved in the coating direction X to apply the treatment liquid LD, but the application mode is not limited to this.
  • the substrate W may be moved while the slit nozzle 2 is fixed.
  • both the slit nozzle 2 and the substrate W may be moved to apply the treatment liquid LD.
  • the present invention can be applied to general substrate coating techniques in which the slit nozzle 2 is moved relative to the substrate W to perform the coating process.
  • the slit nozzle is moved relative to the substrate in the coating direction while supplying the treatment liquid from the ejection port of the slit nozzle arranged above the surface of the substrate to the surface of the substrate. It can be applied to general substrate coating in which a processing liquid is applied to the surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Coating Apparatus (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

This invention pertains to a substrate coating apparatus and method in which a processing liquid is supplied to a substrate through the discharge opening of a slit nozzle and coated on the substrate, wherein a coating gap that is a clearance between the substrate and the discharge opening of the slit nozzle is adjusted according to an overlapping distance in which the discharge opening and the substrate overlap each other in a longitudinal direction in planar view from above. Accordingly, in an overlap increase period in which the overlapping distance increases along with the movement of the slit nozzle relative to the substrate, there is a proper amount of the processing liquid between the discharge opening of the slit nozzle and the surface of the substrate. As a result, the processing liquid can be uniformly coated on the surface of the substrate.

Description

基板塗布装置および基板塗布方法SUBSTRATE COATING APPARATUS AND SUBSTRATE COATING METHOD
 この発明は、液晶表示装置や有機EL表示装置等のFPD用ガラス基板、半導体ウエハ、フォトマスク用ガラス基板、カラーフィルター用基板、記録ディスク用基板、太陽電池用基板、電子ペーパー用基板等の精密電子装置用基板、半導体パッケージ用基板(以下、単に「基板」と称する)にスリットノズルから処理液を供給して塗布する基板塗布技術に関するものである。 The present invention is applied to precision substrates such as glass substrates for FPDs such as liquid crystal display devices and organic EL display devices, semiconductor wafers, glass substrates for photomasks, substrates for color filters, substrates for recording disks, substrates for solar cells, and substrates for electronic paper. The present invention relates to a substrate coating technique for supplying and coating a processing liquid from a slit nozzle onto a substrate for an electronic device or a substrate for a semiconductor package (hereinafter simply referred to as "substrate").
 以下に示す日本出願の明細書、図面および特許請求の範囲における開示内容は、参照によりその全内容が本書に組み入れられる:
 特願2021-151739(2021年9月17日出願)。
The disclosures in the specification, drawings and claims of the following Japanese application are hereby incorporated by reference in their entirety:
Japanese Patent Application 2021-151739 (filed on September 17, 2021).
 スリットノズルに設けられたスリット状の吐出口を基板の表面から上方に離間距離だけ離間させながらスリットノズルを基板に対して吐出口の長手方向と直交する塗布方向に相対的に移動させる。この相対移動中に、スリットノズルから処理液を吐出することで、基板に処理液を塗布する基板塗布装置が知られている。その中でも、塗布対象を矩形形状の基板に限定せず、例えば円形形状の半導体ウエハにも処理液を塗布可能な基板塗布装置が提案されている。その代表的なものとして、キャピラリー方式の基板塗布装置(特許文献1参照)が知られている。 The slit nozzle is moved relative to the substrate in the application direction perpendicular to the longitudinal direction of the ejection port while separating the slit-shaped ejection port provided in the slit nozzle upward from the surface of the substrate by the separation distance. A substrate coating apparatus is known which applies a processing liquid to a substrate by discharging the processing liquid from a slit nozzle during this relative movement. Among them, there has been proposed a substrate coating apparatus capable of coating a processing liquid not only on a rectangular substrate but also on a circular semiconductor wafer, for example. As a typical example, a capillary-type substrate coating apparatus (see Patent Document 1) is known.
特許第6272138号Patent No. 6272138
 上記した従来装置により、例えば半導体ウエハに処理液を塗布する場合、次のような問題が発生することがあった。これらの装置では、上記塗布処理中、基板の表面と吐出口との離間距離(以下「塗布ギャップ」という)を一定に維持している。一方、基板の表面に沿って移動しているスリットノズルの位置に応じて吐出口から供給される処理液の接液範囲(後で説明する実施形態中の「重複範囲」に相当)が連続的に変化する。より詳しくは、後で説明する図5や図7に示すように、塗布開始直後から接液範囲は徐々に広がり、基板の中央部に差し掛かったところで最大となる。それを通過すると、接液範囲は徐々に狭まっていく。そして、スリットノズルの移動方向(本発明の「塗布方向」の一例に相当)において半導体ウエハの終端領域の上方をスリットノズルが通過した段階で塗布処理が完了し、スリットノズルが基板から離れる。 For example, when applying a processing liquid to a semiconductor wafer using the conventional apparatus described above, the following problems may occur. In these devices, the distance between the surface of the substrate and the ejection port (hereinafter referred to as "coating gap") is kept constant during the coating process. On the other hand, the wetted range of the processing liquid supplied from the ejection port according to the position of the slit nozzle moving along the surface of the substrate (corresponding to the "overlapping range" in the embodiments described later) is continuous. change to More specifically, as shown in FIGS. 5 and 7, which will be described later, the wetted area gradually widens immediately after the start of coating and reaches a maximum at the center of the substrate. After passing through it, the wetted area gradually narrows. Then, when the slit nozzle passes above the end region of the semiconductor wafer in the moving direction of the slit nozzle (corresponding to an example of the "coating direction" of the present invention), the coating process is completed and the slit nozzle separates from the substrate.
 このような塗布処理の前半、つまりスリットノズルが塗布開始位置(後で説明する図4中の符号P1)から基板の中央部の上方位置(後で説明する図4中の符号P2)を移動する間、上方からの平面視で長手方向において吐出口と基板とが重なり合う重複距離が増大する。しかしながら、従来技術では、塗布ギャップを一定に維持しているため、後で図6を用いて詳述するように、接液範囲(重複範囲)の広がり、つまり上記重複距離の増大に対応して吐出口の長手方向における処理液の供給に過不足が生じることがあった。その結果、基板の表面周縁部のうち前半ラウンド部(図4中の符号PT2)で液切れが生じたり、膜厚が厚くなる等の不具合が発生することがあった。 In the first half of such a coating process, that is, the slit nozzle moves from the coating start position (symbol P1 in FIG. 4 described later) to a position above the central portion of the substrate (symbol P2 in FIG. 4 described later). Meanwhile, the overlapping distance between the ejection port and the substrate in the longitudinal direction in a plan view from above increases. However, in the prior art, since the coating gap is kept constant, as will be described in detail later with reference to FIG. In some cases, the supply of the processing liquid in the longitudinal direction of the ejection port is insufficient. As a result, problems such as liquid depletion and increased film thickness may occur in the front half round portion (symbol PT2 in FIG. 4) of the surface peripheral portion of the substrate.
 この発明は上記課題に鑑みなされたものであり、上方からの平面視で長手方向において吐出口と基板とが重なり合う重複距離が増大する範囲において吐出口の長手方向における処理液の供給を適正化して処理液を基板の表面に均一に塗布することができる基板塗布装置および基板塗布方法を提供することを目的としている。 The present invention has been devised in view of the above problems, and is intended to optimize the supply of the processing liquid in the longitudinal direction of the ejection port within the range where the overlapping distance between the ejection port and the substrate in the longitudinal direction increases in plan view from above. It is an object of the present invention to provide a substrate coating apparatus and a substrate coating method capable of uniformly coating a surface of a substrate with a processing liquid.
 本発明の一態様は、基板の表面に処理液を塗布する基板塗布装置であって、基板の表面の上方側より、スリット状の吐出口から処理液を基板の表面に供給するスリットノズルと、吐出口が基板の表面から離間距離だけ離間したスリットノズルを、基板に対して吐出口の長手方向と直交する塗布方向に相対的に移動させる移動部と、スリットノズルを上下方向に昇降させる昇降部と、上方からの平面視で長手方向において吐出口と基板とが重なり合う重複距離が基板に対するスリットノズルの相対的な移動に伴い増大する間、重複距離の変化に応じて離間距離を調整するように、昇降部を制御する制御部と、を備えることを特徴としている。 One aspect of the present invention is a substrate coating apparatus for coating a surface of a substrate with a processing liquid, comprising: a slit nozzle for supplying the processing liquid to the surface of the substrate from a slit-shaped discharge port from above the surface of the substrate; A moving unit that moves the slit nozzle, the ejection port of which is separated from the surface of the substrate by the separation distance, relative to the substrate in the coating direction perpendicular to the longitudinal direction of the ejection port, and an elevating unit that moves the slit nozzle up and down. While the overlapping distance between the ejection port and the substrate in the longitudinal direction in plan view from above increases with the relative movement of the slit nozzle with respect to the substrate, the separation distance is adjusted according to the change in the overlapping distance. , and a control unit for controlling the lifting unit.
 また、本発明の他の態様は、スリットノズルに設けられたスリット状の吐出口を基板の表面から上方に離間距離だけ離間させながらスリットノズルを基板に対して吐出口の長手方向と直交する塗布方向に相対的に移動させることで、吐出口から吐出される処理液を基板の表面に塗布する基板塗布方法であって、上方からの平面視で長手方向において吐出口と基板とが重なり合う重複距離が基板に対するスリットノズルの相対的な移動に伴い増大する間、重複距離の変化に応じて離間距離を調整することを特徴としている。 In another aspect of the present invention, the slit-shaped ejection port provided in the slit nozzle is separated upward from the surface of the substrate by a separation distance, and the slit nozzle is applied to the substrate in a direction orthogonal to the longitudinal direction of the ejection port. A substrate coating method for coating a surface of a substrate with a processing liquid ejected from an ejection port by relatively moving in a direction, wherein the overlapping distance between the ejection port and the substrate in the longitudinal direction in plan view from above increases with the relative movement of the slit nozzle with respect to the substrate, the separation distance is adjusted according to the change in the overlapping distance.
 上記重複距離が基板に対するスリットノズルの相対的な移動に伴い増大する期間(以下「重複増大期間」という)において、離間距離を一定に維持すると、後で図4ないし図6を用いて説明するように液切れや膜厚が過剰となる現象(以下「過剰膜厚」という)が発生することがある。そこで、本発明では、重複距離の変化に応じて離間距離を調整しており、これによってスリットノズルの吐出口と基板の表面との間に適量の処理液が供給され、吐出口の長手方向に拡がる。 During the period in which the overlap distance increases with the relative movement of the slit nozzle with respect to the substrate (hereinafter referred to as "overlap increase period"), if the separation distance is kept constant, as will be described later with reference to FIGS. In some cases, liquid shortage and excessive film thickness (hereinafter referred to as "excessive film thickness") may occur. Therefore, in the present invention, the separation distance is adjusted in accordance with the change in the overlapping distance, so that an appropriate amount of processing liquid is supplied between the ejection port of the slit nozzle and the surface of the substrate, and the length of the ejection port increases. spread.
 以上のように、本発明によれば、上方からの平面視で長手方向において吐出口と基板とが重なり合う重複距離が増大する範囲において吐出口の長手方向における処理液の供給が適正化される。その結果、処理液を基板の表面に均一に塗布することができる。 As described above, according to the present invention, the supply of the processing liquid in the longitudinal direction of the ejection port is optimized in the range where the overlapping distance between the ejection port and the substrate in the longitudinal direction increases in plan view from above. As a result, the processing liquid can be uniformly applied to the surface of the substrate.
 上述した本発明の各態様の有する複数の構成要素はすべてが必須のものではなく、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、適宜、前記複数の構成要素の一部の構成要素について、その変更、削除、新たな他の構成要素との差し替え、限定内容の一部削除を行うことが可能である。また、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、上述した本発明の一態様に含まれる技術的特徴の一部又は全部を上述した本発明の他の態様に含まれる技術的特徴の一部又は全部と組み合わせて、本発明の独立した一形態とすることも可能である。 All of the plurality of components of each aspect of the present invention described above are not essential, and in order to solve some or all of the above problems, or some or all of the effects described in this specification In order to achieve the above, it is possible to appropriately change, delete, replace with new other components, and partially delete the limited content for some of the plurality of components. In addition, in order to solve part or all of the above-described problems or achieve part or all of the effects described in this specification, the technical features included in one aspect of the present invention described above It is also possible to combine some or all of the technical features included in other aspects of the present invention described above to form an independent form of the present invention.
本発明に係る基板塗布方法の第1実施形態を適用可能な基板処理装置の一例を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows an example of the substrate processing apparatus which can apply 1st Embodiment of the board|substrate coating method which concerns on this invention. 図1Aに示す基板塗布装置の電気的な構成を示すブロック図である。1B is a block diagram showing an electrical configuration of the substrate coating apparatus shown in FIG. 1A; FIG. 図1Aに示す基板塗布装置で使用されるスリットノズルの一例を示す外観斜視図である。1B is an external perspective view showing an example of a slit nozzle used in the substrate coating apparatus shown in FIG. 1A; FIG. 処理液供給部の構成を示す図である。4 is a diagram showing the configuration of a processing liquid supply unit; FIG. 図1Aおよび図1Bに示す基板塗布装置における基板に対するスリットノズルの相対的な移動動作を模式的に示す図である。It is a figure which shows typically the relative movement operation|movement of the slit nozzle with respect to a board|substrate in the board|substrate coating apparatus shown to FIG. 1A and FIG. 1B. 図1Aおよび図1Bに示す基板塗布装置において従来技術と同様に一定の走査速度で塗布処理を行ったときの塗布状況を示す図である。It is a figure which shows the coating condition when coating processing is performed with a fixed scanning speed like a prior art in the board|substrate coating device shown to FIG. 1A and FIG. 1B. 基板と吐出口との間に形成されるメニスカスと、塗布ギャップとの関係を模式的に示す図である。FIG. 4 is a diagram schematically showing the relationship between a meniscus formed between a substrate and an ejection port and a coating gap; スキャン距離に対する重複距離および重複距離の変化速度を示すグラフである。FIG. 10 is a graph showing the overlap distance and the rate of change of the overlap distance with respect to the scan distance; FIG. 本発明に係る基板塗布方法の第1実施形態を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows 1st Embodiment of the board|substrate coating method which concerns on this invention. 本発明に係る基板塗布方法の第2実施形態を示す図である。It is a figure which shows 2nd Embodiment of the board|substrate coating method which concerns on this invention.
 図1Aは、本発明に係る基板塗布方法の第1実施形態を適用可能な基板塗布装置の構成を示す図である。また、図1Bは、図1Aに示す基板塗布装置の電気的な構成を示すブロック図である。この基板塗布装置100は、半導体ウエハなどの略円盤形状の基板Wの表面Wfに処理液を、いわゆるキャピラリー方式で塗布するものである。なお、図1Aには、塗布ユニットの各部の方向関係を明確にするためZ方向を上下方向とし、XY平面を水平面とするXYZ直交座標系を適宜付している。また、理解容易の目的で、必要に応じて各部の寸法や数を誇張または簡略化して描いている。 FIG. 1A is a diagram showing the configuration of a substrate coating apparatus to which the first embodiment of the substrate coating method according to the present invention can be applied. Moreover, FIG. 1B is a block diagram showing an electrical configuration of the substrate coating apparatus shown in FIG. 1A. This substrate coating apparatus 100 coats a surface Wf of a substantially disk-shaped substrate W such as a semiconductor wafer with a processing liquid by a so-called capillary method. In addition, in FIG. 1A, an XYZ orthogonal coordinate system having the Z direction as the vertical direction and the XY plane as the horizontal plane is appropriately attached in order to clarify the directional relationship of each part of the coating unit. Also, for the purpose of facilitating understanding, the dimensions and numbers of each part are exaggerated or simplified as necessary.
 基板塗布装置100は、スリットノズル2を用いて基板Wの表面Wfに処理液を塗布するスリットコータと呼ばれる装置である。処理液としては、例えばレジスト液、カラーフィルター用液、ポリイミド、シリコン、ナノメタルインク、導電性材料を含むスラリー等が含まれる。この基板塗布装置100は、基板Wを水平姿勢で吸着保持可能なステージ1と、ステージ1に保持される基板Wに処理液を吐出するスリットノズル2と、スリットノズル2に処理液を供給する処理液供給部3と、基板Wに対してスリットノズル2を移動させるノズル移動機構4と、装置全体を制御する制御部5とを備えている。 The substrate coating apparatus 100 is an apparatus called a slit coater that applies a processing liquid to the surface Wf of the substrate W using the slit nozzle 2 . The treatment liquid includes, for example, a resist liquid, a color filter liquid, polyimide, silicon, nanometal ink, slurry containing a conductive material, and the like. This substrate coating apparatus 100 includes a stage 1 capable of sucking and holding a substrate W in a horizontal posture, a slit nozzle 2 discharging a processing liquid onto the substrate W held on the stage 1, and a process for supplying the processing liquid to the slit nozzle 2. A liquid supply unit 3, a nozzle moving mechanism 4 for moving the slit nozzle 2 with respect to the substrate W, and a control unit 5 for controlling the entire apparatus are provided.
 ステージ1は略直方体の形状を有する花崗岩等の石材で構成されており、その表面(+Z側)のうち(+X)側には、略水平な平坦面に加工されて基板Wを保持する保持面11を有する。保持面11には図示しない多数の真空吸着口が分散して形成されている。これらの真空吸着口により基板Wが吸着されることで、塗布処理の際に基板Wが所定の位置に略水平に保持される。なお、基板Wの保持態様はこれに限定されるものではなく、例えば機械的に基板Wを保持するように構成してもよい。 The stage 1 is made of stone material such as granite having a substantially rectangular parallelepiped shape, and the (+X) side of its surface (+Z side) is processed into a substantially horizontal flat surface to hold the substrate W. 11. A large number of vacuum suction ports (not shown) are dispersedly formed on the holding surface 11 . By sucking the substrate W by these vacuum suction ports, the substrate W is held substantially horizontally at a predetermined position during the coating process. The manner in which the substrate W is held is not limited to this. For example, the substrate W may be held mechanically.
 図2は、図1Aに示す基板塗布装置で使用されるスリットノズルの一例を示す外観斜視図である。スリットノズル2は、第1本体部21、第2本体部22およびシム板23を複数の固定ねじ(図示省略)によって相互に結合した構造を有している。より詳しくは、第1本体部21と第2本体部22とが、シム板23を挟んでX方向に対向する状態で結合されてスリットノズル2が構成される。 FIG. 2 is an external perspective view showing an example of a slit nozzle used in the substrate coating apparatus shown in FIG. 1A. The slit nozzle 2 has a structure in which a first main body portion 21, a second main body portion 22 and a shim plate 23 are connected to each other by a plurality of fixing screws (not shown). More specifically, the slit nozzle 2 is configured by connecting the first body portion 21 and the second body portion 22 so as to face each other in the X direction with the shim plate 23 interposed therebetween.
 第1本体部21および第2本体部22は、例えばステンレス鋼やアルミニウム等の金属ブロックから削り出されたものである。また、シム板23は同様の金属材料で形成された薄板状部材である。 The first body portion 21 and the second body portion 22 are machined from a metal block such as stainless steel or aluminum. Also, the shim plate 23 is a thin plate member made of a similar metal material.
 第1本体部21の第2本体部22と対向する側の主面、つまり(+X)側の主面は、YZ平面と平行な第1平坦面となるように仕上げられている。また、第1本体部21の下部は下向きに突出して第1リップ部21cを形成している。Z方向における第1平坦面の中央部には、Y方向を長手方向としX方向を深さ方向とする略半円柱形状の溝(図示省略)が設けられている。この溝は、塗布液の流路におけるマニホールドとして機能するものであり、塗布液供給口(図3中の符号25)を介して処理液供給部3と接続されている。 The main surface of the first main body portion 21 facing the second main body portion 22, that is, the main surface on the (+X) side is finished to be a first flat surface parallel to the YZ plane. A lower portion of the first body portion 21 protrudes downward to form a first lip portion 21c. A substantially semi-cylindrical groove (not shown) having a longitudinal direction in the Y direction and a depth direction in the X direction is provided in the central portion of the first flat surface in the Z direction. This groove functions as a manifold in the flow path of the coating liquid, and is connected to the processing liquid supply section 3 via the coating liquid supply port (reference numeral 25 in FIG. 3).
 一方、第2本体部22の第1本体部21と対向する側の主面、つまり(-X)側の主面は、YZ平面と平行な第2平坦面となっている。また、第2本体部22の下部は下向きに突出して第2リップ部22cを形成している。上記第1平坦面とおよび第2平坦面が隔てて対向するように、第1本体部21と第2本体部22とがシム板23を介して結合される。 On the other hand, the main surface of the second main body portion 22 facing the first main body portion 21, that is, the main surface on the (-X) side is a second flat surface parallel to the YZ plane. A lower portion of the second main body portion 22 protrudes downward to form a second lip portion 22c. The first main body portion 21 and the second main body portion 22 are coupled via a shim plate 23 such that the first flat surface and the second flat surface face each other with a space therebetween.
 第1本体部21と第2本体部22とが結合された状態では、第1平坦面と第2平坦面とは、シム板23の厚さに相当する微小なギャップを隔てて平行に対向することとなる。このように互いに対向する対向面(第1平坦面および第2平坦面)の間のギャップ部分がマニホールドからの塗布液の流路となり、その下端が基板Wの表面Wfに向けて下向きに開口する吐出口24として機能する。吐出口24は、Y方向を長手方向とし、X方向において微小寸法を有している。 When the first main body portion 21 and the second main body portion 22 are joined, the first flat surface and the second flat surface face each other in parallel with a small gap corresponding to the thickness of the shim plate 23. It will happen. The gap portion between the opposing surfaces (the first flat surface and the second flat surface) facing each other in this manner serves as a flow path for the coating liquid from the manifold, and the lower end of the gap portion opens downward toward the surface Wf of the substrate W. It functions as the ejection port 24 . The ejection port 24 has a longitudinal direction in the Y direction and a minute dimension in the X direction.
 シム板23は下向きに開口する逆U字型に形成されている。第1本体部21と第2本体部22との間のギャップにシム板23が挟み込まれることで、ギャップ空間のうち、溝よりも上方の上端部、および、Y方向における両側端部はシム板23により閉塞される。これにより、ギャップ空間のうちシム板23に閉塞されていない空間が、マニホールドとしての溝と吐出口24とを接続する塗布液の流路を規定することになる。言い換えれば、シム板23は、塗布液の流路となる部分が切り欠かれ、吐出口以外の塗布液の流路の周囲を囲むような形状とされている。 The shim plate 23 is formed in an inverted U shape that opens downward. By inserting the shim plate 23 in the gap between the first main body portion 21 and the second main body portion 22, the upper end portion above the groove and both side end portions in the Y direction of the gap space are shim plates. 23 is blocked. As a result, the space that is not blocked by the shim plate 23 in the gap space defines the flow path of the coating liquid that connects the groove as the manifold and the discharge port 24 . In other words, the shim plate 23 has a notched portion that serves as a flow path for the application liquid, and has a shape that surrounds the flow path for the application liquid other than the ejection port.
 図3は、処理液供給部の構成を示す図である。処理液供給部3は、同図に示すように、処理液をスリットノズル2に送給するための送給源として体積変化により処理液を送給するポンプ31を用いている。ポンプ31としては、例えば特開平10-61558号公報に記載されたベローズタイプのポンプを使用することができる。このポンプ31は、径方向に弾性膨張収縮自在の可撓性チューブ311を有している。この可撓性チューブ311の一方端は配管32により処理液補充ユニット33と接続され、他方端は配管34によりスリットノズル2の塗布液供給口25と接続されている。 FIG. 3 is a diagram showing the configuration of the processing liquid supply unit. As shown in the figure, the treatment liquid supply unit 3 uses a pump 31 as a supply source for supplying the treatment liquid to the slit nozzle 2. The pump 31 supplies the treatment liquid by volume change. As the pump 31, for example, a bellows type pump described in JP-A-10-61558 can be used. This pump 31 has a flexible tube 311 that can be elastically expanded and contracted in the radial direction. One end of this flexible tube 311 is connected to the treatment liquid replenishing unit 33 via a pipe 32 , and the other end is connected to the coating liquid supply port 25 of the slit nozzle 2 via a pipe 34 .
 可撓性チューブ311の外側には、軸方向に弾性変形自在のベローズ312が配置されている。このベローズ312は小型ベローズ部313と大型ベローズ部314とを有し、可撓性チューブ311とベローズ312との間のポンプ室315には非圧縮性媒体が封入されている。また、小型ベローズ部313と大型ベローズ部314との間に作動ディスク部316が設けられている。作動ディスク部316には駆動部317が接続されている。制御部5からの指令に応じて駆動部317が作動すると、作動ディスク部316が例えば軸方向の一方側に変位し、ベローズ312の内側の容積を変化させる。これによって、可撓性チューブ13が径方向に膨張収縮してポンプ動作を実行し、処理液補充ユニット33から適宜補給される処理液をスリットノズル2に向けて送給する。逆に、作動ディスク部316が例えば軸方向の他方側に変位し、ベローズ312の内側の容積を変化させると、スリットノズル2内の処理液を処理液補充ユニット33に向けて吸引する。 A bellows 312 that is elastically deformable in the axial direction is arranged outside the flexible tube 311 . The bellows 312 has a small bellows portion 313 and a large bellows portion 314, and a pump chamber 315 between the flexible tube 311 and the bellows 312 contains an incompressible medium. A working disk portion 316 is provided between the small bellows portion 313 and the large bellows portion 314 . A driving portion 317 is connected to the operating disk portion 316 . When the driving portion 317 operates in response to a command from the control portion 5 , the operating disk portion 316 is displaced, for example, to one side in the axial direction to change the inner volume of the bellows 312 . As a result, the flexible tube 13 expands and contracts in the radial direction to perform a pumping operation, and the processing liquid replenished appropriately from the processing liquid replenishing unit 33 is fed toward the slit nozzle 2 . Conversely, when the working disk portion 316 is displaced, for example, to the other side in the axial direction to change the inner volume of the bellows 312 , the processing liquid in the slit nozzle 2 is sucked toward the processing liquid replenishing unit 33 .
 処理液補充ユニット33は処理液を貯留する貯留タンク331を有している。この貯留タンク331は配管32によりポンプ31と接続されている。また、配管32には、開閉弁333が介挿されている。この開閉弁333は制御部5から補充指令に応じて開成し、貯留タンク331内の処理液をポンプ31の可撓性チューブ311に補充可能とする。逆に、制御部5から補充停止指令に応じて閉成し、貯留タンク331からポンプ31の可撓性チューブ311への処理液の補充を規制する。 The processing liquid replenishing unit 33 has a storage tank 331 that stores the processing liquid. This storage tank 331 is connected to the pump 31 through a pipe 32 . An on-off valve 333 is inserted in the pipe 32 . The on-off valve 333 is opened in response to a replenishment command from the control unit 5 to allow the flexible tube 311 of the pump 31 to be replenished with the treatment liquid in the storage tank 331 . Conversely, it is closed in response to a replenishment stop command from the control unit 5 to restrict replenishment of processing liquid from the storage tank 331 to the flexible tube 311 of the pump 31 .
 ポンプ31の出力側(同図の左手側)に接続された配管34には、開閉弁35が介挿されており、制御部5からの開閉指令に応じて開閉する。これによって、スリットノズル2への処理液の送液、スリットノズル2からの処理液の吸引、送液停止および吸引停止を切替可能となっている。また、配管34には、圧力計36が取り付けられており、スリットノズル2に送液される処理液の圧力を検出し、その検出結果(圧力値)を制御部5に出力する。 An on-off valve 35 is inserted in a pipe 34 connected to the output side of the pump 31 (left hand side in the figure), and is opened and closed according to an open/close command from the control unit 5 . As a result, it is possible to switch between the feeding of the processing liquid to the slit nozzle 2, the suction of the processing liquid from the slit nozzle 2, the stop of the liquid feeding, and the stop of the suction. Further, a pressure gauge 36 is attached to the pipe 34 to detect the pressure of the processing liquid sent to the slit nozzle 2 and output the detection result (pressure value) to the control section 5 .
 このように構成された処理液供給部3は、スリットノズル2が基板Wの(-X)方向側の端部の上方位置(後で説明する図4中の「塗布開始位置P1」)で吐出口24を基板Wの表面Wfに近接させて処理液を表面Wfに着液させるときには、次のように動作する。すなわち、制御部5からの開閉指令に応じて開閉弁333が閉じるとともに開閉弁35が開き、しかも制御部5からの送液指令に応じてポンプ31が作動する。これによって、スリットノズル2に向けて処理液がポンプ31により送り込まれ、吐出口24と基板Wの表面Wfとの間に処理液のビード(液溜り)が形成される。 In the processing liquid supply unit 3 configured as described above, the slit nozzle 2 discharges at a position above the edge of the substrate W in the (−X) direction (“coating start position P1” in FIG. 4 to be described later). When the outlet 24 is brought close to the surface Wf of the substrate W and the processing liquid is deposited on the surface Wf, the operation is as follows. That is, the on-off valve 333 is closed and the on-off valve 35 is opened according to the open/close command from the control unit 5 , and the pump 31 is operated according to the liquid feed command from the control unit 5 . As a result, the processing liquid is sent toward the slit nozzle 2 by the pump 31, and a bead (liquid pool) of the processing liquid is formed between the discharge port 24 and the surface Wf of the substrate W. As shown in FIG.
 また、本実施形態では、基板Wの表面Wfが略円形状の半導体ウエハであることから、特許文献1に記載の装置と同様に、キャピラリー方式で処理液の塗布が実行される。つまり、制御部5からの開閉指令に応じて開閉弁333が開くとともに、制御部5からの送液停止指令に応じてポンプ31の作動が停止される。そして、吐出口24を基板Wの表面Wfに近接させながらノズル移動機構4によりスリットノズル2を基板Wに対して相対的に(-X)方向側から(+X)方向側に移動させる。この移動時に吐出口24と基板Wとの間で発生する処理液(処理液のビード)の表面張力により吐出口24から処理液が吐出される。このため、Y方向に延設された吐出口24のうち基板Wが対向する部位では処理液が吐出されるのに対し、基板Wが存在しない部位では処理液は吐出されない。このような吐出状態の変化がノズル移動機構4による基板Wに対するスリットノズル2のX方向移動に伴って発生する。こうして基板Wへの処理液の塗布が完了すると、スリットノズル2が基板Wから上方に離れた後で(+X)方向側から(-X)方向側に戻る。 In addition, in this embodiment, since the surface Wf of the substrate W is a semiconductor wafer having a substantially circular shape, the processing liquid is applied by the capillary method, as in the apparatus described in Patent Document 1. In other words, the on-off valve 333 is opened in response to the open/close command from the controller 5 and the operation of the pump 31 is stopped in response to the liquid feed stop command from the controller 5 . Then, the slit nozzle 2 is moved relative to the substrate W from the (-X) direction side to the (+X) direction side by the nozzle moving mechanism 4 while bringing the discharge port 24 close to the front surface Wf of the substrate W. FIG. The treatment liquid is ejected from the ejection port 24 by the surface tension of the treatment liquid (bead of the treatment liquid) generated between the ejection port 24 and the substrate W during this movement. For this reason, the processing liquid is discharged from the portions of the discharge ports 24 extending in the Y direction that face the substrate W, while the processing liquid is not discharged from the portions where the substrate W does not exist. Such a change in ejection state occurs as the slit nozzle 2 moves in the X direction relative to the substrate W by the nozzle moving mechanism 4 . When the application of the processing liquid to the substrate W is completed in this way, the slit nozzle 2 moves upward from the substrate W and then returns from the (+X) direction to the (−X) direction.
 図1Aおよび図1Bに戻って構成説明を続ける。ノズル移動機構4は、ステージ1の上方をY方向に横断しながらスリットノズル2を支持するブリッジ構造のノズル支持体41と、ノズル支持体41をX方向に水平移動させるノズル移動部42とを有する。したがって、ノズル支持体41に支持されたスリットノズル2をノズル移動部42によってX方向に水平移動させることができる。このように、本実施形態では、ノズル移動部42が本発明の「移動部」の一例に相当している。 Returning to Figures 1A and 1B, the description of the configuration continues. The nozzle moving mechanism 4 has a bridge structure nozzle support 41 that supports the slit nozzle 2 while traversing above the stage 1 in the Y direction, and a nozzle moving unit 42 that horizontally moves the nozzle support 41 in the X direction. . Therefore, the slit nozzle 2 supported by the nozzle support 41 can be horizontally moved in the X direction by the nozzle moving part 42 . Thus, in this embodiment, the nozzle moving section 42 corresponds to an example of the "moving section" of the present invention.
 ノズル支持体41は、スリットノズル2が固定された固定部材41aと、固定部材41aを支持しつつ昇降させる2つの昇降機構41bとを有している。固定部材41aは、Y方向を長手方向とする断面矩形の棒状部材であり、カーボンファイバ補強樹脂等で構成される。2つの昇降機構41bは固定部材41aの長手方向の両端部に連結されており、それぞれACサーボモータおよびボールネジ等を有する。これらの昇降機構41bにより、固定部材41aとスリットノズル2とが一体的に上下方向(Z方向)に昇降され、スリットノズル2の吐出口24と基板Wの表面Wfとの間隔、すなわち、基板Wの表面Wfからの吐出口24の離間距離(以下「塗布ギャップ」という)が調整される。なお、スリットノズル2のZ方向の位置は、リニアエンコーダ(図示省略)により検出することができる。このように、本実施形態では、昇降機構41bが本発明の「昇降部」の一例に相当している。 The nozzle support 41 has a fixed member 41a to which the slit nozzle 2 is fixed, and two elevating mechanisms 41b that support and lift the fixed member 41a. The fixing member 41a is a rod-shaped member having a rectangular cross section whose longitudinal direction is the Y direction, and is made of carbon fiber reinforced resin or the like. The two elevating mechanisms 41b are connected to both ends of the fixed member 41a in the longitudinal direction, and each have an AC servomotor, a ball screw, and the like. By these lifting mechanisms 41b, the fixing member 41a and the slit nozzle 2 are integrally lifted up and down in the vertical direction (Z direction), and the distance between the discharge port 24 of the slit nozzle 2 and the surface Wf of the substrate W, that is, the substrate W The separation distance (hereinafter referred to as "coating gap") of the ejection port 24 from the surface Wf of is adjusted. The position of the slit nozzle 2 in the Z direction can be detected by a linear encoder (not shown). Thus, in this embodiment, the elevating mechanism 41b corresponds to an example of the "elevating section" of the present invention.
 ノズル移動部42は、スリットノズル2の移動をX方向に案内する2本のガイドレール43と、駆動源である2個のリニアモータ44と、スリットノズル2の吐出口の位置を検出するための2個のリニアエンコーダ45とを備えている。 The nozzle moving unit 42 includes two guide rails 43 that guide the movement of the slit nozzle 2 in the X direction, two linear motors 44 that are driving sources, and a nozzle for detecting the position of the ejection port of the slit nozzle 2. Two linear encoders 45 are provided.
 2本のガイドレール43は、基板Wの載置範囲をY方向から挟むようにステージ1のY方向の両端に配置されるとともに、基板Wの載置範囲を含むようにX方向に延設されている。そして、2つの昇降機構41bの下端部のそれぞれが2本のガイドレール43に沿って案内されることで、スリットノズル2がステージ1上に保持される基板Wの上方をX方向へ移動する。 The two guide rails 43 are arranged at both ends of the stage 1 in the Y direction so as to sandwich the mounting range of the substrate W from the Y direction, and extend in the X direction so as to include the mounting range of the substrate W. ing. The slit nozzle 2 moves in the X direction above the substrate W held on the stage 1 by guiding the lower ends of the two lifting mechanisms 41b along the two guide rails 43, respectively.
 2個のリニアモータ44のそれぞれは、固定子44aと移動子44bとを有するACコアレスリニアモータである。固定子44aは、ステージ1のY方向の両側面にX方向に沿って設けられている。一方、移動子44bは、昇降機構41bの外側に対して固設されている。リニアモータ44は、これら固定子44aと移動子44bとの間に生じる磁力によって、ノズル移動機構4の駆動源として機能する。 Each of the two linear motors 44 is an AC coreless linear motor having a stator 44a and a mover 44b. The stators 44a are provided on both sides of the stage 1 in the Y direction along the X direction. On the other hand, the mover 44b is fixed to the outside of the lifting mechanism 41b. The linear motor 44 functions as a drive source for the nozzle moving mechanism 4 by magnetic force generated between the stator 44a and the mover 44b.
 また、2個のリニアエンコーダ45のそれぞれは、スケール部45aと検出部45bとを有している。スケール部45aはステージ1に固設されたリニアモータ44の固定子44aの下部にX方向に沿って設けられている。一方、検出部45bは、昇降機構41bに固設されたリニアモータ44の移動子44bのさらに外側に固設され、スケール部45aに対向配置される。リニアエンコーダ45は、スケール部45aと検出部45bとの相対的な位置関係に基づいて、X方向(ノズル移動方向や相対移動方向に相当)におけるスリットノズル2の吐出口の位置を検出する。 Each of the two linear encoders 45 has a scale portion 45a and a detection portion 45b. The scale portion 45a is provided along the X direction under the stator 44a of the linear motor 44 fixed to the stage 1. As shown in FIG. On the other hand, the detector 45b is fixed further outside the mover 44b of the linear motor 44 fixed to the lifting mechanism 41b, and arranged to face the scale 45a. The linear encoder 45 detects the position of the ejection port of the slit nozzle 2 in the X direction (corresponding to the nozzle movement direction or relative movement direction) based on the relative positional relationship between the scale portion 45a and the detection portion 45b.
 上記のように構成された基板塗布装置100を制御するための制御部5は、図1Bに示すように、各種演算処理を行う演算部51(例えば、CPUなど)、基本プログラムおよび各種情報を記憶する記憶部52(例えば、ROMやRAMなど)をバスラインに接続した一般的なコンピュータシステムの構成となっている。バスラインはさらに塗布プログラムなどの記憶を行う固定ディスク53(例えば、ハードディスクドライブなど)が接続される。また、上記処理液供給部3、ノズル移動機構4および入力表示部6が適宜、インターフェイス(I/F)を介して接続される。入力表示部6は、各種情報を表示するとともに操作者からの入力を受け付け、例えばタッチパネルディスプレイで構成される。もちろん、入力表示部6の代わりに、各種情報を表示するディスプレイおよび操作者からの入力を受け付けるキーボードやマウスなどを用いてもよい。 As shown in FIG. 1B, the control unit 5 for controlling the substrate coating apparatus 100 configured as described above stores a calculation unit 51 (for example, a CPU) that performs various calculation processes, a basic program, and various information. It has a configuration of a general computer system in which a storage unit 52 (for example, ROM, RAM, etc.) is connected to a bus line. The bus line is also connected to a fixed disk 53 (for example, a hard disk drive) for storing application programs and the like. Moreover, the processing liquid supply unit 3, the nozzle moving mechanism 4, and the input display unit 6 are appropriately connected via an interface (I/F). The input display unit 6 displays various types of information and accepts input from the operator, and is composed of, for example, a touch panel display. Of course, instead of the input display unit 6, a display for displaying various information and a keyboard or mouse for receiving input from the operator may be used.
 制御部5では、予め固定ディスク53に記憶されている塗布プログラムが記憶部52(例えば、RAMなど)にコピーされるとともに演算部51が記憶部52の塗布プログラムに従って演算処理を実行する。これにより、処理液供給部3の制御によって適当なタイミングでスリットノズル2の吐出口24から処理液が吐出されるとともに、ノズル移動機構4の制御によって塗布ギャップの調整および一定速度でのスリットノズル2のX方向走査が実行される。その結果、基板Wの表面Wfに処理液が所望の膜厚で塗布される。このように、制御部5の演算部51は、ギャップ調整部511およびノズル走査部512として機能する。特に、ギャップ調整部511は、次に詳述する解析結果に基づき、塗布ギャップを制御する。より詳しくは、上方からの平面視で長手方向Yにおいて吐出口24と基板Wとが重なり合う重複距離(図5、図8中の符号L)が基板Wに対するスリットノズル2の相対的な移動(X方向走査)に伴い増大する間(つまり重複増大期間)において、重複距離Lの変化に応じて塗布ギャップ(離間距離)を調整するように、昇降機構41bを制御する。この塗布ギャップ調整によって、処理液の膜厚均一性が高められる。 In the control unit 5, the application program stored in the fixed disk 53 in advance is copied to the storage unit 52 (for example, RAM), and the calculation unit 51 executes calculation processing according to the application program in the storage unit 52. As a result, the processing liquid is discharged from the discharge port 24 of the slit nozzle 2 at an appropriate timing by the control of the processing liquid supply unit 3, and the coating gap is adjusted by the control of the nozzle moving mechanism 4, and the slit nozzle 2 is discharged at a constant speed. is performed in the X direction. As a result, the surface Wf of the substrate W is coated with the processing liquid in a desired film thickness. In this way, the calculation section 51 of the control section 5 functions as the gap adjustment section 511 and the nozzle scanning section 512 . In particular, the gap adjuster 511 controls the coating gap based on the analysis results detailed below. More specifically, the overlapping distance (marked L in FIGS. 5 and 8) at which the discharge port 24 and the substrate W overlap in the longitudinal direction Y when viewed from above is the relative movement of the slit nozzle 2 with respect to the substrate W (X The elevating mechanism 41b is controlled so as to adjust the coating gap (separation distance) according to the change in the overlap distance L during the period of increase with the directional scanning (that is, the overlap increase period). This coating gap adjustment enhances the film thickness uniformity of the treatment liquid.
 ここでは、塗布ギャップ調整が優れている理由を説明するために、まず上記のように構成された基板塗布装置100が従来技術と同様に、塗布ギャップを一定に維持しながら、一定の走査速度で塗布処理を実行した場合について、図4ないし図6を参照しつつ説明する。そのなかで、従来技術では、基板Wの前半ラウンド部(図4中の符号PT2)で膜厚不良が発生する理由を考察するとともに、それを解消するための具体的な手段を説明する。その後で、基板塗布装置100の具体的な動作について説明する。 Here, in order to explain the reason why the coating gap adjustment is excellent, first, the substrate coating apparatus 100 configured as described above maintains the coating gap constant and scans at a constant scanning speed in the same manner as in the prior art. A case where the coating process is executed will be described with reference to FIGS. 4 to 6. FIG. Among them, in the prior art, the reason why the film thickness defect occurs in the first half round portion (symbol PT2 in FIG. 4) of the substrate W will be considered, and specific means for solving the problem will be described. After that, specific operations of the substrate coating apparatus 100 will be described.
 図4は、図1Aおよび図1Bに示す基板塗布装置における基板に対するスリットノズルの相対的な移動動作を模式的に示す図であり、同図では、上記移動動作に対応して基板の周縁部が5種類に区分されて図示されている。ここでは、直径が300mmの半導体ウエハを基板Wとし、当該基板Wに対してスリットノズル2をX方向に走査する場合を例示している。すなわち、基板塗布装置100では、塗布方向Xにおいて、吐出口24が基板Wの一方端部(-X方向側端部)の上方の塗布開始位置P1に位置した状態から、吐出口24が塗布開始位置P1から基板Wの半径r(この実施形態では、r=150mm)だけ離れたワイド位置P2を経由し、吐出口24が基板Wの他方端部(+X方向側端部)の上方の塗布終了位置P3に位置するまで、スリットノズル2が基板Wに対して走査される。 4A and 4B are diagrams schematically showing relative movement of the slit nozzle with respect to the substrate in the substrate coating apparatus shown in FIGS. 1A and 1B. In FIG. It is illustrated divided into five types. Here, a semiconductor wafer with a diameter of 300 mm is used as the substrate W, and the case where the slit nozzle 2 scans the substrate W in the X direction is illustrated. That is, in the substrate coating apparatus 100, the ejection port 24 starts coating from a state in which the ejection port 24 is positioned at the coating start position P1 above one end (−X direction side end) of the substrate W in the coating direction X. After passing through a wide position P2 separated from the position P1 by a radius r (r=150 mm in this embodiment) of the substrate W, the ejection port 24 finishes coating above the other end (+X direction side end) of the substrate W. The slit nozzle 2 is scanned with respect to the substrate W until it is positioned at the position P3.
 また、本明細書では、説明の便宜から、図4の下段に示すように、基板Wの表面周縁領域をスリットノズル2の位置に応じて「塗布スタート部位PT1」、「前半ラウンド部位PT2」、「ワイド部位PT3」、「後半ラウンド部位PT4」および「塗布エンド部位PT5」に区分けしている。つまり、基板Wの表面周縁領域のうち、スリットノズル2が塗布開始位置P1に位置したときに処理液の供給を受ける周縁供給領域が塗布スタート部位PT1である。また、スリットノズル2が塗布開始位置P1からワイド位置P2に移動する間に処理液の供給を受ける部位が前半ラウンド部位PT2である。また、スリットノズル2がワイド位置P2に位置したときの処理液の供給を受ける部位がワイド部位PT3である。また、スリットノズル2がワイド位置P2から塗布終了位置P3に移動する間に処理液の供給を受ける部位が後半ラウンド部位PT4である。さらに、スリットノズル2が塗布終了位置P3に位置したときに処理液の供給を受ける周縁供給領域が塗布エンド部位PT5である。 Further, in this specification, for convenience of explanation, as shown in the lower part of FIG. It is divided into "wide part PT3", "second half round part PT4" and "application end part PT5". That is, of the surface peripheral edge region of the substrate W, the peripheral edge supply region that receives the treatment liquid supply when the slit nozzle 2 is positioned at the coating start position P1 is the coating start portion PT1. Also, the part to which the treatment liquid is supplied while the slit nozzle 2 moves from the coating start position P1 to the wide position P2 is the first round part PT2. A wide portion PT3 is a portion to which the processing liquid is supplied when the slit nozzle 2 is positioned at the wide position P2. Further, the part to which the treatment liquid is supplied while the slit nozzle 2 moves from the wide position P2 to the coating end position P3 is the latter round part PT4. Furthermore, the peripheral edge supply region to which the treatment liquid is supplied when the slit nozzle 2 is positioned at the coating end position P3 is the coating end portion PT5.
 なお、図4中の「0」、「150」、「300」はスリットノズル2の塗布開始位置P1からの移動距離を示している。また、符号G(0)、G(150)、G(300)は、それぞれ塗布開始位置P1、ワイド位置P2および塗布終了位置P3にスリットノズル2が位置するときの塗布ギャップを示している。 "0", "150", and "300" in FIG. 4 indicate the movement distance of the slit nozzle 2 from the coating start position P1. Reference symbols G(0), G(150), and G(300) denote coating gaps when the slit nozzle 2 is positioned at the coating start position P1, the wide position P2, and the coating end position P3, respectively.
 図5は、図1Aおよび図1Bに示す基板塗布装置において従来技術と同様に一定の走査速度で塗布処理を行ったときの塗布状況を示す図である。同図中の(A)~(C)欄は、スリットノズル2が互いに異なる6つの位置SLa~SLfに位置した時点での、スリットノズル2、基板Wおよび処理液を上方、(-Y)方向および(+X)方向から見た図を模式的に示している。これらのうち位置SLaでは、スリットノズル2は塗布開始位置P1よりも(-X)方向に位置しており、基板Wから(-X)方向に離れている。位置SLbでは、スリットノズル2は塗布開始位置P1に位置している。一方、位置SLfは、位置SLb(塗布開始位置P1)から300mm以上移動して基板Wの他方端部の上方から塗布方向(+X)に離れた位置を示し、位置SLc~SLeは位置SLb、SLfの間の3つの移動位置を示しており、特に位置SLdでは、スリットノズル2はワイド位置P2に位置している。また、これらの図面では、処理液が塗布された領域がハッチングにより模式的に示されている。なお、これらの点については、後で説明する図8においても同様である。 FIG. 5 is a diagram showing the state of coating when the substrate coating apparatus shown in FIGS. 1A and 1B performs coating processing at a constant scanning speed in the same manner as in the prior art. Columns (A) to (C) in the figure show the slit nozzle 2, the substrate W, and the processing liquid upward in the (−Y) direction when the slit nozzle 2 is positioned at six different positions SLa to SLf. and (+X) directions are schematically shown. At the position SLa among these positions, the slit nozzle 2 is positioned in the (-X) direction from the coating start position P1 and away from the substrate W in the (-X) direction. At the position SLb, the slit nozzle 2 is positioned at the coating start position P1. On the other hand, a position SLf indicates a position that is separated from above the other end of the substrate W by 300 mm or more from the position SLb (coating start position P1) in the coating direction (+X). , and particularly at the position SLd, the slit nozzle 2 is positioned at the wide position P2. Further, in these drawings, the regions coated with the treatment liquid are schematically indicated by hatching. Note that these points also apply to FIG. 8, which will be described later.
 次に、基板塗布装置100において、従来の塗布動作、つまり塗布ギャップを一定に維持しながらスリットノズル2を一定の走査速度で移動させつつ塗布処理を行うと、次のような問題が生じることがある。図示を省略する搬送ロボットにより基板Wが基板塗布装置100に搬送されてくると、ステージ1の中央部からリフトピン(図示省略)が上昇して基板Wの裏面を支持する。これに続いて、搬送ロボットが基板塗布装置100から後退する。これにより、リフトピンへの基板Wの受渡しが行われる。その後で、リフトピンがステージ1の内部に下降して基板Wがステージ1の保持面11に載置されるとともに、図示を省略する吸着機構によりステージ1の保持面11に保持される。 Next, in the substrate coating apparatus 100, the following problems may occur when the conventional coating operation, that is, the coating process is performed while the slit nozzle 2 is moved at a constant scanning speed while maintaining the coating gap constant. be. When the substrate W is transported to the substrate coating apparatus 100 by a transport robot (not shown), a lift pin (not shown) rises from the central portion of the stage 1 to support the back surface of the substrate W. As shown in FIG. Following this, the transfer robot retreats from the substrate coating apparatus 100 . As a result, the substrate W is delivered to the lift pins. After that, the lift pins descend into the stage 1 and the substrate W is placed on the holding surface 11 of the stage 1 and held on the holding surface 11 of the stage 1 by a suction mechanism (not shown).
 基板塗布装置100では、スリットノズル2が保持面11に保持された基板Wから(-X)方向に離れた位置SLaから塗布処理に適した位置まで移動され、図5の「SLb」欄に示すように塗布開始位置P1にスリットノズル2が位置決めされる。この塗布開始位置P1で塗布ギャップGが所定値に調整された状態で、吐出口24と基板Wの表面Wfとの間に処理液のビードが形成される。そして、塗布ギャップGを一定に維持したままスリットノズル2が(+X)方向に移動しながら処理液供給部3から供給される処理液LDを吐出口24から吐出する。つまり、吐出口24と基板Wとの間で発生する処理液LD(処理液のビード)の表面張力により吐出口24から処理液LDが吐出される。これによって、処理液LDが基板Wの表面Wfに塗布される。そして、スリットノズル2は一定の走査速度に維持しされたまま(+X)方向に移動するが、スリットノズル2の移動に伴って吐出口24と基板Wとの重複距離L、つまり処理液LDの吐出幅(接液範囲)は徐々に広がる。そして、スリットノズル2が位置SLd(つまり、ワイド位置P2)で最大となる。 In the substrate coating apparatus 100, the slit nozzle 2 is moved from the position SLa away from the substrate W held on the holding surface 11 in the (-X) direction to a position suitable for the coating process, and is shown in the column "SLb" in FIG. , the slit nozzle 2 is positioned at the coating start position P1. A bead of the treatment liquid is formed between the ejection port 24 and the surface Wf of the substrate W in a state where the coating gap G is adjusted to a predetermined value at the coating start position P1. Then, the processing liquid LD supplied from the processing liquid supply unit 3 is discharged from the discharge port 24 while the slit nozzle 2 moves in the (+X) direction while maintaining the coating gap G constant. That is, the treatment liquid LD is ejected from the ejection port 24 by the surface tension of the treatment liquid LD (bead of the treatment liquid) generated between the ejection port 24 and the substrate W. FIG. Thereby, the surface Wf of the substrate W is coated with the processing liquid LD. The slit nozzle 2 moves in the (+X) direction while being maintained at a constant scanning speed. The discharge width (liquid contact range) gradually widens. Then, the slit nozzle 2 is maximized at the position SLd (that is, the wide position P2).
 スリットノズル2が基板Wの中央部を通過し、さらに(+X)方向に移動すると、重複距離L(処理液の吐出幅)は徐々に狭まり、基板Wの(+X)方向側の端部の上方位置、つまり塗布終了位置P3に到達した時点で処理液LDの最後の塗布が行われる。当該塗布終了位置P3からさらに(+X)方向にスリットノズル2が移動して位置SLfに位置した時点で、スリットノズル2の移動が停止される。 When the slit nozzle 2 passes through the central portion of the substrate W and further moves in the (+X) direction, the overlapping distance L (discharge width of the processing liquid) gradually narrows and becomes above the edge of the substrate W in the (+X) direction. The final application of the treatment liquid LD is performed when the position, that is, the application end position P3 is reached. When the slit nozzle 2 moves further in the (+X) direction from the coating end position P3 and is positioned at the position SLf, the movement of the slit nozzle 2 is stopped.
 このようにして、塗布処理が行われるが、特にスリットノズル2が位置SLb(塗布開始位置P1)から位置SLd(ワイド位置P2)に移動している期間においては、重複距離Lはスリットノズル2の移動に伴って増大する。つまり、当該期間は重複増大期間となっている。この重複増大期間では、重複距離L、つまり処理液LDの吐出幅(接液範囲)は徐々に広がるのに応じて処理液LDは吐出口24の長手方向Yに拡がろうとする。ここで、塗布ギャップGが適切な値よりも大きいと、例えば図6の(a)欄に示すように、吐出口24と基板Wとの間に存在する処理液LDにより形成されるメニスカスが、本来的に予定していた膜厚で塗布するために理想的なメニスカスM0(同図中の1点鎖線)よりも内側にシフトしたメニスカスM1(同図中の実線)となる。その結果、スリットノズル2の走査移動に対して処理液LDの拡がりが間に合わず、前半ラウンド部位PT2に相当する箇所において液切れが発生することがある。逆に、塗布ギャップGが適切な値よりも小さいと、例えば図6の(b)欄に示すように、スリットノズル2の走査移動に対して処理液LDが長手方向Yに拡がり過ぎ、同図中においてドットを付したように過剰な処理液LDが存在してしまう。その結果、前半ラウンド部位PT2に相当する箇所の膜厚が設定値よりも厚くなる、つまり過剰膜厚が発生することがある。 In this way, the coating process is performed. Particularly, during the period when the slit nozzle 2 is moving from the position SLb (coating start position P1) to the position SLd (wide position P2), the overlap distance L is the same as that of the slit nozzle 2. Increases with movement. In other words, this period is an overlapping increase period. During this overlap increase period, the treatment liquid LD tends to spread in the longitudinal direction Y of the ejection port 24 as the overlap distance L, that is, the ejection width (liquid contact range) of the treatment liquid LD gradually widens. Here, if the coating gap G is larger than an appropriate value, the meniscus formed by the processing liquid LD existing between the ejection port 24 and the substrate W, as shown in column (a) of FIG. The meniscus M1 (solid line in the figure) is shifted inward from the ideal meniscus M0 (chain line in the figure) in order to apply the film with the originally planned film thickness. As a result, the spread of the treatment liquid LD cannot keep up with the scanning movement of the slit nozzle 2, and the liquid may run out at a portion corresponding to the first round portion PT2. Conversely, if the coating gap G is smaller than an appropriate value, as shown in FIG. Excess processing liquid LD exists as if dots were attached inside. As a result, the film thickness at the portion corresponding to the first round portion PT2 may become thicker than the set value, that is, an excessive film thickness may occur.
 しかも、基板Wの表面Wfが略円形状であるため、図7に示すように、重複増大期間における重複距離Lの変化速度は一定でなく、塗布ギャップGの最適値がスリットノズル2の移動に伴って変動するにもかかわらず、塗布ギャップGを一定に保っている。その結果、従来技術では、最終的に図5の「SLf」欄に示すように前半ラウンド部位PT2において、液切れまたは過剰膜厚などの不具合NGが発生することがある。 Moreover, since the surface Wf of the substrate W is substantially circular, as shown in FIG. The coating gap G remains constant despite the accompanying fluctuations. As a result, in the prior art, as shown in the column "SLf" in FIG. 5, NG such as liquid shortage or excess film thickness may occur at the first round portion PT2.
 そこで、本願発明者は、重複増大期間における重複距離Lの変化に応じて塗布ギャップGを調整することで上記課題を解消することが可能であるとの結論に至った。以下、重複増大期間における重複距離Lの変化を解析した内容について図7を参照しつつ説明した後で、その解析結果に基づく基板塗布装置100における塗布動作について、図8を参照しつつ説明する。 Therefore, the inventor of the present application has come to the conclusion that the above problem can be solved by adjusting the coating gap G in accordance with the change in the overlap distance L during the overlap increase period. Hereinafter, the contents of the analysis of the change in the overlap distance L during the overlap increasing period will be described with reference to FIG. 7, and then the coating operation of the substrate coating apparatus 100 based on the analysis results will be described with reference to FIG.
 図7は、スキャン距離に対する重複距離および重複距離の変化速度を示すグラフである。ここで、「スキャン距離」とは、塗布方向Xにおける基板Wの(-X)方向端部から距離、つまり位置SLb(塗布開始位置P1)からのスリットノズル2の移動距離を意味している。同図の中段に示すグラフ(スキャン距離に対する重複距離Lの変化を示すグラフ)で示される関数を微分することで、同図の下段に示すように重複距離Lの変化速度が得られる。上記液切れや過剰膜厚が発生するのを防止するためには、重複増大期間において、基板Wと吐出口24との間における処理液LDの拡がりを重複距離Lの変化速度に対応させることが重要である。これらのグラフから明らかなように、重複距離Lは位置SLb(塗布開始位置P1)からの移動開始より急激に増加し、スキャン距離が基板サイズ(本実施形態では、300mm)の半分の位置SLd(ワイド位置P2)で最大となる。そして、スキャン距離がさらに大きくなる、つまりスリットノズル2が基板Wの(+X)方向端部の上方位置(塗布終了位置P3)を移動する間に、重複距離Lは急激な変化速度で短くなっている。つまり、重複増大期間(スキャン距離0mm-150mm)では、重複距離Lの増大率が指数関数的に増大する。このため、重複増大期間のうちでも、特に重複距離Lが急激に増大する初期段階では、それに追従して処理液LDを吐出口24の長手方向Yに拡げるべく、塗布ギャップGを比較的小さくするのが好適である。逆に、重複距離Lの増加率が緩やかになる段階、つまりスリットノズル2がワイド位置P2に近づく段階では、処理液LDの過剰供給を防止すべく、塗布ギャップGを比較的大きくするのが好適である。すなわち、重複増大期間において、塗布ギャップGが重複距離Lの変化に対応して変化する、つまり、重複増大期間における重複距離Lの変化を示す関数、
 L=2×√{r-(r-x)
 ただし、
 xは、塗布開始位置P1からワイド位置P2に向けてスリットノズル2が基板Wに対して相対的に移動したスキャン距離である、
に基づいて制御部5が昇降機構41bを制御するのが好適である。
FIG. 7 is a graph showing the overlap distance and the rate of change of the overlap distance with respect to the scan distance. Here, the "scanning distance" means the distance from the (-X) end of the substrate W in the coating direction X, that is, the moving distance of the slit nozzle 2 from the position SLb (coating start position P1). By differentiating the function shown in the graph shown in the middle of the figure (the graph showing the change in the overlap distance L with respect to the scan distance), the change speed of the overlap distance L can be obtained as shown in the lower part of the figure. In order to prevent the liquid shortage and the excessive film thickness from occurring, it is possible to make the spread of the processing liquid LD between the substrate W and the discharge port 24 correspond to the changing speed of the overlap distance L during the overlap increase period. is important. As is clear from these graphs, the overlapping distance L sharply increases from the start of movement from the position SLb (coating start position P1), and the scanning distance is half the substrate size (300 mm in this embodiment) at the position SLd ( It becomes maximum at the wide position P2). Then, while the scanning distance is further increased, that is, while the slit nozzle 2 is moving above the (+X) direction edge of the substrate W (coating end position P3), the overlapping distance L is shortened at a rapid change speed. there is That is, during the overlap increasing period (scanning distance 0 mm to 150 mm), the increase rate of the overlap distance L increases exponentially. For this reason, especially in the initial stage when the overlapping distance L rapidly increases, the application gap G is made relatively small in order to expand the treatment liquid LD in the longitudinal direction Y of the ejection port 24, particularly in the initial stage when the overlap distance L rapidly increases. is preferred. Conversely, when the rate of increase of the overlapping distance L slows down, that is, when the slit nozzle 2 approaches the wide position P2, it is preferable to make the coating gap G relatively large in order to prevent excessive supply of the treatment liquid LD. is. That is, in the overlap increasing period, the coating gap G changes corresponding to the change in the overlap distance L, that is, the function that shows the change in the overlap distance L during the overlap increasing period,
L=2×√{r 2 −(r−x) 2 }
however,
x is the scan distance by which the slit nozzle 2 has moved relative to the substrate W from the coating start position P1 toward the wide position P2.
It is preferable that the control unit 5 controls the lifting mechanism 41b based on.
 より具体的には、重複増大期間における重複距離Lの変化を部分的に抜き出すと、図7の上段に示すように、スリットノズル2が塗布方向Xにおいてスキャン距離xn-1の位置からスキャン距離xnの位置に微小移動するとき、重複距離Lの変化量ΔLは、
 ΔL=Ln-Ln-1
 ただし、
 Lnは、スリットノズル2がスキャン距離xnに位置したときの重複距離であり、
 Ln-1は、スリットノズル2がスキャン距離xn-1に位置したときの重複距離である、
となる。したがって、スキャン距離Xnにスリットノズル2が位置するときの塗布ギャップG(x)が、次式、
 G(x)=-a×(Ln-Ln-1)/(xn-xn-1)+b … 式(1)
 ただし、
 a、bは、それぞれ定数である、
を満足するように、制御部5が昇降機構41bを制御するのが望ましい。これによって、基板Wと吐出口24との間において、いわゆる毛細管現象による処理液LDの長手方向Yへの拡がりが適正化される。その結果、前半ラウンド部位PT2において、液切れまたは過剰膜厚などの不具合NGが発生するのを効果的に防止することができる。本実施形態では、図8に示すように、重複増大期間において、上記式(1)が満足されるように、塗布ギャップG(x)を制御しつつ塗布処理を行っている。
More specifically, when the change in the overlap distance L during the overlap increase period is partially extracted, as shown in the upper part of FIG. When minutely moving to the position of , the amount of change ΔL in the overlapping distance L is
ΔL = Ln - Ln-1
however,
Ln is the overlapping distance when the slit nozzle 2 is positioned at the scan distance xn,
Ln-1 is the overlap distance when the slit nozzle 2 is positioned at the scan distance xn-1,
becomes. Therefore, the coating gap G(x) when the slit nozzle 2 is positioned at the scanning distance Xn is given by the following equation:
G(x)=-ax(Ln-Ln-1)/(xn-xn-1)+b... Formula (1)
however,
a and b are constants,
It is desirable that the control unit 5 controls the lifting mechanism 41b so as to satisfy the following. As a result, the spread of the treatment liquid LD in the longitudinal direction Y due to the so-called capillary action between the substrate W and the ejection port 24 is optimized. As a result, it is possible to effectively prevent NG such as liquid shortage or excessive film thickness from occurring in the first round portion PT2. In this embodiment, as shown in FIG. 8, the coating process is performed while controlling the coating gap G(x) so that the above formula (1) is satisfied during the overlap increasing period.
 図8は、本発明に係る基板塗布方法の第1実施形態を示す図である。この第1実施形態が従来技術と相違する点は、図8の上段グラフ中の実線で示すように、重複増大期間において、上記式(1)が満足されるように、塗布ギャップGが制御される点であり、その他の構成は従来技術と同一である。第1実施形態では、図4および図8に示すように、塗布開始位置P1に位置決めされたスリットノズル2の塗布ギャップG(0)は、スリットノズル2をワイド位置P2から塗布終了位置P3に走査させる際の塗布ギャップG(150)~G(300)のギャップ値bよりも小さな値に調整させる。そして、スリットノズル2の走査移動が開始されると、制御部5は式(1)にしたがって塗布ギャップGを大きくしている。このため、塗布開始直後においては、重複距離Lの変化は急激であるものの、それに対応して塗布ギャップGが小さく抑えられているため、重複距離Lの変化に追従して処理液LDが吐出口24の長手方向Yに拡げられる。そして、塗布処理が進行していくにしたがって重複距離Lの増加率が緩やかになるのに対応して塗布ギャップGが大きくなる。これによって、処理液LDの過剰供給が防止される。 FIG. 8 is a diagram showing the first embodiment of the substrate coating method according to the present invention. The difference between the first embodiment and the prior art is that, as indicated by the solid line in the upper graph of FIG. The other configuration is the same as the prior art. In the first embodiment, as shown in FIGS. 4 and 8, the coating gap G(0) of the slit nozzle 2 positioned at the coating start position P1 scans the slit nozzle 2 from the wide position P2 to the coating end position P3. The gap value b of the coating gaps G(150) to G(300) is adjusted to a value smaller than the gap value b. Then, when the scanning movement of the slit nozzle 2 is started, the controller 5 increases the coating gap G according to the formula (1). Therefore, immediately after the start of coating, although the overlapping distance L changes rapidly, the coating gap G is kept small correspondingly. 24 in the longitudinal direction Y. Then, as the coating process progresses, the rate of increase in the overlapping distance L slows down, and the coating gap G increases. This prevents excessive supply of the processing liquid LD.
 このように本実施形態によれば、重複増大期間において、適量の処理液LDがスリットノズル2の吐出口24と基板Wの表面Wfとの間に存在し、前半ラウンド部位PT2において液切れや過剰膜厚などの不具合NGが発生するのを効果的に防止することができる。一方、塗布処理の後半(スリットノズル2がワイド位置P2から塗布終了位置P3に移動する期間)は、重複距離Lが減少する期間であり、重複増大期間で発生していた課題は本来的に発生しないため、塗布ギャップGは一定値bに設定されている。その結果、基板Wの全体に対して処理液を均一に塗布することができる。 As described above, according to the present embodiment, during the overlap increase period, an appropriate amount of the processing liquid LD exists between the ejection port 24 of the slit nozzle 2 and the surface Wf of the substrate W, and the processing liquid LD is depleted or excessive in the first round portion PT2. It is possible to effectively prevent the occurrence of defects such as film thickness. On the other hand, the second half of the coating process (the period in which the slit nozzle 2 moves from the wide position P2 to the coating end position P3) is a period in which the overlap distance L decreases, and the problem that occurred during the overlap increase period naturally occurs. Therefore, the coating gap G is set to a constant value b. As a result, the entire substrate W can be uniformly coated with the processing liquid.
 なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば第1実施形態では、図8中の実線で示すパターンに示すように、塗布ギャップGは曲線形状で変化させているが、例えば図9に示すように、折れ線形状で変化させてもよい。 It should be noted that the present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, in the first embodiment, the coating gap G is changed in a curved line as shown in the solid line pattern in FIG. 8, but it may be changed in a broken line shape as shown in FIG.
 また、上記実施形態では、表面Wfが略円形状である半導体ウエハのような基板Wに処理液LDを塗布する基板塗布技術に本発明を適用しているが、基板Wの種類はこれに限定されるものではない。例えば表面Wfがひし形、正五角形および正六角形などに仕上げられた基板Wなどに処理液LDを塗布する基板塗布技術に対しても本発明を適用することができる。要は、スリットノズル2を基板Wに対して塗布方向Xに相対的に移動させることでスリットノズル2の吐出口24から基板Wの表面Wfに処理液LDを吐出して塗布する基板塗布技術のうち、上方からの平面視で長手方向Yにおいて吐出口24と基板Wとが重なり合う重複距離Lが基板Wに対するスリットノズル2の相対的な移動に伴い増大するものに対し、本発明を適用することができる。 In the above embodiment, the present invention is applied to a substrate coating technique for coating the processing liquid LD on a substrate W such as a semiconductor wafer having a substantially circular surface Wf, but the type of substrate W is limited to this. not to be For example, the present invention can also be applied to a substrate application technique for applying the processing liquid LD to a substrate W whose surface Wf is finished in a rhombus, regular pentagon, regular hexagon, or the like. In short, a substrate coating technique in which the slit nozzle 2 is moved relative to the substrate W in the coating direction X so that the processing liquid LD is discharged from the discharge port 24 of the slit nozzle 2 onto the surface Wf of the substrate W for coating. Of these, the present invention is applied to the case where the overlapping distance L where the discharge port 24 and the substrate W overlap in the longitudinal direction Y in plan view from above increases as the slit nozzle 2 moves relative to the substrate W. can be done.
 また、上記実施形態では、基板Wを固定しつつ、スリットノズル2を塗布方向Xに移動させながら処理液LDの塗布を行っているが、塗布態様はこれに限定されない。例えばスリットノズル2を固定させつつ基板Wを移動させてもよい。また、スリットノズル2および基板Wの両方を移動させて処理液LDを塗布してもよい。要は、基板Wに対してスリットノズル2を相対的に移動させて塗布処理を行う基板塗布技術全般に本発明を適用することができる。 In addition, in the above embodiment, while the substrate W is fixed, the slit nozzle 2 is moved in the coating direction X to apply the treatment liquid LD, but the application mode is not limited to this. For example, the substrate W may be moved while the slit nozzle 2 is fixed. Moreover, both the slit nozzle 2 and the substrate W may be moved to apply the treatment liquid LD. In short, the present invention can be applied to general substrate coating techniques in which the slit nozzle 2 is moved relative to the substrate W to perform the coating process.
 上述した本発明の各態様の有する複数の構成要素はすべてが必須のものではなく、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、適宜、前記複数の構成要素の一部の構成要素について、その変更、削除、新たな他の構成要素との差し替え、限定内容の一部削除を行うことが可能である。また、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、上述した本発明の一態様に含まれる技術的特徴の一部又は全部を上述した本発明の他の態様に含まれる技術的特徴の一部又は全部と組み合わせて、本発明の独立した一形態とすることも可能である。 All of the plurality of components of each aspect of the present invention described above are not essential, and in order to solve some or all of the above problems, or some or all of the effects described in this specification In order to achieve the above, it is possible to appropriately change, delete, replace with new other components, and partially delete the limited content for some of the plurality of components. In addition, in order to solve part or all of the above-described problems or achieve part or all of the effects described in this specification, the technical features included in one aspect of the present invention described above It is also possible to combine some or all of the technical features included in other aspects of the present invention described above to form an independent form of the present invention.
 この発明は、基板の表面の上方側に配置されたスリットノズルの吐出口から処理液を基板の表面に供給しながら、スリットノズルを基板に対して塗布方向に相対的に移動させることで基板の表面に処理液を塗布する基板塗布全般に適用することができる。 According to the present invention, the slit nozzle is moved relative to the substrate in the coating direction while supplying the treatment liquid from the ejection port of the slit nozzle arranged above the surface of the substrate to the surface of the substrate. It can be applied to general substrate coating in which a processing liquid is applied to the surface.
 2…スリットノズル
 5…制御部
 24…(スリットノズルの)吐出口
 41b…昇降機構(昇降部)
 42…ノズル移動部(移動部)
 100…基板塗布装置
 G…塗布ギャップ(離間距離)
 L…重複距離
 LD…処理液
 P1…塗布開始位置
 P2…ワイド位置
 P3…塗布終了位置
 W…基板
 Wf…(基板の)表面
 X…塗布方向
 Y…長手方向
2... Slit nozzle 5... Control unit 24... Ejection port (of slit nozzle) 41b... Lifting mechanism (lifting unit)
42 Nozzle moving part (moving part)
100... Substrate coating device G... Coating gap (separation distance)
L... Overlapping distance LD... Treatment liquid P1... Application start position P2... Wide position P3... Application end position W... Substrate Wf... Surface (of substrate) X... Application direction Y... Longitudinal direction

Claims (7)

  1.  基板の表面に処理液を塗布する基板塗布装置であって、
     前記基板の表面の上方側より、スリット状の吐出口から前記処理液を前記基板の表面に供給するスリットノズルと、
     前記吐出口が前記基板の表面から離間距離だけ離間した前記スリットノズルを、前記基板に対して前記吐出口の長手方向と直交する塗布方向に相対的に移動させる移動部と、
     前記スリットノズルを上下方向に昇降させる昇降部と、
     上方からの平面視で前記長手方向において前記吐出口と前記基板とが重なり合う重複距離が前記基板に対する前記スリットノズルの相対的な移動に伴い増大する間、前記重複距離の変化に応じて前記離間距離を調整するように、前記昇降部を制御する制御部と、
    を備えることを特徴とする基板塗布装置。
    A substrate coating apparatus for coating a surface of a substrate with a processing liquid,
    a slit nozzle for supplying the processing liquid from a slit-shaped ejection port to the surface of the substrate from above the surface of the substrate;
    a moving unit that relatively moves the slit nozzle, the ejection port of which is separated from the surface of the substrate by a separation distance, relative to the substrate in a coating direction perpendicular to the longitudinal direction of the ejection port;
    an elevating unit that elevates the slit nozzle in the vertical direction;
    While the overlapping distance between the discharge port and the substrate in the longitudinal direction in a plan view from above increases with the relative movement of the slit nozzle with respect to the substrate, the separation distance changes according to the change in the overlapping distance. a control unit that controls the lifting unit so as to adjust the
    A substrate coating device comprising:
  2.  請求項1に記載の基板塗布装置であって、
     前記制御部は、前記基板に対する前記スリットノズルの相対的な移動に伴う前記重複距離の増大を示す関数に基づいて、前記昇降部を制御する基板塗布装置。
    The substrate coating apparatus according to claim 1,
    The substrate coating apparatus, wherein the control section controls the elevation section based on a function indicating an increase in the overlapping distance accompanying relative movement of the slit nozzle with respect to the substrate.
  3.  請求項2に記載の基板塗布装置であって、
     前記基板の表面が半径rの略円形状であるとき、
     前記制御部は、前記塗布方向において、前記スリットノズルが前記基板の一方端部の上方の塗布開始位置に位置した状態から、前記スリットノズルが前記塗布開始位置から前記半径rだけ離れたワイド位置を経由し、前記スリットノズルが前記基板の他方端部の上方の塗布終了位置に位置するまで、前記スリットノズルが前記基板に対して相対的に移動するように、前記移動部を制御し、
     前記関数は、
     L=2×√{r-(r-x)
     ただし、
     Lは、前記重複距離であり、
     xは、前記塗布開始位置から前記ワイド位置に向けて前記スリットノズルが前記基板に対して相対的に移動した距離である、
    基板塗布装置。
    The substrate coating apparatus according to claim 2,
    When the surface of the substrate has a substantially circular shape with a radius of r,
    The control unit moves the slit nozzle from a state in which the slit nozzle is positioned at a coating start position above one end of the substrate in the coating direction to a wide position separated by the radius r from the coating start position. controlling the moving part so that the slit nozzle moves relative to the substrate until the slit nozzle is positioned at the coating end position above the other end of the substrate through the
    The function is
    L=2×√{r 2 −(r−x) 2 }
    however,
    L is the overlap distance;
    x is the distance that the slit nozzle has moved relative to the substrate from the coating start position toward the wide position;
    Substrate coating equipment.
  4.  請求項3に記載の基板塗布装置であって、
     前記制御部は、
     前記塗布開始位置と前記ワイド位置との間で、前記スリットノズルが前記塗布方向において距離xn-1から距離xnに微小移動するとき、距離Xnに前記スリットノズルが位置するときの前記離間距離G(x)が次式、
     G(x)=-a×(Ln-Ln-1)/(xn-xn-1)+b
     ただし、
     a、bは、それぞれ定数である、
     Lnは、前記スリットノズルが距離xnに位置したときの前記重複距離であり、
     Ln-1は、前記スリットノズルが距離xn-1に位置したときの前記重複距離であり、
    を満足するように、前記昇降部を制御する基板塗布装置。
    The substrate coating apparatus according to claim 3,
    The control unit
    When the slit nozzle slightly moves from the distance xn-1 to the distance xn in the coating direction between the coating start position and the wide position, the separation distance G ( x) is the following formula,
    G(x)=-ax(Ln-Ln-1)/(xn-xn-1)+b
    however,
    a and b are constants,
    Ln is the overlap distance when the slit nozzle is positioned at the distance xn;
    Ln-1 is the overlapping distance when the slit nozzle is positioned at the distance xn-1,
    A substrate coating apparatus that controls the lifting section so as to satisfy
  5.  請求項4に記載の基板塗布装置であって、
     前記制御部は、前記塗布方向に前記スリットノズルが前記ワイド位置から前記塗布終了位置に移動する間、前記離間距離が定数bとなるように、前記昇降部を制御する基板塗布装置。
    The substrate coating apparatus according to claim 4,
    The control section controls the elevation section so that the separation distance becomes a constant b while the slit nozzle moves from the wide position to the coating end position in the coating direction.
  6.  請求項1ないし3のいずれか一項に記載の基板塗布装置であって、
     前記制御部は、前記重複距離が前記基板に対する前記スリットノズルの相対的な移動に伴い減少する間、前記離間距離が一定となるように、前記昇降部を制御する基板塗布装置。
    The substrate coating apparatus according to any one of claims 1 to 3,
    The control section controls the elevation section so that the separation distance is constant while the overlapping distance decreases with the relative movement of the slit nozzle with respect to the substrate.
  7.  スリットノズルに設けられたスリット状の吐出口を基板の表面から上方に離間距離だけ離間させながら前記スリットノズルを前記基板に対して前記吐出口の長手方向と直交する塗布方向に相対的に移動させることで、前記吐出口から吐出される処理液を前記基板の表面に塗布する基板塗布方法であって、
     上方からの平面視で前記長手方向において前記吐出口と前記基板とが重なり合う重複距離が前記基板に対する前記スリットノズルの相対的な移動に伴い増大する間、前記重複距離の変化に応じて前記離間距離を調整する
    ことを特徴とする基板塗布方法。
    The slit nozzle is moved relative to the substrate in a coating direction orthogonal to the longitudinal direction of the ejection port while separating the slit-shaped ejection port provided in the slit nozzle upward from the surface of the substrate by a separation distance. A substrate coating method for coating the surface of the substrate with the treatment liquid ejected from the ejection port, comprising:
    While the overlapping distance between the discharge port and the substrate in the longitudinal direction in a plan view from above increases with the relative movement of the slit nozzle with respect to the substrate, the separation distance changes according to the change in the overlapping distance. A substrate coating method characterized by adjusting the
PCT/JP2022/033685 2021-09-17 2022-09-08 Substrate coating apparatus and substrate coating method WO2023042741A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-151739 2021-09-17
JP2021151739A JP2023043965A (en) 2021-09-17 2021-09-17 Substrate coating device and substrate coating method

Publications (1)

Publication Number Publication Date
WO2023042741A1 true WO2023042741A1 (en) 2023-03-23

Family

ID=85602150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033685 WO2023042741A1 (en) 2021-09-17 2022-09-08 Substrate coating apparatus and substrate coating method

Country Status (3)

Country Link
JP (1) JP2023043965A (en)
TW (1) TW202316554A (en)
WO (1) WO2023042741A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193174A (en) * 2004-01-08 2005-07-21 Dainippon Screen Mfg Co Ltd Apparatus and method for processing substrates
JP2014041950A (en) * 2012-08-23 2014-03-06 Tokyo Electron Ltd Coating device and coating method
JP2017094306A (en) * 2015-11-27 2017-06-01 株式会社Screenホールディングス Coating device and coating method
JP2017164700A (en) * 2016-03-17 2017-09-21 株式会社Screenホールディングス Coating equipment and coating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193174A (en) * 2004-01-08 2005-07-21 Dainippon Screen Mfg Co Ltd Apparatus and method for processing substrates
JP2014041950A (en) * 2012-08-23 2014-03-06 Tokyo Electron Ltd Coating device and coating method
JP2017094306A (en) * 2015-11-27 2017-06-01 株式会社Screenホールディングス Coating device and coating method
JP2017164700A (en) * 2016-03-17 2017-09-21 株式会社Screenホールディングス Coating equipment and coating method

Also Published As

Publication number Publication date
JP2023043965A (en) 2023-03-30
TW202316554A (en) 2023-04-16

Similar Documents

Publication Publication Date Title
KR100711069B1 (en) Substrate processing apparatus
JP2020040046A (en) Substrate treatment device, substrate treatment method, and computer program for substrate treatment
TW202032623A (en) Substrate processing device and substrate processing method to reliably prevent the interference between a correction member and a detection unit
CN108701635B (en) Substrate floating and conveying device
WO2023042741A1 (en) Substrate coating apparatus and substrate coating method
WO2023042740A1 (en) Substrate-coating apparatus and substrate-coating method
JP4982292B2 (en) Coating apparatus and coating method
WO2023042739A1 (en) Slit nozzle and substrate processing device
KR20110032673A (en) A device and method for finely adjusting height of coating region stage of a substrate floating unit, and a substrate floating unit and a coating apparatus having the same
WO2023042738A1 (en) Substrate coating device and substrate coating method
JP2009011892A (en) Coating device
JP2018114476A (en) Apparatus and method for coating
JP4524580B2 (en) Single wafer coating apparatus and die positioning method
JP2008068224A (en) Slit nozzle, substrate treatment apparatus, and method for treating substrate
WO2022196120A1 (en) Substrate coating apparatus and substrate coating method
JP5849459B2 (en) Processing apparatus and processing method
JP2008264606A (en) Coating device
JP4924226B2 (en) Surface processing method and surface processing apparatus
JP6869305B2 (en) Slit nozzle and substrate processing equipment
KR102604545B1 (en) Slit nozzle and substrate processing apparatus
CN111715473B (en) Substrate processing apparatus and substrate processing method
JP5663297B2 (en) Coating device
JP5044332B2 (en) Processing equipment
JP5089228B2 (en) Coating device
KR20160080452A (en) Substrate coater apparatus and the method of coating substrate using thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE